WorldWideScience

Sample records for turbine power unit

  1. Stabilization of gas turbine unit power

    Science.gov (United States)

    Dolotovskii, I.; Larin, E.

    2017-11-01

    We propose a new cycle air preparation unit which helps increasing energy power of gas turbine units (GTU) operating as a part of combined cycle gas turbine (CCGT) units of thermal power stations and energy and water supply systems of industrial enterprises as well as reducing power loss of gas turbine engines of process blowers resulting from variable ambient air temperatures. Installation of GTU power stabilizer at CCGT unit with electric and thermal power of 192 and 163 MW, respectively, has resulted in reduction of produced electrical energy production costs by 2.4% and thermal energy production costs by 1.6% while capital expenditures after installation of this equipment increased insignificantly.

  2. Turbine and its turbine control system of full scope simulator for Qinshan 300 MW Nuclear Power Unit

    International Nuclear Information System (INIS)

    Zhang Dongwei; Zhu Jinping

    1996-01-01

    The simulation for Qinshan 300 MW Nuclear Power Unit turbine and turbine control system is briefly introduced. The simulation system includes lube oil system, jacking oil pump system, turning gear system, turbine supervisor system and turbine control system. It not only correctly simulates the process of turbine normal start up, operation, and shut down, but also the response of turbine under the malfunction conditions

  3. Fuqing nuclear power of nuclear steam turbine generating unit No.1 at the implementation and feedback

    International Nuclear Information System (INIS)

    Cao Yuhua; Xiao Bo; He Liu; Huang Min

    2014-01-01

    The article introduces the Fuqing nuclear power of nuclear steam turbine generating unit no.l purpose, range of experience, experiment preparation, implementation, feedback and response. Turn of nuclear steam turbo-generator set flush, using the main reactor coolant pump and regulator of the heat generated by the electric heating element and the total heat capacity in secondary circuit of reactor coolant system (steam generator secondary side) of saturated steam turbine rushed to 1500 RPM, Fuqing nuclear power of nuclear steam turbine generating unit no.1 implementation of the performance of the inspection of steam turbine and its auxiliary system, through the test problems found in the clean up in time, the nuclear steam sweep turn smooth realization has accumulated experience. At the same time, Fuqing nuclear power of nuclear steam turbine generating unit no.1 at turn is half speed steam turbine generator non-nuclear turn at the first, with its smooth realization of other nuclear power steam turbine generator set in the field of non-nuclear turn play a reference role. (authors)

  4. Hydro turbine governor’s power control of hydroelectric unit with sloping ceiling tailrace tunnel

    Science.gov (United States)

    Fu, Liang; Wu, Changli; Tang, Weiping

    2018-02-01

    The primary frequency regulation and load regulation transient process when the hydro turbine governor is under the power mode of hydropower unit with sloping ceiling tailrace are analysed by field test and numerical simulation in this paper. A simulation method based on “three-zone model” to simulate small fluctuation transient process of the sloping ceiling tailrace is proposed. The simulation model of hydraulic turbine governor power mode is established by governor’s PLC program identification and parameter measurement, and the simulation model is verified by the test. The slow-fast-slow “three-stage regulation” method which can improve the dynamic quality of hydro turbine governor power mode is proposed. The power regulation strategy and parameters are optimized by numerical simulation, the performance of primary frequency regulation and load regulation transient process when the hydro turbine governor is under power mode are improved significantly.

  5. Fast-Valving of Large Steam Turbine Units as a Means of Power System Security Enhancement

    Directory of Open Access Journals (Sweden)

    Bogdan Sobczak

    2014-03-01

    Full Text Available Fast-valving assists in maintaining system stability following a severe transmission system fault by reducing the turbine mechanical power. Fast-valving consists in rapid closing and opening of steam valves in an adequate manner to reduce the generator accelerating power following the recognition of a severe fault. FV can be an effective and economical method of meeting the performance requirements of a power system in the presence of an increase in wind and solar generation in the power system, newly connected large thermal units and delaying of building new transmission lines. The principle of fast-valving and advantages of applying this technique in large steam turbine units was presented in the paper. Effectiveness of fast-valving in enhancing the stability of the Polish Power Grid was analyzed. The feasibility study of fast-valving application in the 560 MW unit in Kozienice Power Station (EW SA was discussed.

  6. Structural design of the turbine building of Angra Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    Varella, L.N.; Reis, F.J.C.; Jurkiewicz, W.J.

    1978-01-01

    The Turbine Building of the Angra Nuclear Power Plant, Unit 1, and particularly its structure and structural design are described. The Turbine Building, as far as its structure is concerned, deviates from the standard structure of any turbine building due to the fact that huge ducts are provided in the foundation mat as to accomodate the circulating water system. This aspect and the fact that the building is founded upon a very deep strata of compacted and controlled fill, makes out of the building structure 'a concrete ship floating in the sea of sand', and by the same reason presents by itself an interesting structure, worth to be known to all engineers involved in design of power plants. This pape, suplemented by a few slides shown during presentation of the paper at the conference, covers the subject mainly from the designers' point of view. (Author)

  7. RETRAN analysis of San Onofre Unit 2 turbine trip from 100% power

    International Nuclear Information System (INIS)

    Ting, Y.P.

    1985-01-01

    During the San Onofre Nuclear Generating Station Unit (SONGS 2) startup test, the plant experienced a turbine trip from 100% power on June 16, 1983. The trip was initiated by the condenser pressure switch malfunctioning. The plant computers were operating and recorded many plant key parameters. The resulting trip behaved as if it has been manually initiated and it was considered equivalent to a preplanned turbine trip test. A RETRAN-02 model was developed to simulate the SONGS 2 June 16 turbine trip event. The RETRAN analysis of the trip is a continuing effort of in-house SONGS 2 RETRAN model development to benchmark the calculations against the plant startup test data. The overall agreement between measured data and the RETRAN calculations was very good, providing confidence in the capability of the model and the RETRAN program. Comparative data are presented

  8. The technology of the bearings used in the nuclear power generation system turbine generator units

    International Nuclear Information System (INIS)

    Vialettes, J.M.; Rossato, M.

    1997-01-01

    A bearing consists of all the stationary part which allow the relative motion in rotation or in translation, of a shaft line. Inside the bearing there is a journal bearing with a metallic anti-friction coating (the babbitt metal). The high power turbine generator unit rotors are supported by smooth transversal journal bearings fed with oil which fills the empty space and runs along the shaft. The technologies used for the bearings and the thrust bearings of the turbine generator units and the various shaft lines of the French CP0/CP1- and CP2/1300 MW-type nuclear power plants are described. The experience feedback is then discussed in terms of the dynamics of the shaft line, i.e. vibrational problems, the influence of the alignment and the babbitt metal incidents. (author)

  9. Prospective gas turbine and combined-cycle units for power engineering (a Review)

    Science.gov (United States)

    Ol'khovskii, G. G.

    2013-02-01

    The modern state of technology for making gas turbines around the world and heat-recovery combined-cycle units constructed on their basis are considered. The progress achieved in this field by Siemens, Mitsubishi, General Electric, and Alstom is analyzed, and the objectives these companies set forth for themselves for the near and more distant future are discussed. The 375-MW gas turbine unit with an efficiency of 40% produced by Siemens, which is presently the largest one, is subjected to a detailed analysis. The main specific features of this turbine are that the gas turbine unit's hot-path components have purely air cooling, due to which the installation has enhanced maneuverability. The single-shaft combined-cycle plant constructed on the basis of this turbine has a capacity of 570 MW and efficiency higher than 60%. Programs adopted by different companies for development of new-generation gas turbine units firing synthesis gas and fitted with low-emission combustion chambers and new cooling systems are considered. Concepts of rotor blades for new gas turbine units with improved thermal barrier coatings and composite blades different parts of which are made of materials selected in accordance with the conditions of their operation are discussed.

  10. Ways to increase efficiency of the HTGR coupled with the gas-turbine power conversion unit - HTR2008-58274

    International Nuclear Information System (INIS)

    Golovko, V. F.; Kodochigov, N. G.; Vasyaev, A. V.; Shenoy, A.; Baxi, C. B.

    2008-01-01

    The paper deals with the issue of increasing efficiency of nuclear power plants with the modular high-temperature helium reactor (HTGR) and direct gas turbine cycle. It should be noted that only this combination can highlight the advantages of the HTGR, namely the ability to heat helium to about 1000 deg. C, in comparison with other reactor plants for electricity generation. The HTGR has never been used in the direct gas turbine cycle. At present, several designs of such commercial plants are at the stage of experimental validation of main technical features. In Russia, 'OKB Mechanical Engineering' together with 'General Atomics' (USA) are developing the GT-MHR project with the reactor power of 600 MW, reactor outlet helium temperature of 850 deg. C, and efficiency of about 45.2%; the South African Republic is developing the PBMR project with the reactor power of 400 MW, reactor outlet helium temperature of 900 deg. C, and efficiency of about 42%; and Japan is developing the GTHTR-300 project with the reactor power of 600 MW, reactor outlet helium temperature of 850 deg. C, and efficiency of about 45.6%. As it has been proven by technical and economic estimations, one of the most important factors for successful promotion of reactor designs is their net efficiency, which must be not lower than 47%. A significant advantage of a reactor plant with the HTGR and gas-turbine power conversion unit over the steam cycle is considerable simplification of the power unit layout and reduction of the required equipment and systems (no steam generators, no turbine hall including steam lines, condenser, deaerator, etc.), which makes the gas-turbine power conversion unit more compact and less costly in production, operation and maintenance. However, in spite of this advantage, it seems that in the projects currently being developed, the potential of the gas-turbine cycle and high-temperature reactor to more efficiently generate electricity is not fully used. For example, in modern

  11. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    generation unit, are becoming crucial in the wind turbine system. The objective of this project is to study the power electronics technology used for the next generation wind turbines. Some emerging challenges as well as potentials like the cost of energy and reliability are going to be addressed. First...... conversion is pushed to multi-MW level with high power density requirement. It has also been revealed that thermal stress in the power semiconductors is closely related to many determining factors in the wind power application like the reliability, cost, power density, etc. therefore it is an important......The wind power generation has been steadily growing both for the total installed capacity and for the individual turbine size. Due to much more significant impacts to the power grid, the power electronics, which can change the behavior of wind turbines from an unregulated power source to an active...

  12. Pitot-tube turbine as wind power plant

    Energy Technology Data Exchange (ETDEWEB)

    Naake, L

    1978-10-19

    The use of the Pitot tube turbine as a wind power station is an application of the well known Pitot tube with the turbines built into jet engines. The novelty of this invention lies in the combined nozzle and turbine unit, where the wind is caught in the funnel opening, is accelerated in the narrow flow zone and then acts on the turbine blades. Due to the acceleration, a greater torque is exerted on the turbine than in free air flow. The Pitot tube turbine consists of a casing with a turbine inside, which is fixed by guide vane supports to the casing and which contains one or two stage turbine blades and electrical generators. The whole structure with the rotor is set on a sub-frame and rotation is contained by control surfaces. The subframe can be used as a building.

  13. Turbine Control Strategies for Wind Farm Power Optimization

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Göçmen Bozkurt, Tuhfe; Giebel, Gregor

    2015-01-01

    In recent decades there has been increasing interest in green energies, of which wind energy is the most important one. In order to improve the competitiveness of the wind power plants, there are ongoing researches to decrease cost per energy unit and increase the efficiency of wind turbines...... and wind farms. One way of achieving these goals is to optimize the power generated by a wind farm. One optimization method is to choose appropriate operating points for the individual wind turbines in the farm. We have made three models of a wind farm based on three difference control strategies...... the generated power by changing the power reference of the individual wind turbines. We use the optimization setup to compare power production of the wind farm models. This paper shows that for the most frequent wind velocities (below and around the rated values), the generated powers of the wind farms...

  14. Design and field operation of 1175 MW steam turbine for Ohi Nuclear Power Station

    International Nuclear Information System (INIS)

    Hirota, Yoshio; Nakagami, Yasuo; Fujii, Hisashi; Shibanai, Hirooki.

    1980-01-01

    Two 1175 MW steam turbine and generator units have been successfully in commercial operation since March 1979 and December 1979 respectively at Ohi Nuclear Power Station of the Kansai Electric Power Company. Those units, the largest in their respective outputs in Japan, have also such remarkable design features as two-stage reheat, nozzle governing turbine, water cooled generator stator and turbine-driven feedwater pumps. This paper covers design features and some topics of various pre-operational tests of the above-mentioned units. (author)

  15. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2018-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...

  16. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2017-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...

  17. Saturated steam turbines for power reactors of WWER-type

    International Nuclear Information System (INIS)

    Czwiertnia, K.

    1978-01-01

    The publication deals with design problems of large turbines for saturated steam and with problem of output limitations of single shaft normal speed units. The possibility of unification of conventional and nuclear turbines, which creates the economic basis for production of both types of turbines by one manufacturer based on standarized elements and assemblies is underlined. As separate problems the distribution of nuclear district heating power systems are considered. The choice of heat diagram for district heating saturated steam turbines, the advantages of different diagrams and evaluaton for further development are presented. On this basis a program of unified turbines both condensing and district heating type suitable for Soviet reactors of WWER-440 and WWER-1000 type for planned development of nuclear power in Poland is proposed. (author)

  18. Design and field operation of 1175 MW steam turbine for Ohi Nuclear Power Station

    International Nuclear Information System (INIS)

    Hirota, Y.; Nakagami, Y.; Fujii, H.; Shibanai, H.

    1980-01-01

    Two 1,175 MW steam turbine and generator units have been successfully in commercial operation since March 1979 and December 1979 respectively at Ohi Nuclear Power Station of the Kansai Electric Power Company. Those units, the largest in their respective outputs in Japan, have also such remarkable design features as two-stage reheat, nozzle governing turbine, water cooled generator stator and turbine-driven feedwater pumps. This paper covers design features and some topics of various pre-operational tests of the above-mentioned units. (author)

  19. Completion of high-efficiency BWR turbine plant 'Hamaoka unit No. 4'

    International Nuclear Information System (INIS)

    Tsuji, Kunio; Hamaura, Norikazu; Shibashita, Naoaki; Kazama, Seiichi

    1995-01-01

    Accompanying the increase of capacity of nuclear power plants in Japan, the plants having heightened economical efficiency, which are supported by the improvement of thermal efficiency and the reduction of dose, are demanded. Hitachi Ltd. has completed No. 4 turbine unit of 1137 MW output in Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., which is the largest capacity machine in Japanese BWR plants. In this unit, the moisture separator heater, the steam turbine with high efficiency, and the hollow thread film condensate filter which treats the total flow rate of condensate are used as the reheating type BWR plant for the first time in Japan, and the plan of heightened economy and operation was adopted. It was confirmed by the trial for about 10 months that the planned performance was sufficiently satisfied, and the commercial operation was started in September, 1993. The features of the 1137 MW turbine unit are explained. The turbine is of tandem six-flow exhaust condensation type. Diffuser type low pressure turbine exhaust chambers, butterfly type combination intermediate valve are adopted. The stages with the blades having moisture-separating grooves were corrected. The reliability of the shaft system was improved. The adoption of the moisture separator heater and the application of the hollow thread film type condensate filter are explained. (K.I.)

  20. Two-phase flow degradation on Fukushima-Daiichi Unit 2 RCIC turbine performance

    International Nuclear Information System (INIS)

    Lopez, Hector; Erkan, Nejdet; Okamoto, Koji

    2016-01-01

    After the Fukushima accident, several investigation reports, including experiments and simulations have been done for each of the affected units to completely understand the accident progression and use their results to improve the knowledge of severe accident management and the severe codes performance. In Unit 2, the major uncertainties are related with the reactor core isolation cooling (RCIC) system performance during the accident progression especially focused in the RCIC turbine, which is assumed to work in two-phase flow. The main objective of this study is to analyze the RCIC turbine performance under two-phase flow scenarios under the assumption that the power produced by the turbine is lower than expected due to the liquid phase in the flow. A degradation coefficient quantifying the turbine power reduction is developed as a function of the flow quality by using the sonic speed reduction at critical flow conditions principle obtained by applying the non-homogeneous equilibrium model (NHEM). The degradation coefficient was applied to RELAP/ScdapSIM severe accident code showing a drastic reduction of the turbine-generated power during two-phase flow and obtaining a RCIC system behavior closer to the Tokyo electric power company (TEPCO) investigation report conclusions. (author)

  1. Analysing the Possible Ways for Short-Term Forcing Gas Turbine Engines in Auxiliary Power Unit

    Directory of Open Access Journals (Sweden)

    N. I. Trotskii

    2016-01-01

    Full Text Available Using a gas turbine energy unit as an example, the article discusses possible ways for forcing the short-term gas turbine engines (GTE. The introduction explains the need for forcing the air transport and marine GTE in specific driving conditions and offers the main methods. Then it analyzes the three main short-term forcing methods according to GTE power, namely: precompressor water injection, a short-term rise in temperature after the combustion chamber, and feeding an additional compressed air into combustion chamber from the reserve cylinders.The analysis of the water injection method to force a GTE presents the main provisions and calculation results of the cycle, as a function of engine power on the amount of water injected into compressor inlet. It is shown that with water injection into compressor inlet in an amount of 1% of the total airflow there is a 17% power increase in the compressor. It also lists the main implementation problems of this method and makes a comparison with the results of other studies on the water injection into compressor.Next, the article concerns the GTE short-term forcing method through the pre-turbine short-term increase in the gas temperature. The article presents the calculation results of the cycle as a function of the power and the fuel-flow rate on the gas temperature at the turbine inlet. It is shown that with increasing temperature by 80 degrees the engine power increases by 11.2% and requires 11% more fuel. In the analysis of this method arises an issue of thermal barrier coating on the blade surface. The article discusses the most common types of coatings and their main shortcomings. It lists the main challenges and some ways of their solving when using this method to implement the short-term forcing.The last method under consideration is GTE short-term forcing by feeding the compressed air into the combustion chamber from the additional reserve cylinders. It should be noted that this method is

  2. Development of biomass gasification systems for gas turbine power generation

    International Nuclear Information System (INIS)

    Larson, E.D.; Svenningsson, P.

    1991-01-01

    Gas turbines are of interest for biomass applications because, unlike steam turbines, they have relatively high efficiencies and low unit capital costs in the small sizes appropriate for biomass installations. Gasification is a simple and efficient way to make biomass usable in gas turbines. The authors evaluate here the technical requirements for gas turbine power generation with biomass gas and the status of pressurized biomass gasification and hot gas cleanup systems. They also discuss the economics of gasifier-gas turbine cycles and make some comparisons with competing technologies. Their analysis indicates that biomass gasifiers fueling advanced gas turbines are promising for cost-competitive cogeneration and central station power generation. Gasifier-gas turbine systems are not available commercially, but could probably be developed in 3 to 5 years. Extensive past work related to coal gasification and pressurized combustion of solid fuels for gas turbines would be relevant in this effort, as would work on pressurized biomass gasification for methanol synthesis

  3. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A

    DEFF Research Database (Denmark)

    Meroni, Andrea; La Seta, Angelo; Andreasen, Jesper Graa

    2016-01-01

    Axial-flow turbines represent a well-established technology for a wide variety of power generation systems. Compactness, flexibility, reliability and high efficiency have been key factors for the extensive use of axial turbines in conventional power plants and, in the last decades, in organic...... Rankine cycle power systems. In this two-part paper, an overall cycle model and a model of an axial turbine were combined in order to provide a comprehensive preliminary design of the organic Rankine cycle unit, taking into account both cycle and turbine optimal designs. Part A presents the preliminary...

  4. Electric power from vertical-axis wind turbines

    Science.gov (United States)

    Touryan, K. J.; Strickland, J. H.; Berg, D. E.

    1987-12-01

    Significant advancements have occurred in vertical axis wind turbine (VAWT) technology for electrical power generation over the last decade; in particular, well-proven aerodynamic and structural analysis codes have been developed for Darrieus-principle wind turbines. Machines of this type have been built by at least three companies, and about 550 units of various designs are currently in service in California wind farms. Attention is presently given to the aerodynamic characteristics, structural dynamics, systems engineering, and energy market-penetration aspects of VAWTs.

  5. Heat extraction from turbines of Czechoslovak nuclear power plants for district heating

    International Nuclear Information System (INIS)

    Drahy, J.

    1985-01-01

    Two design are described of SKODA extraction turbines for Czechoslovak nuclear power plants with WWER-440 and WWER-1000 reactors. 220 MW steam turbines were originally designed as pure condensation turbines with uncontrolled steam extraction. Optimal ways are now being sought for their use for heating hot water for district heating. For district heating of the town of Trnava, the nuclear power plant at Jaslovske Bohunice will provide a two-step heating of water from 70 to 120 degC with a heat supply of 60 MW th from one turbine unit. The ratio of obtained heat power to lost electric power is 5.08. Investigations showed the possibility of extracting 85 MW th of heat from uncontrolled steam extraction, this at three-step water heating from 60 to 145 degC, the ratio of gained and lost power being 7.14. Information is presented on the SKODA 220 MW turbine with steam extraction for heat supply purposes and on the 1000 MW turbine with 893 MW th heat extraction. The specifications of both types are given. (Pu)

  6. Component design considerations for gas turbine HTGR waste-heat power plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; Vrable, D.L.

    1976-01-01

    Component design considerations are described for the ammonia waste-heat power conversion system of a large helium gas-turbine nuclear power plant under development by General Atomic Company. Initial component design work was done for a reference plant with a 3000-MW(t) High-Temperature Gas-Cooled Reactor (HTGR), and this is discussed. Advanced designs now being evaluated include higher core outlet temperature, higher peak system pressures, improved loop configurations, and twin 4000-MW(t) reactor units. Presented are the design considerations of the major components (turbine, condenser, heat input exchanger, and pump) for a supercritical ammonia Rankine waste heat power plant. The combined cycle (nuclear gas turbine and waste-heated plant) has a projected net plant efficiency of over 50 percent. While specifically directed towards a nuclear closed-cycle helium gas-turbine power plant (GT-HTGR), it is postulated that the bottoming waste-heat cycle component design considerations presented could apply to other low-grade-temperature power conversion systems such as geothermal plants

  7. Study on the power control system for NPP power unit with the WWER-440 reactor

    International Nuclear Information System (INIS)

    Aleksandrova, N.D.; Naumov, A.V.

    1981-01-01

    Results of model investigations into basic version of the power control systems (PCS) conformably to the WWER-440 NPP power unit are stated. Transient processes in the power unit system when being two PCS versions during perturbations of different parameters: unit power, vapour pressure or position of control rods have been simulated. Investigations into the different PCS versions show that quality of operation of a traditional scheme with a turbine power controller and reactor pressure controller can be significantly improved with the introduction of a high-speed signal of pressure into the reactor controller. The PCS version with the compensation of interrelations between the turbine and reactor controllers constructed according to the same principles as the standard schemes of power units of thermal electric power plant is perspective as well [ru

  8. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    . For these VSCs, high power density is required due to limited turbine nacelle space. Also, high reliability is required since maintenance cost of these remotely located wind turbines is quite high and these turbines operate under harsh operating conditions. In order to select a high power density and reliability......In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... VSC solution for wind turbines, first, the VSC topology and the switch technology to be employed should be specified such that the highest possible power density and reliability are to be attained. Then, this qualitative approach should be complemented with the power density and reliability...

  9. Gas turbine installations in nuclear power plants in Sweden

    International Nuclear Information System (INIS)

    Sevestedt, Lars

    1986-01-01

    At each of the four nuclear power stations in Sweden (Ringhals, Forsmark, Oskarshamn, Barsebaeck) gas turbine generating sets have been installed. These units are normally used for peak load operation dictated of grid and System requirements but they are also connected to supply the electrical auxiliary load of the nuclear plant as reserve power sources. The gas turbines have automatic start capability under certain abnormal conditions (such as reactor trips, low frequency grid etc) but they can also be started manually from several different locations. Starting time is approximately 2- 3 minutes from start up to full load. (author)

  10. Gas turbine installations in nuclear power plants in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Sevestedt, Lars [Electrical Equipment and Gas Turbines, Swedish State Power Board, Ringhals Nuclear Power Plant, S-430 22 Vaeroebacka (Sweden)

    1986-02-15

    At each of the four nuclear power stations in Sweden (Ringhals, Forsmark, Oskarshamn, Barsebaeck) gas turbine generating sets have been installed. These units are normally used for peak load operation dictated of grid and System requirements but they are also connected to supply the electrical auxiliary load of the nuclear plant as reserve power sources. The gas turbines have automatic start capability under certain abnormal conditions (such as reactor trips, low frequency grid etc) but they can also be started manually from several different locations. Starting time is approximately 2- 3 minutes from start up to full load. (author)

  11. Ejectors of power plants turbine units efficiency and reliability increasing

    Science.gov (United States)

    Aronson, K. E.; Ryabchikov, A. Yu.; Kuptsov, V. K.; Murmanskii, I. B.; Brodov, Yu. M.; Zhelonkin, N. V.; Khaet, S. I.

    2017-11-01

    The functioning of steam turbines condensation systems influence on the efficiency and reliability of a power plant a lot. At the same time, the condensation system operating is provided by basic ejectors, which maintain the vacuum level in the condenser. Development of methods of efficiency and reliability increasing for ejector functioning is an actual problem of up-to-date power engineering. In the paper there is presented statistical analysis of ejector breakdowns, revealed during repairing processes, the influence of such damages on the steam turbine operating reliability. It is determined, that 3% of steam turbine equipment breakdowns are the ejector breakdowns. At the same time, about 7% of turbine breakdowns are caused by different ejector malfunctions. Developed and approved design solutions, which can increase the ejector functioning indexes, are presented. Intercoolers are designed in separated cases, so the air-steam mixture can’t move from the high-pressure zones to the low-pressure zones and the maintainability of the apparatuses is increased. By U-type tubes application, the thermal expansion effect of intercooler tubes is compensated and the heat-transfer area is increased. By the applied nozzle fixing construction, it is possible to change the distance between a nozzle and a mixing chamber (nozzle exit position) for operating performance optimization. In operating conditions there are provided experimental researches of more than 30 serial ejectors and also high-efficient 3-staged ejector EPO-3-80, designed by authors. The measurement scheme of the designed ejector includes 21 indicator. The results of experimental tests with different nozzle exit positions of the ejector EPO-3-80 stream devices are presented. The pressure of primary stream (water steam) is optimized. Experimental data are well-approved by the calculation results.

  12. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    major achievement by successfully completing 8000 hours of operation at the Billings site. The Alpha sub-MW DFC/T power plant unit was returned to the factory for post-operation inspection and analysis. The success of the Alpha Unit operation in the field and achievement of the ultra-high efficiency of 58%, triggered the establishment of a MW-scale commercial product design and development program. Design of a 3 MW (nominal rating) DFC/T Power Plant was completed with an electrical efficiency approaching 60+% LHV of natural gas depending on the design and performance of the gas turbine. Development efforts incorporated lessons learned from the Alpha sub-MW DFC/T power plant demonstration, as well as design features from FCE's commercial product offerings, the DFC1500 and DFC3000 MW-class simple cycle power plants. The 3 MW DFC/T power plant is anticipated to be a superb alternative for large distributed generation applications in locations with high cost-of-electricity.

  13. Turbine-generators for 400 mw coal-fired power plants

    International Nuclear Information System (INIS)

    Engelke, W.; Bergmann, D.; Boer, J.; Termuehlen, H.

    1991-01-01

    This paper reports that presently, standard coal-fired power plant concepts including flue gas desulfurization (FGD) and DENO x systems are in the design stage to be built on relatively short delivery schedules. The rating in the 400 MW range has generally been selected, because such small power plant units with short delivery times cause a minimum financial burden during planning, delivery and installation. They also follow more closely the growth of electric energy demand at specific locations. However economical considerations could lead to larger unit ratings, since the planning and building process of higher capacity plants is not significantly different but specific plant costs are certainly smaller with increased unit size. Historically large tandem-compound steam turbine-generators have been built and have proven reliable operation with ratings in excess of 800 MW. Already in the late 1950's main steam pressures and temperatures as high as 4,500 psig and 1,200 degrees F respectively were successfully used for smaller steam turbines

  14. Optimizing Parameters of Axial Pressure-Compounded Ultra-Low Power Impulse Turbines at Preliminary Design

    Science.gov (United States)

    Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.

    2018-01-01

    Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection

  15. Behaviour of steam turbine power control of large power plant units in case of network short-circuits

    International Nuclear Information System (INIS)

    Kindermann, W.; Fork, K.

    1978-01-01

    In order to investigate the behaviour of the turbine control system during strong pendulum motions, an analysis is carried out using a digital computer program by which the reactor, the turbine, the generator and, in a simplified way, the network can be simulated to the necessary degree. Plotter pictures can show the main physical quantities. In all cases, the turbine control system should be able to distinguish between strong pendulum amplitude with acceleration of the rotational angles and sudden release criteria. This demand can be satisfied by a simple adjustment in the Kraftwerk Union turbine control system. Only a few seconds after shut-off of a severe network failure, the turbines are back to their rated power, thus contributing to reliability of supply in this critical network situation. (orig.) [de

  16. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A: Turbine Model

    Directory of Open Access Journals (Sweden)

    Andrea Meroni

    2016-04-01

    Full Text Available Axial-flow turbines represent a well-established technology for a wide variety of power generation systems. Compactness, flexibility, reliability and high efficiency have been key factors for the extensive use of axial turbines in conventional power plants and, in the last decades, in organic Rankine cycle power systems. In this two-part paper, an overall cycle model and a model of an axial turbine were combined in order to provide a comprehensive preliminary design of the organic Rankine cycle unit, taking into account both cycle and turbine optimal designs. Part A presents the preliminary turbine design model, the details of the validation and a sensitivity analysis on the main parameters, in order to minimize the number of decision variables in the subsequent turbine design optimization. Part B analyzes the application of the combined turbine and cycle designs on a selected case study, which was performed in order to show the advantages of the adopted methodology. Part A presents a one-dimensional turbine model and the results of the validation using two experimental test cases from literature. The first case is a subsonic turbine operated with air and investigated at the University of Hannover. The second case is a small, supersonic turbine operated with an organic fluid and investigated by Verneau. In the first case, the results of the turbine model are also compared to those obtained using computational fluid dynamics simulations. The results of the validation suggest that the model can predict values of efficiency within ± 1.3%-points, which is in agreement with the reliability of classic turbine loss models such as the Craig and Cox correlations used in the present study. Values similar to computational fluid dynamics simulations at the midspan were obtained in the first case of validation. Discrepancy below 12 % was obtained in the estimation of the flow velocities and turbine geometry. The values are considered to be within a

  17. Evaluation of Steam Generator Level behavior for Determination of Turbine Runback rate on COPs trip for Yonggwang 1 and 2 Power Uprating Units

    International Nuclear Information System (INIS)

    Lee, Kyung Jin; Hwang, Su Hyun; Yoo, Tae Geun; Chung, Soon Il; An, Byung Chang; Park, Jung Gu

    2010-01-01

    4.5% power uprate project has been progressing for the first time in Yonggwang 1 and 2(YGN1 and 2). Reviews for design change due to the power uprate were accomplished. Steam generator level behavior was one of the most important parameters because it could be cause of reactor trip or turbine trip. As the results of the reviews, YGN1 and 2 had to reassess it for change of turbine runback rate when turbine runback occurs due to the condensate operating pumps (COP) trip. This study has been carried out for evaluating the steam generator level behavior for determination of turbine runback rate on COPs trip for Yonggwang 1 and 2 Power Uprating Units. The steam generator water level evaluation program for YGN1 and 2 (SLEP-Y1) has been developed for it. The program includes models for the steam generator water level response. SLEP-Y1 is programmed with advanced continuous system simulation language (ACSL). The language has been used to simulate physical systems as a commercial tool used to evaluate system designs

  18. In place chemical cleaning of Will County Unit 4 high pressure turbine for efficiency recovery

    International Nuclear Information System (INIS)

    Cloffi, S.J.

    1989-01-01

    Due to the proliferation of nuclear units and the economic penalties associated with nuclear unit's following load, the fossil industry has had to switch gears in their mode of operation. A fossil unit must be able to cycle on and off if it is to remain useful to system power supply. Furthermore, a fossil unit is indispensable if it can go to a low load at night and ramp up during the day to meet load demand. Despite the cautions, warnings, and lack of information from turbine and boiler manufactures, Will County Unit 4 achieved such minimum load operation in November 1987. Within the year, Unit 4 experienced numerous cycle chemistry upsets and a steady decline in turbine capability. In depth turbine testing coupled with the chemistry characteristics reveal the cause to be copper deposits on the second and third stages of the high pressure turbine. This paper details the investigation, remedial action, and possible solutions to this turbine capability problem

  19. Backstepping-based nonlinear adaptive control for coal-fired utility boiler-turbine units

    International Nuclear Information System (INIS)

    Fang, Fang; Wei, Le

    2011-01-01

    The control system of boiler-turbine unit plays an important role in improving efficiency and reducing emissions of power generation unit. The nonlinear, coupling and uncertainty of the unit caused by varying working conditions should be fully considered during the control system design. This paper presents an efficient control scheme based on backstepping theory for improving load adaptability of boiler-turbines in wide operation range. The design process of the scheme includes model preprocessing, control Lyapunov functions selection, interlaced computation of adaptive control laws, etc. For simplification and accuracy, differential of steam pipe inlet pressure and integral terms of target errors are adopted. Also, to enhance practicality, implementation steps of the scheme are proposed. A practical nonlinear model of a 500 MW coal-fired boiler-turbine unit is used to test the efficiency of the proposed scheme in different conditions.

  20. Some research and development on power plants with helium gas turbine units

    International Nuclear Information System (INIS)

    Kaplan, M.P.

    1983-01-01

    Research and development projects pursued at the S. M. Kirov Kharkov Turbine Factory Production Association for Nuclear Turbomachinery Manufacturing have probed into prospective use of helium as the working medium in nuclear power facilities. The projects under study are compared mainly in terms of heat efficiency. Solutions are also being sought for problems centering around high efficiency in helium turbocompressors combined with shortening of axial dimensions. Different types of power plants are being compared with attention given to features of the flow passages of turbocompressors. The projects were developed for helium temperatures and pressures downstream of the reactor 950 0 C and 4.8 MPa, and thermal reactor output 2250 MW(th). The reactor is assumed to be served by two turbine plants in the turbocompressor designs

  1. Technical evaluation of the proposed deletion of a reactor trip on a turbine trip below 50-percent power for the Beaver Valley nuclear power plant, Unit 1

    International Nuclear Information System (INIS)

    Reeves, W.E.

    1979-12-01

    This report documents the technical evaluation of the Duquesne Light Company's proposed license amendment for the deletion of a reactor trip on a turbine trip below 50% power for the Beaver Valley nuclear power plant, Unit 1. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Program being conducted for the US Nuclear Regulatory Commission by Lawrence Livermore Laboratory

  2. Counter-rotating type axial flow pump unit in turbine mode for micro grid system

    International Nuclear Information System (INIS)

    Kasahara, R; Takano, G; Komaki, K; Murakami, T; Kanemoto, T

    2012-01-01

    Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. This serial research proposes the hybrid power system combined the wind power unit with the pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In the pumping mode, the pump should operate unsteadily at not only the normal but also the partial discharge. The operation may be unstable in the rising portion of the head characteristics at the lower discharge, and/or bring the cavitation at the low suction head. To simultaneously overcome both weak points, the authors have proposed a superior pump unit that is composed of counter-rotating type impellers and a peculiar motor with double rotational armatures. This paper discusses the operation at the turbine mode of the above unit. It is concluded with the numerical simulations that this type unit can be also operated acceptably at the turbine mode, because the unit works so as to coincide the angular momentum change through the front runners/impellers with that thorough the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes.

  3. Cogeneration steam turbines from Siemens: New solutions

    Science.gov (United States)

    Kasilov, V. F.; Kholodkov, S. V.

    2017-03-01

    The Enhanced Platform system intended for the design and manufacture of Siemens AG turbines is presented. It combines organizational and production measures allowing the production of various types of steam-turbine units with a power of up to 250 MWel from standard components. The Enhanced Platform designs feature higher efficiency, improved reliability, better flexibility, longer overhaul intervals, and lower production costs. The design features of SST-700 and SST-900 steam turbines are outlined. The SST-700 turbine is used in backpressure steam-turbine units (STU) or as a high-pressure cylinder in a two-cylinder condensing turbine with steam reheat. The design of an SST-700 single-cylinder turbine with a casing without horizontal split featuring better flexibility of the turbine unit is presented. An SST-900 turbine can be used as a combined IP and LP cylinder (IPLPC) in steam-turbine or combined-cycle power units with steam reheat. The arrangements of a turbine unit based on a combination of SST-700 and SST-900 turbines or SST-500 and SST-800 turbines are presented. Examples of this combination include, respectively, PGU-410 combinedcycle units (CCU) with a condensing turbine and PGU-420 CCUs with a cogeneration turbine. The main equipment items of a PGU-410 CCU comprise an SGT5-4000F gas-turbine unit (GTU) and STU consisting of SST-700 and SST-900RH steam turbines. The steam-turbine section of a PGU-420 cogeneration power unit has a single-shaft turbine unit with two SST-800 turbines and one SST-500 turbine giving a power output of N el. STU = 150 MW under condensing conditions.

  4. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant

    International Nuclear Information System (INIS)

    Chan, Yea-Kuang; Tsai, Yu-Ching

    2017-01-01

    The objective of this study is to develop a turbine cycle model using the multiple regression approach to estimate the turbine-generator output for the Chinshan Nuclear Power Plant (NPP). The plant operating data was verified using a linear regression model with a corresponding 95% confidence interval for the operating data. In this study, the key parameters were selected as inputs for the multiple regression based turbine cycle model. The proposed model was used to estimate the turbine-generator output. The effectiveness of the proposed turbine cycle model was demonstrated by using plant operating data obtained from the Chinshan NPP Unit 2. The results show that this multiple regression based turbine cycle model can be used to accurately estimate the turbine-generator output. In addition, this study also provides an alternative approach with simple and easy features to evaluate the thermal performance for nuclear power plants.

  5. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Yea-Kuang; Tsai, Yu-Ching [Institute of Nuclear Energy Research, Taoyuan City, Taiwan (China). Nuclear Engineering Division

    2017-03-15

    The objective of this study is to develop a turbine cycle model using the multiple regression approach to estimate the turbine-generator output for the Chinshan Nuclear Power Plant (NPP). The plant operating data was verified using a linear regression model with a corresponding 95% confidence interval for the operating data. In this study, the key parameters were selected as inputs for the multiple regression based turbine cycle model. The proposed model was used to estimate the turbine-generator output. The effectiveness of the proposed turbine cycle model was demonstrated by using plant operating data obtained from the Chinshan NPP Unit 2. The results show that this multiple regression based turbine cycle model can be used to accurately estimate the turbine-generator output. In addition, this study also provides an alternative approach with simple and easy features to evaluate the thermal performance for nuclear power plants.

  6. Modeling of wind turbines for power system studies

    Energy Technology Data Exchange (ETDEWEB)

    Petru, T.

    2001-05-01

    When wind turbines are installed into the electric grid, the power quality is affected. Today, strict installation recommendations often prevail due to a lack of knowledge on this subject. Consequently, it is important to predict the impact of wind turbines on the electric grid before the turbines are installed. The thesis describes relevant power quality issues, discusses different configurations of wind turbines with respect to power quality and draw requirements regarding wind turbine modeling. A model of a stall-regulated, fixed-speed wind turbine system is introduced and its power quality impact on the electric grid is evaluated. The model is verified with field measurements.

  7. Modeling of Turbine Cycles Using a Neuro-Fuzzy Based Approach to Predict Turbine-Generator Output for Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Yea-Kuang Chan

    2012-01-01

    Full Text Available Due to the very complex sets of component systems, interrelated thermodynamic processes and seasonal change in operating conditions, it is relatively difficult to find an accurate model for turbine cycle of nuclear power plants (NPPs. This paper deals with the modeling of turbine cycles to predict turbine-generator output using an adaptive neuro-fuzzy inference system (ANFIS for Unit 1 of the Kuosheng NPP in Taiwan. Plant operation data obtained from Kuosheng NPP between 2006 and 2011 were verified using a linear regression model with a 95% confidence interval. The key parameters of turbine cycle, including turbine throttle pressure, condenser backpressure, feedwater flow rate and final feedwater temperature are selected as inputs for the ANFIS based turbine cycle model. In addition, a thermodynamic turbine cycle model was developed using the commercial software PEPSE® to compare the performance of the ANFIS based turbine cycle model. The results show that the proposed ANFIS based turbine cycle model is capable of accurately estimating turbine-generator output and providing more reliable results than the PEPSE® based turbine cycle models. Moreover, test results show that the ANFIS performed better than the artificial neural network (ANN, which has also being tried to model the turbine cycle. The effectiveness of the proposed neuro-fuzzy based turbine cycle model was demonstrated using the actual operating data of Kuosheng NPP. Furthermore, the results also provide an alternative approach to evaluate the thermal performance of nuclear power plants.

  8. Optimization of power generation from shrouded wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor; Agarwal, Ramesh [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis (United States)

    2013-07-01

    In past several years, several studies have shown that the shrouded wind turbines can generate greater power compared to bare turbines. The objective of this study is to determine the potential of shrouded wind turbines for increased power generation by conducting numerical simulations. An analytical/computational study is performed by employing the well-known commercial Computational Fluid Dynamics (CFD) software FLUENT. An actuator disc model is used to model the turbine. The incompressible Navier-Stokes equations and a two equation realizable {kappa}-{epsilon} model are employed in the calculations. The power coefficient Cp and generated power are calculated for a large number of cases for horizontal axis wind turbines (HAWT) of various diameters and wind speeds for both bare and shrouded turbines. The design of the shroud is optimized by employing a single objective genetic algorithm; the objective being the maximization of the power coefficient Cp. It was found that the shroud indeed increases the Cp beyond the Betz’s limit significantly and as a result the generated power; this effect is consistent with that found in the recent literature that the shrouded wind-turbines can generate greater power than the bare turbines. The optimized shape of the shroud or diffuser further increases the generated power and Cp.

  9. Power quality improvement of unbalanced power system with distributed generation units

    DEFF Research Database (Denmark)

    Hu, Y.; Chen, Zhe; Excell, P.

    2011-01-01

    This paper presents a power electronic system for improving the power quality of the unbalanced distributed generation units in three-phase four-wire system. In the system, small renewable power generation units, such as small PV generator, small wind turbines may be configured as single phase...... and control of the converter are described. Simulation results have demonstrated that the system can effectively correct the unbalance and enhance the system power quality....... generation units. The random nature of renewable power sources may result in significant unbalance in the power network and affect the power quality. An electronic converter system is proposed to correct the system unbalance and harmonics so as to deal with the power quality problems. The operation...

  10. Arabelle: The most powerful steam turbine in the world

    International Nuclear Information System (INIS)

    Lamarque, F.; Deloroix, V.

    1998-01-01

    On the 30th of August 1996 at the CHOOZ power station in the Ardennes, the first 1,500 MW turbine was started up under nuclear steam and connected to the grid. It will reach full power in the spring of 1997, followed shortly afterwards by a second identical machine. This turbine, known as ARABELLE, is currently the most powerful in the world, with a single line rotating at 1,500 rpm. It has been entirely designed, manufactured and installed by the teams of GEC ALSTHOM, within the framework of the Electricite de France N4 PWR program. It represents a new type of nuclear turbine, the fruit of much research and development work which started in the 1980s. It benefits from GEC ALSTHOM's considerable experience in the field of nuclear turbines: 143 machines with a total power output of 100,000 MW and more than ten million hours of operation. It should be remembered that the first 1,000 MW unit for a PWR plant was connected at Fessenheim in 1977, and since then the different EDF plants have been equipped with 58 GEC ALSTHOM turbines, ranging from 1,000 MW to 1,350 MW, this providing the company with a vast amount of information. The process which led to a new design for ARABELLE was based on: Feedback of service experience from previous machines; this provides precious learning material with a view to improving the performance of operating equipment. Research and development work resulting in significant technical advances which could then be integrated into the design of a new generation of turbines. Taking account of the major concerns of the customer-user: Electricite de France (EDF): Improved reliability and operating availability, increased efficiency, reduced investment and maintenance costs

  11. Research on simulation of supercritical steam turbine system in large thermal power station

    Science.gov (United States)

    Zhou, Qiongyang

    2018-04-01

    In order to improve the stability and safety of supercritical steam turbine system operation in large thermal power station, the body of the steam turbine is modeled in this paper. And in accordance with the hierarchical modeling idea, the steam turbine body model, condensing system model, deaeration system model and regenerative system model are combined to build a simulation model of steam turbine system according to the connection relationship of each subsystem of steam turbine. Finally, the correctness of the model is verified by design and operation data of the 600MW supercritical unit. The results show that the maximum simulation error of the model is 2.15%, which meets the requirements of the engineering. This research provides a platform for the research on the variable operating conditions of the turbine system, and lays a foundation for the construction of the whole plant model of the thermal power plant.

  12. Wind Power Plant Control Optimisation with Incorporation of Wind Turbines and STATCOMs

    DEFF Research Database (Denmark)

    Petersen, Lennart; Kryezi, Fitim; Iov, Florin

    2015-01-01

    This paper addresses a detailed design and tuning of a wind power plant slope voltage control with reactive power contribution of wind turbines and STATCOMS. First, small-signal models of a single wind turbine and the whole wind power plant are developed, being appropriate for voltage control...... assessment. An exemplary wind power plant located in the United Kingdom and the corresponding grid code requirements are used as a base case. The final design and tuning process of the voltage controller results in a guidance, proposed for this particular control architecture. It provides qualitative...... outcomes regarding the impact of system delays, grid conditions and various operating conditions of the wind power plant, with and without incorporation of STATCOMS....

  13. Low speed turbines for nuclear power plants

    International Nuclear Information System (INIS)

    Ugol'nikov, V.V.; Kosyak, Yu.F.; Virchenko, M.A.

    1975-01-01

    Work of the Kharkov turbine plant on planning and manufacture for nuclear power plants of low-speed (1500 rpm) turbines with a power of 500-1000 MW is described. The selection of a construction diagram for the turbine assembly, determined basically by the presence or absence of parts of average pressure, is considered. Special construction features of the condenser and turbine are described. Turbine K-500, with a rate of 1500 rpm, was calculated for operation in a two-loop nuclear power plant with saturated steam with intermediate separation and two-stage steam regeneration. On the base of this turbine, three models of 1000-MW turbines were developed. The first model has a cylinder of average pressure (TsSD) and a lateral condenser. The second has no TsSD but a low location of the condensers. The third has no TsSD and the condensers are located laterally. Calculations of the heat efficiency of the three types of turbines showed that several advantages are offered by the model with a TsSD. Better aerodynamic properties of the exhaust nozzles and condensers with lateral location allows decreasing the specific heat consumption to 0.5-1% or, at the same power, a 10-20% decrease in cooling water consumption

  14. Turbines for nuclear power plants. 2.ed.

    International Nuclear Information System (INIS)

    Troyanovskij, B.M.

    1978-01-01

    In the second edition of the book considered are practically all the main problems of calculation and operation of turbines and turbine installations of nuclear power plants. As compared to the first edition, essentially addes is the reproduction of the problem on combined generation of heat and electric energy. Also represented is detailed material on methods of preliminary evaluation of turbine effectiveness. Considered are peculiarities of turbine operation on wet steam and the basis of their thermal calculation. Much attention is payed to the problem of wet stream current in the turbine elements and wetness effect on their characteristics. Problems of wetness separation and moving blade erosion as well as other turbine elements are extracted in a special section. Given are structural schemes of different methods of innerchannel and periphery wet removal as well as experimental materials on their effectiveness. Given are descriptions and critical analysis of a great number of typical constructions of nuclear power plant steam turbines, produced by native plants as well as by the main foreign firms. Considered also are constructions of outside separators and steam superheaters. Separately given is the problem of rotation frequency choise of nuclear power plant wet steam turbines. Represented are materials on turbine installation tests, considered are the problems of turbine starting and manoeuvrability, analyzed are their typical jailures and damages. One of the sections of the book is devoted to gas turbine installations of nuclear power plants. Different material on this theme scattered before in various sources is summarized in the book

  15. Steam turbines for nuclear power plants

    International Nuclear Information System (INIS)

    Kosyak, Yu.F.

    1978-01-01

    Considered are the peculiarities of the design and operation of steam turbines, condensers and supplementary equipment of steam turbines for nuclear power plants; described are the processes of steam flow in humid-steam turbines, calculation and selection principles of main parameters of heat lines. Designs of the turbines installed at the Charkov turbine plant are described in detail as well as of those developed by leading foreign turbobuilding firms

  16. Multiobjective Optimization of a Counterrotating Type Pump-Turbine Unit Operated at Turbine Mode

    Directory of Open Access Journals (Sweden)

    Jin-Hyuk Kim

    2014-05-01

    Full Text Available A multiobjective optimization for improving the turbine output and efficiency of a counterrotating type pump-turbine unit operated at turbine mode was carried out in this work. The blade geometry of both the runners was optimized using a hybrid multiobjective evolutionary algorithm coupled with a surrogate model. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model were discretized by finite volume approximations and solved on hexahedral grids to analyze the flow in the pump-turbine unit. As major hydrodynamic performance parameters, the turbine output and efficiency were selected as objective functions with two design variables related to the hub profiles of both the runner blades. These objectives were numerically assessed at twelve design points selected by Latin hypercube sampling in the design space. Response surface approximation models for the objectives were constructed based on the objective function values at the design points. A fast nondominated sorting genetic algorithm for the local search coupled with the response surface approximation models was applied to determine the global Pareto-optimal solutions. The trade-off between the two objectives was determined and described with respect to the Pareto-optimal solutions. The results of this work showed that the turbine outputs and efficiencies of optimized pump-turbine units were simultaneously improved in comparison to the reference unit.

  17. Power Electronic Drives, Controls, and Electric Generators for Large Wind Turbines - An Overview

    DEFF Research Database (Denmark)

    Ma, Ke; Tutelea, L.; Boldea, Ion

    2015-01-01

    and exceed a power rating of 10 MW are discussed. The role of power electronics for improving the operation of wind turbines and ensuring compliance with power grid codes is analyzed with a view at producing fully controllable generation units suitable for tight integration into the power grid and large...

  18. Integrated analysis of wind turbines - The impact of power systems on wind turbine design

    DEFF Research Database (Denmark)

    Barahona Garzón, Braulio

    Megawatt-size wind turbines nowadays operate in very complex environmental conditions, and increasingly demanding power system requirements. Pursuing a cost-effective and reliable wind turbine design is a multidisciplinary task. However nowadays, wind turbine design and research areas...... conditions that stem from disturbances in the power system. An integrated simulation environment, wind turbine models, and power system models are developed in order to take an integral perspective that considers the most important aeroelastic, structural, electrical, and control dynamics. Applications...... of the integrated simulation environment are presented. The analysis of an asynchronous machine, and numerical simulations of a fixedspeed wind turbine in the integrated simulation environment, demonstrate the effects on structural loads of including the generator rotor fluxes dynamics in aeroelastic studies. Power...

  19. SMART POWER TURBINE

    Energy Technology Data Exchange (ETDEWEB)

    Nirm V. Nirmalan

    2003-11-01

    Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was

  20. Extended state observer based fuzzy model predictive control for ultra-supercritical boiler-turbine unit

    International Nuclear Information System (INIS)

    Zhang, Fan; Wu, Xiao; Shen, Jiong

    2017-01-01

    Highlights: • A novel ESOFMPC is proposed based on the combination of ESO and stable MPC. • The improved ESO can overcome unknown disturbances on any channel of MIMO system. • Nonlinearity and disturbance of boiler-turbine unit can be handled simultaneously. - Abstract: The regulation of ultra-supercritical (USC) boiler-turbine unit in large-scale power plants is vulnerable to various unknown disturbances, meanwhile, the internal nonlinearity makes it a challenging task for wide range load tracking. To overcome these two issues simultaneously, an extended state observer based fuzzy model predictive control is proposed for the USC boiler-turbine unit. Firstly, the fuzzy model of a 1000-MW coal-fired USC boiler-turbine unit is established through the nonlinearity analysis. Then a fuzzy stable model predictive controller is devised on the fuzzy model using output cost function for the purpose of wide range load tracking. An improved linear extended state observer, which can estimate plant behavior variations and unknown disturbances regardless of the direct feedthrough characteristic of the system, is synthesized with the predictive controller to enhance its disturbance rejection property. Closed-loop stability of the overall control system is guaranteed. Simulation results on a 1000-MW USC boiler-turbine unit model demonstrate the effectiveness of the proposed approach.

  1. Power conversion unit for the South African direct cycle HTGR

    International Nuclear Information System (INIS)

    Liebenberg, J.J.

    1997-01-01

    The system parameters chosen to optimise the thermal efficiency of the Eskom PBMR whilst maintaining component simplicity is discussed. Power Conversion Unit components, which are now at a preliminary design stage comprise a precooler, two turbo units consisting of a turbine driven compressor, recuperator and a power turbine, driving an alternator. Design aspects of every component is mentioned and the inventory method of poorer control is explained with reference to start-up and and shut-down events, the system an effective load following device, down to 4% of full power. Application of the same design principles for HTGRs smaller than 25 MWe is discussed. (author)

  2. Future on Power Electronics for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2013-01-01

    networks and more and more wind power stations, acting as power plants, are connected directly to the transmission networks. As the grid penetration and power level of the wind turbines increase steadily, the wind power starts to have significant impacts to the power grid system. Therefore, more advanced...... generators, power electronic systems, and control solutions have to be introduced to improve the characteristics of the wind power plant and make it more suitable to be integrated into the power grid. Meanwhile, there are also some emerging technology challenges, which need to be further clarified......Wind power is still the most promising renewable energy in the year of 2013. The wind turbine system (WTS) started with a few tens of kilowatt power in the 1980s. Now, multimegawatt wind turbines are widely installed even up to 6-8 MW. There is a widespread use of wind turbines in the distribution...

  3. Water turbine technology for small power stations

    Science.gov (United States)

    Salovaara, T.

    1980-02-01

    The paper examines hydro-power stations and the efficiency and costs of using water turbines to run them. Attention is given to different turbine types emphasizing the use of Kaplan-turbines and runners. Hydraulic characteristics and mechanical properties of low head turbines and small turbines, constructed of fully fabricated steel plate structures, are presented.

  4. A study on reliability of electro-hydraulic governor control system for large steam turbine in power plant

    International Nuclear Information System (INIS)

    Kang, Gu Hwa; Lee, Tae Hoon; Moon, Seung Jae; Lee, Jae Heon; Yoo, Ho Seon

    2008-01-01

    In this work, the right management procedure for hydraulic power oil will be discussed and suggested. A thermal power plant turbine should respond to the change of load status. However, to satisfy the frequency of alternating current, the revolution per minute should be kept constant. Therefore, by controlling the flow rate of the steam to the turbine, the governor satisfies the load variation without alternating the revolution per minutes of the turbine. To protect the governor, the hydraulic power unit should be managed carefully by controlling the quality and the flow rate of the oil

  5. Modern technical diagnostic system for the main components of powerful turbine generator

    International Nuclear Information System (INIS)

    Ezovit, G.P.; Uglyarenko, V.P.; Burlaka, S.I.; Goroz, N.I.; Orinin, S.E.; Komaritsa, V.N.; Zav'yalov, D.N.; Mazurenko, O.A.

    2011-01-01

    The modern diagnostic system to monitor the technical state of a powerful turbine generator is considered. This system permits the detection of defects in its main components and cooling system at the early stage of their development, prevention of damage and, as a consequence, emergency shutdown of nuclear power units

  6. Wind Turbine Generator System Power Performance Test Report for the ARE442 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, J.; Jager, D.

    2010-02-01

    This report summarizes the results of a power performance test that NREL conducted on the ARE 442 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the ARE 442 is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  7. Power Electronics as key technology in wind turbines

    DEFF Research Database (Denmark)

    Blaabjerg, Frede

    2005-01-01

    This paper discuss the development in wind turbines in a two-decade perspective looking at the technology based on track records. Different power electronic topologies for interfacing the wind turbine to the grid are discussed and related to the possibility for the wind turbine to act as a power...

  8. High-power condensation turbine application to district heating

    International Nuclear Information System (INIS)

    Virchenko, M.A.; Arkad'ev, B.A.; Ioffe, V.Yu.

    1982-01-01

    In general outline the role of condensation turbines in NPP district heating is considered. The expediency of expansion of central heating loading of turbines of operating as well as newly designed condensation power plants on the basis of the WWER-1000-type reactors is shown. The principle heat flowsheet of the 1000 MW power turbine is given. An advantage in using turbines with uncontrolled steam bleeding is pointed out [ru

  9. Modernization of turbines in nuclear power plants

    International Nuclear Information System (INIS)

    Harig, T.

    2005-01-01

    An ongoing goal in the power generation industry is to maximize the output of currently installed assets. This is most important at nuclear power plants due to the large capital investments that went into these plants and their base loaded service demands. Recent trends in the United States show a majority of nuclear plants are either obtaining, or are in the process of obtaining NRC approvals for operating license extensions and power uprates. This trend is evident in other countries as well. For example, all Swedish nuclear power plants are currently working on projects to extend their service life and maximize capacity through thermal uprate and turbine-generator upgrade with newest technology. The replacement of key components with improved ones is a means of optimizing the service life and availability of power plants. Economic advantages result from increased efficiency, higher output, shorter startup and shutdown times as well as reduced outage times and service costs. The rapid advances over recent years in the development of calculation programs enables adaptation of the latest blading technology to the special requirements imposed by steam turbine upgrading. This results in significant potential for generating additional output with the implementation of new technology, even without increased thermal power. In contrast to maintenance and investment in pure replacement or repair of a component with the primary goal of maintaining operability and reliability, the additional output gained by upgrading enables a return on investment to be reaped. (orig.)

  10. High Power Electronics - Key Technology for Wind Turbines

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2014-01-01

    reliability challenges for the future wind turbines are explained. It is concluded that the wind turbine behavior/performance can be significantly improved by introducing power electronics, and there will be higher requirements for the power electronics performances in wind power application....

  11. Recent technology for BWR nuclear steam turbine unit

    International Nuclear Information System (INIS)

    Moriya, Shin-ichi; Masuda, Toyohiko; Kashiwabara, Katsuto; Oshima, Yoshikuni

    1990-01-01

    As to the ABWR plants which is the third improvement standard boiling water reactor type plants, already the construction of a plant of 1356 MWe class for 50 Hz is planned. Hitachi Ltd. has accumulated the technology for the home manufacture of a whole ABWR plant including a turbine. As the results, the application of a butterfly type combination intermediate valve to No.5 plant in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc., which began the commercial operation recently and later plants, the application of a moisture separating heater to No.4 plant in Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., which is manufactured at present and later plants and so on were carried out. As to the steam turbine facilities for nuclear power generation manufactured by Hitachi Ltd., three turbines of 1100 MWe class for 50 Hz and one turbine for 60 Hz are in operation. As the new technologies for the steam turbines, the development of 52 in long last stage blades, the new design techniques for the rotor system, the moisture separating heater, the butterfly type combination intermediate valve, cross-around pipes and condensate and feedwater system are reported. (K.I.)

  12. The operating performance tests of power unit A1 in HPP 'Zvornik' in load-frequency control

    Directory of Open Access Journals (Sweden)

    Stanojčić Vladimir

    2012-01-01

    Full Text Available The turbine-governing system characteristics derived from testing hydropower unit A1 in HPP 'Zvornik' are presented. These tests give insights into the setup state and parameters of the governing system, as well as the qualitative analysis of load-frequency control response of the case study power unit within the power system of Serbia. Verification of relevant turbine-governing parameters was performed by direct application of appropriate standards and policies. The presented results can be used as a basis for the derivation of a turbine governor mathematical model and for a complete mathematical model of a hydropower unit as an element embedded in the power system.

  13. Gas--steam turbine combined cycle power plants

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1978-10-01

    The purpose of this technology evaluation is to provide performance and cost characteristics of the combined gas and steam turbine, cycle system applied to an Integrated Community Energy System (ICES). To date, most of the applications of combined cycles have been for electric power generation only. The basic gas--steam turbine combined cycle consists of: (1) a gas turbine-generator set, (2) a waste-heat recovery boiler in the gas turbine exhaust stream designed to produce steam, and (3) a steam turbine acting as a bottoming cycle. Because modification of the standard steam portion of the combined cycle would be necessary to recover waste heat at a useful temperature (> 212/sup 0/F), some sacrifice in the potential conversion efficiency is necessary at this temperature. The total energy efficiency ((electric power + recovered waste heat) divided by input fuel energy) varies from about 65 to 73% at full load to 34 to 49% at 20% rated electric power output. Two major factors that must be considered when installing a gas--steam turbine combines cycle are: the realiability of the gas turbine portion of the cycle, and the availability of liquid and gas fuels or the feasibility of hooking up with a coal gasification/liquefaction process.

  14. Development and application of automatic frequency and power control systems for large power units

    Energy Technology Data Exchange (ETDEWEB)

    V.A. Bilenko; A.D. Melamed; E.E. Mikushevich; D.Y. Nikol' skii; R.L. Rogachev; N.A. Romanov [ZAO Interavtomatika (Interautomatika AG), Moscow (Russian Federation)

    2008-07-01

    We describe the results of work carried out at ZAO Interavtomatika on the development and putting into use of a system for automatically controlling the frequency and power output of large coal-fired power units involving the retrofitting of the turbine's hydraulic automatic control system. Certificates affirming conformity to the Standard of the System Operator Centralized Dispatching Administration (SO-CDA) have been received for eight power units as an outcome of these efforts.

  15. Feasibility improvement project for the gas turbine power plant in Iran

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Investigations and discussions have been given on measures to improve energy conservation and efficiency at a power plant of Kish Water and Power Company (KWPC) in Iran. The site has high ambient temperature throughout a year, making the gas turbine power plant capable of generating power only at about 70% of the rated output, with the power generation efficiency decreasing. The project has analyzed the current situation at the plant, and evaluated different means that appear effective in improving the efficiency, including the gas turbine absorbed air cooling system, the steam injection system, and the combined cycle. As a result of the discussions, it was revealed that energy saving effect can be obtained at 145 TJ with the gas turbine absorbed air cooling system, 224 TJ with the steam injection system, and 1017 TJ with the combined cycle. The annual reduction of greenhouse gas emission due to the above energy conservation would be about 11 thousand tons, 16.5 thousand tons, and 75 thousand tons, respectively. However, the investment payback period would be about 2.45 years, 8.31 years, and 14.21 years, respectively. Therefore, the profitability does not appear very attractive because of low fuel unit cost. (NEDO)

  16. Using machine learning to predict wind turbine power output

    International Nuclear Information System (INIS)

    Clifton, A; Kilcher, L; Lundquist, J K; Fleming, P

    2013-01-01

    Wind turbine power output is known to be a strong function of wind speed, but is also affected by turbulence and shear. In this work, new aerostructural simulations of a generic 1.5 MW turbine are used to rank atmospheric influences on power output. Most significant is the hub height wind speed, followed by hub height turbulence intensity and then wind speed shear across the rotor disk. These simulation data are used to train regression trees that predict the turbine response for any combination of wind speed, turbulence intensity, and wind shear that might be expected at a turbine site. For a randomly selected atmospheric condition, the accuracy of the regression tree power predictions is three times higher than that from the traditional power curve methodology. The regression tree method can also be applied to turbine test data and used to predict turbine performance at a new site. No new data are required in comparison to the data that are usually collected for a wind resource assessment. Implementing the method requires turbine manufacturers to create a turbine regression tree model from test site data. Such an approach could significantly reduce bias in power predictions that arise because of the different turbulence and shear at the new site, compared to the test site. (letter)

  17. Study of a wave power generator system using an air turbine having improved J-shaped blades; Kairyo J gatayoku kuki turbine wo mochiita haryoku hatsuden sochi no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Honma, T; Omata, K; Kojima, N [Meiji University, Tokyo (Japan)

    1997-11-25

    An improved J-shaped blade, in which a J-shaped blade is combined with a small-size Savonius blade, has been developed, to further improve efficiency of an air turbine for wave power generator systems. A prototype model of stationary wave power generator has been developed using the improved blade, to confirm its power generation characteristics by tests in a water tank and small-scale ocean tests. The results are compared with the characteristics of the units with conventional blades. The air turbine unit with the improved blade shows an efficiency of 13 to 35%, which is higher by 10 to 20% than that of the turbine with a J-shaped blade and by 20 to 70% than that of the one with a Savonius blade, more noted at low speed of rotation. It is therefore considered that the turbine with the improved blade is suited for sea areas having a relatively low wave height. It is also considered that efficiency can be further enhanced, when one or more guide vanes are provided around the blade. 2 refs., 12 figs.

  18. Engineering design and exergy analyses for combustion gas turbine based power generation system

    International Nuclear Information System (INIS)

    Sue, D.-C.; Chuang, C.-C.

    2004-01-01

    This paper presents the engineering design and theoretical exergetic analyses of the plant for combustion gas turbine based power generation systems. Exergy analysis is performed based on the first and second laws of thermodynamics for power generation systems. The results show the exergy analyses for a steam cycle system predict the plant efficiency more precisely. The plant efficiency for partial load operation is lower than full load operation. Increasing the pinch points will decrease the combined cycle plant efficiency. The engineering design is based on inlet air-cooling and natural gas preheating for increasing the net power output and efficiency. To evaluate the energy utilization, one combined cycle unit and one cogeneration system, consisting of gas turbine generators, heat recovery steam generators, one steam turbine generator with steam extracted for process have been analyzed. The analytical results are used for engineering design and component selection

  19. Turbine steam path replacement at the Grafenrheinfeld Nuclear Power Station

    International Nuclear Information System (INIS)

    Weschenfelder, K.D.; Oeynhausen, H.; Bergmann, D.; Hosbein, P.; Termuehlen, H.

    1994-01-01

    In the last few years, replacement of old vintage steam turbine flow path components has been well established as a valid approach to improve thermal performance of aged turbines. In nuclear power plants, performance improvement is generally achieved only by design improvements since performance deterioration of old units is minor or nonexistent. With fossil units operating over decades loss in performance is an additional factor which can be taken into account. Such loss of performance can be caused by deposits, solid particle erosion, loss of shaft and inter-stage seal strips, etc. Improvement of performance is typically guaranteed as output increases for operation at full load. This value can be evaluated as a direct gain in unit capacity without fuel or steam supply increase. Since fuel intake does not change, the relative improvement of the net plant heat rate or efficiency is equal to the relative increase in output. The heat rate improvement is achieved not only at full load but for the entire load range. Such heat rate improvement not only moves a plant up on the load dispatch list increasing its capacity factor, but also extensive fuel savings can pay off for the investment cost of new steam path components. Another important factor is that quite often older turbine designs show a deterioration of their reliability and need costly repairs. With new flow path components an aged steam turbine starts a new useful life

  20. Maintenance management of gas turbine power plant systems ...

    African Journals Online (AJOL)

    Given the abundant availability of gas and the significant installed capacity of the electricity from Gas Turbine Power Systems; effective maintenance of Gas Turbine Power Plants in Nigeria could be the panacea for achieving regular power generation and supply. The study identified environmental impact on the machines, ...

  1. Integration optimisation of elevated pressure air separation unit with gas turbine in an IGCC power plant

    International Nuclear Information System (INIS)

    Han, Long; Deng, Guangyi; Li, Zheng; Wang, Qinhui; Ileleji, Klein E.

    2017-01-01

    Highlights: • IGCC thermodynamic model was setup carefully. • Simulations focus on integration between an elevated pressure ASU with gas turbine. • Different recommended solutions from those of low pressure ASUs are figured out. • Full N 2 injection and 80% air extraction was suggested as the optimum integration. - Abstract: The integration optimisation between an elevated pressure air separation unit (EP-ASU) and gas turbine is beneficial to promote net efficiency of an integrated gasification combined cycle (IGCC) power plant. This study sets up the thermodynamic model for a 400 MW plant specially coupled with an EP-ASU, aiming to examine system performances under different integrations and acquire the optimum solution. Influences of air extraction rate at conditions of without, partial and full N 2 injection, as well as the effects of N 2 injection rate when adopting separate ASU, partial and full integrated ASU were both analysed. Special attention has been paid to performance differences between utilising an EP-ASU and a low pressure unit. Results indicated that integration solution with a separate EP-ASU or without N 2 injection would not be reasonable. Among various recommended solutions for different integration conditions, N 2 injection rate increased with the growth of air extraction rate. The integration with an air extraction rate of 80% and full N 2 injection was suggested as the optimum solution. It is concluded that the optimum integration solution when adopting an EP-ASU is different from that using a low pressure one.

  2. Design optimisation of a hybrid solid oxide fuel cell and gas turbine power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.J.; Siddle, A.; Pointon, K.

    2001-07-01

    The objectives of the combined ALSTOM Power Technology and Advantica Technologies project are reported as: (a) to design a gas turbine (GT) unit compatible with a solid oxide fuel cell (SOFC) in a high efficiency power system and aimed at the Distributed Power application range of 1-20MW, and (b) to identify the main features and components of a 'Proof of Concept' hybrid unit of output around 0.1MW, based on existing or near-market technology. The study showed: (i) while the potential for high efficiency SOFC + GT hybrid cycles is clear, little effort has been put into the design of the gas turbine and some other components and (ii) there is room for commercial exploitation in the areas of both component manufacture and system supply.

  3. Wind turbine power stations

    International Nuclear Information System (INIS)

    Anon.

    1992-11-01

    The Countryside Council for Wales (CCW's) policy on wind turbine power stations needs to be read in the context of CCW's document Energy:Policy and perspectives for the Welsh countryside. This identifies four levels of action aimed at reducing emission of gases which contribute towards the risk of global warming and gases which cause acid deposition. These are: the need for investment in energy efficiency; the need for investment in conventional power generation in order to meet the highest environmental standards; the need for investment in renewable energy; and the need to use land use transportation policies and decisions to ensure energy efficiency and energy conservation. CCW views wind turbine power stations, along with other renewable energy systems, within this framework. CCW's policy is to welcome the exploitation of renewable energy sources as an element in a complete and environmentally sensitive energy policy, subject to the Environmental Assessment of individual schemes and monitoring of the long-term impact of the various technologies involved. (Author)

  4. Power Performance Test Report for the SWIFT Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, I.; Hur, J.

    2012-12-01

    This report summarizes the results of a power performance test that NREL conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the SWIFT is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  5. Steam turbines for nuclear power stations in Czechoslovakia and their use for district heating

    International Nuclear Information System (INIS)

    Drahy, J.

    1989-01-01

    The first generation of nuclear power stations in Czechoslavakia is equipped with 440 MW e pressurized water reactors. Each reactor supplies two 220 MW, 3000 rpm condensing type turbosets operating with saturated steam. After the completion of heating water piping systems, all of the 24 units of 220 MW in Czechoslovak nuclear power stations will be operated as dual purpose units, delivering both electricity and heat. At the present time, second-generation nuclear power stations, with 1000 MW e PWRs, are being built. Each such plant is equipped with one 1000 MW full-speed saturated steam turbine. The turbine is so designed as to permit the extraction of steam corresponding to the following quantities of heat: 893 MJ/s with three-stage water heating (150/60 0 C); and 570 MJ/s with two-stage water heating (120/60 0 C). The steam is taken from uncontrolled steam extraction points. (author)

  6. Turbine design and application volumes 1, 2, and 3

    Science.gov (United States)

    Glassman, Arthur J. (Editor)

    1994-01-01

    NASA has an interest in turbines related primarily to aeronautics and space applications. Airbreathing turbine engines provide jet and turboshaft propulsion, as well as auxiliary power for aircraft. Propellant-driven turbines provide rocket propulsion and auxiliary power for spacecraft. Closed-cycle turbine engines using inert gases, organic fluids, and metal fluids have been studied for providing long-duration electric power for spacecraft. Other applications of interest for turbine engines include land-vehicle (cars, trucks, buses, trains, etc.) propulsion power and ground-based electrical power. In view of the turbine-system interest and efforts at Lewis Research Center, a course entitled 'Turbine Design and Application' was presented during 1968-69 as part of the In-house Graduate Study Program. The course was somewhat revised and again presented in 1972-73. Various aspects of turbine technology were covered including thermodynamic and fluid-dynamic concepts, fundamental turbine concepts, velocity diagrams, losses, blade aerodynamic design, blade cooling, mechanical design, operation, and performance. The notes written and used for the course have been revised and edited for publication. Such a publication can serve as a foundation for an introductory turbine course, a means for self-study, or a reference for selected topics. Any consistent set of units will satisfy the equations presented. Two commonly used consistent sets of units and constant values are given after the symbol definitions. These are the SI units and the U.S. customary units. A single set of equations covers both sets of units by including all constants required for the U.S. customary units and defining as unity those not required for the SI units. Three volumes are compiled into one.

  7. Transient power coefficients for a two-blade Savonius wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Pope, K.; Naterer, G. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2010-07-01

    The wind power industry had a 29 percent growth rate in installed capacity in 2008, and technological advances are helping to speed up growth by significantly increasing wind turbine power yields. While the majority of the industry's growth has come from large horizontal axis wind turbine installations, small wind turbines can also be used in a wide variety of applications. This study predicted the transient power coefficient for a Savonius vertical axis wind turbine (VAWT) wind turbine with 2 blades. The turbine's flow field was used to analyze pressure distribution along the rotor blades in relation to the momentum, lift, and drag forces on the rotor surfaces. The integral force balance was used to predict the transient torque and power output of the turbine. The study examined the implications of the addition of a second blade on the model's ability to predict transient power outputs. Computational fluid dynamics (CFD) programs were used to verify that the formulation can be used to accurately predict the transient power coefficients of VAWTs with Savonius blades. 11 refs., 1 tab., 6 figs.

  8. Comparison of wind turbines based on power curve analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    In the study measured power curves for 46 wind turbines were analyzed with the purpose to establish the basis for a consistent comparison of the efficiency of the wind turbines. Emphasis is on wind turbines above 500 kW rated power, with power curves measured after 1994 according to international recommendations. The available power curves fulfilling these requirements were smoothened according to a procedure developed for the purpose in such a way that the smoothened power curves are equally representative as the measured curves. The resulting smoothened power curves are presented in a standardized format for the subsequent processing. Using wind turbine data from the power curve documentation the analysis results in curves for specific energy production (kWh/M{sup 2}/yr) versus specific rotor load (kW/M{sup 2}) for a range of mean wind speeds. On this basis generalized curves for specific annual energy production versus specific rotor load are established for a number of generalized wind turbine concepts. The 46 smoothened standardized power curves presented in the report, the procedure developed to establish them, and the results of the analysis based on them aim at providers of measured power curves as well as users of them including manufacturers, advisors and decision makers. (au)

  9. A condenser for very high power steam turbines

    International Nuclear Information System (INIS)

    Gardey, Robert.

    1973-01-01

    The invention relates to a condenser for very high power steam turbines under the masonry-block supporting the low-pressure stages of the turbine, that condenser comprises two horizontal aligned water-tube bundles passing through the steam-exhaust sleeves of the low-pressure stages, on both sides of a common inlet water box. The invention can be applied in particular to the 1000-2000 MW turbines of light water nuclear power stations [fr

  10. Mechanical problems in turbomachines, steam and gas turbines. Large steam turbine manufacturing requirements to fulfill customer needs for electric power

    International Nuclear Information System (INIS)

    Brazzini, R.

    1975-01-01

    The needs of the customers in large steam turbines for electric power are examined. The choices and decisions made by the utility about the equipments are dealt with after considering the evolution of power demand on the French network. These decisions and choices mainly result from a technical and economic optimization of production equipments: choice of field-proven solutions, trend to lower steam characteristics, trend to higher output of the units (i.e. size effect), spreading out standardization of machines and components (policy of technical as well as technological levels, i.e. mass production effect). Standardization of external characteristics of units of same level of output and even standardization of some main components. The requirements turbine manufacturers have to meet may fall in two categories: on one side: gaining experience and know-how, capability of making high quality experiments, out put capacity, will to hold a high efficiency level; on the other side: meeting the technical requirements related to the contracts. Among these requirements, one can differentiate those dealing with the service expected from the turbine and that resulting in the responsibility limits of the manufacturer and those tending to gain interchangeability, to improve availability of the equipment, to increase safety, and to make operation and maintenance easier [fr

  11. Fast-Valving of Large Steam Turbine Units as a Means of Power System Security Enhancement

    OpenAIRE

    Bogdan Sobczak; Robert Rink; Rafał Kuczyński; Robert Trębski

    2014-01-01

    Fast-valving assists in maintaining system stability following a severe transmission system fault by reducing the turbine mechanical power. Fast-valving consists in rapid closing and opening of steam valves in an adequate manner to reduce the generator accelerating power following the recognition of a severe fault. FV can be an effective and economical method of meeting the performance requirements of a power system in the presence of an increase in wind and solar generation in the power syst...

  12. Integrity and life estimation of turbine runner cover in a hydro power plant

    Directory of Open Access Journals (Sweden)

    A. Sedmak

    2016-03-01

    Full Text Available This paper presents integrity and life estimation of turbine runner cover in a vertical pipe turbines, Kaplan 200 MW nominal output power, produced in Russia, and built in six hydro-generation units of hydroelectric power plant „Đerdap 1” in Serbia. Fatigue and corrosion-fatigue interaction have been taken into account using experimentally obtained material properties, as well as analytical and numerical calculations of stress state, to estimate appropriate safety factors. Fatigue crack growth rate, da/dN, was also calculated, indicated that internal defects of circular or elliptical shape, found out by ultrasonic testing, do not affect reliable operation of runner cover.

  13. The main features of control and operation of steam turbines at nuclear power plants

    International Nuclear Information System (INIS)

    Czinkoczky, B.

    1981-01-01

    The output and speed control of steam turbines at nuclear power plants as well as the combination of both controls are reviewed and evaluated. At the same time the tasks of unit control at nuclear power plants, the control of steady main steam pressure and medium pressure of primary circuit, further the connection of reactor and turbine controls and the self-controlling properties of pressurized water reactor are dealt with. Hydraulic and electro-hydraulic speed control, the connection of cach-up dampers and speed control and the application of electro-hydraulic signal converters are discussed. The accomplishment of protection is also described. (author)

  14. Brayton rotating units for space reactor power systems

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Bruno M.; El-Genk, Mohamed S. [Institute for Space and Nuclear Power Studies and Chemical and Nuclear Engineering Dept., The Univ. of New Mexico, Albuquerque, NM 87131 (United States)

    2009-09-15

    Designs and analyses models of centrifugal-flow compressor and radial-inflow turbine of 40.8kW{sub e} Brayton Rotating Units (BRUs) are developed for 15 and 40 g/mole He-Xe working fluids. Also presented are the performance results of a space power system with segmented, gas cooled fission reactor heat source and three Closed Brayton Cycle loops, each with a separate BRU. The calculated performance parameters of the BRUs and the reactor power system are for shaft rotational speed of 30-55 krpm, reactor thermal power of 120-471kW{sub th}, and turbine inlet temperature of 900-1149 K. With 40 g/mole He-Xe, a power system peak thermal efficiency of 26% is achieved at rotation speed of 45 krpm, compressor and turbine inlet temperatures of 400 and 1149 K and 0.93 MPa at exit of the compressor. The corresponding system electric power is 122.4kW{sub e}, working fluid flow rate is 1.85 kg/s and the pressure ratio and polytropic efficiency are 1.5% and 86.3% for the compressor and 1.42% and 94.1% for the turbine. For the same nominal electrical power of 122.4kW{sub e}, decreasing the molecular weight of the working fluid (15 g/mole) decreases its flow rate to 1.03 kg/s and increases the system pressure to 1.2 MPa. (author)

  15. Variability of the Wind Turbine Power Curve

    Directory of Open Access Journals (Sweden)

    Mahesh M. Bandi

    2016-09-01

    Full Text Available Wind turbine power curves are calibrated by turbine manufacturers under requirements stipulated by the International Electrotechnical Commission to provide a functional mapping between the mean wind speed v ¯ and the mean turbine power output P ¯ . Wind plant operators employ these power curves to estimate or forecast wind power generation under given wind conditions. However, it is general knowledge that wide variability exists in these mean calibration values. We first analyse how the standard deviation in wind speed σ v affects the mean P ¯ and the standard deviation σ P of wind power. We find that the magnitude of wind power fluctuations scales as the square of the mean wind speed. Using data from three planetary locations, we find that the wind speed standard deviation σ v systematically varies with mean wind speed v ¯ , and in some instances, follows a scaling of the form σ v = C × v ¯ α ; C being a constant and α a fractional power. We show that, when applicable, this scaling form provides a minimal parameter description of the power curve in terms of v ¯ alone. Wind data from different locations establishes that (in instances when this scaling exists the exponent α varies with location, owing to the influence of local environmental conditions on wind speed variability. Since manufacturer-calibrated power curves cannot account for variability influenced by local conditions, this variability translates to forecast uncertainty in power generation. We close with a proposal for operators to perform post-installation recalibration of their turbine power curves to account for the influence of local environmental factors on wind speed variability in order to reduce the uncertainty of wind power forecasts. Understanding the relationship between wind’s speed and its variability is likely to lead to lower costs for the integration of wind power into the electric grid.

  16. Steam turbines for the future

    International Nuclear Information System (INIS)

    Trassl, W.

    1988-01-01

    Approximately 75% of the electrical energy produced in the world is generated in power plants with steam turbines (fossil and nuclear). Although gas turbines are increasingly applied in combined cycle power plants, not much will change in this matter in the future. As far as the steam parameters and the maximum unit output are concerned, a certain consolidation was noted during the past decades. The standard of development and mathematical penetration of the various steam turbine components is very high today and is applied in the entire field: For saturated steam turbines in nuclear power plants and for steam turbines without reheat, with reheat and with double reheat in fossil-fired power plants and for steam turbines with and without reheat in combined cycle power plants. (orig.) [de

  17. Power Curve of the AWEC-60 wind turbine

    International Nuclear Information System (INIS)

    Avia, F.

    1992-01-01

    The experimental wind turbine AWEC-60 was developed to evaluate the possibilities of the Large Wind turbines, from the technical and economical point of view. The project was developed by a spanish-german group, integrated by Union Fenosa, Asinel, M.A.N. Neue Technologie and the Instituto de Energias Renovables from CIEMAT, starting the operation during the year 1990. In this paper, the obtention of the wind turbine power curve is presented, which has been obtained in agreement with the Recommended Practices for Wind Turbine Testing and Evaluation from the Executive Committee for the Research and Development on Wind Energy, of the International Energy Agency (AIE). Using the functioning data of the wind turbine correspondig to the first quarter of the year 1991, the power curves have been obtained, and the results have been compared with the curves measured in other similar Large wind turbines. (Author) 7 refs

  18. Analysis of power curves of Danish and foreign wind turbines

    International Nuclear Information System (INIS)

    Petersen, H.

    1995-12-01

    This report describes an analysis of power curves for a number of wind turbines, 30 Danish and 17 foreign - European - wind turbines. The investigation is limited to wind turbines of 150 kW capacity and greater, and to wind turbines for which a power curve is available. The power curves are transformed into a common, uniform presentation in order to facilitate the succeeding treatment, which primarily is the calculation of the production of electrical energy yielded per year. From the known data of the wind turbine, equipped generator power and rotor area and the area swept by the blades, the specific electrical production is calculated in three terms: yield per square meter of rotor area, yield per kW generator power and yield per square meter and per kilowatt generator power. Based on these findings a number of comparisons are established, such as comparisons of conceptual designs and technical- economical evaluations. (au)

  19. Effect of full converter wind turbines on inter-area oscillation of power systems

    DEFF Research Database (Denmark)

    Askari, Hanieh Hajizadeh; Hashemi Toghroljerdi, Seyedmostafa; Eriksson, Robert

    2015-01-01

    By increasing in the penetration level of wind turbines, the influence of these new added generation units on the power system oscillations specifically inter-area oscillations has to be thoroughly investigated. In this paper, the impact of increasing in the penetration of full rate converter wind...... turbines (FRC-WTs) on the inter-area oscillations of power system is examined. In order to have a comprehensive evaluation of the effects of FRC-WT on the inter-area oscillations, different scenarios associated with the wind power penetration levels, wind farm locations, strength of interconnection line......, and different operating conditions of synchronous generators are investigated. The synchronous generators, exciter systems and power system stabilizers (PSSs) as well as the FRC-WT grid-side converter and its related controllers are modelled in detail in Matlab in order to evaluate the effects of FRC...

  20. 14 CFR 33.96 - Engine tests in auxiliary power unit (APU) mode.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine tests in auxiliary power unit (APU... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.96 Engine tests in auxiliary power unit (APU) mode. If the engine is designed with a propeller brake which...

  1. Power turbine ventilation system

    Science.gov (United States)

    Wakeman, Thomas G. (Inventor); Brown, Richard W. (Inventor)

    1991-01-01

    Air control mechanism within a power turbine section of a gas turbine engine. The power turbine section includes a rotor and at least one variable pitch propulsor blade. The propulsor blade is coupled to and extends radially outwardly of the rotor. A first annular fairing is rotatable with the propulsor blade and interposed between the propulsor blade and the rotor. A second fairing is located longitudinally adjacent to the first fairing. The first fairing and the second fairing are differentially rotatable. The air control mechanism includes a platform fixedly coupled to a radially inner end of the propulsor blade. The platform is generally positioned in a first opening and a first fairing. The platform and the first fairing define an outer space. In a first position corresponding with a first propulsor blade pitch, the platform is substantially conformal with the first fairing. In a second position corresponding with the second propulsor blade pitch, an edge portion of the platform is displaced radially outwardly from the first fairing. When the blades are in the second position and rotating about the engine axis, the displacement of the edge portion with respect to the first fairing allows air to flow from the outer space to the annular cavity.

  2. Evaluation of different turbine concepts for wind power

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Sandra; Bernhoff, Hans; Leijon, Mats [Swedish Centre for Renewable Electric Energy Conversion, Division for Electricity and Lightning Research, Box 534, 751 21 Uppsala (Sweden)

    2008-06-15

    Every year the number of installed wind power plants in the world increases. The horizontal axis wind turbine is the most common type of turbine but there exist other types. Here, three different wind turbines are considered; the horizontal axis wind turbine and two different concepts of vertical axis wind turbines; the Darrieus turbine and the H-rotor. This paper aims at making a comparative study of these three different wind turbines from the most important aspects including structural dynamics, control systems, maintenance, manufacturing and electrical equipment. A case study is presented where three different turbines are compared to each other. Furthermore, a study of blade areas for different turbines is presented. The vertical axis wind turbine appears to be advantageous to the horizontal axis wind turbine in several aspects. (author)

  3. Wind Turbine Power Curve Design for Optimal Power Generation in Wind Farms Considering Wake Effect

    Directory of Open Access Journals (Sweden)

    Jie Tian

    2017-03-01

    Full Text Available In modern wind farms, maximum power point tracking (MPPT is widely implemented. Using the MPPT method, each individual wind turbine is controlled by its pitch angle and tip speed ratio to generate the maximum active power. In a wind farm, the upstream wind turbine may cause power loss to its downstream wind turbines due to the wake effect. According to the wake model, downstream power loss is also determined by the pitch angle and tip speed ratio of the upstream wind turbine. By optimizing the pitch angle and tip speed ratio of each wind turbine, the total active power of the wind farm can be increased. In this paper, the optimal pitch angle and tip speed ratio are selected for each wind turbine by the exhausted search. Considering the estimation error of the wake model, a solution to implement the optimized pitch angle and tip speed ratio is proposed, which is to generate the optimal control curves for each individual wind turbine off-line. In typical wind farms with regular layout, based on the detailed analysis of the influence of pitch angle and tip speed ratio on the total active power of the wind farm by the exhausted search, the optimization is simplified with the reduced computation complexity. By using the optimized control curves, the annual energy production (AEP is increased by 1.03% compared to using the MPPT method in a case-study of a typical eighty-turbine wind farm.

  4. Model based active power control of a wind turbine

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Soltani, Mohsen; Poulsen, Niels Kjølstad

    2014-01-01

    in the electricity market that selling the reserve power is more profitable than producing with the full capacity. Therefore wind turbines can be down-regulated and sell the differential capacity as the reserve power. In this paper we suggest a model based approach to control wind turbines for active power reference...

  5. Vibration Spectrum Analysis for Indicating Damage on Turbine and Steam Generator Amurang Unit 1

    Directory of Open Access Journals (Sweden)

    Beny Cahyono

    2017-12-01

    Full Text Available Maintenance on machines is a mandatory asset management activity to maintain asset reliability in order to reduce losses due to failure. 89% of defects have random failure mode, the proper maintenance method is predictive maintenance. Predictive maintenance object in this research is Steam Generator Amurang Unit 1, which is predictive maintenance is done through condition monitoring in the form of vibration analysis. The conducting vibration analysis on Amurang Unit 1 Steam Generator is because vibration analysis is very effective on rotating objects. Vibration analysis is predicting the damage based on the vibration spectrum, where the vibration spectrum is the result of separating time-based vibrations and simplifying them into vibrations based on their frequency domain. The transformation of time-domain-wave into frequency-domain-wave is using the application of FFT, namely AMS Machinery. The measurement of vibration value is done on turbine bearings and steam generator of Unit 1 Amurang using Turbine Supervisory Instrument and CSI 2600 instrument. The result of this research indicates that vibration spectrum from Unit 1 Amurang Power Plant indicating that there is rotating looseness, even though the vibration value does not require the Unit 1 Amurang Power Plant to stop operating (shut down. This rotating looseness, at some point, can produce some indications that similar with the unbalance. In order to avoid more severe vibrations, it is necessary to do inspection on the bearings in the Amurang Unit 1 Power Plant.

  6. Preliminary study of nuclear power cogeneration system using gas turbine process

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Inaba, Yoshitomo; Hishida, Makoto; Ogawa, Masuro; Ogata, Kann; Yamada, Seiya.

    1995-12-01

    The Nuclear power generation plant (NPGP) releases smaller amount of carbon dioxide than the fossil power plant for the generation of the unit electrical power. Thus, the NPGP is expected to contribute resolving the ecological problems. It is important to investigate the nuclear power cogeneration system using gas turbine process from the view point that it is better to produce electricity in high thermal efficiency from the high temperature energy. We carried out, in the current preliminary study, the survey and selection of the candidate cycles, then conducted the evaluation of cycle efficiency, the selection of R and D items to be solved for the decision of the optimum cycle. Following this, we evaluated nuclear heat application for intermediate and low temperature level released from gas turbine process and overall efficiency of cogeneration system. As a result, it was clarified that overall efficiency of the direct regenerative cycle was the highest in low temperature region below 200degC, and that of the direct regenerative inter cooling cycle was the highest in middle and high temperature region. (author)

  7. Preliminary study of nuclear power cogeneration system using gas turbine process

    Energy Technology Data Exchange (ETDEWEB)

    Fumizawa, Motoo; Inaba, Yoshitomo; Hishida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ogawa, Masuro; Ogata, Kann; Yamada, Seiya

    1995-12-01

    The Nuclear power generation plant (NPGP) releases smaller amount of carbon dioxide than the fossil power plant for the generation of the unit electrical power. Thus, the NPGP is expected to contribute resolving the ecological problems. It is important to investigate the nuclear power cogeneration system using gas turbine process from the view point that it is better to produce electricity in high thermal efficiency from the high temperature energy. We carried out, in the current preliminary study, the survey and selection of the candidate cycles, then conducted the evaluation of cycle efficiency, the selection of R and D items to be solved for the decision of the optimum cycle. Following this, we evaluated nuclear heat application for intermediate and low temperature level released from gas turbine process and overall efficiency of cogeneration system. As a result, it was clarified that overall efficiency of the direct regenerative cycle was the highest in low temperature region below 200degC, and that of the direct regenerative inter cooling cycle was the highest in middle and high temperature region. (author).

  8. Power generation from wind turbines in a solar chimney

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor [Graduate Student, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States); Agarwal, Ramesh K. [William Palm Professor, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2013-07-01

    Recent studies have shown that shrouded wind turbines can generate greater power compared to bare turbines. A solar chimney generates an upward draft of wind inside a tower and a shroud around the wind turbine. There are numerous empty silos on farms in the U.S. that can be converted to solar chimneys with minor modifications at modest cost. The objective of this study is to determine the potential of these silos/chimneys for generating wind power. The study is conducted through analytical/computational approach by employing the commercial Computational Fluid Dynamics (CFD) software. Computations are performed for five different geometric configurations consisting of a turbine, a cylindrical silo, and/or a venturi and/or a diffuser using the dimensions of typical silos and assuming Class 3 wind velocity. The incompressible Navier-Stokes equations with the Boussinesq approximation and a two equation realizable {kappa}-{epsilon} model are employed in the calculations, and the turbine is modeled as an actuator disk. The power coefficient (Cp) and generated power are calculated for the five cases. Consistent with recent literature, it was found that the silos with diffusers increase the Cp beyond Betz’s limit significantly and thus the generated power. It should be noted that Cp is calculated by normalizing it by the turbine area swept by the wind. This study shows the potential of using abandoned silos in the mid-west and other parts of the country for localized wind power generation.

  9. Optimum gas turbine cycle for combined cycle power plant

    International Nuclear Information System (INIS)

    Polyzakis, A.L.; Koroneos, C.; Xydis, G.

    2008-01-01

    The gas turbine based power plant is characterized by its relatively low capital cost compared with the steam power plant. It has environmental advantages and short construction lead time. However, conventional industrial engines have lower efficiencies, especially at part load. One of the technologies adopted nowadays for efficiency improvement is the 'combined cycle'. The combined cycle technology is now well established and offers superior efficiency to any of the competing gas turbine based systems that are likely to be available in the medium term for large scale power generation applications. This paper has as objective the optimization of a combined cycle power plant describing and comparing four different gas turbine cycles: simple cycle, intercooled cycle, reheated cycle and intercooled and reheated cycle. The proposed combined cycle plant would produce 300 MW of power (200 MW from the gas turbine and 100 MW from the steam turbine). The results showed that the reheated gas turbine is the most desirable overall, mainly because of its high turbine exhaust gas temperature and resulting high thermal efficiency of the bottoming steam cycle. The optimal gas turbine (GT) cycle will lead to a more efficient combined cycle power plant (CCPP), and this will result in great savings. The initial approach adopted is to investigate independently the four theoretically possible configurations of the gas plant. On the basis of combining these with a single pressure Rankine cycle, the optimum gas scheme is found. Once the gas turbine is selected, the next step is to investigate the impact of the steam cycle design and parameters on the overall performance of the plant, in order to choose the combined cycle offering the best fit with the objectives of the work as depicted above. Each alterative cycle was studied, aiming to find the best option from the standpoint of overall efficiency, installation and operational costs, maintainability and reliability for a combined power

  10. Effect of turbine materials on power generation efficiency from free water vortex hydro power plant

    International Nuclear Information System (INIS)

    Sritram, P; Treedet, W; Suntivarakorn, R

    2015-01-01

    The objective of this research was to study the effect of turbine materials on power generation efficiency from the water free vortex hydro power plant made of steel and aluminium. These turbines consisted of five blades and were twisted with angles along the height of water. These blades were the maximum width of 45 cm. and height of 32 cm. These turbines were made and experimented for the water free vortex hydro power plant in the laboratory with the water flow rate of 0.68, 1.33, 1.61, 2.31, 2.96 and 3.63 m 3 /min and an electrical load of 20, 40, 60, 80 and 100 W respectively. The experimental results were calculated to find out the torque, electric power, and electricity production efficiency. From the experiment, the results showed that the maximum power generation efficiency of steel and aluminium turbine were 33.56% and 34.79% respectively. From the result at the maximum water flow rate of 3.63 m 3 /min, it was found that the torque value and electricity production efficiency of aluminium turbine was higher than that of steel turbine at the average of 8.4% and 8.14%, respectively. This result showed that light weight of water turbine can increase the torque and power generation efficiency. (paper)

  11. Turbine maintenance and modernization

    Energy Technology Data Exchange (ETDEWEB)

    Unga, E [Teollisuuden Voima Oy, Olkiluoto (Finland)

    1999-12-31

    The disturbance-free operation of the turbine plant plays an important role in reaching good production results. In the turbine maintenance of the Olkiluoto nuclear power plant the lifetime and efficiency of turbine components and the lifetime costs are taken into account in determining the turbine maintenance and modernization/improvement program. The turbine maintenance program and improvement/modernization measures taken in the plant units are described in this presentation. (orig.)

  12. Turbine maintenance and modernization

    Energy Technology Data Exchange (ETDEWEB)

    Unga, E. [Teollisuuden Voima Oy, Olkiluoto (Finland)

    1998-12-31

    The disturbance-free operation of the turbine plant plays an important role in reaching good production results. In the turbine maintenance of the Olkiluoto nuclear power plant the lifetime and efficiency of turbine components and the lifetime costs are taken into account in determining the turbine maintenance and modernization/improvement program. The turbine maintenance program and improvement/modernization measures taken in the plant units are described in this presentation. (orig.)

  13. Modelling and control of variable speed wind turbines for power system studies

    DEFF Research Database (Denmark)

    Michalke, Gabriele; Hansen, Anca Daniela

    2010-01-01

    and implemented in the power system simulation tool DIgSILENT. Important issues like the fault ride-through and grid support capabilities of these wind turbine concepts are addressed. The paper reveals that advanced control of variable speed wind turbines can improve power system stability. Finally......, it will be shown in the paper that wind parks consisting of variable speed wind turbines can help nearby connected fixed speed wind turbines to ride-through grid faults. Copyright © 2009 John Wiley & Sons, Ltd.......Modern wind turbines are predominantly variable speed wind turbines with power electronic interface. Emphasis in this paper is therefore on the modelling and control issues of these wind turbine concepts and especially on their impact on the power system. The models and control are developed...

  14. Design of a wind turbine pitch angle controller for power system stabilisation

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Soerensen, Poul [Risoe National Laboratory, Wind Energy Department, P.O. Box 49, DK-4000 Roskilde (Denmark); Islam, Syed M. [Department of Electrical and Computer Engineering, Curtin University of Technology, GPO Box U1987, Perth, WA 6845 (Australia); Bak Jensen, Birgitte [Institute of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East (Denmark)

    2007-11-15

    The design of a PID pitch angle controller for a fixed speed active-stall wind turbine, using the root locus method is described in this paper. The purpose of this controller is to enable an active-stall wind turbine to perform power system stabilisation. For the purpose of controller design, the transfer function of the wind turbine is derived from the wind turbine's step response. The performance of this controller is tested by simulation, where the wind turbine model with its pitch angle controller is connected to a power system model. The power system model employed here is a realistic model of the North European power system. A short circuit fault on a busbar close to the wind turbine generator is simulated, and the dynamic responses of the system with and without the power system stabilisation of the wind turbines are presented. Simulations show that in most operating points the pitch controller can effectively contribute to power system stabilisation. (author)

  15. Power engineering and turbine manufacture in Japan. Pt. 2

    International Nuclear Information System (INIS)

    Troyanovskij, B.M.

    1995-01-01

    Vapour turbines designs of thermal power plants, including those with increased steam parameters, nuclear power plants, vapour-gas facilities are considered. Data on efficiency of turbofacilities, turbinesmaterials, maneuverability characteristics, releases from gas-turbine facilities are presented. 21 refs.; 6 figs.; 5 tabs

  16. Power curve of the AWEC-60 wind turbine

    International Nuclear Information System (INIS)

    Avia, F.

    1992-01-01

    The experimental wind turbine AWEC-60 was developed to evaluate the possibilities of the Large Wind turbines, from the technical and economical point of view. The project was developed by a spanish-german group, integrated by Union Fenosa, Asinel, M.A.N. Neue Technologie and the Instituto de Energias Renovables from CIEMAT, starting the operation during the year 1990. In this paper, the obtention of the wind turbine's power curve is presented, which has been obtained in agreement with the 'Recommended Practices for Wind Turbine Testing and Evaluation' from the Executive Committee for the Research and Development on Wind Energy, of the International Energy Agency (AIE). Using the functioning data of the wind turbine corresponding to the first quarter of the year 1991, the power curves have been obtained, and the results have been compared with the curves measured in other similar large windturbines. (author)

  17. An Overview of Power Topologies for Micro-hydro Turbines

    DEFF Research Database (Denmark)

    Nababan, Sabar; Muljadi, E.; Blaabjerg, Frede

    2012-01-01

    This paper is an overview of different power topologies of micro-hydro turbines. The size of micro-hydro turbine is typically under 100kW. Conventional topologies of micro-hydro power are stand-alone operation used in rural electrical network in developing countries. Recently, many of micro-hydro...... power generations are connected to the distribution network through power electronics (PE). This turbines are operated in variable frequency operation to improve efficiency of micro-hydro power generation, improve the power quality, and ride through capability of the generation. In this paper our...... discussion is limited to the distributed generation. Like many other renewable energy sources, the objectives of micro-hydro power generation are to reduce the use of fossil fuel, to improve the reliability of the distribution system (grid), and to reduce the transmission losses. The overview described...

  18. Preoperation of Hamaoka Nuclear Power Station Unit No. 4

    International Nuclear Information System (INIS)

    Fukuyo, Tadashi; Kurata, Satoshi

    1994-01-01

    Chubu Electric Power Co. finished preoperation of Hamaoka Nuclear Power Station Unit No. 4 in September, 1993. Although unit 4 has the same reactor design as unit 3, its rated electrical output (1,137MW) is 37MW more than that of unit 3. This increase was achieved mainly by adopting a Moisture Separater Heater in the turbine system. We started preoperation of unit 4 in November 1992 and performed various tests at electrical outputs of 20%, 50%, 75%, and 100%. We finished preoperation without any scram or other major problems and obtained satisfactory results for the functions and performance of the plant. This paper describes the major results of unit 4 preoperation. (author)

  19. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Rabovitser

    2009-06-30

    The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures

  20. Steam Turbine Control Valve Stiction Effect on Power System Stability

    International Nuclear Information System (INIS)

    Halimi, B.

    2010-01-01

    One of the most important problems in power system dynamic stability is low frequency oscillations. This kind of oscillation has significant effects on the stability and security of the power system. In some previous papers, a fact was introduced that a steam pressure continuous fluctuation in turbine steam inlet pipeline may lead to a kind of low frequency oscillation of power systems. Generally, in a power generation plant, steam turbine system composes of some main components, i.e. a boiler or steam generator, stop valves, control valves and turbines that are connected by piping. In the conventional system, the turbine system is composed with a lot of stop and control valves. The steam is provided by a boiler or steam generator. In an abnormal case, the stop valve shuts of the steal flow to the turbine. The steam flow to the turbine is regulated by controlling the control valves. The control valves are provided to regulate the flow of steam to the turbine for starting, increasing or decreasing the power, and also maintaining speed control with the turbine governor system. Unfortunately, the control valve has inherent static friction (stiction) nonlinearity characteristics. Industrial surveys indicated that about 20-30% of all control loops oscillate due to valve problem caused by this nonlinear characteristic. In this paper, steam turbine control valve stiction effect on power system oscillation is presented. To analyze the stiction characteristic effect, firstly a model of control valve and its stiction characteristic are derived by using Newton's laws. A complete tandem steam prime mover, including a speed governing system, a four-stage steam turbine, and a shaft with up to for masses is adopted to analyze the performance of the steam turbine. The governor system consists of some important parts, i.e. a proportional controller, speed relay, control valve with its stiction characteristic, and stem lift position of control valve controller. The steam turbine has

  1. Design study on the efficiency of the thermal scheme of power unit of thermal power plants in hot climates

    Science.gov (United States)

    Sedlov, A.; Dorokhov, Y.; Rybakov, B.; Nenashev, A.

    2017-11-01

    At the stage of pre-proposals unit of the thermal power plants for regions with a hot climate requires a design study on the efficiency of possible options for the structure of the thermal circuit and a set of key parameters. In this paper, the thermal circuit of the condensing unit powerfully 350 MW. The main feature of the external conditions of thermal power plants in hot climates is the elevated temperature of cooling water of the turbine condensers. For example, in the Persian Gulf region as the cooling water is sea water. In the hot season of the year weighted average sea water temperature of 30.9 °C and during the cold season to 22.8 °C. From the turbine part of the steam is supplied to the distillation-desalination plant. In the hot season of the year heat scheme with pressure fresh pair of 23.54 MPa, temperature 570/560 °C and feed pump with electric drive (EDP) is characterized by a efficiency net of 0.25% higher than thermal schem with feed turbine pump (TDP). However, the supplied power unit with PED is less by 11.6 MW. Calculations of thermal schemes in all seasons of the year allowed us to determine the difference in the profit margin of units of the TDP and EDP. During the year the unit with the TDP provides the ability to obtain the profit margin by 1.55 million dollars more than the unit EDP. When using on the market subsidized price of electricity (Iran) marginal profit of a unit with TDP more at 7.25 million dollars.

  2. Comparison of performances of full-speed turbine and half-speed turbine for nuclear power plants

    International Nuclear Information System (INIS)

    Wang Hu; Zhang Weihong; Zhang Qiang; Li Shaohua

    2010-01-01

    The steam turbines of nuclear power plants can be divided into the full-speed turbine and half-speed turbine. Different speed leads to differences in many aspects. Therefore, the rational speed is the key point in the selection of steam turbines. This paper contrasts the economy between the half-speed turbine and full-speed turbine, by calculating the relative internal efficiency of half-speed and full-speed steam turbines with the typical level of 1000 megawatt. At the same time, this paper also calculate the relative speed of high speed water drops in the last stage blade of half-speed turbine and full-speed turbine, to contrast the water erosion between the half-speed turbine and full-speed turbine. The results show that the relative internal efficiency of half-speed turbine is higher than that of the full-speed turbine, and that the security especially the ability of preventing water erosion of half-speed turbine is better than that of the full-speed turbine. (authors)

  3. Power Properties of Two Interacting Wind Turbine Rotors

    DEFF Research Database (Denmark)

    Okulov, Valery; Mikkelsen, Robert Flemming; Sørensen, Jens Nørkær

    2016-01-01

    In the current experiments, two identical wind turbine models were placed in uniform flow conditions in a water flume. The initial flow in the flume was subject to a very low turbulence level, limiting the influence of external disturbances on the development of the inherent wake instability. Both....... The resulting power capacity has been studied and analyzed at different rotor positions and a range of tip speed ratios from 2 to 8 and a simple algebraic relationship between the velocity deficit in the wake of the front turbine and the power of the second turbine was found, when both rotors have the coaxial...

  4. Power Properties of Two Interacting Wind Turbine Rotors

    DEFF Research Database (Denmark)

    Okulov, Valery; Mikkelsen, Robert Flemming; Sørensen, Jens Nørkær

    2017-01-01

    In the current experiments, two identical wind turbine models were placed in uniform flow conditions in a water flume. The initial flow in the flume was subject to a very low turbulence level, limiting the influence of external disturbances on the development of the inherent wake instability. Both....... The resulting power capacity has been studied and analyzed at different rotor positions and a range of tip-speed ratios from 2 to 8, and a simple algebraic relationship between the velocity deficit in the wake of the front turbine and the power of the second turbine was found, when both rotors have the coaxial...

  5. LM5000 gas turbine generating plant for Tenaga Nasional Berhad Sultan Salahuddin Abdul Aziz power station (Malaysia)

    Energy Technology Data Exchange (ETDEWEB)

    Ishizuka, T.; Shioya, Y.; Furuya, M.; Saito, K. [Ishikawajima-Harima Heavy Indutries Co. Ltd., Tokyo (Japan)

    1995-01-01

    The LM5000 gas turbine generating plant (35,000 kW) for Tenaga Nasional Berhad Sultan Salahuddin Abdul Aziz Power Station (Malaysia) was outlined. The lightweight power turbine of 16 ton was adopted to reduce an on-site installation time, and integrated into a single package together with the gas generator, while all the auxiliary units were assembled completely before delivery. Because the plant was for peak cut use, the hydraulic starting unit was adopted, in particular, considering starting operation, and the diesel engine generator was provided to drive the unit in complete power failure. The reliability of operation and monitoring was also enhanced by triplicated digital control. The plant output capacity was well beyond the required one during actual operation, and the thermal efficiency of 36.0-36.3% was obtained. Because the power plant was installed in the rainy western part of Malaysia, protective measures of the plant from rain were taken into careful consideration, for example, the air intake port of the air-cooled generator was faced downward, and provided with a condensation eliminator. 4 figs.

  6. Performance of a direct drive hydro turbine for wave power generation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y-H; Kim, C-G [Division of Mechanical and Information Engineering, Korea Maritime University Dongsam-dong 1, Youngdo-ku, Busan, 606-791 (Korea, Republic of); Choi, Y-D; Kim, I-S [Department of Mechanical Engineering, Mokpo National University Muan-ro 560, Chunggye-myun, Jeonnam, 534-729 (Korea, Republic of); Hwang, Y-C, E-mail: lyh@hhu.ac.k [R and D Institute, Shinhan Precision Co. Ltd. Gomo-ri 313, Jinle-myun, Kimhae, 621-881 (Korea, Republic of)

    2010-08-15

    Clean and renewable energy technologies using ocean energy give us non-polluting alternatives to fossil-fueled power plants as a countermeasure against the global warming and growing demand for electrical energy. Among the ocean energy resources, wave power takes a growing interest because of its enormous amount of potential energy in the world. Therefore, various types of wave power system to capture the energy of ocean waves have been developed. However, suitable turbine type is not normalized yet because of relatively low efficiency of the turbine systems. The purpose of this study is to investigate the performance of a newly developed direct drive hydro turbine (DDT), which will be built in a caisson for wave power plant. Experiment and CFD analysis are conducted to clarify the turbine performance and internal flow characteristics. The results show that the DDT obtains fairly good turbine efficiency in both cases of with wave and no wave conditions. As the turbine performance is influenced considerably by the wave condition, designed point of the turbine should be determined according to the wave condition at an expected installation site. Most of the output power generates at the runner passage of the Stage 2.

  7. Advanced LP turbine installation at 1300 MW nuclear power station Unterweser

    International Nuclear Information System (INIS)

    Jacobsen, G.; Oeynhausen, H.; Termuehlen, H.

    1991-01-01

    This paper reports on Preussen Elektra AG's Unterweser power plant. The steam turbine-generator features a disk-type LP turbine rotor design developed in the late 1960's to early 1970's. This rotor design has been installed in 19 nuclear power plants. The 47 rotors in these plants have been in operation for an average of almost 10 years. The design of the 1970 vintage nuclear LP turbine rotors was based on extensive experience gained with disk-type rotors of fossil turbines built in the 1950's. When EPRI reported about corrosion cracking in nuclear LP turbines, a program was initiated by Siemens/KWU as original steam turbine supplier to ultrasonically inspect all their disk-type rotors in nuclear power plats. Indications on one rotor disk in the Unterweser plant was found. This single event was the only one found out of 310 disks inspected in nuclear power plants

  8. A Brief History of the Wind Turbine Industries in Denmark and the United States

    DEFF Research Database (Denmark)

    Vestergaard, Jens; Brandstrup, Lotte; Goddard,III, Robert D

    2004-01-01

    The history of wind-power used to produce electricity dates back to the late 19th century and early 20th century when the two pioneering countries in the industry, Denmark and the United States, developed the first electricity-producing wind turbines. Ever since then both countries have invested...

  9. Power Electronics Converters for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2012-01-01

    The steady growth of installed wind power together with the upscaling of the single wind turbine power capability has pushed the research and development of power converters toward full-scale power conversion, lowered cost pr kW, increased power density, and also the need for higher reliability. ...

  10. Potential hydroelectric power. Vertical turbine: spillway combine Broadwater Dam. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Willer, D.C.

    1979-04-23

    A feasibility study was made of the hydroelectric power potential at Broadwater Dam in western Montana. Two alternative configurations for the potential project were evaluated and the economics of four possible sources of project funding were assessed. The configurations analyzed were an apron-mounted configuration, in which the turbine-generator units are located on the downstream apron of the existing dam, and a conventional configuration, in which the units are located in a new powerhouse adjacent to the existing dam. The funding sources considered were the Department of Energy loan program, the United States Bureau of Reclamation PL-984 loan program and conventional revenue bonds, both taxable and tax-exempt. The optimal project alternative was determined to be the apron-mounted configuration. The final choice of funding would be dependent on the power purchaser. It was shown that, regardless of the configuraton or funding source selected, the project would be feasible. The cost of the apron-mounted configuration, which would consist of four turbine-generator units for a total installed capacity of 9.76 MW, was estimated as $13,250,000 with financing provided by either a PL-984 loan or tax-exempt bonds. The cost per installed kilowatt was therefore $1,350, and the cost per kilowatt-hour was 19.6 mills. The average annual energy was estimated to be 56.44 million kWh, the equivalent of approximately 87,000 barrels of oil per y. It is therefore recommended that the Montana Department of Natural Resources and Conservation proceed with the project and that discussions be initiated with potential power purchasers as soon as possible.

  11. Efficiency of the DOMUS 750 vertical-axis wind turbine

    Science.gov (United States)

    Hallock, Kyle; Rasch, Tyler; Ju, Guoqiang; Alonso-Marroquin, Fernando

    2017-06-01

    The aim of this paper is to present some preliminary results on the efficiency of a wind turbine for an off-grid housing unit. To generate power, the unit uses a photovoltaic solar array and a vertical-axis wind turbine (VAWT). The existing VAWT was analysed to improve efficiency and increase power generation. There were found to be two main sources of inefficiency: 1. the 750W DC epicyclic generator performed poorly in low winds, and 2. the turbine blades wobbled, allowing for energy loss due to off-axis rotation. A 12V DC permanent magnet alternator was chosen that met the power requirements of the housing unit and would generate power at lower wind speeds. A support bracket was designed to prevent the turbine blades from wobbling.

  12. Design of a wind turbine pitch angle controller for power system stabilisation

    DEFF Research Database (Denmark)

    Jauch, Clemens; Islam, S.M.; Sørensen, Poul Ejnar

    2007-01-01

    The design of a PID pitch angle controller for a fixed speed active-stall wind turbine, using the root locus method is described in this paper. The purpose of this controller is to enable an active-stall wind turbine to perform power system stabilisation. For the purpose of controller design......, the transfer function of the wind turbine is derived from the wind turbine's step response. The performance of this controller is tested by simulation, where the wind turbine model with its pitch angle controller is connected to a power system model. The power system model employed here is a realistic model...... of the North European power system. A short circuit fault on a busbar close to the wind turbine generator is simulated, and the dynamic responses of the system with and without the power system stabilisation of the wind turbines are presented. Simulations show that in most operating points the pitch controller...

  13. Wind turbine power performance verification in complex terrain and wind farms

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Gjerding, S.; Enevoldsen, P.

    2002-01-01

    is a power performance verification procedure for individual wind turbines. The third is a power performance measurement procedure of whole wind farms, and the fourth is a power performance measurement procedurefor non-grid (small) wind turbines. This report presents work that was made to support the basis......The IEC/EN 61400-12 Ed 1 standard for wind turbine power performance testing is being revised. The standard will be divided into four documents. The first one of these is more or less a revision of the existing document on power performance measurementson individual wind turbines. The second one...... then been investigated in more detail. The work has given rise to a range of conclusionsand recommendations regarding: guaranties on power curves in complex terrain; investors and bankers experience with verification of power curves; power performance in relation to regional correction curves for Denmark...

  14. Hybrid anisotropic materials for wind power turbine blades

    CERN Document Server

    Golfman, Yosif

    2012-01-01

    Based on rapid technological developments in wind power, governments and energy corporations are aggressively investing in this natural resource. Illustrating some of the crucial new breakthroughs in structural design and application of wind energy generation machinery, Hybrid Anisotropic Materials for Wind Power Turbine Blades explores new automated, repeatable production techniques that expand the use of robotics and process controls. These practices are intended to ensure cheaper fabrication of less-defective anisotropic material composites used to manufacture power turbine blades. This boo

  15. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, Anca D.; Iov, Florin; Sørensen, Poul

    , connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine concepts, their performance in normal or fault operation being assessed and discussed by means of simulations. The described control......This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risø-R-1400(EN) and it gathers and describes a whole wind turbine model database...... of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides thus a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built...

  16. Modernization of turbines in fossil and nuclear power plants

    International Nuclear Information System (INIS)

    Harig, T.; Oeynhausen, H.

    2004-01-01

    Steam turbine power plants have a big share in power generation world-wide. In view of their age structure, they offer the biggest potential for increasing power plant performance, availability and environmental protection. Modernisation and replacement of key components by improved components will reduce fuel consumption and improve power plant performance by higher capacity, higher power, shorter start-up and shutdown times, and reduced standstill times. Modern steam turbine bladings will result in further improvements without additional fuel consumption. (orig.)

  17. Gas-turbine industry prepares to become base-load supplier

    International Nuclear Information System (INIS)

    Hansen, T.

    1996-01-01

    Gas-turbine technology has entered a new era; the simple-cycle units of yesterday are making room for new, highly sophisticated combined-cycle units. In July 1949, the first U.S. commercial power generation gas turbine was installed at Oklahoma Gas and Electric Co.'s Belle Isle Station. This unit was a General Electric (GE) MS3000 heavy-duty gas turbine rated at 3,5000 kW. In 1994, more than 900 gas turbines totaling over 33,000 MW were ordered worldwide, according to Power-Data Group, LaJolla, Calif. These figures show just how far gas turbines have come in less than 50 years. Today, simple-cycle units rated at up to 150 MW (with efficiencies around 35 percent) and combined-cycle units rated at over 200 MW (approaching 60-percent efficiency) are up and running

  18. Impact of inlet fogging and fuels on power and efficiency of gas turbine plants

    Directory of Open Access Journals (Sweden)

    Basha Mehaboob

    2013-01-01

    Full Text Available A computational study to assess the performance of different gas turbine power plant configurations is presented in this paper. The work includes the effect of humidity, ambient inlet air temperature and types of fuels on gas turbine plant configurations with and without fogger unit. Investigation also covers economic analysis and effect of fuels on emissions. GT frames of various sizes/ratings are being used in gas turbine power plants in Saudi Arabia. 20 MWe GE 5271RA, 40 MWe GE-6561B and 70 MWe GE-6101FA frames are selected for the present study. Fogger units with maximum mass flow rate of 2 kg/s are considered for the present analysis. Reverse Osmosis unit of capacity 4 kg/s supplies required water to the fogger units. GT PRO software has been used for carrying out the analysis including; net plant output and net efficiency, break even electricity price and break even fuel LHV price etc., for a given location of Saudi Arabia. The relative humidity and temperature have been varied from 30 to 45 % and from 80 to 100° F, respectively. Fuels considered in the study are natural gas, diesel and heavy bunker oil. Simulated gas turbine plant output from GT PRO has been validated against an existing gas turbine plant output. It has been observed that the simulated plant output is less than the existing gas turbine plant output by 5%. Results show that variation of humidity does not affect the gas turbine performance appreciably for all types of fuels. For a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to increase by 5 and 2 %, respectively for all fuels, for GT only situation. However, for GT with Fogger scenario, for a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to further increase by 3.2 and 1.2 %, respectively for all fuels. For all GT frames with fogger, the net plant output and efficiency are relatively higher as compared to GT only case for all

  19. Cooperative wind turbine control for maximizing wind farm power using sequential convex programming

    International Nuclear Information System (INIS)

    Park, Jinkyoo; Law, Kincho H.

    2015-01-01

    Highlights: • The continuous wake model describes well the wake profile behind a wind turbine. • The wind farm power function describes well the power production of a wind farm. • Cooperative control increases the wind farm power efficiency by 7.3% in average. • SCP can be employed to efficiently optimize the control actions of wind turbines. - Abstract: This paper describes the use of a cooperative wind farm control approach to improve the power production of a wind farm. The power production by a downstream wind turbine can decrease significantly due to reduced wind speed caused by the upstream wind turbines, thereby lowering the overall wind farm power production efficiency. In spite of the interactions among the wind turbines, the conventional (greedy) wind turbine control strategy tries to maximize the power of each individual wind turbine by controlling its yaw angle, its blade pitch angle and its generator torque. To maximize the overall wind farm power production while taking the wake interference into account, this study employs a cooperative control strategy. We first derive the wind farm power as a differentiable function of the control actions for the wind turbines in a wind farm. The wind farm power function is then maximized using sequential convex programming (SCP) to determine the optimum coordinated control actions for the wind turbines. Using an example wind farm site and available wind data, we show how the cooperative control strategy improves the power production of the wind farm

  20. Study of regeneration system of 300 MW power unit based on nondeaerating heat balance diagram at reduced load

    Science.gov (United States)

    Esin, S. B.; Trifonov, N. N.; Sukhorukov, Yu. G.; Yurchenko, A. Yu.; Grigor'eva, E. B.; Snegin, I. P.; Zhivykh, D. A.; Medvedkin, A. V.; Ryabich, V. A.

    2015-09-01

    More than 30 power units of thermal power stations, based on the nondeaerating heat balance diagram, successfully operate in the former Soviet Union. Most of them are power units with a power of 300 MW, equipped with HTGZ and LMZ turbines. They operate according to a variable electric load curve characterized by deep reductions when undergoing night minimums. Additional extension of the range of power unit adjustment makes it possible to maintain the dispatch load curve and obtain profit for the electric power plant. The objective of this research is to carry out estimated and experimental processing of the operating regimes of the regeneration system of steam-turbine plants within the extended adjustment range and under the conditions when the constraints on the regeneration system and its equipment are removed. Constraints concerning the heat balance diagram that reduce the power unit efficiency when extending the adjustment range have been considered. Test results are presented for the nondeaerating heat balance diagram with the HTGZ turbine. Turbine pump and feed electric pump operation was studied at a power unit load of 120-300 MW. The reliability of feed pump operation is confirmed by a stable vibratory condition and the absence of cavitation noise and vibration at a frequency that characterizes the cavitation condition, as well as by oil temperature maintenance after bearings within normal limits. Cavitation performance of pumps in the studied range of their operation has been determined. Technical solutions are proposed on providing a profitable and stable operation of regeneration systems when extending the range of adjustment of power unit load. A nondeaerating diagram of high-pressure preheater (HPP) condensate discharge to the mixer. A regeneration system has been developed and studied on the operating power unit fitted with a deaeratorless thermal circuit of the system for removing the high-pressure preheater heating steam condensate to the mixer

  1. Development, implementation and operational experience with 900 mm R1T pocket-type bearings at Oskarshamn unit 3 nuclear steam turbine generator

    International Nuclear Information System (INIS)

    Peel, P.; Roos, A.

    2015-01-01

    The Oskarshamn unit 3 nuclear steam turbine generator in Sweden is operated by OKG and, following the extensive PULS upgrade project, delivers an increased rated output of 1450 MW making it the most powerful BWR unit worldwide. Several turbine bearing incidents occurred in 2009 and 2010, which initiated a detailed root cause analysis to determine the reasons and propose appropriate mitigation measures to ensure reliable unit operation. Together with OKG, ALSTOM Power implemented a short-term solution to operate the unit over the winter period of 2010-11. Subsequently, during the annual outage in June 2011, a permanent solution involving a R1T pocket-type bearing design was installed at three shaft-line positions. Since the 1980's, R1T bearings with diameters from 250 to 670 mm have been operating in numerous full-speed (3000/3600 rpm) steam turbine generators. However, this was the first application of a R1T bearing developed at a diameter of 900 mm and for half-speed operation. This paper presents an overview of the bearing development and details the successful operational feedback gathered to date on the three installed bearings. In comparison with the three tilting pad bearing design, which has typically been used on large half-speed ALSTOM Power steam turbine generators to date, it confirms the R1T bearing design as a viable alternative. (authors)

  2. Power Control of Permanent Magnet Generator Based Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2009-01-01

    When the wind power accounts for a large portion of the grid, it will be required to regulate the active power and reactive power. This paper investigates a MWlevel variable speed wind turbine with a permanent magnet synchronous generator (PMSG). The power control capabilities of two kinds...... of control schemes conducted respectively on this wind turbine under two conditions, including rapid wind speed change and grids faults, are compared. The simulation study of the wind turbine system is conducted using PSCAD/EMTDC, and the results show the different power control capabilities of the two...

  3. Parametric study of power turbine for diesel engine waste heat recovery

    International Nuclear Information System (INIS)

    Zhao, Rongchao; Zhuge, Weilin; Zhang, Yangjun; Yin, Yong; Chen, Zhen; Li, Zhigang

    2014-01-01

    Turbocompounding is a promising technology to recover waste heat from the exhaust and reduce fuel consumption for internal combustion engine. The design of a power turbine plays a key role in turbocompound engine performance. This paper presents a set of parametric studies of power turbine performed on a turbocompound diesel engine by means of turbine through-flow model developed by the authors. This simulation model was verified and validated using engine performance test data and achieved reasonable accuracy. The paper first analyzed the influence of three key geometrical parameters (blade height, blade radius and nozzle exit blade angle) on turbine expansion ratio and engine fuel consumptions. After that, the impacts of the geometrical parameters on power distribution, air mass flow rate and exhaust temperature were analyzed. Results showed that these parameters had significant effects on engine BSFC and power. At high engine speeds, there existed an optimum value of geometry parameter to obtain the lowest BSFC. At low engine speeds, the engine BSFC kept increasing or decreasing continuously as the geometry parameters changed. Research also found that the engine BSFC was most sensitive to the nozzle exit blade angle, which should be considered carefully during the design process. This paper provides a useful method for matching and designing of a power turbine for turbocompound engine. - Highlights: •Through-flow model of axial-flow power turbine for turbocompound engine was established. •Turbocompound engine performance test was carried out to validate the cycle simulation model. •Influences of power turbine geometry parameters on engine BSFC and power were presented

  4. Partial analysis of wind power limit for large disturbance using fixed speed wind turbine

    International Nuclear Information System (INIS)

    Santos Fuentefria, Ariel; Cairo Rodriguez, Daniel; Boza Valerino, Juan Gualberto

    2014-01-01

    The amount of wind power that allow an electric network without losing his stability as known as wind power limit. The wind power limit fundamentally depends on the wind turbine technology and the weakness level of the system. To know the system behaviors in dynamic performance having into account the worst disturbance is a very important matter, a short circuit in one of the most power transference line or the loss of a large generation unit was a large disturbance that can affect system stability. The wind power limit may change with the nature of the disturbance. To know the wind power limit considering this conditions allow use the wind at maximum level. In the present paper the behavior of fixed speed wind turbine for different fault types is analyzed, at those conditions, the wind power is increasing until the system become voltage unstable. For the analysis the IEEE 14 Bus Test Case is used. The Power System Analysis Toolbox (PSAT) package is used for the simulation. (author)

  5. Dynamic wind turbine models in power system simulation tool DIgSILENT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Iov, F.; Soerensen, Poul.; Cutululis, N.; Jauch, C.; Blaabjerg, F.

    2007-08-15

    This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risoe-R-1400(EN) and it gathers and describes a whole wind turbine model database built-op and developed during several national research projects, carried out at Risoe DTU National Laboratory for Sustainable Energy and Aalborg University, in the period 2001-2007. The overall objective of these projects was to create a wind turbine model database able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides thus a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built-in models for the electrical components of a grid connected wind turbine (e.g. induction generators, power converters, transformers) and the models developed by the user, in the dynamic simulation language DSL of DIgSILENT, for the non-electrical components of the wind turbine (wind model, aerodynamic model, mechanical model). The initialisation issues on the wind turbine models into the power system simulation are also presented. The main attention in the report is drawn to the modelling at the system level of the following wind turbine concepts: (1) Fixed speed active stall wind turbine concept (2) Variable speed doubly-fed induction generator wind turbine concept (3) Variable speed multi-pole permanent magnet synchronous generator wind turbine concept These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies, connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine

  6. European wind turbine testing procedure developments. Task 2: Power quality

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Friis Pedersen, Troels; Gerdes, G.

    2001-01-01

    The present report describes the work done in the power quality subtask of the European Wind Turbine Testing Procedure Developments project funded by the EU SMT program. The objective of the power quality subtask has been to make recommendations andprovide background for new standards...... for measurement and testing of wind turbine power quality. The focus in the work has been to support the ongoing standardisation work in IEC with a new standard IEC61400-21 for measurement and assessment of powerquality characteristics of grid connected wind turbines. The work has also been based on the power...... quality measuremnet procedure in the Measnet cooperation of European test stations for wind turbines. The first working item of the project has been toverify the state of the art of the measurement procedures by analyses and comparisons of the measurements and data processing software of the participating...

  7. Performance evaluation and economic analysis of a gas turbine power plant in Nigeria

    International Nuclear Information System (INIS)

    Oyedepo, S.O.; Fagbenle, R.O.; Adefila, S.S.; Adavbiele, S.A.

    2014-01-01

    Highlights: • We evaluate performance and economic analysis of a gas turbine power plant in Nigeria. • We examine the shortfall of energy generated and compared with the standard value. • Generation loss resulted in revenue loss of the plant. • Improvement in general housekeeping of the plant will improve performance indices. - Abstract: In this study, performance evaluation and economic analysis (in terms of power outage cost due to system downtime) of a gas turbine power plant in Nigeria have been carried out for the period 2001–2010. The thermal power station consists of nine gas turbine units with total capacity of 301 MW (9 × 31.5 MW). The study reveals that 64.3% of the installed capacity was available in the period. The percentage of shortfall of energy generated in the period ranged from 4.18% to 14.53% as against the acceptable value of 5–10%. The load factor of the plant is between 20.8% and 78.2% as against international best practice of 80%. The average availability of the plant for the period was about 64% as against industry best practice of 95%, while the average use factor was about 92%. The capacity factor of the plant ranged from 20.8% to 78.23% while the utilization factor ranged from 85.47% to 95.82%. For the ten years under review, there was energy generation loss of about 35.7% of expected energy generation of 26.411 TW h with consequent plant performance of 64.3%. The study further reveals that the 35.7% of generation loss resulted in revenue loss of about M$251 (approximately b▪40). The simple performance indicator developed to evaluate the performance indices and outage cost for the station can also be applicable to other power stations in Nigeria and elsewhere. Measures to improve the performance indices of the plant have been suggested such as training of operation and maintenance (O and M) personnel regularly, improvement in O and M practices, proper spare parts inventory and improvement in general housekeeping of the

  8. Feasibility study on rehabilitation of MEPE gas turbine power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Myanmar generates majority of the whole electric power by using thermal power plants consisting of single gas turbines, and gas and steam composite turbines. However, because of chronic power shortage and fund unavailability, the major gas turbines are being operated in quite inadequate environment. As a result, reduction in power generation efficiency has become manifest due to aged deterioration, increasing the quantity of CO2 emission. The present project is, in order to link it to the 'Clean Development Mechanism' being carried out with developing countries, and placing Tharkayta Power Plant as the object, intended to comprehensively discuss a rehabilitation program to renew the existing gas turbines with advanced ones, in relation with feasibility of the project implementation including the effect of CO2 emission reduction, profitability, and proliferation effects. A prospect was acquired that, by replacing the gas turbines alone with 25-MW class gas turbines, the plant output will increase to 97.2 MW (78.5 MW in the existing facilities) and the plant efficiency to 43.3% (36.5% in the existing facilities). The energy saving effect during a period of 40 years would be 708,000 (toe) as heat consumption converted to crude oil, and the CO2 emission reducing effect would be 2,160,000 (t-CO2), respectively. (NEDO)

  9. Power electronics converters for wind turbine systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2011-01-01

    The steady growth of installed wind power which reached 200 GW capacity in 2010, together with the up-scaling of the single wind turbine power capability - 7 MW’s has been announced by manufacturers - has pushed the research and development of power converters towards full scale power conversion,...

  10. Standards for measurements and testing of wind turbine power quality

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, P [Risoe National Lab., Roskilde (Denmark); Gerdes, G; Klosse, R; Santjer, F [DEWI, Wilhelmshaven (Germany); Robertson, N; Davy, W [NEL, Glasgow (United Kingdom); Koulouvari, M; Morfiadakis, E [CRES, Pikermi (Greece); Larsson, Aa [Chalmers Univ. of Technology, Goeteborg (Sweden)

    1999-03-01

    The present paper describes the work done in power quality sub-task of the project `European Wind Turbine Testing Procedure Developments` funded by the EU SMT program. The objective of the power quality sub-task has been to make analyses and new recommendation(s) for the standardisation of measurement and verification of wind turbine power quality. The work has been organised in three major activities. The first activity has been to propose measurement procedures and to verify existing and new measurement procedures. This activity has also involved a comparison of the measurements and data processing of the participating partners. The second activity has been to investigate the influence of terrain, grid properties and wind farm summation on the power quality of wind turbines with constant rotor speed. The third activity has been to investigate the influence of terrain, grid properties and wind farm summation on the power quality of wind turbines with variable rotor speed. (au)

  11. Novel screening techniques for wind turbine power converters

    DEFF Research Database (Denmark)

    Jørgensen, Asger Bjørn; Sønderskov, Simon Dyhr; Christensen, Nicklas

    2016-01-01

    Power converters represent one of the highest failure rates in the wind turbine. Therefore converter manufacturers perform burn-in tests to prevent shipping of faulty converters. Recent developments in junction temperature estimation, based on accurate online IGBT collector-emitter voltage...... measurements, allow for thermal stress estimation of the IGBT modules. This is utilized to detect infant mortalities in power converters, by comparing thermal responses of IGBTs for faulty and non-faulty converters. The method proves to be a time and cost efficient candidate to replace burn-in tests of power...... converters for wind turbines applications....

  12. Optimisation of Combined Cycle Gas Turbine Power Plant in Intraday Market: Riga CHP-2 Example

    Science.gov (United States)

    Ivanova, P.; Grebesh, E.; Linkevics, O.

    2018-02-01

    In the research, the influence of optimised combined cycle gas turbine unit - according to the previously developed EM & OM approach with its use in the intraday market - is evaluated on the generation portfolio. It consists of the two combined cycle gas turbine units. The introduced evaluation algorithm saves the power and heat balance before and after the performance of EM & OM approach by making changes in the generation profile of units. The aim of this algorithm is profit maximisation of the generation portfolio. The evaluation algorithm is implemented in multi-paradigm numerical computing environment MATLab on the example of Riga CHP-2. The results show that the use of EM & OM approach in the intraday market can be profitable or unprofitable. It depends on the initial state of generation units in the intraday market and on the content of the generation portfolio.

  13. Steam turbine of WWER-1000 unit

    International Nuclear Information System (INIS)

    Drahy, J.

    1986-01-01

    The manufacture was started by Skoda of a saturated steam, 1,000 MW, 3,000 rpm turbine designed for the Temelin nuclear power plant. The turbine provides steam for heating water for district heating, this either with an output of 893 MW for a three-stage water heating at 150/60 degC, or of 570 MW for a two-stage water heating at 120/60 degC. The turbine features one high-pressure and three identical low-pressure stages. The pressure gradient between the high-pressure and the low-pressure parts was optimized with respect to the thermal efficiency of the cycle and to the thermodynamic efficiency of the low-pressure part. A value of 0.79 MPa was selected corresponding to the maximum through-flow of steam entering the turbine. This makes 5,495 t/h, the admission steam parameters are 273.3 degC and 5.8 MPa. The feed water temperature is 220.9 degC. 300 cold starts, 1,000 starts after shutdowns for 55 to 88 hours and 600 starts after shutdown for 8 hours are envisaged for the entire turbine service life. (Z.M.). 5 figs., 1 tab., 6 refs

  14. Jet spoiler arrangement for wind turbine

    Science.gov (United States)

    Cyrus, J. D.; Kablec, E. G.; Klimas, P. C.

    1983-09-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stal conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  15. Jet spoiler arrangement for wind turbine

    Science.gov (United States)

    Cyrus, Jack D.; Kadlec, Emil G.; Klimas, Paul C.

    1985-01-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  16. Wind Turbine and Power Production, the Danish Development

    Energy Technology Data Exchange (ETDEWEB)

    Kjems, Joergen; Oester, Flemming

    2007-07-01

    The progress within the Danish wind energy sector in Denmark is reviewed. Excluding minor intermission periods the R and D development of electricity producing wind turbines has taken place continuously for more than 100 years in Denmark. After the first oil crisis in 1973 this development accelerated and has led to a remarkable scientific and commercial success. For a few years turbines in Denmark have been producing electricity corresponding to almost 20% of the Danish demand. Danish manufacturers produce components and export turbines in large quantities, amounting in 2005 to a total capacity of about 3.8 GW which is about one third of the world market. Important present day R&D topics are offshore technology and interaction between turbines and the grid, including the ability of turbines to contribute to regulation and stabilization of the power system. These questions are crucial when handling fluctuating electricity production in networks with large fractions of wind energy and CHP power production. In the future, a main point may be storage of wind energy, e.g. in the form of hydrogen produced by fuel cells. (auth)

  17. Development of low head Kaplan turbine for power station rehabilitation project

    Science.gov (United States)

    Lim, S. M.; Ohtake, N.; Kurosawa, S.; Suzuki, T.; Yamasaki, T.; Nishi, H.

    2012-11-01

    This paper presents the latest Kaplan turbine rehabilitation project for Funagira Power Station in Japan completed by J-POWER Group in collaboration with Toshiba Corporation. Area of rehabilitation was restricted to guide vane and runner. The main goal of the rehabilitation project was to expand the operating range of the existing turbine in terms of discharge and power with high operational stability, low noise as well as high cavitation performance. Computational Fluids Dynamics and model test were used to optimize the shape of guide vane and runner in development stage. Finally, field tests and runner inspection were carried out to confirm the performance of the new turbine. It was found that the new turbine has excellent performance in efficiency, power output, operational stability compared with existing turbine. Moreover, no sign of cavitation on the runner blade surface was observed after 5078 hours of operation near 100% load.

  18. Development of low head Kaplan turbine for power station rehabilitation project

    International Nuclear Information System (INIS)

    Lim, S M; Ohtake, N; Kurosawa, S; Suzuki, T; Yamasaki, T; Nishi, H

    2012-01-01

    This paper presents the latest Kaplan turbine rehabilitation project for Funagira Power Station in Japan completed by J-POWER Group in collaboration with Toshiba Corporation. Area of rehabilitation was restricted to guide vane and runner. The main goal of the rehabilitation project was to expand the operating range of the existing turbine in terms of discharge and power with high operational stability, low noise as well as high cavitation performance. Computational Fluids Dynamics and model test were used to optimize the shape of guide vane and runner in development stage. Finally, field tests and runner inspection were carried out to confirm the performance of the new turbine. It was found that the new turbine has excellent performance in efficiency, power output, operational stability compared with existing turbine. Moreover, no sign of cavitation on the runner blade surface was observed after 5078 hours of operation near 100% load.

  19. Well-Being Analysis of Power Systems Considering Increasing Deployment of Gas Turbines

    Directory of Open Access Journals (Sweden)

    Bomiao Liang

    2017-07-01

    Full Text Available With the significant decrease in natural gas prices in many parts of the world, the employment of gas turbine (GT units has increased steadily in recent years. The ever-increasing deployment of GT units is strengthening the interconnections between electric power and natural gas systems, which could provide a higher level of operational flexibility and reliability. As a result, the planning and operation issues in the interconnected electric power and natural gas systems have aroused concern. In these circumstances, the impacts of increasing deployment of GT units in power system operation are studied and evaluated through well-being analysis (WBA. The fast responsive characteristics of GT units are analyzed first, and the definition and adaption of WBA in a power system with increasing deployment of GT units are addressed. Then the equivalent reserve capacity of GT units is estimated, taking demand fluctuations, commitment plans, and operational risks of GT units into account. The WBA of a power system with increasing deployment of GT units is conducted considering the uncertainties of system operation states and renewable energy sources. Finally, the proposed methods are validated through an integrated version of the IEEE 118-bus power system and a 10-bus natural gas system, and the impacts of GT units on power system security under various penetration levels are examined. Simulation results demonstrate that the role of a GT unit as a low-cost electricity producer may conflict with its role as a reserve provider, but through maintaining a proper proportion of idle GT capacities for reserve, the well-being performance of the power system concerned can be significantly improved.

  20. Compensation of Reactive Power from Wind Turbines with Power Electronics Equipment

    DEFF Research Database (Denmark)

    Pedersen, Jørgen Kaas

    1996-01-01

    Wind turbines with induction generators consume reactive power. Apart from the no load consumption, which is nearing constant and is being compensated for using capacitors, the consumption of reactive power varies almost proportional with the power production, which can vary immensely. Except tha...

  1. Prediction of Francis Turbine Prototype Part Load Pressure and Output Power Fluctuations with Hydroelectric Model

    Science.gov (United States)

    Alligné, S.; Nicolet, C.; Béguin, A.; Landry, C.; Gomes, J.; Avellan, F.

    2017-04-01

    The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope from the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of ν = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed for all technologies to analyse potential interactions between hydraulic excitation sources and electrical components. Three technologies have been compared: the classical fixed speed configuration with Synchronous Machine (SM) and the two variable speed technologies which are Doubly Fed Induction Machine (DFIM) and Full Size Frequency Converter (FSFC).

  2. Study on gas turbines. Leading role of high efficiency power generation; Gas turbine kenkyu. Kokoritsu hatsuden no shuyaku wo nerau

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-31

    This review summarizes research works of Central Research Institute of Electric Power Industry on gas turbines playing a leading role of high efficiency power generation. This article describes historical changes of gas turbine technology, changes and current status from the viewpoint of electric power industry, and development trend in various makers. Increase in the flow-in gas temperature, low NOx combustion technology, use of various fuels, and durability evaluation and improvement technology for high temperature parts are described as technological problems and development trends. The increase in temperature is indispensable for the improvement of efficiency. Materials having heat resistance, anticorrosion and strength are required. Accordingly, Ni-based single crystal super alloy has been developed. Developments of ceramic gas turbine and catalytic combustor are also described. The coal gasification combined power generation is expected as a new power generation technology having availability of various coals, high efficiency, and excellent environmental protection. Development of 1500 {degree}C class combustor for turbines has been promoted. Evaluation and improvement of durability of high temperature parts are also described. For the new utilization technology of gas turbines, repowering and compressed air storage gas turbine power generation technology are introduced. 92 figs., 14 tabs.

  3. Dynamic wind turbine models in power system simulation tool DIgSILENT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.C.; Jauch, C.; Soerensen, P.; Iov, F.; Blaabjerg, F.

    2003-12-01

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT (Version 12.0). The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. This model database should be able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built-in models for the electrical components of a grid connected wind turbine (e.g. induction generators, power converters, transformers) and the models developed by the user, in the dynamic simulation language DSL of DIgSILENT, for the non-electrical components of the wind turbine (wind model, aerodynamic model, mechanical model). The initialisation issues on the wind turbine models into the power system simulation are also presented. However, the main attention in this report is drawn to the modelling at the system level of two wind turbine concepts: 1. Active stall wind turbine with induction generator 2. Variable speed, variable pitch wind turbine with doubly fed induction generator. These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies, connection of the wind turbine at different types of grid and storage systems. For both these two concepts, control strategies are developed and implemented, their performance assessed and discussed by means of simulations. (au)

  4. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    Science.gov (United States)

    Sant, T.; Buhagiar, D.; Farrugia, R. N.

    2014-06-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units.

  5. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    International Nuclear Information System (INIS)

    Sant, T; Buhagiar, D; Farrugia, R N

    2014-01-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units

  6. Operating experience feedback report -- turbine-generator overspeed protection systems: Commercial power reactors. Volume 11

    International Nuclear Information System (INIS)

    Ornstein, H.L.

    1995-04-01

    This report presents the results of the US Nuclear Regulatory Commission's Office for Analysis and Evaluation of Operational Data (AEOD) review of operating experience of main turbine-generator overspeed and overspeed protection systems. It includes an indepth examination of the turbine overspeed event which occurred on November 9, 1991, at the Salem Unit 2 Nuclear Power Plant. It also provides information concerning actions taken by other utilities and the turbine manufacturers as a result of the Salem overspeed event. AEOD's study reviewed operating procedures and plant practices. It noted differences between turbine manufacturer designs and recommendations for operations, maintenance, and testing, and also identified significant variations in the manner that individual plants maintain and test their turbine overspeed protection systems. AEOD's study provides insight into the shortcomings in the design, operation, maintenance, testing, and human factors associated with turbine overspeed protection systems. Operating experience indicates that the frequency of turbine overspeed events is higher than previously thought and that the bases for demonstrating compliance with NRC's General Design Criterion (GDC) 4, Environmental and dynamic effects design bases, may be nonconservative with respect to the assumed frequency

  7. Floating axis wind turbines for offshore power generation—a conceptual study

    International Nuclear Information System (INIS)

    Akimoto, Hiromichi; Tanaka, Kenji; Uzawa, Kiyoshi

    2011-01-01

    The cost of energy produced by offshore wind turbines is considered to be higher than land based ones because of the difficulties in construction, operation and maintenance on offshore sites. To solve the problem, we propose a concept of a wind turbine that is specially designed for an offshore environment. In the proposed concept, a floater of revolutionary shape supports the load of the wind turbine axis. The floater rotates with the turbine and the turbine axis tilts to balance the turbine thrust, buoyancy and gravity. The tilt angle is passively adjustable to wind force. The angle is 30° at rated power. The simplicity of the system leads to further cost reduction of offshore power generation.

  8. Unit for wind power plants and water power. Aggregat fuer Windkraftanlagen und Wasserkraft

    Energy Technology Data Exchange (ETDEWEB)

    Armonies, H.; Armonies, G.

    1983-01-13

    The invention concerns the manufacture and process of kinetic thermal units for wind power plants and water power. It is characterized by the fact that the supporting frame of the unit is made so that it carries the unit shaft bearing and also a fixed flange for a hollow body, pump part, unit shaft pushback device and thermal insulation. The unit shaft running in bearings is made so that it can rotate in the two bearings or a double bearing and can also slide between 2 flanges on the unit shaft in the longitudinal direction of the bearings. The end of the unit shaft projecting beyond the supporting frame is made so that the wind blades, rotors or water turbines can be connected to it by flanges. The rotor shaft can be pressed against a hollow body carrying a liquid by a friction disc. A heat resistant liquid pump is also situated on the supporting frame. It is driven by the unit shaft. (HWJ).

  9. Cooling of nuclear power stations with high temperature reactors and helium turbine cycles

    International Nuclear Information System (INIS)

    Foerster, S.; Hewing, G.

    1977-01-01

    On nuclear power stations with high temperature reactors and helium turbine cycles (HTR-single circuits) the residual heat from the energy conversion process in the primary and intermediate coolers is removed from cycled gas, helium. Water, which is circulated for safety reasons through a closed circuit, is used for cooling. The primary and intermediate coolers as well as other cooling equipment of the power plant are installed within the reactor building. The heat from the helium turbine cycle is removed to the environment most effectively by natural draught cooling towers. In this way a net plant efficiency of about 40% is attainable. The low quantities of residual heat thereby produced and the high (in comparison with power stations with steam turbine cycles) cooling agent pressure and cooling water reheat pressure in the circulating coolers enable an economically favourable design of the overall 'cold end' to be expected. In the so-called unit range it is possible to make do with one or two cooling towers. Known techniques and existing operating experience can be used for these dry cooling towers. After-heat removal reactor shutdown is effected by a separate, redundant cooling system with forced air dry coolers. The heat from the cooling process at such locations in the power station is removed to the environment either by a forced air dry cooling installation or by a wet cooling system. (orig.) [de

  10. Feasibility of water injection into the turbine coolant to permit gas turbine contingency power for helicopter application

    Science.gov (United States)

    Vanfossen, G. J.

    1983-01-01

    A system which would allow a substantially increased output from a turboshaft engine for brief periods in emergency situations with little or no loss of turbine stress rupture life is proposed and studied analytically. The increased engine output is obtained by overtemperaturing the turbine; however, the temperature of the compressor bleed air used for hot section cooling is lowered by injecting and evaporating water. This decrease in cooling air temperature can offset the effect of increased gas temperature and increased shaft speed and thus keep turbine blade stress rupture life constant. The analysis utilized the NASA-Navy-Engine-Program or NNEP computer code to model the turboshaft engine in both design and off-design modes. This report is concerned with the effect of the proposed method of power augmentation on the engine cycle and turbine components. A simple cycle turboshaft engine with a 16:1 pressure ratio and a 1533 K (2760 R) turbine inlet temperature operating at sea level static conditions was studied to determine the possible power increase and the effect on turbine stress rupture life that could be expected using the proposed emergency cooling scheme. The analysis showed a 54 percent increse in output power can be achieved with no loss in gas generator turbine stress rupture life. A 231 K (415 F) rise in turbine inlet temperature is required for this level of augmentation. The required water flow rate was found to be .0109 kg water per kg of engine air flow.

  11. Improving fish survival through turbines

    International Nuclear Information System (INIS)

    Ferguson, J.W.

    1993-01-01

    Much of what is known about fish passage through hydroturbines has been developed by studying migratory species of fish passing through large Kaplan turbine units. A review of the literature on previous fish passage research presented in the accompanying story illustrates that studies have focused on determining mortality levels, rather than identifying the causal mechanism involved. There is a need for understanding how turbine designs could be altered to improve fish passage conditions, how to retrofit existing units, and how proposed hydro plant operational changes may affect fish survival. The US Army Corps of Engineers has developed a research program to define biologically based engineering criteria for improving fish passage conditions. Turbine designs incorporating these criteria can be evaluated for their effects on fish survival, engineering issues, costs, and power production. The research program has the following objectives: To gain a thorough knowledge of the mechanisms of fish mortality; To define the biological sensitivities of key fish species to these mechanisms of mortality; To develop new turbine design criteria to reduce fish mortality; To construct prototype turbine designs, and to test these designs for fish passage, hydro-mechanical operation, and power production; and To identify construction and power costs associated with new turbine designs

  12. Wind turbine power tracking using an improved multimodel quadratic approach.

    Science.gov (United States)

    Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier

    2010-07-01

    In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Optimisation of Combined Cycle Gas Turbine Power Plant in Intraday Market: Riga CHP-2 Example

    Directory of Open Access Journals (Sweden)

    Ivanova P.

    2018-02-01

    Full Text Available In the research, the influence of optimised combined cycle gas turbine unit – according to the previously developed EM & OM approach with its use in the intraday market – is evaluated on the generation portfolio. It consists of the two combined cycle gas turbine units. The introduced evaluation algorithm saves the power and heat balance before and after the performance of EM & OM approach by making changes in the generation profile of units. The aim of this algorithm is profit maximisation of the generation portfolio. The evaluation algorithm is implemented in multi-paradigm numerical computing environment MATLab on the example of Riga CHP-2. The results show that the use of EM & OM approach in the intraday market can be profitable or unprofitable. It depends on the initial state of generation units in the intraday market and on the content of the generation portfolio.

  14. Production statistics of gas turbines and superchargers in Japan in 1992

    Energy Technology Data Exchange (ETDEWEB)

    Honma, T [Toshiba Corp., Tokyo (Japan)

    1994-03-01

    Production of gas turbines and superchargers in Japan in 1992 was summarized giving various production statistics. In land and marine gas turbines, the total production decreased by 2% in unit, however, increased rapidly by 84% in total power output due to a remarkable increase in large unit over and including 30,000 PS, exceeding the total power output of 5,000 MW. The production of small units less than 1,000 PS decreased in both unit and power output, and all the units were for private use of which 96% were emergency power generation use. The production of medium units decreased in both unit and power output, including a remarkable decrease in unit by 26% and in power output by 38% for base load generation use. In aircraft gas turbines, the production in 1992 decreased by 0-10%, however, 89 fan modules of V2500 turbofan engine were produced, summing up into 273 units since 1988. Most of superchargers produced in 1992 were of class 1 below 100 mm in impeller diameter, reaching 1,720,000 units. 10 figs., 9 tabs.

  15. Time program using in automatization of steam turbines start-up

    International Nuclear Information System (INIS)

    Lejzerovich, A.Sh.; Melamed, A.D.

    Examples and arguments for developing time programs of changing basic parameters of automated start-up of TPP and NPP high-power steam turbines are considered. Basic parameters subject to controlled changing at automatization of turbine start-up are rotation frequency, loading and temperature of steam supplied to the turbine. Principle facility schemes of program regulation of steam temperature at the start-up are presented. The facility scheme of loading the NPP wet steam turbine is given. The principles of developing time programs, of changing basic parameters of automated start-up enable realizing transient processes close to theoretically optimum processes at arbitrary prestart-up state of the turbine by means of rather simple autatic facilities. In particular, for automated temperature increase of steam supplied to the turbine of TES power units and AES turbine loading, it is advisable to use programs in the form of linear dependence of velocity of changing the controlled parameter on the given value, the initial level, from which the parameter increase with a regulated velocity is realized, is given in the form of analogue dependence on the turbine prestart-up state. The programs described and the schemes of their realization have been approved at the automatization of 300 MW power unit starts up with the K-300-240 turbine and K-220-44 turbine as well as used when creating control system for turbines of 500 MW and higher for designed TPP and NPP power units

  16. Measured effects of wind turbine generation at the Block Island Power Company

    Science.gov (United States)

    Wilreker, V. F.; Smith, R. F.; Stiller, P. H.; Scot, G. W.; Shaltens, R. K.

    1984-01-01

    Data measurements made on the NASA MOD-OA 200-kw wind-turbine generator (WTG) installed on a utility grid form the basis for an overall performance analysis. Fuel displacement/-savings, dynamic interactions, and WTG excitation (reactive-power) control effects are studied. Continuous recording of a large number of electrical and mechanical variables on FM magnetic tape permit evaluation and correlation of phenomena over a bandwidth of at least 20 Hz. Because the wind-power penetration reached peaks of 60 percent, the impact of wind fluctuation and wind-turbine/diesel-utility interaction is evaluated in a worst-case scenario. The speed-governor dynamics of the diesel units exhibited an underdamped response, and the utility operation procedures were not altered to optimize overall WTG/utility performance. Primary findings over the data collection period are: a calculated 6.7-percent reduction in fuel consumption while generating 11 percent of the total electrical energy; acceptable system voltage and frequency fluctuations with WTG connected; and applicability of WTG excitation schemes using voltage, power, or VARS as the controlled variable.

  17. Steam turbines for nuclear power plants

    International Nuclear Information System (INIS)

    Stastny, M.

    1983-01-01

    A three-cylinder 220 MW saturated steam turbine was developed for WWER reactors by the Skoda concern. Twenty four of these turbines are currently in operation, in production or have been ordered. A 1000 MW four-cylinder turbine is being developed. The disign of the turbines has had to overcome difficulties connected with the unfavourable effects of wet steam at extreme power values. Great attention had to be devoted to the aerodynamics of control valves and to the prevention of flow separation areas. The problem of corrosion-erosion in guide wheels and the high pressure section was resolved by the use of ferritic stainless steels. For the low pressure section it was necessary to separate the moisture and to reheat the steam in the separator-reheater. Difficulties caused by the generation of wet steam in the low pressure section by spontaneous condensation were removed. Also limited was the erosion caused by droplets resulting from the disintegration of water films on the trailing edges. (A.K.)

  18. Rated power factor and excitation system of large turbine generator

    International Nuclear Information System (INIS)

    Tokumitsu, Iwao; Watanabe, Takashi; Banjou, Minoru.

    1979-01-01

    As for the rated power factor of turbine generators for thermal power stations, 90% has been adopted since around 1960. On the other hand, power transmission system has entered 500 kV age, and 1,000 kV transmission is expected in the near future. As for the supply of reactive power from thermal and nuclear turbine generators, the necessity of supplying leading reactive power has rather increased. Now, the operating power factor of thermal and nuclear generators becomes 96 to 100% actually. As for the excess stability of turbine generators owing to the strengthening of transmission system and the adoption of super-high voltage, the demand of strict conditions can be dealt with by the adoption of super-fast response excitation system of thyristor shunt winding self exciting type. The adoption of the turbine generators with 90 to 95% power factor and the adoption of the thyristor shunt winding self exciting system were examined and evaluated. The rated power factor of generators, excitation system and economy of adopting these systems are explained. When the power factor of generators is increased from 0.9 to 0.95, about 6% of saving can be obtained in the installation cost. When the thyristor shunt winding self excitation is adopted, it is about 10% more economical than AC excitation. (Kako, I.)

  19. Microfabricated rankine cycle steam turbine for power generation and methods of making the same

    Science.gov (United States)

    Frechette, Luc (Inventor); Muller, Norbert (Inventor); Lee, Changgu (Inventor)

    2009-01-01

    In accordance with the present invention, an integrated micro steam turbine power plant on-a-chip has been provided. The integrated micro steam turbine power plant on-a-chip of the present invention comprises a miniature electric power generation system fabricated using silicon microfabrication technology and lithographic patterning. The present invention converts heat to electricity by implementing a thermodynamic power cycle on a chip. The steam turbine power plant on-a-chip generally comprises a turbine, a pump, an electric generator, an evaporator, and a condenser. The turbine is formed by a rotatable, disk-shaped rotor having a plurality of rotor blades disposed thereon and a plurality of stator blades. The plurality of stator blades are interdigitated with the plurality of rotor blades to form the turbine. The generator is driven by the turbine and converts mechanical energy into electrical energy.

  20. Wind Turbine and Wind Power Plant Modelling Aspects for Power System Stability Studies

    DEFF Research Database (Denmark)

    Altin, Müfit; Hansen, Anca Daniela; Göksu, Ömer

    2014-01-01

    Large amount of wind power installations introduce modeling challenges for power system operators at both the planning and operational stages of power systems. Depending on the scope of the study, the modeling details of the wind turbine or the wind power plant are required to be different. A wind...... turbine model which is developed for the short-term voltage stability studies can be inaccurate and sufficient for the frequency stability studies. Accordingly, a complete and detailed wind power plant model for every kind of study is not feasible in terms of the computational time and also...... and wind power plants are reviewed for power system stability studies. Important remarks of the models are presented by means of simulations to emphasize the impact of these modelling details on the power system....

  1. Power Generation from Sewage by a Micro-Hydraulic Turbine

    OpenAIRE

    Tomomi Uchiyama; Tomoko Okayama; Yukio Ide

    2016-01-01

    This study is concerned with the development of a micro-hydraulic turbine for power generation installed in sewer pipes. The runner has a circular hollow around the central (rotating) axis so that solid materials included in water can be easily flow through the runner without blocking the turbine. The laboratory experiments are also conducted. The hollow is very effective to make polyester fibers pass through the turbine. The guide vane is useful to heighten the turbine performance. But it is...

  2. Conceptual survey of generators and power electronics for wind turbines

    DEFF Research Database (Denmark)

    Hansen, L.H.; Helle, L.; Blaabjerg, F.

    2002-01-01

    This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent systemoperators as well as manufactures of generators...... and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: - State of the art on generators and power electronics. - future concepts andtechnologies within generators and power electronics. - market needs in the shape of requirements to the grid...... connection, and - consistent system solutions, plus an evaluation of these seen in the prospect of market needs. This survey on of generatorand power electronic concepts was carried out in co-operation between Aalborg University and Risø National Laboratory in the scope of the research programme Electric...

  3. Examination of turbine discs from nuclear power plants

    International Nuclear Information System (INIS)

    Czajkowski, C.J.; Weeks, J.R.

    1982-01-01

    Investigations were performed on a cracked turbine disc from the Cooper Nuclear Power Station, and on two failed turbine discs (governor and generator ends) from the Yankee-Rowe Nuclear Power Station. Cooper is a boiling water reactor (BWR) which went into commercial operation in July 1974, and Yankee-Rowe is a pressurized water reactor (PWR) which went into commercial operation in June 1961. Cracks were identified in the bore of the Cooper disc after 41,913 hours of operation, and the disc removed for repair. At Yankee-Rowe two discs failed after 100,000 hours of operation. Samples of the Cooper disc and both Yankee-Rowe disc (one from the governor and one from the generator end of the LP turbine) were sent to Brookhaven National Laboratory (BNL) for failure analysis

  4. Outlook for gas turbine plant utilization in htgr power facilities

    International Nuclear Information System (INIS)

    Beknev, V.S.; Leont'ev, A.I.; Shmidt, K.L.; Surovtsev, I.G.

    1983-01-01

    The nuclear reactor power plants that have found greatest favor in the nuclear power industry worldwide are pressurized water reactors, boiling-water reactors, and uranium-graphite channel reactors with saturated-steam steam turbine units (PTU). The efficiency of power generating stations built around reactors such as these does not exceed 30 to 32%, and furthermore they are ''tied down'' to water reservoirs, with the entailed severe thermal effects on the environmental surroundings. The low efficiency range cited is evidence of inefficacious utilization of the nuclear fuel, reserves of which have their limits just as there are limits to available reserves of fossil fuels. Forecasts are being floated of a possible uranium crisis (profitable mining of uranium) in the mid-1990's, even with the expected development of breeder reactors to bridge the gap

  5. Accounting for the speed shear in wind turbine power performance measurement

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael; Gottschall, Julia

    2011-01-01

    The current IEC standard for wind turbine power performance measurement only requires measurement of the wind speed at hub height assuming this wind speed to be representative for the whole rotor swept area. However, the power output of a wind turbine depends on the kinetic energy flux, which...... itself depends on the wind speed profile, especially for large turbines. Therefore, it is important to characterize the wind profile in front of the turbine, and this should be preferably achieved by measuring the wind speed over the vertical range between lower and higher rotor tips. In this paper, we...... describe an experiment in which wind speed profiles were measured in front of a multimegawatt turbine using a ground–based pulsed lidar. Ignoring the vertical shear was shown to overestimate the kinetic energy flux of these profiles, in particular for those deviating significantly from a power law profile...

  6. Digital electro-hydraulic control system for nuclear turbine

    International Nuclear Information System (INIS)

    Yokota, Yutaka; Tone, Youichi; Ozono, Jiro

    1985-01-01

    The unit capacity of steam turbines for nuclear power generation is very large, accordingly their unexpected stop disturbs power system, and the lowering of their capacity ratio exerts large influence on power generation cost. Therefore, very high reliability is required for turbine EHC controllers which directly control the turbines for nuclear power generation. In order to meet such requirement, Toshiba Corp. has developed high reliability type analog tripled turbine EHC controllers, and delivered them to No. 3 plant in the Fukushima No. 2 Nuclear Power Station and No. 1 plant in the Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. At present, the trial operation is under way. The development of digital EHC controllers was begun in 1976, and through the digital EHC for a test turbine and that for a small turbine, the digital EHC controllers for the turbines for nuclear power generation were developed. In this paper, the function, constitution, features and maintenance of the digital tripled EHC controllers for the turbines for nuclear power generation, the application of new technology to them, and the confirmation of the control function by simulation are reported. (Kako, I.)

  7. Wind turbine power performance verification in complex terrain and wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Friis Pedersen, T.; Gjerding, S.; Ingham, P.; Enevoldsen, P.; Kjaer Hansen, J.; Kanstrup Joergensen, H.

    2002-04-01

    The IEC/EN 61400-12 Ed 1 standard for wind turbine power performance testing is being revised. The standard will be divided into four documents. The first one of these is more or less a revision of the existing document on power performance measurements on individual wind turbines. The second one is a power performance verification procedure for individual wind turbines. The third is a power performance measurement procedure of whole wind farms, and the fourth is a power performance measurement procedure for non-grid (small) wind turbines. This report presents work that was made to support the basis for this standardisation work. The work addressed experience from several national and international research projects and contractual and field experience gained within the wind energy community on this matter. The work was wide ranging and addressed 'grey' areas of knowledge regarding existing methodologies, which has then been investigated in more detail. The work has given rise to a range of conclusions and recommendations regarding: guaranties on power curves in complex terrain; investors and bankers experience with verification of power curves; power performance in relation to regional correction curves for Denmark; anemometry and the influence of inclined flow. (au)

  8. Design and Tuning of Wind Power Plant Voltage Controller with Embedded Application of Wind Turbines and STATCOMs

    DEFF Research Database (Denmark)

    Petersen, Lennart; Kryezi, Fitim; Iov, Florin

    2017-01-01

    This study addresses a detailed design and tuning of a wind power plant voltage control with reactive power contribution of wind turbines and static synchronous compensators (STATCOMs). First, small-signal models of a single wind turbine and STATCOM are derived by using the state-space approach....... A complete phasor model of the entire wind power plant is constructed, being appropriate for voltage control assessment. An exemplary wind power plant located in the United Kingdom and the corresponding grid code requirements are used as a base case. The final design and tuning process of the voltage...... controller results in a guidance, proposed for this particular control architecture. It provides qualitative outcomes regarding the parametrisation of each individual control loop and how to adjust the voltage controller depending on different grid stiffnesses of the wind power plant connection...

  9. Analysis of thermodynamics of two-fuel power unit integrated with a carbon dioxide separation plant

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2014-12-01

    Full Text Available The article presents the results of thermodynamic analysis of the supercritical coal-fired power plant with gross electrical output of 900 MW and a pulverized coal boiler. This unit is integrated with the absorption-based CO2 separation installation. The heat required for carrying out the desorption process, is supplied by the system with the gas turbine. Analyses were performed for two variants of the system. In the first case, in addition to the gas turbine there is an evaporator powered by exhaust gases from the gas turbine expander. The second expanded variant assumes the application of gas turbine combined cycle with heat recovery steam generator and backpressure steam turbine. The way of determining the efficiency of electricity generation and other defined indicators to assess the energy performance of the test block was showed. The size of the gas turbine system was chosen because of the need for heat for the desorption unit, taking the value of the heat demand 4 MJ/kg CO2. The analysis results obtained for the both variants of the installation with integrated CO2 separation plant were compared with the results of the analysis of the block where the separation is not conducted.

  10. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Hossain

    2009-01-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  11. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Md. Hossain

    2009-12-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  12. Application of a power recovery system to gas turbine exhaust gases

    International Nuclear Information System (INIS)

    Baudat, N.P.; James, O.R.

    1979-01-01

    This paper discusses the application of a power recovery system to recover waste heat from the exhaust gases of gas turbines and convert this energy into shaft horsepower. Also discussed are power cycles, selection of power fluid, equipment selection, and application of the power recovery system to various gas turbines. Several charts and tables are included: process flow diagram, cycle efficiencies, curve for estimating recoverable horsepower

  13. Evaluation of the energy efficiency of combined cycle gas turbine. Case study of Tashkent thermal power plant, Uzbekistan

    International Nuclear Information System (INIS)

    Aminov, Zarif; Nakagoshi, Nobukazu; Xuan, Tran Dang; Higashi, Osamu; Alikulov, Khusniddin

    2016-01-01

    Highlights: • The combined cycle power plant (CCPP) has a steam turbine and a gas turbine. • Fossil fuel savings and reduction of the CCGT of was evaluated. • The performance of a three pressure CCGT is modelled under different modes. • Energy efficiency of the combined cycle was 58.28%. • An annual reduction of 1760.18 tNO_x/annum and 981.25 ktCO_2/annum can be achieved. - Abstract: The power generation of Tashkent Thermal Power Plant (TPP) is based on conventional power units. Moreover, the facility suffers from limited efficiency in electricity generation. The plant was constructed during the Soviet era. Furthermore, the power plant is being used for inter-hour power generation regulation. As a result, the efficiency can be reduced by increasing specific fuel consumption. This research focuses on the evaluation of the energy efficiency of the combined cycle gas turbine (CCGT) for the Tashkent TPP. Specifically, the objective is an evaluation of fossil fuel savings and reduction of CO_2 and NO_x emissions with the using CCGT technology at conventional power plant. The proposed combined cycle power plant (CCPP) includes an existing steam turbine (ST) with 160 MW capacity, heat recovery steam generator (HRSG), and gas turbine (GT) technology with 300 MW capacity. The performance of a three pressure CCGT is modelled under different modes. As a result, the efficiency of the combined cycle was evaluated at 58.28%, while the conventional cycle had an efficiency of 34.5%. We can achieve an annual reduction of 1760.18 tNO_x/annum and 981.25 ktCO_2/annum.

  14. Conceptual survey of Generators and Power Electronics for Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, L.H.; Helle, L.; Blaabjerg, F.; Ritchie, E.; Munk-Nielsen, S.; Bindner, H.; Soerensen, P.; Bak-Jensen, B.

    2001-12-01

    This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent system operators as well as manufactures of generators and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: State of the art on generators and power electronics; future concepts and technologies within generators and power electronics; market needs in the shape of requirements to the grid connection, and; consistent system solutions, plus an evaluation of these seen in the prospect of market needs. This survey on of generator and power electronic concepts was carried out in co-operation between Aalborg University and Risoe National Laboratory in the scope of the research programme Electric Design and Control. (au)

  15. Cleaning device for steam units in a nuclear power plant

    International Nuclear Information System (INIS)

    Sasamuro, Takemi.

    1978-01-01

    Purpose: To prevent radioactive contamination upon dismantling and inspection of steam units such as a turbine to a building containing such units and the peripheral area. Constitution: A steam generator indirectly heated by steam supplied from steam generating source in a separate system containing no radioactivity is provided to produce cleaning steam. A cleaning steam pipe is connected by way of a stop valve between separation valve of a nuclear power plant steam pipe and a high pressure turbine. Upon cleaning, the separation valve is closed, and steam supplied from the cleaning steam pipe is flown into a condenser. The water thus condensated is returned by way of a feed water heater and a condenser to a water storage tank. (Nakamura, S.)

  16. A process for providing positive primary control power by wind turbines

    Science.gov (United States)

    Marschner, V.; Michael, J.; Liersch, J.

    2014-12-01

    Due to the increasing share of wind energy in electricity generation, wind turbines have to fulfil additional requirements in the context of grid integration. The paper examines to which extent wind turbines can provide positive control power following the related grid code. The additional power has to be obtained from the rotating flywheel mass of the wind turbine's rotor. A simple physical model is developed that allows to draw conclusions about appropriate concepts by means of a dynamic simulation of the variables rotational speed, torque, power output and rotor power. The paper discusses scenarios to provide control power. The supply of control power at partial load is examined in detail using simulations. Under partial load conditions control power can be fed into the grid for a short time. Thereby the rotational speed drops so that aerodynamic efficiency decreases and feed-in power is below the initial value after the control process. In this way an unfavourable situation for the grid control is produced, therefore the paper proposes a modified partial load condition with a higher rotational speed. By providing primary control power the rotor is delayed to the optimum rotational speed so that more rotational energy can be fed in and fed-in power can be increased persistently. However, as the rotor does not operate at optimum speed, a small amount of the energy yield is lost. Finally, the paper shows that a wind farm can combine these two concepts: A part of the wind turbines work under modified partial load conditions can compensate the decrease of power of the wind turbines working under partial load conditions. Therefore the requested control power is provided and afterwards the original value of power is maintained.

  17. Thermal performance of gas turbine power plant based on exergy analysis

    International Nuclear Information System (INIS)

    Ibrahim, Thamir K.; Basrawi, Firdaus; Awad, Omar I.; Abdullah, Ahmed N.; Najafi, G.; Mamat, Rizlman; Hagos, F.Y.

    2017-01-01

    Highlights: • Modelling theoretical framework for the energy and exergy analysis of the Gas turbine. • Investigated the effects of ambient temperature on the energy and exergy performance. • The maximum exergy loss occurs in the gas turbine components. - Abstract: This study is about energy and exergy analysis of gas turbine power plant. Energy analysis is more quantitatively while exergy analysis is about the same but with the addition of qualitatively. The lack quality of the thermodynamic process in the system leads to waste of potential energy, also known as exergy destruction which affects the efficiency of the power plant. By using the first and second law of thermodynamics, the model for the gas turbine power plant is built. Each component in the thermal system which is an air compressor, combustion chamber and gas turbine play roles in affecting the efficiency of the gas turbine power plant. The exergy flow rate for the compressor (AC), the combustion chamber (CC) and the gas turbine (GT) inlet and outlet are calculated based on the physical exergy and chemical exergy. The exergy destruction calculation based on the difference between the exergy flow in and exergy flow out of the component. The combustion chamber has the highest exergy destruction. The air compressor has 94.9% and 92% of exergy and energy efficiency respectively. The combustion chamber has 67.5% and 61.8% of exergy and energy efficiency respectively while gas turbine has 92% and 82% of exergy and energy efficiency respectively. For the overall efficiency, the plant has 32.4% and 34.3% exergy and energy efficiency respectively. To enhance the efficiency, the intake air temperature should be reduced, modify the combustion chamber to have the better air-fuel ratio and increase the capability of the gas turbine to receive high inlet temperature.

  18. Coordinated Frequency Control of Wind Turbines in Power Systems with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Tarnowski, Germán Claudio

    The integration of large amounts of wind power in power systems presents huge challenges. In particular, with the increase of wind power generation, more regulation reserves would be necessary, the capability of the power system to offer conventional regulating power would be reduced...... particular views. These models were developed and verified during this work, basedaround a particular manufacturer’s wind turbine and on said isolated power system withwind power. The capability of variable speed wind turbines for providing Inertial Response is analysed. To perform this assessment, a control...... generation were studied considering a large share of wind power in the system. Results show the abilities of the architectures to manage the variability of the generated wind power, reducing the impact on the grid frequency and providing suitable frequency regulation service when required. The coordination...

  19. MACHINE-TRANSFORMER UNITS FOR WIND TURBINES

    Directory of Open Access Journals (Sweden)

    V.I. Panchenko

    2016-03-01

    Full Text Available Background. Electric generators of wind turbines must meet the following requirements: they must be multi-pole; to have a minimum size and weight; to be non-contact, but controlled; to ensure the maximum possible output voltage when working on the power supply system. Multipole and contactless are relatively simply realized in the synchronous generator with permanent magnet excitation and synchronous inductor generator with electromagnetic excitation; moreover the first one has a disadvantage that there is no possibility to control the output voltage, and the second one has a low magnetic leakage coefficient with the appropriate consequences. Purpose. To compare machine dimensions and weight of the transformer unit with induction generators and is an opportunity to prove their application for systems with low RMS-growth rotation. Methodology. A new design of the electric inductor machine called in technical literature as machine-transformer unit (MTU is presented. A ratio for estimated capacity determination of such units is obtained. Results. In a specific example it is shown that estimated power of MTU may exceed the same one for traditional synchronous machines at the same dimensions. The MTU design allows placement of stator coil at some distance from the rotating parts of the machine, namely, in a closed container filled with insulating liquid. This will increase capacity by means of more efficient cooling of coil, as well as to increase the output voltage of the MTU as a generator to a level of 35 kV or more. The recommendations on the certain parameters selection of the MTU stator winding are presented. The formulas for copper cost calculating on the MTU field winding and synchronous salient-pole generator are developed. In a specific example it is shown that such costs in synchronous generator exceed 2.5 times the similar ones in the MTU.

  20. Contingency power for small turboshaft engines using water injection into turbine cooling air

    Science.gov (United States)

    Biesiadny, Thomas J.; Berger, Brett; Klann, Gary A.; Clark, David A.

    1987-01-01

    Because of one engine inoperative requirements, together with hot-gas reingestion and hot day, high altitude takeoff situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stresses is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  1. Increasing power generation in horizontal axis wind turbines using optimized flow control

    Science.gov (United States)

    Cooney, John A., Jr.

    In order to effectively realize future goals for wind energy, the efficiency of wind turbines must increase beyond existing technology. One direct method for achieving increased efficiency is by improving the individual power generation characteristics of horizontal axis wind turbines. The potential for additional improvement by traditional approaches is diminishing rapidly however. As a result, a research program was undertaken to assess the potential of using distributed flow control to increase power generation. The overall objective was the development of validated aerodynamic simulations and flow control approaches to improve wind turbine power generation characteristics. BEM analysis was conducted for a general set of wind turbine models encompassing last, current, and next generation designs. This analysis indicated that rotor lift control applied in Region II of the turbine power curve would produce a notable increase in annual power generated. This was achieved by optimizing induction factors along the rotor blade for maximum power generation. In order to demonstrate this approach and other advanced concepts, the University of Notre Dame established the Laboratory for Enhanced Wind Energy Design (eWiND). This initiative includes a fully instrumented meteorological tower and two pitch-controlled wind turbines. The wind turbines are representative in their design and operation to larger multi-megawatt turbines, but of a scale that allows rotors to be easily instrumented and replaced to explore new design concepts. Baseline data detailing typical site conditions and turbine operation is presented. To realize optimized performance, lift control systems were designed and evaluated in CFD simulations coupled with shape optimization tools. These were integrated into a systematic design methodology involving BEM simulations, CFD simulations and shape optimization, and selected experimental validation. To refine and illustrate the proposed design methodology, a

  2. Illustration of Modern Wind Turbine Ancillary Services

    DEFF Research Database (Denmark)

    Margaris, Ioannis D.; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2010-01-01

    Increasing levels of wind power penetration in modern power systems has set intensively high standards with respect to wind turbine technology during the last years. Security issues have become rather critical and operation of wind farms as conventional power plants is becoming a necessity as wind...... turbines replace conventional units on the production side. This article includes a review of the basic control issues regarding the capability of the Doubly Fed Induction Generator (DFIG) wind turbine configuration to fulfill the basic technical requirements set by the system operators and contribute...

  3. Aggregated wind power plant models consisting of IEC wind turbine models

    DEFF Research Database (Denmark)

    Altin, Müfit; Göksu, Ömer; Hansen, Anca Daniela

    2015-01-01

    The common practice regarding the modelling of large generation components has been to make use of models representing the performance of the individual components with a required level of accuracy and details. Owing to the rapid increase of wind power plants comprising large number of wind...... turbines, parameters and models to represent each individual wind turbine in detail makes it necessary to develop aggregated wind power plant models considering the simulation time for power system stability studies. In this paper, aggregated wind power plant models consisting of the IEC 61400-27 variable...... speed wind turbine models (type 3 and type 4) with a power plant controller is presented. The performance of the detailed benchmark wind power plant model and the aggregated model are compared by means of simulations for the specified test cases. Consequently, the results are summarized and discussed...

  4. Field testing of a 1,300MVA turbine generator for the Oi nuclear-power station

    International Nuclear Information System (INIS)

    Inoue, Toshiaki; Tajiri, Yoshiaki; Ito, Hiroyuki; Fukuda, Mitsuo.

    1980-01-01

    The first Mitsubishi 1,300MVA turbine generator for this power station was put into commercial operation in March 1979, and the second unit in December of that year. The turbine generators use new technology in a variety of areas, including the cooling system, to achieve great increases in capacity over previously designed generators, and are destined to become the worldwide standard for large-scale generators of this type. Valuable experience was gained in the installation and testing of the generators. The outline of the tests performed on the generators with respect to heating and vibration are described in the article. (author)

  5. Dynamic wind turbine models in power system simulation tool DIgSILENT

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Iov, F.; Sørensen, Poul Ejnar

    , connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine concepts, their performance in normal or fault operation being assessed and discussed by means of simulations. The described control......This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risø-R-1400(EN) and it gathers and describes a whole wind turbine model database...... of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides thus a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built...

  6. Power fluctuation and power loss of wind turbines due to wind shear and tower shadow

    Institute of Scientific and Technical Information of China (English)

    Binrong WEN; Sha WEI; Kexiang WEI; Wenxian YANG; Zhike PENG; Fulei CHU

    2017-01-01

    The magnitude and stability of power output are two key indices of wind turbines.This study investigates the effects of wind shear and tower shadow on power output in terms of power fluctuation and power loss to estimate the capacity and quality of the power generated by a wind turbine.First,wind speed models,particularly the wind shear model and the tower shadow model,are described in detail.The widely accepted tower shadow model is modified in view of the cone-shaped towers of modem large-scale wind turbines.Power fluctuation and power loss due to wind shear and tower shadow are analyzed by performing theoretical calculations and case analysis within the framework of a modified version of blade element momentum theory.Results indicate that power fluctuation is mainly caused by tower shadow,whereas power loss is primarily induced by wind shear.Under steady wind conditions,power loss can be divided into wind farm loss and rotor loss.Wind farm loss is constant at 3α(3α-1)R2/(8H2).By contrast,rotor loss is strongly influenced by the wind turbine control strategies and wind speed.That is,when the wind speed is measured in a region where a variable-speed controller works,the rotor loss stabilizes around zero,but when the wind speed is measured in a region where the blade pitch controller works,the rotor loss increases as the wind speed intensifies.The results of this study can serve as a reference for accurate power estimation and strategy development to mitigate the fluctuations in aerodynamic loads and power output due to wind shear and tower shadow.

  7. Modelling and Internal Fuzzy Model Power Control of a Francis Water Turbine

    Directory of Open Access Journals (Sweden)

    Klemen Nagode

    2014-02-01

    Full Text Available This paper presents dynamic modelling of a Francis turbine with a surge tank and the control of a hydro power plant (HPP. Non-linear and linear models include technical parameters and show high similarity to measurement data. Turbine power control with an internal model control (IMC is proposed, based on a turbine fuzzy model. Considering appropriate control responses in the entire area of turbine power, the model parameters of the process are determined from a fuzzy model, which are further included in the internal model controller. The results are compared to a proportional-integral (PI controller tuned with an integral absolute error (IAE objective function, and show an improved response of internal model control.

  8. Estimate for interstage water injection in air compressor incorporated into gas-turbine cycles and combined power plants cycles

    Science.gov (United States)

    Kler, A. M.; Zakharov, Yu. B.; Potanina, Yu. M.

    2017-05-01

    The objects of study are the gas turbine (GT) plant and combined cycle power plant (CCPP) with opportunity for injection between the stages of air compressor. The objective of this paper is technical and economy optimization calculations for these classes of plants with water interstage injection. The integrated development environment "System of machine building program" was a tool for creating the mathematic models for these classes of power plants. Optimization calculations with the criterion of minimum for specific capital investment as a function of the unit efficiency have been carried out. For a gas-turbine plant, the economic gain from water injection exists for entire range of power efficiency. For the combined cycle plant, the economic benefit was observed only for a certain range of plant's power efficiency.

  9. Dynamic Models for Wind Turbines and Wind Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.; Santoso, S.

    2011-10-01

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  10. T55 power turbine rotor multiplane-multispeed balancing study

    Science.gov (United States)

    Martin, M. R.

    1982-01-01

    A rotordynamic analysis of the T55-L-11C engine was used to evaluate the balancing needs of the power turbine and to optimize the balancing procedure. As a result, recommendations were made for implementation of a multiplane-multispeed balancing plan. Precision collars for the attachment of trial weights to a slender rotor were designed enabling demonstration balancing on production hardware. The quality of the balance was then evaluated by installing a high speed balanced power turbine in an engine and running in a test cell at the Corpus Christi Army depot. The engine used had been tested prior to the turbine changeout and showed acceptable overall vibration levels for the engine were significantly reduced, demonstrating the ability of multiplane-multispeed balancing to control engine vibration.

  11. Onshore industrial wind turbine locations for the United States up to March 2014

    Science.gov (United States)

    Diffendorfer, James E.; Kramer, Louisa; Ancona, Zachary H.; Garrity, Christopher P.

    2015-01-01

    Wind energy is a rapidly growing form of renewable energy in the United States. While summary information on the total amounts of installed capacity are available by state, a free, centralized, national, turbine-level, geospatial dataset useful for scientific research, land and resource management, and other uses did not exist. Available in multiple formats and in a web application, these public domain data provide industrial-scale onshore wind turbine locations in the United States up to March 2014, corresponding facility information, and turbine technical specifications. Wind turbine records have been collected and compiled from various public sources, digitized or position verified from aerial imagery, and quality assured and quality controlled. Technical specifications for turbines were assigned based on the wind turbine make and model as described in public literature. In some cases, turbines were not seen in imagery or turbine information did not exist or was difficult to obtain. Uncertainty associated with these is recorded in a confidence rating.

  12. Onshore industrial wind turbine locations for the United States up to March 2014.

    Science.gov (United States)

    Diffendorfer, Jay E; Kramer, Louisa A; Ancona, Zach H; Garrity, Christopher P

    2015-11-24

    Wind energy is a rapidly growing form of renewable energy in the United States. While summary information on the total amounts of installed capacity are available by state, a free, centralized, national, turbine-level, geospatial dataset useful for scientific research, land and resource management, and other uses did not exist. Available in multiple formats and in a web application, these public domain data provide industrial-scale onshore wind turbine locations in the United States up to March 2014, corresponding facility information, and turbine technical specifications. Wind turbine records have been collected and compiled from various public sources, digitized or position verified from aerial imagery, and quality assured and quality controlled. Technical specifications for turbines were assigned based on the wind turbine make and model as described in public literature. In some cases, turbines were not seen in imagery or turbine information did not exist or was difficult to obtain. Uncertainty associated with these is recorded in a confidence rating.

  13. Optimal integration of linear Fresnel reflector with gas turbine cogeneration power plant

    International Nuclear Information System (INIS)

    Dabwan, Yousef N.; Mokheimer, Esmail M.A.

    2017-01-01

    Highlights: • A LFR integrated solar gas turbine cogeneration plant (ISGCPP) has been simulated. • The optimally integrated LFR with gas turbine cogeneration plant can achieve an annual solar share of 23%. • Optimal integration of LFR with gas turbine cogeneration system can reduce CO 2 emission by 18%. • Compared to a fully-solar-powered LFR plant, the optimal ISGCPP reduces the LEC by 83%. • ISGCPP reduces the LEC by 50% compared to plants integrated with carbon capture technology. - Abstract: Solar energy is an abundant resource in many countries in the Sunbelt, especially in the middle east, countries, where recent expansion in the utilization of natural gas for electricity generation has created a significant base for introducing integrated solar‐natural gas power plants (ISGPP) as an optimal solution for electricity generation in these countries. ISGPP reduces the need for thermal energy storage in traditional concentrated solar thermal plants and results in dispatchable power on demand at lower cost than stand-alone concentrated thermal power and much cheaper than photovoltaic plants. Moreover, integrating concentrated solar power (CSP) with conventional fossil fuel based thermal power plants is quite suitable for large-scale central electric power generation plants and it can be implemented in the design of new installed plants or during retrofitting of existing plants. The main objective of the present work is to investigate the possible modifications of an existing gas turbine cogeneration plant, which has a gas turbine of 150 MWe electricity generation capacity and produces steam at a rate of 81.4 at 394 °C and 45.88 bars for an industrial process, via integrating it with concentrated solar power system. In this regard, many simulations have been carried out using Thermoflow software to explore the thermo-economic performance of the gas turbine cogeneration plant integrated with LFR concentrated solar power field. Different electricity

  14. Converter Monitoring Unit for Retrofit of Wind Power Converters

    DEFF Research Database (Denmark)

    Rannestad, Bjorn; Maarbjerg, Anders Eggert; Frederiksen, Kristian

    2018-01-01

    A Converter Monitoring Unit (CMU), which will enable condition monitoring of wind turbine converters is presented in this paper. Reducing the cost of corrective maintenance by means of condition monitoring is a way of lowering Operation & Maintenance (O&M) costs for wind turbine systems....... The CMU must be able to detect a broad range of failure modes related to Insulated Gate Bipolar Transistor (IGBT) power modules and associated gate drives. IGBT collector-emitter on-state voltage (vceon) and current (ic) is sampled in the CMU and used for detection of emerging failures. A new method...... for compensation of unwanted inductive voltage drop in the vceon measurement path is presented, enabling retrofitting of CMUs in existing wind turbines. Finally, experimental results obtained on a prototype CMU are presented. Experimentally the vceon dependency to IGBT junction temperature and deterioration...

  15. Gas turbine power conversion systems for modular HTGRs. Report of a technical committee meeting

    International Nuclear Information System (INIS)

    2001-08-01

    The Technical Committee Meeting (TCM) on Gas Turbine Power Conversion Systems for Modular HTGRs held in Palo Alto, California, USA was convened by the IAEA on the recommendation of its International Working Group on Gas Cooled Reactors (IWGGCR). The meeting was attended by 27 participants from 9 Member States (Argentina, China, France, Japan, Netherlands, Russian Federation, South Africa, United Kingdom and the United States of America). In addition to presentations on relevant technology development activities in participating Member States, 16 technical papers were presented covering the areas of: Power conversion system design; Power conversion system analysis; and Power conversion system component design. A panel discussion was held on technology issues associated with gas turbine modular HTGR power conversion systems and the potential for international collaboration to address these issues. The purpose of this Technical Committee Meeting was to foster the international exchange of information and perspectives on gas turbine power conversion systems and components for modular HTGRs. The overall objectives were to provide: a current overview of designs under consideration; information on the commercial availability or development status of key components; exchange of information on the issues involved and potential solutions; identification of further development needs for both initial deployment and longer term performance enhancement, and the potential for addressing needs through international collaboration. The following conclusions and recommendations were identified as a result of the discussions at the meeting. International review and collaboration is of interest for China and Japan in the planning and conduct of their test programs: both the HTTR and HTR-10 reactor projects are exploring scale model testing of a gas turbine, with the HTTR project considering a 7 MWt gas heated loop, and HTR-10 a direct or indirect cycle connected to the reactor; the HTR

  16. Optimization of the operating conditions of gas-turbine power stations considering the effect of equipment deterioration

    Science.gov (United States)

    Aminov, R. Z.; Kozhevnikov, A. I.

    2017-10-01

    In recent years in most power systems all over the world, a trend towards the growing nonuniformity of energy consumption and generation schedules has been observed. The increase in the portion of renewable energy sources is one of the important challenges for many countries. The ill-predictable character of such energy sources necessitates a search for practical solutions. Presently, the most efficient method for compensating for nonuniform generation of the electric power by the renewable energy sources—predominantly by the wind and solar energy—is generation of power at conventional fossil-fuel-fired power stations. In Russia, this problem is caused by the increasing portion in the generating capacity structure of the nuclear power stations, which are most efficient when operating under basic conditions. Introduction of hydropower and pumped storage hydroelectric power plants and other energy-storage technologies does not cover the demand for load-following power capacities. Owing to a simple design, low construction costs, and a sufficiently high economic efficiency, gas turbine plants (GTPs) prove to be the most suitable for covering the nonuniform electric-demand schedules. However, when the gas turbines are operated under varying duty conditions, the lifetime of the primary thermostressed components is considerably reduced and, consequently, the repair costs increase. A method is proposed for determination of the total operating costs considering the deterioration of the gas turbine equipment under varying duty and start-stop conditions. A methodology for optimization of the loading modes for the gas turbine equipment is developed. The consideration of the lifetime component allows varying the optimal operating conditions and, in some cases, rejecting short-time stops of the gas turbine plants. The calculations performed in a wide range of varying fuel prices and capital investments per gas turbine equipment unit show that the economic effectiveness can

  17. The wet compression technology for gas turbine power plants: Thermodynamic model

    International Nuclear Information System (INIS)

    Bracco, Stefano; Pierfederici, Alessandro; Trucco, Angela

    2007-01-01

    This paper examines from a thermodynamic point of view the effects of wet compression on gas turbine power plants, particularly analysing the influence of ambient conditions on the plant performance. The results of the mathematical model, implemented in 'Matlab' software, have been compared with the simulation results presented in literature and in particular the values of the 'evaporative rate', proposed in Araimo et al. [L. Araimo, A. Torelli, Thermodynamic analysis of the wet compression process in heavy duty gas turbine compressors, in: Proceedings of the 59th ATI Annual Congress, Genova, 2004, pp. 1249-1263; L. Araimo, A. Torelli, Wet compression technology applied to heavy duty gas turbines - GT power augmentation and efficiency upgrade, in: Proceedings of the 59th ATI Annual Congress, Genova, 2004, pp. 1265-1277] by 'Gas Turbines Department' of Ansaldo Energia S.p.A., have been taken into account to validate the model. The simulator permits to investigate the effects of the fogging and wet compression techniques and estimate the power and efficiency gain of heavy duty gas turbines operating in hot and arid conditions

  18. Nuclear steam turbines for power production in combination with heating

    International Nuclear Information System (INIS)

    Frilund, B.; Knudsen, K.

    1977-01-01

    The general operating conditions for nuclear steam turbines in district heating system are briefly outlined. The turbine plant can consist of essentially the same types of machines as in conventional district heating systems. Some possible arrangements of back-pressure turbines, back-pressure turbines with condensing tails, or condensing turbines with heat extraction are considered for nuclear power and heat stations. Principles of control for hot water temperature and electrical output are described. Optimization of the plant, considering parallel variations during the year between heat load, cooling water temperature, and required outgoing temperature is discussed. (U.K.)

  19. Cooperation of nuclear reactor controller ARM-5S and turbine TVER-02

    International Nuclear Information System (INIS)

    Wagner, K.; Lnenicka, B.; Pokorny, F.; Prochazka, F.

    1985-01-01

    Turbines of Czechoslovak make provided with controllers TVER-02 are installed in WWER-440 nuclear power plants under construction in Czechoslovakia. Reactor output is controlled using Soviet-made controllers ARM-5S which already comprise turbine controllers. The problems are analyzed of cooperation of both controllers, especially their parameters and transient processes in typical operating situations. The analysis uses the results of measurements performed during the power start-up of Unit 1 of the V-2 nuclear power plant at Jaslovske Bohunice. The results show that two types of control modes can be selected for the operation of the entire unit: the control to constant unit output, and control of unit output varying with turbine load selected on the TVER-02 controller or given by the demand of the power network. (Z.M.)

  20. Efficient turbine control. Advantages through controlling internal turbine power in place of turbo generator output; Effektive Turbinenregelung. Vorteile durch die Regelung der inneren Turbinenleistung anstelle der Turbogeneratorleistung

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R.

    1999-07-01

    Hitherto, the electrical output of turbo generators has generally been controlled by means of power output controllers. Load changes caused, for example, by changeovers to isolated unit operation where the load requirements are unknown at first, often resulted in `wrong way control` effects that sometimes even caused entire turbine generator sets to fail. Controlling the internal turbine power makes it possible to avoid such consequences. (orig.) [Deutsch] Die elektrische Leistung eines Turbogenerators wurde bislang durch Leistungsregler geregelt. Im Falle einer Lastaenderung, wie sie beispielsweise beim Uebergang in den Betrieb auf ein Teilnetz (Insel-) mit vorher unbekannter Last vorkommt, trat ein Falschregeleffekt auf. Auf diesen wurden bereits Turbosatzausfaelle zurueckgefuehrt. Wird anstelle der elektrischen Leistung allerdings die innere Turbinenleistung geregelt, so tritt der Falschregeleffekt nicht ein. (orig.)

  1. Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum

    Directory of Open Access Journals (Sweden)

    Fedak Waldemar

    2017-01-01

    Full Text Available Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.

  2. Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum

    Science.gov (United States)

    Fedak, Waldemar; Anweiler, Stanisław; Gancarski, Wojciech; Ulbrich, Roman

    2017-10-01

    Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.

  3. Performance analysis of a gas turbine for power generation using syngas as a fuel

    International Nuclear Information System (INIS)

    Lee, Jong Jun; Cha Kyu Sang; Kim, Tong Seop; Sohn, Jeong Lak; Joo, Yong Jin

    2008-01-01

    Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed of hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of using syngas in a gas turbine, originally designed for natural gas fuel, on its performance. A commercial gas turbine is selected and variations of its performance characteristics due to adopting syngas is analyzed by simulating off-design gas turbine operation. Since the heating value of the syngas is lower, compared to natural gas, IGCC plants require much larger fuel flow rate. This increase the gas flow rate to the turbine and the pressure ratio, leading to far larger power output and higher thermal efficiency. Examination of using two different syngases reveals that the gas turbine performance varies much with the fuel composition

  4. Nuclear and thermal power plant power ramping capability

    International Nuclear Information System (INIS)

    Golovach, E.A.

    1983-01-01

    The possibilities of step power increase by NPP and TPP units under emergency conditions of power grids operation are considered. The data analysis has shown that power units ramping capability with WWER-440, WWER-1000 and RBMK-1000 reactors is higher than that of 300 MW power units on fossil fuel, at the initial time interval (0-30 s). These NPP power units satisfy as to ramping capability the energy system requirements. Higher NPP power units ramping capability is explained by the fact that relative pressure before turbine valves is decreased less than in straight-through boilers while the steam volumes time constant of steam separator-superheaters is less than that of intermediate superheatings. Higher power unit ramping capability with WWER-440 and RBMK-1000 reactors as compared with the WWER-1000 reactor is pointed out as well as the increase of WWER-1000 power unit capability using high-speed turbines

  5. Dynamic Model for Hydro-Turbine Generator Units Based on a Database Method for Guide Bearings

    Directory of Open Access Journals (Sweden)

    Yong Xu

    2013-01-01

    Full Text Available A suitable dynamic model of rotor system is of great significance not only for supplying knowledge of the fault mechanism, but also for assisting in machine health monitoring research. Many techniques have been developed for properly modeling the radial vibration of large hydro-turbine generator units. However, an applicable dynamic model has not yet been reported in literature due to the complexity of the boundary conditions and exciting forces. In this paper, a finite element (FE rotor dynamic model of radial vibration taking account of operating conditions is proposed. A brief and practical database method is employed to model the guide bearing. Taking advantage of the method, rotating speed and bearing clearance can be considered in the model. A novel algorithm, which can take account of both transient and steady-state analysis, is proposed to solve the model. Dynamic response for rotor model of 125 MW hydro-turbine generator units in Gezhouba Power Station is simulated. Field data from Optimal Maintenance Information System for Hydro power plants (HOMIS are analyzed compared with the simulation. Results illustrate the application value of the model in providing knowledge of the fault mechanism and in failure diagnosis.

  6. Phasor Measurement Units in the Eastern Danish power system

    DEFF Research Database (Denmark)

    Nielsen, Arne Hejde; Pedersen, Knud Ole Helgesen; Jørgensen, Preben

    2006-01-01

    Technology. After power system events data can be extracted and analyzed offline. The purpose of the project is to do research within various utilizations of PMU data. On 8 January 2005 a severe storm passed Denmark, and wind speeds were so high, that wind turbines disconnected from the transmission grid...... because of their self protection. Nysted offshore wind farm was among the wind power units that disconnected from the grid, and PMU data from that event are analyzed. The case illustrates the close relation between voltages, power flows and voltage phase angles over a wide area. The voltage phase angle...

  7. A Review of the State of the Art of Power Electronics for Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe; Guerrero, Josep M.; Blaabjerg, Frede

    2009-01-01

    are summarized and the possible uses of power electronic converters with wind farms are shown. Finally, the possible methods of using the power electronic technology for improving wind turbine performance in power systems to meet the main grid connection requirements are discussed.......This paper reviews the power electronic applications for wind energy systems. Various wind turbine systems with different generators and power electronic converters are described, and different technical features are compared. The electrical topologies of wind farms with different wind turbines...

  8. Recent technology for nuclear steam turbine-generator units

    International Nuclear Information System (INIS)

    Moriya, Shin-ichi; Kuwashima, Hidesumi; Ueno, Takeshi; Ooi, Masao

    1988-01-01

    As the next nuclear power plants subsequent to the present 1,100 MWe plants, the technical development of ABWRs was completed, and the plan for constructing the actual plants is advanced. As for the steam turbine and generator facilities of 1,350 MWe output applied to these plants, the TC6F-52 type steam turbines using 52 in long blades, moisture separation heaters, butterfly type intermediate valves, feed heater drain pumping-up system and other new technologies for increasing the capacity and improving the thermal efficiency were adopted. In this paper, the outline of the main technologies of those and the state of examination when those are applied to the actual plants are described. As to the technical fields of the steam turbine system for ABWRs, the improvement of the total technologies of the plants was promoted, aiming at the good economical efficiency, reliability and thermal efficiency of the whole facilities, not only the main turbines. The basic specification of the steam turbine facilities for 50 Hz ABWR plants and the main new technologies applied to the turbines are shown. The development of 52 in long last stage blades, the development of the analysis program for the coupled vibration of the large rotor system, the development of moisture separation heaters, the turbine control system, condensate and feed water system, and the generators are described. (Kako, I.)

  9. Heat exchangers for automotive gas turbine power plants

    International Nuclear Information System (INIS)

    Penny, R.N.

    1974-01-01

    Automotive gas turbine power plants are now in the final stages of development for quantity manufacture. A crucial factor in this development is the regenerative heat exchanger. The relative merits of the rotary regenerative and static recuperative heat exchanger are compared. Thermal efficiency and initial cost are two vital issues involved in the design of small gas turbines for the commercial establishment of gas turbine vehicles. The selection of a material for the rotaty regenerator is essentially related to resolving the two vital issues of future small gas turbines and is, therefore, analysed. The account of the pioneering work involved in engineering the glass ceramic and other non-metal regenerators includes a complete failure analysis based on running experience with over 200 ceramic regenerators. The problems of sealing, supporting and manufacturing the ceramic regenerator are discussed and future practical designs are outlined. Heat exchange theory applied to small gas turbines is also reviewed

  10. HTGR gas turbine power plant preliminary design

    International Nuclear Information System (INIS)

    Koutz, S.L.; Krase, J.M.; Meyer, L.

    1973-01-01

    The preliminary reference design of the HTGR gas turbine power plant is presented. Economic and practical problems and incentives related to the development and introduction of this type of power plant are evaluated. The plant features and major components are described, and a discussion of its performance, economics, development, safety, control, and maintenance is presented. 4 references

  11. Employment of kernel methods on wind turbine power performance assessment

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Sweeney, Christian Walsted; Marhadi, Kun S.

    2015-01-01

    A power performance assessment technique is developed for the detection of power production discrepancies in wind turbines. The method employs a widely used nonparametric pattern recognition technique, the kernel methods. The evaluation is based on the trending of an extracted feature from...... the kernel matrix, called similarity index, which is introduced by the authors for the first time. The operation of the turbine and consequently the computation of the similarity indexes is classified into five power bins offering better resolution and thus more consistent root cause analysis. The accurate...

  12. Power system integration and control of variable speed wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Eek, Jarle

    2009-12-15

    A wind power plant is a highly dynamic system that dependent on the type of technology requires a number of automatic control loops. This research deals with modelling, control and analysis related to power system integration of variable speed, pitch controlled wind turbines. All turbine components have been modelled and implemented in the power system simulation program SIMPOW, and a description of the modelling approach for each component is given. The level of model detail relates to the classical modelling of power system components for power system stability studies, where low frequency oscillations are of special importance. The wind turbine model includes a simplified representation of the developed rotor torque and the thrust force based on C{sub p-} and C{sub t} characteristic curves. The mechanical system model represents the fundamental torsional mode and the first mode of blades and tower movements. Two generator technologies have been investigated. The doubly fed induction generator (DFIG) and the stator converter interfaced permanent magnet synchronous generator (PMSG). A simplified model of a 2 level voltage source converter is used for both machine types. The generator converter controllers have been given special attention. All model components are linearized for the purpose of control system design and power system interaction related to small signal stability analysis. Different control strategies discussed in the literature have been investigated with regard to power system interaction aspects. All control parameters are identified using the internal model control approach. The analysis is focused on three main areas: 1. Identification of low damped oscillatory modes. This is carried out by the establishment and discussion of wind turbine modelling. 2. Interaction between control loops. A systematic approach is presented in order to analyse the influence of control loops used in variable speed wind turbines. 3.Impact on power system performance

  13. Wind power integration : From individual wind turbine to wind park as a power plant

    NARCIS (Netherlands)

    Zhou, Y.

    2009-01-01

    As power capacities of single wind turbine, single wind park and total wind power installation are continuously increasing, the wind power begins to challenge the safety operation of the power system. This thesis focuses on the grid integration aspects such as the dynamic behaviours of wind power

  14. Exergy and Environmental Impact Assessment between Solar Powered Gas Turbine and Conventional Gas Turbine Power Plant

    OpenAIRE

    Rajaei, Ali; Barzegar Avval, Hasan; Eslami, Elmira

    2016-01-01

    Recuperator is a heat exchanger that is used in gas turbine power plants to recover energy from outlet hot gases to heat up the air entering the combustion chamber. Similarly, the combustion chamber inlet air can be heated up to temperatures up to 1000 (°C) by solar power tower (SPT) as a renewable and environmentally benign energy source. In this study, comprehensive comparison between these two systems in terms of energy, exergy, and environmental impacts is carried out. Thermodynamic simul...

  15. A High Efficiency PSOFC/ATS-Gas Turbine Power System

    Energy Technology Data Exchange (ETDEWEB)

    W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2001-02-01

    A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

  16. Control system for a nuclear power producing unit

    International Nuclear Information System (INIS)

    Durrant, O.W.

    1978-01-01

    The invention provides in a control system for a nuclear power producing unit comprising a pressurized water reactor, a once-through steam generator provided with feedwater supply means, a turbine-generator supplied with steam from the steam generator and means maintaining a flow of pressurized water through the reactor and steam generator. The combination comprising; means generating a feed forward control signal proportional to the desired power output of the power producing unit, a second means for adjusting the reactor heat release, a third means for adjusting the rate of flow of feedwater to the steam generator, the second and third means solely responsive to and operated in parallel from the feed forward control signal whereby the reactor heat release and the rate of flow of feedwater to the steam generator are each maintained in a discrete functional relationship to the feed forward control signal

  17. Reliability analysis of grid connected small wind turbine power electronics

    International Nuclear Information System (INIS)

    Arifujjaman, Md.; Iqbal, M.T.; Quaicoe, J.E.

    2009-01-01

    Grid connection of small permanent magnet generator (PMG) based wind turbines requires a power conditioning system comprising a bridge rectifier, a dc-dc converter and a grid-tie inverter. This work presents a reliability analysis and an identification of the least reliable component of the power conditioning system of such grid connection arrangements. Reliability of the configuration is analyzed for the worst case scenario of maximum conversion losses at a particular wind speed. The analysis reveals that the reliability of the power conditioning system of such PMG based wind turbines is fairly low and it reduces to 84% of initial value within one year. The investigation is further enhanced by identifying the least reliable component within the power conditioning system and found that the inverter has the dominant effect on the system reliability, while the dc-dc converter has the least significant effect. The reliability analysis demonstrates that a permanent magnet generator based wind energy conversion system is not the best option from the point of view of power conditioning system reliability. The analysis also reveals that new research is required to determine a robust power electronics configuration for small wind turbine conversion systems.

  18. Inventory of power plants in the United States, 1991

    International Nuclear Information System (INIS)

    1992-01-01

    Operable capacity at US electric power plants totaled 693,016 megawatts, as of year-end 1991. Coal-fired capacity accounted for 43 percent (299,849 megawatts) of the total US generating capacity, the share it has essentially maintained for the past decade. Gas-fired capacity accounted for 18 percent (125,683 megawatts); nuclear, 14 percent (99,589 megawatts); water, 13 percent (92,031 megawatts); petroleum, 10 percent (72,357 megawatts); other, one percent (3,507 megawatts). The 693,016 megawatts of operable capacity includes 3,627 megawatts of new capacity that came on line during 1991 (Table 2). This new capacity is 42 percent less than capacity in new units reported for 1990. Gas-fired capacity accounted for the greatest share of this new capacity. It represents 38 percent of the new capacity that started operation in 1991. The surge in new gas-fired capacity is the beginning of a trend that is expected to exist over the next 10 years. That is, gas-fired capacity will dominate new capacity additions. Gas-fired capacity additions during the next 10 years will primarily be in simple cycle gas turbines and gas turbines operating as combined cycle units. These planned gas turbine and combined cycle units, whose capacity totals over 21,000 megawatts, are expected to serve peak and intermediate loads of electric utilities

  19. Miniature Gas-Turbine Power Generator

    Science.gov (United States)

    Wiberg, Dean; Vargo, Stephen; White, Victor; Shcheglov, Kirill

    2003-01-01

    A proposed microelectromechanical system (MEMS) containing a closed- Brayton-cycle turbine would serve as a prototype of electric-power generators for special applications in which high energy densities are required and in which, heretofore, batteries have been used. The system would have a volume of about 6 cm3 and would operate with a thermal efficiency >30 percent, generating up to 50 W of electrical power. The energy density of the proposed system would be about 10 times that of the best battery-based systems now available, and, as such, would be comparable to that of a fuel cell. The working gas for the turbine would be Xe containing small quantities of CO2, O2, and H2O as gaseous lubricants. The gas would be contained in an enclosed circulation system, within which the pressure would typically range between 5 and 50 atm (between 0.5 and 5 MPa). The heat for the Brayton cycle could be supplied by any of a number of sources, including a solar concentrator or a combustor burning a hydrocarbon or other fuel. The system would include novel heat-transfer and heat-management components. The turbine would be connected to an electric power generator/starter motor. The system would include a main rotor shaft with gas bearings; the bearing surfaces would be made of a ceramic material coated with nanocrystalline diamond. The shaft could withstand speed of 400,000 rpm or perhaps more, with bearing-wear rates less than 10(exp -)4 those of silicon bearings and 0.05 to 0.1 those of SiC bearings, and with a coefficient of friction about 0.1 that of Si or SiC bearings. The components of the system would be fabricated by a combination of (1) three-dimensional xray lithography and (2) highly precise injection molding of diamond-compatible metals and ceramic materials. The materials and fabrication techniques would be suitable for mass production. The disadvantages of the proposed system are that unlike a battery-based system, it could generate a perceptible amount of sound, and

  20. Understanding IEC standard wind turbine models using SimPowerSystems

    DEFF Research Database (Denmark)

    Das, Kaushik; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2016-01-01

    This article describes and exemplifies the IEC 61400-27 generic wind turbine models through an interactive multimedia learning environment - Matlab SimPowerSystems. The article aims help engineers with different backgrounds to get a better understanding of wind turbine dynamics and control...

  1. Development of Thermal Performance Analysis Computer Program on Turbine Cycle of Yoggwang 3,4 Units

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.Y.; Choi, K.H.; Jee, M.H.; Chung, S.I. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    The objective of the study ''Development of Thermal Performance Analysis Computer Program on Turbine Cycle of Yonggwang 3,4 Units'' is to utilize computerized program to the performance test of the turbine cycle or the analysis of the operational status of the thermal plants. In addition, the result can be applicable to the analysis of the thermal output at the abnormal status and be a powerful tool to find out the main problems for such cases. As a results, the output of this study can supply the way to confirm the technical capability to operate the plants efficiently and to obtain the economic gains remarkably. (author). 27 refs., 73 figs., 6 tabs.

  2. A numerical study on an optimum design of a Cross-flow type Power Turbine (CPT)

    International Nuclear Information System (INIS)

    Ha, Jin Ho; Kim, Chul Ho

    2008-01-01

    A wind turbine is one of the most popular energy conversion systems to generate electricity from the natural renewable energy source and an axial-flow type wind turbine is commonly used system for the generation electricity in the wind farm nowadays. In this study, a cross-flow type turbine has been studied for the application of wind turbine for electricity generation. The target capacity of the electric power generation of the model wind turbine developing in this project is 12volts-150A/H(about 1.8Kw). The important design parameters of the model turbine impeller are the inlet and exit angle of the turbine blade, number of blade, hub/tip ratio and exit flow angle of the housing. In this study, the radial equilibrium theorem was used to decide the inlet and exit angle of the model impeller blade and CFD technique was incorporated to have performance analysis of the design model power turbine for the optimum design of the geometry of the Cross-flow Power Turbine impeller and Casing. In CFD, Navier-Stokes equation is solved with the SIMPLEC method in a general coordinates system. Realizable k-ε turbulent model with MARS scheme was used for evaluating torque of each blade in the Cross-flow Power Turbine (CPT). From the result, the designed CPT with 24 impeller blades at α=40 .deg. and β=85 .deg. of turbine blade angle was estimated to generate 1.2Nm of the indicated torque and 200watts of the indicated power. On the basis of the rules of similarity, the generating power capacity of the real size CPT that is eight times longer than the model impeller is predicted to have an 1.6kW of the output power (about 12V-130A/H or 24V-65A/H)

  3. Powering embedded electronics for wind turbine monitoring using multi-source energy harvesting techniques

    Science.gov (United States)

    Anton, S. R.; Taylor, S. G.; Raby, E. Y.; Farinholt, K. M.

    2013-03-01

    With a global interest in the development of clean, renewable energy, wind energy has seen steady growth over the past several years. Advances in wind turbine technology bring larger, more complex turbines and wind farms. An important issue in the development of these complex systems is the ability to monitor the state of each turbine in an effort to improve the efficiency and power generation. Wireless sensor nodes can be used to interrogate the current state and health of wind turbine structures; however, a drawback of most current wireless sensor technology is their reliance on batteries for power. Energy harvesting solutions present the ability to create autonomous power sources for small, low-power electronics through the scavenging of ambient energy; however, most conventional energy harvesting systems employ a single mode of energy conversion, and thus are highly susceptible to variations in the ambient energy. In this work, a multi-source energy harvesting system is developed to power embedded electronics for wind turbine applications in which energy can be scavenged simultaneously from several ambient energy sources. Field testing is performed on a full-size, residential scale wind turbine where both vibration and solar energy harvesting systems are utilized to power wireless sensing systems. Two wireless sensors are investigated, including the wireless impedance device (WID) sensor node, developed at Los Alamos National Laboratory (LANL), and an ultra-low power RF system-on-chip board that is the basis for an embedded wireless accelerometer node currently under development at LANL. Results indicate the ability of the multi-source harvester to successfully power both sensors.

  4. Accident of Large-scale Wind Turbines Disconnecting from Power Grid and Its Protection

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    There were many accidents of large-scale wind turbines disconnecting from power grid in 2011. As single- phase-to-ground fault cannot be correctly detected, single-phase-to-ground fault evolved to phase-to-phase fault. Phase-to-phase fault was isolated slowly, thus leading to low voltage. And wind turbines without enough low voltage ride-through capacity had to be disconnected from the grid. After some wind turbines being disconnected from the grid, overvoltage caused by reactive power surplus made more wind turbines disconnect from the grid. Based on the accident analysis, this paper presents solutions to above problems, including travelling waves based single-phase-to-ground protection, adaptive low voltage protection, integrated protection and control, and high impedance fault detection. The solutions lay foundations in theory and technology to prevent large-scale wind turbines disconnecting from the operating power grid.

  5. Power output from Tage Basse's Wave Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rossen, E.A.; Mikkelsen, R.

    2000-10-01

    Tage Basse's Wave Turbine is a floating, slack moored device, placed in deep water. Via a long vertical shaft a Wells turbine is connected to a circular horizontal plate, below the turbine. The plate is in still water, preventing the device from moving up and down in the waves. At the top end of the shaft there is a float containing the power take off. The efficiency was measured to 5.1 % as an average over the year. This is measured with a rigid suspension of the turbine. If the bottom plate, in the floating version, is designed properly the result is still applicable. One reason for the large increase in efficiency shown could be that when the vertical kinetic energy in the wave is tapped by the turbine, part of the potential energy in the wave is transformed into vertical kinetic energy and is then accessible to the turbine. Turbine efficiency might increase in a full-scale device due to more favorable Reynolds number. Reynolds number in the model tests is approx. 80,000. (EHS)

  6. 1000 MW steam turbine for Temelin nuclear power station

    International Nuclear Information System (INIS)

    Drahy, J.

    1992-01-01

    Before the end 1991 the delivery was completed of the main parts (3 low-pressure sections and 1 high-pressure section, all of double-flow design) of the first full-speed (3000 r.p.m.) 1000 MW steam turbine for saturated admission steam for the Temelin nuclear power plant. Description of the turbine design and of new technologies and tools used in the manufacture are given. Basic technical parameters of the steam turbine are as follows: maximum output of steam generators 6060 th -1 ; maximum steam flow into turbine 5494.7 th -1 ; output of turbo-set 1024 MW; steam conditions before the turbine inlet: pressure 5.8 MPa, temperature 273.3 degC, steam wetness 0.5%; nominal temperature of cooling water 21 degC; temperature of feed water 220.8 degC; maximum consumption of heat from turbine for heating at 3-stage heating of heating water 60/150 degC. (Z.S.) 7 figs., 2 refs

  7. Special Tests for the Power Electronic Converters of Wind Turbine Generators

    DEFF Research Database (Denmark)

    Helle, Lars; Senturk, Osman Selcuk; Teodorescu, Remus

    2011-01-01

    -level medium-voltage source converter topologies, of the 3L-ANPC-VSC and 3L-HB-VSC type, are considered in the paper. Both converters employ press-pack IGBT-diode pairs and interface a 6 MW wind turbine to a medium voltage grid. The power loss and thermal model data applicable for both grid and generator......Power electronic converters for wind turbines are characterized by high specific power density and high reliability. Special tests for such converters are performed in order to determine the power loss and thermal models, which are dependent of the load profile and converter structure. Two multi......-side VSCs is used to estimate the switch junction temperatures through the simulation of wind turbine grid interface operation. A discussion of the power density and reliability of the grid-side VSCs with respect to press-pack switches, gate driver, and cooling plate is included. A test set-up for a single...

  8. Wind Turbine design and fabrication to power street lights

    Directory of Open Access Journals (Sweden)

    Khan Mohammad

    2017-01-01

    Full Text Available The objective of this work was to design and build a wind turbine which can be used to power small street lights. Considering the typical wind speeds in Abu Dhabi, UAE and ease of construction, the design of the wind turbine was chosen to be Sea Hawk design from vertical axis wind turbine category. A three phase AC generator was used for its availability over the DC motors within the region. A 12V battery was used for storage and a charge controller was used for controlling the charge flow into the battery and for controlling the turbine rotation when the battery is fully charged. The blades used in the turbine were made of foam board according to the NACA 0018 airfoil shape with a chord length of 15cm. The connecting shaft was made of stainless steel. Structural analysis and CFD analysis were performed along with other calculations. Testing was executed to calculate the voltage output from the turbine at different wind speeds. The maximum voltage the turbine produced at 6.4 m/s wind speed was 2.4Vand the rotational speed of the turbine was 60.3 rpm.

  9. Improvement of automatic control systems of high-power turbines of PAO tubroatom for nuclear power plants

    Science.gov (United States)

    Shvetsov, V. L.; Babaev, I. N.

    2017-09-01

    The main technical solutions applied by PAO Turboatom used as the compensatory measures at the increase of the period of nonstop operation of nuclear power plants' (NPP) turbines with VVER-1000 type reactors up to 18 months are (1) replacing the standard hydraulic speed controller with an electronic one, (2) introduction of overclocking protection, (3) modernization of units of stop-control valves of high pressures, (4) installation of locking dampers on the receiver tubes of turbines of the first and second modification, and (5) improving the quality of repairs by reviewing the requirements for their implementation. The introduction of complex diagnostics of a control system on the basis of automatic treatment of results of registration of working parameters of the turbine is allocated as a separate prospective direction. Using an electronic controller of speed makes it possible to simplify the procedure of its inclusion in work at the failure of an electro-hydraulic system of control and vice versa. The regimes of maintaining the turbine rotor speed, steam pressure on the outlet of turbine, and the positions of main servomotors were introduced into the functions of the electronic controller. An electronic controller of speed includes its own electro-hydraulic transducer, turbine rotor speed sensor, and sensors of the position of main servomotors. Into the functions of electro- hydraulic control system and electronic speed controller, the function of overclocking protection, which determines the formation of commands for stopping the turbine at the exceeding of both the defined level of rotation speed and the defined combination of achieved rotation speed and angular acceleration of rotor, was introduced. To simplify the correction of forces acting on the control valve cups, the design of the cups was changed, and it has the profiled inserts. The solutions proposed were implemented on K-1100-60/1500-2M turbines of Rostov NPP. From the composition of control system

  10. Effect of adoption of gas turbine in oil refinery

    Energy Technology Data Exchange (ETDEWEB)

    Tamai, Hiroto

    1988-08-01

    With progress in energy saving, and increase in automation in facilities, the dependence on electric power increases relative steam power. Further in order to reduce the production cost, the adoption of gas turbine combined cycle system, mainly aimed at power generation, is considered to be most suitable. This adoption, accompanied with the utilization of refinery offgas, dresults in a reduction in unit power generation cost, by increasing the ratio of domestic power generation. The gas turbine using deethanizing tower offgas as main fuel and butane as auxillary fuel, the combined cycle system, where steam produced from the turbine waste heat boiler drives the existing back pressure turbine, was constituted. The generator is 118 kVA in capacity. Against the maximum power demand being 16,500 kWh in the oil refinery, the obtainment of 11,000 kWh by the gas turbine and 2,500 kWh by the back pressure turbine was assured, with a considerable lowering in power to be purchased. (7 figs, 1 tab, 1 ref)

  11. Wind Turbine Power Curves Incorporating Turbulence Intensity

    DEFF Research Database (Denmark)

    Sørensen, Emil Hedevang Lohse

    2014-01-01

    . The model and method are parsimonious in the sense that only a single function (the zero-turbulence power curve) and a single auxiliary parameter (the equivalent turbulence factor) are needed to predict the mean power at any desired turbulence intensity. The method requires only ten minute statistics......The performance of a wind turbine in terms of power production (the power curve) is important to the wind energy industry. The current IEC-61400-12-1 standard for power curve evaluation recognizes only the mean wind speed at hub height and the air density as relevant to the power production...

  12. Integration of permanent magnet synchronous generator wind turbines into power grid

    Science.gov (United States)

    Abedini, Asghar

    The world is seeing an ever-increasing demand for electrical energy. The future growth of electrical power generation needs to be a mix of technologies including fossil fuels, hydro, nuclear, wind, and solar. The federal and state energy agencies have taken several proactive steps to increase the share of renewable energy in the total generated electrical power. In 2005, 11.1% of the total 1060 GW electricity generation capacity was from Renewable Energy Sources (RES) in the US. The power capacity portfolio included 9.2% from hydroelectric, 0.87% from wind, and 0.7% from biomass. Other renewable power capacity included 2.8 GW of geothermal, 0.4 GW of solar thermal, and 0.2 GW of solar PV. Although the share of renewable energy sources is small compared with the total power capacity, they are experiencing a high and steady growth. The US is leading the world in wind energy growth with a 27% increase in 2006 and a projected 26% increase in 2007, according to the American Wind Energy Association (AWEA). The US Department of Energy benchmarked a goal to meet 5% of the nation's energy need by launching the Wind Powering America (WPA) program. Although renewable energy sources have many benefits, their utilization in the electrical grid does not come without cost. The higher penetration of RES has introduced many technical and non-technical challenges, including power quality, reliability, safety and protection, load management, grid interconnections and control, new regulations, and grid operation economics. RES such as wind and PV are also intermittent in nature. The energy from these sources is available as long as there is wind or sunlight. However, these are energies that are abundant in the world and the power generated from these sources is pollution free. Due to high price of foundation of wind farms, employing variable speed wind turbines to maximize the extracted energy from blowing wind is more beneficial. On the other hand, since wind power is intermittent

  13. Performance and Feasibility Analysis of a Wind Turbine Power System for Use on Mars

    Science.gov (United States)

    Lichter, Matthew D.; Viterna, Larry

    1999-01-01

    A wind turbine power system for future missions to the Martian surface was studied for performance and feasibility. A C++ program was developed from existing FORTRAN code to analyze the power capabilities of wind turbines under different environments and design philosophies. Power output, efficiency, torque, thrust, and other performance criteria could be computed given design geometries, atmospheric conditions, and airfoil behavior. After reviewing performance of such a wind turbine, a conceptual system design was modeled to evaluate feasibility. More analysis code was developed to study and optimize the overall structural design. Findings of this preliminary study show that turbine power output on Mars could be as high as several hundred kilowatts. The optimized conceptual design examined here would have a power output of 104 kW, total mass of 1910 kg, and specific power of 54.6 W/kg.

  14. Power turbine dynamics - An evaluation of a shear-mounted elastomeric damper

    Science.gov (United States)

    Zorzi, E. S.; Walton, J.; Cunningham, R.

    1983-01-01

    As an alternative to the more conventional squeeze-film bearing damper designs, a Viton-70 shear-mounted, elastomeric damper was built and tested in a T-55 power turbine high-speed balancing rig. This application demonstrated, for the first time, the feasibility of using elastomers as the primary rotor damping source in production turbine engine hardware. The shear-mounted damper design was selected because of its compatibility with actual gas turbine engine radial space constraints, its accommodation of both the radial and axial thrust loads present in gas turbine engines, and its capability of controlled axial preload. Test results showed that the Viton-70 elastomeric damper operated successfully and provided excellent control of both synchronous and nonsynchronous vibrations through all phases of testing to the maximum rotor speed of 1676 rad/s (16,000 rpm). Excellent correlation between the predicted and experienced critical speeds, mode shapes, and log decrements for the power turbine rotor and elastomer damper assembly was also achieved.

  15. Wind turbine power generation in the South Pennines

    International Nuclear Information System (INIS)

    Anon.

    1991-10-01

    This document has been produced in response to emerging demands for locating wind farms in the South Pennines region in the United Kingdom region, the absence - as yet - of any national policy guidelines and a concern that a lack of protected landscape area status may lead to increased targeting of the area for wind farm developments. Increasingly, the rich heritage based landscape of the South Pennines is gaining recognition. It is important that the basic landscape resource is conserved and enhanced. Thus the need to clarify a set of relevant guidelines against which individual proposals may be considered. It is recommended that policies for dealing with demands for wind turbine developments are based upon an appreciation of the intrinsic character of the South Pennine landscape. Similarly, it is important that the consideration of guidelines is supported by information on how demands for wind generated power have evolved and why development pressures for wind farms are now emerging in the sub-region. The document is structured as follows: (1) Wind Power -Background; (2) Wind Power in the South Pennines - The Potential; (3) The South Pennines: Landscape Character; (4) Planning Policy Guidelines. (author)

  16. Power Oscillation Damping Controller for Wind Power Plant Utilizing Wind Turbine Inertia as Energy Storage

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen Nygård; Jensen, Kim Høj

    2011-01-01

    For a wind power plant (WPP) the upper limit for active power output is bounded by the instantaneous wind conditions and therefore a WPP must curtail its power output when system services with active power are delivered. Here, a power oscillation damping controller (POD) for WPPs is presented...... that utilizes the stored kinetic energy in the wind turbine (WT) mechanical system as energy storage from which damping power can be exchanged. This eliminates the need for curtailed active power production. Results are presented using modal analysis and induced torque coefficients (ITC) to depict the torques...... induced on the synchronous generators from the POD. These are supplemented with nonlinear time domain simulations with and without an auxiliary POD for the WPP. The work is based on a nonlinear, dynamic model of the 3.6 MW Siemens Wind Power wind turbine....

  17. Gas turbine drives

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Developments in gas turbine drives are reviewed, e.g., low weight per unit power and thrust-weight ratio, fast availability of the maximum speed, absolute resistance to cold and to droplet formation vibrationeless run, and low exhaust gas temperatures. Applications in aeronautic engineering (turbofan), power stations, marine propulsion systems, railways and road transportation vehicles are mentioned.

  18. Hourly weather forecasts for gas turbine power generation

    Directory of Open Access Journals (Sweden)

    G. Giunta

    2017-06-01

    Full Text Available An hourly short-term weather forecast can optimize processes in Combined Cycle Gas Turbine (CCGT plants by helping to reduce imbalance charges on the national power grid. Consequently, a reliable meteorological prediction for a given power plant is crucial for obtaining competitive prices for the electric market, better planning and stock management, sales and supplies of energy sources. The paper discusses the short-term hourly temperature forecasts, at lead time day+1 and day+2, over a period of thirteen months in 2012 and 2013 for six Italian CCGT power plants of 390 MW each (260 MW from the gas turbine and 130 MW from the steam turbine. These CCGT plants are placed in three different Italian climate areas: the Po Valley, the Adriatic coast, and the North Tyrrhenian coast. The meteorological model applied in this study is the eni-Kassandra Meteo Forecast (e‑kmf™, a multi-model approach system to provide probabilistic forecasts with a Kalman filter used to improve accuracy of local temperature predictions. Performance skill scores, computed by the output data of the meteorological model, are compared with local observations, and used to evaluate forecast reliability. In the study, the approach has shown good overall scores encompassing more than 50,000 hourly temperature values. Some differences from one site to another, due to local meteorological phenomena, can affect the short-term forecast performance, with consequent impacts on gas-to-power production and related negative imbalances. For operational application of the methodology in CCGT power plant, the benefits and limits have been successfully identified.

  19. Protection device for use in stopping a turbine generator in nuclear power plant

    International Nuclear Information System (INIS)

    Nagahama, Mizuo.

    1974-01-01

    Object: To supply to as great an extent as possible the residual output of a nuclear reactor to a turbine after the reactor is shutdown and to prevent overpower and motoring of a turbine by connecting a power direction relay to a secondary circuit of a current transformer and an instrumentation transformer at the high voltage side of a main transformer of a transmission bus line. Structure: When the output power of a generator after shuttingdown a nuclear reactor decreases below the sum of the mechanical losses of the turbine and the generator and the power for the house-auxiliaries connected to a fixed bus line, the direction of the current is reversed and the power is supplied from the transmission bus line through a circuit breaker for the generator and a main transformer onto the house-side, whereby a time limit relay of the power direction relay is actuated to disconnect the generator and the turbine. (Kamimura, M.)

  20. Estimation of power in low velocity vertical axis wind turbine

    Science.gov (United States)

    Sampath, S. S.; Shetty, Sawan; Chithirai Pon Selvan, M.

    2015-06-01

    The present work involves in the construction of a vertical axis wind turbine and the determination of power. Various different types of turbine blades are considered and the optimum blade is selected. Mechanical components of the entire setup are built to obtain maximum rotation per minute. The mechanical energy is converted into the electrical energy by coupling coaxially between the shaft and the generator. This setup produces sufficient power for consumption of household purposes which is economic and easily available.

  1. Implementasi Power Turbin pada Diesel Generator di Sistem Pembangkit Listrik Tenaga Diesel (PLTD dalam meningkatkan produksi energi listrik

    Directory of Open Access Journals (Sweden)

    Aditya Wahyu Saputra

    2017-01-01

    Full Text Available Aplikasi Power Turbine merupakan salah satu aplikasi PTO (Power Take-Off yang mampu meningkatkan produksi energi listrik dengan memanfaatkan aliran gas buang dari motor bakar (diesel maupun bensin yang mengandung energi kalor (panas yang digunakan untuk memutar turbin dan generator. Penelitian ini bertujuan mencari besar potensi daya listik yang bisa dihasilkan power turbine. Hal ini dicapai dengan cara menganalisa pengaruh pembebanan power turbine terhadap kinerja motor diesel sehingga kita dapat melihat seberapa jauh power turbine tersebut dapat diaplikasikan pada motor bakar. Dari hasil analisa dan perhitungan, didapat bahwa power turbine tersebut dapat menghasilkan energi listrik sebesar 250 kW pada continuous rating (93,23%.

  2. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low wind power potentials

    Science.gov (United States)

    Miller, Lee; Kleidon, Axel

    2017-04-01

    Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power potentials that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m-2) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m-2) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m-2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.

  3. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  4. Power and efficiency in a regenerative gas-turbine cycle with multiple reheating and intercooling stages

    Science.gov (United States)

    Calvo Hernández, A.; Roco, J. M. M.; Medina, A.

    1996-06-01

    Using an improved Brayton cycle as a model, a general analysis accounting for the efficiency and net power output of a gas-turbine power plant with multiple reheating and intercooling stages is presented. This analysis provides a general theoretical tool for the selection of the optimal operating conditions of the heat engine in terms of the compressor and turbine isentropic efficiencies and of the heat exchanger efficiency. Explicit results for the efficiency, net power output, optimized pressure ratios, maximum efficiency, maximum power, efficiency at maximum power, and power at maximum efficiency are given. Among others, the familiar results of the Brayton cycle (one compressor and one turbine) and of the corresponding Ericsson cycle (infinite compressors and infinite turbines) are obtained as particular cases.

  5. Development of web based performance analysis program for nuclear power plant turbine cycle

    International Nuclear Information System (INIS)

    Park, Hoon; Yu, Seung Kyu; Kim, Seong Kun; Ji, Moon Hak; Choi, Kwang Hee; Hong, Seong Ryeol

    2002-01-01

    Performance improvement of turbine cycle affects economic operation of nuclear power plant. We developed performance analysis system for nuclear power plant turbine cycle. The system is based on PTC (Performance Test Code), that is estimation standard of nuclear power plant performance. The system is developed using Java Web-Start and JSP(Java Server Page)

  6. Power-generation method using combined gas and steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C; Radtke, K; Keller, H J

    1997-03-20

    The invention concerns a method of power generation using a so-called COGAS (combined gas and steam) turbine installation, the aim being to improve the method with regard to the initial costs and energy consumption so that power can be generated as cheaply as possible. This is achieved by virtue of the fact that air taken from the surrounding atmosphere is splint into an essentially oxygen-containing stream and an essentially nitrogen-containing stream and the two streams fed further at approximately atmospheric pressure. The essentially nitrogen-containing stream is mixed with an air stream to form a mixed nitrogen/air stream and the mixed-gas stream thus produced is brought to combustion chamber pressure in the compressor of the gas turbine, the combustion of the combustion gases in the combustion chamber of the gas turbine being carried out with the greater part of this compressed mixed-gas stream. (author) figs.

  7. Studies and solutions of steam turbines for nuclear heating power stations

    International Nuclear Information System (INIS)

    Drahy, J.

    1979-01-01

    The possibilities of combined generation of heat and electric power and special features of the corresponding equipment for WWER type reactors are considered. Condensing steam turbines with bled steam points and the constructional solution of bled points are presented for heating the network water to 110 0 C, 120 0 C, and 160 0 C, respectively. The dimensions of the low pressure final stage of the turbine are given. Problems concerning condensing and bleeding turbines and combination types of back-pressure and condensing turbines as well as solutions to the design of 250 MW and 500 MW turbines are discussed

  8. Siemens Wind Power 3.6 MW wind turbines for large offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Akhmatov, Vladislav; Nygaard Nielsen, Joergen; Thisted, Jan; Groendahl, Erik; Egedal, Per; Noertoft Frydensbjerg, Michael; Jensen, Kim Hoej [Siemens Wind Power A/S, Brande (Denmark)

    2008-07-01

    Siemens Wind power A/S is the key player on the offshore wind power market. The Siemens Wind Power 3.6 MW variable-speed wind turbine is among the word's largest, most advanced and competitive wind turbines with a solid portfolio of large offshore wind farms. Transmission system operators and developers require dynamic wind turbine models for evaluation of fault-ride-through capability and investigations of power system stability. The even larger size of the on- and offshore wind farms has entailed that the grid impact of the voltage and frequency control capability of the wind farm can be appropriated modelled and evaluated. Siemens Wind Power has developed a dynamic model of the 3.6 MW variable-speed wind turbine with the fault-ride-through sequences and models of the voltage and frequency controllers to be applied for large offshore wind farms. The dynamic models have been implemented in the commercially available simulation tools such as DIgSILENT PowerFactory and Siemens PTI PSS/E and successfully validated from measurements. (orig.)

  9. Optimizing NSSS power and turbine/generator performance for standardized nuclear power plant designs in tropical climates

    International Nuclear Information System (INIS)

    Parece, M.V.; Stack, T.G.; Huffman, A.D.

    2007-01-01

    The EPR was developed by AREVA as a standardized nuclear power plant design that could be deployed throughout the world. The first EPR is currently being constructed at Olkiluoto, Finland. Many of the plant systems for this first-of-a-kind unit are optimized for the climate and heat rejection method (once-through cooling) used at Olkiluoto. Two such systems are the Nuclear Steam Supply System (NSSS) and the Turbine/Generator (T/G) system. To achieve the EPR's target net electrical output for tropical climates and various condenser heat rejection methods, design studies were performed that showed that the NSSS and T/G system designs developed for the Olkiluoto site conditions required modification. The business case for EPR on U.S. sites where average ambient temperature is above 60 F, implies an economical design that provides an average net electrical output of at least 1600 MWe. It has been shown through parametric studies that the key features of the design needed to achieve this goal are: -) rated core thermal power of 4590 MWth, which is supported by plant systems, structures and components; -) the use of mechanical draft cooling towers rather than natural draft cooling towers; -) a low pressure turbine design with reduced exhaust annulus area; and -) a multi-pressure condenser configuration

  10. Environmental feasibility study for deployment and construction of mobile gas turbine power plants in urbanized areas

    Directory of Open Access Journals (Sweden)

    Bryukhan Fedor

    2017-01-01

    Full Text Available In the view of current electrical shortage in some regions of Russia, mobile gas turbine power plants (MGTPP have become urgent in recent years. Usually they are used as back-up power sources to cover peak loads in power networks and to ensure uninterrupted power supply to consumers. This paper deals with environmental feasibility study for deployment and construction of the MGTPP in an urban setting. Technogehic factors of the MGTPP impact on the environment have been assessed and possibility of the MGTPP deployment at various sites in different regions of Russia has been identified. The necessity of using the technology of water injection into the gas turbine units combustion chamber to suppress nitrogen oxides in some cases is mentioned. Quantitative assessments of the MGTPP technogehic impact on the environment components have been performed using standard techniques. The calculations have revealed that the MGTPP specifications ensure the levels of technogehic impacts within the standard limits. The results have ensured preparation of pre-design and design documentation related to protection of the environment against the MGTPP complex technogehic impact.

  11. Wind turbine power coefficient estimation by soft computing methodologies: Comparative study

    International Nuclear Information System (INIS)

    Shamshirband, Shahaboddin; Petković, Dalibor; Saboohi, Hadi; Anuar, Nor Badrul; Inayat, Irum; Akib, Shatirah; Ćojbašić, Žarko; Nikolić, Vlastimir; Mat Kiah, Miss Laiha; Gani, Abdullah

    2014-01-01

    Highlights: • Variable speed operation of wind turbine to increase power generation. • Changeability and fluctuation of wind has to be accounted. • To build an effective prediction model of wind turbine power coefficient. • The impact of the variation in the blade pitch angle and tip speed ratio. • Support vector regression methodology application as predictive methodology. - Abstract: Wind energy has become a large contender of traditional fossil fuel energy, particularly with the successful operation of multi-megawatt sized wind turbines. However, reasonable wind speed is not adequately sustainable everywhere to build an economical wind farm. In wind energy conversion systems, one of the operational problems is the changeability and fluctuation of wind. In most cases, wind speed can vacillate rapidly. Hence, quality of produced energy becomes an important problem in wind energy conversion plants. Several control techniques have been applied to improve the quality of power generated from wind turbines. In this study, the polynomial and radial basis function (RBF) are applied as the kernel function of support vector regression (SVR) to estimate optimal power coefficient value of the wind turbines. Instead of minimizing the observed training error, SVR p oly and SVR r bf attempt to minimize the generalization error bound so as to achieve generalized performance. The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the SVR approach in compare to other soft computing methodologies

  12. Power Electronics and Controls for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Chen, Zhe

    2010-01-01

    term) based energy sources to renewable energy sources. Another is to use power electronics to achieve high efficiency in power generation, transmission/distribution and utilization. This paper discuss trends of the most promising renewable energy sources, wind energy, which ,integrated with power...... electronics, is changing the future electrical infrastructure and also contributes steadily to non-carbon based electricity production. The paper’s focus is on the power electronics technologies used in wind turbine systems....

  13. Algebraic approach for the diagnosis of turbine cycles in nuclear power plants

    International Nuclear Information System (INIS)

    Heo, Gyunyoung; Chang, Soon Heung

    2005-01-01

    According to plant operating staff's practical needs, authors proposed a diagnosis model to identify the performance degradation of steam turbine cycles in nuclear power plants (NPPs). The essential idea of this study is how to identify the intrinsically degraded component which causes electric loss. Authors found that there were not so many turbine cycle diagnosis applications in NPPs currently because of technical, financial, or social characteristics of the plant. So a great part of the diagnosis has been dependent on operating staff's experience and knowledge. However as economic competition becomes severe, the efficiency staffs is asking for reliable and practical advisory tools. For the solution of these shortcomings, authors proposed a simple and intuitive diagnosis concept based on the superposition rule of degradation phenomena, which can be derived by simple algebra and correlation analysis. Though the superposition rule is not so significant statistically, almost all of the performance indices under normal operation are fairly compatible with this model. Authors developed a prototype model of quantitative root-cause diagnosis and validated the background theory using the simulated data. The turbine cycle advisory system using this model was applied to Gori NPP units 3 and 4

  14. DESIGN AND DEVELOPMENT OF A 1/3 SCALE VERTICAL AXIS WIND TURBINE FOR ELECTRICAL POWER GENERATION

    Directory of Open Access Journals (Sweden)

    Altab Md. Hossain

    2007-12-01

    Full Text Available This research describes the electrical power generation in Malaysia by the measurement of wind velocity acting on the wind turbine technology. The primary purpose of the measurement over the 1/3 scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. The electrical power produced by the wind turbine is influenced by its two major part, wind power and belt power transmission system. The blade and the drag area system are used to determine the powers of the wind that can be converted into electric power as well as the belt power transmission system. In this study both wind power and belt power transmission system has been considered. A set of blade and drag devices have been designed for the 1/3 scaled wind turbine at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL. Test has been carried out on the wind turbine with the different wind velocities of 5.89 m/s, 6.08 m/s and 7.02 m/s. From the experiment, the wind power has been calculated as 132.19 W, 145.40 W and 223.80 W. The maximum wind power is considered in the present study.

  15. DESIGN AND DEVELOPMENT OF A 1/3 SCALE VERTICAL AXIS WIND TURBINE FOR ELECTRICAL POWER GENERATION

    Directory of Open Access Journals (Sweden)

    Altab Hossain

    2007-01-01

    Full Text Available This research describes the electrical power generation in Malaysia by the measurement of wind velocity acting on the wind turbine technology. The primary purpose of the measurement over the 1/3 scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. The electrical power produced by the wind turbine is influenced by its two major part, wind power and belt power transmission system. The blade and the drag area system are used to determine the powers of the wind that can be converted into electric power as well as the belt power transmission system. In this study both wind power and belt power transmission system has been considered. A set of blade and drag devices have been designed for the 1/3 scaled wind turbine at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL. Test has been carried out on the wind turbine with the different wind velocities of 5.89 m/s, 6.08 m/s and 7.02 m/s. From the experiment, the wind power has been calculated as 132.19 W, 145.40 W and 223.80 W. The maximum wind power is considered in the present study.

  16. Contingency power for a small turboshaft engine by using water injection into turbine cooling air

    Science.gov (United States)

    Biesiadny, Thomas J.; Klann, Gary A.

    1992-01-01

    Because of one-engine-inoperative (OEI) requirements, together with hot-gas reingestion and hot-day, high-altitude take-off situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation by using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stress is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  17. Verification of Kaplan turbine cam curves realization accuracy at power plant

    Directory of Open Access Journals (Sweden)

    Džepčeski Dane

    2016-01-01

    Full Text Available Sustainability of approximately constant value of Kaplan turbine efficiency, for relatively large net head changes, is a result of turbine runner variable geometry. Dependence of runner blades position change on guide vane opening represents the turbine cam curve. The cam curve realization accuracy is of great importance for the efficient and proper exploitation of turbines and consequently complete units. Due to the reasons mentioned above, special attention has been given to the tests designed for cam curves verification. The goal of this paper is to provide the description of the methodology and the results of the tests performed in the process of Kaplan turbine cam curves verification.

  18. Power control for wind turbines in weak grids: Concepts development

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    will make wind power more firm and possible to connect to weaker grids. So, when the concept is matured, theexpectation is that for certain wind power installations, the cost of the power control is paid back as added wind power capacity value and saved grid reinforcement costs. Different systems...... and analyze methods and technologies for making it viable to utilize more of the wind potential in remote areas. The suggestion is to develop a power control concept for wind turbines which will even out thepower fluctuations and make it possible to increase the wind energy penetration. The main options...... are to combine wind power with a pumped hydro power storage or with an AC/DC converter and battery storage. The AC/DC converter can either be an "add-on" typeor it can be designed as an integrated part of a variable speed wind turbine. The idea is that combining wind power with the power control concept...

  19. Comparison of technical and economical factors of 1000-MW steam turbines at 3000 and 1500 r.p.m. for nuclear power plants

    International Nuclear Information System (INIS)

    Markov, N.M.; Safonov, L.P.

    1980-01-01

    The problem of unification of the low-pressure cilinders (LPC) for turbo-generator units of nuclear power plants with power of 1000 MW on base of the WWER and RBMK type reactors is discussed. The results of the comparison of the K-1000-60/1500 and K-1000-60/3000 turbines in the thermal efficiency of flow passages and arrangements masses and dimensions, static and dynamic strength manoeurrability and reliability are given. To cerry out the correct comparison methods adoped as branch standards thermal calculations, calculation of low-potential part and thermal arrangements, calculations of temperature fields and of low cycle fatigue calculation of the erosion failure accumulation of blades calculation of the blades for the last steps have been used. A conclusion is made that in the nearest future it is necessary to produce the K-1000-60/1500 and K-1000-60/3000 turbines simultaneously. The low-speed lurbines with three LPC are preferable for the nuclear power plants with average annual temperatures of water up to 20 deg C and the high-speed turbines and the K-1000-60/1500 units with two LPC are expedient for nuclear power plants with temperatures higher than 20 deg C. Introduction of the turboplants with reduced number of LPC in the nuclear power engineering provides the increase of reliability, maintenance fitness and the decrease of building costs and transport expenses

  20. Accounting for the speed shear in wind turbine power performance measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.

    2010-04-15

    The power curve of a wind turbine is the primary characteristic of the machine as it is the basis of the warranty for it power production. The current IEC standard for power performance measurement only requires the measurement of the wind speed at hub height and the air density to characterise the wind field in front of the turbine. However, with the growing size of the turbine rotors during the last years, the effect of the variations of the wind speed within the swept rotor area, and therefore of the power output, cannot be ignored any longer. Primary effects on the power performance are from the vertical wind shear and the turbulence intensity. The work presented in this thesis consists of the description and the investigation of a simple method to account for the wind speed shear in the power performance measurement. Ignoring this effect was shown to result in a power curve dependant on the shear condition, therefore on the season and the site. It was then proposed to use an equivalent wind speed accounting for the whole speed profile in front of the turbine. The method was first tested with aerodynamic simulations of a multi-megawatt wind turbine which demonstrated the decrease of the scatter in the power curve. A power curve defined in terms of this equivalent wind speed would be less dependant on the shear than the standard power curve. The equivalent wind speed method was then experimentally validated with lidar measurements. Two equivalent wind speed definitions were considered both resulting in the reduction of the scatter in the power curve. As a lidar wind profiler can measure the wind speed at several heights within the rotor span, the wind speed profile is described with more accuracy than with the power law model. The equivalent wind speed derived from measurements, including at least one measurement above hub height, resulted in a smaller scatter in the power curve than the equivalent wind speed derived from profiles extrapolated from measurements

  1. Helium turbomachinery operating experience from gas turbine power plants and test facilities

    International Nuclear Information System (INIS)

    McDonald, Colin F.

    2012-01-01

    The closed-cycle gas turbine, pioneered and deployed in Europe, is not well known in the USA. Since nuclear power plant studies currently being conducted in several countries involve the coupling of a high temperature gas-cooled nuclear reactor with a helium closed-cycle gas turbine power conversion system, the experience gained from operated helium turbomachinery is the focus of this paper. A study done as early as 1945 foresaw the use of a helium closed-cycle gas turbine coupled with a high temperature gas-cooled nuclear reactor, and some two decades later this was investigated but not implemented because of lack of technology readiness. However, the first practical use of helium as a gas turbine working fluid was recognized for cryogenic processes, and the first two small fossil-fired helium gas turbines to operate were in the USA for air liquefaction and nitrogen production facilities. In the 1970's a larger helium gas turbine plant and helium test facilities were built and operated in Germany to establish technology bases for a projected future high efficiency large nuclear gas turbine power plant concept. This review paper covers the experience gained, and the lessons learned from the operation of helium gas turbine plants and related test facilities, and puts these into perspective since over three decades have passed since they were deployed. An understanding of the many unexpected events encountered, and how the problems, some of them serious, were resolved is important to avoid them being replicated in future helium turbomachines. The valuable lessons learned in the past, in many cases the hard way, particularly from the operation in Germany of the Oberhausen II 50 MWe helium gas turbine plant, and the technical know-how gained from the formidable HHV helium turbine test facility, are viewed as being germane in the context of current helium turbomachine design work being done for future high efficiency nuclear gas turbine plant concepts. - Highlights:

  2. Non-Destructive Investigation on Short Circuit Capability of Wind-Turbine-Scale IGBT Power Modules

    DEFF Research Database (Denmark)

    Wu, Rui; Iannuzzo, Francesco; Wang, Huai

    2014-01-01

    This paper presents a comprehensive investigation on the short circuit capability of wind-turbine-scale IGBT power modules by means of a 6 kA/1.1 kV non-destructive testing system. A Field Programmable Gate Array (FPGA) supervising unit is adpoted to achieve an accurate time control for short...... circuit test, which enables to define the driving signals with an accuracy of 10 ns. Thanks to the capability and the effectiveness of the constructed setup, oscillations appearing during short circuits of the new-generation 1.7 kV/1 kA IGBT power modules have been evidenced and characterized under...

  3. An Experimental Study on the Darrieus-Savonius Turbine for the Tidal Current Power Generation

    Science.gov (United States)

    Kyozuka, Yusaku

    The Darrieus turbine is popular for tidal current power generation in Japan. It is simple in structure with straight wings rotating around a vertical axis, so that it has no directionality against the motion of tidal flow which changes its direction twice a day. However, there is one defect in the Darrieus turbine; its small starting torque. Once it stops, a Darrieus turbine is hard to re-start until a fairly fast current is exerted on it. To improve the starting torque of the Darrieus turbine used for tidal power generation, a hybrid turbine, composed of a Darrieus turbine and a Savonius rotor is proposed. Hydrodynamic characteristics of a semi-circular section used for the Savonius bucket were measured in a wind tunnel. The torque of a two bucket Savonius rotor was measured in a circulating water channel, where four different configurations of the bucket were compared. A combined Darrieus and Savonius turbine was tested in the circulating water channel, where the effect of the attaching angle between Darrieus wing and Savonius rotor was studied. Finally, power generation experiments using a 48 pole electric generator were conducted in a towing tank and the power coefficients were compared with the results of experiments obtained in the circulating water channel.

  4. Global Value Chain and Manufacturing Analysis on Geothermal Power Plant Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Sertac [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Augustine, Chad R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mann, Margaret K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    The global geothermal electricity market has significantly grown over the last decade and is expected to reach a total installed capacity of 18.4 GWe in 2021 (GEA, 2016). Currently, geothermal project developers customize the size of the power plant to fit the resource being developed. In particular, the turbine is designed and sized to optimize efficiency and resource utilization for electricity production; most often, other power plant components are then chosen to complement the turbine design. These custom turbine designs demand one-off manufacturing processes, which result in higher manufacturing setup costs, longer lead-times, and higher capital costs overall in comparison to larger-volume line manufacturing processes. In contrast, turbines produced in standard increments, manufactured in larger volumes, could result in lower costs per turbine. This study focuses on analysis of the global supply chain and manufacturing costs for Organic Rankine Cycle (ORC) turboexpanders and steam turbines used in geothermal power plants. In this study, we developed a manufacturing cost model to identify requirements for equipment, facilities, raw materials, and labor. We analyzed three different cases 1) 1 MWe geothermal ORC turboexpander 2) 5 MWe ORC turboexpander and 3) 20 MWe geothermal steam turbine, and calculated the cost of manufacturing the major components, such as the impellers/blades, shaft/rotor, nozzles, inlet guide lanes, disks, and casings. Then we used discounted cash flow (DCF) analysis to calculate the minimum sustainable price (MSP). MSP is the minimum price that a company must sell its product for in order to pay back the capital and operating expenses during the plant lifetime (CEMAC, 2017). The results showed that MSP could highly vary between 893 dollar/kW and 30 dollar/kW based on turbine size, standardization and volume of manufacturing. The analysis also showed that the economy of scale applies both to the size of the turbine and the number

  5. Risks of turbine generators at WWER-440 nuclear power plants

    International Nuclear Information System (INIS)

    Virolainen, T.; Marttila, J.; Aulamo, H.

    1998-01-01

    Many serious fires and incidents have occurred in the turbine halls of nuclear power plants, resulting in serious damage and long shutdown outages. Some of these incidents have endangered the safe shutdown of the plants because of the location of lack of vital fire protection safety systems. A detailed analysis is necessary for all those plants that have equipment important for safe shutdown located in the turbine hall or its vicinity without strict fire separation by fire rated barriers. A reduction in the fire frequencies of the turbine hall is an additional way of improving safety. This is possible by improving all aspects of turbine generator operation. (author)

  6. Production statistics of gas turbines and superchargers in Japan in 1991

    Energy Technology Data Exchange (ETDEWEB)

    Honma, T [Toshiba Corp., Tokyo (Japan). Principal Office

    1992-01-01

    In 1991, total production of land and marine gas turbines has made a new record of 416 units with a power output of 2,771MW(54% increase compared to previous year). Production of small units have decreased by 7% where as medium units production has increased 18% and 14% in number of units and power output respectively. Compared to previous year, the production of large units has increased by 50% in number of units and 70% in power output. The units for export shared 10% and 70% of grand total number of units and power output respectively. Gas turbines to be burnt gaseous fuel and liquid fuel have been 74% and 26% in power output respectively. Production statistics of turbojet and turbofan engines has been almost same to the previous year with slight increase and decrease of small turbojet engine and medium size turbojet engine respectively. Production of turboshaft and turboprop engines along with the models of superchargers, have increased. 10 figs., 9 tabs.

  7. Power Swing Generated in Francis Turbines by Part Load and Overload Instabilities

    Directory of Open Access Journals (Sweden)

    David Valentín

    2017-12-01

    Full Text Available Hydropower plays a key role in the actual energy market due to its fast response and regulation capacity. In that way, hydraulic turbines are increasingly demanded to work at off-design conditions, where complex flow patterns and cavitation appear, especially in Francis turbines. The draft tube cavitation surge is a hydraulic phenomenon that appears in Francis turbines below and above its Best Efficiency Point (BEP. It is a low frequency phenomenon consisting of a vortex rope in the runner outlet and draft tube, which can become unstable when its frequency coincides with a natural frequency of the hydraulic circuit. At this situation, the output power can significantly swing, endangering the electrical grid stability. This study is focused on the detection of these instabilities in Francis turbines and their relationship with the output power swings. To do so, extensive experimental tests for different operating conditions have been carried out in a large prototype Francis turbine (444 MW of rated power within the frame of the European Project Hyperbole (FP7-ENERGY-2013-1. Several sensors have been installed in the hydraulic circuit (pressure sensors in the draft tube, spiral casing, and penstock, in the rotating and static structures (vibration sensors, proximity probes, and strain gauges in the runner and in the shaft, as well as in the electrical side (output power, intensity, and voltage. Moreover, a numerical Finite Element Method (FEM has been also used to relate the hydraulic excitation with the output power swing.

  8. Environmentally Friendly Replacement of Mature 200 MW Coal-Fired Power Blocks with 2 Boilers Working on One 500 MW Class Steam Turbine Generator (2on1 Unit Concept)

    Science.gov (United States)

    Grzeszczak, Jan; Grela, Łukasz; Achter, Thomas

    2017-12-01

    The paper covers problems of the owners of a fleet of long-operated conventional power plants that are going to be decommissioned soon in result of failing to achieve new admissible emissions levels or exceeding pressure elements design lifetime. Energoprojekt-Katowice SA, Siemens AG and Rafako SA presents their joint concept of the solution which is a 2on1 concept - replacing two unit by two ultra-supercritical boilers feeding one turbine. Polish market has been taken as an example.

  9. Wireless Power Transfer System for Rotary Parts Telemetry of Gas Turbine Engine

    Directory of Open Access Journals (Sweden)

    Xiaoming He

    2018-04-01

    Full Text Available A novel wireless power transfer approach for the rotary parts telemetry of a gas turbine engine is proposed. The advantages of a wireless power transfer (WPT system in the power supply for the rotary parts telemetry of a gas turbine engine are introduced. By simplifying the circuit of the inductively-coupled WPT system and developing its equivalent circuit model, the mathematical expressions of transfer efficiency and transfer power of the system are derived. A mutual inductance model between receiving and transmitting coils of the WPT system is presented and studied. According to this model, the mutual inductance between the receiving and the transmitting coils can be calculated at different axial distances. Then, the transfer efficiency and transfer power can be calculated as well. Based on the test data, the relationship of the different distances between the two coils, the transfer efficiency, and transfer power is derived. The proper positions where the receiving and transmitting coils are installed in a gas turbine engine are determined under conditions of satisfying the transfer efficiency and transfer power that the telemetry system required.

  10. Some perspective decisions for the regeneration system equipment of the thermal and nuclear power plants decreasing the probability of water ingress into the turbine and rotor acceleration by return steam flow

    Science.gov (United States)

    Trifonov, N. N.; Svyatkin, F. A.; Sintsova, T. G.; Ukhanova, M. G.; Yesin, S. B.; Nikolayenkova, E. K.; Yurchenko, A. Yu.; Grigorieva, E. B.

    2016-03-01

    The regeneration system heaters are one of the sources of possible ingress of the water into the turbine. The water penetrates into the turbine either at the heaters overflow or with the return flow of steam generated when the water being in the heater boils up in the dynamic operation modes or at deenergization of the power-generating unit. The return flow of steam and water is dangerous to the turbine blades and can result in the rotor acceleration. The known protective devices used to prevent the overflow of the low-pressure and high-pressure heaters (LPH and HPH), of the horizontal and vertical heaters of heating-system water (HWH and VWH), as well as of the deaerators and low-pressure mixing heaters (LPMH) were considered. The main protective methods of the steam and water return flows supplied by the heaters in dynamic operation modes or at deenergization of the power-generating unit are described. Previous operating experience shows that the available protections do not fully prevent water ingress into the turbine and the rotor acceleration and, therefore, the development of measures to decrease the possibility of ingress of the water into the turbine is an actual problem. The measures allowing eliminating or reducing the water mass in the heaters are expounded; some of them were designed by the specialists of OAO Polzunov Scientific and Development Association on Research and Design of Power Equipment (NPO CKTI) and are efficiently introduced at heat power plants and nuclear power plants. The suggested technical solutions allow reducing the possibility of the water ingress into the turbine and rotor acceleration by return steam flow in the dynamic operation modes or in the case of power generating unit deenergization. Some of these solutions have been tested in experimental-industrial exploitation and can be used in industry.

  11. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    This book presents recent studies on the power electronics used for the next generation wind turbine system. Some criteria and tools for evaluating and improving the critical performances of the wind power converters have been proposed and established. The book addresses some emerging problems...

  12. Design Analysis of Power Extracting Unit of an Onshore OWC Based Wave Energy Power Plant using Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Zahid Suleman

    2011-07-01

    Full Text Available This research paper describes design and analysis of power extracting unit of an onshore OWC (Oscillating Water Column based wave energy power plant of capacity about 100 kilowatts. The OWC is modeled as solid piston of a reciprocating pump. The power extracting unit is designed analytically by using the theory of reciprocating pumps and principles of fluid mechanics. Pro-E and ANSYS workbench softwares are used to verify the analytical design. The analytical results of the flow velocity in the turbine duct are compared with the simulation results. The results are found to be in good agreement with each other. The results achieved by this research would finally assist in the overall design of the power plant which is the ultimate goal of this research work.

  13. The condition monitoring system of turbine system components for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, Shigetoshi

    2013-01-01

    The thermal and nuclear power plants have been imposed a stable supply of electricity. To certainly achieve this, we built the plant condition monitoring system based on the heat and mass balance calculation. If there are some performance changes on the turbine system components of their power plants, the heat and mass balance of the turbine system will change. This system has ability to detect the abnormal signs of their components by finding the changes of the heat and mass balance. Moreover we note that this system is built for steam turbine cycle operating with saturated steam conditions. (author)

  14. Wind power electricity: the bigger the turbine, the greener the electricity?

    Science.gov (United States)

    Caduff, Marloes; Huijbregts, Mark A J; Althaus, Hans-Joerg; Koehler, Annette; Hellweg, Stefanie

    2012-05-01

    Wind energy is a fast-growing and promising renewable energy source. The investment costs of wind turbines have decreased over the years, making wind energy economically competitive to conventionally produced electricity. Size scaling in the form of a power law, experience curves and progress rates are used to estimate the cost development of ever-larger turbines. In life cycle assessment, scaling and progress rates are seldom applied to estimate the environmental impacts of wind energy. This study quantifies whether the trend toward larger turbines affects the environmental profile of the generated electricity. Previously published life cycle inventories were combined with an engineering-based scaling approach as well as European wind power statistics. The results showed that the larger the turbine is, the greener the electricity becomes. This effect was caused by pure size effects of the turbine (micro level) as well as learning and experience with the technology over time (macro level). The environmental progress rate was 86%, indicating that for every cumulative production doubling, the global warming potential per kWh was reduced by 14%. The parameters, hub height and rotor diameter were identified as Environmental Key Performance Indicators that can be used to estimate the environmental impacts for a generic turbine. © 2012 American Chemical Society

  15. Wind power production: from the characterisation of the wind resource to wind turbine technologies

    International Nuclear Information System (INIS)

    Beslin, Guy; Multon, Bernard

    2016-01-01

    Illustrated by graphs and tables, this article first describes the various factors and means related to the assessment of wind resource in the World, in Europe, and the factors which characterize a local wind resource. In this last respect, the authors indicate how local topography is taken into account to calculate wind speed, how time variations are taken into account (at the yearly, seasonal or daily level), the different methods used to model a local wind resource, how to assess the power recoverable by a wind turbine with horizontal axis (notion of Betz limit). In the second part, the authors present the different wind turbines, their benefits and drawbacks: vertical axis, horizontal axis (examples of a Danish-type wind turbine, of wind turbines designed for extreme conditions). Then, they address the technology of big wind turbines: evolution of technology and of commercial offer, aerodynamic characteristics of wind turbine and benefit of a varying speed (technological solutions, importance of the electric generator). They describe how to choose a wind turbine, how product lines are organised, how the power curve and energy capacity are determined. The issue of integration of wind energy into the power system is then addressed. The next part addressed the economy of wind energy production (annualized production cost, order of magnitude of wind electric power production cost). Future trends are discussed and offshore wind energy production is briefly addressed

  16. The hydroelectric power market in the United States

    International Nuclear Information System (INIS)

    2002-01-01

    The second-largest producer of hydroelectric power in the world is the United States, right after Canada. In the United States, 7.1 per cent of net electricity generation was attributed to hydroelectric power in 2000, which totalled 269 terawatt hours (TWh). Aging facilities, outdated technology in some facilities, a cumbersome licensing process, and increasing environmental demands from interest groups for the preservation of river systems and surrounding wildlife challenge the industry. Pacific Coast states, especially California, were faced with electric power shortages during the summer of 2001, due to low market prices, high power usage among consumers and drought. The problems with the deregulation of the electricity market were brought to light by these shortages. Legislation to restructure the electric power industry in 25 states had not been enacted as of January 2002. The purchase of more power from both Canada and the Mexico is being considered by the government of the United States, as is the creation of a national power grid to allow for power transmission throughout the country. The Canada-United States energy trade might be affected by such a move, and result in project construction opportunities for Canadian companies. Renewable energy sources must be responsible for the generation of 10 per cent of power generation levels by 2020, on a gradual basis as mandated by law. By 2005, New York City must purchase 10 per cent of its power from renewable energy sources, reaching 20 per cent by 2010. The repair and replacement of aging dam equipment, the development of advanced turbine technology to protect fish stocks and water quality, dam removal, the construction of power lines are all opportunities open to Canadian companies. 60 refs., 5 tabs

  17. Overview of Variable-Speed Power-Turbine Research

    Science.gov (United States)

    Welch, Gerard E.

    2011-01-01

    The vertical take-off and landing (VTOL) and high-speed cruise capability of the NASA Large Civil Tilt-Rotor (LCTR) notional vehicle is envisaged to enable increased throughput in the national airspace. A key challenge of the LCTR is the requirement to vary the main rotor speeds from 100% at take-off to near 50% at cruise as required to minimize mission fuel burn. The variable-speed power-turbine (VSPT), driving a fixed gear-ratio transmission, provides one approach for effecting this wide speed variation. The key aerodynamic and rotordynamic challenges of the VSPT were described in the FAP Conference presentation. The challenges include maintaining high turbine efficiency at high work factor, wide (60 deg.) of incidence variation in all blade rows due to the speed variation, and operation at low Reynolds numbers (with transitional flow). The PT -shaft of the VSPT must be designed for safe operation in the wide speed range required, and therefore poses challenges associated with rotordynamics. The technical challenges drive research activities underway at NASA. An overview of the NASA SRW VSPT research activities was provided. These activities included conceptual and preliminary aero and mechanical (rotordynamics) design of the VSPT for the LCTR application, experimental and computational research supporting the development of incidence tolerant blading, and steps toward component-level testing of a variable-speed power-turbine of relevance to the LCTR application.

  18. Reactor trip on turbine trip inhibit control system for nuclear power generating system

    International Nuclear Information System (INIS)

    Torres, J.M.; Musick, C.R.

    1976-01-01

    A reactor trip on turbine trip inhibit control system for a nuclear power generating system which utilizes steam bypass valves is described. The control system inhibits a normally automatic reactor trip on turbine trip when the bypass valves have the capability of bypassing enough steam to prevent reactor trip limits from being reached and/or to prevent opening of the secondary safety pressure valves. The control system generates a bypass valve capability signal which is continuously compared with the reactor power. If the capability is greater than the reactor power, then an inhibit signal is generated which prevents a turbine trip signal from tripping the nuclear reactor. 10 claims, 4 figures

  19. Optimization Study of Shaft Tubular Turbine in a Bidirectional Tidal Power Station

    Directory of Open Access Journals (Sweden)

    Xinfeng Ge

    2013-01-01

    Full Text Available The shaft tubular turbine is a form of tidal power station which can provide bidirectional power. Efficiency is an important turbine performance indicator. To study the influence of runner design parameters on efficiency, a complete 3D flow-channel model of a shaft tubular turbine was developed, which contains the turbine runner, guide vanes, and flow passage and was integrated with hybrid grids calculated by steady-state calculation methods. Three aspects of the core component (turbine runner were optimized by numerical simulation. All the results were then verified by experiments. It was shown that curved-edge blades are much better than straight-edge blades; the optimal blade twist angle is 7°, and the optimal distance between the runner and the blades is 0.75–1.25 times the diameter of the runner. Moreover, the numerical simulation results matched the experimental data very well, which also verified the correctness of the optimal results.

  20. Hydro turbine rehab benefits from modeling

    International Nuclear Information System (INIS)

    Froehlich, D.R.; Veatch, J.A.

    1991-01-01

    The turbine aging process, while seemingly imperceptible, inevitably results in reduced turbine efficiency and capacity. The primary causes of these reductions are runner hydraulic profile changes during weld repairs, surface finish deterioration from cavitation, and runner seal clearance increases due to wear. Many aging turbines require more frequent repairs due to runner cavitation, and wicket gate mechanism, shaft seal, and guide bearing wear. In many instances turbine component repair can be performed in-place. On older units, runner seals, wicket gate bearings, and wicket gate end seals can be repaired only when the turbine is disassembled. Since the significant cost to disassemble and overhaul units must be offset by future maintenance savings and generation increases, turbine rehabilitation is often postponed as owners consider other alternatives. Rehabilitation is a general term used to describe a wide range of turbine reconditioning and design alternatives. Turbine rehabilitation can include a major overhaul of components, runner replacement, and component modifications. Deteriorated runners can be replaced with either a new identical runner or a new modern design having increased efficiency and capacity. The comparative turbine performance of an original, existing, and a modern runner design are shown in this paper. Component overhauls can extend turbine life and restore original efficiency and capacity to existing units. However, the overhaul of existing components cannot increase plant capacity and generation above the as-new values. As a result, owners of aging plants are considering the benefits of replacing existing turbines with modern, more efficient, higher capacity turbines, or expanding the sites. Where expansion is not feasible, hydroelectric power plant owners are finding that turbine rehabilitation is the most cost-effective method to increase plant value and life

  1. Dynamic wind turbine models in power system simulation tool DIgSILENT

    DEFF Research Database (Denmark)

    Hansen, A.D.; Jauch, C.; Sørensen, Poul Ejnar

    2004-01-01

    . This model database should be able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The reportprovides a description of the wind turbines modelling, both at a component level and at a system level......-electrical components of the wind turbine (wind model, aerodynamic model, mechanical model). Theinitialisation issues on the wind turbine models into the power system simulation are also presented. However, the main attention in this report is drawn to the modelling at the system level of two wind turbine concepts: 1...... of the wind turbine at different types of grid and storage systems. For both these two concepts, control strategies are developed and implemented, their performance assessed and discussed by means of simulations....

  2. How best management practices affect emissions in gas turbine power plants - an important factor to consider when strengthening emission standards.

    Science.gov (United States)

    Zeng, Jinghai; Xing, Min; Hou, Min; England, Glenn C; Yan, Jing

    2018-04-27

    The Beijing Municipal Environmental Protection Bureau (EPB) is considering strengthening the Emission Standard of Air Pollutants for Stationary Gas Turbines, originally published in 2011 (DB11/847-2011), with a focus on reducing nitrogen oxides (NOx) emissions. A feasibility study was conducted to evaluate the current operation of twelve (12) existing combined-cycle gas turbine power plants and the design of two (2) new plants in Beijing and their emission reduction potential, in comparison with a state-of-the-art power plant in California, United States. The study found that Best Management Practices (BMPs) could potentially improve the emission level of the power plants, and should be implemented to minimize emissions under current design characteristics. These BMPs include (1) more frequent tuning of turbine combustors; (2) onsite testing of natural gas characteristics in comparison to turbine manufacturer's specifics and tuning of turbine to natural gas quality; (3) onsite testing of aqueous ammonia to ensure adequate ammonia concentration in the mixed solution, and the purity of the solution; (4) more careful inspection of the heat recovery steam generator (HRSG), and the selective catalytic reduction (SCR) during operation and maintenance; (5) annual testing of the catalyst coupon on the SCR to ensure catalyst effectiveness; and (6) annual ammonia injection grid (AIG) tuning. The study found that without major modification to the plants, improving the management of the Beijing gas turbine power plants may potentially reduce the current hourly-average NOx emission level of 5-10 parts per million (ppm, ranges reflects plant variation) by up to 20%. The exact improvement associated with each BMP for each facility requires more detailed analysis, and requires engagement of turbine, HRSG, and SCR manufacturers. This potential improvement is an important factor to consider when strengthening the emission standard. However it is to be noted that with the continuous

  3. 77 FR 32497 - Grant of Authority for Subzone Status; Mitsubishi Power Systems Americas, Inc. (Wind Turbine...

    Science.gov (United States)

    2012-06-01

    ... Status; Mitsubishi Power Systems Americas, Inc. (Wind Turbine Nacelles and Generating Sets) Fort Smith... special-purpose subzone at the wind turbine nacelle and generating set manufacturing facility of... related to the manufacturing of wind turbine nacelles and generating sets at the Mitsubishi Power Systems...

  4. On Small-Signal Stability of Wind Power System with Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Akhmatov, Vladislav; Nielsen, Jørgen Nygård

    2010-01-01

    the impact of full-load converter interfaced wind turbines on power system small-signal stability. The study is based on a 7 generator network with lightly damped inter-area modes. A detailed wind turbine model with all grid relevant control functions is used in the study. Furthermore is the wind power plant......Small-signal stability analysis of power system oscillations is a well established field within power system analysis, but not much attention has yet been paid to systems with a high penetration of wind turbines and with large wind power plants. In this paper an analysis is presented which assess...... (WPP) equipped with a WPP voltage controller and comparisons are presented. The models of wind turbine and WPP voltage controller are kindly provided by Siemens Wind Power A/S for this work. The study is based on modal analysis which are complemented with simulations on the nonlinear system....

  5. Conceptual design study of closed Brayton cycle gas turbines for fusion power generation

    International Nuclear Information System (INIS)

    Kuo, S.C.

    1976-01-01

    A conceptual design study is presented of closed Brayton cycle gas turbine power conversion systems suitable for integration with advanced-concept Tokamak fusion reactors (such as UWMAK-III) for efficient power generation without requiring cooling water supply for waste heat rejection. A baseline cycle configuration was selected and parametric performance analyses were made. Based on the results of the parametric analysis and trade-off and interface considerations, the reference design conditions for the baseline cycle were selected. Conceptual designs were made of the major helium gas turbine power system components including a 585-MWe single-shaft turbomachine, (three needed), regenerator, precooler, intercooler, and the piping system connecting them. Structural configuration and significant physical dimensions for major components are illustrated, and a brief discussion on major advantages, power control and crucial technologies for the helium gas turbine power system are presented

  6. A 25 kWe low concentration methane catalytic combustion gas turbine prototype unit

    International Nuclear Information System (INIS)

    Su, Shi; Yu, Xinxiang

    2015-01-01

    Low concentration methane, emitted from various industries e.g. coal mines and landfills into atmosphere, is not only an important greenhouse gas, but also a wasted energy resource if not utilized. In the past decade, we have been developing a novel VAMCAT (ventilation air methane catalytic combustion gas turbine) technology. This turbine technology can be used to mitigate methane emissions for greenhouse gas reduction, and also to utilize the low concentration methane as an energy source. This paper presents our latest research results on the development and demonstration of a 25 kWe lean burn catalytic combustion gas turbine prototype unit. Recent experimental results show that the unit can be operated with 0.8 vol% of methane in air, producing about 19–21 kWe of electricity output. - Highlights: • A novel low concentration methane catalytic turbine prototype unit was developed. • The 25 kWe unit can be operated with ∼0.8 vol.% CH 4 in air with 19–21 kWe output. • A new start-up method was developed for the prototype unit

  7. Multi-Level Risk Assessment of a Power Plant Gas Turbine Applying ...

    African Journals Online (AJOL)

    Multi-Level Risk Assessment of a Power Plant Gas Turbine Applying the Criticality Index Model. ... Journal of the Nigerian Association of Mathematical Physics ... This study has carefully shown and expressed a step by step computation of the severity level of the Turbine component parts, using the Criticality Index model.

  8. Development of GT-MGR plant power conversion unit design

    International Nuclear Information System (INIS)

    Kostin, V.I.; Kodochigov, N.G.; Belov, S.E.; Vasyaev, A.V.; Golovko, V.F.; Shenoj, A.

    2007-01-01

    The General Atomic Company (USA) and the Pilot Design Bureau for Machine-Building (Russia) are involved in the efforts to design the GT-MGR modular helium cooled reactor and the energy conversion unit with the direct gas turbine cycle. The reactor capacity is equal to 600 MW, it is cooled by helium under 7 MPa pressure. The energy conversion unit consists of a gas turbine, a recuperator, preliminary and intermediate coolers, a generator. The turbine shaft rotation frequency is equal to 4400 rotation/minute. One analyzed the alternate designs of the energy conversion unit to choose its configuration [ru

  9. World trend - a 10% growth per year for small wind turbines

    International Nuclear Information System (INIS)

    Kane, M.

    2016-01-01

    A decline was expected for small wind turbine business with the advent of bigger wind turbines but it is really not the case. In 2014 the growth rate was about 10 % with a cumulated power installed that year of 830 MW for small wind turbines. China (41% of the installed capacity), United-States (30%) and Great-Britain (15%) are the 3 main players. About 1 million wind turbines are operating in the world - it means 8.3% (∼ 70.000 units) more than a year before. (A.C.)

  10. Performance analysis and optimization of power plants with gas turbines

    Science.gov (United States)

    Besharati-Givi, Maryam

    The gas turbine is one of the most important applications for power generation. The purpose of this research is performance analysis and optimization of power plants by using different design systems at different operation conditions. In this research, accurate efficiency calculation and finding optimum values of efficiency for design of chiller inlet cooling and blade cooled gas turbine are investigated. This research shows how it is possible to find the optimum design for different operation conditions, like ambient temperature, relative humidity, turbine inlet temperature, and compressor pressure ratio. The simulated designs include the chiller, with varied COP and fogging cooling for a compressor. In addition, the overall thermal efficiency is improved by adding some design systems like reheat and regenerative heating. The other goal of this research focuses on the blade-cooled gas turbine for higher turbine inlet temperature, and consequently, higher efficiency. New film cooling equations, along with changing film cooling effectiveness for optimum cooling air requirement at the first-stage blades, and an internal and trailing edge cooling for the second stage, are innovated for optimal efficiency calculation. This research sets the groundwork for using the optimum value of efficiency calculation, while using inlet cooling and blade cooling designs. In the final step, the designed systems in the gas cycles are combined with a steam cycle for performance improvement.

  11. 1000 MW steam turbine for nuclear power station

    International Nuclear Information System (INIS)

    Drahy, J.

    1987-01-01

    Skoda Works started the manufacture of the 1000 MW steam turbine for the Temelin nuclear power plant. The turbine will use saturated steam at 3,000 r.p.m. It will allow steam supply to heat water for district heating, this of an output of 893 MW for a three-stage water heating at a temperature of 150/60 degC or of 570 MW for a two-stage heating at a temperature of 120/60 degC. The turbine features one high-pressure and three identical low-pressure stages. The pressure gradient between the high-pressure and the low-pressure parts was optimized as concerns the thermal efficiency of the cycle and the thermodynamic efficiency of the low-pressure part. A value of 0.79 MPa was selected corresponding to the maximum flow rate of the steam entering the turbine. This is 5,495 t/h, the admission steam parameters are 273.3 degC and 5.8 MPa. The feed water temperature is 220.9 degC. It is expected that throughout the life of the turbine, there will be 300 cold starts, 1,000 starts following shutdown for 55 to 88 hours, and 600 starts following shutdown for 8 hours. (Z.M.). 8 figs., 1 ref

  12. Nuclear closed-cycle gas turbine (HTGR-GT): dry cooled commercial power plant studies

    International Nuclear Information System (INIS)

    McDonald, C.F.; Boland, C.R.

    1979-11-01

    Combining the modern and proven power conversion system of the closed-cycle gas turbine (CCGT) with an advanced high-temperature gas-cooled reactor (HTGR) results in a power plant well suited to projected utility needs into the 21st century. The gas turbine HTGR (HTGR-GT) power plant benefits are consistent with national energy goals, and the high power conversion efficiency potential satisfies increasingly important resource conservation demands. Established technology bases for the HTGR-GT are outlined, together with the extensive design and development program necessary to commercialize the nuclear CCGT plant for utility service in the 1990s. This paper outlines the most recent design studies by General Atomic for a dry-cooled commercial plant of 800 to 1200 MW(e) power, based on both non-intercooled and intercooled cycles, and discusses various primary system aspects. Details are given of the reactor turbine system (RTS) and on integrating the major power conversion components in the prestressed concrete reactor vessel

  13. Feasibility study on rehabilitation of KESC gas turbine power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    As to power generation facilities of Karachi Electric Power Supply Corporation in Karachi (KESC), the Islamic Republic of Pakistan, feasibility study on the rehabilitation was conducted in consideration of the CDM (clean development mechanism) project. In Pakistan, 13 gas turbine power plants started operation at the same time as the time when the power plant studied this time started operation, and therefore it is predicted that they also have the same troubles caused by the aged deterioration. As the rehabilitation project, two cases were proposed: In Case 1, gas turbine and generator are both exchanged, and in Case 2, gas turbine is only exchanged, and generator is reused after repair. The work term is approximately 9 months in both cases. The initial investment is $84 million in Case 1 and $78 million in Case 2. The energy conservation effect per cost is 107 t/y/million yen and 101 t/y/million yen, respectively. Further, the amount of greenhouse effect gas reduction per cost is 330 t-CO2/y/million yen and 313 t-CO2/y/million yen, respectively. The effect of profits can be obtained after the depreciation period since the fuel price is reduced approximately 0.5%. (NEDO)

  14. The new 6 MW gas turbine for the power generation; Die neue 6 MW Gasturbine fuer die Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Blaswich, Michael; Theis, Sascha [MAN Diesel and Turbo SE, Oberhausen (Germany)

    2012-07-01

    MAN Diesel and Turbo SE (Oberhausen, Federal Republic of Germany) had developed a new gas turbine in the 6 MW class. This device is the founding stone for a family of gas turbines which at first cover the power range from 6 to 8 MW for the propulsion of pumps, compressors and electric devices. The two-shaft industrial gas turbine consists of a gas generator with an axial compressor with eleven levels, six external single combustion chambers, one two-step high-pressure turbine and a two-step power turbine. Beside the two-shaft industrial gas turbine, there exists a single-shaft industrial gas turbine for the power generation. The single-shaft industrial gas turbine consists of three turbine stages, a gas turbine compressor and combustion chamber being identical in construction to the two-shaft industrial gas turbine. The gas turbine package contains the gas turbine module as well as a filter module. The gas turbine was successfully tested. Further tests and the commissioning of the first customer's plant are planned for this year.

  15. Dynamic modeling of fluid power transmissions for wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.

    2011-01-01

    Fluid power transmission for wind turbines is quietly gaining more ground/interest. The principle of the various concepts presented so far is to convert aerodynamic torque of the rotor blades into a pressurized fluid flow by means of a positive displacement pump. At the other end of the fluid power

  16. Wind power in modern power systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    In recent years, wind power is experiencing a rapid growth, and large-scale wind turbines/wind farms have been developed and connected to power systems. However, the traditional power system generation units are centralized located synchronous generators with different characteristics compared...... with wind turbines. This paper presents an overview of the issues about integrating large-scale wind power plants into modern power systems. Firstly, grid codes are introduced. Then, the main technical problems and challenges are presented. Finally, some possible technical solutions are discussed....

  17. A novel folding blade of wind turbine rotor for effective power control

    International Nuclear Information System (INIS)

    Xie, Wei; Zeng, Pan; Lei, Liping

    2015-01-01

    Highlights: • A novel folding blade for wind turbine power control is proposed. • Wind tunnel experiments were conducted to analyze folding blade validity. • Folding blade is valid to control wind turbine power output. • Compared to pitch control, thrust was reduced by fold control in power regulation. • Optimum fold angles were found for wind turbine start up and aerodynamic brake. - Abstract: A concept of novel folding blade of horizontal axis wind turbine is proposed in current study. The folding blade comprises a stall regulated root blade section and a folding tip blade section with the fold axis inclined relative to blade span. By folding blade, lift force generated on the tip blade section changes and the moment arm also shortens, which leads to variations of power output. The blade folding actuation mechanism with servo motor and worm-gear reducer was designed. Wind turbine rotor control scheme and servo system with double feedback loops for blade fold angle control were proposed. In this study, a small folding blade model was tested in a wind tunnel to analyze its performance. The blade model performance was estimated in terms of rotation torque coefficient and thrust coefficient. Wind tunnel experiments were also conducted for pitch control using the same blade model in order to make a direct comparison. The power control, start up and aerodynamic brake performance of the folding blade were analyzed. According to the wind tunnel experiment results, fold angle magnitude significantly affected blade aerodynamic performance and the thrust characteristic together with the rotation torque characteristic of folding blade were revealed. The experiment results demonstrated that the folding blade was valid to control power output and had advantages in reducing thrust with maximum reduction of 51.1% compared to pitch control. Optimum fold angles of 55° and 90° were also found for start up and aerodynamic brake, respectively

  18. Topology and Technology Survey on Medium Voltage Power Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Sztykiel, Michal; Teodorescu, Remus; Munk-Nielsen, Stig

    2011-01-01

    Based on state-of-the-art within generator and power converter designs, this paper presents and justifies the most promising converter circuitries and concepts for future 10 MW wind turbines. In order to reduce losses and increase efficiency of the turbine, it is assumed that the bulky step...... by various circuit configurations of previously defined power modules....

  19. Output Power Smoothing Control for a Wind Farm Based on the Allocation of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Ying Zhu

    2018-06-01

    Full Text Available This paper presents a new output power smoothing control strategy for a wind farm based on the allocation of wind turbines. The wind turbines in the wind farm are divided into control wind turbines (CWT and power wind turbines (PWT, separately. The PWTs are expected to output as much power as possible and a maximum power point tracking (MPPT control strategy combining the rotor inertia based power smoothing method is adopted. The CWTs are in charge of the output power smoothing for the whole wind farm by giving the calculated appropriate power. The battery energy storage system (BESS with small capacity is installed to be the support and its charge and discharge times are greatly reduced comparing with the traditional ESSs based power smoothing strategies. The simulation model of the permanent magnet synchronous generators (PMSG based wind farm by considering the wake effect is built in Matlab/Simulink to test the proposed power smoothing method. Three different working modes of the wind farm are given in the simulation and the simulation results verify the effectiveness of the proposed power smoothing control strategy.

  20. Study of steam, helium and supercritical CO2 turbine power generations in prototype fusion power reactor

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Muto, Yasushi; Kato, Yasuyoshi; Nishio, Satoshi; Hayashi, Takumi; Nomoto, Yasunobu

    2008-01-01

    Power generation systems such as steam turbine cycle, helium turbine cycle and supercritical CO 2 (S-CO 2 ) turbine cycle are examined for the prototype nuclear fusion reactor. Their achievable cycle thermal efficiencies are revealed to be 40%, 34% and 42% levels for the heat source outlet coolant temperature of 480degC, respectively, if no other restriction is imposed. In the current technology, however, low temperature divertor heat source is included. In this actual case, the steam turbine system and the S-CO 2 turbine system were compared in the light of cycle efficiency and plant cost. The values of cycle efficiency were 37.7% and 36.4% for the steam cycle and S-CO 2 cycle, respectively. The construction cost was estimated by means of component volume. The volume became 16,590 m 3 and 7240 m 3 for the steam turbine system and S-CO 2 turbine system, respectively. In addition, separation of permeated tritium from the coolant is much easier in S-CO 2 than in H 2 O. Therefore, the S-CO 2 turbine system is recommended to the fusion reactor system than the steam turbine system. (author)

  1. Global Value Chain and Manufacturing Analysis on Geothermal Power Plant Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Sertac [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Augustine, Chad R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mann, Margaret K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-03

    The global geothermal electricity market has significantly grown over the last decade and is expected to reach a total installed capacity of 18.4 GWe in 2021 (GEA, 2016). Currently, geothermal project developers customize the size of the power plant to fit the resource being developed. In particular, the turbine is designed and sized to optimize efficiency and resource utilization for electricity production; most often, other power plant components are then chosen to complement the turbine design. These custom turbine designs demand one-off manufacturing processes, which result in higher manufacturing setup costs, longer lead-times, and higher capital costs overall in comparison to larger-volume line manufacturing processes. In contrast, turbines produced in standard increments, manufactured in larger volumes, could result in lower costs per turbine. This study focuses on analysis of the global supply chain and manufacturing costs for Organic Rankine Cycle (ORC) turboexpanders and steam turbines used in geothermal power plants. In this study, we developed a manufacturing cost model to identify requirements for equipment, facilities, raw materials, and labor. We analyzed three different cases 1) 1 MWe geothermal ORC turboexpander 2) 5 MWe ORC turboexpander and 3) 20 MWe geothermal steam turbine, and calculated the cost of manufacturing the major components, such as the impellers/blades, shaft/rotor, nozzles, inlet guide lanes, disks, and casings. Then we used discounted cash flow (DCF) analysis to calculate the minimum sustainable price (MSP). MSP is the minimum price that a company must sell its product for in order to pay back the capital and operating expenses during the plant lifetime (CEMAC, 2017). The results showed that MSP could highly vary between 893 dollar/kW and 30 dollar/kW based on turbine size, standardization and volume of manufacturing. The analysis also showed that the economy of scale applies both to the size of the turbine and the number

  2. Turbines, generators and associated plant incorporating modern power system practice

    CERN Document Server

    Littler, DJ

    1992-01-01

    The introduction of new 500 MW and 660 MW turbine generator plant in nuclear, coal- and oil-fired power stations has been partly responsible for the increase in generating capacity of the CEGB over the last 30 years. This volume provides a detailed account of experience gained in the development, design, manufacture, operation and testing of large turbine-generators in the last 20 years. With the advance in analytical and computational techniques, the application of this experience to future design and operation of large turbine-generator plant will be of great value to engineers in the indust

  3. Turbine flow diagram of Paks-1 reactor

    International Nuclear Information System (INIS)

    Vancso, Tamas

    1983-01-01

    Computer calculations and programs are presented which inform the operators on the effect projected on the turbine and thermal efficiency of the modification in the flow diagram and in the starting parameters of the power cycle. In the program the expansion line of steam turbine type K-220-44 and the thermo-technical parameters of the elements of the feed-water heater system are determined. Detailed degree calculations for turbine unit of high pressure can be made. (author)

  4. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    Hays, Lance G

    2014-07-07

    A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

  5. Boiler-turbine life extension

    Energy Technology Data Exchange (ETDEWEB)

    Natzkov, S. [TOTEMA, Ltd., Sofia (Bulgaria); Nikolov, M. [CERB, Sofia (Bulgaria)

    1995-12-01

    The design life of the main power equipment-boilers and turbines is about 105 working hours. The possibilities for life extension are after normatively regulated control tests. The diagnostics and methodology for Boilers and Turbines Elements Remaining Life Assessment using up to date computer programs, destructive and nondestructive control of metal of key elements of units equipment, metal creep and low cycle fatigue calculations. As well as data for most common damages and some technical decisions for elements life extension are presented.

  6. Modeling and Comparison of Power Converters for Doubly Fed Induction Generators in Wind Turbines

    DEFF Research Database (Denmark)

    Helle, Lars

    on the generated power quality and controllability. A consequence of this increased focus has been an ever increased set of requirements formulated in national grid requirement. These requirements has forced wind turbines to evolve from a simple generator on a stick into complicated miniature power plants......During the last decades, renewable energy resources have become an ever increasing part of the world wide power generation and especially energy produced by wind turbines has captured a significant part of this power production. This large penetration of wind power has caused increased focus...... on the design engineers employed in the wind industry. Such a progress may force design engineers to adopt common practice from more or less related technologies rather than finding the optimum solution for the specific application. For instance when applying power electronic converters to wind turbines...

  7. Dense Array Optimization of Cross-Flow Turbines

    Science.gov (United States)

    Scherl, Isabel; Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2017-11-01

    Cross-flow turbines, where the axis of rotation is perpendicular to the freestream flow, can be used to convert the kinetic energy in wind or water currents to electrical power. By taking advantage of mean and time-resolved wake structures, the optimal density of an array of cross-flow turbines has the potential for higher power output per unit area of land or sea-floor than an equivalent array of axial-flow turbines. In addition, dense arrays in tidal or river channels may be able to further elevate efficiency by exploiting flow confinement and surface proximity. In this work, a two-turbine array is optimized experimentally in a recirculating water channel. The spacing between turbines, as well as individual and coordinated turbine control strategies are optimized. Array efficiency is found to exceed the maximum efficiency for a sparse array (i.e., no interaction between turbines) for stream-wise rotor spacing of less than two diameters. Results are discussed in the context of wake measurements made behind a single rotor.

  8. The design of wind turbine for electrical power generation in Malaysian wind characteristics

    International Nuclear Information System (INIS)

    Abas Ab Wahab; Chong Wen Thong

    2000-01-01

    The paper describes the study of a wind turbine for electrical power generation in Malaysia wind characteristics. In this research, the wind turbine is designs based on the local wind characteristics and tries to avoid the problems faced in the past (turbine design, access, manpower and technical). The new wind turbine rotor design for a medium speed wind speed turbine utilises the concept of open-close type of horizontal axis (up-wind) wind turbine is intended to widen the optimum performance range for electrical generation in Malaysia wind characteristics. The wind turbine has been designed to cut-in at a lower speed, and to provide the rotation speed that high enough to run a generator. The analysis and design of new low speed wind turbine blades and open-close turbine rotor and prediction of turbine performance are being detailed in this paper. (Author)

  9. A Comparative Study of CFD Models of a Real Wind Turbine in Solar Chimney Power Plants

    Directory of Open Access Journals (Sweden)

    Ehsan Gholamalizadeh

    2017-10-01

    Full Text Available A solar chimney power plant consists of four main parts, a solar collector, a chimney, an energy storage layer, and a wind turbine. So far, several investigations on the performance of the solar chimney power plant have been conducted. Among them, different approaches have been applied to model the turbine inside the system. In particular, a real wind turbine coupled to the system was simulated using computational fluid dynamics (CFD in three investigations. Gholamalizadeh et al. simulated a wind turbine with the same blade profile as the Manzanares SCPP’s turbine (FX W-151-A blade profile, while a CLARK Y blade profile was modelled by Guo et al. and Ming et al. In this study, simulations of the Manzanares prototype were carried out using the CFD model developed by Gholamalizadeh et al. Then, results obtained by modelling different turbine blade profiles at different turbine rotational speeds were compared. The results showed that a turbine with the CLARK Y blade profile significantly overestimates the value of the pressure drop across the Manzanares prototype turbine as compared to the FX W-151-A blade profile. In addition, modelling of both blade profiles led to very similar trends in changes in turbine efficiency and power output with respect to rotational speed.

  10. Theoretical Investigation For The Effect of Fuel Quality on Gas Turbine Power Plants

    Science.gov (United States)

    AbdulRazzak khudair, Omar; Alwan Abass, Khetam; Saadi Abed, Noor; Hussain Ali, Khalid; AbdulAziz, Saad; Chlaib Shaboot, Ali

    2018-05-01

    Gas turbine engine power generation is declined dramatically because of the reduction in thermodynamic parameters as a work of turbine, compressor ratio, compressor work, and air mass flow rate and fuel consumption. There are two main objectives of this work, the first is related with the effect of fuel kinds and their quality on the operation of fuel flow divider and its performance specifically gear pump displacement and fuel flow rate to the combustion chambers of gas power plant. AL-DORA gas turbine power plant 35MW was chosen to predict these effects on its performance MATLAB Software program is used to perform thermodynamic calculations. Fuel distribution stage before the process of combustion and as a result of the kind and its quality, chemical reaction will occur between the fuel and the parts of the gear system of each pump of the flow divider, which causes the erosion of the internal pump wall and the teeth of the gear system, thus hampering the pump operation in terms of fuel discharge. The discharge of fuel form the eight external gates of flow divider is decreased and varied when going to the combustion chambers, so that, flow divider does not give reliable mass flow rate due to absence of accurate pressure in each of eight exit pipes. The second objective deals with the stage of fuel combustion process inside the combustion chamber. A comparative study based upon performance parameters, such as specific fuel consumption for gas and gasoil and power generation. Fuel poor quality causes incomplete combustion and increased its consumption, so that combustion products are interacted with the surface of the turbine blades, causing the erosion and create surface roughness of the blade and disruption of gas flow. As a result of this situation, turbulence flow of these gases will increase causing the separation of gas boundary layers over the suction surface of the blade. Therefore the amount of extracted gas will decrease causing retreat work done by

  11. U.S. Department of Energy Wind Turbine Development Projects

    International Nuclear Information System (INIS)

    Migliore, P.G.; Calvert, S.D.

    1999-01-01

    This paper provides an overview of wind-turbine development activities in the Unites States and relates those activities to market conditions and projections. Several factors are responsible for a surge in wind energy development in the United States, including a federal production tax credit, ''green power'' marketing, and improving cost and reliability. More development is likely, as approximately 363 GW of new capacity will be needed by 2020 to meet growing demand and replace retiring units. The U.S. Department of Energy (DOE) is helping two companies develop next-generation turbines intended to generate electricity for $0.025/kWh or less. We expect to achieve this objective through a combination of improved engineering methods and configuration advancements. This should ensure that wind power will compete effectively against advanced combined-cycle plants having projected generating costs of $0.031/kWh in 2005. To address the market for small and intermediate-size wind turbines, DOE is assisting five companies in their attempts to develop new turbines having low capital cost and high reliability. Additional information regarding U.S. wind energy programs is available on the internet site www.nrel.gov/wind/. E-mail addresses for the turbine manufacturers are found in the Acknowledgements

  12. Extension of the Laufenburg power station on the Rhine with STRAFLO turbines

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, R.; Gyenge, J.; Fischer, F.

    1988-01-01

    The Laufenburg power station on the Rhine built at the beginning of this century, after a previous modernisation (increase in output from 40 to 81 MW), was now extended to a total output of 106 MW in a further modernisation phase. The existing Francis turbines are being replaced by 10 STRAFLO turbines. There is a generously illustrated report on the advantages of the STRAFLO solution and on the two previous stages of building and extension (tables of basic figures for machines, extension water flow, height of head, gross and house service power, average annual output) and on details of the contruction of the STRAFLO turbines (rotor, bearings, windings, seals, wall rings, oil supply, braking device, choice of material). (HWJ).

  13. Brayton Power Conversion Unit Tested: Provides a Path to Future High-Power Electric Propulsion Missions

    Science.gov (United States)

    Mason, Lee S.

    2003-01-01

    Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU

  14. Start up and commercial operation of Laguna Verde nuclear power plant. Unit 1

    International Nuclear Information System (INIS)

    Torres Ramirez, J.F.

    1991-01-01

    Prior to start up of Laguna Verde nuclear power plant preoperational tests and start tests were performed and they are described in its more eminent aspects. In relation to commercial operation of nuclear station a series of indicator were set to which allow the measurement of performance in unit 1, in areas of plant efficiency and personal safety. Antecedents. Laguna Verde station is located in Alto Lucero municipality in Veracruz state, 70 kilometers north-northeast from port of Veracruz and a 290 kilometers east-northeast from Mexico city. The station consist of two units manufactured by General Electric, with a nuclear system of vapor supply also called boiling water (BWR/5), and with a system turbine-generator manufactured by Mitsubishi. Each unit has a nominal power of 1931 MWt and a level design power of 675 Mwe and a net power of 654 Electric Megawatts

  15. Development of High-Powered Steam Turbines by OAO NPO Central Research and Design Institute for Boilers and Turbines

    Science.gov (United States)

    Mikhailov, V. E.; Khomenok, L. A.; Kovalev, I. A.

    2018-01-01

    The article provides an overview of the developments by OAO NPO TsKTI aimed at improvement of components and assemblies of new-generation turbine plants for ultra-supercritical steam parameters to be installed at the power-generating facilities in service. The list of the assemblies under development includes cylinder shells, the cylinder's flow paths and rotors, seals, bearings, and rotor cooling systems. The authors consider variants of the shafting-cylinder configurations for which advanced high-pressure and intermediate-pressure cylinders with reactive blading and low-pressure cylinders of conventional design and with counter-current steam flows are proposed and high-pressure rotors, which can increase the economic efficiency and reduce the overall turbine plant dimensions. Materials intended for the equipment components that operate at high temperatures and a steam cooling technique that allows the use of cheaper steel grades owing to the reduction in the metal's working temperature are proposed. A new promising material for the bearing surfaces is described that enables the operation at higher unit pressures. The material was tested on a full-scale test bench at OAO NPO TsKTI and a turbine in operation. Ways of controlling the erosion of the blades in the moisture-steam turbine compartments by the steam heating of the hollow guide blades are considered. To ensure the dynamic stability of the shafting, shroud and diaphragm seals that prevent the development of the destabilizing circulatory forces of the steam flow were devised and trialed. Advanced instrumentation and software are proposed to monitor the condition of the blading and thermal stresses under transient conditions, to diagnose the vibration processes, and to archive the obtained data. Attention is paid to the normalization of the electromagnetic state of the plant in order to prevent the electrolytic erosion of the plant components. The instrumentation intended for monitoring the relevant electric

  16. Optimization of hydraulic turbine governor parameters based on WPA

    Science.gov (United States)

    Gao, Chunyang; Yu, Xiangyang; Zhu, Yong; Feng, Baohao

    2018-01-01

    The parameters of hydraulic turbine governor directly affect the dynamic characteristics of the hydraulic unit, thus affecting the regulation capacity and the power quality of power grid. The governor of conventional hydropower unit is mainly PID governor with three adjustable parameters, which are difficult to set up. In order to optimize the hydraulic turbine governor, this paper proposes wolf pack algorithm (WPA) for intelligent tuning since the good global optimization capability of WPA. Compared with the traditional optimization method and PSO algorithm, the results show that the PID controller designed by WPA achieves a dynamic quality of hydraulic system and inhibits overshoot.

  17. Simulation of the turbine trip of Unit 1 of the Laguna Verde nuclear power plant using the code Simulate-3K

    International Nuclear Information System (INIS)

    Alegria A, A.; Filio L, C.; Ortiz V, J.

    2017-09-01

    In order to compare the results obtained from the model developed in the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) with the code Simulate-3K (S3K) with respect to those reported by the process computer of the Central (SIIP), the simulation of the turbine trip transient was carried out, caused by the firing of the main generator, the low differential pressure of oil of its seals and the automatic Scram of Unit 1 of the Laguna Verde nuclear power plant, at 87% of power nominal during the operation cycle 16. Since the reactor was brought to a safe stop due to Scram, was enough to simulate 20 seconds to observe the maximum increase in pressure with S3K. In this work, the following parameters are shown and compared: the neutron flux, the thermal power, the pressure in the dome, the flow at the entrance to the core, the steam flow that leaves the vessel and the minimal critical power ratio (MCPR). The neutron flux of the average power range monitors of the nuclear power plant was compared with the S3K detectors model. Finally, the MCPR was calculated with a different correlation to that of the fuel supplier and its deviation from its safety limit was determined. In conclusion, the results obtained show the current state of the model for the simulation of reactivity transients and the opportunity areas to consolidate this tool in support of the process of licensing refueling in the CNSNS. (Author)

  18. Active Power Optimal Control of Wind Turbines with Doubly Fed Inductive Generators Based on Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Guo Jiuwang

    2015-01-01

    Full Text Available Because of the randomness and fluctuation of wind energy, as well as the impact of strongly nonlinear characteristic of variable speed constant frequency (VSCF wind power generation system with doubly fed induction generators (DFIG, traditional active power control strategies are difficult to achieve high precision control and the output power of wind turbines is more fluctuated. In order to improve the quality of output electric energy of doubly fed wind turbines, on the basis of analyzing the operating principles and dynamic characteristics of doubly fed wind turbines, this paper proposes a new active power optimal control method of doubly fed wind turbines based on predictive control theory. This method uses state space model of wind turbines, based on the prediction of the future state of wind turbines, moves horizon optimization, and meanwhile, gets the control signals of pitch angle and generator torque. Simulation results show that the proposed control strategies can guarantee the utilization efficiency for wind energy. Simultaneously, they can improve operation stability of wind turbines and the quality of electric energy.

  19. Integration of A Solid Oxide Fuel Cell into A 10 MW Gas Turbine Power Plant

    Directory of Open Access Journals (Sweden)

    Denver F. Cheddie

    2010-04-01

    Full Text Available Power generation using gas turbine power plants operating on the Brayton cycle suffers from low efficiencies. In this work, a solid oxide fuel cell (SOFC is proposed for integration into a 10 MW gas turbine power plant, operating at 30% efficiency. The SOFC system utilizes four heat exchangers for heat recovery from both the turbine outlet and the fuel cell outlet to ensure a sufficiently high SOFC temperature. The power output of the hybrid plant is 37 MW at 66.2% efficiency. A thermo-economic model predicts a payback period of less than four years, based on future projected SOFC cost estimates.

  20. A study on the power generation potential of mini wind turbine in east coast of Peninsular Malaysia

    Science.gov (United States)

    Basrawi, Firdaus; Ismail, Izwan; Ibrahim, Thamir Khalil; Idris, Daing Mohamad Nafiz Daing; Anuar, Shahrani

    2017-03-01

    A small-scale wind turbine is an attractive renewable energy source, but its economic viability depends on wind speed. The aim of this study is to determine economic viability of small-scale wind turbine in East Coast of Peninsular Malaysia. The potential energy generated has been determined by wind speed data and power curved of. Hourly wind speed data of Kuantan throughout 2015 was collected as the input. Then, a model of wind turbine was developed based on a commercial a 300W mini wind turbine. It was found that power generation is 3 times higher during northeast monsoon season at 15 m elevation. This proved that the northeast monsoon season has higher potential in generating power by wind turbine in East Coast of Peninsular Malaysia. However, only a total of 153.4 kWh/year of power can be generated at this condition. The power generator utilization factor PGUI or capacity ratio was merely 0.06 and it is not technically viable. By increasing the height of wind turbine to 60 m elevation, power generation amount drastically increased to 344 kWh/year, with PGUI of 0.13. This is about two-thirds of PGUI for photovoltaic technology which is 0.21 at this site. If offshore condition was considered, power generation amount further increased to 1,328 kWh/year with PGUI of 0.51. Thus, for a common use of mini wind turbine that is usually installed on-site at low elevation, it has low power generation potential. But, if high elevation as what large wind turbine needed is implemented, it is technically viable option in East Coast of Peninsular Malaysia.

  1. On Advanced Control Methods toward Power Capture and Load Mitigation in Wind Turbines

    Institute of Scientific and Technical Information of China (English)

    Yuan Yuan; Jiong Tang

    2017-01-01

    This article provides a survey of recently emerged methods for wind turbine control.Multivariate control approaches to the optimization of power capture and the reduction of loads in components under time-varying turbulent wind fields have been under extensive investigation in recent years.We divide the related research activities into three categories:modeling and dynamics of wind turbines,active control of wind turbines,and passive control of wind turbines.Regarding turbine dynamics,we discuss the physical fundamentals and present the aeroelastic analysis tools.Regarding active control,we review pitch control,torque control,and yaw control strategies encompassing mathematical formulations as well as their applications toward different objectives.Our survey mostly focuses on blade pitch control,which is considered one of the key elements in facilitating load reduction while maintaining power capture performance.Regarding passive control,we review techniques such as tuned mass dampers,smart rotors,and microtabs.Possible future directions are suggested.

  2. Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing

    Energy Technology Data Exchange (ETDEWEB)

    Foust, J. [Voith Hydro, Inc., York, PA (USA); Hecker, G. [Alden Research Laboratory, Inc., Holden, MA (USA); Li, S. [Alden Research Laboratory, Inc., Holden, MA (USA); Allen, G. [Alden Research Laboratory, Inc., Holden, MA (USA)

    2011-10-01

    The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall

  3. Performance estimates for the Space Station power system Brayton Cycle compressor and turbine

    Science.gov (United States)

    Cummings, Robert L.

    1989-01-01

    The methods which have been used by the NASA Lewis Research Center for predicting Brayton Cycle compressor and turbine performance for different gases and flow rates are described. These methods were developed by NASA Lewis during the early days of Brayton cycle component development and they can now be applied to the task of predicting the performance of the Closed Brayton Cycle (CBC) Space Station Freedom power system. Computer programs are given for performing these calculations and data from previous NASA Lewis Brayton Compressor and Turbine tests is used to make accurate estimates of the compressor and turbine performance for the CBC power system. Results of these calculations are also given. In general, calculations confirm that the CBC Brayton Cycle contractor has made realistic compressor and turbine performance estimates.

  4. Development of Self-Powered Wireless Structural Health Monitoring (SHM) for Wind Turbine Blades

    Science.gov (United States)

    Lim, Dong-Won

    Wind turbine blade failure can lead to unexpected power interruptions. Monitoring wind turbine blades is important to ensure seamless electricity delivery from power generation to consumers. Structural health monitoring (SHM) enables early recognition of structural problems so that the safety and reliability of operation can be enhanced. This dissertation focuses on the development of a wireless SHM system for wind turbine blades. The sensor is comprised of a piezoelectric energy harvester (EH) and a telemetry unit. The sensor node is mounted on the blade surface. As the blade rotates, the blade flexes, and the energy harvester captures the strain energy on the blade surface. Once sufficient electricity is captured, a pulse is sent from the sensing node to a gateway. Then, a central monitoring algorithm processes a series of pulses received from all three blades. This wireless SHM, which uses commercially available components, can be retrofitted to existing turbines. The harvested energy for sensing can be estimated in terms of two factors: the available strain energy and conversion efficiency. The available strain energy was evaluated using the FAST (Fatigue, Aerodynamics, Structures, and Turbulence) simulator. The conversion efficiency was studied analytically and experimentally. An experimental set-up was designed to mimic the expected strain frequency and amplitude for rotor blades. From a series of experiments, the efficiency of a piezoelectric EH at a typical rotor speed (0.2 Hz) was approximately 0.5%. The power requirement for sending one measurement (280 muJ) can be achieved in 10 minutes. Designing a detection algorithm is challenging due to this low sampling rate. A new sensing approach-the timing of pulses from the transmitter-was introduced. This pulse timing, which is tied to the charging time, is indicative of the structural health. The SHM system exploits the inherent triple redundancy of the three blades. The timing data of the three blades are

  5. Scaling forecast models for wind turbulence and wind turbine power intermittency

    Science.gov (United States)

    Duran Medina, Olmo; Schmitt, Francois G.; Calif, Rudy

    2017-04-01

    The intermittency of the wind turbine power remains an important issue for the massive development of this renewable energy. The energy peaks injected in the electric grid produce difficulties in the energy distribution management. Hence, a correct forecast of the wind power in the short and middle term is needed due to the high unpredictability of the intermittency phenomenon. We consider a statistical approach through the analysis and characterization of stochastic fluctuations. The theoretical framework is the multifractal modelisation of wind velocity fluctuations. Here, we consider three wind turbine data where two possess a direct drive technology. Those turbines are producing energy in real exploitation conditions and allow to test our forecast models of power production at a different time horizons. Two forecast models were developed based on two physical principles observed in the wind and the power time series: the scaling properties on the one hand and the intermittency in the wind power increments on the other. The first tool is related to the intermittency through a multifractal lognormal fit of the power fluctuations. The second tool is based on an analogy of the power scaling properties with a fractional brownian motion. Indeed, an inner long-term memory is found in both time series. Both models show encouraging results since a correct tendency of the signal is respected over different time scales. Those tools are first steps to a search of efficient forecasting approaches for grid adaptation facing the wind energy fluctuations.

  6. Analysis of Peach Bottom turbine trip tests

    International Nuclear Information System (INIS)

    Cheng, H.S.; Lu, M.S.; Hsu, C.J.; Shier, W.G.; Diamond, D.J.; Levine, M.M.; Odar, F.

    1979-01-01

    Current interest in the analysis of turbine trip transients has been generated by the recent tests performed at the Peach Bottom (Unit 2) reactor. Three tests, simulating turbine trip transients, were performed at different initial power and coolant flow conditions. The data from these tests provide considerable information to aid qualification of computer codes that are currently used in BWR design analysis. The results are presented of an analysis of a turbine trip transient using the RELAP-3B and the BNL-TWIGL computer codes. Specific results are provided comparing the calculated reactor power and system pressures with the test data. Excellent agreement for all three test transients is evident from the comparisons

  7. Safstor decommissioning of the Humboldt Bay Power Plant Unit No. 3

    International Nuclear Information System (INIS)

    Nelson, R.T.

    1985-01-01

    The Humboldt Bay Power Plant is located near Eureka, California, about 265 miles north of San Francisco. The plant consists of two fossil fueled units, two mobil gas turbine peaking units, and a nuclear unit - Unit No. 3. Unit No. 3, which utilized a boiling water reactor, was constructed between 1960 and 1963. The unit began commercial operation in August 1963 and operated until July 2, 1976 when it was shutdown for refueling, seismic modifications, and additional seismic and geologic studies. During the years Unit 3 operated it had one of the best operating records of any nuclear power plant in the United States. For its operating lifetime Unit 3 had an overall capacity factor of 63.0% and an availability factor of 85.9%. The unit included certain design features which made it unique among nuclear power plants of its era. Some of these unique features included natural circulation recirculation flow which eliminated the need for costly recirculation pumps, utilization of a pressure suppression containment system which had been developed jointly by PG and E and the General Electric Company, and the fact that the reactor vessel and the containment system were constructed in a caisson below ground level. These design features reduced the overall construction cost of the unit and improved its inherent safety

  8. Demand of the power industry of Russia for gas turbines: the current state and prospects

    Science.gov (United States)

    Filippov, S. P.; Dil'man, M. D.; Ionov, M. S.

    2017-11-01

    The use of gas-turbine plants (GTPs) in the power industry of Russia is analyzed. Attention is paid to microturbines and low-, medium-, high-, and superhigh-power GTPs. The efficiency of the gas-turbine plants of domestic and foreign manufacture is compared. The actual values of the installed capacity utilization factor and the corresponding efficiency values are calculated for most GTPs operating in the country. The long-term demand of the country's electric power industry for GTPs for the period until 2040 is determined. The estimates have been obtained for three basic applications of the gas turbines, viz., for replacement of the GTPs that have exhausted their lifetime, replacement of outdated gas-turbine plants at gas-and-oilburning power plants, and construction of new thermal power plants to cover the anticipated growing demand for electric power. According to the findings of the research, the main item in the structure of the demand for GTPs will be their use to replace the decommissioned steam-turbine plants, predominantly those integrated into combined-cycle plants. The priority of the reconstruction of the thermal power plants in operation over the construction of new ones is determined by the large excess of accumulated installed capacities in the country and considerable savings on capital costs using production sites with completed infrastructure. It is established that medium- and high-power GTPs will be the most in-demand plants in the electric power industry. The demand for low-power GTPs will increase at high rates. The demand for microturbines is expected to be rather great. The demand for superhigh-power plants will become quantitatively significant after 2025 and grow rapidly afterwards. The necessity of accelerated development of competitive domestic GTPs with a wide range of capacities and mastering of their series manufacture as well as production of licensed gas turbines at a high production localization level on the territory of the country

  9. Tip Speed Ratio Based Maximum Power Tracking Control of Variable Speed Wind Turbines; A Comprehensive Design

    Directory of Open Access Journals (Sweden)

    Murat Karabacak

    2017-08-01

    Full Text Available The most primitive control method of wind turbines used to generate electric energy from wind is the fixed speed control method. With this method, it is not possible that turbine input power is transferred to grid at maximum rate. For this reason, Maximum Power Tracking (MPT schemes are proposed. In order to implement MPT, the propeller has to rotate at a different speed for every different wind speed. This situation has led MPT based systems to be called Variable Speed Wind Turbine (VSWT systems. In VSWT systems, turbine input power can be transferred to grid at rates close to maximum power. When MPT based control of VSWT systems is the case, two important processes come into prominence. These are instantaneously determination and tracking of MPT point. In this study, using a Maximum Power Point Tracking (MPPT method based on tip speed ratio, power available in wind is transferred into grid over a back to back converter at maximum rate via a VSWT system with permanent magnet synchronous generator (PMSG. Besides a physical wind turbine simulator is modelled and simulated. Results show that a time varying MPPT point is tracked with a high performance.

  10. Production costs: U.S. gas turbine ampersand combined-cycle power plants

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This fourth edition of UDI's gas turbine O ampersand M cost report gives 1991 operation and maintenance expenses for over 450 US gas turbine power plants. Modeled on UDI's popular series of O ampersand M cost reports for US steam-electric plants, this report shows operator and plant name, plant year-in-service, installed capacity, 1991 net generation, total fuel expenses, total non-fuel O ampersand M expenses, total production costs, and current plant capitalization. Coverage includes over 90 percent of the utility-owned gas/combustion turbine and combined-cycle plants installed in the country

  11. Improving transition between power optimization and power limitation of variable speed/variable pitch wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A D; Bindner, H [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark); Rebsdorf, A [Vestas Wind Systems A/S, Lem (Denmark)

    1999-03-01

    The paper summarises and describes the main results of a recently performed study of improving the transition between power optimization and power limitation for variable speed/variable pitch wind turbines. The results show that the capability of varying the generator speed also can be exploited in the transition stage to improve the quality of the generated power. (au)

  12. Wind turbine performance: Methods and criteria for reliability of measured power curves

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, D.A. [Advanced Wind Turbines Inc., Seattle, WA (United States)

    1996-12-31

    In order to evaluate the performance of prototype turbines, and to quantify incremental changes in performance through field testing, Advanced Wind Turbines (AWT) has been developing methods and requirements for power curve measurement. In this paper, field test data is used to illustrate several issues and trends which have resulted from this work. Averaging and binning processes, data hours per wind-speed bin, wind turbulence levels, and anemometry methods are all shown to have significant impacts on the resulting power curves. Criteria are given by which the AWT power curves show a high degree of repeatability, and these criteria are compared and contrasted with current published standards for power curve measurement. 6 refs., 5 figs., 5 tabs.

  13. Modeling of a Robust Confidence Band for the Power Curve of a Wind Turbine.

    Science.gov (United States)

    Hernandez, Wilmar; Méndez, Alfredo; Maldonado-Correa, Jorge L; Balleteros, Francisco

    2016-12-07

    Having an accurate model of the power curve of a wind turbine allows us to better monitor its operation and planning of storage capacity. Since wind speed and direction is of a highly stochastic nature, the forecasting of the power generated by the wind turbine is of the same nature as well. In this paper, a method for obtaining a robust confidence band containing the power curve of a wind turbine under test conditions is presented. Here, the confidence band is bound by two curves which are estimated using parametric statistical inference techniques. However, the observations that are used for carrying out the statistical analysis are obtained by using the binning method, and in each bin, the outliers are eliminated by using a censorship process based on robust statistical techniques. Then, the observations that are not outliers are divided into observation sets. Finally, both the power curve of the wind turbine and the two curves that define the robust confidence band are estimated using each of the previously mentioned observation sets.

  14. Gas Turbines: ''low NOx'' technologies at EGT

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    For more than 15 years, European Gas Turbines (EGT - GEC Alsthom Group) has gained an important know-how culture and can use its rich feedback experience in the domain of gas turbine emissions. The EGT gas turbine units equipped with denitrogenation technologies cover the 4 to 226 MW power range and cumulate more than 1.7 hours of functioning in the different existing installations in the world. This paper describes the economical and environmental interests of gas turbines for power production and the combustion technologies developed by EGT to reduce the NOx emissions. The selective catalytic reduction technique is the only available secondary technique with can allow NOx and CO emissions lower than 10 ppm. Other technologies involving diluent injection (water, water-fuel mixture, vapor..) are also described and were developed in several countries to reduce the emission of these pollutants. (J.S.)

  15. The feasibility of water injection into the turbine coolant to permit gas turbine contingency power for helicopter application

    Science.gov (United States)

    Van Fossen, G. J.

    1983-01-01

    It is pointed out that in certain emergency situations it may be desirable to obtain power from a helicopter engine at levels greater than the maximum rating. Yost (1976) has reported studies concerning methods of power augmentation in the one engine inoperative (OEI) case. It was found that a combination of water/alcohol injection into the inlet and overtemperature/overspeed could provide adequate emergency power. The present investigation is concerned with the results of a feasibility study which analytically investigated the maximum possible level of augmentation with constant gas generator turbine stress rupture life as a constraint. In the proposed scheme, the increased engine output is obtained by turbine overtemperature, however, the temperature of the compressor bleed air used for hot section cooling is lowered by injecting and evaporating water.

  16. Empirical investigation on using wind speed volatility to estimate the operation probability and power output of wind turbines

    International Nuclear Information System (INIS)

    Liu, Heping; Shi, Jing; Qu, Xiuli

    2013-01-01

    Highlights: ► Ten-minute wind speed and power generation data of an offshore wind turbine are used. ► An ARMA–GARCH-M model is built to simultaneously forecast wind speed mean and volatility. ► The operation probability and expected power output of the wind turbine are predicted. ► The integrated approach produces more accurate wind power forecasting than other conventional methods. - Abstract: In this paper, we introduce a quantitative methodology that performs the interval estimation of wind speed, calculates the operation probability of wind turbine, and forecasts the wind power output. The technological advantage of this methodology stems from the empowered capability of mean and volatility forecasting of wind speed. Based on the real wind speed and corresponding wind power output data from an offshore wind turbine, this methodology is applied to build an ARMA–GARCH-M model for wind speed forecasting, and then to compute the operation probability and the expected power output of the wind turbine. The results show that the developed methodology is effective, the obtained interval estimation of wind speed is reliable, and the forecasted operation probability and expected wind power output of the wind turbine are accurate

  17. Dynamic Model of Kaplan Turbine Regulating System Suitable for Power System Analysis

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    2015-01-01

    Full Text Available Accurate modeling of Kaplan turbine regulating system is of great significance for grid security and stability analysis. In this paper, Kaplan turbine regulating system model is divided into the governor system model, the blade control system model, and the turbine and water diversion system model. The Kaplan turbine has its particularity, and the on-cam relationship between the wicket gate opening and the runner blade angle under a certain water head on the whole range was obtained by high-order curve fitting method. Progressively the linearized Kaplan turbine model, improved ideal Kaplan turbine model, and nonlinear Kaplan turbine model were developed. The nonlinear Kaplan turbine model considered the correction function of the blade angle on the turbine power, thereby improving the model simulation accuracy. The model parameters were calculated or obtained by the improved particle swarm optimization (IPSO algorithm. For the blade control system model, the default blade servomotor time constant given by value of one simplified the modeling and experimental work. Further studies combined with measured test data verified the established model accuracy and laid a foundation for further research into the influence of Kaplan turbine connecting to the grid.

  18. Power Plants, Steam and Gas Turbines WebQuest

    Directory of Open Access Journals (Sweden)

    Carlos Ulloa

    2012-10-01

    Full Text Available A WebQuest is an Internet-based and inquiry-oriented learning activity. The aim of this work is to outline the creation of a WebQuest entitled “Power Generation Plants: Steam and Gas Turbines.” This is one of the topics covered in the course “Thermodynamics and Heat Transfer,” which is offered in the second year of Mechanical Engineering at the Defense University Center at the Naval Academy in Vigo, Spain. While participating in the activity, students will be divided into groups of no more than 10 for seminars. The groups will create PowerPoint presentations that include all of the analyzed aspects. The topics to be discussed during the workshop on power plant turbines are the: (1 principles of operation; (2 processes involved; (3 advantages and disadvantages; (4 efficiency; (5 combined cycle; and (6 transversal competences, such as teamwork, oral and written presentations, and analysis and synthesis of information. This paper presents the use of Google Sites as a guide to the WebQuest so that students can access all information online, including instructions, summaries, resources, and information on qualifications.

  19. Small-Signal Stability of Wind Power System With Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen Nygaard; Jensen, Kim Høj

    2012-01-01

    Small-signal stability analysis of power system oscillations is a well established field within power system analysis, but not much attention has yet been paid to systems with a high penetration of wind turbines and with large wind power plants (WPP). In this paper a comprehensive analysis...... is presented which assesses the impact of full-load converter interfaced wind turbines on power system small-signal stability. The study is based on a 7 generator network with lightly damped inter-area modes. A detailed wind turbine (WT) model with all grid relevant control functions is used in the study....... The WT is, furthermore, equipped with a park level WPP voltage controller and comparisons are presented. The WT model for this work is a validated dynamic model of the 3.6 MW Siemens Wind Power WT. The study is based on modal analysis which is complemented with time domain simulations on the nonlinear...

  20. Wind Turbine Generator Efficiency Based on Powertrain Combination and Annual Power Generation Prediction

    Directory of Open Access Journals (Sweden)

    Dongmyung Kim

    2018-05-01

    Full Text Available Wind turbine generators are eco-friendly generators that produce electric energy using wind energy. In this study, wind turbine generator efficiency is examined using a powertrain combination and annual power generation prediction, by employing an analysis model. Performance testing was conducted in order to analyze the efficiency of a hydraulic pump and a motor, which are key components, and so as to verify the analysis model. The annual wind speed occurrence frequency for the expected installation areas was used to predict the annual power generation of the wind turbine generators. It was found that the parallel combination of the induction motors exhibited a higher efficiency when the wind speed was low and the serial combination showed higher efficiency when wind speed was high. The results of predicting the annual power generation considering the regional characteristics showed that the power generation was the highest when the hydraulic motors were designed in parallel and the induction motors were designed in series.

  1. Dual-cycle power plant with internal and external heating of a gas turbine circuit

    International Nuclear Information System (INIS)

    Strach, L.

    1976-01-01

    The present proposal, after a preceding invention by the same inventor, aims at making possible the increased use of gas turbines in nuclear and coal-fired power plants. This is to be achieved by bringing the temperature of the combustion easily from a maximum of 900 0 C, as may be supplied, e.g., by the cooling media of nuclear reactors, up to the 1,700 to 2,000 0 C required as inlet temperature for gas turbines, with the aid of a fossil-fired recuperator. In fossil and nuclear power plants, gas turbines will more and more substitute steam turbines which affect the environment because of their high waste-heat losses. In coal power plants, only that part of the coal will be gasified whose resulting gas causes internal combustion within the furnace, while the remaining part of the coal is used for external combustion in a tabular heater. In a nuclear power plant, undisturbed maximum generation of electric power is to be achieved, even at reactor outages and shutdown periods for refuelling and maintenance, by almost inertia-free increase of the fossil fuel supply to the furnace (provided an extension of the latter for the capacity of heating the combustion air from room temperature till 1,700 to 2,000 0 C). The hazard of ruptures in the primary heat exchanging system is very low, because it is operated with a relative pressure of nearly zero between reactor coolant and gas turbine circuit. (RW) [de

  2. Energy balance of hydro-aggregate with Pelton water turbine

    International Nuclear Information System (INIS)

    Obretenov, V.

    2005-01-01

    One of the major tasks in the field of hydraulic power engineering refers to machines and equipment modernization in the hydropower plants and pumped storage power plants commissioned more than 20 years ago. The increase of hydraulic units operation efficiency will allow in a number of cases to substantially reduce the specific water consumption and to drive the output of electric energy up. In these cases it is crucial to find out the operational efficiency of individual system elements and to precisely focus the modernization endeavours on such elements where the energy losses go beyond all admissible limits. Besides, the determination of the energy losses in the hydro energy turbo system will allow valid defining of hydraulic units operational scope. This work treats the methods of balance study of a hydraulic unit with Peiton water turbine. The experimental results of the balance study of Belmeken pumped storage power plant hydraulic unit No 5 under turbine operational mode are presented

  3. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part B: Application on a Case Study

    Directory of Open Access Journals (Sweden)

    Angelo La Seta

    2016-05-01

    Full Text Available Organic Rankine cycle (ORC power systems have recently emerged as promising solutions for waste heat recovery in low- and medium-size power plants. Their performance and economic feasibility strongly depend on the expander. The design process and efficiency estimation are particularly challenging due to the peculiar physical properties of the working fluid and the gas-dynamic phenomena occurring in the machine. Unlike steam Rankine and Brayton engines, organic Rankine cycle expanders combine small enthalpy drops with large expansion ratios. These features yield turbine designs with few highly-loaded stages in supersonic flow regimes. Part A of this two-part paper has presented the implementation and validation of the simulation tool TURAX, which provides the optimal preliminary design of single-stage axial-flow turbines. The authors have also presented a sensitivity analysis on the decision variables affecting the turbine design. Part B of this two-part paper presents the first application of a design method where the thermodynamic cycle optimization is combined with calculations of the maximum expander performance using the mean-line design tool described in part A. The high computational cost of the turbine optimization is tackled by building a model which gives the optimal preliminary design of an axial-flow turbine as a function of the cycle conditions. This allows for estimating the optimal expander performance for each operating condition of interest. The test case is the preliminary design of an organic Rankine cycle turbogenerator to increase the overall energy efficiency of an offshore platform. For an increase in expander pressure ratio from 10 to 35, the results indicate up to 10% point reduction in expander performance. This corresponds to a relative reduction in net power output of 8.3% compared to the case when the turbine efficiency is assumed to be 80%. This work also demonstrates that this approach can support the plant designer

  4. Operation and Performance of a Biphase Turbine Power Plant at the Cerro Prieto Geothermal Field (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Hays, Lance G. [Douglas Energy Company, Placentia, CA (United States)

    2000-09-01

    A full scale, wellhead Biphase turbine was manufactured and installed with the balance of plant at Well 103 of the Cerro Prieto geothermal resource in Baja, California. The Biphase turbine was first synchronized with the electrical grid of Comision Federal de Electricidad on August 20, 1997. The Biphase power plant was operated from that time until May 23, 2000, a period of 2 years and 9 months. A total of 77,549 kWh were delivered to the grid. The power plant was subsequently placed in a standby condition pending replacement of the rotor with a newly designed, higher power rotor and replacement of the bearings and seals. The maximum measured power output of the Biphase turbine, 808 kWe at 640 psig wellhead pressure, agreed closely with the predicted output, 840 kWe. When combined with the backpressure steam turbine the total output power from that flow would be increased by 40% above the power derived only from the flow by the present flash steam plant. The design relations used to predict performance and design the turbine were verified by these tests. The performance and durability of the Biphase turbine support the conclusion of the Economics and Application Report previously published, (Appendix A). The newly designed rotor (the Dual Pressure Rotor) was analyzed for the above power condition. The Dual Pressure Rotor would increase the power output to 2064 kWe by incorporating two pressure letdown stages in the Biphase rotor, eliminating the requirement for a backpressure steam turbine. The power plant availability was low due to deposition of solids from the well on the Biphase rotor and balance of plant problems. A great deal of plant down time resulted from the requirement to develop methods to handle the solids and from testing the apparatus in the Biphase turbine. Finally an online, washing method using the high pressure two-phase flow was developed which completely eliminated the solids problem. The availability of the Biphase turbine itself was 100

  5. Probabilistic analysis of turbine missile damage to nuclear power plant structures

    International Nuclear Information System (INIS)

    Twisdale, L.A.; Dunn, W.L.; Frank, R.A.

    1983-01-01

    This paper summarizes the results of the EPRI project that focused on the development of the overall probabilistic methodology to assess the risks of turbine missile induced damage to nuclear power plant structures and components. The project was structured to use the results of other EPRI projects that provided information on turbine failure and missile generation frequencies, models to predict the characteristics and exit conditions of the missiles, and experimental data for use in updating empirical impact formulas for reinforced concrete barriers. The research effort included: (1) adaptation and implementation of the missile generation probability and turbine casing impact models developed in Ref. [2]; (2) development of a methodology for the prediction of the motion of the postulated missile fragments that perforate the turbine casing; (3) development of a model using the experimental impact data to predict the effects of fragment impact on nuclear power plant barriers and components; (4) construction of a probabilistic damage assessment methodology using Monte Carlo simulation methodology; and (5) implementation of the methodology into an independent computer program (TURMIS), demonstration of its application to an example case study problem, and assessment of prediction sensitivity. (orig./RW)

  6. Power Curve of the AWEC-60 wind turbine; Curva de potencia del aerogenerador AWEC-60

    Energy Technology Data Exchange (ETDEWEB)

    Avia, F

    1992-07-01

    The experimental wind turbine AWEC-60 was developed to evaluate the possibilities of the Large Wind turbines, from the technical and economical point of view. The project was developed by a spanish-german group, integrated by Union Fenosa, Asinel, M.A.N. Neue Technologie and the Instituto de Energias Renovables from CIEMAT, starting the operation during the year 1990. In this paper, the obtention of the wind turbine power curve is presented, which has been obtained in agreement with the Recommended Practices for Wind Turbine Testing and Evaluation from the Executive Committee for the Research and Development on Wind Energy, of the International Energy Agency (AIE). Using the functioning data of the wind turbine correspondig to the first quarter of the year 1991, the power curves have been obtained, and the results have been compared with the curves measured in other similar Large wind turbines. (Author) 7 refs.

  7. Construction of Shika Nuclear Power Station Unit No.2 of the Hokuriku Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Yamanari, Shozo; Miyahara, Ryohei; Umezawa, Takeshi; Teshiba, Ichiro

    2006-01-01

    Construction of the Shika Nuclear Power Station Unit No.2 of the Hokuriku Electric Power Co., Inc. (advanced boiling-water reactor; output: 1.358 mega watts) was begun in August 1999 and it will resume commercial operation in March 2006 as scheduled. Hitachi contributed effectually toward realizing the project with supply of a complete set of the advanced nuclear reactor and turbine-generator system with the latest design and construction technology in harmony. Large-scale modular structures for installation and a computer-aided engineering system for work procedure and schedule management were applied with the utmost priority placed on work efficiency, safety and quality assurance. (T.Tanaka)

  8. The chemical monitoring and control during temporary turbine trip or reactor scram of nuclear power plant

    International Nuclear Information System (INIS)

    Liu Heng

    2012-01-01

    During normal operation, a malfunction of equipment or improper operation sometimes results in a turbine trip or reactor scram or even cold shutdown. Because present chemical control strategy and programs aimed at the situation of normal operation and planed refueling outage, no integrate emergency program of radiochemical and chemical control had been developed to focus on this urgent and unexpected situation. After many years of practice and experience feedback, chemists have created an emergency collaborative program of radiochemical and chemical control which aims at these unexpected situations such as unplanned unit down power, turbine trip, or reactor scram. The program defines different radiochemical and chemical control measures and steps during different status to monitor primary loop dose rate variation, fuel assembly integrity and water chemical excursion to prevent components from corrosion. (author)

  9. Investigation of Reactive Power Control Effects on Flicker and Harmonics Emission of a DFIG Wind Turbine

    Directory of Open Access Journals (Sweden)

    Amir Nagizadeh Ghoogdareh

    2013-01-01

    Full Text Available One of the most important power quality aspects in wind farms is voltage fluctuation or flicker which should be investigated due to the nature of wind speed variations. These variations result in power and voltage fluctuations at the load bus. Moreover, the wind generation systems may be assumed as a harmonics source because of their power electronic converters. There are numerous factors that affect flicker and harmonic emission of grid-connected wind turbines during continuous operation, such as wind characteristics (e.g. mean wind speed, turbulence intensity, type of generator and grid conditions (e.g. short circuit capacity, grid impedance angle. In this paper, an IEC based flickermeter is first modeled and then a variable speed wind turbine has been simulated by Matlab/Simulink software. The flicker and harmonics emissions of wind turbines equipped with DFIG during continuous operation and using output reactive control are investigated. The simulation results show that control of wind turbine output reactive power is an effective means for flicker mitigation during continuous operation. However, there should be a compromise between flicker reduction and harmonics level increase to enhance the whole power quality of wind turbine.

  10. Construction of a power plant with prototype DLN combustion turbines

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, M.L. [CSW Energy, Dallas, TX (United States); Drummond, L.J. [Zurn NEPCO, Redmond, WA (United States)

    1996-12-31

    Design and construction of a power plant is always a difficult process and this is especially true when the main keystone, the combustion turbine engine, is being modified by the manufacturer resulting in numerous changes in the design interfaces. The development of the design and construction of the Orange Cogeneration Facility has been in parallel with major modification of the LM6000 to DLE technology (a Dry Low NO{sub x} combustion system). The Dry Low NO{sub x} Combustion System for a combustion turbine offered a means to reduce water usage, lower Zero Liquid Discharge System operating costs and reduce emissions to meet Florida Department of Environmental Protection requirements. This development was successfully accomplished by Owner, EPC contractor and Combustion Turbine Manufacturer by maintaining flexibility in the design and construction while the design interfaces and performance of the combustion turbines were being finalized.

  11. Reliability Based Design of Fluid Power Pitch Systems for Wind Turbines

    DEFF Research Database (Denmark)

    Liniger, Jesper; N. Soltani, Mohsen; Pedersen, Henrik Clemmensen

    2017-01-01

    Priority Number. The Failure Mode and Effect Criticality Analysis is based on past research concerning failure analysis of wind turbine drive trains. Guidelines are given to select the severity, occurrence and detection score that make up the risk priority number. The usability of the method is shown...... in a case study of a fluid power pitch system applied to wind turbines. The results show a good agreement to recent field failure data for offshore turbines where the dominating failure modes are related to valves, accumulators and leakage. The results are further used for making design improvements...

  12. Simulation of shear and turbulence impact on wind turbine power performance

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.; Courtney, M.S.; Larsen, T.J.; Paulsen, U.S.

    2010-01-15

    Aerodynamic simulations (HAWC2Aero) were used to investigate the influence of the speed shear, the direction shear and the turbulence intensity on the power output of a multi-megawatt turbine. First simulation cases with laminar flow and power law wind speed profiles were compared to the case of a uniform inflow. Secondly, a similar analysis was done for cases with direction shear. In each case, we derived a standard power curve (function of the wind speed at hub height) and power curves obtained with various definitions of equivalent wind speed in order to reduce the scatter due to shear. Thirdly, the variations of the power output and the power curve were analysed for various turbulence intensities. Furthermore, the equivalent speed method was successfully tested on a power curve resulting from simulations cases combining shear and turbulence. Finally, we roughly simulated the wind speed measurements we may get from a LIDAR mounted on the nacelle of the turbine (measuring upwind) and we investigated different ways of deriving an equivalent wind speed from such measurements. (author)

  13. Experience Gained from Construction of Low-Emission Combustion Chambers for On-Land Large-Capacity Gas-Turbine Units: GT24/26

    Science.gov (United States)

    Bulysova, L. A.; Vasil'ev, V. D.; Berne, A. L.; Gutnik, M. M.

    2018-06-01

    This article is the third in a planned series of articles devoted to the experience gained around the world in constructing low-emission combustion chambers for on-land large-capacity (above 250 MW) gas-turbine units (GTUs). The aim of this study is to generalize and analyze the ways in which different designers apply the fuel flow and combustion arrangement principles and the fuel feed control methods. The considered here GT24 and GT26 (GT24/26) gas-turbine units generating electric power at the 60 and 50 Hz frequencies, respectively, are fitted with burners of identical designs. Designed by ABB, these GTUs were previously manufactured by Alstom, and now they are produced by Ansaldo Energia. The efficiency of these GTUs reaches 41% at the 354 MW power output during operation in the simple cycle and 60.5% at the 505MW power output during operation in the combined cycle. Both GTUs comply with all requirements for harmful emissions. The compression ratio is equal to 35. In this article, a system is considered for two-stage fuel combustion in two sequentially arranged low-emission combustion chambers, one of which is placed upstream of the high-pressure turbine (CC1) and the other upstream of the low-pressure turbine (CC2). The article places the main focus on the CC2, which operates with a decreased content of oxygen in the oxidizer supplied to the burner inlets. The original designs of vortex generators and nozzles placed in the flow of hot combustion products going out from the high-pressure turbine are described in detail. The article also presents an original CC2 front plate cooling system, due to which a significantly smaller amount of air fed for cooling has been reached. The article also presents the pressure damping devices incorporated in the chamber, the use of which made it possible to obtain a significantly wider range of CC loads at which its low-emission operation is ensured. The fuel feed adjustment principles and the combustion control methods

  14. International comparison of requirements for connection of wind turbines to power systems

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C. [Risoe National Lab., Roskilde (Denmark). Dept. of Wind Energy; Matevosyan, J.; Ackermann, T. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Electrical Engineering; Bolik, S. [Vestas Wind Systems A/S, Ringkoebing (Denmark)

    2005-07-01

    Power production from wind turbines has increased considerably during the last decade. Therefore today's wind turbines, which are typically set up in wind farms, have a significant influence on the operation of power systems. The efficient and secure operation of power systems is supported by grid codes, which are sets of requirements for all network users (suppliers, customers, etc.). In Europe, several transmission network operators have introduced special grid connection requirements for wind farms. These requirements are mainly based on existing grid codes, initially written for conventional power plants usually equipped with synchronous generators. This article presents a comparison of grid connection requirements for wind farms issued, or proposed as a draft, by transmission network operators in Denmark, Sweden, Germany, Scotland and Ireland. (author)

  15. Method of effecting fast turbine valving for improvement of power system stability

    International Nuclear Information System (INIS)

    Park, R.H.

    1981-01-01

    As a improved way of effecting fast valving of turbines of power system steam-electric generating units for the purpose of improving the stability of power transmission over transmission circuits to which their generators make connection, when stability is threatened by line faults and certain other stability endangering events, the heretofore employed and/or advocated practice of automatically closing intercept valves at fastest available closing speed in response to a fast valving signal, and thereafter automatically fully reopening them in a matter of seconds, is modified by providing to reopen the valves only partially to and thereafter retain them at a preset partially open position. For best results the process of what can be termed sustained partial reopening is so effected as to result in its completion within a fraction of a second following the peak of the first forward swing of the generator rotor. Control valves may be either held open, or automatically fully or partly closed and thereafter fully opened in a preprogrammed manner, or automatically moved to and thereafter held in a partly closed position, by means of a preprogrammed process of repositioning in which the valves may optionally be first fully or partly closed and thereafter partly reopened. Avoidance of discharge of steam through high pressure safety valves can be had with use of suitably controlled power operated valves that discharge steam to the condenser or to atmosphere. Where there is an intermediate pressure turbine that is supplied with superheated steam, use of sustained partial control valve closure, if employed, is supplemented by provision for reduction of rate of heat release within the steam generator in order to protect the reheater from overheating. As a way to restrict increase of reheat pressure of fossil fuel installations, and to minimize increase in the msr (Moisture separator-reheater) pressure of nuclear units, provision is optionally made of normally closed by-pass v

  16. Flicker Mitigation by Active Power Control of Variable-Speed Wind Turbines With Full-Scale Back-to-Back Power Converters

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Zhaoan

    2009-01-01

    /EMTDC. Flicker emission of this system is investigated. Reactive power compensation is mostly adopted for flicker mitigation. However, the flicker mitigation technique shows its limits, when the grid impedance angle is low in some distribution networks. A new method of flicker mitigation by controlling active...... power is proposed. It smoothes the 3p active power oscillations from wind shear and tower shadow effects of the wind turbine by varying the dc-link voltage of the full-scale converter. Simulation results show that damping the 3p active power oscillation by using the flicker mitigation controller...... is an effective means for flicker mitigation of variable-speed wind turbines with full-scale back-to-back power converters during continuous operation....

  17. Design of an Adaptive Power Regulation Mechanism and a Nozzle for a Hydroelectric Power Plant Turbine Test Rig

    Science.gov (United States)

    Mert, Burak; Aytac, Zeynep; Tascioglu, Yigit; Celebioglu, Kutay; Aradag, Selin; ETU Hydro Research Center Team

    2014-11-01

    This study deals with the design of a power regulation mechanism for a Hydroelectric Power Plant (HEPP) model turbine test system which is designed to test Francis type hydroturbines up to 2 MW power with varying head and flow(discharge) values. Unlike the tailor made regulation mechanisms of full-sized, functional HEPPs; the design for the test system must be easily adapted to various turbines that are to be tested. In order to achieve this adaptability, a dynamic simulation model is constructed in MATLAB/Simulink SimMechanics. This model acquires geometric data and hydraulic loading data of the regulation system from Autodesk Inventor CAD models and Computational Fluid Dynamics (CFD) analysis respectively. The dynamic model is explained and case studies of two different HEPPs are performed for validation. CFD aided design of the turbine guide vanes, which is used as input for the dynamic model, is also presented. This research is financially supported by Turkish Ministry of Development.

  18. Hydraulic Darrieus turbines efficiency for free fluid flow conditions versus power farms conditions

    Energy Technology Data Exchange (ETDEWEB)

    Antheaume, Sylvain [Electricite de France, Recherche et Developpement, Laboratoire National d' Hydraulique et Environnement, 6 Quai Watier, 78400 Chatou (France); Maitre, Thierry; Achard, Jean-Luc [Laboratoire des Ecoulements Geophysiques et Industriels, BP 53, 38041 Grenoble (France)

    2008-10-15

    The present study deals with the efficiency of cross flow water current turbine for free stream conditions versus power farm conditions. In the first part, a single turbine for free fluid flow conditions is considered. The simulations are carried out with a new in house code which couples a Navier-Stokes computation of the outer flow field with a description of the inner flow field around the turbine. The latter is based on experimental results of a Darrieus wind turbine in an unbounded domain. This code is applied for the description of a hydraulic turbine. In the second part, the interest of piling up several turbines on the same axis of rotation to make a tower is investigated. Not only is it profitable because only one alternator is needed but the simulations demonstrate the advantage of the tower configuration for the efficiency. The tower is then inserted into a cluster of several lined up towers which makes a barge. Simulations show that the average barge efficiency rises as the distance between towers is decreased and as the number of towers is increased within the row. Thereby, the efficiency of a single isolated turbine is greatly increased when set both into a tower and into a cluster of several towers corresponding to possible power farm arrangements. (author)

  19. Aseismic design of turbine houses of nuclear power plants

    International Nuclear Information System (INIS)

    Danisch, R.; Labes, M.

    1975-01-01

    The turbine house does not belong to the safety-related parts of equipment of a nuclear power plant. A special protection against earthquakes is not demanded by the authorities as long as it is proven that safety-related parts of equipment will not be restricted in their function by a collaps of the turbine house. The degree of an aseismic design is largely up to the customer, who has to weigh the risk of costs and availability against the additional costs, that are necessary for the earthquake calculation and for constructive hardening. In comparison to the high-tuned turbine foundations as they are in use in the USA today, low-tuned turbine foundations as a result of helical-spring-support, which are constructed by the KWU exclusively, pose special problems with the aseismic design. This is discussed in the present report. The spring-supported mass constitutes about a quarter of the building-mass. For mechanical reasons the spring elements are chosen in such a way, that the turbine foundation has a natural frequency of approximately 3 Hz. Thus it remains within the same frequency range as the turbine house and within that very range which is particularly amplificated by an earthquake. It is therefore likely that resonance effects as well as oscillation annulment effects may occur. The standardized calculation methods for conventional buildings without safety function such as DIN 4149 (Germany) or SIA 162 (Switzerland) do not cover the oscillation conduct of such a complicate structure. One receives informations about possible relative displacements between the building and the turbine foundation (hammering-effect) and about the stresses on the turbine and other components only by dynamic calculation methods such as the time-history or the response-spectrum method

  20. Aeroderivative Pratt & Whitney FT8-3 gas turbine – an interesting solution for power generation

    Directory of Open Access Journals (Sweden)

    Sorinel-Gicu TALIF

    2011-03-01

    Full Text Available The intermediate load electric power stations become more and more interesting for theelectric power market in Romania. In this context, the Combined Cycle Power Plants came as a veryattractive solution. This paper presents the results of a study regarding the use of the aeroderivativePratt & Whitney FT8-3 gas turbine, available in Romania, for the electric power generation in aCombined Cycle Power Plant. It is also analyzed the Combined Heat in Power generation with FT8-3gas turbine when saturated steam or hot water are required.

  1. Analysis of Axial Turbine Pico-Hydro Electrical Power Plant in North Sulawesi Indonesia

    Science.gov (United States)

    Sangari, F. J.; Rompas, P. T. D.

    2018-02-01

    This study presents analysis of pico-hydro electrical power plant in North Sulawesi, Indonesia. The objective of this study is to get a design of axial turbine pico-hydro electrical power plant. The method used the study of literature, survey the construction site of the power plant and the characteristics of the location being a place of study, analysis of hydropower ability and analyzing costs of power plant. The result showed that the design of axial turbine pico-hydro installation is connected to a generator to produce electrical energy maximum can be used for household needs in villages. This analyze will be propose to local government of Minahasa, North Sulawesi, Indonesia.

  2. Design of wind turbine airfoils based on maximum power coefficient

    DEFF Research Database (Denmark)

    Cheng, Jiangtao; Chen, Jin; Cheng, Jiangtao

    2010-01-01

    Based on the blade element momentum (BEM) theory, the power coefficient of a wind turbine can be expressed in function of local tip speed ratio and lift-drag ratio. By taking the power coefficient in a predefined range of angle of attack as the final design objective and combining with an airfoil...

  3. Analysis of combustion turbine inlet air cooling systems applied to an operating cogeneration power plant

    International Nuclear Information System (INIS)

    Chacartegui, R.; Jimenez-Espadafor, F.; Sanchez, D.; Sanchez, T.

    2008-01-01

    In this work, combustion turbine inlet air cooling (CTIAC) systems are analyzed from an economic outlook, their effects on the global performance parameters and the economic results of the power plant. The study has been carried out on a combined cogeneration system, composed of a General Electric PG 6541 gas turbine and a heat recovery steam generator. The work has been divided into three parts. First, a revision of the present CTIAC technologies is shown, their effects on power plant performance and evaluation of the associated investment and maintenance costs. In a second phase of the work, the cogeneration plant was modelled with the objective of evaluating the power increase and the effects on the generated steam and the thermal oil. The cogeneration power plant model was developed, departing from the recorded operational data of the plant in 2005 and the gas turbine model offered by General Electric, to take into consideration that, in 2000, the gas turbine had been remodelled and the original performance curves should be corrected. The final objective of this model was to express the power plant main variables as a function of the gas turbine intake temperature, pressure and relative humidity. Finally, this model was applied to analyze the economic interest of different intake cooling systems, in different operative ranges and with different cooling capacities

  4. Effects of energetic coherent motions on the power and wake of an axial-flow turbine

    Science.gov (United States)

    Chamorro, L. P.; Hill, C.; Neary, V. S.; Gunawan, B.; Arndt, R. E. A.; Sotiropoulos, F.

    2015-05-01

    A laboratory experiment examined the effects of energetic coherent motions on the structure of the wake and power fluctuations generated by a model axial-flow hydrokinetic turbine. The model turbine was placed in an open-channel flow and operated under subcritical conditions. The incoming flow was locally perturbed with vertically oriented cylinders of various diameters. An array of three acoustic Doppler velocimeters aligned in the cross-stream direction and a torque transducer were used to collect high-resolution and synchronous measurements of the three-velocity components of the incoming and wake flow as well as the turbine power. A strong scale-to-scale interaction between the large-scale and broadband turbulence shed by the cylinders and the turbine power revealed how the turbulence structure modulates the turbine behavior. In particular, the response of the turbine to the distinctive von Kármán-type vortices shed from the cylinders highlighted this phenomenon. The mean and fluctuating characteristics of the turbine wake are shown to be very sensitive to the energetic motions present in the flow. Tip vortices were substantially dampened and the near-field mean wake recovery accelerated in the presence of energetic motions in the flow. Strong coherent motions are shown to be more effective than turbulence levels for triggering the break-up of the spiral structure of the tip-vortices.

  5. Wind or water turbine power augmentation using the system of guiding surfaces

    International Nuclear Information System (INIS)

    Bashurin, V P; Ktitorov, L V; Lazareva, A S; Pletenev, F A; Budnikov, I N; Hatunkin, V Yu; Klevtsov, V A; Meshkov, E E; Novikova, I A; Yanbaev, G M

    2016-01-01

    As fluid flows through a conventional wind or hydro turbine, it slows from losing energy to extraction from a turbine and spreads out to a wider area. This results in a loss of turbine efficiency. In order to exploit wind or water flow power more effectively, it was suggested to place the turbine inside a system of specially designed airfoils (‘a flow booster’). One part of the booster (‘a nozzle’) improves the turbine performance by speeding up the flow acting on the turbine blades. The other part of the accelerating system (‘a diffuser’) creates a field of low pressure behind the turbine which helps to draw more mass flow to the turbine and avoid the loss of efficiency due to flow deceleration. The flow booster accumulates the kinetic energy of the flow (e.g. river flow or wind) in a small volume where the smaller turbine can be installed. Another possible application of the booster could be the improvement of wind turbine efficiency during low wind period. The present paper also discusses the possibility of kinetic energy accumulation by the use of several accelerating systems of different sizes—the smaller one can be installed inside the bigger one. It helps to accumulate even more kinetic energy on the turbine blades. We call this method the kinetic energy cumulation. Lab and field experiments and CFD simulations of shrouded turbine demonstrate significant increase in velocity in comparison of those for conventional (bare) turbines. (paper)

  6. Survey on the feasibility of high-efficiency gas turbine power generation system; Kokoritsu gas turbine hatsuden system ni kansuru jitsuyo kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For higher-efficiency power generation cycle plants with less restrained conditions for a location, the conceptual design of an inter-cooled regenerative two-fluid cycle plant (ISTIG) was attempted using a modified aircraft gas turbine. A high-performance turbo fan engine is used for middle-class power generation. The first stage combustion gas drives the first stage turbine, and its exhaust gas is used for the second stage combustion. Because of two-axial type of high and low pressure, improvement of thermal efficiency is expected by easy-to-install inter-cooler. ISTIG superior in operability is suitable for medium load or distributed power generation facilities, and aims at higher efficiency of a 60% level. ISTIG includes a large amount of water vapor in combustion air by adopting a diffusion type combustor eliminating back fire, and can reduce exergy loss by preheating fuel gas. Since load of the high-pressure turbine shifts toward low-pressure one by the inter-cooler, some considerations are necessary for low-pressure side cooling together with reheating cycle. Because of unnecessary steam turbine, the construction cost per kW can be reduced by 20%. 41 refs., 64 figs., 27 tabs.

  7. An integrated solar thermal power system using intercooled gas turbine and Kalina cycle

    International Nuclear Information System (INIS)

    Peng, Shuo; Hong, Hui; Jin, Hongguang; Wang, Zhifeng

    2012-01-01

    A new solar tower thermal power system integrating the intercooled gas turbine top cycle and the Kalina bottoming cycle is proposed in the present paper. The thermodynamic performance of the proposed system is investigated, and the irreversibility of energy conversion is disclosed using the energy–utilization diagram method. On the top cycle of the proposed system, the compressed air after being intercooled is heated at 1000 °C or higher at the solar tower receiver and is used to drive the gas turbine to generate power. The ammonia–water mixture as the working substance of the bottom cycle recovers the waste heat from the gas turbine to generate power. A concise analytical formula of solar-to-electric efficiency of the proposed system is developed. As a result, the peak solar-to-electric efficiency of the proposed system is 27.5% at a gas turbine inlet temperature of 1000 °C under the designed solar direct normal irradiance of 800 W/m 2 . Compared with a conventional solar power tower plant, the proposed integrated system conserves approximately 69% of consumed water. The results obtained in the current study provide an approach to improve solar-to-electric efficiency and offer a potential to conserve water for solar thermal power plants in arid area. -- Highlights: ► An Integrated Solar Thermal Power System is modeled. ► A formula forecasting the thermodynamic performance is proposed. ► The irreversibility of energy conversion is disclosed using an energy utilization method. ► The effect of key operational parameters on thermal performance is examined.

  8. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

  9. REGENERATIVE GAS TURBINES WITH DIVIDED EXPANSION

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Qvale, Einar Bjørn

    2004-01-01

    Recuperated gas turbines are currently drawing an increased attention due to the recent commercialization of micro gas turbines with recuperation. This system may reach a high efficiency even for the small units of less than 100 kW. In order to improve the economics of the plants, ways to improve...... their efficiency are always of interest. Recently, two independent studies have proposed recuperated gas turbines to be configured with the turbine expansion divided, in order to obtain higher efficiency. The idea is to operate the system with a gas generator and a power turbine, and use the gas from the gas...... divided expansion can be advantageous under certain circumstances. But, in order for todays micro gas turbines to be competitive, the thermodynamic efficiencies will have to be rather high. This requires that all component efficiencies including the recuperator effectiveness will have to be high...

  10. Turbine protecting device in a BWR type nuclear power plant

    International Nuclear Information System (INIS)

    Kasuga, Hajime; Oka, Yoko.

    1984-01-01

    Purpose: To prevent highly humid steams from flowing into the turbine upon abnormal reduction in the reactor water level in order to ensure the turbine soundness, as well as in order to trip the turbine with no undesired effect on the reactor. Constitution: A protection device comprising a judging device and a timer are disposed in a BWR type reactor, in order to control a water level signal from a reactor water level gage. If the reactor water level is reduced during rated power operation, steams are kept to be generated due to decay heat although reactor is scramed. When a signal from the reactor water level detector is inputted to the protection device, a trip signal is outputted by way of a judging device after 15 second by means of the timer, when the main steam check valve is closed to trip the turbine. With this delay of time, abrupt increase in the pressure of the reactor due to sudden shutdown can be prevented. (Nakamoto, H)

  11. Frequency Control in Autanamous Microgrid in the Presence of DFIG based Wind Turbine

    Directory of Open Access Journals (Sweden)

    Ghazanfar Shahgholian

    2015-10-01

    Full Text Available Despite their ever-increasing power injection into power grid, wind turbines play no role in frequency control. On the other hand, power network frequency is mainly adjusted by conventional power plants. DFIG-based wind turbines not only are able to produce power in various mechanical speeds, but they can also reduce speed instantaneously which, in turn, leads to mechanical energy release. Thus, they can aid conventional units in system frequency control. In this paper, the effect of wind energy conversion systems, especially variable speed DFIG-based wind turbines, in controlling and tuning of frequency is investigated when different penetration coefficients are considered in a isolated microgrid comprising of conventional thermal and non-thermal generating unit. To do this, optimal tuning of DFIG's speed controller is performed in different penetration levels using particle swarm optimization (PSO technique. In addition, optimum penetration of wind energy conversion system is studied considering frequency change parameters in a microgrid.

  12. A laser optical torquemeter for measuring the mechanical power furnished by a chirale turbine

    Science.gov (United States)

    Bonfanti, Marco; La Rosa, Guido; Lo Savio, Fabio

    2005-02-01

    The design of the present laser optical torquemeter arose from the need to measure the mechanical power furnished by a prototype of chirale turbine, which exploits the lift force produced in the rotor, due to the "Magnus effect." The particular optical reading system allows the device to determine both the torque and the mechanical power. The torque value is obtained through the reading of the torsional angle. From this value, together with that of the transmission shaft angular speed measured by the same torquemeter, the mechanical power of the turbine is calculated. The optical system output signals are acquired, processed and elaborated by a virtual logic circuit, simulated by means of a suitable home-made software in LabVIEW environment. The torquemeter has been tested operating with the prototype of turbine in a wind tunnel.

  13. How to compute the power of a steam turbine with condensation, knowing the steam quality of saturated steam in the turbine discharge

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Albarran, Manuel Jaime; Krever, Marcos Paulo Souza [Braskem, Sao Paulo, SP (Brazil)

    2009-07-01

    To compute the power and the thermodynamic performance in a steam turbine with condensation, it is necessary to know the quality of the steam in the turbine discharge and, information of process variables that permit to identifying with high precision the enthalpy of saturated steam. This paper proposes to install an operational device that will expand the steam from high pressure point on the shell turbine to atmosphere, both points with measures of pressure and temperature. Arranging these values on the Mollier chart, it can be know the steam quality value and with this data one can compute the enthalpy value of saturated steam. With the support of this small instrument and using the ASME correlations to determine the equilibrium temperature and knowing the discharge pressure in the inlet of surface condenser, the absolute enthalpy of the steam discharge can be computed with high precision and used to determine the power and thermodynamic efficiency of the turbine. (author)

  14. Summary of Investigations of the Use of Modified Turbine Inlet Conditions in a Binary Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mines, Gregory Lee

    2000-09-01

    Investigators at the Idaho National Engineering and Environmental Laboratory (INEEL) are developing technologies that will enhance the feasibility of generating electrical power from a hydrothermal resource. One of the concepts investigated is the use of modified inlet conditions in geothermal binary power plant turbines to increase the power generation. An inlet condition of interest allows the expanding vapor to enter the two-phase region, a mode of operation typically avoided because of concern that condensate would form and damage the turbine, degrading performance. INEEL investigators postulated that initially a supersaturated vapor would be supported, and that no turbine damage would occur. This paper summarizes the investigation of these expansions that began with testing of their condensation behavior, and culminated with the incorporation of these expansions into the operation of several commercial binary plant turbines.

  15. Simulation and Parametric Analysis of a Hybrid SOFC-Gas Turbine Power Generation System

    International Nuclear Information System (INIS)

    Hassan, A.M.; Fahmy

    2004-01-01

    Combined SOFC-Gas Turbine Power Generation Systems are aimed to increase the power and efficiency obtained from the technology of using high temperature fuel cells by integrating them with gas turbines. Hybrid systems are considered in the last few years as one of the most promising technologies to obtain electric energy from the natural gas at very high efficiency with a serious potential for commercial use. The use of high temperature allows internal reforming for natural gas and thus disparity of fuel composition is allowed. Also air preheating is performed thanks to the high operating cell temperature as a task of energy integration. In this paper a modeling approach is presented for the fuel cell-gas turbine hybrid power generation systems, to obtain the sofc output voltage, power, and the overall hybrid system efficiency. The system has been simulated using HYSYS, the process simulation software to help improving the process understanding and provide a quick system solution. Parametric analysis is also presented in this paper to discuss the effect of some important SOFC operating parameters on the system performance and efficiency

  16. Thermal performance test for steam turbine of nuclear power plants

    International Nuclear Information System (INIS)

    Bu Yubing; Xu Zongfu; Wang Shiyong

    2014-01-01

    Through study of steam turbine thermal performance test of CPR1000 nuclear power plant, we solve the enthalpy calculation problems of the steam turbine in wet steam zone using heat balance method which can help to figure out the real overall heat balance diagram for the first time, and we develop a useful software for thermal heat balance calculation. Ling'ao phase II as an example, this paper includes test instrument layout, system isolation, risk control, data acquisition, wetness measurement, heat balance calculation, etc. (authors)

  17. Dynamics and control modeling of the closed-cycle gas turbine (GT-HTGR) power plant

    International Nuclear Information System (INIS)

    Bardia, A.

    1980-02-01

    The simulation if presented for the 800-MW(e) two-loop GT-HTGR plant design with the REALY2 transient analysis computer code, and the modeling of control strategies called for by the inherently unique operational requirements of a multiple loop GT-HTGR is described. Plant control of the GT-HTGR is constrained by the nature of its power conversion loops (PCLs) in which the core cooling flow and the turbine flow are directly related and thus changes in flow affect core cooling as well as turbine power. Additionally, the high thermal inertia of the reactor core precludes rapid changes in the temperature of the turbine inlet flow

  18. Through wall degradation problem of the turbine extraction steam drain piping due to liquid drop impingement and measures taken for this problem at Fukushima Dai-ichi Nuclear Power Plant Unit 6

    International Nuclear Information System (INIS)

    Inagaki, Takeyuki; Kobayashi, Teruaki; Shimada, Shigeru; Inoue, Ryousuke; Usuba, Satoshi; Kimura, Takeo

    2011-01-01

    Through wall degradation was found on the extraction steam drain piping of Unit 6 of Fukushima Dai-ichi Nuclear Power Plant owned by Tokyo Electric Power Company after replacement of the turbine rotors with those of higher thermal efficiency. The mechanism of this degradation was loss of material due to liquid drop impingement. Since the estimated life time of the piping based on wall thickness measurements before the replacement was at least 9 years, the rapid wall thinning occurred after the replacement. This paper describes a summary of the phenomenon, its degradation mechanism and root cause, a temporary measurement taken for an immediate action and permanent measures taken during the next refueling outage. (author)

  19. Power Plants, Steam and Gas Turbines WebQuest

    Science.gov (United States)

    Ulloa, Carlos; Rey, Guillermo D.; Sánchez, Ángel; Cancela, Ángeles

    2012-01-01

    A WebQuest is an Internet-based and inquiry-oriented learning activity. The aim of this work is to outline the creation of a WebQuest entitled "Power Generation Plants: Steam and Gas Turbines." This is one of the topics covered in the course "Thermodynamics and Heat Transfer," which is offered in the second year of Mechanical…

  20. Innovative multi rotor wind turbine designs

    Energy Technology Data Exchange (ETDEWEB)

    Kale, S.A.; Sapali, S.N. [College of Engineering. Mechanical Engineering Dept, Pune (India)

    2012-07-01

    Among the renewable energy sources, today wind energy is the most recognized and cost effective. Developers and researchers in this sector are optimistic and continuously working innovatively to improve the technology. The wind power obtained is proportional to the swept area of wind turbine. The swept area is increased by using a single rotor of large diameter or multi rotors in array. The rotor size is growing continuously with mature technology. Multi rotor technology has a long history and the multi rotor concept persists in a variety of modern innovative systems but the concept has fallen out of consideration in mainstream design from the perception that is complex and unnecessary as very large single rotor units are now technically feasible. This work addresses the evaluation of different multi rotor wind turbine systems. These innovative wind turbines are evaluated on the basis of feasibility, technological advantages, security of expected power performance, cost, reliability, impact of innovative system, comparison with existing wind turbine design. The findings of this work will provide guidelines for the practical and economical ways for further research on the multi rotor wind turbines. (Author)

  1. Integrated turbine bypass system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.H.; Dickenson, R.J.; Parry, W.T.; Retzlaff, K.M.

    1982-07-01

    Turbine steam-flow bypasses have been used for years in various sizes and applications. Because of differing system requirements, their use has been more predominant in Europe than in the United States. Recently, some utilities and consulting engineers have been re-evaluating their need for various types of bypass operation in fossil-fuelled power plants.

  2. Basic investigation on promotion of joint implementation in fiscal 2000. Efficiency improvement project for gas turbine power plant in Iran; 2000 nendo kyodo jisshi nado suishin kiso chosa hokokusho. Iran gas turbine hatsuden plant no koritsu kaizen project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Investigations and discussions have been given on measures to improve energy conservation and efficiency at a power plant of Kish Water and Power Company (KWPC) in Iran. The site has high ambient temperature throughout a year, making the gas turbine power plant capable of generating power only at about 70% of the rated output, with the power generation efficiency decreasing. The project has analyzed the current situation at the plant, and evaluated different means that appear effective in improving the efficiency, including the gas turbine absorbed air cooling system, the steam injection system, and the combined cycle. As a result of the discussions, it was revealed that energy saving effect can be obtained at 145 TJ with the gas turbine absorbed air cooling system, 224 TJ with the steam injection system, and 1017 TJ with the combined cycle. The annual reduction of greenhouse gas emission due to the above energy conservation would be about 11 thousand tons, 16.5 thousand tons, and 75 thousand tons, respectively. However, the investment payback period would be about 2.45 years, 8.31 years, and 14.21 years, respectively. Therefore, the profitability does not appear very attractive because of low fuel unit cost. (NEDO)

  3. The marriage of gas turbines and coal

    International Nuclear Information System (INIS)

    Bajura, R.A.; Webb, H.A.

    1991-01-01

    This paper reports on developing gas turbine systems that can use coal or a coal-based fuel ensures that the United States will have cost-effective environmentally sound options for supplying future power generation needs. Power generation systems that marry coal or a coal-based fuel to a gas turbine? Some matchmakers would consider this an unlikely marriage. Historically, most gas turbines have been operated only on premium fuels, primarily natural gas or distillate oil. The perceived problems from using coal or coal-based fuels in turbines are: Erosion and deposition: Coal ash particles in the hot combustion gases passing through the expander turbine could erode or deposit on the turbine blades. Corrosion: Coal combustion will release alkali compounds form the coal ash. Alkali in the hot gases passing through the expander turbine can cause corrosion of high-temperature metallic surfaces. Emissions: coal contains higher levels of ash, fuel-bound sulfur and nitrogen compounds, and trace contaminants than premium fuels. Meeting stringent environmental regulations for particulates, sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and trace contaminants will be difficult. Economics: Coal-based systems are expensive to build. The difference in price between coal and premium fuels must be large enough to justify the higher capital cost

  4. Steam turbine controls and their integration into power plants

    International Nuclear Information System (INIS)

    Kure-Jensen, J.; Hanisch, R.

    1989-01-01

    The main functions of a modern steam turbine control system are: speed and acceleration control during start-up; initialization of generator excitation; synchronization and application of load; pressure control of various forms: inlet, extraction backpressure, etc.; unloading and securing of the turbine; sequencing of the above functions under constraint of thermal stress overspeed protection during load rejection and emergencies; protection against serious hazards, e.g., loss of oil pressure, high bearing vibration; and testing of valves and vitally important protection functions. It is characteristic of the first group of functions that they must be performed with high control bandwidth, or very high reliability, or both, to ensure long-term satisfactory service of the turbine. It is for these reasons that GE has, from the very beginning of the technology, designed and provided the controls and protection for its units, starting with mechanical and hydraulic devices and progressing to analog electrohydraulic systems introduced in the 1960s, and now continuing with all-digital electrohydraulic systems

  5. Gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Farahan, E.; Eudaly, J.P.

    1978-10-01

    This evaluation provides performance and cost data for commercially available simple- and regenerative-cycle gas turbines. Intercooled, reheat, and compound cycles are discussed from theoretical basis only, because actual units are not currently available, except on a special-order basis. Performance characteristics investigated include unit efficiency at full-load and off-design conditions, and at rated capacity. Costs are tabulated for both simple- and regenerative-cycle gas turbines. The output capacity of the gas turbines investigated ranges from 80 to 134,000 hp for simple units and from 12,000 to 50,000 hp for regenerative units.

  6. A modeling and control approach to advanced nuclear power plants with gas turbines

    International Nuclear Information System (INIS)

    Ablay, Günyaz

    2013-01-01

    Highlights: • Load frequency control strategies in nuclear plants are researched. • Nuclear reactor-centered control system may not be suitable for load control. • Local unit controllers improve stability and overall time constant. • Coolant loops in nuclear plants should be controlled locally. - Abstract: Advanced nuclear power plants are currently being proposed with a number of various designs. However, there is a lack of modeling and control strategies to deal with load following operations. This research investigates a possible modeling approach and load following control strategy for gas turbine nuclear power plants in order to provide an assessment way to the concept designs. A load frequency control strategy and average temperature control mechanism are studied to get load following nuclear power plants. The suitability of the control strategies and concept designs are assessed through linear stability analysis methods. Numerical results are presented on an advanced molten salt reactor concept as an example nuclear power plant system to demonstrate the validity and effectiveness of the proposed modeling and load following control strategies

  7. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, A.; Jauch, Clemens; Soerensen, P.

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...

  8. A large capacity turbine generator for nuclear power generation

    International Nuclear Information System (INIS)

    Maeda, Susumu; Miki, Takahiro; Suzuki, Kazuichi

    2000-01-01

    In future large capacity nuclear power plant, capacity of a generator to be applied will be 1800 MVA of the largest class in the world. In response to this, the Mitsubishi Electric Co., Ltd. began to carry out element technology verification of a four-pole large capacity turbine generator mainly using upgrading technique of large capacity, since 1994 fiscal year. And, aiming at reliability verification of the 1800 MVA class generator, a model generator with same cross-section as that of an actual one was manufactured, to carry out some verifications on its electrified tests, and so on. Every performance evaluation result of tests on the model generator were good, and high reliability to design and manufacturing technique of the 1800 MVA class generator could be verified. In future, on the base of these technologies, further upgrading of reliability on the large capacity turbine generator for nuclear power generation is intended to be carried out. (G.K.)

  9. Energetic and exergetic analysis of a steam turbine power plant in an existing phosphoric acid factory

    International Nuclear Information System (INIS)

    Hafdhi, Fathia; Khir, Tahar; Ben Yahyia, Ali; Ben Brahim, Ammar

    2015-01-01

    Highlights: • The operating mode of the factory and the power supply streams are presented. • Energetic Analysis of steam turbine power plant of an existing phosphoric acid factory. • Exergetic Analysis of each component of steam turbine power plant and the different heat recovery system. • Energy, exergy efficiency and irreversibility rates for the main components are determined. • The effect of the operating parameters on the plant performance are analyzed. - Abstract: An energetic and exergetic analysis is conducted on a Steam Turbine Power Plant of an existing Phosphoric Acid Factory. The heat recovery systems used in the different parts of the plant are also considered in the study. Mass, energy and exergy balances are established on the main compounds of the plant. A numerical code is established using EES software to perform the calculations required for the thermal and exergy plant analysis considering real variation ranges of the main operating parameters such as pressure, temperature and mass flow rate. The effects of theses parameters on the system performances are investigated. The main sources of irreversibility are the melters, followed by the heat exchangers, the steam turbine generator and the pumps. The maximum energy efficiency is obtained for the blower followed by the heat exchangers, the deaerator and the steam turbine generator. The exergy efficiency obtained for the heat exchanger, the steam turbine generator, the deaerator and the blower are 88%, 74%, 72% and 66% respectively. The effects of High Pressure steam temperature and pressure on the steam turbine generator energy and exergy efficiencies are investigated.

  10. The influence of turbulence and vertical wind profile in wind turbine power curve

    Energy Technology Data Exchange (ETDEWEB)

    Honrubia, A.; Gomez-Lazaro, E. [Castilla-La Mancha Univ., Albacete (Spain). Renewable Energy Research Inst.; Vigueras-Rodriguez, A. [Albacete Science and Technolgy Park, Albacete (Spain)

    2012-07-01

    To identify the influence of turbulence and vertical wind profile in wind turbine performance, wind speed measurements at different heights have been performed. Measurements have been developed using a cup anemometer and a LIDAR equipment, specifically a pulsed wave one. The wind profile has been recorded to study the effect of the atmospheric conditions over the energy generated by a wind turbine located close to the LIDAR system. The changes in the power production of the wind turbine are relevant. (orig.)

  11. The modernization potential of gas turbines in the coal-fired power industry thermal and economic effectiveness

    CERN Document Server

    Bartnik, Ryszard

    2013-01-01

    The opportunity of repowering the existing condensing power stations by means of  gas turbogenerators offers an important opportunity to considerably improvement of their energy efficiency. The Modernization Potential of Gas turbines in the Coal-Fired Power Industry presents the methodology, calculation procedures and tools used to support enterprise planning for adapting power stations to dual-fuel gas-steam combined-cycle technologies. Both the conceptual and practical aspects of the conversion of existing coal-fired power plants is covered. Discussions of the feasibility, advantages and disadvantages and possible methods are supported by chapters presenting equations of energy efficiency for the conditions of repowering a power unit by installing a gas turbogenerator in a parallel system and the results of technical calculations involving the selection heating structures of heat recovery steam generators. A methodology for analyzing thermodynamic and economic effectiveness for the selection of a structure...

  12. Dynamic wind turbine models in power system simulation tool DIgSILENT

    OpenAIRE

    Hansen, A.D.; Jauch, C.; Sørensen, Poul Ejnar; Iov, F.; Blaabjerg, F.

    2004-01-01

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT (Version 12.0). The developed models are a part of the results of a national research project, whose overall objective is to create amodel database in different simulation tools. This model database should be able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The repo...

  13. Correlation of operating parameters on turbine shaft vibrations

    Science.gov (United States)

    Dixit, Harsh Kumar; Rajora, Rajeev

    2016-05-01

    The new generation of condition monitoring and diagnostics system plays an important role in efficient functioning of power plants. In most of the rotating machine, defects can be detected by such a system much before dangerous situation occurs. It allows the efficient use of stationary on-line continuous monitoring system for condition monitoring and diagnostics as well. Condition monitoring of turbine shaft can not only reduce expenses of maintenance of turbo generator of power plants but also prevents likely shutdown of plant, thereby increases plant load factor. Turbo visionary parameters are essential part of health diagnosis system of turbo generator. Particularly steam pressure, steam temperature and lube oil temperature are important parameters to monitor because they are having much influence on turbine shaft vibration and also governing systems are available for change values of those parameters. This paper includes influence of turbo visionary parameters i.e., steam temperature, steam pressure, lube oil temperature, turbine speed and load on turbine shaft vibration at turbo generator at 195 MW unit-6,Kota Super Thermal Power Station by measuring vibration amplitude and analyze them in MATLAB.

  14. Experimental and Numerical Simulations Predictions Comparison of Power and Efficiency in Hydraulic Turbine

    Directory of Open Access Journals (Sweden)

    Laura Castro

    2011-01-01

    Full Text Available On-site power and mass flow rate measurements were conducted in a hydroelectric power plant (Mexico. Mass flow rate was obtained using Gibson's water hammer-based method. A numerical counterpart was carried out by using the commercial CFD software, and flow simulations were performed to principal components of a hydraulic turbine: runner and draft tube. Inlet boundary conditions for the runner were obtained from a previous simulation conducted in the spiral case. The computed results at the runner's outlet were used to conduct the subsequent draft tube simulation. The numerical results from the runner's flow simulation provided data to compute the torque and the turbine's power. Power-versus-efficiency curves were built, and very good agreement was found between experimental and numerical data.

  15. SNUPPS power block engineering

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, C A [Bechtel Power Corp., San Francisco, Calif. (USA)

    1975-11-01

    The Standard Power Block is based on a modular concept and consists of the following: turbine building, auxiliary building, fuel building, control building, radwaste building, diesel generators building, and outside storage tanks and transformers. Each power block unit includes a Westinghouse pressurized water reactor and has a thermal power rating of 3425 MW(t). The corresponding General Electric turbine generator net electrical output is 1188 MW(e). This standardization approach results in not only a reduction in the costs of engineering, licensing, procurement, and project planning, but should also result in additional savings by the application of experience gained in the construction of the first unit to the following units and early input of construction data to design.

  16. Improvement of Steam Turbine Operational Performance and Reliability with using Modern Information Technologies

    Science.gov (United States)

    Brezgin, V. I.; Brodov, Yu M.; Kultishev, A. Yu

    2017-11-01

    The report presents improvement methods review in the fields of the steam turbine units design and operation based on modern information technologies application. In accordance with the life cycle methodology support, a conceptual model of the information support system during life cycle main stages (LC) of steam turbine unit is suggested. A classifying system, which ensures the creation of sustainable information links between the engineer team (manufacture’s plant) and customer organizations (power plants), is proposed. Within report, the principle of parameterization expansion beyond the geometric constructions at the design and improvement process of steam turbine unit equipment is proposed, studied and justified. The report presents the steam turbine unit equipment design methodology based on the brand new oil-cooler design system that have been developed and implemented by authors. This design system combines the construction subsystem, which is characterized by extensive usage of family tables and templates, and computation subsystem, which includes a methodology for the thermal-hydraulic zone-by-zone oil coolers design calculations. The report presents data about the developed software for operational monitoring, assessment of equipment parameters features as well as its implementation on five power plants.

  17. The prediction of the hydrodynamic performance of tidal current turbines

    International Nuclear Information System (INIS)

    Xiao, B Y; Zhou, L J; Xiao, Y X; Wang, Z W

    2013-01-01

    Nowadays tidal current energy is considered to be one of the most promising alternative green energy resources and tidal current turbines are used for power generation. Prediction of the open water performance around tidal turbines is important for the reason that it can give some advice on installation and array of tidal current turbines. This paper presents numerical computations of tidal current turbines by using a numerical model which is constructed to simulate an isolated turbine. This paper aims at studying the installation of marine current turbine of which the hydro-environmental impacts influence by means of numerical simulation. Such impacts include free-stream velocity magnitude, seabed and inflow direction of velocity. The results of the open water performance prediction show that the power output and efficiency of marine current turbine varies from different marine environments. The velocity distribution should be clearly and the suitable unit installation depth and direction be clearly chosen, which can ensure the most effective strategy for energy capture before installing the marine current turbine. The findings of this paper are expected to be beneficial in developing tidal current turbines and array in the future

  18. On economic efficiency of nuclear power unit life extension using steam-gas topping plant

    International Nuclear Information System (INIS)

    Kuznetsov, Y.N.; Lisitsa, F.D.; Smirnov, V.G.

    2001-01-01

    The different options for life extension of the operating nuclear power units have been analyzed in the report with regard for their economic efficiency. A particular attention is given to the option envisaging the reduction of reactor power output and its subsequent compensation with a steam-gas topping plant. Steam generated at its heat-recovery boilers is proposed to be used for the additional loading of the nuclear plant turbine so as to reach its nominal output. It would be demonstrated that the implementation of this option allows to reduce total costs in the period of power plant life extension by 24-29% as compared with the alternative use of the replacing steam-gas unit and the saved resources could be directed, for instance, for decommissioning of a reactor facility. (authors)

  19. Simulation of a heavy-duty diesel engine with electrical turbocompounding system using operating charts for turbocharger components and power turbine

    International Nuclear Information System (INIS)

    Katsanos, C.O.; Hountalas, D.T.; Zannis, T.C.

    2013-01-01

    Highlights: • A diesel model was developed using charts for turbocharger and power turbine. • The maximum value of bsfc improvement is 4.1% at 100% engine load. • The generated electric power ranges from 23 kW to 62 kW. • Turbocharger turbine efficiency decreases slightly with the power turbine speed. • Turbocompounding increases the average pressure value in the exhaust manifold. - Abstract: In diesel engines, approximately 30–40% of the energy supplied by the fuel is rejected to the ambience through exhaust gases. Therefore, there is a potentiality for further considerable increase of diesel engine efficiency with the utilization of exhaust gas heat and its conversion to mechanical or electrical energy. In the present study, the operational behavior of a heavy-duty (HD) diesel truck engine equipped with an electric turbocompounding system is examined on a theoretical basis. The electrical turbocompounding configuration comprised of a power turbine coupled to an electric generator, which is installed downstream to the turbocharger (T/C) turbine. A diesel engine simulation model has been developed using operating charts for both turbocharger and power turbine. A method for introducing the operating charts into the engine model is described thoroughly. A parametric analysis is conducted with the developed simulation tool, where the varying parameter is the rotational speed of power turbine shaft. In this study, the interaction between the power turbine and the turbocharged diesel engine is examined in detail. The effect of power turbine speed on T/C components efficiencies, power turbine efficiency, exhaust pressure and temperature, engine boost pressure and air to fuel ratio is evaluated. In addition, theoretical results for the potential impact of electrical turbocompounding on the generated electric power, net engine power and relative improvement of brake specific fuel consumption (bsfc) are provided. The critical evaluation of the theoretical

  20. Small Horizontal Axis Wind Turbine under High Speed Operation: Study of Power Evaluation

    Science.gov (United States)

    Moh. M. Saad, Magedi; Mohd, Sofian Bin; Zulkafli, Mohd Fadhli Bin; Abdullah, Aslam Bin; Rahim, Mohammad Zulafif Bin; Subari, Zulkhairi Bin; Rosly, Nurhayati Binti

    2017-10-01

    Mechanical energy is produced through the rotation of wind turbine blades by air that convert the mechanical energy into electrical energy. Wind turbines are usually designed to be use for particular applications and design characteristics may vary depending on the area of use. The variety of applications is reflected on the size of turbines and their infrastructures, however, performance enhancement of wind turbine may start by analyzing the small horizontal axis wind turbine (SHAWT) under high wind speed operation. This paper analyzes the implementations of SHAWT turbines and investigates their performance in both simulation and real life. Depending on the real structure of the rotor geometry and aerodynamic test, the power performance of the SHAWT was simulated using ANSYS-FLUENT software at different wind speed up to 33.33 m/s (120km/h) in order to numerically investigate the actual turbine operation. Dynamic mesh and user define function (UDF) was used for revolving the rotor turbine via wind. Simulation results were further validated by experimental data and hence good matching was yielded. And for reducing the energy producing cost, car alternator was formed to be used as a small horizontal wind turbine. As a result, alternator-based turbine system was found to be a low-cost solution for exploitation of wind energy.

  1. Thermodynamic simulation of a multi-step externally fired gas turbine powered by biomass

    International Nuclear Information System (INIS)

    Durante, A.; Pena-Vergara, G.; Curto-Risso, P.L.; Medina, A.; Calvo Hernández, A.

    2017-01-01

    Highlights: • A realistic model for an EFGT fueled with solid biomass is presented. • Detailed submodels for the HTHE and the chemical reactions are incorporated. • An arbitrary number of compression and expansion stages is considered. • Model validation leads to good agreement with experimental results. • A layout with two-stage compression leads to good efficiencies and power output. - Abstract: A thermodynamic model for a realistic Brayton cycle, working as an externally fired gas turbine fueled with biomass is presented. The use of an external combustion chamber, allows to burn dirty fuels to preheat pure air, which is the working fluid for the turbine. It also avoids direct contact of ashes with the turbine blades, resulting in a higher life cycle for the turbine. The model incorporates a high temperature heat exchanger and an arbitrary number of turbines and compressors, with the corresponding number of intercoolers and reheaters. It considers irreversibilities such as non-isentropic compressions and expansions, and pressure losses in heat input and release. The composition and temperature of the combustion gases, as well as the variable flow rate of air and combustion gases, are calculated for specific biomasses. The numerical model for a single stage configuration has been validated by comparing its predictions with the data sheets of two commercial turbines. Results are in good agreement. Curves on the dependence of thermal efficiency and power output with the overall pressure ratio will be shown for several plant configurations with variable number of compression/expansion stages. Also the influence of different types of biomasses and their moisture will be analyzed on parameters such as fuel consumption and exhaust gases temperature. For a single step plant layout fueled with eucalyptus wood an efficiency of 23% is predicted, whereas for a configuration with two compressors and one turbine efficiency increases up to 25%. But it is remarkable

  2. Development and performance measurement of micro-power pack using micro-gas turbine driven automotive alternators

    International Nuclear Information System (INIS)

    Sim, Kyuho; Koo, Bonjin; Kim, Chang Ho; Kim, Tae Ho

    2013-01-01

    Highlights: ► We develop micro-power pack using automotive alternator and micro-gas turbine. ► We measure rotordynamic and power generation performance of micro-power pack. ► Micro-power pack shows dramatic increases in mass and volumetric power densities. ► Test results assure feasibility of micro-power pack for electric vehicles. -- Abstract: This paper presents the development of a micro-power pack using automotive alternators powered by a micro-gas turbine (MGT) to recharge battery packs, in particular for electric vehicles (EVs). The thermodynamic efficiency for the MGT with the power turbine is estimated from a simple Brayton cycle analysis. The rotordynamic and power generation performance of the MGT driven alternator was measured during a series of experiments under electrical no-loading and loading conditions, and with belt-pulley and flexible bellows couplings. The flexible coupling showed superior rotordynamic and power generation performance than the belt coupling due to the enhanced alignment of the alternator rotor and the reduced mechanical frictions. Furthermore, the micro-power pack showed dramatic increases in the mass and volumetric power densities by ∼4 times and ∼5 times, respectively, compared with those of a commercial diesel generator with similar power level. As a result, this paper assures the feasibility of the light-weight micro-power pack using a MGT and automotive alternators for EVs.

  3. Prospects of power conversion technology of direct-cycle helium gas turbine for MHTGR

    International Nuclear Information System (INIS)

    Li Yong; Zhang Zuoyi

    1999-01-01

    The modular high temperature gas cooled reactor (MHTGR) is a modern passively safe reactor. The reactor and helium gas turbine may be combined for high efficiency's power conversion, because MHTGR has high outlet temperature up to 950 degree C. Two different schemes are planed separately by USA and South Africa. the helium gas turbine methodologies adopted by them are mainly based on the developed heavy duty industrial and aviation gas turbine technology. The author introduces the differences of two technologies and some design issues in the design and manufacture. Moreover, the author conclude that directly coupling a closed Brayton cycle gas turbine concept to the passively safe MHTGR is the developing direction of MHTGR due to its efficiency which is much higher than that of using steam turbine

  4. Development and improvement of the operating diagnostics systems of NPO CKTI works for turbine of thermal and nuclear power plants

    Science.gov (United States)

    Kovalev, I. A.; Rakovskii, V. G.; Isakov, N. Yu.; Sandovskii, A. V.

    2016-03-01

    The work results on the development and improvement of the techniques, algorithms, and software-hardware of continuous operating diagnostics systems of rotating units and parts of turbine equipment state are presented. In particular, to ensure the full remote service of monitored turbine equipment using web technologies, the web version of the software of the automated systems of vibration-based diagnostics (ASVD VIDAS) was developed. The experience in the automated analysis of data obtained by ASVD VIDAS form the basis of the new algorithm of early detection of such dangerous defects as rotor deflection, crack in the rotor, and strong misalignment of supports. The program-technical complex of monitoring and measuring the deflection of medium pressure rotor (PTC) realizing this algorithm will alert the electric power plant staff during a deflection and indicate its value. This will give the opportunity to take timely measures to prevent the further extension of the defect. Repeatedly, recorded cases of full or partial destruction of shrouded shelves of rotor blades of the last stages of low-pressure cylinders of steam turbines defined the need to develop a version of the automated system of blade diagnostics (ASBD SKALA) for shrouded stages. The processing, analysis, presentation, and backup of data characterizing the mechanical state of blade device are carried out with a newly developed controller of the diagnostics system. As a result of the implementation of the works, the diagnosed parameters determining the operation security of rotating elements of equipment was expanded and the new tasks on monitoring the state of units and parts of turbines were solved. All algorithmic solutions and hardware-software implementations mentioned in the article were tested on the test benches and applied at some power plants.

  5. Robust control of speed and temperature in a power plant gas turbine.

    Science.gov (United States)

    Najimi, Ebrahim; Ramezani, Mohammad Hossein

    2012-03-01

    In this paper, an H(∞) robust controller has been designed for an identified model of MONTAZER GHAEM power plant gas turbine (GE9001E). In design phase, a linear model (ARX model) which is obtained using real data has been applied. Since the turbine has been used in a combined cycle power plant, its speed and also the exhaust gas temperature should be adjusted simultaneously by controlling fuel signals and compressor inlet guide vane (IGV) position. Considering the limitations on the system inputs, the aim of the control is to maintain the turbine speed and the exhaust gas temperature within desired interval under uncertainties and load demand disturbances. Simulation results of applying the proposed robust controller on the nonlinear model of the system (NARX model), fairly fulfilled the predefined aims. Simulations also show the improvement in the performance compared to MPC and PID controllers for the same conditions. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Design of a hybrid battery charger system fed by a wind-turbine and photovoltaic power generators.

    Science.gov (United States)

    Chang Chien, Jia-Ren; Tseng, Kuo-Ching; Yan, Bo-Yi

    2011-03-01

    This paper is aimed to develop a digital signal processor (DSP) for controlling a solar cell and wind-turbine hybrid charging system. The DSP consists of solar cells, a wind turbine, a lead acid battery, and a buck-boost converter. The solar cells and wind turbine serve as the system's main power sources and the battery as an energy storage element. The output powers of solar cells and wind turbine have large fluctuations with the weather and climate conditions. These unstable powers can be adjusted by a buck-boost converter and thus the most suitable output powers can be obtained. This study designs a booster by using a dsPIC30F4011 digital signal controller as a core processor. The DSP is controlled by the perturbation and observation methods to obtain an effective energy circuit with a full 100 W charging system. Also, this DSP can, day and night, be easily controlled and charged by a simple program, which can change the state of the system to reach a flexible application based on the reading weather conditions.

  7. Brief communication: On the influence of vertical wind shear on the combined power output of two model wind turbines in yaw

    Directory of Open Access Journals (Sweden)

    J. Schottler

    2017-08-01

    Full Text Available The effect of vertical wind shear on the total power output of two aligned model wind turbines as a function of yaw misalignment of the upstream turbine is studied experimentally. It is shown that asymmetries of the power output of the downstream turbine and the combined power of both with respect to the upstream turbine's yaw misalignment angle can be linked to the vertical wind shear of the inflow.

  8. Utilization and mitigation of VAM/CMM emissions by a catalytic combustion gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K.; Yoshino, Y.; Kashihara, H. [Kawasaki Heavy Industries Ltd., Hyougo (Japan); Kajita, S.

    2013-07-01

    A system configured with a catalytic combustion gas turbine generator unit is introduced. The system has been developed using technologies produced by Kawasaki Heavy Industries, Ltd., such as small gas turbines, recuperators and catalytic combustors, and catalytic oxidation units which use exhaust heat from gas turbines. The system combusts (oxidizes) ventilation air methane (less than 1% concentration) and low concentration coal mine methane (30% concentration or less) discharged as waste from coal mines. Thus, it cannot only reduce the consumption of high- quality fuel for power generation, but also mitigate greenhouse gas emissions.

  9. The Parameters Affect on Power Coefficient Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Ahmed Y. Qasim

    2012-04-01

    Full Text Available ABSTRACT: This study describes the design of a special type of vertical axis rotor wind turbine with moveable vertically positioned vanes. The novel design increases the torque in the left side of the wind turbine by increasing the drag coefficient. It also reduces the negative torque of the frame which rotates contrary to the wind in the other side. Two different types of models, having different vane shapes (flat vane and cavity shaped vane, were fabricated. Each type consisted of two models with varying number of frames (three and four frames. The models were tested in a wind tunnel with variable wind speed in order to understand the effect of shape, weight, and number of frames on the power coefficient of the wind turbine. ABSTRAK: Di dalam kajian ini, rotor turbin angin berpaksi vertikel sebagai rangka khusus telah direkabentuk dengan lokasi vertikel mudahalih oleh bilah kipas. Rekabentuk ini meningkatkan tork di bahagian kiri turbin angin dengan meningkatkan pekali seretan dan mengurangkan tork negatif rangka yang berputar berlawanan dengan angin pada bahagian lain. Dua jenis model berbentuk berlainan telah difabrikasi (bilah kipas rata dan bilah kipas berbentuk kaviti, dengan setiap jenis mempunyai dua model dengan bilangan rangka yang berlainan (berangka tiga dan berangka empat. Model-model telah diuji di dalam terowong angin dengan kelajuan angin yang berbeza bagi mendapatkan kesan rekabentuk, berat dan bilangan rangka ke atas pekali kuasa.KEYWORDS: design; wind turbine; drag coefficient; vane

  10. Solid Oxide Fuel Cell/Turbine Hybrid Power System for Advanced Aero-propulsion and Power, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Solid oxide fuel cell (SOFC)/ gas turbine hybrid power systems (HPSs) have been recognized by federal agencies and other entities as having the potential to operate...

  11. Optimal coordinated scheduling of combined heat and power fuel cell, wind, and photovoltaic units in micro grids considering uncertainties

    International Nuclear Information System (INIS)

    Bornapour, Mosayeb; Hooshmand, Rahmat-Allah; Khodabakhshian, Amin; Parastegari, Moein

    2016-01-01

    In this paper, a stochastic model is proposed for coordinated scheduling of combined heat and power units in micro grid considering wind turbine and photovoltaic units. Uncertainties of electrical market price; the speed of wind and solar radiation are considered using a scenario-based method. In the method, scenarios are generated using roulette wheel mechanism based on probability distribution functions of input random variables. Using this method, the probabilistic specifics of the problem are distributed and the problem is converted to a deterministic one. The type of the objective function, coordinated scheduling of combined heat and power, wind turbine, and photovoltaic units change this problem to a mixed integer nonlinear one. Therefore to solve this problem modified particle swarm optimization algorithm is employed. The mentioned uncertainties lead to an increase in profit. Moreover, the optimal coordinated scheduling of renewable energy resources and thermal units in micro grids increase the total profit. In order to evaluate the performance of the proposed method, its performance is executed on modified 33 bus distributed system as a micro grid. - Highlights: • Stochastic model is proposed for coordinated scheduling of renewable energy sources. • The effect of combined heat and power is considered. • Maximizing profits of micro grid is considered as objective function. • Considering the uncertainties of problem lead to profit increasing. • Optimal scheduling of renewable energy sources and thermal units increases profit.

  12. Power quality issues of 3MW direct-driven PMSG wind turbine

    OpenAIRE

    Ahmed, IA; Zobaa, AF; Taylor, GA

    2015-01-01

    This paper presents power quality issues of a grid connected wind generation system with a MW-class direct-driven permanent magnet synchronous generator (PMSG). A variable speed wind turbine model was simulated and developed with the simulation tool of PSCAD/EMTDC. The model includes a wind turbine with one mass-model drive train model, a PMSG model and a full-scale voltage source back to back PWM converter. The converter controller model is employed in the dq-synchronous rotating reference f...

  13. Effect of accuracy of wind power prediction on power system operator

    Science.gov (United States)

    Schlueter, R. A.; Sigari, G.; Costi, T.

    1985-01-01

    This research project proposed a modified unit commitment that schedules connection and disconnection of generating units in response to load. A modified generation control is also proposed that controls steam units under automatic generation control, fast responding diesels, gas turbines and hydro units under a feedforward control, and wind turbine array output under a closed loop array control. This modified generation control and unit commitment require prediction of trend wind power variation one hour ahead and the prediction of error in this trend wind power prediction one half hour ahead. An improved meter for predicting trend wind speed variation is developed. Methods for accurately simulating the wind array power from a limited number of wind speed prediction records was developed. Finally, two methods for predicting the error in the trend wind power prediction were developed. This research provides a foundation for testing and evaluating the modified unit commitment and generation control that was developed to maintain operating reliability at a greatly reduced overall production cost for utilities with wind generation capacity.

  14. Steam Turbine Materials for Ultrasupercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, R.; Hawk, J.; Schwant, R.; Saha, D.; Totemeier, T.; Goodstine, S.; McNally, M.; Allen, D. B.; Purgert, Robert

    2009-06-30

    The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that need to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in today's high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors

  15. The Effect of Deflector Angle in Savonius Water Turbine with Horizontal Axis on the Power Output of Water Flow in Pipe

    Science.gov (United States)

    Prasetyo, Ari; Kristiawan, Budi; Danardono, Dominicus; Hadi, Syamsul

    2018-03-01

    Savonius turbine is one type of turbines with simple design and low manufacture. However, this turbine has a relatively low efficiency. This condition can be solved by installing fluid deflectors in the system’s circuit. The deflector is used to direct the focus of the water flow, thus increasing the torque working moment. In this study, a single stage horizontal axis Savonius water turbine was installed on a 3 inch diameter pipeline. This experiment aims to obtain optimal deflector angle design on each water discharge level. The deflector performance is analyzed through power output, TSR, and power coefficient generated by the turbine. The deflector angles tested are without deflector, 20°, 30°, 40°, and 50° with a deflector ratio of 50%. The experimental results at 10.67x10-3m3/s discharge show that turbine equipped with 30° deflector has the most optimal performance of 18.04 Watt power output, TSR of 1.12 and power coefficient 0.127. While with the same discharge, turbine without deflector produces only 9.77 Watt power output, TSR of 0.93, and power coefficient of 0.09. Thus, it can be concluded that the deflector increases power output equal to 85%.

  16. Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kim, Chunghun [Hanyang University; Chung, Chung Choo [Hanyang University

    2017-11-13

    This paper proposes a coordinated control of wind turbine and energy storage system (ESS). Because wind power (WP) is highly dependent on variable wind speed and could induce a severe stability problem to power system especially when the WP has high penetration level. To solve this problem, many power generation corporations or grid operators recently use the ESS. It has very quick response and good performance for reducing the impact of WP fluctuation but has high cost for its installation. Therefore, it is very important to design the control algorithm considering both ESS capacity and grid reliability. Thus, we propose the control algorithm to mitigate the WP fluctuation by using the coordinated control between wind turbine and ESS considering ESS state of charge (SoC) and the WP fluctuation. From deloaded control according to WP fluctuation and ESS SoC management, we can expect the ESS lifespan expansion and improved grid reliability. The effectiveness of the proposed method is validated in MATLAB/Simulink considering power system including both wind turbine generator and conventional generators which react to system frequency deviation.

  17. Analysis of Power Enhancement for a Row of Wind Turbines Using the Actuator Line Technique

    International Nuclear Information System (INIS)

    Mikkelsen, Robert; Soerensen, Jens N; Oeye, Stig; Troldborg, Niels

    2007-01-01

    The effect of wake interaction for a row of three wind turbines in a wind farm is analysed using the actuator line technique. Both full wake and half wake situations are considered with the aim of deriving the optimal pitch setting of the foremost turbine, with respect to the total power from the row. The mutual distance between the turbines is 5 diameters and the turbines are considered to operate in a wind shear with an exponent of 0.15, with the rotor centre located at 1.4 radii from the ground. The main findings reveal clear effects of reducing the loading on the foremost turbine towards increased production of turbine 2 and 3 in a row

  18. National Renewable Energy Laboratory program on lightning risk and wind turbine generator protection

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E. [National Renewable Energy Lab., Golden, CO (United States); McNiff, B. [McNiff Light Industry, Blue Hill, ME (United States)

    1997-12-31

    In the early development of wind turbine generators (WTG) in the United States, wind farms were primarily located in California where lightning activity is the lowest in the United States. As such, lightning protection for wind turbines was not considered to be a major issue for designers or wind farm operators. However, wind turbine installations are expanding into the Midwest, Southwest and other regions of the United States where lightning activity is significantly more intense and lightning damage to wind turbines is more common. There is a growing need, therefore, to better understand lightning activity on wind farms and to improve wind turbine lightning protection systems. In support of the U.S. Department of Energy/Electric Power Research Institute (DOE/EPRI) Utility Wind Turbine Verification Program (TVP), the National Renewable Energy Laboratory (NREL) has recently begun to take steps to determine the extent of damage due to lightning and the effectiveness of various lightning protection techniques for wind power plants. Working through the TVP program, NREL will also perform outreach and education to (1) help manufacturers to provide equipment that is adequately designed to survive lightning, (2) make sure that operators are aware of effective safety procedures, and (3) help site designers and wind farm developers take the risk of lightning into account as effectively as possible.

  19. A Feasibility Study of Power Generation from Sewage Using a Hollowed Pico-Hydraulic Turbine

    OpenAIRE

    Tomomi Uchiyama; Satoshi Honda; Tomoko Okayama; Tomohiro Degawa

    2016-01-01

    This study is concerned with the feasibility of power generation using a pico-hydraulic turbine from sewage flowing in pipes. First, the sewage flow rate at two connection points to the Toyogawa River-Basin Sewerage, Japan, was explored for over a year to elucidate the hydraulic energy potential of the sewage. Second, the performance of the pico-hydraulic turbine was investigated via laboratory experiments that supposed the turbine to be installed in the sewage pipe at the connection points. ...

  20. Effect of Blade Curvature Angle of Savonius Horizontal Axis Water Turbine to the Power Generation

    Science.gov (United States)

    Apha Sanditya, Taufan; Prasetyo, Ari; Kristiawan, Budi; Hadi, Syamsul

    2018-03-01

    The water energy is one of potential alternative in creating power generation specifically for the picohydro energy. Savonius is a kind of wind turbine which now proposed to be operated utilizing the energy from low fluid flow. Researches about the utilization of Savonius turbine have been developed in the horizontal water pipelines and wave. The testing experimental on the Savonius Horizontal Axis Water Turbine (HAWT) by observing the effect of the blade curvature angle (ψ) of 110°, 120°, 130°, and 140° at the debit of 176.4 lpm, 345 lpm, 489.6 lpm, and 714 lpm in order to know the power output was already conducted. The optimal result in every debit variation was obtained in the blade curvature angle of 120°. In the maximum debit of 714 lpm with blade curvature angle of 120° the power output is 39.15 Watt with the coefficient power (Cp) of 0.23 and tip speed ratio (TSR) of 1.075.

  1. Analysis of turbine-grid interaction of grid-connected wind turbine using HHT

    Science.gov (United States)

    Chen, A.; Wu, W.; Miao, J.; Xie, D.

    2018-05-01

    This paper processes the output power of the grid-connected wind turbine with the denoising and extracting method based on Hilbert Huang transform (HHT) to discuss the turbine-grid interaction. At first, the detailed Empirical Mode Decomposition (EMD) and the Hilbert Transform (HT) are introduced. Then, on the premise of decomposing the output power of the grid-connected wind turbine into a series of Intrinsic Mode Functions (IMFs), energy ratio and power volatility are calculated to detect the unessential components. Meanwhile, combined with vibration function of turbine-grid interaction, data fitting of instantaneous amplitude and phase of each IMF is implemented to extract characteristic parameters of different interactions. Finally, utilizing measured data of actual parallel-operated wind turbines in China, this work accurately obtains the characteristic parameters of turbine-grid interaction of grid-connected wind turbine.

  2. Web-based turbine cycle performance analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Heo, Gyun Young; Lee, Sung Jin; Chang, Soon Heung; Choi, Seong Soo

    2000-01-01

    As an approach to improve the economical efficiency of operating nuclear power plants, a thermal performance analysis tool for steam turbine cycle has been developed. For the validation and the prediction of the signals used in thermal performance analysis, a few statistical signal processing techniques are integrated. The developed tool provides predicted performance calculation capability that is steady-state wet steam turbine cycle simulation, and measurement performance calculation capability which determines component- and cycle-level performance indexes. Web-based interface with all performance analysis is implemented, so even remote users can achieve performance analysis. Comparing to ASME PTC6 (Performance Test Code 6), the focusing point of the developed tool is historical performance analysis rather than single accurate performance test. The proposed signal processing techniques are validated using actual plant signals, and turbine cycle models are tested by benchmarking with a commercial thermal analysis tool

  3. CFD Study on Aerodynamic Power Output Changes with Inter-Turbine Spacing Variation for a 6 MW Offshore Wind Farm

    Directory of Open Access Journals (Sweden)

    Nak Joon Choi

    2014-11-01

    Full Text Available This study examined the aerodynamic power output change of wind turbines with inter-turbine spacing variation for a 6 MW wind farm composed of three sets of 2 MW wind turbines using computational fluid dynamics (CFD. The wind farm layout design is becoming increasingly important as the use of wind energy is steadily increasing. Among the many wind farm layout design parameters, the inter-turbine spacing is a key factor in the initial investment cost, annual energy production and maintenance cost. The inter-turbine spacing should be determined to maximize the annual energy production and minimize the wake effect, turbulence effect and fatigue load during the service lifetime of wind turbines. Therefore, some compromise between the aerodynamic power output of wind turbines and the inter-turbine spacing is needed. An actuator disc model with the addition of a momentum source was not used, and instead, a full 3-dimensional model with a tower and nacelle was used for CFD analysis because of its great technical significance. The CFD analysis results, such as the aerodynamic power output, axial direction wind speed change, pressure drop across the rotor of wind turbine, and wind speed deficit due to the wake effect with inter-turbine spacing variation, were studied. The results of this study can be applied effectively to wind farm layout design and evaluation.

  4. Small power wind turbine (Type DARRIEUS

    Directory of Open Access Journals (Sweden)

    Marcel STERE

    2012-03-01

    Full Text Available This presentation focuses on the calculation for small vertical axis wind turbines (VAWT for an urban application. The fixed-pitch straight – bladed vertical axis wind turbine (SB-VAWT is one of the simplest types of wind turbine and accepts wind from any angle (no yaw system. This turbine is useful for moderate wind speeds (3 - 6 m/s. A case study is presented based upon the use of well documented symmetrical NACA 0012 turbine blade profile. We describe a solution for VAWT. To perform a linear static analysis in the structure, the commercial finite element analysis code ANSYS is used because of its flexibility for handling information in files written in a more or less free format.

  5. Transient Processes in Electric Power Supply System for Oil Terminal with Own Gas-Turbine Power Station

    Directory of Open Access Journals (Sweden)

    A. M. Hаshimov

    2009-01-01

    Full Text Available The paper contains results of the investigations concerning influence of symmetrical and non-symmetrical short circuits at main power network on electric power supply system of a huge oil terminal which is powered by own gas-turbine power station. Calculations have been made in accordance with the IEC and IEEЕ requirements. Estimations for voltage level and distribution of short circuit current in the electric power supply system of the Sangachal oil terminal being operated in parallel with the AzerEnerji grid are presented in the paper

  6. Stochastic Optimization of Wind Turbine Power Factor Using Stochastic Model of Wind Power

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Siano, Pierluigi; Bak-Jensen, Birgitte

    2010-01-01

    This paper proposes a stochastic optimization algorithm that aims to minimize the expectation of the system power losses by controlling wind turbine (WT) power factors. This objective of the optimization is subject to the probability constraints of bus voltage and line current requirements....... The optimization algorithm utilizes the stochastic models of wind power generation (WPG) and load demand to take into account their stochastic variation. The stochastic model of WPG is developed on the basis of a limited autoregressive integrated moving average (LARIMA) model by introducing a crosscorrelation...... structure to the LARIMA model. The proposed stochastic optimization is carried out on a 69-bus distribution system. Simulation results confirm that, under various combinations of WPG and load demand, the system power losses are considerably reduced with the optimal setting of WT power factor as compared...

  7. Dual turbine power plant and method of operating such plant, especially one having an HTGR steam supply

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegtnes, K.O.

    1977-01-01

    A power plant including dual steam turbine-generators connected to pass superheat and reheat steam from a steam generator which derives heat from the coolant gas of a high temperature gas-cooled nuclear reactor is described. Associated with each turbine is a bypass line to conduct superheat steam in parallel with a high pressure turbine portion, and a bypass line to conduct superheat steam in parallel with a lower pressure turbine portion. Auxiliary steam turbines pass a portion of the steam flow to the reheater of the steam generator and drive gas blowers which circulate the coolant gas through the reactor and the steam source. Apparatus and method are disclosed for loading or unloading a turbine-generator while the other produces a steady power output. During such loading or unloading, the steam flows through the turbine portions are coordinated with the steam flows through the bypass lines for protection of the steam generator, and the pressure of reheated steam is regulated for improved performance of the gas blowers. 33 claims, 5 figures

  8. Dynamic performance of a combined gas turbine and air bottoming cycle plant for off-shore applications

    DEFF Research Database (Denmark)

    Benato, Alberto; Pierobon, Leonardo; Haglind, Fredrik

    2014-01-01

    and a combined gas turbine coupled with an air bottoming cycle plant. The case study is the Draugen off-shore oil and gas platform, located in the North Sea, Norway. The normal electricity demand is 19 MW, currently covered by two gas turbines generating each 50% of the power demand, while the third turbine......When the Norwegian government introduced the CO2 tax for hydrocarbon fuels, the challenge became to improve the performance of off-shore power systems. An oil and gas platform typically operates on an island (stand-alone system) and the power demand is covered by two or more gas turbines. In order...... to improve the plant performance, a bottoming cycle unit can be added to the gas turbine topping module, thus constituting a combined cycle plant. This paper aims at developing and testing the numerical model simulating the part-load and dynamic behavior of a novel power system, composed of two gas turbines...

  9. Comparison of Standard Wind Turbine Models with Vendor Models for Power System Stability Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Honrubia-Escribano, A.; Gomez Lazaro, E.; Jimenez-Buendia, F.; Muljadi, Eduard

    2016-11-01

    The International Electrotechnical Commission Standard 61400-27-1 was published in February 2015. This standard deals with the development of generic terms and parameters to specify the electrical characteristics of wind turbines. Generic models of very complex technological systems, such as wind turbines, are thus defined based on the four common configurations available in the market. Due to its recent publication, the comparison of the response of generic models with specific vendor models plays a key role in ensuring the widespread use of this standard. This paper compares the response of a specific Gamesa dynamic wind turbine model to the corresponding generic IEC Type III wind turbine model response when the wind turbine is subjected to a three-phase voltage dip. This Type III model represents the doubly-fed induction generator wind turbine, which is not only one of the most commonly sold and installed technologies in the current market but also a complex variable-speed operation implementation. In fact, active and reactive power transients are observed due to the voltage reduction. Special attention is given to the reactive power injection provided by the wind turbine models because it is a requirement of current grid codes. Further, the boundaries of the generic models associated with transient events that cannot be represented exactly are included in the paper.

  10. Short term hydroelectric power system scheduling with wind turbine generators using the multi-pass iteration particle swarm optimization approach

    International Nuclear Information System (INIS)

    Lee, T.-Y.

    2008-01-01

    This paper uses multi-pass iteration particle swarm optimization (MIPSO) to solve short term hydroelectric generation scheduling of a power system with wind turbine generators. MIPSO is a new algorithm for solving nonlinear optimal scheduling problems. A new index called iteration best (IB) is incorporated into particle swarm optimization (PSO) to improve solution quality. The concept of multi-pass dynamic programming is applied to modify PSO further and improve computation efficiency. The feasible operational regions of the hydro units and pumped storage plants over the whole scheduling time range must be determined before applying MIPSO to the problem. Wind turbine power generation then shaves the power system load curves. Next, MIPSO calculates hydroelectric generation scheduling. It begins with a coarse time stage and searching space and refines the time interval between two time stages and the search spacing pass by pass (iteration). With the cooperation of agents called particles, the near optimal solution of the scheduling problem can be effectively reached. The effects of wind speed uncertainty were also considered in this paper. The feasibility of the new algorithm is demonstrated by a numerical example, and MIPSO solution quality and computation efficiency are compared to those of other algorithms

  11. Internal combustion engine system having a power turbine with a broad efficiency range

    Science.gov (United States)

    Whiting, Todd Mathew; Vuk, Carl Thomas

    2010-04-13

    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  12. Report on investigations in fiscal 2000 on the basic investigation on promotion of joint implementation. Rehabilitation of gas turbine power plants owned by Myanmar Electric Power Enterprise (MEPE); 2000 nendo kyodo jisshi nado suishin kiso chosa hokokusho. MEPE/gas turbine hatsudensho rihabiri

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Myanmar generates majority of the whole electric power by using thermal power plants consisting of single gas turbines, and gas and steam composite turbines. However, because of chronic power shortage and fund unavailability, the major gas turbines are being operated in quite inadequate environment. As a result, reduction in power generation efficiency has become manifest due to aged deterioration, increasing the quantity of CO2 emission. The present project is, in order to link it to the 'Clean Development Mechanism' being carried out with developing countries, and placing Tharkayta Power Plant as the object, intended to comprehensively discuss a rehabilitation program to renew the existing gas turbines with advanced ones, in relation with feasibility of the project implementation including the effect of CO2 emission reduction, profitability, and proliferation effects. A prospect was acquired that, by replacing the gas turbines alone with 25-MW class gas turbines, the plant output will increase to 97.2 MW (78.5 MW in the existing facilities) and the plant efficiency to 43.3% (36.5% in the existing facilities). The energy saving effect during a period of 40 years would be 708,000 (toe) as heat consumption converted to crude oil, and the CO2 emission reducing effect would be 2,160,000 (t-CO2), respectively. (NEDO)

  13. Power density investigation on the press-pack IGBT 3L-HB-VSCs applied to large wind turbine

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Munk-Nielsen, Stig; Teodorescu, Remus

    2011-01-01

    capabilities, DC capacitor sizes, converter cabinet volumes of the three 3LHB- VSCs utilizing press-pack IGBTs are investigated in order to quantify and compare the power densities of the 3L-HB-VSCs employed as grid-side converters. Also, the suitable transformer types for the 3L-HB-VSCs are determined......With three different DC-side and AC-side connections, the three-level H-bridge voltage source converters (3L-HB-VSCs) are alternatives to 3L neutral-point-clamped VSCs (3L-NPC-VSCs) for interfacing large wind turbines with electricity grids. In order to assess their feasibility for large wind...... turbines, they should be investigated in terms of power density, which is one of the most important design criteria for wind turbine converters due to turbine nacelle space limitation. In this study, by means of the converter electro-thermal models based on the converter characteristics, the power...

  14. A dynamic model used for controller design of a coal fired once-through boiler-turbine unit

    International Nuclear Information System (INIS)

    Liu, Ji-Zhen; Yan, Shu; Zeng, De-Liang; Hu, Yong; Lv, You

    2015-01-01

    Supercritical OTB (once-through boiler) units with high steam temperature and pressure have been widely used in modern power plants due to their high cycle efficiency and less emissions. To ensure the effective operation of such power generation systems, it is necessary to build a model for the design of the overall control system. There are already detailed models of once-through boilers; however, their complexity prevents them from being applied in the controller design. This study describes a lumped parameter dynamic model that has a relatively low complexity while faithfully capturing the essential overall plant dynamics. The model structure was derived by fundamental physical laws utilizing reasonable simplifications and data analysis to avoid the phase transition position problem. Parameter identification for the model structure was completed using operational data from a 1000 MW ultra-supercritical OTB. The model was determined to be reasonable by comparison tests between computed data and measured data for both steady and dynamic states. The simplified model is verified to have appropriate fidelity in control system design to achieve effective and economic operation of the unit. - Highlights: • A simplified dynamic model of once-through boiler-turbine unit is given. • The essential dynamics of active power and throttle pressure is presented. • The change of phase transition position is avoided in modeling process. • The model has appropriate complexity and fidelity for controller design.

  15. Identification of unmeasured variables in the set of model constraints of the data reconciliation in a power unit

    Science.gov (United States)

    Szega, Marcin; Nowak, Grzegorz Tadeusz

    2013-12-01

    In generalized method of data reconciliation as equations of conditions beside substance and energy balances can be used equations which don't have precisely the status of conservation lows. Empirical coefficients in these equations are traded as unknowns' values. To this kind of equations, in application of the generalized method of data reconciliation in supercritical power unit, can be classified: steam flow capacity of a turbine for a group of stages, adiabatic internal efficiency of group of stages, equations for pressure drop in pipelines and equations for heat transfer in regeneration heat exchangers. Mathematical model of a power unit was developed in the code Thermoflex. Using this model the off-design calculation has been made in several points of loads for the power unit. Using these calculations identification of unknown values and empirical coefficients for generalized method of data reconciliation used in power unit has been made. Additional equations of conditions will be used in the generalized method of data reconciliation which will be used in optimization of measurement placement in redundant measurement system in power unit for new control systems

  16. Technical impacts of high penetration levels of wind power on power system stability

    OpenAIRE

    Flynn, Damian; Rather, Z.; Ardal, Atle; Darco, Salvatore; Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Sørensen, Poul Ejnar; Estanqueiro, Ana; Gomez, Emilio; Menemenlis, Nickie; Smith, Charlie; Wang, Ye

    2017-01-01

    With increasing penetrations of wind generation, based on power-electronic converters, power systems are transitioning away from well-understood synchronous generator-based systems, with growing implications for their stability. Issues of concern will vary with system size, wind penetration level, geographical distribution and turbine type, network topology, electricity market structure, unit commitment procedures, and other factors. However, variable-speed wind turbines, both onshore and con...

  17. Applications of field portable computers to NDE of nuclear power plant steam turbine/generator rotors, discs, and retaining rings

    International Nuclear Information System (INIS)

    Reinhart, E.R.; Leon-Salamanca, T.

    2004-01-01

    The new generation of compact, powerful portable computers have been incorporated into a number of nondestructive evaluation (NDE) systems used to inspect critical areas of the steam turbine and generator units of nuclear power plants. Due to the complex geometry of turbine rotors, generator rotors, retaining rings, and shrunk-on turbine discs, the computers are needed to rapidly calculate the optimum position of an ultrasonic transducer or eddy current probe in order to detect defects at several critical areas. Examples where computers have been used to overcome problems in nondestructive evaluation include; analysis of large numbers of closely spaced near-bore ultrasonic reflectors to determine their potential for link-up in turbine and generator rotor bores, distinguishing ultrasonic crack signals from other reflectors such as the shrink-fit form reflector detected during ultrasonic scanning of shrunk-on generator retaining rings, and detection and recording of eddy current and ultrasonic signals from defects that could be missed by data acquisition systems with inadequate response. The computers are also used to control scanners to insure total inspection coverage. To facilitate the use of data from detected discontinuities in conjunction with stress and fracture mechanics analysis programs, the computers provide presentations of flaws in color and in three dimensions. The field computers have been instrumental in allowing the inspectors to develop on-site reports that enable the owner/operator to rapidly make run/repair/replace decisions. Examples of recent experiences using field portable computers in NDE systems will be presented along with anticipated future developments. (author)

  18. The flow upstream of a row of aligned wind turbine rotors and its effect on power production

    DEFF Research Database (Denmark)

    Meyer Forsting, Alexander Raul; Troldborg, Niels; Gaunaa, Mac

    2017-01-01

    The blockage developing in front of a laterally aligned row of wind turbines and its impact on power production over a single turbine was analysed using two different numerical methods. The inflow direction was varied from orthogonal to the row until 45◦, with the turbines turning into the wind, ...

  19. Modeling and Simulation of Offshore Wind Power Platform for 5 MW Baseline NREL Turbine

    Science.gov (United States)

    Roni Sahroni, Taufik

    2015-01-01

    This paper presents the modeling and simulation of offshore wind power platform for oil and gas companies. Wind energy has become the fastest growing renewable energy in the world and major gains in terms of energy generation are achievable when turbines are moved offshore. The objective of this project is to propose new design of an offshore wind power platform. Offshore wind turbine (OWT) is composed of three main structures comprising the rotor/blades, the tower nacelle, and the supporting structure. The modeling analysis was focused on the nacelle and supporting structure. The completed final design was analyzed using finite element modeling tool ANSYS to obtain the structure's response towards loading conditions and to ensure it complies with guidelines laid out by classification authority Det Norske Veritas. As a result, a new model of the offshore wind power platform for 5 MW Baseline NREL turbine was proposed. PMID:26550605

  20. Advanced Turbine Technology Applications Project (ATTAP) 1993 annual report

    Science.gov (United States)

    1994-01-01

    This report summarizes work performed by AlliedSignal Engines, a unit of AlliedSignal Aerospace Company, during calendar year 1993, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the U.S. Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATFAP). During 1993, the test bed used to demonstrate ceramic technology was changed from the AlliedSignal Engines/Garrett Model AGT101 regenerated gas turbine engine to the Model 331-200(CT) engine. The 331-200(CT) ceramic demonstrator is a fully-developed test platform based on the existing production AlliedSignal 331-200(ER) gas turbine auxiliary power unit (APU), and is well suited to evaluating ceramic turbine blades and nozzles. In addition, commonality of the 331-200(CT) engine with existing gas turbine APU's in commercial service provides the potential for field testing of ceramic components. The 1993 ATTAP activities emphasized design modifications of the 331-200 engine test bed to accommodate ceramic first-stage turbine nozzles and blades, fabrication of the ceramic components, ceramic component proof and rig tests, operational tests of the test bed equipped with the ceramic components, and refinement of critical ceramic design technologies.

  1. Conceptual design of a commercial supercritical CO2 gas turbine for the fast reactor power plant

    International Nuclear Information System (INIS)

    Muto, Y.; Ishizuka, T.; Aritomi, M.

    2010-01-01

    This paper describes the design results of turbine and compressors of a supercritical CO 2 gas turbine connected to the commercial sodium cooled fast reactor. Power output of the gas turbine-generator system is 750 MWe. The system consists of turbine, main compressor and bypass compressor. Turbine is axial flow type. Both axial flow and centrifugal compressors were designed. Aerodynamic, blade strength and rotor dynamics calculations were conducted. Achievable adiabatic efficiencies and cross-sectional structures are given. For this design conditions, the axial flow compressor is superior to the centrifugal compressor due to the large mass flow rate. (authors)

  2. Mechanical (turbines and auxiliary equipment)

    CERN Document Server

    Sherry, A; Cruddace, AE

    2013-01-01

    Modern Power Station Practice, Volume 3: Mechanical (Turbines and Auxiliary Equipment) focuses on the development of turbines and auxiliary equipment used in power stations in Great Britain. Topics covered include thermodynamics and steam turbine theory; turbine auxiliary systems such as lubrication systems, feed water heating systems, and the condenser and cooling water plants. Miscellaneous station services, and pipework in power plants are also described. This book is comprised of five chapters and begins with an overview of thermodynamics and steam turbine theory, paying particular attenti

  3. CHP in Switzerland from 1990 to 1998. Thermal power generation including combined heat and power

    International Nuclear Information System (INIS)

    Kaufmann, U.

    1999-01-01

    The results of a study on thermal power generation in Switzerland show that combined heat and power (CHP) systems have grown rapidly. Statistics are presented on the development of CHP-based power and also on thermal power stations without waste heat usage. Figures are given for gas and steam turbine installations, combined gas and steam turbine stations and motor-driven CHP units. Power production is categorised, separating small and large (over 1 Megawatt electrical) power generation facilities. On-site, distributed power generation at consumers' premises and the geographical distribution of plant is described

  4. Realization and control of a wind turbine connected to the grid by using PMSG

    International Nuclear Information System (INIS)

    Dahbi, Abdeldjalil; Hachemi, Mabrouk; Nait-Said, Nasreddine; Nait-Said, Mohamed-Said

    2014-01-01

    Highlights: • Realization and control of a wind turbine. • Control of the system. • Injection to grid. - Abstract: This paper studies the control of a variable-speed wind turbine using the permanent magnet synchronous generator (PMSG) driven by a wind turbine emulator. The wind turbine is realized by imposing the wind profile on emulator to behave as the real wind turbine when it receives the same wind profile. This wind turbine is connected to the grid by means of a two back-to-back voltage-fed pulse width-modulation (PWM) converters to interface the generator and the grid. This paper has three main objectives, the first is realization of the wind turbine emulator, the second is extracting and exploiting the maximum power from the wind, the third is feeding the grid by high-power and good electrical energy quality; to achieve that, we applied the strategies of maximum power point tracking (MPPT) using optimal torque control which allows the PMSG to operate at an optimal speed. The inverter is used for delivering power to the grid, controlled in a way to deliver only the active power into the grid, thus we have unit power factor. DC-link voltage is also controlled by the inverter. This paper shows the dynamic performances of the complete system by its simulation using Matlab Simulink. Experimental results has verified and validated the wind turbine emulator and the efficiency of MPPT control method using a variable wind profile

  5. Mechanical Extraction of Power From Ocean Currents and Tides

    Science.gov (United States)

    Jones, Jack; Chao, Yi

    2010-01-01

    A proposed scheme for generating electric power from rivers and from ocean currents, tides, and waves is intended to offer economic and environmental advantages over prior such schemes, some of which are at various stages of implementation, others of which have not yet advanced beyond the concept stage. This scheme would be less environmentally objectionable than are prior schemes that involve the use of dams to block rivers and tidal flows. This scheme would also not entail the high maintenance costs of other proposed schemes that call for submerged electric generators and cables, which would be subject to degradation by marine growth and corrosion. A basic power-generation system according to the scheme now proposed would not include any submerged electrical equipment. The submerged portion of the system would include an all-mechanical turbine/pump unit that would superficially resemble a large land-based wind turbine (see figure). The turbine axis would turn slowly as it captured energy from the local river flow, ocean current, tidal flow, or flow from an ocean-wave device. The turbine axis would drive a pump through a gearbox to generate an enclosed flow of water, hydraulic fluid, or other suitable fluid at a relatively high pressure [typically approx.500 psi (approx.3.4 MPa)]. The pressurized fluid could be piped to an onshore or offshore facility, above the ocean surface, where it would be used to drive a turbine that, in turn, would drive an electric generator. The fluid could be recirculated between the submerged unit and the power-generation facility in a closed flow system; alternatively, if the fluid were seawater, it could be taken in from the ocean at the submerged turbine/pump unit and discharged back into the ocean from the power-generation facility. Another alternative would be to use the pressurized flow to charge an elevated reservoir or other pumped-storage facility, from whence fluid could later be released to drive a turbine/generator unit at a

  6. Power unit with GT-MHR reactor plant for electricity production and district heating

    International Nuclear Information System (INIS)

    Kiryushin, A.L.; Kodochigov, N.G.; Kuzavkov, N.G.; Golovko, V.F.

    2000-01-01

    Modular helium reactor with the gas turbine (GT-MHR) is a perspective power reactor plant for the next century. The project reactor is based on experience of operation more than 50 gas-cooled reactors on carbon dioxide and helium, and also on subsequent achievements in the field of realization direct gas turbine Brayton cycle. To the beginning of 90 years, achievements in technology of gas turbines, highly effective recuperators and magnetic bearings made it possible to start development of the reactor plant project combining a safe modular gas cooled reactor and a power conversion system, realizing the highly effective Brayton cycle. The conceptual project of the commercial GT-MHR reactor plant fulfilled in 1997 by joint efforts of international firms, combines a safe modular reactor with an annular active core of prismatic fuel blocks and a power conversion system with direct gas turbine cycle. The efficiency of GT-MHR gas turbine cycle at level of about 48% makes it competitive in the electricity production market in comparison with any fossil or nuclear power stations

  7. Design of large Francis turbine using optimal methods

    Science.gov (United States)

    Flores, E.; Bornard, L.; Tomas, L.; Liu, J.; Couston, M.

    2012-11-01

    Among a high number of Francis turbine references all over the world, covering the whole market range of heads, Alstom has especially been involved in the development and equipment of the largest power plants in the world : Three Gorges (China -32×767 MW - 61 to 113 m), Itaipu (Brazil- 20x750 MW - 98.7m to 127m) and Xiangjiaba (China - 8x812 MW - 82.5m to 113.6m - in erection). Many new projects are under study to equip new power plants with Francis turbines in order to answer an increasing demand of renewable energy. In this context, Alstom Hydro is carrying out many developments to answer those needs, especially for jumbo units such the planned 1GW type units in China. The turbine design for such units requires specific care by using the state of the art in computation methods and the latest technologies in model testing as well as the maximum feedback from operation of Jumbo plants already in operation. We present in this paper how a large Francis turbine can be designed using specific design methods, including the global and local optimization methods. The design of the spiral case, the tandem cascade profiles, the runner and the draft tube are designed with optimization loops involving a blade design tool, an automatic meshing software and a Navier-Stokes solver, piloted by a genetic algorithm. These automated optimization methods, presented in different papers over the last decade, are nowadays widely used, thanks to the growing computation capacity of the HPC clusters: the intensive use of such optimization methods at the turbine design stage allows to reach very high level of performances, while the hydraulic flow characteristics are carefully studied over the whole water passage to avoid any unexpected hydraulic phenomena.

  8. Design of large Francis turbine using optimal methods

    International Nuclear Information System (INIS)

    Flores, E; Bornard, L; Tomas, L; Couston, M; Liu, J

    2012-01-01

    Among a high number of Francis turbine references all over the world, covering the whole market range of heads, Alstom has especially been involved in the development and equipment of the largest power plants in the world : Three Gorges (China −32×767 MW - 61 to 113 m), Itaipu (Brazil- 20x750 MW - 98.7m to 127m) and Xiangjiaba (China - 8x812 MW - 82.5m to 113.6m - in erection). Many new projects are under study to equip new power plants with Francis turbines in order to answer an increasing demand of renewable energy. In this context, Alstom Hydro is carrying out many developments to answer those needs, especially for jumbo units such the planned 1GW type units in China. The turbine design for such units requires specific care by using the state of the art in computation methods and the latest technologies in model testing as well as the maximum feedback from operation of Jumbo plants already in operation. We present in this paper how a large Francis turbine can be designed using specific design methods, including the global and local optimization methods. The design of the spiral case, the tandem cascade profiles, the runner and the draft tube are designed with optimization loops involving a blade design tool, an automatic meshing software and a Navier-Stokes solver, piloted by a genetic algorithm. These automated optimization methods, presented in different papers over the last decade, are nowadays widely used, thanks to the growing computation capacity of the HPC clusters: the intensive use of such optimization methods at the turbine design stage allows to reach very high level of performances, while the hydraulic flow characteristics are carefully studied over the whole water passage to avoid any unexpected hydraulic phenomena.

  9. Ambient temperature effects on gas turbine power plant: A case study in Iran

    International Nuclear Information System (INIS)

    Gorji, M.; Fouladi, F.

    2007-01-01

    Actual thermal efficiency, electric-power output, fuel-air ratio and specific fuel consumption (SFC) vary according to the ambient conditions. The amount of these variations greatly affects those parameters as well as the plant incomes. In this paper the effect of ambient temperature as a seasonal variation on a gas power plant has been numerically studied. For this purpose, the gas turbine model and different climate seasonal variations of Ray in Iran are considered in this study. For the model, by using average monthly temperature data of the region, the different effective parameters were compared to those in standard design conditions. The results show that ambient temperature increase will decrease thermal efficiency, electric-power out put and fuel-air ratio of the gas turbine plant whereas increases the specific fuel consumption

  10. Simulations research of the global predictive control with self-adaptive in the gas turbine of the nuclear power plant

    International Nuclear Information System (INIS)

    Su Jie; Xia Guoqing; Zhang Wei

    2007-01-01

    For further improving the dynamic control capabilities of the gas turbine of the nuclear power plant, this paper puts forward to apply the algorithm of global predictive control with self-adaptive in the rotate speed control of the gas turbine, including control structure and the design of controller in the base of expounding the math model of the gas turbine of the nuclear power plant. the simulation results show that the respond of the change of the gas turbine speed under the control algorithm of global predictive control with self-adaptive is ten second faster than that under the PID control algorithm, and the output value of the gas turbine speed under the PID control algorithm is 1%-2% higher than that under the control slgorithm of global predictive control with self-adaptive. It shows that the algorithm of global predictive control with self-adaptive can better control the output of the speed of the gas turbine of the nuclear power plant and get the better control effect. (authors)

  11. Marketing research with respect to centralized electric power generation with wind turbines. Verkenning van de markt voor centrale elektriciteitsopwekking met windenergie

    Energy Technology Data Exchange (ETDEWEB)

    Lenstra, W.J.; Van den Doel, J.C.

    1985-01-01

    The electric utilities so far are not eager to invest in wind power as long as the price per kWh wind power is higher than saved fuel costs. The price the electric utilities are willing to pay for surplus wind power still remains low. Combined with price expectations in the near future for fossil fuels the market does not show great prospects. Wind turbine manufacturers were asked about price-quantity curves of wind turbine types: 3 MW, 1 MW, and 300 kW respectively. Combining the demand and supply side of the market it seems possible in areas having a good wind regime to exploit wind power in a cost-effective way. For a market incentive a wind power capacity of 400 MW: 75-3 MW wind turbines, 120-1 MW wind turbines, 15-300 kW wind turbines and 50 MW for demonstration projects for proving the viability of the technology. 3 figs., 2 tabs.

  12. Wind turbine sound pressure level calculations at dwellings.

    Science.gov (United States)

    Keith, Stephen E; Feder, Katya; Voicescu, Sonia A; Soukhovtsev, Victor; Denning, Allison; Tsang, Jason; Broner, Norm; Leroux, Tony; Richarz, Werner; van den Berg, Frits

    2016-03-01

    This paper provides calculations of outdoor sound pressure levels (SPLs) at dwellings for 10 wind turbine models, to support Health Canada's Community Noise and Health Study. Manufacturer supplied and measured wind turbine sound power levels were used to calculate outdoor SPL at 1238 dwellings using ISO [(1996). ISO 9613-2-Acoustics] and a Swedish noise propagation method. Both methods yielded statistically equivalent results. The A- and C-weighted results were highly correlated over the 1238 dwellings (Pearson's linear correlation coefficient r > 0.8). Calculated wind turbine SPLs were compared to ambient SPLs from other sources, estimated using guidance documents from the United States and Alberta, Canada.

  13. Optimization Design and Performance Analysis of a Pit Turbine with Ultralow Head

    Directory of Open Access Journals (Sweden)

    Chunxia Yang

    2014-04-01

    Full Text Available A developed pit turbine with ultralow head was optimization designed under the design head of about 2 meters to achieve the goal of improving the turbine unit's efficiency. At the same time, the turbine's synthetic characteristic curve was drawn to predict the turbine's overall performance. Navier-Stokes equations and SIMPLEC algorithm were used for pit turbine's whole flow passage numerical simulation of the 3D, steady, incompressible, turbulent flow field. Through the CFD numerical simulation, the influence to ultralow head turbine's performance was analyzed by runner blade's different setting angles and guide vane's different axes. Considering the hydraulic performance of various methods, the best blade's setting angle and guide vane's axis were chosen. The results show that, the turbine unit has the best performance on efficiency, hydraulic loss, and so forth, with the blade's setting angle 23° and the angle 72° between the guide vane and the centerline of unit, meeting the power station's design requirements. The development pit turbine with ultralow head shows the highest efficiency of 87.6% under condition of design head of 2.1 meters and design discharge of 10 m3/s. The energy performance of pit turbine with ultralow head was researched by the model test of GD-WS-35 turbine. The model turbine's characteristic curve was drawn. The model turbine's high efficiency area is wide and the efficiency changes mildly. The numerical simulation results are essentially consistent with the model test results, while the former one is slightly higher than the latter one. The error range is ±3%.

  14. Progress Toward a Microfabricated Gas Turbine Generator for Soldier Portable Power Applications

    National Research Council Canada - National Science Library

    Jacobson, S. A; Das, S; Savoulides, N; Steyn, J. L; Lang, J; Li, H. Q; Livermore, C; Schmidt, M. A; Teo, C. J; Umans, S. D; Epstein, A. H; Arnold, D. P; Park, J-W; Zana, I; Allen, M. G

    2004-01-01

    Microelectromechanical systems (MEMS) turbocharger and electric generator devices have been fabricated and tested as part of a program at MIT to develop a microfabricated gas turbine generator for portable power applications...

  15. FY 1998 Report on development of large-scale wind power generation systems. Feasibility study on development of new technologies for wind power generation (Study on the development of wind power generation systems for small-scale power grids); 1998 nendo ogata furyoku hatsuden system kaihatsu seika hokokusho. Furyoku hatsuden shingijutsu kaihatsu kanosei chosa (shokibo keito ni okeru furyoku hatsuden system ni kansuru chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This survey includes the characteristics of small-scale power grids, feasibility studies on introduction of wind turbines in these grids, and statuses of application of wind turbines to isolated islands or the like in the advanced countries, in order to promote introduction of wind power generation systems in isolated islands or the like. It is concluded that small-capacity wind power generation systems can be possibly introduced in the intermediate- to large-scale grids in isolated islands, 1,500kW or larger in capacity, in the Tokyo, Kyushu and Okinawa Electric Power Companies' areas. A scheduled steamer ship for isolated islands can carry up to 10 ton track, and introduction of a small-scale wind turbine is more advantageous viewed from the transportation cost. Some foreign countries have the sites which have achieved a high percentage of grid connection of wind power units by stabilizing wind conditions and connecting them to the main high-voltage grids in different manners from those adopted in Japan. For developing wind turbine bodies, most of the foreign countries surveyed are concentrating their efforts on development and manufacture of large-size units, paying little attention on development of small-size wind turbines for isolated islands. For the future prospects, the promising concepts include adoption of wind turbines small in capacity and easy to transport and assemble, and hybrid systems combined with power storage units. (NEDO)

  16. Two 850 MW turbines on daily cycling, design and operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Stodieck, W; Straetz, A [Maschinenfabrik Augsburg-Nuernberg (M.A.N.) A.G., Nuernberg (Germany, F.R.)

    1979-02-01

    When Pennsylvania Power and Light Company (PPandL) of Allentown, U.S.A. signed a contract in 1970 with M.A.N. for the supply of two 850 MW turbines as part of extension of its existing coal-fired power station at Martins Creek by two oil-fired units, continuous base load operation was planned for the initial years. After about ten years both units should have been curbed to low load operation at night and completely shutdown at weekends. Then in 1973 when the oil crisis led to fuel prices which proved the operation of both units uneconomic the way they were planned for the initial years, all conditions were given to operate both turbines on a daily cycling basis from their commissioning day on. This was due to the installation of quality equipment for the improvement of thermal performance.

  17. Ground noise measurements during static and flyby operations of the Cessna 02-T turbine powered airplane

    Science.gov (United States)

    Hilton, D. A.; Henderson, H. R.; Lawton, B. W.

    1975-01-01

    The field noise measurements on the Cessna 02-T turbine powered propeller aircraft are presented. The objective of the study was to obtain the basic noise characteristics of the aircraft during static ground runs and flyover tests, to identify the sources of the noise, and to correlate the noises with the aircraft operating conditions. The results are presented in the form of a overall noise levels, radiation patterns, and frequency spectra. The noise characteristics of the turbine powered aircraft are compared with those of the reciprocating engine powered aircraft.

  18. Modeling and Simulation of Offshore Wind Power Platform for 5 MW Baseline NREL Turbine

    Directory of Open Access Journals (Sweden)

    Taufik Roni Sahroni

    2015-01-01

    Full Text Available This paper presents the modeling and simulation of offshore wind power platform for oil and gas companies. Wind energy has become the fastest growing renewable energy in the world and major gains in terms of energy generation are achievable when turbines are moved offshore. The objective of this project is to propose new design of an offshore wind power platform. Offshore wind turbine (OWT is composed of three main structures comprising the rotor/blades, the tower nacelle, and the supporting structure. The modeling analysis was focused on the nacelle and supporting structure. The completed final design was analyzed using finite element modeling tool ANSYS to obtain the structure’s response towards loading conditions and to ensure it complies with guidelines laid out by classification authority Det Norske Veritas. As a result, a new model of the offshore wind power platform for 5 MW Baseline NREL turbine was proposed.

  19. Multi-objective Extremum Seeking Control for Enhancement of Wind Turbine Power Capture with Load Reduction

    Science.gov (United States)

    Xiao, Yan; Li, Yaoyu; Rotea, Mario A.

    2016-09-01

    The primary objective in below rated wind speed (Region 2) is to maximize the turbine's energy capture. Due to uncertainty, variability of turbine characteristics and lack of inexpensive but precise wind measurements, model-free control strategies that do not use wind measurements such as Extremum Seeking Control (ESC) have received significant attention. Based on a dither-demodulation scheme, ESC can maximize the wind power capture in real time despite uncertainty, variabilities and lack of accurate wind measurements. The existing work on ESC based wind turbine control focuses on power capture only. In this paper, a multi-objective extremum seeking control strategy is proposed to achieve nearly optimum wind energy capture while decreasing structural fatigue loads. The performance index of the ESC combines the rotor power and penalty terms of the standard deviations of selected fatigue load variables. Simulation studies of the proposed multi-objective ESC demonstrate that the damage-equivalent loads of tower and/or blade loads can be reduced with slight compromise in energy capture.

  20. Contribution of large scale coherence to wind turbine power: A large eddy simulation study in periodic wind farms

    Science.gov (United States)

    Chatterjee, Tanmoy; Peet, Yulia T.

    2018-03-01

    Length scales of eddies involved in the power generation of infinite wind farms are studied by analyzing the spectra of the turbulent flux of mean kinetic energy (MKE) from large eddy simulations (LES). Large-scale structures with an order of magnitude bigger than the turbine rotor diameter (D ) are shown to have substantial contribution to wind power. Varying dynamics in the intermediate scales (D -10 D ) are also observed from a parametric study involving interturbine distances and hub height of the turbines. Further insight about the eddies responsible for the power generation have been provided from the scaling analysis of two-dimensional premultiplied spectra of MKE flux. The LES code is developed in a high Reynolds number near-wall modeling framework, using an open-source spectral element code Nek5000, and the wind turbines have been modelled using a state-of-the-art actuator line model. The LES of infinite wind farms have been validated against the statistical results from the previous literature. The study is expected to improve our understanding of the complex multiscale dynamics in the domain of large wind farms and identify the length scales that contribute to the power. This information can be useful for design of wind farm layout and turbine placement that take advantage of the large-scale structures contributing to wind turbine power.

  1. USW[center dot]33M-VS wind power turbine winning a 1993 environmental department prize of Discover Magazine. 1993 nendo DISCOVER kankyo bumonsho ni USW/33M-VS furyoku turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ushiyama, M. (Waseda University, Tokyo (Japan))

    1993-12-01

    This paper introduces a variable speed wind power turbine developed jointly by EPRI and US Wind Power Corporation. This wind power turbine has a wind velocity responsive construction in which generated alternating current power has the frequency vary with change in the shaft rotation speed. The specified performance calls for a cut-in of 4 m/s and cut-out of 29 m/s, wind velocity variable. The blades are made of laminated fiberglass, and the rotor has a diameter of 33 m, rotation variable. The tower height is classified to 24 m, 30 m, and 42 m. The blade pitch is controlled by a linear hydraulic cylinder, and the turbine is controlled by a microprocessor. The wind turbine has a system interconnecting control and data collecting system. Two induction three-phase generators are used. EPRI has calculated its power generation cost at 5 cents/kWh if wind blows at an annual average velocity of 16 miles per hour. This is nearly equivalent to the cost at new power plants. US Wind Power Corporation has disassembled 22 experimental models that have been in operation to investigate wear in the machines. Its economy is evaluated comparable with that for fossil fuel technologies. 1 fig.

  2. Performance Characteristics of a Cross-Flow Hydrokinetic Turbine under Unsteady Conditions

    Science.gov (United States)

    Flack, Karen; Lust, Ethan; Bailin, Ben

    2017-11-01

    Performance characteristics are presented for a cross-flow hydrokinetic turbine designed for use in a riverine environment. The test turbine is a 1:6 scale model of a three-bladed device (9.5 m span, 6.5 m diameter) that has been proposed by the Department of Energy. Experiments are conducted in the large towing tank (116 m long, 7.9 m wide, 5 m deep) at the United States Naval Academy. The turbine is towed beneath a moving carriage at a constant speed in combination with a shaft motor to achieve the desired tip speed ratio (TSR) range. The measured quantities of turbine thrust, torque and RPM result in power and thrust coefficients for a range of TSR. Results will be presented for cases with quiescent flow at a range of Reynolds numbers and flow with mild surface waves, representative of riverine environments. The impact of unsteady flow conditions on the average turbine performance was not significant. Unsteady flow conditions did have an impact on instantaneous turbine performance which operationally would result in unsteady blade loading and instantaneous power quality.

  3. Power Quality of Grid-Connected Wind Turbines with DFIG and Their Interaction with the Grid

    DEFF Research Database (Denmark)

    Sun, Tao

    quality issues of grid-connected wind turbines and the interaction between wind turbines and the grid. The specific goal of the research has been to investigate flicker emission and mitigation of grid-connected wind turbines with doubly fed induction generators (DFIG) during continuous operation...... measures are proposed to mitigate the flicker levels produced by grid-connected wind turbines with DFIG, respectively by wind turbine output reactive power control and using STATCOM. Simulation results demonstrate that these two measures are effective for flicker mitigation regardless of mean wind speed....... To evaluate the flicker levels produced by grid-connected wind turbines with DFIG, a flickermeter model is developed according to the IEC standard IEC 61000-4-15, which simulates the response of the lamp-eye-brain chain and provides on-line statistical analysis ofthe flicker signal and the final results...

  4. Numerical investigation on the flow and power of small-sized multi-bladed straight Darrieus wind turbine

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Straight Darrieus wind turbine has attractive characteristics such as the ability to accept wind from random direction and easy installation and maintenance. But its aerodynamic performance is very complicated, especially for the existence of dynamic stall. How to get better aerodynamic performance arouses lots of interests in the design procedure of a straight Darrieus wind turbine. In this paper, mainly the effects of number of blades and tip speed ratio are discussed. Based on the numerical investigation, an assumed asymmetric straight Darrieus wind turbine is proposed to improve the averaged power coefficient. As to the numerical method, the flow around the turbine is simulated by solving the 2D unsteady Navier-Stokes equation combined with continuous equation. The time marching method on a body-fitted coordinate system based on MAC (Marker-and-Cell) method is used. O-type grid is generated for the whole calculation domain. The characteristics of tangential and normal force are discussed related with dynamic stall of the blade. Averaged power coefficient per period of rotating is calculated to evaluate the eligibility of the turbine.

  5. Maximum Power Tracking by VSAS approach for Wind Turbine, Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Nacer Kouider Msirdi

    2015-08-01

    Full Text Available This paper gives a review of the most efficient algorithms designed to track the maximum power point (MPP for catching the maximum wind power by a variable speed wind turbine (VSWT. We then design a new maximum power point tracking (MPPT algorithm using the Variable Structure Automatic Systems approach (VSAS. The proposed approachleads efficient algorithms as shown in this paper by the analysis and simulations.

  6. Micro turbine development with brazilian technology; Desenvolvimento de microturbina com tecnologia nacional

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.C.; Sanches, M.S. [Multivacuo Industria e Comercio de Filtros Ltda., Campinas, SP (Brazil); Maciel, H.S. [Centro Tecnico Aeroespacial (CTA-ITA), Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica; Moura, N.R. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Campos, M.F.; Furini, R. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    One of the most strategical factor in the field of the generation of electric energy, especially for power levels of 500 kW or higher, is the domain of the gas turbine technology and, in this aspect, few countries in the world withhold it. The objectives of the present work are: to project, to calculate, and to construct a gas turbine, based in the use of the natural gas as combustible. To accomplish these objectives the project was planned to be developed in two phases; in the first one, we envisage the set up of a concept test unit, for evidencing the capability of the involved team and of the national suppliers for manufacturing and providing the gas turbine parts. The second stage was planned to project and to construct a prototype unit for certification of the Brazilian gas turbine, aiming finally at the industrial production and commercialization, to attend the marked demand for gas turbines of power levels within the range of 500 kW to 2000 kW, using natural gas as fuel. In this work we show that the results obtained up to now - when we are in the final of the first phase - prove the existence of national technological strength for producing and supplying key parts of gas turbines, as well as qualified human resources to develop and dominate the complete gas turbine technology, in a sufficiently short period. (author)

  7. High power, medium voltage, series resonant converter for DC wind turbines

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2018-01-01

    , and the resulting compact and efficient transformer, and soft-commutated inverter, present particular advantages in high-power, high-voltage applications, like DC offshore wind turbines. With transformer excitation frequency in hundreds of Hz range, line-frequency diodes can be employed in the high...

  8. Turbine Aeration Design Software for Mitigating Adverse Environmental Impacts Resulting From Conventional Hydropower Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gulliver, John S. [Univ. of Minnesota, Minneapolis, MN (United States)

    2015-03-01

    Conventional hydropower turbine aeration test-bed for computational routines and software tools for improving environmental mitigation technologies for conventional hydropower systems. In achieving this goal, we have partnered with Alstom, a global leader in energy technology development and United States power generation, with additional funding from the Initiative for Renewable Energy and the Environment (IREE) and the College of Science and Engineering (CSE) at the UMN

  9. Turbine Imaging Technology Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moursund, Russell A.; Carlson, Thomas J.

    2004-12-31

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

  10. Turbine Imaging Technology Assessment

    International Nuclear Information System (INIS)

    Moursund, Russell A.; Carlson, Thomas J.

    2004-01-01

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions

  11. Development of a pump-turbine runner based on multiobjective optimization

    International Nuclear Information System (INIS)

    Xuhe, W; Baoshan, Z; Lei, T; Jie, Z; Shuliang, C

    2014-01-01

    As a key component of reversible pump-turbine unit, pump-turbine runner rotates at pump or turbine direction according to the demand of power grid, so higher efficiencies under both operating modes have great importance for energy saving. In the present paper, a multiobjective optimization design strategy, which includes 3D inverse design method, CFD calculations, response surface method (RSM) and multiobjective genetic algorithm (MOGA), is introduced to develop a model pump-turbine runner for middle-high head pumped storage plant. Parameters that controlling blade shape, such as blade loading and blade lean angle at high pressure side are chosen as input parameters, while runner efficiencies under both pump and turbine modes are selected as objective functions. In order to validate the availability of the optimization design system, one runner configuration from Pareto front is manufactured for experimental research. Test results show that the highest unit efficiency is 91.0% under turbine mode and 90.8% under pump mode for the designed runner, of which prototype efficiencies are 93.88% and 93.27% respectively. Viscous CFD calculations for full passage model are also conducted, which aim at finding out the hydraulic improvement from internal flow analyses

  12. Operational safety of turbine-generators at Loviisa nuclear power plant; Turbiini-generaattoreiden kaeyttoeturvallisuus Loviisan ydinvoimalaitoksella

    Energy Technology Data Exchange (ETDEWEB)

    Virolainen, T.

    1997-06-01

    The goal of the study is to assess the operational safety of the turbine-generators at the Loviisa NPP. The lay-out, operation, control, monitoring and testing of turbine-generators have been studied. Taking these findings into consideration and by using operational data of Loviisa and other power plants, the most significant safety issues of the turbine-generator system have been identified. The frequencies for initiating events and possible consequences have been determined based on plant operational experience and related literature. (58 refs.).

  13. Wind Turbine Providing Grid Support

    DEFF Research Database (Denmark)

    2011-01-01

    changing the operation of the wind turbine to a more efficient working point.; When the rotational speed of the rotor reaches a minimum value, the wind turbine enters a recovery period to re-accelerate the rotor to the nominal rotational speed while further contributing to the stability of the electrical......A variable speed wind turbine is arranged to provide additional electrical power to counteract non-periodic disturbances in an electrical grid. A controller monitors events indicating a need to increase the electrical output power from the wind turbine to the electrical grid. The controller...... is arranged to control the wind turbine as follows: after an indicating event has been detected, the wind turbine enters an overproduction period in which the electrical output power is increased, wherein the additional electrical output power is taken from kinetic energy stored in the rotor and without...

  14. Evolution of the Power Conversion Unit Design of the GT-MHR

    International Nuclear Information System (INIS)

    Baxi, C.B.; Perez, E.; Shenoy, A.; Kostin, V.I.; Kodochigov, N.G.; Vasyaev, A.V.; Belov, S.E.; Golovko, V.F.

    2006-01-01

    General Atomics in the USA and Experimental Design Bureau of Machine Building (OKBM) in the Russian Federation are jointly developing a gas turbine modular helium reactor (GT-MHR). The 600 MW(t) reactor is cooled by helium at a pressure of 7 MPa. The power conversion unit (PCU) uses the reactor outlet temperature of 850 deg C in a direct Brayton cycle to achieve an efficiency of about 48%. The PCU consists of a gas turbine, a recuperator, a pre-cooler, a low-pressure compressor, an inter-cooler, and a high-pressure compressor. The turbo machine (TM), including the generator, is mounted on a single vertical shaft. The TM rotates at a speed of 4400 rpm. The asynchronous generator is connected to the turbine by a flexible coupling. The required grid frequency is achieved by a converter. All PCU components are enclosed in a single vessel. TM uses radial and axial electromagnetic bearings (EMB) for support. Catcher bearings (CB) are provided as redundant support for the TM rotor in case of EMBs failure. These design features were determined after a comprehensive study carried out over the last 10 years. This paper describes the evolution of the current PCU design and justification for the choices. (authors)

  15. Optimizing Hydro Power Turbines in Order to Secure the Passage of Fishes in Khuzestan province

    Directory of Open Access Journals (Sweden)

    Moona Mohammadi

    2015-04-01

    Full Text Available Nowadays,it is important to consider environmental issues,as ecological problems and their severe effect intensify in Iran,particularly in Khuzestan province.The environmental effects of hydroelectric plants are highly regarded due to their significant impact on an extensive area.The lack of safe path for fish passing through the turbines is one of these damages. In order to deal with these challenges,researchers are trying to optimize hydro power turbines.In this optimization,old runners were replaced,while conditions of fish passing through the turbines and fish survival have been improved.Considering the existence of six hydroelectric power plants in Khuzestan province,it would be possible to conduct optimization or constructing studies with a fish-friendly approach for the safe passage of fishes to slightly reduce the extent of environmental damages.

  16. Simulation model of nuclear power plant turbine

    International Nuclear Information System (INIS)

    Dutta, Anu; Thangamani, I.; Chakraborty, G.; Ghosh, A.K.

    2006-04-01

    A computer code TURDYN has been developed for prediction of HP and LP turbine torque under thermodynamic transient conditions. The model is based on the conservation laws of mass and energy. All the important components of turbine systems e.g. high pressure turbine, low pressure turbine, feed heaters, reheater, moisture separator have been considered. The details of the mathematical formulation of the model and open loop responses for specific disturbances are presented. (author)

  17. Electrical Power Generated from Tidal Currents and Delivered to USCG Station Eastport, ME

    Science.gov (United States)

    2011-01-21

    35 Theory of Operation The ORPC Pre-Commercial Beta Turbine Generator Unit (“Beta TGU”) uses a hydrokinetic cross flow turbine based on Darrieus ...development in the wind turbine industry. The power coefficient (a measure of energy extraction effectiveness) is defined as follows: 31 2 turbine ...stream area of the device. Axial flow wind turbines have demonstrated power coefficients to an estimated 48% which approaches the theoretical “Betz

  18. TurbinAID

    International Nuclear Information System (INIS)

    Moradian, M.A.; Chow, M.P.; Osborne, R.L.; Jenkins, M.A.

    1991-01-01

    The Westinghouse Turbine Artificial Intelligence Diagnostics system or TurbinAID, can diagnose both thermodynamic and mechanical component anomalies within the turbine, and around the turbine cycle. any monitoring system can detect that a variable is in an abnormal state, but TurbinAID can also indicate the cause, and provide recommended corrective action(s). The TurbinAID Expert Systems utilize multiple sensor and variable inputs, and their interdependencies in the generation of a diagnosis. The system performs sensor validation as part of the data acquisition scheme. The TurbinAID system has been in operation for several years. This paper describes the monitoring and diagnostic functions provided by TurbinAID, and how the utility industry both nuclear and fossil, can utilize the system to enhance unit operation

  19. Prospects for development of wind turbines with orthogonal rotor

    Science.gov (United States)

    Gorelov, D. N.; Krivospitsky, V. P.

    2008-03-01

    The experimental data obtained previously on the investigation of power characteristics and the possibility of the self-start of the Darrieus rotor are anlysed. These results are used at the design of new two-tier wind turbines with straight blades. The full-scale tests of two design variants showed the prospects for the development of wind turbines with the Darrieus rotor. At a reasonable design, they do not need any devices for the rotor orientation and start-up, are little sensitive to wind gusts and can have a high level of power characteristics, which is not inferior to the best samples of the units of propeller type.

  20. Design of a high power, resonant converter for DC wind turbines

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2018-01-01

    This paper presents a design procedure and loss estimation for a high power, medium voltage series resonant converter (entitled SRC#), intended for application in megawatt medium-voltage DC wind turbines. The converter is operated with a novel method of operation, entitled pulse removal technique...