WorldWideScience

Sample records for turbine fuel mil-t-83133c

  1. Refining and blending of aviation turbine fuels.

    Science.gov (United States)

    White, R D

    1999-02-01

    Aviation turbine fuels (jet fuels) are similar to other petroleum products that have a boiling range of approximately 300F to 550F. Kerosene and No.1 grades of fuel oil, diesel fuel, and gas turbine oil share many similar physical and chemical properties with jet fuel. The similarity among these products should allow toxicology data on one material to be extrapolated to the others. Refineries in the USA manufacture jet fuel to meet industry standard specifications. Civilian aircraft primarily use Jet A or Jet A-1 fuel as defined by ASTM D 1655. Military aircraft use JP-5 or JP-8 fuel as defined by MIL-T-5624R or MIL-T-83133D respectively. The freezing point and flash point are the principle differences between the finished fuels. Common refinery processes that produce jet fuel include distillation, caustic treatment, hydrotreating, and hydrocracking. Each of these refining processes may be the final step to produce jet fuel. Sometimes blending of two or more of these refinery process streams are needed to produce jet fuel that meets the desired specifications. Chemical additives allowed for use in jet fuel are also defined in the product specifications. In many cases, the customer rather than the refinery will put additives into the fuel to meet their specific storage or flight condition requirements.

  2. Field Demonstration of Aviation Turbine Fuel MIL-T-83133C, Grade JP-8 (NATO Code F-34), at Fort Bliss, TX

    Science.gov (United States)

    1992-09-01

    APO NY 09052 CDR US ARMY NATICK RD&E CTR DOD PROJ MGR, MOBILE ELECTRIC POWER ATTN: SATNC-US US ARMY TROOP SUPPORT COMMAND NATICK MA 01760-5020 ATUN ...US ARMY QUARTERMASTER SCHOOL ATUN : LOEA-PL (MR LeVAN) I ATTN: ATSM-CDM 1 NEW CUMBERLAND PA 17070 ATSM-PWD I FORT LEE VA 23801 PETROLEUM FIELD OFFICE...ARTILLERY CENTER US ARMY INFANTRY SCHOOL & FORT BLISS ATTN: ATSH-CD-MIS-M I ATUN : ATZC-ISL-PP 3 ATSH-CD-TSM-T 1 ATZC-ISL-MM 3 FORT BENNING GA 31905-5400

  3. Alternate-Fueled Combustor-Sector Performance—Part A: Combustor Performance and Part B: Combustor Emissions

    OpenAIRE

    Shouse, D. T.; Neuroth, C.; Hendricks, R. C.; Lynch, A.; Frayne, C. W.; Stutrud, J. S.; Corporan, E.; Hankins, Capt. T.

    2012-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F or ASTM D 7566 standards, respectively, and are classified as “drop-in’’ fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are acceptable. Adherence to alternate fuels and fuel blends requires “smart fueling systems’’ or advanced fuel-flexible systems, including combustors and engines, without significant sacrifice in performance or emissions requirements...

  4. Alternate-Fueled Combustor-Sector Performance

    Science.gov (United States)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as "drop-in" fuel replacements. This report provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fischer-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 degF (533 K), 125 psia (0.86 MPa) at 625 degF (603 K), 175 psia (1.21 MPa) at 725 degF (658 K), and 225 psia (1.55 MPa) at 790 degF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3, 4, and 5 percent combustor pressure drop (DP) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade and vane lives.

  5. Alternate-Fueled Combustor-Sector Performance: Part A: Combustor Performance Part B: Combustor Emissions

    Science.gov (United States)

    Shouse, D. T.; Neuroth, C.; Henricks, R. C.; Lynch, A.; Frayne, C.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2010-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as drop-in fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of feedstock. Adherence to alternate fuels and fuel blends requires smart fueling systems or advanced fuel-flexible systems, including combustors and engines without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data for synthetic-parafinic-kerosene- (SPK-) type fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling.

  6. Analysis of a MIL-L-27502 lubricant from a gas-turbine engine test by size-exclusion chromatography

    Science.gov (United States)

    Jones, W. R., Jr.; Morales, W.

    1983-01-01

    Size exclusion chromatography was used to determine the chemical degradation of MIL-L-27502 oil samples from a gas turbine engine test run at a bulk oil temperature of 216 C. Results revealed a progressive loss of primary ester and additive depletion and the formation of higher molecular weight products with time. The high molecular weight products absorbed strongly in the ultraviolet indicating the presence of chromophoric groups.

  7. Heating and Efficiency Comparison of a Fischer-Tropsch (FT) Fuel, JP-8+100, and Blends in a Three-Cup Combustor Sector

    Science.gov (United States)

    Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry; Saxena, Nikita T.; Hendricks, Robert C.

    2012-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566-Annex standards and are classified as drop-in fuel replacements. This paper provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 aF (533 K), 125 psia (0.86 MPa) at 625 aF (603 K), 175 psia (1.21 MPa) at 725 aF (658 K), and 225 psia (1.55 MPa) at 790 aF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3%, 4%, and 5% combustor pressure drop (% P) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade/vane life. In general, 100% SPK-FT fuel and blends with JP-8+100 produce less particulates and less smoke and have lower thermal impact on combustor hardware.

  8. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  9. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  10. Adsorptive removal of dibenzothiophene from model fuels over one-pot synthesized PTA@MIL-101(Cr) hybrid material.

    Science.gov (United States)

    Jia, Shao-Yi; Zhang, Yan-Fei; Liu, Yong; Qin, Feng-Xiang; Ren, Hai-Tao; Wu, Song-Hai

    2013-11-15

    Hybrid nanomaterials comprising phosphotungstic acid (PTA) and MIL-101(Cr) were prepared through one-pot synthesis and post-modification methods and then were used as adsorbents of dibenzothiophene (DBT) from simulated diesel fuels. Samples obtained by different ways (encapsulation and impregnation) were characterized by nitrogen adsorption, transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectrum (FT-IR) and series of adsorption experiments. The equilibrium adsorption capacities of PTA@MIL-101(Cr) illustrated that the direct introduction of PTA into MIL-101(Cr) during synthesis resulted in a 10.7% increase compared with MIL-101(Cr). However, porous hybrid adsorbent PTA/MIL-101(Cr) prepared via post-modification method exhibited lower adsorption capacity than virgin MIL-101(Cr). The theoretical maximum adsorption capacity (Q0) of PTA@MIL-101(Cr) is 136.5mg S/g adsorbent, 4.2 times of MIL-101(Cr). Even in competitive adsorption between aromatic compounds, which possess strong affinity with MOFs, and DBT, PTA@MIL-101(Cr) and MIL-101(Cr) remained their effectiveness in removal of DBT in the system. Based on these results, it can be presumed that MIL-101(Cr), modified properly, can be used as a promising adsorbent for eliminating aromatics and S-compounds in commercial fuels simultaneously. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Adsorptive removal of dibenzothiophene from model fuels over one-pot synthesized PTA@MIL-101(Cr) hybrid material

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shao-Yi; Zhang, Yan-Fei [School of Chemical Engineering and Technology, Tianjin University, Tianjin (China); Liu, Yong [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin (China); Qin, Feng-Xiang; Ren, Hai-Tao [School of Chemical Engineering and Technology, Tianjin University, Tianjin (China); Wu, Song-Hai, E-mail: songhaiwu@gmail.com [School of Chemical Engineering and Technology, Tianjin University, Tianjin (China)

    2013-11-15

    Highlights: • One-pot synthesized PTA@MIL-101(Cr) shows high capacity of benzothiophene. • PTA/MIL-101(Cr) obtained via post-modification performs poor in the adsorption. • PTA and MIL-101(Cr) exhibit synergetic effect on adsorption of benzothiophene. • In the presence of aromatics, PTA@MIL-101(Cr) and MIL-101(Cr) remain their capacity. • PTA-dispersed MOFs adsorb dibenzothiophene through acid–base interaction. -- Abstract: Hybrid nanomaterials comprising phosphotungstic acid (PTA) and MIL-101(Cr) were prepared through one-pot synthesis and post-modification methods and then were used as adsorbents of dibenzothiophene (DBT) from simulated diesel fuels. Samples obtained by different ways (encapsulation and impregnation) were characterized by nitrogen adsorption, transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectrum (FT-IR) and series of adsorption experiments. The equilibrium adsorption capacities of PTA@MIL-101(Cr) illustrated that the direct introduction of PTA into MIL-101(Cr) during synthesis resulted in a 10.7% increase compared with MIL-101(Cr). However, porous hybrid adsorbent PTA/MIL-101(Cr) prepared via post-modification method exhibited lower adsorption capacity than virgin MIL-101(Cr). The theoretical maximum adsorption capacity (Q{sub 0}) of PTA@MIL-101(Cr) is 136.5 mg S/g adsorbent, 4.2 times of MIL-101(Cr). Even in competitive adsorption between aromatic compounds, which possess strong affinity with MOFs, and DBT, PTA@MIL-101(Cr) and MIL-101(Cr) remained their effectiveness in removal of DBT in the system. Based on these results, it can be presumed that MIL-101(Cr), modified properly, can be used as a promising adsorbent for eliminating aromatics and S-compounds in commercial fuels simultaneously.

  12. Alternate-Fueled Combustion-Sector Emissions

    Science.gov (United States)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. Currently, alternate aviation fuels must satisfy MIL-DTL- 83133F(2008) (military) or ASTM D 7566- Annex(2011) (commercial) standards and are termed drop-in fuel replacements. Fuel blends of up to 50% alternative fuel blended with petroleum (JP-8), which have become a practical alternative, are individually certified on the market. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This paper analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP- 8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0%, 50%, and 100%. The data showed that SPK fuel (a FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  13. Protonated MIL-125-NH2: Remarkable Adsorbent for the Removal of Quinoline and Indole from Liquid Fuel.

    Science.gov (United States)

    Ahmed, Imteaz; Khan, Nazmul Abedin; Yoon, Ji Woong; Chang, Jong-San; Jhung, Sung Hwa

    2017-06-21

    The removal of nitrogen-containing compounds (NCCs) from fossil fuels prior to combustion is currently of particular importance, and so we investigated an adsorptive method using metal-organic frameworks (MOFs) for the removal of indole (IND) and quinoline (QUI), which are two of the main NCCs present in fossil fuels. We herein employed an amino (-NH 2 )-functionalized MIL-125 (MIL-125-NH 2 ) MOF, which was further modified by protonation (P-MIL-125-NH 2 ). These modified MOFs exhibited extraordinary performance in the adsorption of both IND (as representative neutral NCC) and QUI (as representative basic NCC). These MOFs were one of the most efficient adsorbents for the removal of NCCs. For example, P-MIL-125-NH 2 showed the highest adsorption capacity for QUI among ever reported adsorbent. The improved adsorption of IND was explained by H-bonding and cation-π interactions for MIL-125-NH 2 and P-MIL-125-NH 2 , respectively, while the mechanisms for QUI were H-bonding and acid-base interactions, respectively. This is a rare phenomenon for a single material (especially not with very high porosity) to exhibit such remarkable performances in the adsorption of both basic QUI and neutral IND. The adsorption results obtained using regenerated MIL-125-NH 2 and P-MIL-125-NH 2 also showed that these materials can be used several times without any severe degradation.

  14. Multi-stage internal gear/turbine fuel pump

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Eugen; Raney, Michael Raymond

    2004-07-06

    A multi-stage internal gear/turbine fuel pump for a vehicle includes a housing having an inlet and an outlet and a motor disposed in the housing. The multi-stage internal gear/turbine fuel pump also includes a shaft extending axially and disposed in the housing. The multi-stage internal gear/turbine fuel pump further includes a plurality of pumping modules disposed axially along the shaft. One of the pumping modules is a turbine pumping module and another of the pumping modules is a gerotor pumping module for rotation by the motor to pump fuel from the inlet to the outlet.

  15. Evaluation of Instrumentation for Measuring Undissolved Water in Aviation Turbine Fuels per ASTM D3240

    Science.gov (United States)

    2015-11-05

    Undissolved Water in Aviation Turbine Fuels per ASTM D3240 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Joel Schmitigal... water ) in Aviation Turbine Fuels per ASTM D3240 15. SUBJECT TERMS fuel, JP-8, aviation fuel, contamination, free water , undissolved water , Aqua-Glo 16...Michigan 48397-5000 Evaluation of Instrumentation for Measuring Undissolved Water in Aviation Turbine Fuels per ASTM D3240 Joel Schmitigal Force

  16. Fuel Flexible Turbine System (FFTS) Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-12-31

    In this fuel flexible turbine system (FFTS) program, the Parker gasification system was further optimized, fuel composition of biomass gasification process was characterized and the feasibility of running Capstone MicroTurbine(TM) systems with gasification syngas fuels was evaluated. With high hydrogen content, the gaseous fuel from a gasification process of various feed stocks such as switchgrass and corn stover has high reactivity and high flashback propensity when running in the current lean premixed injectors. The research concluded that the existing C65 microturbine combustion system, which is designed for natural gas, is not able to burn the high hydrogen content syngas due to insufficient resistance to flashback (undesired flame propagation to upstream within the fuel injector). A comprehensive literature review was conducted on high-hydrogen fuel combustion and its main issues. For Capstone's lean premixed injector, the main mechanisms of flashback were identified to be boundary layer flashback and bulk flow flashback. Since the existing microturbine combustion system is not able to operate on high-hydrogen syngas fuels, new hardware needed to be developed. The new hardware developed and tested included (1) a series of injectors with a reduced propensity for boundary layer flashback and (2) two new combustion liner designs (Combustion Liner Design A and B) that lead to desired primary zone air flow split to meet the overall bulk velocity requirement to mitigate the risk of core flashback inside the injectors. The new injector designs were evaluated in both test apparatus and C65/C200 engines. While some of the new injector designs did not provide satisfactory performance in burning target syngas fuels, particularly in improving resistance to flashback. The combustion system configuration of FFTS-4 injector and Combustion Liner Design A was found promising to enable the C65 microturbine system to run on high hydrogen biomass syngas. The FFTS-4 injector

  17. MIL-100-Fe derived N-doped Fe/Fe3C@C electrocatalysts for efficient oxygen reduction reaction

    Science.gov (United States)

    Guo, Dakai; Han, Sancan; Wang, Jiacheng; Zhu, Yufang

    2018-03-01

    N-doped porous Fe/Fe3C@C electrocatalysts were prepared by the pyrolysis of the hexamethylenetetramine (HMT)-incorporated MIL-100-Fe at different temperatures (700-1000 °C) under N2 atmosphere. Rotary evaporation of MIL-100-Fe and HMT solution could make more N-enriched HMT molecules enter into the pores of MIL-100-Fe, thus improving nitrogen contents of the final pyrolyzed samples. All pyrolyzed samples show porous textures with middle specific surface areas. The X-ray photoelectron spectroscopy (XPS) results demonstrate the successful introduction of N atoms into carbon framework. Sample Fe-N2-800 prepared by annealing the precursors with the HMT/MIL-100-Fe weight ratio of 2 at 800 °C exhibits the best electrocatalytic activity towards the oxygen reduction reaction (ORR) in terms of onset potential and current density because of high graphitic N and pyridinic N content. The enwrapped Fe/Fe3C nanoparticles and Fe-Nx active sites in these samples could also boost the ORR activity synergistically. Moreover, sample Fe-N2-800 demonstrates a dominant four electron reduction process, as well as excellent long-term operation stability and methanol crossover resistance. Thus, the N-doped Fe/Fe3C@C composites derived from the HMT-incorporated MIL-100-Fe are promising electrocatalysts to replace Pt/C for ORR in practical applications.

  18. Bio-fuels for the gas turbine: A review

    International Nuclear Information System (INIS)

    Gupta, K.K.; Rehman, A.; Sarviya, R.M.

    2010-01-01

    Due to depletion of fossil fuel, bio-fuels have generated a significant interest as an alternative fuel for the future. The use of bio-fuels to fuel gas turbine seems a viable solution for the problems of decreasing fossil-fuel reserves and environmental concerns. Bio-fuels are alternative fuels, made from renewable sources and having environmental benefit. In recent years, the desire for energy independence, foreseen depletion of nonrenewable fuel resources, fluctuating petroleum fuel costs, the necessity of stimulating agriculture based economy, and the reality of climate change have created an interest in the development of bio-fuels. The application of bio-fuels in automobiles and heating applications is increasing day by day. Therefore the use of these fuels in gas turbines would extend this application to aviation field. The impact of costly petroleum-based aviation fuel on the environment is harmful. So the development of alternative fuels in aviation is important and useful. The use of liquid and gaseous fuels from biomass will help to fulfill the Kyoto targets concerning global warming emissions. In addition, to reduce exhaust emission waste gases and syngas, etc., could be used as a potential gas turbine fuel. The term bio-fuel is referred to alternative fuel which is produced from biomass. Such fuels include bio-diesel, bio-ethanol, bio-methanol, pyrolysis oil, biogas, synthetic gas (dimethyl ether), hydrogen, etc. The bio-ethanol and bio-methanol are petrol additive/substitute. Bio-diesel is an environment friendly alternative liquid fuel for the diesel/aviation fuel. The gas turbine develops steady flame during its combustion; this feature gives a flexibility to use alternative fuels. Therefore so the use of different bio-fuels in gas turbine has been investigated by a good number of researchers. The suitability and modifications in the existing systems are also recommended. (author)

  19. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  20. Indirect-fired gas turbine bottomed with fuel cell

    Science.gov (United States)

    Micheli, P.L.; Williams, M.C.; Parsons, E.L.

    1995-09-12

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes. 1 fig.

  1. Validation of MIL-F-9490D. General Specification for Flight Control System for Piloted Military Aircraft. Volume III. C-5A Heavy Logistics Transport Validation

    Science.gov (United States)

    1977-04-01

    subjected to extreme environmental climatic tests, including the IdL,-T-5289 test requirement. 5.1.9.2 Invulnerability to Lightning Strikes and Static...specified in Paragraph 3.2.3.2.1. The hydi aulic computing elements were designed to the requirements of MIL-C- 5503 and �-H-8775. I 297 L...and climate in any area of the world using MI,- STD-210, FAA-T3O-(49C, and MIL-F-9490, as applicable. Environmental areas included solar radiation

  2. Alternate-Fueled Combustor-Sector Performance. Parts A and B; (A) Combustor Performance; (B) Combustor Emissions

    Science.gov (United States)

    Shouse, D. T.; Hendricks, R. C.; Lynch, A.; Frayne, C. W.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2012-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as "drop-in" fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of processing and assumed to be feedstock agnostic. Adherence to alternate fuels and fuel blends requires "smart fueling systems" or advanced fuel-flexible systems, including combustors and engines, without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data. The data are for nominal inlet conditions at 225 psia and 800 F (1.551 MPa and 700 K), for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling. Assessments are made of the change in combustor efficiency, wall temperatures, emissions, and luminosity with SPK of 0%, 50%, and 100% fueling composition at 3% combustor pressure drop. The performance results (Part A) indicate no quantifiable differences in combustor efficiency, a general trend to lower liner and higher core flow temperatures with increased FT fuel blends. In general, emissions data (Part B) show little differences, but with percent increase in FT-SPK-type fueling, particulate emissions and wall temperatures are less than with baseline JP-8. High-speed photography illustrates both luminosity and combustor dynamic flame characteristics.

  3. Advanced fuels for gas turbines: Fuel system corrosion, hot path deposit formation and emissions

    International Nuclear Information System (INIS)

    Seljak, Tine; Širok, Brane; Katrašnik, Tomaž

    2016-01-01

    Highlights: • Technical feasibility analysis of alternative fuels requires a holistic approach. • Fuel, combustion, corrosion and component functionality are strongly related. • Used approach defines design constraints for microturbines using alternative fuels. - Abstract: To further expand the knowledge base on the use of innovative fuels in the micro gas turbines, this paper provides insight into interrelation between specific fuel properties and their impact on combustion and emission formation phenomena in micro gas turbines for stationary power generation as well as their impact on material corrosion and deposit formation. The objective of this study is to identify potential issues that can be related to specific fuel properties and to propose counter measures for achieving stable, durable, efficient and low emission operation of the micro gas turbine while utilizing advanced/innovative fuels. This is done by coupling combustion and emission formation analyses to analyses of material degradation and degradation of component functionality while interpreting them through fuel-specific properties. To ensure sufficiently broad range of fuel properties to demonstrate the applicability of the method, two different fuels with significantly different properties are analysed, i.e. tire pyrolysis oil and liquefied wood. It is shown that extent of required micro gas turbine adaptations strongly correlates with deviations of the fuel properties from those of the baseline fuel. Through the study, these adaptations are supported by in-depth analyses of impacts of fuel properties on different components, parameters and subsystems and their quantification. This holistic approach is further used to propose methodologies and innovative approaches for constraining a design space of micro gas turbine to successfully utilize wide spectra of alternative/innovative fuels.

  4. Combined cogeneration equipment containing gas turbine using low sulphur heavy stock as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Goro; Ishiki, Katsuhiko

    1988-03-10

    This paper describes the combined cogeneration in Chemical and Plastics Co. Madras (India) which uses low sulphur heavy stock (LSHS) as a fuel. By the combined cogeneration of gas turbine and boiler steam turbine power generation, the exhaust from the steam turbine is supplied to the factory as a process steam. This equipment has a capacity of 4835 kW in overall generation power and 23.5 tons/hrs. in steam evaporation. The gas turbine system is equipped with an axial-flow, 11 step compressor, an axial flow, 4 step turbine, and a single-can back flow combustor fixed to the intermediate casing. The temperature of the exhaust from the gas turbine is 542/sup 0/C. Low quality LSHS when burned exerts no influence on the service life of the turbine blades. The boiler is a horizontal bent pipe, forced circulation type, and the steam turbine is a back pressure control type. The fuel is treated with a horizontal, two drum, electrostatic separator to which a demulsifier is supplied, to be separated into oil and water. As to the vanadium salts contained in the fuels, a chemical liquid containing MgO as a major ingredient is added to the fuel prior to the combustion. Thereby, the melting temperature of the vanadium oxide is enhanced, which serves for prevention of the melting and adhesion of the vanadium oxide to the gas turbine. LSHS is a residual oil produced by the ordinary pressure distillation of India-produced crude oil, has a sulphur content of 1.75%, and is solid at room temperature. Attention should be paid to clogging of the pipings. The overall efficiency is 80%. The combined cogeneration can be coordinated with load variations of 10 - 20%. (12 figs, 1 tab)

  5. Control Performance of General Electric Fuel and Torque Regulator Operating on T31-3 Turbine-Propeller Engine in Sea-Level Test Stand

    Science.gov (United States)

    Oppenheimer, Frank L.; Lazar, James

    1951-01-01

    A .General Electric fuel and torque regulator was tested in conjunction with a T31-3 turbine-propeller engine in the sea-level static test stand at the NACA Lewis laboratory. The engine and control were operated over the entire speed range: 11,000 rpm, nominal flight idle, to 13,000 rpm, full power. Steady-state and transient data were recorded and are presented with a description of the four control loops being used in the system. Results of this investigation indicated that single-lever control operation was satisfactory under conditions of test. Transient data presented showed that turbine-outlet temperature did overshoot maximum operating value on acceleration but that the time duration of overshoot did not exceed approximately 1 second. This temperature limiting resulted from a control on fuel flow as a function of engine speed. Speed and torque first reached their desired values 0.4 second from the time of change in power-setting lever position. Maximum speed overshoot was 3 percent.

  6. The removal of bisphenol A from aqueous solutions by MIL-53(Al) and mesostructured MIL-53(Al).

    Science.gov (United States)

    Zhou, Meimei; Wu, Yi-Nan; Qiao, Junlian; Zhang, Jing; McDonald, Amanda; Li, Guangtao; Li, Fengting

    2013-09-01

    In this work, metal-organic framework MIL-53(Al){Al(OH)[O2C-C6H4-CO2]} and MIL-53(Al)-F127{Al(OH)[O2C-C6H4-CO2]} were synthesized and used as sorbents to remove bisphenol A (BPA) from aqueous system. The sorption kinetics data of BPA were found to be in agreement with the pseudo-second-order model. The equilibrium sorption amounts of BPA on MIL-53(Al) and MIL-53(Al)-F127 reached 329.2±16.5 and 472.7±23.6 mg g(-1), respectively, far more than that of commercial activated carbons (ranging from 129.6 to 263.1 mg g(-1)). Both MIL-53(Al) and MIL-53(Al)-F127 could remove BPA fast from aqueous solutions, and the required contact time to reach equilibrium was approximately 90 min for MIL-53(Al) and 30 min for MIL-53(Al)-F127, respectively. The optimum pH levels for the removal of BPA using MIL-53 (Al) and MIL-53(Al)-F127 were 4 and 6 separately. The optimum temperature for the sorption behavior of BPA on the two sorbents was 20 °C. The results performed show that the resulting products, as one kind of MOFs, can be regarded as a new class of sorbents for water treatment and could find great applications in the fields of environmental water pollution control and resources reuse. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Gas turbines with complete continuous combustion of the fuels

    Energy Technology Data Exchange (ETDEWEB)

    Koch, C

    1976-10-21

    The invention concerns a gas turbine plant with complete continuous combustion of the fuel. The fuel is taken to a gas generator in which the preheated fuel is catalytically converted at high temperature in a fuel mixture using an oxygen carrier. Heating of the fuel takes place in a heat exchanger which is situated in the outlet pipe of the turbine. The efficiency is increased and the emission of noxious gas is kept as low as possible using the heat exchanger as a fuel evaporator and by using part of the waste formed in the combustion chamber to carry oxygen to the gas generator via an outlet pipe.

  8. Fuel characteristics pertinent to the design of aircraft fuel systems, Supplement I : additional information on MIL-F-7914(AER) grade JP-5 fuel and several fuel oils

    Science.gov (United States)

    Barnett, Henry C; Hibbard, Robert R

    1953-01-01

    Since the release of the first NACA publication on fuel characteristics pertinent to the design of aircraft fuel systems (NACA-RM-E53A21), additional information has become available on MIL-F7914(AER) grade JP-5 fuel and several of the current grades of fuel oils. In order to make this information available to fuel-system designers as quickly as possible, the present report has been prepared as a supplement to NACA-RM-E53A21. Although JP-5 fuel is of greater interest in current fuel-system problems than the fuel oils, the available data are not as extensive. It is believed, however, that the limited data on JP-5 are sufficient to indicate the variations in stocks that the designer must consider under a given fuel specification. The methods used in the preparation and extrapolation of data presented in the tables and figures of this supplement are the same as those used in NACA-RM-E53A21.

  9. Pump Application as Hydraulic Turbine – Pump as Turbine (PaT)

    OpenAIRE

    Rusovs, D

    2009-01-01

    The paper considers pump operation as hydraulic turbine with purpose to produce mechanical power from liquid flow. The Francis hydraulic turbine was selected for comparison with centrifugal pump in reverse operation. Turbine and centrifugal pump velocity triangles were considered with purpose to evaluate PaT efficiency. Shape of impeller blades for turbine and pumps was analysed. Specific speed calculation is carried out with purpose to obtain similarity in pump and turbine description. For ...

  10. Mil doscientos títulos de antropología colombiana: primera parte

    Directory of Open Access Journals (Sweden)

    Manuel Lucena Salmoral

    1969-08-01

    Full Text Available La aparición de estos mil doscientos títulos sobre antropología Colombiana representa un esfuerzo juvenil de universitarios javerianos, pertenecientes a distintas ciencias sociales, quienes fueron confluyendo a mis clases de Antropología Cultural guiados por la misma problemática: la búsqueda del hombre.

  11. Simulation modelling for new gas turbine fuel controller creation.

    Science.gov (United States)

    Vendland, L. E.; Pribylov, V. G.; Borisov, Yu A.; Arzamastsev, M. A.; Kosoy, A. A.

    2017-11-01

    State of the art gas turbine fuel flow control systems are based on throttle principle. Major disadvantage of such systems is that they require high pressure fuel intake. Different approach to fuel flow control is to use regulating compressor. And for this approach because of controller and gas turbine interaction a specific regulating compressor is required. Difficulties emerge as early as the requirement definition stage. To define requirements for new object, his properties must be known. Simulation modelling helps to overcome these difficulties. At the requirement definition stage the most simplified mathematical model is used. Mathematical models will get more complex and detailed as we advance in planned work. If future adjusting of regulating compressor physical model to work with virtual gas turbine and physical control system is planned.

  12. Advanced Micro Turbine System (AMTS) -C200 Micro Turbine -Ultra-Low Emissions Micro Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Capstone Turbine Corporation

    2007-12-31

    In September 2000 Capstone Turbine Corporation commenced work on a US Department of Energy contract to develop and improve advanced microturbines for power generation with high electrical efficiency and reduced pollutants. The Advanced MicroTurbine System (AMTS) program focused on: (1) The development and implementation of technology for a 200 kWe scale high efficiency microturbine system (2) The development and implementation of a 65 kWe microturbine which meets California Air Resources Board (CARB) emissions standards effective in 2007. Both of these objectives were achieved in the course of the AMTS program. At its conclusion prototype C200 Microturbines had been designed, assembled and successfully completed field demonstration. C65 Microturbines operating on natural, digester and landfill gas were also developed and successfully tested to demonstrate compliance with CARB 2007 Fossil Fuel Emissions Standards for NOx, CO and VOC emissions. The C65 Microturbine subsequently received approval from CARB under Executive Order DG-018 and was approved for sale in California. The United Technologies Research Center worked in parallel to successfully execute a RD&D program to demonstrate the viability of a low emissions AMS which integrated a high-performing microturbine with Organic Rankine Cycle systems. These results are documented in AMS Final Report DOE/CH/11060-1 dated March 26, 2007.

  13. Dynamic modeling of gas turbines in integrated gasification fuel cell systems

    Science.gov (United States)

    Maclay, James Davenport

    2009-12-01

    Solid oxide fuel cell-gas turbine (SOFC-GT) hybrid systems for use in integrated gasification fuel cell (IGFC) systems operating on coal will stretch existing fossil fuel reserves, generate power with less environmental impact, while having a cost of electricity advantage over most competing technologies. However, the dynamic performance of a SOFC-GT in IGFC applications has not been previously studied in detail. Of particular importance is how the turbo-machinery will be designed, controlled and operated in such applications; this is the focus of the current work. Perturbation and dynamic response analyses using numerical SimulinkRTM models indicate that compressor surge is the predominant concern for safe dynamic turbo-machinery operation while shaft over-speed and excessive turbine inlet temperatures are secondary concerns. Fuel cell temperature gradients and anode-cathode differential pressures were found to be the greatest concerns for safe dynamic fuel cell operation. Two control strategies were compared, that of constant gas turbine shaft speed and constant fuel cell temperature, utilizing a variable speed gas turbine. Neither control strategy could eliminate all vulnerabilities during dynamic operation. Constant fuel cell temperature control ensures safe fuel cell operation, while constant speed control does not. However, compressor surge is more likely with constant fuel cell temperature control than with constant speed control. Design strategies that provide greater surge margin while utilizing constant fuel cell temperature control include increasing turbine design mass flow and decreasing turbine design inlet pressure, increasing compressor design pressure ratio and decreasing compressor design mass flow, decreasing plenum volume, decreasing shaft moment of inertia, decreasing fuel cell pressure drop, maintaining constant compressor inlet air temperature. However, these strategies in some cases incur an efficiency penalty. A broad comparison of cycles

  14. Cold flow testing of the Space Shuttle Main Engine alternate turbopump development high pressure fuel turbine model

    Science.gov (United States)

    Gaddis, Stephen W.; Hudson, Susan T.; Johnson, P. D.

    1992-01-01

    NASA's Marshall Space Flight Center has established a cold airflow turbine test program to experimentally determine the performance of liquid rocket engine turbopump drive turbines. Testing of the SSME alternate turbopump development (ATD) fuel turbine was conducted for back-to-back comparisons with the baseline SSME fuel turbine results obtained in the first quarter of 1991. Turbine performance, Reynolds number effects, and turbine diagnostics, such as stage reactions and exit swirl angles, were investigated at the turbine design point and at off-design conditions. The test data showed that the ATD fuel turbine test article was approximately 1.4 percent higher in efficiency and flowed 5.3 percent more than the baseline fuel turbine test article. This paper describes the method and results used to validate the ATD fuel turbine aerodynamic design. The results are being used to determine the ATD high pressure fuel turbopump (HPFTP) turbine performance over its operating range, anchor the SSME ATD steady-state performance model, and validate various prediction and design analyses.

  15. Turbine combustor with fuel nozzles having inner and outer fuel circuits

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2013-12-24

    A combustor cap assembly for a turbine engine includes a combustor cap and a plurality of fuel nozzles mounted on the combustor cap. One or more of the fuel nozzles would include two separate fuel circuits which are individually controllable. The combustor cap assembly would be controlled so that individual fuel circuits of the fuel nozzles are operated or deliberately shut off to provide for physical separation between the flow of fuel delivered by adjacent fuel nozzles and/or so that adjacent fuel nozzles operate at different pressure differentials. Operating a combustor cap assembly in this fashion helps to reduce or eliminate the generation of undesirable and potentially harmful noise.

  16. Effects of Fuel and Nozzle Characteristics on Micro Gas Turbine System: A Review

    Science.gov (United States)

    Akasha Hashim, Muhammad; Khalid, Amir; Salleh, Hamidon; Sunar, Norshuhaila Mohamed

    2017-08-01

    For many decades, gas turbines have been used widely in the internal combustion engine industry. Due to the deficiency of fossil fuel and the concern of global warming, the used of bio-gas have been recognized as one of most clean fuels in the application of engine to improve performance of lean combustion and minimize the production of NOX and PM. This review paper is to understand the combustion performance using dual-fuel nozzle for a micro gas turbine that was basically designed as a natural gas fuelled engine, the nozzle characteristics of the micro gas turbine has been modelled and the effect of multi-fuel used were investigated. The used of biogas (hydrogen) as substitute for liquid fuel (methane) at constant fuel injection velocity, the flame temperature is increased, but the fuel low rate reduced. Applying the blended fuel at constant fuel rate will increased the flame temperature as the hydrogen percentages increased. Micro gas turbines which shows the uniformity of the flow distribution that can be improved without the increase of the pressure drop by applying the variable nozzle diameters into the fuel supply nozzle design. It also identifies the combustion efficiency, better fuel mixing in combustion chamber using duel fuel nozzle with the largest potential for the future. This paper can also be used as a reference source that summarizes the research and development activities on micro gas turbines.

  17. Experimental Study of Turbine Fuel Thermal Stability in an Aircraft Fuel System Simulator

    Science.gov (United States)

    Vranos, A.; Marteney, P. J.

    1980-01-01

    The thermal stability of aircraft gas turbines fuels was investigated. The objectives were: (1) to design and build an aircraft fuel system simulator; (2) to establish criteria for quantitative assessment of fuel thermal degradation; and (3) to measure the thermal degradation of Jet A and an alternative fuel. Accordingly, an aircraft fuel system simulator was built and the coking tendencies of Jet A and a model alternative fuel (No. 2 heating oil) were measured over a range of temperatures, pressures, flows, and fuel inlet conditions.

  18. T55 power turbine rotor multiplane-multispeed balancing study

    Science.gov (United States)

    Martin, M. R.

    1982-01-01

    A rotordynamic analysis of the T55-L-11C engine was used to evaluate the balancing needs of the power turbine and to optimize the balancing procedure. As a result, recommendations were made for implementation of a multiplane-multispeed balancing plan. Precision collars for the attachment of trial weights to a slender rotor were designed enabling demonstration balancing on production hardware. The quality of the balance was then evaluated by installing a high speed balanced power turbine in an engine and running in a test cell at the Corpus Christi Army depot. The engine used had been tested prior to the turbine changeout and showed acceptable overall vibration levels for the engine were significantly reduced, demonstrating the ability of multiplane-multispeed balancing to control engine vibration.

  19. Caterpillar C7 and GEP 6.5L (T) Fuel System Durability Using 25% ATJ Fuel Blend

    Science.gov (United States)

    2015-02-01

    6.5L(T) diesel engines. With the technical issues presented in this report related to the CAT C7 evaluation and the desert operating condition GEP 6.5L...General Engine Products (GEP) 6.5L(T) diesel engines. These engines are representative of high density vehicles fielded by the U.S. Army tactical...Southwest Research Institute T - turbo TARDEC – Tank Automotive Research, Development, and Engineering Center TFLRF – TARDEC Fuels and Lubricants

  20. Theoretical Investigation For The Effect of Fuel Quality on Gas Turbine Power Plants

    Science.gov (United States)

    AbdulRazzak khudair, Omar; Alwan Abass, Khetam; Saadi Abed, Noor; Hussain Ali, Khalid; AbdulAziz, Saad; Chlaib Shaboot, Ali

    2018-05-01

    Gas turbine engine power generation is declined dramatically because of the reduction in thermodynamic parameters as a work of turbine, compressor ratio, compressor work, and air mass flow rate and fuel consumption. There are two main objectives of this work, the first is related with the effect of fuel kinds and their quality on the operation of fuel flow divider and its performance specifically gear pump displacement and fuel flow rate to the combustion chambers of gas power plant. AL-DORA gas turbine power plant 35MW was chosen to predict these effects on its performance MATLAB Software program is used to perform thermodynamic calculations. Fuel distribution stage before the process of combustion and as a result of the kind and its quality, chemical reaction will occur between the fuel and the parts of the gear system of each pump of the flow divider, which causes the erosion of the internal pump wall and the teeth of the gear system, thus hampering the pump operation in terms of fuel discharge. The discharge of fuel form the eight external gates of flow divider is decreased and varied when going to the combustion chambers, so that, flow divider does not give reliable mass flow rate due to absence of accurate pressure in each of eight exit pipes. The second objective deals with the stage of fuel combustion process inside the combustion chamber. A comparative study based upon performance parameters, such as specific fuel consumption for gas and gasoil and power generation. Fuel poor quality causes incomplete combustion and increased its consumption, so that combustion products are interacted with the surface of the turbine blades, causing the erosion and create surface roughness of the blade and disruption of gas flow. As a result of this situation, turbulence flow of these gases will increase causing the separation of gas boundary layers over the suction surface of the blade. Therefore the amount of extracted gas will decrease causing retreat work done by

  1. Synergy of mIL-21 and mIL-15 in enhancing DNA vaccine efficacy against acute and chronic Toxoplasma gondii infection in mice.

    Science.gov (United States)

    Li, Zhong-Yuan; Chen, Jia; Petersen, Eskild; Zhou, Dong-Hui; Huang, Si-Yang; Song, Hui-Qun; Zhu, Xing-Quan

    2014-05-23

    The synergistic protective efficacy of murine interleukin 21 (mIL-21) and mIL-15 administrated with DNA vaccine against acute and chronic Toxoplasma gondii infection in mice was investigated using T. gondii MIC8 (TgMIC8) as a model. We cloned mIL-21 and mIL-15 from splenic tissues of Kunming mice, and constructed eukaryotic plasmid pVAX/mIL-15, pVAX/mIL-21, and pVAX/mIL-21/mIL-15, respectively. After immunizing with pVAX/TgMIC8 in the presence or absence of these cytokines, immune responses were analyzed using lymphoproliferative assay, cytokine and serum antibody measurements, flow cytometric surface markers on lymphocytes and protection against acute and chronic T. gondii infection. Mice receiving pVAX/TgMIC8 alone developed a strong humoral responses and Th1 type cellular immune responses, and showed an increase of CD4+ and CD8+ T cells compared with all the controls. Adding pVAX/mIL-21 to pVAX/TgMIC8 compared to pVAX/TgMIC8 resulted in only a slight increase in humoral and cellular immune responses, and this immune response was lower than that induced by the pVAX/mIL-15 combined with pVAX/TgMIC8. Co-administration of pVAX/mIL-21/mIL-15 combined with pVAX/TgMIC8 elicited the strongest humoral and cellular immune responses among all the groups, leading to significantly increased survival time against acute infection and the significant reduction of tissue cysts, compared to all the controls. Synergy of mIL-21 and mIL-15 can facilitate specific humoral as well as cellular immune responses elicited by DNA vaccine against acute and chronic T. gondii infection in mice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Synthesis and structure determination of new open-framework chromium carboxylate MIL-105 or CrIII(OH).{O2C-C6(CH3)4-CO2}.nH2O

    International Nuclear Information System (INIS)

    Serre, Christian; Millange, Franck; Devic, Thomas; Audebrand, Nathalie; Van Beek, Wouter

    2006-01-01

    Two new three-dimensional chromium(III) dicarboxylate, MIL-105 or Cr III (OH).{O 2 C-C 6 (CH 3 ) 4 -CO 2 }.nH 2 O, have been obtained under hydrothermal conditions, and their structures solved using X-ray powder diffraction data. Both solids are structural analogs of the known Cr benzenedicarboxylate compound (MIL-53). Both contain trans corner-sharing CrO 4 (OH) 2 octahedral chains connected by tetramethylterephthalate di-anions. Each chain is linked by the ligands to four other chains to form a three-dimensional framework with an array of 1D pores channels. The pores of the high temperature form of the solid, MIL-105ht, are empty. However, MIL-105ht re-hydrates at room temperature to finally give MIL-105lt with pores channels filled with free water molecules (lt: low temperature form; ht: high temperature form). The thermal behaviour of the two solids has been investigated using TGA. Crystal data for MIL-105ht: monoclinic space group C2/c with a = 19.653(1) A, b = 9.984(1) A, c = 6.970(1) A, β = 110.67(1) o and Z = 4. Crystal data for MIL-105lt: orthorhombic space group Pnam with a = 17.892(1) A, b = 11.165(1) A, c = 6.916(1) A and Z = 4

  3. Performance analysis of a gas turbine for power generation using syngas as a fuel

    International Nuclear Information System (INIS)

    Lee, Jong Jun; Cha Kyu Sang; Kim, Tong Seop; Sohn, Jeong Lak; Joo, Yong Jin

    2008-01-01

    Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed of hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of using syngas in a gas turbine, originally designed for natural gas fuel, on its performance. A commercial gas turbine is selected and variations of its performance characteristics due to adopting syngas is analyzed by simulating off-design gas turbine operation. Since the heating value of the syngas is lower, compared to natural gas, IGCC plants require much larger fuel flow rate. This increase the gas flow rate to the turbine and the pressure ratio, leading to far larger power output and higher thermal efficiency. Examination of using two different syngases reveals that the gas turbine performance varies much with the fuel composition

  4. Iron metal-organic frameworks MIL-88B and NH2-MIL-88B for the loading and delivery of the gasotransmitter carbon monoxide.

    Science.gov (United States)

    Ma, Mingyan; Noei, Heshmat; Mienert, Bernd; Niesel, Johanna; Bill, Eckhard; Muhler, Martin; Fischer, Roland A; Wang, Yuemin; Schatzschneider, Ulrich; Metzler-Nolte, Nils

    2013-05-17

    Crystals of MIL-88B-Fe and NH2-MIL-88B-Fe were prepared by a new rapid microwave-assisted solvothermal method. High-purity, spindle-shaped crystals of MIL-88B-Fe with a length of about 2 μm and a diameter of 1 μm and needle-shaped crystals of NH2-MIL-88B-Fe with a length of about 1.5 μm and a diameter of 300 nm were produced with uniform size and excellent crystallinity. The possibility to reduce the as-prepared frameworks and the chemical capture of carbon monoxide in these materials was studied by in situ ultrahigh vacuum Fourier-transform infrared (UHV-FTIR) spectroscopy and Mössbauer spectroscopy. CO binding occurs to unsaturated coordination sites (CUS). The release of CO from the as-prepared materials was studied by a myoglobin assay in physiological buffer. The release of CO from crystals of MIL-88B-Fe with t(1/2) = 38 min and from crystals of NH2-MIL-88B-Fe with t(1/2) = 76 min were found to be controlled by the degradation of the MIL materials under physiological conditions. These MIL-88B-Fe and NH2-MIL-88B-Fe materials show good biocompatibility and have the potential to be used in pharmacological and therapeutic applications as carriers and delivery vehicles for the gasotransmitter carbon monoxide. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nix, Andrew Carl [West Virginia Univ., Morgantown, WV (United States)

    2015-03-23

    The focus of this program was to experimentally investigate advanced gas turbine cooling schemes and the effects of and factors that contribute to surface deposition from particulate matter found in coal syngas exhaust flows on turbine airfoil heat transfer and film cooling, as well as to characterize surface roughness and determine the effects of surface deposition on turbine components. The program was a comprehensive, multi-disciplinary collaborative effort between aero-thermal and materials faculty researchers and the Department of Energy, National Energy Technology Laboratory (NETL). The primary technical objectives of the program were to evaluate the effects of combustion of syngas fuels on heat transfer to turbine vanes and blades in land-based power generation gas turbine engines. The primary questions to be answered by this investigation were; What are the factors that contribute to particulate deposition on film cooled gas turbine components? An experimental program was performed in a high-temperature and pressure combustion rig at the DOE NETL; What is the effect of coal syngas combustion and surface deposition on turbine airfoil film cooling? Deposition of particulate matter from the combustion gases can block film cooling holes, decreasing the flow of the film coolant and the film cooling effectiveness; How does surface deposition from coal syngas combustion affect turbine surface roughness? Increased surface roughness can increase aerodynamic losses and result in decreased turbine hot section efficiency, increasing engine fuel consumption to maintain desired power output. Convective heat transfer is also greatly affected by the surface roughness of the airfoil surface; Is there any significant effect of surface deposition or erosion on integrity of turbine airfoil thermal barrier coatings (TBC) and do surface deposits react with the TBC in any way to decrease its thermal insulating capability? Spallation and erosion of TBC is a persistent problem in

  6. Novel thymine-functionalized MIL-101 prepared by post-synthesis and enhanced removal of Hg(2+) from water.

    Science.gov (United States)

    Luo, Xubiao; Shen, Tingting; Ding, Lin; Zhong, Weiping; Luo, Jianfeng; Luo, Shenglian

    2016-04-05

    A novel thymine-functionalized MIL-101 (MIL-101-Thymine) material was synthesized using a post-synthesis method to remove mercury at a high efficiency. MIL-101-Thymine was successfully prepared in this work and was confirmed by several characterization methods, such as (13)C nuclear magnetic resonance, X-ray diffraction, and infrared spectroscopy. The Hg(2+) adsorption agreed well with the Langmuir model, and the maximum adsorption capacity was 51.27mg/g. The adsorption rate fit with the pseudo-second-order kinetic model. Furthermore, MIL-101-Thymine exhibited excellent selectivity towards Hg(2+) over other cations, and the maximum value of the selective coefficient reached 947.34; this result is very likely due to the highly selective interactions of T-Hg(2+)-T in MIL-101-Thymine. The result of X-ray photoelectron spectroscopy also showed that Hg(2+) was coordinated with the N of thymine in MIL-101-Thymine. Moreover, the results of the thermogravimetric analysis and adsorption experiments showed that the Hg atom was two-coordinated with the thymine group. MIL-101-Thymine was used to remove trace Hg(2+) in real water samples, and satisfactory recoveries were obtained. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Impact of inlet fogging and fuels on power and efficiency of gas turbine plants

    Directory of Open Access Journals (Sweden)

    Basha Mehaboob

    2013-01-01

    Full Text Available A computational study to assess the performance of different gas turbine power plant configurations is presented in this paper. The work includes the effect of humidity, ambient inlet air temperature and types of fuels on gas turbine plant configurations with and without fogger unit. Investigation also covers economic analysis and effect of fuels on emissions. GT frames of various sizes/ratings are being used in gas turbine power plants in Saudi Arabia. 20 MWe GE 5271RA, 40 MWe GE-6561B and 70 MWe GE-6101FA frames are selected for the present study. Fogger units with maximum mass flow rate of 2 kg/s are considered for the present analysis. Reverse Osmosis unit of capacity 4 kg/s supplies required water to the fogger units. GT PRO software has been used for carrying out the analysis including; net plant output and net efficiency, break even electricity price and break even fuel LHV price etc., for a given location of Saudi Arabia. The relative humidity and temperature have been varied from 30 to 45 % and from 80 to 100° F, respectively. Fuels considered in the study are natural gas, diesel and heavy bunker oil. Simulated gas turbine plant output from GT PRO has been validated against an existing gas turbine plant output. It has been observed that the simulated plant output is less than the existing gas turbine plant output by 5%. Results show that variation of humidity does not affect the gas turbine performance appreciably for all types of fuels. For a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to increase by 5 and 2 %, respectively for all fuels, for GT only situation. However, for GT with Fogger scenario, for a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to further increase by 3.2 and 1.2 %, respectively for all fuels. For all GT frames with fogger, the net plant output and efficiency are relatively higher as compared to GT only case for all

  8. Fuel composition effect on cathode airflow control in fuel cell gas turbine hybrid systems

    Science.gov (United States)

    Zhou, Nana; Zaccaria, Valentina; Tucker, David

    2018-04-01

    Cathode airflow regulation is considered an effective means for thermal management in solid oxide fuel cell gas turbine (SOFC-GT) hybrid system. However, performance and controllability are observed to vary significantly with different fuel compositions. Because a complete system characterization with any possible fuel composition is not feasible, the need arises for robust controllers. The sufficiency of robust control is dictated by the effective change of operating state given the new composition used. It is possible that controller response could become unstable without a change in the gains from one state to the other. In this paper, cathode airflow transients are analyzed in a SOFC-GT system using syngas as fuel composition, comparing with previous work which used humidified hydrogen. Transfer functions are developed to map the relationship between the airflow bypass and several key variables. The impact of fuel composition on system control is quantified by evaluating the difference between gains and poles in transfer functions. Significant variations in the gains and the poles, more than 20% in most cases, are found in turbine rotational speed and cathode airflow. The results of this work provide a guideline for the development of future control strategies to face fuel composition changes.

  9. Novel thymine-functionalized MIL-101 prepared by post-synthesis and enhanced removal of Hg{sup 2+} from water

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xubiao, E-mail: luoxubiao@126.com [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063 (China); College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Shen, Tingting; Ding, Lin; Zhong, Weiping; Luo, Jianfeng [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063 (China); College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Shenglian, E-mail: sllou@hnu.edu.cn [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063 (China); College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2016-04-05

    Highlights: • A novel thymine-functionalized MIL-101 (MIL-101-Thymine) was first synthesized by post-synthesis method. • The resulting MIL-101-Thymine exhibited high Hg{sup 2+} adsorption. • MIL-101-Thymine exhibited excellent selectivity towards Hg{sup 2+} over other metal ions. • MIL-101-Thymine was used to remove trace Hg{sup 2+} with satisfactory recoveries in real water samples. - Abstract: A novel thymine-functionalized MIL-101 (MIL-101-Thymine) material was synthesized using a post-synthesis method to remove mercury at a high efficiency. MIL-101-Thymine was successfully prepared in this work and was confirmed by several characterization methods, such as {sup 13}C nuclear magnetic resonance, X-ray diffraction, and infrared spectroscopy. The Hg{sup 2+} adsorption agreed well with the Langmuir model, and the maximum adsorption capacity was 51.27 mg/g. The adsorption rate fit with the pseudo-second-order kinetic model. Furthermore, MIL-101-Thymine exhibited excellent selectivity towards Hg{sup 2+} over other cations, and the maximum value of the selective coefficient reached 947.34; this result is very likely due to the highly selective interactions of T-Hg{sup 2+}–T in MIL-101-Thymine. The result of X-ray photoelectron spectroscopy also showed that Hg{sup 2+} was coordinated with the N of thymine in MIL-101-Thymine. Moreover, the results of the thermogravimetric analysis and adsorption experiments showed that the Hg atom was two-coordinated with the thymine group. MIL-101-Thymine was used to remove trace Hg{sup 2+} in real water samples, and satisfactory recoveries were obtained.

  10. Fuel cell-gas turbine hybrid system design part II: Dynamics and control

    Science.gov (United States)

    McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

    2014-05-01

    Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

  11. Gestion intégrée du mildiou du mil en station au centre régional de ...

    African Journals Online (AJOL)

    user

    Le mil (Pennicetum glaucum) L.R.Br constitue 75% de la production céréalière du Niger. Cependant, son rendement est très faible dû à plusieurs types de contraintes. La maladie du mildiou du mil causé par un champignon Sclerospora graminicola (Sacc) Schroët, occupe une place importante. L'objectif de cette étude.

  12. Thermodynamic analysis of solid oxide fuel cell gas turbine systems operating with various biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Patel, H.C.; Woudstra, T.; Aravind, P.V. [Process and Energy Laboratory, Delft University of Technology, Section Energy Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands)

    2012-12-15

    Solid oxide fuel cell-gas turbine (SOFC-GT) systems provide a thermodynamically high efficiency alternative for power generation from biofuels. In this study biofuels namely methane, ethanol, methanol, hydrogen, and ammonia are evaluated exergetically with respect to their performance at system level and in system components like heat exchangers, fuel cell, gas turbine, combustor, compressor, and the stack. Further, the fuel cell losses are investigated in detail with respect to their dependence on operating parameters such as fuel utilization, Nernst voltage, etc. as well as fuel specific parameters like heat effects. It is found that the heat effects play a major role in setting up the flows in the system and hence, power levels attained in individual components. The per pass fuel utilization dictates the efficiency of the fuel cell itself, but the system efficiency is not entirely dependent on fuel cell efficiency alone, but depends on the split between the fuel cell and gas turbine powers which in turn depends highly on the nature of the fuel and its chemistry. Counter intuitively it is found that with recycle, the fuel cell efficiency of methane is less than that of hydrogen but the system efficiency of methane is higher. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. 40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?

    Science.gov (United States)

    2010-07-01

    ... content of the turbine's combustion fuel? 60.4360 Section 60.4360 Protection of Environment ENVIRONMENTAL... Standards of Performance for Stationary Combustion Turbines Monitoring § 60.4360 How do I determine the total sulfur content of the turbine's combustion fuel? You must monitor the total sulfur content of the...

  14. Coordination polymer nanobamboos of {Fe(x)In(1-x)}-MIL-88B: induced formation of a virtual In-MIL-88B.

    Science.gov (United States)

    Park, Shin Ae; Lee, Hee Jung; Cho, Yea Jin; Choi, Sora; Oh, Moonhyun

    2014-05-05

    A precise fabrication of nanobamboo structures made from hybrid coordination polymers of the type {Fex In1-x }-MIL-88B is demonstrated. The compositions of the hybrid coordination polymer nanobamboos of {Fex In1-x }-MIL-88B (x=0.06, 0.19, or 0.75) are regulated by altering the amount of metal ions used in the reactions. Interestingly, the formation of a virtual In-MIL-88B (precise structure, {Fe0.06 In0.94 }-MIL-88B), which cannot be created in a typical reaction, is induced by the assistance of a Fe-MIL-88B structure. The a and c cell parameters of {Fe0.06 In0.94 }-MIL-88B are calculated at 10.95 and 19.86 Å, respectively. These values of {Fe0.06 In0.94 }-MIL-88B are larger than those of pure Fe-MIL-88B owing to the large ionic size of In(3+) within the framework. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effective utilization of fossil fuels for low carbon world -- IGCC and high performance gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Hiromi; Hashimoto, Takao; Sakamoto, Koichi; Komori, Toyoaki; Kishine, Takashi; Shiozaki, Shigehiro

    2010-09-15

    The reduction of greenhouse-gas emissions is required to minimize the effect of hydrocarbon based power generation on global warming. In pursue of this objective, Mitsubishi Heavy Industries is dedicating considerable efforts on two different ways to reduce the environmental impact. The first one involves gas turbine performance improvement by raising firing temperature for Natural-gas and LNG applications. In this regard, the latest J class gas turbine was designed to operate at 1600 deg C and expected combined cycle efficiency in excess of 60%. The other approach involves the use of Integrated Gasification Combined Cycle (IGCC) plants to burn solid fuel like coal.

  16. Twisted Vanes Would Enhance Fuel/Air Mixing In Turbines

    Science.gov (United States)

    Nguyen, H. Lee; Micklow, Gerald J.; Dogra, Anju S.

    1994-01-01

    Computations of flow show performance of high-shear airblast fuel injector in gas-turbine engine enhanced by use of appropriately proportioned twisted (instead of flat) dome swirl vanes. Resultant more nearly uniform fuel/air mixture burns more efficiently, emitting smaller amounts of nitrogen oxides. Twisted-vane high-shear airblast injectors also incorporated into paint sprayers, providing advantages of low pressure drop characteristic of airblast injectors in general and finer atomization of advanced twisted-blade design.

  17. Augmentation du rendement des producteurs de petits mils par leur ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    29 avr. 2016 ... Image. Cultivateurs du petit mils en Inde. Une plus grande diversité de variétés de petit mil contribue à réduire la vulnérabilité à l'égard des mauvaises conditions météorologiques. En dépit du fait qu'ils ont une teneur élevée en micronutriments et en fibres alimentaires, présentent un indice glycémique ...

  18. Air/fuel supply system for use in a gas turbine engine

    Science.gov (United States)

    Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

    2014-06-17

    A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

  19. SMART POWER TURBINE

    Energy Technology Data Exchange (ETDEWEB)

    Nirm V. Nirmalan

    2003-11-01

    Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was

  20. Metal organic framework g-C3N4/MIL-53(Fe) heterojunctions with enhanced photocatalytic activity for Cr(VI) reduction under visible light

    Science.gov (United States)

    Huang, Wenyuan; Liu, Ning; Zhang, Xiaodong; Wu, Minghong; Tang, Liang

    2017-12-01

    In this study, hybrid nanocomposites based on Fe-based MOF and graphitic carbon nitride (g-C3N4) were developed by a facile solvothermal method. The as-prepared materials were characterized by XRD, FESEM, TEM, XPS and PL analysis. It was showed that the introduction of a certain amount of g-C3N4 on the surface of MIL-53(Fe) would improve the separation and migration rate of photo-induced charges, consequently resulting in the boost of photocatalytic efficiency. Compared with g-C3N4 and MIL-53(Fe), the CMFe composites displayed more excellent visible light-resposive photocatalytic activity for the reduction of Cr(VI). The optimal doping content of g-C3N4 in g-C3N4/MIL-53(Fe) composite was determined to be 3.0 wt%, and it showed about 2.1 and 2.0 times as high photocatalytic efficiency for the reduction of Cr(VI) as that of pure g-C3N4 and MIL-53(Fe), respectively. Meanwhile, the composite exhibited good reusability and stability in the process of cyclic experiments. A possible photocatalytic reaction mechanism was also investigated in detail by the related electrochemical analysis.

  1. Fuel and Fuel System Materials Compatibility Test Program for A JP-8+100 Fuel Additive. Volume 1: Thermal Stability Additive Package BetzDearborn Spec Aid(Registered) 8Q462

    Science.gov (United States)

    2001-10-01

    SAE Rings, Sealing, Butadiene-Acrylonitrile ( NBR ), Rubber Fuel and Low Temperature Resistant 60 - 70 MIL-R-83248C Rubber , Fluorocarbon...KAPTON/TEFLON (COMPOSITE) WIRE I.I.10 34 VI. REFERENCE DOCUMENTS Non-Metallics MIL-HDBK-149B Military Standardization Hand Book Rubber ...ASTM D-1414 Standard Test Methods for Rubber O-Rings ASTM D-412 Type II Standard Test Methods for Vulcanized Rubber and Thermoplastic

  2. Thermoeconomic Modeling and Parametric Study of Hybrid Solid Oxide Fuel Cell â Gas Turbine â Steam Turbine Power Plants Ranging from 1.5 MWe to 10 MWe

    OpenAIRE

    Arsalis, Alexandros

    2007-01-01

    Detailed thermodynamic, kinetic, geometric, and cost models are developed, implemented, and validated for the synthesis/design and operational analysis of hybrid solid oxide fuel cell (SOFC) â gas turbine (GT) â steam turbine (ST) systems ranging in size from 1.5 MWe to 10 MWe. The fuel cell model used in this thesis is based on a tubular Siemens-Westinghouse-type SOFC, which is integrated with a gas turbine and a heat recovery steam generator (HRSG) integrated in turn with a steam turbi...

  3. Experience with unconventional gas turbine fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, D K [ABB Power Generation Ltd., Baden (Switzerland)

    1997-12-31

    Low grade fuels such as Blast Furnace Gas, biomass, residual oil, coke, and coal - if used in conjunction with appropriate combustion, gasification, and clean-up processes and in combination with a gas turbine combined cycle -offer attractive and environmentally sound power generation. Recently, the Bao Shan Iron and Steel Company in Shanghai placed an order with Kawasaki Heavy Industries, Japan, to supply a combined-cycle power plant. The plant is to employ ABB`s GT 11N2 with a combustor modified to burn blast furnace gas. Recent tests in Shanghai and at Kawasaki Steel, Japan, have confirmed the burner design. The same basic combustor concept can also be used for the low BTU gas derived from airblown gasification processes. ABB is also participating in the API project: A refinery-residual gasification combined-cycle plant in Italy. The GT 13E2 gas turbine employees MBTU EV burners that have been successfully tested under full operating conditions. These burners can also handle the MBTU gas produced in oxygenblown coal gasification processes. ABB`s vast experience in burning blast furnace gas (21 plants built during the 1950s and 1960s), residuals, crude, and coal in various gas turbine applications is an important asset for building such power plants. This presentation discusses some of the experience gained in such plants. (orig.) 6 refs.

  4. Experience with unconventional gas turbine fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, D.K. [ABB Power Generation Ltd., Baden (Switzerland)

    1996-12-31

    Low grade fuels such as Blast Furnace Gas, biomass, residual oil, coke, and coal - if used in conjunction with appropriate combustion, gasification, and clean-up processes and in combination with a gas turbine combined cycle -offer attractive and environmentally sound power generation. Recently, the Bao Shan Iron and Steel Company in Shanghai placed an order with Kawasaki Heavy Industries, Japan, to supply a combined-cycle power plant. The plant is to employ ABB`s GT 11N2 with a combustor modified to burn blast furnace gas. Recent tests in Shanghai and at Kawasaki Steel, Japan, have confirmed the burner design. The same basic combustor concept can also be used for the low BTU gas derived from airblown gasification processes. ABB is also participating in the API project: A refinery-residual gasification combined-cycle plant in Italy. The GT 13E2 gas turbine employees MBTU EV burners that have been successfully tested under full operating conditions. These burners can also handle the MBTU gas produced in oxygenblown coal gasification processes. ABB`s vast experience in burning blast furnace gas (21 plants built during the 1950s and 1960s), residuals, crude, and coal in various gas turbine applications is an important asset for building such power plants. This presentation discusses some of the experience gained in such plants. (orig.) 6 refs.

  5. Combustion of oil shale, fluidized coal and pyrolysis fuel oil in a gas turbine for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Korosi, A; Basler, B; Pepper, M W

    1984-04-01

    A combustion test programme has been carried out with a Brown, Boveri and Cie. (BBC) type 9, gas turbine, at the BBC works in Muenchenstein, Switzerland, in order to clarify the combustion possibilities of three unconventional fuels. The programme has been organized and financed by BBC, Stone and Webster and Exxon. Approximately 95,000 litres of each fuel at various turbine load conditions have been burned. At certain points water was injected for NOsub(x) reduction. The tests show that the commercially available gas turbine can be used without modification with these tested, unconventional fuels. They also show that direct application of inferior petrochemical materials, which are produced today, is possible.

  6. Low-Emission combustion of fuel in aeroderivative gas turbines

    Science.gov (United States)

    Bulysova, L. A.; Vasil'ev, V. D.; Berne, A. L.

    2017-12-01

    The paper is the first of a planned set of papers devoted to the world experience in development of Low Emission combustors (LEC) for industrial Gas Turbines (GT). The purpose of the article is to summarize and analyze the most successful experience of introducing the principles of low-emission combustion of the so-called "poor" (low fuel concentration in air when the excess air ratio is about 1.9-2.1) well mixed fuelair mixtures in the LEC for GTs and ways to reduce the instability of combustion. The consideration examples are the most successful and widely used aero-derivative GT. The GT development meets problems related to the difference in requirements and operation conditions between the aero, industrial, and power production GT. One of the main problems to be solved is the LEC development to mitigate emissions of the harmful products first of all the Nitrogen oxides NOx. The ways to modify or convert the initial combustors to the LEC are shown. This development may follow location of multiburner mixers within the initial axial envelope dimensions or conversion of circular combustor to the can type one. The most interesting are Natural Gas firing GT without water injection into the operating process or Dry Low emission (DLE) combustors. The current GT efficiency requirement may be satisfied at compressor exit pressure above 3 MPa and Turbine Entry temperature (TET) above 1500°C. The paper describes LEC examples based on the concept of preliminary prepared air-fuel mixtures' combustion. Each combustor employs its own fuel supply control concept based on the fuel flow-power output relation. In the case of multiburner combustors, the burners are started subsequently under a specific scheme. The can type combustors have combustion zones gradually ignited following the GT power change. The combustion noise problem experienced in lean mixtures' combustion is also considered, and the problem solutions are described. The GT test results show wide ranges of stable

  7. Integration of A Solid Oxide Fuel Cell into A 10 MW Gas Turbine Power Plant

    Directory of Open Access Journals (Sweden)

    Denver F. Cheddie

    2010-04-01

    Full Text Available Power generation using gas turbine power plants operating on the Brayton cycle suffers from low efficiencies. In this work, a solid oxide fuel cell (SOFC is proposed for integration into a 10 MW gas turbine power plant, operating at 30% efficiency. The SOFC system utilizes four heat exchangers for heat recovery from both the turbine outlet and the fuel cell outlet to ensure a sufficiently high SOFC temperature. The power output of the hybrid plant is 37 MW at 66.2% efficiency. A thermo-economic model predicts a payback period of less than four years, based on future projected SOFC cost estimates.

  8. Operating Point Optimization of a Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Steam Turbine (SOFC-ST Plant

    Directory of Open Access Journals (Sweden)

    Juanjo Ugartemendia

    2013-09-01

    Full Text Available This paper presents a hydrogen powered hybrid solid oxide fuel cell-steam turbine (SOFC-ST system and studies its optimal operating conditions. This type of installation can be very appropriate to complement the intermittent generation of renewable energies, such as wind generation. A dynamic model of an alternative hybrid SOFC-ST configuration that is especially suited to work with hydrogen is developed. The proposed system recuperates the waste heat of the high temperature fuel cell, to feed a bottoming cycle (BC based on a steam turbine (ST. In order to optimize the behavior and performance of the system, a two-level control structure is proposed. Two controllers have been implemented for the stack temperature and fuel utilization factor. An upper supervisor generates optimal set-points in order to reach a maximal hydrogen efficiency. The simulation results obtained show that the proposed system allows one to reach high efficiencies at rated power levels.

  9. MODELING OF THE FUNCTIONING UNITS OF FUEL SYSTEM OF GAS TURBINE ENGINE AIRCRAFT IN VIEW OF AVIATION FUEL QUALITY CHANGES

    OpenAIRE

    I. I. Zavyalik; V. S. Oleshko; V. M. Samoylenko; E. V. Fetisov

    2016-01-01

    The article describes the developed modeling system in MATLAB Simulink which allows to simulate, explore and pre- dict the technical condition of the units of the aircraft gas turbine engine fuel system depending on aviation fuel quality changes.

  10. High-pressure turbine deposition in land-based gas turbines from various synfuels

    Energy Technology Data Exchange (ETDEWEB)

    Bons, J.P.; Crosby, J.; Wammack, J.E.; Bentley, B.I.; Fletcher, T.H. [Brigham Young University, Provo, UT (United States). Dept. of Mechanical Engineering

    2007-01-15

    Ash deposits from four candidate power turbine synfuels were studied in an accelerated deposition test facility. The facility matches the gas temperature and velocity of modern first-stage high-pressure turbine vanes. A natural gas combustor was seeded with finely ground fuel ash particulate from four different fuels: straw, sawdust, coal, and petroleum coke. The entrained ash particles were accelerated to a combustor exit flow Mach number of 0.31 before impinging on a thermal barrier coating (TBC) target coupon at 1150{sup o}C. Postexposure analyses included surface topography, scanning electron microscopy and x-ray spectroscopy. Due to significant differences in the chemical composition of the various fuel ash samples, deposit thickness and structure vary considerably for fuel. Biomass products (e.g., sawdust and straw) are significantly less prone to deposition than coal and petcoke for the same particle loading conditions. In a test simulating one turbine operating year at a moderate particulate loading of 0.02 parts per million by weight, deposit thickness from coal and petcoke ash exceeded 1 and 2 mm, respectively. These large deposits from coal and petcoke were found to detach readily from the turbine material with thermal cycling and handling. The smaller biomass deposit samples showed greater tenacity, in adhering to the TBC surface. In all cases, corrosive elements (e.g., Na, K, V, Cl, S) were found to penetrate the TBC layer during the accelerated deposition test. Implications for the power generation goal of fuel flexibility are discussed.

  11. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning ASTM jet-A fuel

    Science.gov (United States)

    Marchionna, N. R.

    1974-01-01

    An annular gas turbine combustor was tested with heated ASTM Jet-A fuel to determine the effect of increased fuel temperature on the formation of oxides of nitrogen. Fuel temperature ranged from ambient to 700 K. The NOx emission index increased at a rate of 6 percent per 100 K increase in fuel temperature.

  12. Organic Linker Defines the Excited-State Decay of Photocatalytic MIL-125(Ti)-Type Materials.

    Science.gov (United States)

    Santaclara, Jara G; Nasalevich, Maxim A; Castellanos, Sonia; Evers, Wiel H; Spoor, Frank C M; Rock, Kamila; Siebbeles, Laurens D A; Kapteijn, Freek; Grozema, Ferdinand; Houtepen, Arjan; Gascon, Jorge; Hunger, Johannes; van der Veen, Monique A

    2016-02-19

    Recently, MIL-125(Ti) and NH2 -MIL-125(Ti), two titanium-based metal-organic frameworks, have attracted significant research attention in the field of photocatalysis for solar fuel generation. This work reveals that the differences between these structures are not only based on their light absorption range but also on the decay profile and topography of their excited states. In contrast to MIL-125(Ti), NH2 -MIL-125(Ti) shows markedly longer lifetimes of the charge-separated state, which improves photoconversion by the suppression of competing decay mechanisms. We used spectroelectrochemistry and ultrafast spectroscopy to demonstrate that upon photoexcitation in NH2 -MIL-125(Ti) the electron is located in the Ti-oxo clusters and the hole resides on the aminoterephthalate unit, specifically on the amino group. The results highlight the role of the amino group in NH2 -MIL-125(Ti), the electron donation of which extends the lifetime of the photoexcited state substantially. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. MODELING OF THE FUNCTIONING UNITS OF FUEL SYSTEM OF GAS TURBINE ENGINE AIRCRAFT IN VIEW OF AVIATION FUEL QUALITY CHANGES

    Directory of Open Access Journals (Sweden)

    I. I. Zavyalik

    2016-01-01

    Full Text Available The article describes the developed modeling system in MATLAB Simulink which allows to simulate, explore and pre- dict the technical condition of the units of the aircraft gas turbine engine fuel system depending on aviation fuel quality changes.

  14. Hydrothermal crystal growth and Vernier structures of the metal benzenedicarboxylates MIL-47 and MIL-53 containing guest molecules of benzenecarboxylic acid

    International Nuclear Information System (INIS)

    Wang, Xiqu; Jacobson, Allan J.

    2016-01-01

    The nanoporous frameworks VO(bdc), MIL-47, and M(OH)(bdc), MIL-53; bdc=1,4-benzenedicarboxylate, can absorb various guest species in their channels. As synthesized, the channels are filled with H 2 bdc molecules that have been reported to be disordered, except for [In(OH)bdc](H 2 bdc) 3/4 , 1, which has a inorganic-organic hybrid Vernier structure with the H 2 bdc molecules forming an ordered sublattice. Based on X-ray data from large single crystals grown by hydrothermal techniques, similar Vernier structures have been found for MIL-47, [VO(bdc)](H 2 bdc) 5/7 , 2, MIL-53Al, [Al(OH)(bdc)](H 2 bdc) 11/16 , 3, and MIL-53Ga, [Ga(OH)(bdc)](H 2 bdc) 12/17 , 4. The Vernier structures of 2–4 at room temperature were determined based on superstructure unit cells that index both host and guest sublattices: 2, space group P2 1 , a=23.903(2), b=17.191(2), c=25.722(2) Å, β=105.914(8)°; 3, P2 1 /n, a=105.224(4), b=12.2441(5), c=17.0143(6) Å, β=89.99(1)°; 4, P2 1 , a=114.562(5), b=12.1503(5), c=17.4275(7) Å, β=89.99(1)°. The number of guest H 2 bdc molecules per framework metal ion is determined by the ratio of the repeat distances of the two sublattices which depends on the size of the metal ion in the octahedral chain. The octahedral chains are parallel to [201] in 2, and to [100] in 3 and 4. Remarkably, all atoms in 3 and 4 show significant sinusoidal modulations transverse to the chain axis. - Graphical abstract: The sinusoidal modulation along the channel axis direction involving all atoms in the structure of [Al(OH)(bdc)](H 2 bdc) 11/16 . - Highlights: • Crystal growth of MIL-47, MIL-53Al, and MIL-53Ga. • The Vernier structures have corner-sharing MO6 octrahedral chains and chains of H2BDC molecules. • The stoichiometry is determined by the ratio of the host framework to the guest H2BDC column lengths. • A correlation is established between the stoichiometry and the radius of the metal ion. • All atoms in the Al and Ga compounds show sinusoidal

  15. Technical and Economic Analysis of a Hybrid Generation System of Wind Turbines, Photovoltaic Modules and a Fuel Cell

    OpenAIRE

    Szczerbowsk Radosław; Ceran Bartosz

    2016-01-01

    The paper presents the results of the analysis of the economic and manufacturing system consisting of wind turbines, photovoltaic modules, polymer membrane fuel cell and the electrolyzer. The system supplies the customer profile at the assumed wind and solar conditions. Energy analysis was conducted on the basis of the balance equations produced and received electric power. To assess the economic efficiency of investments adopted the following economic indicators: NPV, IRR, MIRR, MNPV, DPP. T...

  16. Postirradiation examinations of fuel pins from the GCFR F-1 series of mixed-oxide fuel pins at 5.5 at. % burnup

    International Nuclear Information System (INIS)

    Strain, R.V.; Johnson, C.E.

    1978-05-01

    Postirradiation examinations were performed on five fuel pins from the Gas-Cooled Fast-Breeder Reactor F-1 experiment irradiated in EBR-II to a peak burnup of approximately 5.5 at. %. These encapsulated fuel pins were irradiated at peak-power linear ratings from approximately 13 to 15 kW/ft and peak cladding inside diameter temperatures from approximately 625 to 760 0 C. The maximum diametral change that occurred during irradiation was 0.2% ΔD/D 0 . The maximum fuel-cladding chemical interaction depth was 2.6 mils in fuel pin G-1 and 1 mil or less in the other three pins examined destructively. Significant migration of the volatile fission products occurred axially to the fuel-blanket interfaces. Teh postirradiation examination data indicate that fuel melted at the inner surface of the annular fuel pellets in the two highest power rating fuel pins, but little axial movement of fuel occurred

  17. Postirradiation examinations of fuel pins from the GCFR F-1 series of mixed-oxide fuel pins at 5. 5 at. % burnup

    Energy Technology Data Exchange (ETDEWEB)

    Strain, R V; Johnson, C E

    1978-05-01

    Postirradiation examinations were performed on five fuel pins from the Gas-Cooled Fast-Breeder Reactor F-1 experiment irradiated in EBR-II to a peak burnup of approximately 5.5 at. %. These encapsulated fuel pins were irradiated at peak-power linear ratings from approximately 13 to 15 kW/ft and peak cladding inside diameter temperatures from approximately 625 to 760/sup 0/C. The maximum diametral change that occurred during irradiation was 0.2% ..delta..D/D/sub 0/. The maximum fuel-cladding chemical interaction depth was 2.6 mils in fuel pin G-1 and 1 mil or less in the other three pins examined destructively. Significant migration of the volatile fission products occurred axially to the fuel-blanket interfaces. Teh postirradiation examination data indicate that fuel melted at the inner surface of the annular fuel pellets in the two highest power rating fuel pins, but little axial movement of fuel occurred.

  18. Heat transfer and pressure measurements for the SSME fuel turbine

    Science.gov (United States)

    Dunn, Michael G.; Kim, Jungho

    1991-01-01

    A measurement program is underway using the Rocketdyne two-stage Space Shuttle Main Engine (SSME) fuel turbine. The measurements use a very large shock tunnel to produce a short-duration source of heated and pressurized gas which is subsequently passed through the turbine. Within this environment, the turbine is operated at the design values of flow function, stage pressure ratio, stage temperature ratio, and corrected speed. The first stage vane row and the first stage blade row are instrumented in both the spanwise and chordwise directions with pressure transducers and heat flux gages. The specific measurements to be taken include time averaged surface pressure and heat flux distributions on the vane and blade, flow passage static pressure, flow passage total pressure and total temperature distributions, and phase resolved surface pressure and heat flux on the blade.

  19. Augmentation de la production de petits mils en Asie du Sud | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    La production de petits mils, en dépit des vertus nutritionnelles de cette céréale, de sa capacité de croître dans des conditions difficiles et de sa facilité de stockage, a toujours été négligée par les politiques agricoles déployées en Asie du Sud. Ces dernières, en effet, ont privilégié les cultures de rente et les céréales comme ...

  20. Synthesis of highly efficient α-Fe{sub 2}O{sub 3} catalysts for CO oxidation derived from MIL-100(Fe)

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Lifeng; Zhao, Di; Yang, Yang [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Wang, Yuxin [Institute of Applied Biotechnology, Taizhou Vocation & Technical College, Taizhou, Zhejiang 318000 (China); Zhang, Xiaodong, E-mail: fatzhxd@126.com [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2017-03-15

    Mesoporous hollow α-Fe{sub 2}O{sub 3} bricks were synthesized via a hydrothermal method to create a precursor MIL-100(Fe) and a subsequent calcination process was applied to prepare the Fe{sub 2}O{sub 3} phase. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results showed the morphology of hollow α-Fe{sub 2}O{sub 3} bricks which inherited from the MIL-100(Fe) template. The catalytic activities of hollow α-Fe{sub 2}O{sub 3} bricks for CO oxidation are studied in this work. Due to better low temperature reduction behavior, mesoporous hollow α-Fe{sub 2}O{sub 3} bricks obtained at calcination temperature of 430 °C displayed high catalytic activity and excellent stability with a complete CO conversion temperature (T{sub 100}) of 255 °C. - Graphical abstract: Synthesis of highly efficient α-Fe{sub 2}O{sub 3} catalysts for CO oxidation derived from MIL-100(Fe). - Highlights: • α-Fe{sub 2}O{sub 3} is prepared by the thermolysis of a MIL-100(Fe) template. • The morphology of hollow α-Fe{sub 2}O{sub 3} bricks is inherited from MIL-100(Fe) template. • α-Fe{sub 2}O{sub 3} obtained at calcined temperature of 430 °C displays high activity • Enhanced activity is attributed to crystal plane and reduction behavior.

  1. Fuels and Lubricants Influence on Turbine Engine Design and Performance

    Science.gov (United States)

    1974-08-01

    Temperatures, Mission A. 30 16. Misrion A Interceptor ECS SchemaLiu. 32 17. GEl4/FLiTE-2A Fuel Delivery System Schematic. 34 18. GE14 /FLITE-2A Oil Sump...Layout Drawing. 36 19. G0E4/FL,I’LE-2A LubriaLiui SysLem Schematic. 37 20. GEl4/FLITE-2A Fluid Power System Schematic. 41 21. GE14 /FLITE-2A Fluid Syqtem...Schematic. 1 35 63. GEI4/FI,ITE-2B ThermaL Profiles, MIL-L-27502. 140 64. GE14 /FLIT.-2B Thermal Profiles, 500’ F E’ster. 141 .ix 7 LIST OF ILUWSTRAT LON

  2. High pressure operation of tubular solid oxide fuel cells and their intergration with gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, C.; Wepfer, W.J. [Georgia Institute of Technology, Atlanta, GA (United States)

    1996-12-31

    Fossil fuels continue to be used at a rate greater than that of their natural formation, and the current byproducts from their use are believed to have a detrimental effect on the environment (e.g. global warming). There is thus a significant impetus to have cleaner, more efficient fuel consumption alternatives. Recent progress has led to renewed vigor in the development of fuel cell technology, which has been shown to be capable of producing high efficiencies with relatively benign exhaust products. The tubular solid oxide fuel cell developed by Westinghouse Electric Corporation has shown significant promise. Modeling efforts have been and are underway to optimize and better understand this fuel cell technology. Thus far, the bulk of modeling efforts has been for operation at atmospheric pressure. There is now interest in developing high-efficiency integrated gas turbine/solid oxide fuel cell systems. Such operation of fuel cells would obviously occur at higher pressures. The fuel cells have been successfully modeled under high pressure operation and further investigated as integrated components of an open loop gas turbine cycle.

  3. Effect of synthesis solvent on the breathing behavior of MIL-53(Al).

    Science.gov (United States)

    Mounfield, William P; Walton, Krista S

    2015-06-01

    This work reports the effect of using dimethylformamide (DMF) as the solvent for synthesizing MIL-53(Al). This well-known breathing MOF is typically prepared using hydrothermal methods. The two materials synthesized in DMF at 120°C and 220°C show significant deviations from the breathing behavior exhibited by the material synthesized hydrothermally. Powder X-ray diffraction confirmed that MIL-53(Al) synthesized in DMF at 120°C remains in the large-pore form under all conditions, while the other material synthesized at 220°C undergoes a more gradual breathing transition than is observed for MIL-53(Al) prepared by traditional methods. Solid-state NMR was employed to elucidate additional structural information and gain insight into the role synthesis solvent plays on breathing behavior. The CO2 and water adsorption of these large-pore stabilized materials were studied, and the differences in adsorption behavior compared to MIL-53(Al) prepared by traditional methods was discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The T-100-12.8 family of cogeneration steam turbines: Yesterday, today, and tomorrow

    Science.gov (United States)

    Valamin, A. E.; Kultyshev, A. Yu.; Shibaev, T. L.; Sakhnin, Yu. A.; Stepanov, M. Yu.

    2013-08-01

    The T-100-12.8 turbine and its versions, a type of cogeneration steam turbines that is among best known, unique, and most widely used ones in Russia and abroad, are considered. A list of turbine design versions and quantities in which they were produced, their technical and economic indicators, design features, schematic solutions used in different design versions, and a list of solutions available in a comprehensive portfolio offered for modernizing type T-100-12.8 turbines are presented. Information about amounts in which turbines of the last version are supplied currently and supposed to be supplied soon is given.

  5. Hydrothermal crystal growth and Vernier structures of the metal benzenedicarboxylates MIL-47 and MIL-53 containing guest molecules of benzenecarboxylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiqu; Jacobson, Allan J., E-mail: ajjacob@uh.edu

    2016-04-15

    The nanoporous frameworks VO(bdc), MIL-47, and M(OH)(bdc), MIL-53; bdc=1,4-benzenedicarboxylate, can absorb various guest species in their channels. As synthesized, the channels are filled with H{sub 2}bdc molecules that have been reported to be disordered, except for [In(OH)bdc](H{sub 2}bdc){sub 3/4}, 1, which has a inorganic-organic hybrid Vernier structure with the H{sub 2}bdc molecules forming an ordered sublattice. Based on X-ray data from large single crystals grown by hydrothermal techniques, similar Vernier structures have been found for MIL-47, [VO(bdc)](H{sub 2}bdc){sub 5/7}, 2, MIL-53Al, [Al(OH)(bdc)](H{sub 2}bdc){sub 11/16}, 3, and MIL-53Ga, [Ga(OH)(bdc)](H{sub 2}bdc){sub 12/17}, 4. The Vernier structures of 2–4 at room temperature were determined based on superstructure unit cells that index both host and guest sublattices: 2, space group P2{sub 1}, a=23.903(2), b=17.191(2), c=25.722(2) Å, β=105.914(8)°; 3, P2{sub 1}/n, a=105.224(4), b=12.2441(5), c=17.0143(6) Å, β=89.99(1)°; 4, P2{sub 1}, a=114.562(5), b=12.1503(5), c=17.4275(7) Å, β=89.99(1)°. The number of guest H{sub 2}bdc molecules per framework metal ion is determined by the ratio of the repeat distances of the two sublattices which depends on the size of the metal ion in the octahedral chain. The octahedral chains are parallel to [201] in 2, and to [100] in 3 and 4. Remarkably, all atoms in 3 and 4 show significant sinusoidal modulations transverse to the chain axis. - Graphical abstract: The sinusoidal modulation along the channel axis direction involving all atoms in the structure of [Al(OH)(bdc)](H{sub 2}bdc){sub 11/16}. - Highlights: • Crystal growth of MIL-47, MIL-53Al, and MIL-53Ga. • The Vernier structures have corner-sharing MO6 octrahedral chains and chains of H2BDC molecules. • The stoichiometry is determined by the ratio of the host framework to the guest H2BDC column lengths. • A correlation is established between the stoichiometry and the radius of the metal ion

  6. Study on adsorption refrigeration performance of MIL-101-isobutane working pair

    International Nuclear Information System (INIS)

    Ma, Liejun; Yang, Huan; Wu, Qi; Yin, Yu; Liu, Zongjian; Cui, Qun; Wang, Haiyan

    2015-01-01

    Rising concerns about pro-environment and energy conservation bring about the escalating interests in adsorption cooling systems using renewable energy. Adsorption chillers with common refrigerants (water, ethanol, methanol, etc.) face the problem that advanced technologies and intricate design considerations are required to maintain high vacuum. This paper aims at the parameters optimization of adsorption system being operated with the novel working pair, MIL-101-isobutane, under typical conditions of ice making and air-condition. Adsorption isotherms and dynamic of isobutane on MIL-101 are discussed simultaneously. When the hot water inlet temperature, cooling water temperature and desorption time are 95 °C, 30 °C and 30 min, respectively, the cooling capacity is 45.7 kJ/kg, which is 1.7 times as much as that of activated carbon–isobutane pair. Structural stability of MIL-101 subjected to 500 times adsorption/desorption cycles has been successfully verified by XRD (X-ray diffraction). - Highlights: • Adsorption isotherms and kinetic of isobutane on MIL-101 were studied. • A single bed adsorption chiller with MIL-101-isobutane pair was built. • System performed better than that using activated carbon–isobutane pair. • Stability of MIL-101 subjected to 500 ad/desorption cycles has been verified.

  7. Simulation of a heavy-duty diesel engine with electrical turbocompounding system using operating charts for turbocharger components and power turbine

    International Nuclear Information System (INIS)

    Katsanos, C.O.; Hountalas, D.T.; Zannis, T.C.

    2013-01-01

    Highlights: • A diesel model was developed using charts for turbocharger and power turbine. • The maximum value of bsfc improvement is 4.1% at 100% engine load. • The generated electric power ranges from 23 kW to 62 kW. • Turbocharger turbine efficiency decreases slightly with the power turbine speed. • Turbocompounding increases the average pressure value in the exhaust manifold. - Abstract: In diesel engines, approximately 30–40% of the energy supplied by the fuel is rejected to the ambience through exhaust gases. Therefore, there is a potentiality for further considerable increase of diesel engine efficiency with the utilization of exhaust gas heat and its conversion to mechanical or electrical energy. In the present study, the operational behavior of a heavy-duty (HD) diesel truck engine equipped with an electric turbocompounding system is examined on a theoretical basis. The electrical turbocompounding configuration comprised of a power turbine coupled to an electric generator, which is installed downstream to the turbocharger (T/C) turbine. A diesel engine simulation model has been developed using operating charts for both turbocharger and power turbine. A method for introducing the operating charts into the engine model is described thoroughly. A parametric analysis is conducted with the developed simulation tool, where the varying parameter is the rotational speed of power turbine shaft. In this study, the interaction between the power turbine and the turbocharged diesel engine is examined in detail. The effect of power turbine speed on T/C components efficiencies, power turbine efficiency, exhaust pressure and temperature, engine boost pressure and air to fuel ratio is evaluated. In addition, theoretical results for the potential impact of electrical turbocompounding on the generated electric power, net engine power and relative improvement of brake specific fuel consumption (bsfc) are provided. The critical evaluation of the theoretical

  8. Post synthetic modification of MIL-101(Cr) for S-shaped isotherms and fast kinetics with water adsorption

    International Nuclear Information System (INIS)

    Teo, How Wei Benjamin; Chakraborty, Anutosh; Kayal, Sibnath

    2017-01-01

    Highlights: • Modification of parent MIL-101(Cr) metal organic framework (MOF) employing alkali metal ions (Li + , Na + , K + ). • Surface characteristics of the parent and alkali doped MIL-101(Cr) adsorbents. • Water uptakes are measured for the temperatures ranging from 25 °C to 60 °C under static and dynamic conditions. • Isotherms and kinetics data are fitted with Langmuir analogy models. • The 5% Li-doped MIL-101(Cr) is suitable for adsorption cooling. - Abstract: This article presents the surface characteristics of alkali (Li + , Na + , K + ) doped MIL-101(Cr) metal organic frameworks (MOFs), and the structural properties are evaluated by scanning electron micrography (SEM), X-ray diffraction (XRD), thermo-gravimetric analyser (TGA) and N 2 adsorption analysis. The amount of water uptakes are measured by a gravimetric analyser for the temperatures ranging from 298 K to 333 K and pressures up to the saturated conditions. The experimentally measured isotherms and kinetics data are fitted with the equations developed from the concept of Langmuir analogy. The isosteric heat of adsorption is calculated employing Van’t Hoff equation in the pressure-temperature-uptake co-ordinate systems. The hydrophobic length at low pressure regions is shortened by the addition of alkali dopants. It is observed that the alkali (Na, K and Li) ions on MIL-101(Cr) MOF increase the water uptakes at lower relative pressure region with fast kinetics. We have shown here that the alkali doped MIL-101(Cr) MOFs can be used as potential adsorbents for various low temperature heat transmission applications such as adsorption assisted heat pump, cooling and desalination.

  9. Mise en place d'une collection de ressources génétiques du mil ...

    African Journals Online (AJOL)

    Le mil est une céréale importante pour l'alimentation humaine. La Côte d'Ivoire représente un des centres de production et de consommation. Afin de collecter, conserver et étudier les variabilités existantes, une seconde mission a été effectuée dans les zones de culture de cette céréale en 1989 et 1990, faisant suite à la ...

  10. Remarkable adsorptive removal of nitrogen-containing compounds from a model fuel by a graphene oxide/MIL-101 composite through a combined effect of improved porosity and hydrogen bonding

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Imteaz; Jhung, Sung Hwa, E-mail: sung@knu.ac.kr

    2016-08-15

    Highlights: • Metal-organic frameworks (MIL-101) were composed with graphene oxide (GnO). • GnO/MIL-101 showed the highest adsorption capacity for indole and quinoline. • Adsorption mechanism was clearly shown based on adsorption results and FTIR. • GnO/MIL-101 might be applied commercially considering capacity and reusability. - Abstract: A composite was prepared by combining a highly porous metal-organic framework (MOF), MIL-101 (Cr-benzenedicarboxylate), and graphene oxide (GnO). The porosity of the composite increased appreciably by the addition of GnO up to a specific amount in the MOF, though further increases in the quantity of GnO was detrimental to porosity. The improved porosity of the GnO/MIL-101 composite was utilized for adsorptive denitrogenation (ADN) of a model fuel where indole (IND) and quinoline (QUI) were used as nitrogen-containing compounds (NCCs). It was found that both IND and QUI showed improved adsorption on the composite compared with pristine MIL-101 or GnO due to the improved porosity of the composite. Interestingly, the improvement in adsorption of IND was much higher than the quantity estimated for the porosity. Importantly, GnO/MIL-101 showed the highest adsorption capacities for NCCs. Irrespective of the studied solvents and co-presence of IND and QUI, the composite adsorbent performed ADN most effectively. This remarkable improvement is explained by the additional mechanism of hydrogen bonding between the surface functional groups of GnO and the hydrogen attached to the nitrogen atom of IND. This hydrogen bonding mechanism is also supported by the results of the adsorption of pyrrole and methylpyrrole. On the other hand, QUI does not show hydrogen-bonding capability, and therefore, its enhanced adsorption originates from only the increased porosity of the adsorbents.

  11. Remarkable adsorptive removal of nitrogen-containing compounds from a model fuel by a graphene oxide/MIL-101 composite through a combined effect of improved porosity and hydrogen bonding

    International Nuclear Information System (INIS)

    Ahmed, Imteaz; Jhung, Sung Hwa

    2016-01-01

    Highlights: • Metal-organic frameworks (MIL-101) were composed with graphene oxide (GnO). • GnO/MIL-101 showed the highest adsorption capacity for indole and quinoline. • Adsorption mechanism was clearly shown based on adsorption results and FTIR. • GnO/MIL-101 might be applied commercially considering capacity and reusability. - Abstract: A composite was prepared by combining a highly porous metal-organic framework (MOF), MIL-101 (Cr-benzenedicarboxylate), and graphene oxide (GnO). The porosity of the composite increased appreciably by the addition of GnO up to a specific amount in the MOF, though further increases in the quantity of GnO was detrimental to porosity. The improved porosity of the GnO/MIL-101 composite was utilized for adsorptive denitrogenation (ADN) of a model fuel where indole (IND) and quinoline (QUI) were used as nitrogen-containing compounds (NCCs). It was found that both IND and QUI showed improved adsorption on the composite compared with pristine MIL-101 or GnO due to the improved porosity of the composite. Interestingly, the improvement in adsorption of IND was much higher than the quantity estimated for the porosity. Importantly, GnO/MIL-101 showed the highest adsorption capacities for NCCs. Irrespective of the studied solvents and co-presence of IND and QUI, the composite adsorbent performed ADN most effectively. This remarkable improvement is explained by the additional mechanism of hydrogen bonding between the surface functional groups of GnO and the hydrogen attached to the nitrogen atom of IND. This hydrogen bonding mechanism is also supported by the results of the adsorption of pyrrole and methylpyrrole. On the other hand, QUI does not show hydrogen-bonding capability, and therefore, its enhanced adsorption originates from only the increased porosity of the adsorbents.

  12. SYSTEM AND PROCESS FOR PRODUCTION OF METHANOL FROM COMBINED WIND TURBINE AND FUEL CELL POWER

    Science.gov (United States)

    The paper examines an integrated use of ultra-clean wind turbines and high temperature fuel cells to produce methanol, especially for transportation purposes. The principal utility and application of the process is the production of transportation fuel from domestic resources to ...

  13. Gas turbine for future alternative fuels; Gasturbine fuer die Brennstoffe der Zukunft

    Energy Technology Data Exchange (ETDEWEB)

    Koenemann, Detlef

    2011-07-01

    Power generation gas turbines use a wide range of fuels and are capable of rapid load changes. Because of this ability, they are an ideal compliment to future renewable energy supply. Against this backdrop MAN Diesel and Turbo SE decided several years ago, to develop a new series of gas turbines. The first is a machine in the 6-MW class that is now a product on the market and forms a technology platform for a range of further models now in development. (orig.)

  14. Failure analysis of turbine blades

    International Nuclear Information System (INIS)

    Iorio, A.F.; Crespi, J.C.

    1989-01-01

    Two 20 MW gas turbines suffered damage in blades belonging to the 2nd. stage of the turbine after 24,000 hours of duty. From research it arises that the fuel used is not quite adequate to guarantee the blade's operating life due to the excess of SO 3 , C and Na existing in combustion gases which cause pitting to the former. Later, the corrosion phenomenon is presented under tension produced by working stress enhanced by pitting where Pb is its main agent. A change of fuel is recommended thus considering the blades will reach the operational life they were designed for. (Author) [es

  15. Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X=–F, –Cl, –Br, –CH3, –C6H4, –F2, –(CH3)2) materials

    International Nuclear Information System (INIS)

    Buragohain, Amlan; Couck, Sarah; Van Der Voort, Pascal; Denayer, Joeri F.M.; Biswas, Shyam

    2016-01-01

    Four existing and three new functionalized chromium terephthalates having MIL-101 topology and denoted as Cr-MIL-101-X (existing ones with X=–F, 1-F; –Cl, 2-Cl; –Br, 3-Br; –CH 3 , 4-CH 3 ; new ones with X=–C 6 H 4 , 5-C 6 H 4 ; –F 2 , 6-F 2 , –(CH 3 ) 2 , 7-(CH 3 ) 2 ) were synthesized under hydrothermal conditions. All the materials except 5-C 6 H 4 could be prepared by a general synthetic route, in which the mixtures of CrO 3 , H 2 BDC-X (BDC=1,4-benzenedicarboxylate) linkers, conc. HCl and water with a molar ratio of 1:1:3.9:222.2 were reacted at 180 °C for 144 h. Compared to the 144 h of synthesis time, three of the compounds, namely 1-Cl, 2-Br and 5-C 6 H 4 , could be prepared in much shorter reaction times (12–18 h at 180–210 °C). The materials possess high thermal stability up to 270–300 °C in an air atmosphere. The activated compounds exhibit significant porosity (S BET range: 1273–2135 m 2 g −1 ). At 0 °C and 1 bar, the CO 2 adsorption capacities of the compounds fall in the 1.7–2.9 mmol g −1 range. Compounds 1-F and 6-F 2 showed enhanced CO 2 uptake values compared to parent Cr-MIL-101. The benzene adsorption capacities of the compounds lie in the range of 66.2–139.5 molecules per unit cell at 50 °C and p/p 0 =0.35. The increased benzene uptake value of 1-F compared to un-functionalized Cr-MIL-101 and 4-CH 3 suggests that the fluorination has induced more hydrophobicity in Cr-MIL-101 as compared to the methylation. - Graphical abstract: Benzene adsorption by seven functionalized Cr-MIL-101-X metal-organic framework (MOF) materials Display Omitted - Highlights: • Seven functionalized Cr-MIL-101-X materials were synthesized solvothermally. • All Cr-MIL-101-X materials exhibited high thermal stability up to 270–300 °C in air. • All Cr-MIL-101-X compounds displayed considerable porosity towards N 2 , CO 2 and benzene. • Mono- and di-fluorinated Cr-MIL-101 materials showed enhanced CO 2 adsorption capacities.

  16. Improved correlations of hydrogen content versus combustion performance related properties of aviation turbine fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, J.M.; Sharma, R.L.; Sagu, M.L.; Tiwari, G.B. (Indian Institute of Petroleum, Dehradun (India))

    1994-01-01

    In recent years the hydrogen content of Aviation Fuels has generated considerable interest. Various investigators have suggested correlation of hydrogen content with combustion related properties of aviation turbine fuel (ATF). A suitable threshold value of hydrogen content 13.8 wt% is being considered as a waiver of specifications such as specific energy, aniline gravity product, smoke point, aromatic content, naphthalenes and luminometer number. In the present paper relationship between the hydrogen content and combustion related properties has been examined and improved correlations of hydrogen content with several combustion related properties have been developed by incorporating a characterization factor in the equations. The supporting threshold value of a hydrogen content of 13.8wt% is verified with 25 data points for waiving of combustion properties such as specific energy, aniline gravity product, smoke point and aromatic content from aviation turbine fuel. 6 refs., 12 figs., 2 tabs.

  17. Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) System for Long-Haul Rail Application

    Science.gov (United States)

    Chow, Justin Jeff

    Freight movement of goods is the artery for America's economic health. Long-haul rail is the premier mode of transport on a ton-mile basis. Concerns regarding greenhouse gas and criteria pollutant emissions, however, have motivated the creation of annually increasing locomotive emissions standards. Health issues from diesel particulate matter, especially near rail yards, have also been on the rise. These factors and the potential to raise conventional diesel-electric locomotive performance warrants the investigation of using future fuels in a more efficient system for locomotive application. This research evaluates the dynamic performance of a Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) Hybrid system operating on hydrogen fuel to power a locomotive over a rail path starting from the Port of Los Angeles and ending in the City of Barstow. Physical constraints, representative locomotive operation logic, and basic design are used from a previous feasibility study and simulations are performed in the MATLAB Simulink environment. In-house controls are adapted to and expanded upon. Results indicate high fuel-to-electricity efficiencies of at least 54% compared to a conventional diesel-electric locomotive efficiency of 35%. Incorporation of properly calibrated feedback and feed-forward controls enables substantial load following of difficult transients that result from train kinematics while maintaining turbomachinery operating requirements and suppressing thermal stresses in the fuel cell stack. The power split between the SOFC and gas turbine is deduced to be a deterministic factor in the balance between capital and operational costs. Using hydrogen results in no emissions if renewable and offers a potential of 24.2% fuel energy savings for the rail industry.

  18. Status of Westinghouse coal-fueled combustion turbine programs

    International Nuclear Information System (INIS)

    Scalzo, A.J.; Amos, D.J.; Bannister, R.L.; Garland, R.V.

    1992-01-01

    Developing clean, efficient, cost effective coal utilization technologies for future power generation is an essential part of our National Energy Strategy. Westinghouse is actively developing power plants utilizing advanced gasification, atmospheric fluidized beds (AFB), pressurized fluidized beds (PFB), and direct firing technology through programs sponsored by the U.S. Dept. of Energy (DOE). The DOE Office of Fossil Energy is sponsoring the Direct Coal-Fired Turbine program. This paper presents the status of current and potential Westinghouse Power Generation Business Unit advanced coal-fueled power generation programs as well as commercial plans

  19. As mulheres em sua família: Mesopotâmia, 2º milênio a.C.

    Directory of Open Access Journals (Sweden)

    Brigitte Lion

    2005-12-01

    Full Text Available As fontes cuneiformes do 2º milênio a.C. fornecem uma abundante documentação sobre as mulheres mesopotâmicas. A partir dos códigos de leis e de numerosos arquivos privados, é possível reconstituir a vida das mulheres comuns em seu quadro familiar. Este artigo analisa a condição feminina através dos diferentes costumes matrimoniais, da situação econômica das mulheres, bem como de suas atividades no interior do lar.

  20. Molten salt fueled nuclear facility with steam-and gas turbine cycles of heat transformation

    International Nuclear Information System (INIS)

    Ananich, P.I.; Bunin, E.N.; Kazazyan, V.T.; Nemtsev, V.A.; Sikorin, S.N.

    2001-01-01

    The molten salt fueled nuclear facilities with fuel circulating in the primary circuit have a series of the potential advantages in comparison with the traditional thermal and fast reactors with solid fuel elements. These advantages are ensured by the possibility to receive effective neutron balance in the core, minimum margin reactivity, more deep fuel burnup, unbroken correctness of the fuel physical and chemical properties and by low prices of the fuel cycle. The neutron and thermal-physical calculations of the various variants of the MSFNF with steam-water and gas turbine power circuits and their technical and economical comparison are carried out in this article. Calculations of molten salt nuclear power plant with gas turbine power circuit have been carried out using chemically reacting working body ''nitrin'' (N304 + 1%NO). The molten salt fueled reactors with the thermal power near of 2300 MW with two fuel compositions have been considered. The base variant has been taken the design of NPP with VVER NP-1000 when comparing the results of the calculations. Its economical performances are presented in prices of 1990. The results of the calculations show that it is difficult to determine the advantages of any one of the variants considered in a unique fashion. But NPP with MSR possesses large reserves in the process of optimization of cycle and energy equipment parameters that can improve its technical and economical performances sufficiently. (author)

  1. Gas turbine with two circuits and intermediate fuel conversion process

    International Nuclear Information System (INIS)

    Bachl, H.

    1978-01-01

    The combination of a fuel conversion process with a thermal process saves coolant and subsequent separation plant, in order to achieve the greatest possible use of the mechanical or electrical energy. The waste heat of a thermal circuit is taken to an endothermal chemical fuel conversion process arranged before a second circuit. The heat remaining after removal of the heat required for the chemical process is taken to a second thermal circuit. The reaction products of the chemical process which condense out during expansion in the second thermal process are selectively separated from the remaining gas mixture in the individual turbine stages. (HGOE) [de

  2. Investigation of 3H and 14C inventory and distribution in spent BWR fuel rods

    International Nuclear Information System (INIS)

    Bleier, A.; Beuerle, M.; Neeb, K.H.

    1984-10-01

    In order to obtain reliable data for fuel reprocessing and waste disposal, the T and C-14 inventory, distribution and behaviour was investigated on a typical LWR fuel rod discharged from a BWR plant. The results showed that 50 ± 5% of the T generated in the fuel is present in the cladding after reactor operation. The remainder of the T stays with the fuel. Related to the reactor power the total T inventory corresponds to a T production rate of 19 000 Ci/GW e . a. The C-14 built up in the fuel represents approximately 60% of the C-14 inventory of the BWR fuel rod. The remaining part of C-14 (about 40%) experimentally determined by this analysis for the first time is generated in the cladding. From the total C-14 inventory a C-14 production rate of 17,5 Ci/GW e . a can be calculated. The fill gas contains only negligible fractions of both nuclides. The results obtained in this program are generally in good agreement with the data of theoretical estimates and with results of earlier investigations on PWR fuel rods. (orig.) [de

  3. Effect of Syngas Moisture Content on the Emissions of Micro-Gas Turbine Fueled with Syngas/LPG in Dual Fuel Mode

    Directory of Open Access Journals (Sweden)

    Sadig Hussain

    2014-07-01

    Full Text Available Syngas produced by gasification has a potential to be one of the fueling solutions for gas turbines in the future. In addition to the combustible constituents and inert gases, syngas derived by gasification contains a considerable amount of water vapor which effect on syngas combustion behaviour. In this work, a micro-gas turbine with a thermal capacity of 50 kW was simulated using ASPEN Plus. The micro gas turbine system emissions were characterized using dry syngas fuels with a different composition, syngas 1 (10.53% H2, 24.94% CO, 2.03% CH4, 12.80% CO2, and 49.70% N2 and syngas 2 (21.62% H2, 32.48% CO, 3.72% CH4, 19.69% CO2, and 22.49% N2 mixed with LPG in a dual fueling mode. The effect of syngas moisture content was then studied by testing the system with moist syngas/LPG with a moisture content ranging from 0 to 20% by volume. The study demonstrates that the syngas moisture content has high influence on nitrogen oxides and carbon monoxide emissions. It’s found that for 5% syngas moisture content, the NOx emission were reduced by 75.5% and 83% for Syngas 1 and Syngas 2 respectively. On carbon monoxide emissions and for same moisture content ratio, the reduction was found to be 43% and 57% for syngas1 and syngas 2 respectively.

  4. Host-guest interaction of styrene and ethylbenzene in MIL-53 studied by solid-state NMR.

    Science.gov (United States)

    Li, Shenhui; Li, Jing; Tang, Jing; Deng, Feng

    Solid-state NMR was utilized to explore the host-guest interaction between adsorbate and adsorbent at atomic level to understand the separation mechanism of styrene (St) and ethylbenzene (EB) in MIL-53(Al). 13 C- 27 Al double-resonance NMR experiments revealed that the host-guest interaction between St and MIL-53 was much stronger than that of EB adsorption. In addition, 13 C DIPSHIFT experiments suggested that the adsorbed St was less mobile than EB confined inside the MIL-53 pore. Furthermore, the host-guest interaction model between St, EB and MIL-53 was established on the basis of the spatial proximities information extracted from 2D 1 H- 1 H homo-nuclear correlation NMR experiments. According to the experimental observation from solid-state NMR, it was found that the presence of π-π interaction between St and MIL-53 resulted in the stronger host-guest interaction and less mobility of St. This work provides direct experimental evidence for understanding the separation mechanism of St and EB using MIL-53 as an adsorbent. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Advanced coal-fueled industrial cogeneration gas turbine system -- combustion development

    Energy Technology Data Exchange (ETDEWEB)

    LeCren, R.T.

    1994-06-01

    This topical report summarizes the combustor development work accomplished under the subject contract. The objective was to develop a combustion system for the Solar 4MW Type H Centaur gas turbine generator set which was to be used to demonstrate the economic, technical and environmental feasibility of a direct coal-fueled gas turbine in a 100 hour proof-of-concept test. This program started with a design configuration derived during the CSC program. The design went through the following evolution: CSC design which had some known shortcomings, redesigned CSC now designated as the Two Stage Slagging Combustor (TSSC), improved TSSC with the PRIS evaluated in the IBSTF, and full scale design. Supporting and complimentary activities included computer modelling, flow visualization, slag removal, SO{sub x} removal, fuel injector development and fuel properties evaluation. Three combustor rigs were utilized: the TSSC, the IBSTF and the full scale rig at Peoria. The TSSC rig, which was 1/10th scale of the proposed system, consisted of a primary and secondary zone and was used to develop the primary zone performance and to evaluate SO{sub x} and slag removal and fuel properties variations. The IBSTF rig which included all the components of the proposed system was also 1/10th scale except for the particulate removal system which was about 1/30th scale. This rig was used to verify combustor performance data obtained on the TSSC and to develop the PRIS and the particulate removal system. The full scale rig initially included the primary and secondary zones and was later modified to incorporate the PRIS. The purpose of the full scale testing was to verify the scale up calculations and to provide a combustion system for the proof-of-concept engine test that was initially planned in the program.

  6. Effects of chemical equilibrium on turbine engine performance for various fuels and combustor temperatures

    Science.gov (United States)

    Tran, Donald H.; Snyder, Christopher A.

    1992-01-01

    A study was performed to quantify the differences in turbine engine performance with and without the chemical dissociation effects for various fuel types over a range of combustor temperatures. Both turbojet and turbofan engines were studied with hydrocarbon fuels and cryogenic, nonhydrocarbon fuels. Results of the study indicate that accuracy of engine performance decreases when nonhydrocarbon fuels are used, especially at high temperatures where chemical dissociation becomes more significant. For instance, the deviation in net thrust for liquid hydrogen fuel can become as high as 20 percent at 4160 R. This study reveals that computer central processing unit (CPU) time increases significantly when dissociation effects are included in the cycle analysis.

  7. The marriage of gas turbines and coal

    International Nuclear Information System (INIS)

    Bajura, R.A.; Webb, H.A.

    1991-01-01

    This paper reports on developing gas turbine systems that can use coal or a coal-based fuel ensures that the United States will have cost-effective environmentally sound options for supplying future power generation needs. Power generation systems that marry coal or a coal-based fuel to a gas turbine? Some matchmakers would consider this an unlikely marriage. Historically, most gas turbines have been operated only on premium fuels, primarily natural gas or distillate oil. The perceived problems from using coal or coal-based fuels in turbines are: Erosion and deposition: Coal ash particles in the hot combustion gases passing through the expander turbine could erode or deposit on the turbine blades. Corrosion: Coal combustion will release alkali compounds form the coal ash. Alkali in the hot gases passing through the expander turbine can cause corrosion of high-temperature metallic surfaces. Emissions: coal contains higher levels of ash, fuel-bound sulfur and nitrogen compounds, and trace contaminants than premium fuels. Meeting stringent environmental regulations for particulates, sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and trace contaminants will be difficult. Economics: Coal-based systems are expensive to build. The difference in price between coal and premium fuels must be large enough to justify the higher capital cost

  8. Anomaly Detection in Gas Turbine Fuel Systems Using a Sequential Symbolic Method

    Directory of Open Access Journals (Sweden)

    Fei Li

    2017-05-01

    Full Text Available Anomaly detection plays a significant role in helping gas turbines run reliably and economically. Considering the collective anomalous data and both sensitivity and robustness of the anomaly detection model, a sequential symbolic anomaly detection method is proposed and applied to the gas turbine fuel system. A structural Finite State Machine is used to evaluate posterior probabilities of observing symbolic sequences and the most probable state sequences they may locate. Hence an estimation-based model and a decoding-based model are used to identify anomalies in two different ways. Experimental results indicate that both models have both ideal performance overall, but the estimation-based model has a strong robustness ability, whereas the decoding-based model has a strong accuracy ability, particularly in a certain range of sequence lengths. Therefore, the proposed method can facilitate well existing symbolic dynamic analysis- based anomaly detection methods, especially in the gas turbine domain.

  9. Exergy analysis of gas turbine with air bottoming cycle

    International Nuclear Information System (INIS)

    Ghazikhani, M.; Khazaee, I.; Abdekhodaie, E.

    2014-01-01

    In this paper, the exergy analysis of a conventional gas turbine and a gas turbine with air bottoming cycle (ABC) is presented in order to study the important parameters involved in improving the performance characteristics of the ABC based on the Second Law of thermodynamics. In this study, work output, specific fuel consumption (SFC) and the exergy destruction of the components are investigated using a computer model. The variations of the ABC cycle exergy parameters are comprehensively discussed and compared with those of the simple gas turbine. The results indicate that the amount of the exhaust exergy recovery in different operating conditions varies between 8.6 and 14.1% of the fuel exergy, while the exergy destruction due to the extra components in the ABC makes up only 4.7–7.4% of the fuel exergy. This is the reason why the SFC of the ABC is averagely 13.3% less and the specific work 15.4% more than those of the simple gas turbine. The results also reveal that in the ABC cycle, at a small value of pressure ratio, a higher specific work with lower SFC can be achieved in comparison with those of the simple gas turbine. - Highlights: • Exhaust exergy recovery in ABC gas turbine varies with 8.6–14.1% of the fuel exergy. • Irreversibility of the extra devices in ABC makes up 4.7–7.4% of the fuel exergy. • SFC in ABC is poor due to exergy recovery more than extra devices irreversibility. • At the same TIT and R c , specific work in the ABC is more than simple gas turbine. • The recuperator has the largest contribution in the irreversibility of the ABC

  10. Clean coal technologies for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Todd, D.M. [GE Industrial & Power Systems, Schenectady, NY (United States)

    1994-12-31

    The oil- and gas-fired turbine combined-cycle penetration of industrial and utility applications has escalated rapidly due to the lower cost, higher efficiency and demonstrated reliability of gas turbine equipment in combination with fuel economics. Gas turbine technology growth has renewed the interest in the use of coal and other solid fuels in combined cycles for electrical and thermal energy production to provide environmentally acceptable plants without extra cost. Four different types of systems utilizing the gas turbine advantages with solid fuel have been studied: direct coal combustion, combustor processing, fuel processing and indirect cycles. One of these, fuel processing (exemplified by coal gasification), is emerging as the superior process for broad scale commercialization at this time. Advances in gas turbine design, proven in operation above 200 MW, are establishing new levels of combined-cycle net plant efficiencies up to 55% and providing the potential for a significant shift to gas turbine solid fuel power plant technology. These new efficiencies can mitigate the losses involved in gasifying coal and other solid fuels, and economically provide the superior environmental performance required today. Based on demonstration of high baseload reliability for large combined cycles (98%) and the success of several demonstrations of Integrated Gasification Combined Cycle (IGCC) plants in the utility size range, it is apparent that many commercial IGCC plants will be sites in the late 1990s. This paper discusses different gas turbine systems for solid fuels while profiling available IGCC systems. The paper traces the IGCC option as it moved from the demonstration phase to the commercial phase and should now with planned future improvements, penetrate the solid fuel power generation market at a rapid pace.

  11. Dynamic modelling and characterisation of a solid oxide fuel cell integrated in a gas turbine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Thorud, Bjoern

    2005-07-01

    This thesis focuses on three main areas within the field of SOFC/GT-technology: 1) Development of a dynamic SOFC/GT model. 2) Model calibration and sensitivity study. 3) Assessment of the dynamic properties of a SOFC/GT power plant. The SOFC/GT model developed in this thesis describes a pressurised tubular Siemens Westinghouse-type SOFC, which is integrated in a gas turbine cycle. The process further includes a plate-fin recuperator for stack air preheating, a prereformer, an anode exhaust gas recycling loop for steam/carbon-ratio control, an afterburner and a shell-tube heat exchanger for air preheating. The fuel cell tube, the recuperator and the shell-tube heat exchanger are spatially distributed models. The SOFC model is further thermally integrated with the prereformer. The compressor and turbine models are based on performance maps as a general representation of the characteristics. In addition, a shaft model which incorporates moment of inertia is included to account for gas turbine transients. The SOFC model is calibrated against experimentally obtained data from a single-cell experiment performed on a Siemens Westinghouse tubular SOFC. The agreement between the model and the experimental results is good. The sensitivity study revealed that the degree of prereforming is of great importance with respect to the axial temperature distribution of the fuel cell. Types of malfunctions are discussed prior to the dynamic behaviour study. The dynamic study of the SOFC/GT process is performed by simulating small and large load changes according to three different strategies; 1) Load change at constant mean fuel cell temperature. 2) Load change at constant turbine inlet temperature. 3) Load change at constant shaft speed. Of these three strategies, the constant mean fuel cell temperature strategy appears to be the most rapid load change method. Furthermore, this strategy implies the lowest degree of thermal cycling, the smoothest fuel cell temperature distribution and

  12. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Rabovitser

    2009-06-30

    The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures

  13. Por mil devaluados pesos

    Directory of Open Access Journals (Sweden)

    Annie Rodríguez Collázos

    2013-03-01

    Full Text Available El estudio de lo popular y lo urbano hasta ahora se ha centrado en el comportamiento y en algunas relaciones de los habitantes con su entorno. “Por mil devaluados pesos. Publicidad popular y urbana”, pretende explorar las formas de publicidad, dispersas en diferentes espacios populares y urbanos en Bogotá, identificando esquemas y formas características de sus propios códigos comunicativos; se centran en un objeto de estudio consistente en las estrategias publicitarias y los códigos comunicativos en los mensajes publicitarios populares en las subculturas de San Victorino, 7 de Agosto y Sanandresito de San José.

  14. Thermodynamic Modeling and Dispatch of Distributed Energy Technologies including Fuel Cell -- Gas Turbine Hybrids

    Science.gov (United States)

    McLarty, Dustin Fogle

    Distributed energy systems are a promising means by which to reduce both emissions and costs. Continuous generators must be responsive and highly efficiency to support building dynamics and intermittent on-site renewable power. Fuel cell -- gas turbine hybrids (FC/GT) are fuel-flexible generators capable of ultra-high efficiency, ultra-low emissions, and rapid power response. This work undertakes a detailed study of the electrochemistry, chemistry and mechanical dynamics governing the complex interaction between the individual systems in such a highly coupled hybrid arrangement. The mechanisms leading to the compressor stall/surge phenomena are studied for the increased risk posed to particular hybrid configurations. A novel fuel cell modeling method introduced captures various spatial resolutions, flow geometries, stack configurations and novel heat transfer pathways. Several promising hybrid configurations are analyzed throughout the work and a sensitivity analysis of seven design parameters is conducted. A simple estimating method is introduced for the combined system efficiency of a fuel cell and a turbine using component performance specifications. Existing solid oxide fuel cell technology is capable of hybrid efficiencies greater than 75% (LHV) operating on natural gas, and existing molten carbonate systems greater than 70% (LHV). A dynamic model is calibrated to accurately capture the physical coupling of a FC/GT demonstrator tested at UC Irvine. The 2900 hour experiment highlighted the sensitivity to small perturbations and a need for additional control development. Further sensitivity studies outlined the responsiveness and limits of different control approaches. The capability for substantial turn-down and load following through speed control and flow bypass with minimal impact on internal fuel cell thermal distribution is particularly promising to meet local demands or provide dispatchable support for renewable power. Advanced control and dispatch

  15. As milícias nacionais

    Directory of Open Access Journals (Sweden)

    Jeanne Berrance de Castro

    1968-03-01

    Full Text Available As milícias nacionais — herança ideológica do século XVIII —tiveram na milícia norte-americana e nas Guardas Nacionais francesa e também brasileira expressivos exemplos dessas fôrças paramilitares. O conceito da "nação em armas", institucionalizado, possibilitou ao poder civil o contrôle militar, auxilado de outro lado pela descen-tralização dessas milícias nacionais que, com isso, suplantaram as fôrças militares regulares.

  16. Combustion heating value gas in a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kelsall, G [CTDD, British Coal Corporation, Cheltenham (United Kingdom); Cannon, M [European Gas Turbines Ltd., Lincoln (United Kingdom)

    1997-12-31

    Advanced coal and/or biomass based power generation systems offer the potential for high efficiency electricity generation with minimum environmental impact. An important component for many of these advanced power generation cycles is the gas turbine, for which development of a combustion system to burn low calorific value coal derived fuel gas, at turbine inlet temperatures of typically 1 100 - 1 260 deg C and with minimum pollutant emissions, is a key issue. A phased combustor development programme is under-way burning low calorific value fuel gas (3.6 - 4.1 MJ/m{sup 3}) with low emissions, particularly NO{sub x} derived from fuel-bound nitrogen. The first and second phases of the combustor development programme have been completed. The first phase used a generic tubo-annular, prototype combustor based on conventional design principles. Combustor performance for this first prototype combustor was encouraging. The second phase assessed five design variants of the prototype combustor, each variant achieving a progressive improvement in combustor performance. The operating conditions for this assessment were selected to represent a particular medium sized industrial gas turbine operating as part of an Air Blown Gasification Cycle (ABGC). The test conditions assessed therefore included the capability to operate the combustor using natural gas as a supplementary fuel, to suit one possible start-up procedure for the cycle. The paper presents a brief overview of the ABGC development initiative and discusses the general requirements for a gas turbine operating within such a cycle. In addition, it presents full combustor performance results for the second phase of turbine combustor development and discusses the rationale for the progressive design modifications made within that programme. The strategy for the further development of the combustor to burn low calorific value fuel gas with very low conversion of fuel-bound nitrogen to NO{sub x} is presented. (orig.) 6 refs.

  17. Combustion heating value gas in a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kelsall, G. [CTDD, British Coal Corporation, Cheltenham (United Kingdom); Cannon, M. [European Gas Turbines Ltd., Lincoln (United Kingdom)

    1996-12-31

    Advanced coal and/or biomass based power generation systems offer the potential for high efficiency electricity generation with minimum environmental impact. An important component for many of these advanced power generation cycles is the gas turbine, for which development of a combustion system to burn low calorific value coal derived fuel gas, at turbine inlet temperatures of typically 1 100 - 1 260 deg C and with minimum pollutant emissions, is a key issue. A phased combustor development programme is under-way burning low calorific value fuel gas (3.6 - 4.1 MJ/m{sup 3}) with low emissions, particularly NO{sub x} derived from fuel-bound nitrogen. The first and second phases of the combustor development programme have been completed. The first phase used a generic tubo-annular, prototype combustor based on conventional design principles. Combustor performance for this first prototype combustor was encouraging. The second phase assessed five design variants of the prototype combustor, each variant achieving a progressive improvement in combustor performance. The operating conditions for this assessment were selected to represent a particular medium sized industrial gas turbine operating as part of an Air Blown Gasification Cycle (ABGC). The test conditions assessed therefore included the capability to operate the combustor using natural gas as a supplementary fuel, to suit one possible start-up procedure for the cycle. The paper presents a brief overview of the ABGC development initiative and discusses the general requirements for a gas turbine operating within such a cycle. In addition, it presents full combustor performance results for the second phase of turbine combustor development and discusses the rationale for the progressive design modifications made within that programme. The strategy for the further development of the combustor to burn low calorific value fuel gas with very low conversion of fuel-bound nitrogen to NO{sub x} is presented. (orig.) 6 refs.

  18. Environmental degradation of oxidation resistant and thermal barrier coatings for fuel-flexible gas turbine applications

    Science.gov (United States)

    Mohan, Prabhakar

    The development of thermal barrier coatings (TBCs) has been undoubtedly the most critical advancement in materials technology for modern gas turbine engines. TBCs are widely used in gas turbine engines for both power-generation and propulsion applications. Metallic oxidation-resistant coatings (ORCs) are also widely employed as a stand-alone protective coating or bond coat for TBCs in many high-temperature applications. Among the widely studied durability issues in these high-temperature protective coatings, one critical challenge that received greater attention in recent years is their resistance to high-temperature degradation due to corrosive deposits arising from fuel impurities and CMAS (calcium-magnesium-alumino-silicate) sand deposits from air ingestion. The presence of vanadium, sulfur, phosphorus, sodium and calcium impurities in alternative fuels warrants a clear understanding of high-temperature materials degradation for the development of fuel-flexible gas turbine engines. Degradation due to CMAS is a critical problem for gas turbine components operating in a dust-laden environment. In this study, high-temperature degradation due to aggressive deposits such as V2O5, P2O 5, Na2SO4, NaVO3, CaSO4 and a laboratory-synthesized CMAS sand for free-standing air plasma sprayed (APS) yttria stabilized zirconia (YSZ), the topcoat of the TBC system, and APS CoNiCrAlY, the bond coat of the TBC system or a stand-alone ORC, is examined. Phase transformations and microstructural development were examined by using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. This study demonstrated that the V2O5 melt degrades the APS YSZ through the formation of ZrV2O7 and YVO 4 at temperatures below 747°C and above 747°C, respectively. Formation of YVO4 leads to the depletion of the Y2O 3 stabilizer and the deleterious transformation of the YSZ to the monoclinic ZrO2 phase. The investigation on the YSZ degradation by Na 2SO4 and a Na2SO4 + V2

  19. A Review of Materials for Gas Turbines Firing Syngas Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, Thomas [ORNL; Wright, Ian G [ORNL

    2009-05-01

    Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

  20. SiC/SiC Leading Edge Turbine Airfoil Tested Under Simulated Gas Turbine Conditions

    Science.gov (United States)

    Robinson, R. Craig; Hatton, Kenneth S.

    1999-01-01

    Silicon-based ceramics have been proposed as component materials for use in gas turbine engine hot-sections. A high pressure burner rig was used to expose both a baseline metal airfoil and ceramic matrix composite leading edge airfoil to typical gas turbine conditions to comparatively evaluate the material response at high temperatures. To eliminate many of the concerns related to an entirely ceramic, rotating airfoil, this study has focused on equipping a stationary metal airfoil with a ceramic leading edge insert to demonstrate the feasibility and benefits of such a configuration. Here, the idea was to allow the SiC/SiC composite to be integrated as the airfoil's leading edge, operating in a "free-floating" or unrestrained manner. and provide temperature relief to the metal blade underneath. The test included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were air-cooled, uniquely instrumented, and exposed to the same internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). Results show the leading edge insert remained structurally intact after 200 simulated flight cycles with only a slightly oxidized surface. The instrumentation clearly suggested a significant reduction (approximately 600 F) in internal metal temperatures as a result of the ceramic leading edge. The object of this testing was to validate the design and analysis done by Materials Research and Design of Rosemont, PA and to determine the feasibility of this design for the intended application.

  1. Fission gas release behaviour of a 103 GWd/t{sub HM} fuel disc during a 1200 °C annealing test

    Energy Technology Data Exchange (ETDEWEB)

    Noirot, J., E-mail: jean.noirot@cea.fr [CEA, DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Pontillon, Y. [CEA, DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Yagnik, S. [EPRI, P.O. Box 10412, Palo Alto, CA 94303-0813 (United States); Turnbull, J.A. [Independent Consultant (United Kingdom); Tverberg, T. [IFE, P.O. Box 173, NO-1751 Halden (Norway)

    2014-03-15

    Within the Nuclear Fuel Industry Research (NFIR) program, several fuel variants, in the form of thin circular discs, were irradiated in the Halden Boiling Water Reactor (HBWR) to a range of burn-ups ∼100 GWd/t{sub HM}. The design of the assembly was similar to that used in other HBWR programs: the assembly contained several rods with fuel discs sandwiched between Mo discs, which limited temperature gradients within the fuel discs. One such rod contained standard grain UO{sub 2} discs (3D grain size = 18 μm) reaching a burn-up of 103 GWd/t{sub HM}. After the irradiation, the gas release upon rod puncturing was measured to be 2.9%. Detailed characterizations of one of these irradiated UO{sub 2} discs, using electron probe microanalysis (EPMA), scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS), were performed in a CEA Cadarache hot laboratory. Examination revealed the high burn-up structure (HBS) formation throughout the whole of the disc, also the fission gas distribution within this HBS, with a very high proportion of the gas in the HBS bubbles. A sibling disc was submitted to a temperature transient up to 1200 °C in the out-of-pile (OOP) annealing test device “Merarg” at a relatively low temperature ramp rate (0.2 °C/s). In addition to the total gas release during this annealing test, the release peaks throughout the temperature range were monitored. The fuel was then characterized with the same microanalysis techniques as before the annealing test to investigate the effects of this test on the microstructure of the fuel and on the fission gases. It provided valuable insights into fission gas localization and the release behaviour in UO{sub 2} fuel with high burn-up structure (HBS)

  2. Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Ram

    2013-07-31

    This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15

  3. Synthesis of MIL-100(Fe at Low Temperature and Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Jing Shi

    2013-01-01

    Full Text Available MIL-100(Fe, a mesoporous metal-organic framework (MOF, has a large BET specific surface area and pore volume with the presence of a significant amount of accessible Lewis acid metal sites upon dehydration. The structural characteristics of MIL-100(Fe make it a good candidate for potential applications in gas storage, separation, and heterogeneous catalysis. Mainly, this MOF is obtained by the hydrothermal synthesis in a Teflon-lined autoclave at high temperature (>150°C under static conditions. However, this method has several disadvantages such as high temperature, high (autogenous pressure, long time, and comparable low MOF yield. Therefore, development of a facile method for synthesis of MIL-100(Fe is vitally important for fundamental understanding and practical application. Herein, MIL-100(Fe is synthesized by a facile low-temperature (90% still could be achieved, suggesting that this simple and energy saving method has the potential to be used practically.

  4. Synthesis and Characterization Studies of MIL-101

    Directory of Open Access Journals (Sweden)

    Emine Kaya EKİNCİ

    2017-12-01

    Full Text Available MIL-101 is a kind of Metal Organic Frameworks (MOFs, which have attracted much attention in the past decade due to its promising application in chemical industries. MIL-101 is also known as “Porous Chromium Terephthalate”. It has very high surface area and pore volume. MIL-101 exhibits exceptional stability against moisture and other chemicals and is composed of coordinately unsaturated Cr- sites with high concentration available for catalysis and adsorption. MIL-101 was synthesized by hydrothermal method and characterized by XRD, nitrogen adsorption and desorption analyses and SEM. XRD patterns show the presence of MIL-101’s crystal structure with high surface area (~2400 m2/g. Nitrogen adsorption-desorption analyzes showed that the material exhibited mesoporous material behavior.

  5. Highly efficient capture of iodine by Cu/MIL-101

    Science.gov (United States)

    Qi, Bingbing; Liu, Ying; Zheng, Tao; Gao, Qianhong; Yan, Xuewu; Jiao, Yan; Yang, Yi

    2018-02-01

    In order to improve the uptake capacity of MIL-101 for iodine, Cu nanoparticles doped MIL-101 were successfully synthesized through a facile method. The obtained Cu/MIL-101 was characterized by SEM, XRD, EDS, TEM, IR, TGA and BET to examine the chemical and thermal stabilities. The capture experiments for the adsorbents showed that the capture capacity of Cu/MIL-101 for volatile iodine is 342 wt%, which is higher than that of pure MIL-101. An I2 uptake of 342 wt% is the highest value reported among metal-organic frameworks. Furthermore, Cu/MIL-101 has a cycle ratio of 95% after three cycles and exhibits a better cyclicity than pure MIL-101. Meanwhile, Cu/MIL-101 shows an excellent reversible adsorption of iodine in solution.

  6. Fuel injection assembly for use in turbine engines and method of assembling same

    Science.gov (United States)

    Berry, Jonathan Dwight; Johnson, Thomas Edward; York, William David; Uhm, Jong Ho

    2015-12-15

    A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes an end cover, an endcap assembly, a fluid supply chamber, and a plurality of tube assemblies positioned at the endcap assembly. Each of the tube assemblies includes housing having a fuel plenum and a cooling fluid plenum. The cooling fluid plenum is positioned downstream from the fuel plenum and separated from the fuel plenum by an intermediate wall. The plurality of tube assemblies also include a plurality of tubes that extends through the housing. Each of the plurality of tubes is coupled in flow communication with the fluid supply chamber and a combustion chamber positioned downstream from the tube assembly. The plurality of tube assemblies further includes an aft plate at a downstream end of the cooling fluid plenum. The plate includes at least one aperture.

  7. HIGH EFFICIENCY TURBINE

    OpenAIRE

    VARMA, VIJAYA KRUSHNA

    2012-01-01

    Varma designed ultra modern and high efficiency turbines which can use gas, steam or fuels as feed to produce electricity or mechanical work for wide range of usages and applications in industries or at work sites. Varma turbine engines can be used in all types of vehicles. These turbines can also be used in aircraft, ships, battle tanks, dredgers, mining equipment, earth moving machines etc, Salient features of Varma Turbines. 1. Varma turbines are simple in design, easy to manufac...

  8. Análise termodinâmica de um ciclo de potência com célula a combustível sofc e turbina a vapor = Thermodynamic analysis of a power cycle such as SOFC fuel cell and steam turbine

    Directory of Open Access Journals (Sweden)

    Alexandre Sordi

    2006-01-01

    Full Text Available O objetivo deste artigo foi realizar a análise termodinâmica de um sistema híbrido, SOFC / ST (célula a combustível tipo SOFC e turbina a vapor ST. O combustível considerado para a análise foi o gás metano (biogás produzido por meio da digestão anaeróbica de resíduos orgânicos. A metodologia utilizada foi o balanço de energia dosistema SOFC / ST, considerando a reforma interna do metano na célula a combustível, de forma a obter a sua eficiência elétrica. O resultado foi comparado a um ciclo combinado convencional de turbina a gás e turbina a vapor (GT / ST para potências entre 10 MW e 30MW. A eficiência do sistema híbrido SOFC / ST variou de 61% a 66% em relação ao poder calorífico do metano; e a eficiência do ciclo combinado GT / ST variou de 41% a 55% para o mesmo intervalo de potência. Para geração distribuída a célula a combustível SOFC é atecnologia mais eficiente.The objective of this article was to analyze the thermodynamic of ahybrid system, SOFC / ST (SOFC fuel cell and ST steam turbine. The fuel for the analysis was the gas methane (biogas produced through the anaerobic digestion of the organic residues. The utilized methodology was the energy balance of the system SOFC / ST,considering the internal reforming of methane in the fuel cell, in a way to obtain its electric effectiveness. The result was compared to a conventional combined cycle of gas turbine and steam turbine (GT / ST for powers between 10 MW and 30 MW. The efficiency of the hybrid system SOFC / ST varied from 61 to 66% in relation to the lower heating value of methane; and the efficiency of the combined cycle GT / ST varied from 41 to 55% within the same power interval. For distributed generation, the SOFC fuel cell is the most efficienttechnology.

  9. C. F. Braun. Standard turbine island design, safety analysis report

    International Nuclear Information System (INIS)

    1974-01-01

    A standard turbine island used with a BWR is described. It consists of the turbine-generator; steam system; condensate storage, cleanup, and transfer systems; control and instrumentation; water treatment plant; make-up demineralizer; potable and waste water systems; and a compressed air system. The turbine-generator is a tandem-compound nuclear-type turbine with one double-flow high-pressure section and a six-flow low-pressure section in three double-flow low-pressure casings. The turbine is direct connected to an 1800 rpm synchronous a-c generator. A combined moisture separator and two-stage reheater is provided. The main steam system delivers the steam generated in a BWR to the main turbine stop valves. The condensate system maintains proper water inventory. Protective features prevent loss of the system due to electrical failure of a component and isolates faults to ensure continuity of a power supply from alternate sources. (U.S.)

  10. MIL-68 (In) nano-rods for the removal of Congo red dye from aqueous solution.

    Science.gov (United States)

    Jin, Li-Na; Qian, Xin-Ye; Wang, Jian-Guo; Aslan, Hüsnü; Dong, Mingdong

    2015-09-01

    MIL-68 (In) nano-rods were prepared by a facile solvothermal synthesis using NaOAc as modulator agent at 100°C for 30 min. The BET test showed that the specific surface area and pore volume of MIL-68 (In) nanorods were 1252 m(2) g(-1) and 0.80 cm(3) g(-1), respectively. The as-prepared MIL-68 (In) nanorods showed excellent adsorption capacity and rapid adsorption rate for removal of Congo red (CR) dye from water. The maximum adsorption capacity of MIL-68 (In) nanorods toward CR reached 1204 mg g(-1), much higher than MIL-68 (In) microrods and most of the previously reported adsorbents. The adsorption process of CR by MIL-68 (In) nano-rods was investigated and found to be obeying the Langmuir adsorption model in addition to pseudo-second-order rate equation. Moreover, the MIL-68 (In) nanorods showed an acceptable reusability after regeneration with ethanol. All information gives an indication that the as-prepared MIL-68 (In) nanorods show their potential as the adsorbent for highly efficient removal of CR in wastewater. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. MIL-53(Fe), MIL-101, and SBA-15 porous materials: potential platforms for drug delivery.

    Science.gov (United States)

    Gordon, Jeff; Kazemian, Hossein; Rohani, Sohrab

    2015-02-01

    Conventional drug administration suffers from several drawbacks, including a lack of specificity for diseased tissue, the necessity of large and frequent doses, and adverse side effects. Great effort is currently being devoted to developing nanoparticle-based therapeutics capable of prolonging drug administration and providing better control. Here we demonstrate the use of flexible microporous MIL-53(Fe) and mesoporous MIL-101 and SBA-15 as matrices for the adsorption and in vitro drug delivery of acetaminophen, progesterone, and stavudine. A drug loading of 20 wt.% was achieved for each of the nanomaterials using an incipient wetness impregnation procedure. BET, DSC, and XRPD analyses indicated that the entire loaded amount of each of the model drugs had successfully been incorporated within the mesoporous channels of both MIL-101 and SBA-15. DSC analysis evidenced that a portion of each of the model drugs had deposited onto the outer surface of MIL-53(Fe) particles; however, the portion of each drug that had incorporated within the microporous channels was slowly delivered in a diffusion-controlled process, which occurred over a period of up to six days for acetaminophen. These results demonstrate the unique ability of MIL-53(Fe) to adapt its porosity and optimize drug-matrix interactions. Owing to its larger pore diameters and weaker host-guest interactions, MIL-101 release times were shorter, yet still prolonged, as evidenced by the complete release of stavudine after five days. Complete release of each of the drugs from SBA-15 occurred very quickly as a result of rapid drug dissolution and diffusion out of the mesopores. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Solid Oxide Fuel Cell/Turbine Hybrid Power System for Advanced Aero-propulsion and Power, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Solid oxide fuel cell (SOFC)/ gas turbine hybrid power systems (HPSs) have been recognized by federal agencies and other entities as having the potential to operate...

  13. Experimental Campaign Tests on Ultra Micro Gas Turbines, Fuel Supply Comparison and Optimization

    Directory of Open Access Journals (Sweden)

    Roberto Capata

    2018-03-01

    Full Text Available The increasing demand for miniaturized radio-controlled vehicles inspired the following research. The uses of these unmanned miniaturized/micro vehicles range from aero-modeling to drones for urban control and military applications too. The common characteristic of these vehicles is the need for a light and compact propulsion system. The radio-controlled (RC turbines for modeling are ideally suited for this purpose, guaranteeing the necessary thrust with compactness and lightness. This device is a miniaturized turbojet, and it is generally composed of three basic elements: compressor, combustion chamber and turbine. The main goal of the paper is to evaluate the turbojet performance for considering the possibility of its use as a range extender in a hybrid vehicle. Considering the total volume constraints, it will be important to evaluate the specific fuel consumption. Also from the environmental point of view, the possibility of feeding the device with gas has been considered and, consequently, the needed device modifications performed. The test bench has been realized and assembled at the University Department Laboratory. Several different experimental configurations are reproduced and reported here, to obtain performance maps. The experiments results have been compared to previous tests results, as well as numerical simulations. Therefore, it has been possible to make a comparison between the two different fuels. The results show that this device can be used as a range extender for a hybrid vehicle. Moreover, the various tests have shown that, acting on the control unit, it is possible to feed the device with gas (mixture of propane and butane, obtaining a further benefit from the economic point of view. Surely, an in-depth study of the turbine management logic would produce a further advantage in terms of fuel consumption.

  14. Delamination-Debond Behaviour of Composite T- Joints in Wind Turbine Blades

    International Nuclear Information System (INIS)

    Gulasik, H; Coker, D

    2014-01-01

    Wind turbine industry utilizes composite materials in turbine blade structural designs because of their high strength/stiffness to weight ratio. T-joint is one of the design configurations of composite wind turbine blades. T-joints consist of a skin panel and a stiffener co-bonded or co-cured together with a filler material between them. T-joints are prone to delaminations between skin/stiffener plies and debonds between skin-stiffener-filler interfaces. In this study, delamination/debond behavior of a co-bonded composite T-joint is investigated under 0° pull load condition by 2D finite element method. Using Abaqus® commercial FE software, zero-thickness cohesive elements are used to simulate delamination/debond in ply interfaces and bonding lines. Pulling load at 0° is applied and load-displacement behavior and failure scenario are observed. The failure sequence consists of debonding of filler/stringer interface during one load drop followed by a second drop in which the 2nd filler/stringer debonds, filler/skin debonding and skin delamination leading to total loss of load carrying capacity. This type of failure initiation has been observed widely in the literature. When the debond strength is increased 30%, failure pattern is found to change in addition to increasing the load capacity by 200% before total loss of loading carrying capacity occurs. Failure initiation and propagation behavior, initial and max failure loads and stress fields are affected by the property change. In all cases mixed-mode crack tip loading is observed in the failure initiation and propagation stages. In this paper, the detailed delamination/debonding history in T-joints is predicted with cohesive elements for the first time

  15. Electro-Synthetic Optimization of Host Material Based on MIL-100(Fe

    Directory of Open Access Journals (Sweden)

    Witri Wahyu Lestari

    2016-05-01

    Full Text Available Electro-synthesis of Metal-Organic Frameworks types of MIL-100(Fe (MIL = Material Institute of Lavoisier in ethanol: water (1: 1 with electrolyte TBATFB 0.1 M has been optimized by varying voltage (12, 13, 14 and 15 Volt and temperature (room temperature, 40, 60 and 80 °C. The product showed light brown powder which upon activation becomes dark brown. Optimum condition achieved during use voltage of 15 Volts and at a temperature of 40 °C with 33% yield. The obtained material was characterized by XRD and compared to CCDC 640536 simulated patterns to confirm the phase purity of the product. As comparison hydrothermal and reflux method have been carried out. Characterization by FTIR has also undertaken to ensure the coordination between the metal cation (Fe3+ and the BTC ligand (BTC = 1,3,5-Benzene Tri Carboxylate. Meanwhile pore analysis using SAA confirmed that MIL-100(Fe obtained by electrolysis method has a BET surface area reached till 569.191 m²/g with a total pore volume of 0.4540 cc/g and an average pore diameter reached 16 Å. Based on SEM analysis, morphology material show particle size between 0.4-8.6 μm and has a thermal stability up to 350 °C according thermo-gravimetric analysis. Due to the presence of Lewis acid sites on Fe-trimeric unit, porosity features on MIL-100(Fe and a fairly high thermal stability, this material is potentially used as the host material for the catalyst in the conversion reactions model for green diesel production.

  16. Nanometric MIL-125-NH2 metal–organic framework as a potential nerve agent antidote carrier

    NARCIS (Netherlands)

    Vilela, S.M.F.; Salcedo-Abraira, P; Colinet, I.; Salles, F.; Koning, M.C. de; Joosen, M.J.A.; Serre, C.; Horcajada, P.

    2017-01-01

    The three-dimensional (3D) microporous titanium aminoterephthalate MIL-125-NH_2 (MIL: Material of Institut Lavoisier) was successfully isolated as monodispersed nanoparticles, which are compatible with intravenous administration, by using a simple, safe and low-cost synthetic approach (100 °C/32 h

  17. Robust, Reliable Low Emission Gas Turbine Combustion of High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret Stacy [Univ. of Michigan, Ann Arbor, MI (United States); Im, Hong Geum [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-12-16

    The effects of high hydrogen content fuels were studied using experimental, computational and theoretical approaches to understand the effects of mixture and state conditions on the ignition behavior of the fuels. A rapid compression facility (RCF) was used to measure the ignition delay time of hydrogen and carbon monoxide mixtures. The data were combined with results of previous studies to develop ignition regime criteria. Analytical theory and direct numerical simulation were used to validate and interpret the RCF ignition data. Based on the integrated information the ignition regime criteria were extended to non-dimensional metrics which enable application of the results to practical gas turbine combustion systems.

  18. Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X=–F, –Cl, –Br, –CH{sub 3}, –C{sub 6}H{sub 4}, –F{sub 2}, –(CH{sub 3}){sub 2}) materials

    Energy Technology Data Exchange (ETDEWEB)

    Buragohain, Amlan [Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Assam (India); Couck, Sarah [Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium); Van Der Voort, Pascal [Department of Inorganic and Physical Chemistry, Ghent University, COMOC – Center for Ordered Materials, Organometallics and Catalysis, Krijgslaan 281-S3, 9000 Ghent (Belgium); Denayer, Joeri F.M. [Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium); Biswas, Shyam, E-mail: sbiswas@iitg.ernet.in [Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Assam (India)

    2016-06-15

    Four existing and three new functionalized chromium terephthalates having MIL-101 topology and denoted as Cr-MIL-101-X (existing ones with X=–F, 1-F; –Cl, 2-Cl; –Br, 3-Br; –CH{sub 3}, 4-CH{sub 3}; new ones with X=–C{sub 6}H{sub 4}, 5-C{sub 6}H{sub 4}; –F{sub 2}, 6-F{sub 2}, –(CH{sub 3}){sub 2}, 7-(CH{sub 3}){sub 2}) were synthesized under hydrothermal conditions. All the materials except 5-C{sub 6}H{sub 4} could be prepared by a general synthetic route, in which the mixtures of CrO{sub 3}, H{sub 2}BDC-X (BDC=1,4-benzenedicarboxylate) linkers, conc. HCl and water with a molar ratio of 1:1:3.9:222.2 were reacted at 180 °C for 144 h. Compared to the 144 h of synthesis time, three of the compounds, namely 1-Cl, 2-Br and 5-C{sub 6}H{sub 4}, could be prepared in much shorter reaction times (12–18 h at 180–210 °C). The materials possess high thermal stability up to 270–300 °C in an air atmosphere. The activated compounds exhibit significant porosity (S{sub BET} range: 1273–2135 m{sup 2} g{sup −1}). At 0 °C and 1 bar, the CO{sub 2} adsorption capacities of the compounds fall in the 1.7–2.9 mmol g{sup −1} range. Compounds 1-F and 6-F{sub 2} showed enhanced CO{sub 2} uptake values compared to parent Cr-MIL-101. The benzene adsorption capacities of the compounds lie in the range of 66.2–139.5 molecules per unit cell at 50 °C and p/p{sub 0}=0.35. The increased benzene uptake value of 1-F compared to un-functionalized Cr-MIL-101 and 4-CH{sub 3} suggests that the fluorination has induced more hydrophobicity in Cr-MIL-101 as compared to the methylation. - Graphical abstract: Benzene adsorption by seven functionalized Cr-MIL-101-X metal-organic framework (MOF) materials Display Omitted - Highlights: • Seven functionalized Cr-MIL-101-X materials were synthesized solvothermally. • All Cr-MIL-101-X materials exhibited high thermal stability up to 270–300 °C in air. • All Cr-MIL-101-X compounds displayed considerable porosity towards N{sub 2

  19. Fuel flexible distributed combustion for efficient and clean gas turbine engines

    International Nuclear Information System (INIS)

    Khalil, Ahmed E.E.; Gupta, Ashwani K.

    2013-01-01

    Highlights: • Examined distributed combustion for gas turbines applications using HiTAC. • Gaseous, liquid, conventional and bio-fuels are examined with ultra-low emissions. • Novel design of fuel flexibility without any atomizer for liquid fuel sprays. • Demonstrated fuel flexibility with emissions x and CO, low noise, enhanced stability, higher efficiency and alleviation of combustion instability. Distributed reaction conditions were achieved using swirl for desirable controlled mixing between the injected air, fuel and hot reactive gases from within the combustor prior to mixture ignition. In this paper, distributed combustion is further investigated using a variety of fuels. Gaseous (methane, diluted methane, hydrogen enriched methane and propane) and liquid fuels, including both traditional (kerosene) and alternate fuels (ethanol) that cover a wide range of calorific values are investigated with emphasis on pollutants emission and combustor performance with each fuel. For liquid fuels, no atomization or spray device was used. Performance evaluation with the different fuels was established to outline the flexibility of the combustor using a wide range of fuels of different composition, phase and calorific value with specific focus on ultra-low pollutants emission. Results obtained on pollutants emission and OH * chemiluminescence for the specific fuels at various equivalence ratios are presented. Near distributed combustion conditions with less than 8 PPM of NO emission were demonstrated under novel premixed conditions for the various fuels tested at heat (energy) release intensity (HRI) of 27 MW/m 3 -atm. and a rather high equivalence ratio of 0.6. Higher equivalence ratios lacked favorable distributed combustion conditions. For the same conditions, CO emission varied for each fuel; less than 10 ppm were demonstrated for methane based fuels, while heavier liquid fuels provided less than 40 ppm CO emissions. Lower emissions of NO ( x can be possible by

  20. Structure and properties of Al-MIL-53-ADP, a breathing MOF based on the aliphatic linker molecule adipic acid.

    Science.gov (United States)

    Reinsch, Helge; Pillai, Renjith S; Siegel, Renée; Senker, Jürgen; Lieb, Alexandra; Maurin, Guillaume; Stock, Norbert

    2016-03-14

    The new aluminium based metal-organic framework [Al(OH)(O2C-C4H8-CO2)]·H2O denoted as Al-MIL-53-ADP-lp (lp stands for large pore) was synthesised under solvothermal conditions. This solid is an analogue of the archetypical aluminium terephthalate Al-MIL-53 based on the aliphatic single-chain linker molecule adipic acid (H2ADP, hexanedioic acid). In contrast to its aromatic counterparts, Al-MIL-53-ADP exhibits a structural breathing behaviour solely upon dehydration/rehydration. The crystal structure of the anhydrous compound denoted as Al-MIL-53-ADP-np (np stands for narrow pore) was determined by a combination of forcefield-based computations and Rietveld refinement of the powder X-ray diffraction data while the structure of the hydrated form Al-MIL-53-ADP-lp was derived computationally by a combination of force field based methods and Density Functional Theory calculations. Both structures were further supported by (1)H, (13)C and (27)Al high-resolution NMR MAS 1D data coupled again with simulations. Al-MIL-53-ADP was further characterised by means of vibrational spectroscopy, elemental analysis, thermogravimetry and water vapour sorption.

  1. Medium temperature carbon dioxide gas turbine reactor

    International Nuclear Information System (INIS)

    Kato, Yasuyoshi; Nitawaki, Takeshi; Muto, Yasushi

    2004-01-01

    A carbon dioxide (CO 2 ) gas turbine reactor with a partial pre-cooling cycle attains comparable cycle efficiencies of 45.8% at medium temperature of 650 deg. C and pressure of 7 MPa with a typical helium (He) gas turbine reactor of GT-MHR (47.7%) at high temperature of 850 deg. C. This higher efficiency is ascribed to: reduced compression work around the critical point of CO 2 ; and consideration of variation in CO 2 specific heat at constant pressure, C p , with pressure and temperature into cycle configuration. Lowering temperature to 650 deg. C provides flexibility in choosing materials and eases maintenance through the lower diffusion leak rate of fission products from coated particle fuel by about two orders of magnitude. At medium temperature of 650 deg. C, less expensive corrosion resistant materials such as type 316 stainless steel are applicable and their performance in CO 2 have been proven during extensive operation in AGRs. In the previous study, the CO 2 cycle gas turbomachinery weight was estimated to be about one-fifth compared with He cycles. The proposed medium temperature CO 2 gas turbine reactor is expected to be an alternative solution to current high-temperature He gas turbine reactors

  2. Fuel nozzle assembly for use in turbine engines and methods of assembling same

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward

    2015-02-03

    A fuel nozzle for use with a turbine engine is described herein. The fuel nozzle includes a housing that is coupled to a combustor liner defining a combustion chamber. The housing includes an endwall that at least partially defines the combustion chamber. A plurality of mixing tubes extends through the housing for channeling fuel to the combustion chamber. Each mixing tube of the plurality of mixing tubes includes an inner surface that extends between an inlet portion and an outlet portion. The outlet portion is oriented adjacent the housing endwall. At least one of the plurality of mixing tubes includes a plurality of projections that extend outwardly from the outlet portion. Adjacent projections are spaced a circumferential distance apart such that a groove is defined between each pair of circumferentially-apart projections to facilitate enhanced mixing of fuel in the combustion chamber.

  3. Nanometric MIL-125-NH₂ Metal-Organic Framework as a Potential Nerve Agent Antidote Carrier.

    Science.gov (United States)

    Vilela, Sérgio M F; Salcedo-Abraira, Pablo; Colinet, Isabelle; Salles, Fabrice; de Koning, Martijn C; Joosen, Marloes J A; Serre, Christian; Horcajada, Patricia

    2017-10-12

    The three-dimensional (3D) microporous titanium aminoterephthalate MIL-125-NH₂ (MIL: Material of Institut Lavoisier) was successfully isolated as monodispersed nanoparticles, which are compatible with intravenous administration, by using a simple, safe and low-cost synthetic approach (100 °C/32 h under atmospheric pressure) so that for the first time it could be considered for encapsulation and the release of drugs. The nerve agent antidote 2-[(hydroxyimino)methyl]-1-methyl-pyridinium chloride (2-PAM or pralidoxime) was effectively encapsulated into the pores of MIL-125-NH₂ as a result of the interactions between 2-PAM and the pore walls being mediated by π-stacking and hydrogen bonds, as deduced from infrared spectroscopy and Monte Carlo simulation studies. Finally, colloidal solutions of MIL-125-NH₂ nanoparticles exhibited remarkable stability in different organic media, aqueous solutions at different pH and under relevant physiological conditions over time (24 h). 2-PAM was rapidly released from the pores of MIL-125-NH₂ in vitro.

  4. Optimization of a gas turbine cogeneration plant

    International Nuclear Information System (INIS)

    Wallin, J.; Wessman, M.

    1991-11-01

    This work describes an analytical method of optimizing a cogeneration with a gas turbine as prime mover. The method is based on an analytical function. The function describes the total costs of the heat production, described by the heat load duration curve. The total costs consist of the prime costs and fixed costs of the gas turbine and the other heating plants. The parameters of interest at optimization are the heat efficiency produced by the gas turbine and the utilization time of the gas turbine. With todays prices for electricity, fuel and heating as well as maintenance- personnel and investment costs, extremely good conditions are needed to make the gas turbine profitable. Either a raise of the price for the electricity with about 33% is needed or that the ratio of electricity and fuel increases to approx 2.5. High investment subsidies for the gas turbines could make a gas turbine profitable, even with todays electricity- and fuel prices. Besides being a good help when projecting cogeneration plants with a gas turbine as prime mover, the method gives a possibility to optimize the annual operating time for a certain gas turbine when changing the operating conditions. 6 refs

  5. Thermodynamic Modeling of a Solid Oxide Fuel Cell to Couple with an Existing Gas Turbine Engine Model

    Science.gov (United States)

    Brinson, Thomas E.; Kopasakis, George

    2004-01-01

    The Controls and Dynamics Technology Branch at NASA Glenn Research Center are interested in combining a solid oxide fuel cell (SOFC) to operate in conjunction with a gas turbine engine. A detailed engine model currently exists in the Matlab/Simulink environment. The idea is to incorporate a SOFC model within the turbine engine simulation and observe the hybrid system's performance. The fuel cell will be heated to its appropriate operating condition by the engine s combustor. Once the fuel cell is operating at its steady-state temperature, the gas burner will back down slowly until the engine is fully operating on the hot gases exhausted from the SOFC. The SOFC code is based on a steady-state model developed by The U.S. Department of Energy (DOE). In its current form, the DOE SOFC model exists in Microsoft Excel and uses Visual Basics to create an I-V (current-voltage) profile. For the project's application, the main issue with this model is that the gas path flow and fuel flow temperatures are used as input parameters instead of outputs. The objective is to create a SOFC model based on the DOE model that inputs the fuel cells flow rates and outputs temperature of the flow streams; therefore, creating a temperature profile as a function of fuel flow rate. This will be done by applying the First Law of Thermodynamics for a flow system to the fuel cell. Validation of this model will be done in two procedures. First, for a given flow rate the exit stream temperature will be calculated and compared to DOE SOFC temperature as a point comparison. Next, an I-V curve and temperature curve will be generated where the I-V curve will be compared with the DOE SOFC I-V curve. Matching I-V curves will suggest validation of the temperature curve because voltage is a function of temperature. Once the temperature profile is created and validated, the model will then be placed into the turbine engine simulation for system analysis.

  6. Impact of alternative fuels on emissions characteristics of a gas turbine engine - part 2: volatile and semivolatile particulate matter emissions.

    Science.gov (United States)

    Williams, Paul I; Allan, James D; Lobo, Prem; Coe, Hugh; Christie, Simon; Wilson, Christopher; Hagen, Donald; Whitefield, Philip; Raper, David; Rye, Lucas

    2012-10-02

    The work characterizes the changes in volatile and semivolatile PM emissions from a gas turbine engine resulting from burning alternative fuels, specifically gas-to-liquid (GTL), coal-to-liquid (CTL), a blend of Jet A-1 and GTL, biodiesel, and diesel, to the standard Jet A-1. The data presented here, compares the mass spectral fingerprints of the different fuels as measured by the Aerodyne high resolution time-of-flight aerosol mass spectrometer. There were three sample points, two at the exhaust exit plane with dilution added at different locations and another probe located 10 m downstream. For emissions measured at the downstream probe when the engine was operating at high power, all fuels produced chemically similar organic PM, dominated by C(x)H(y) fragments, suggesting the presence of long chain alkanes. The second largest contribution came from C(x)H(y)O(z) fragments, possibly from carbonyls or alcohols. For the nondiesel fuels, the highest loadings of organic PM were from the downstream probe at high power. Conversely, the diesel based fuels produced more organic material at low power from one of the exit plane probes. Differences in the composition of the PM for certain fuels were observed as the engine power decreased to idle and the measurements were made closer to the exit plane.

  7. The results of pre-design studies on the development of a new design of gas turbine compressor package of GPA-C-16 type

    Science.gov (United States)

    Smirnov, A. V.; Chobenko, V. M.; Shcherbakov, O. M.; Ushakov, S. M.; Parafiynyk, V. P.; Sereda, R. M.

    2017-08-01

    The article summarizes the results of analysis of data concerning the operation of turbocompressor packages at compressor stations for the natural gas transmission system of Ukraine. The basic requirements for gas turbine compressor packages used for modernization and reconstruction of compressor stations are considered. Using a 16 MW gas turbine package GPA-C-16S/76-1,44M1 as an example, the results of pre-design studies and some technical solutions that improve the energy efficiency of gas turbine compressor packages and their reliability, as well as its environmental performance are given. In particular, the article deals with the matching of performance characteristics of a centrifugal compressor (hereinafter compressor) and gas turbine drive to reduce fuel gas consumption; as well as application of energy efficient technologies, in particular, exhaust gas heat recovery units and gas-oil heat exchangers in turbocompressor packages oil system; as well as reducing emissions of carbon monoxide into the atmosphere using a catalytic exhaust system. Described technical solutions can be used for development of other types of gas turbine compressor packages.

  8. Steam turbine of WWER-1000 unit

    International Nuclear Information System (INIS)

    Drahy, J.

    1986-01-01

    The manufacture was started by Skoda of a saturated steam, 1,000 MW, 3,000 rpm turbine designed for the Temelin nuclear power plant. The turbine provides steam for heating water for district heating, this either with an output of 893 MW for a three-stage water heating at 150/60 degC, or of 570 MW for a two-stage water heating at 120/60 degC. The turbine features one high-pressure and three identical low-pressure stages. The pressure gradient between the high-pressure and the low-pressure parts was optimized with respect to the thermal efficiency of the cycle and to the thermodynamic efficiency of the low-pressure part. A value of 0.79 MPa was selected corresponding to the maximum through-flow of steam entering the turbine. This makes 5,495 t/h, the admission steam parameters are 273.3 degC and 5.8 MPa. The feed water temperature is 220.9 degC. 300 cold starts, 1,000 starts after shutdowns for 55 to 88 hours and 600 starts after shutdown for 8 hours are envisaged for the entire turbine service life. (Z.M.). 5 figs., 1 tab., 6 refs

  9. Aquantis C-Plane Ocean Current Turbine Project

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Alex [Dehlsen Associates, LLC, Santa Barbara, CA (United States)

    2015-09-16

    The Aquantis 2.5 MW Ocean Current Generation Device technology developed by Dehlsen Associates, LLC (DA) is a derivation of wind power generating technology (a means of harnessing a slow moving fluid) adapted to the ocean environment. The Aquantis Project provides an opportunity for accelerated technological development and early commercialization, since it involves the joining of two mature disciplines: ocean engineering and wind turbine design. The Aquantis Current Plane (C-Plane) technology is an ocean current turbine designed to extract kinetic energy from a current flow. The technology is capable of achieving competitively priced, continuous, base-load, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  10. Energy analysis of a combined solid oxide fuel cell with a steam turbine power plant for marine applications

    Science.gov (United States)

    Welaya, Yousri M. A.; Mosleh, M.; Ammar, Nader R.

    2013-12-01

    Strong restrictions on emissions from marine power plants (particularly SO x , NO x ) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and steam turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. The analyzed variant of the combined cycle includes a SOFC operated with natural gas fuel and a steam turbine with a single-pressure waste heat boiler. The calculations were performed for two types of tubular and planar SOFCs, each with an output power of 18 MW. This paper includes a detailed energy analysis of the combined system. Mass and energy balances are performed not only for the whole plant but also for each component in order to evaluate the thermal efficiency of the combined cycle. In addition, the effects of using natural gas as a fuel on the fuel cell voltage and performance are investigated. It has been found that a high overall efficiency approaching 60% may be achieved with an optimum configuration using the SOFC system. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

  11. OECD/NRC BWR Turbine Trip Benchmark: Simulation by POLCA-T Code

    International Nuclear Information System (INIS)

    Panayotov, Dobromir

    2004-01-01

    Westinghouse transient code POLCA-T brings together the system thermal-hydraulics plant models and three-dimensional (3-D) neutron kinetics core models. Participation in the OECD/NRC BWR Turbine Trip (TT) Benchmark is a part of our efforts toward the code's validation. The paper describes the objectives for TT analyses and gives a brief overview of the developed plant system input deck and 3-D core model.The results of exercise 1, system model without netronics, are presented. Sensitivity studies performed cover the maximal time step, turbine stop valve position and mass flow, feedwater temperature, and steam bypass mass flow. Results of exercise 2, 3-D core neutronic and thermal-hydraulic model with boundary conditions, are also presented. Sensitivity studies include the core inlet temperature, cladding properties, and direct heating to core coolant and bypass.The entire plant model was validated in the framework of the benchmark's phase 3. Sensitivity studies include the effect of SCRAM initialization and carry-under. The results obtained - transient fission power and its initial axial distribution and steam dome, core exit, lower and upper plenum, main steam line, and turbine inlet pressures - showed good agreement with measured data. Thus, the POLCA-T code capabilities for correct simulation of pressurizing transients with very fast power were proved

  12. Development of superalloys for 1700 C ultra-efficient gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Hiroshi [National Institute for Materials Science, Tsukuba, Ibaraki (Japan). High Temperature Materials Center

    2010-07-01

    Mitigation of global warming is one of the most outstanding issues for the humankind. The Japanese government announced that it will reduce its greenhouse gas emissions by 25% from the 1990 level by 2020 as a medium-term goal. One of the promising approaches to achieving this is to improve the efficiency of thermal power plants emitting one-third of total CO{sub 2} gas in Japan. The key to improving the thermal efficiency is high temperature materials with excellent temperature capabilities allowing higher inlet gas temperatures. In this context, new single crystal superalloys for turbine blades and vanes, new coatings and turbine disk superalloys have been successfully developed for various gas turbine applications, typically 1700 C ultra-efficient gas turbines for next generation combine cycle power plants. (orig.)

  13. US Army Qualification of Alternative Fuels Specified in MIL-DTL-83133H for Ground Systems Use. Final Qualification Report: JP-8 Containing Synthetic Paraffinic Kerosene Manufactured Via Fischer-Tropsch Synthesis or Hydroprocessed Esters and Fatty Acids

    Science.gov (United States)

    2013-09-01

    environmental standards, and the Department of Energy (DOE) launched several initiatives to develop a new generation of ‘ultra-clean’ transportation fuels...Expanded Mobility Tactical Truck) – A4 HETS (Heavy Equipment Transporter System) – M1070A1 PLS (Palletized Load System) – A1 DDC 8V92TA 12.0 L...Modulus of Compressibility of Diesel/ Biodiesel /HVO Blends. Energy Fuels. 2011, 26, 1336-1343. 578789 Fuels. Coordinating Research Council, Inc. 2009

  14. Combined catalysts for the combustion of fuel in gas turbines

    Science.gov (United States)

    Anoshkina, Elvira V.; Laster, Walter R.

    2012-11-13

    A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.

  15. Accelerated Degradation for Hardware in the Loop Simulation of Fuel Cell-Gas Turbine Hybrid System

    DEFF Research Database (Denmark)

    Abreu-Sepulveda, Maria A.; Harun, Nor Farida; Hackett, Gregory

    2015-01-01

    The U.S. Department of Energy (DOE)-National Energy Technology Laboratory (NETL) in Morgantown, WV has developed the hybrid performance (HyPer) project in which a solid oxide fuel cell (SOFC) one-dimensional (1D), real-time operating model is coupled to a gas turbine hardware system by utilizing...

  16. Process integration and optimization of a solid oxide fuel cell – Gas turbine hybrid cycle fueled with hydrothermally gasified waste biomass

    International Nuclear Information System (INIS)

    Facchinetti, Emanuele; Gassner, Martin; D’Amelio, Matilde; Marechal, François; Favrat, Daniel

    2012-01-01

    Due to its suitability for using wet biomass, hydrothermal gasification is a promising process for the valorization of otherwise unused waste biomass to synthesis gas and biofuels. Solid oxide fuel cell (SOFC) based hybrid cycles are considered as the best candidate for a more efficient and clean conversion of (bio) fuels. A significant potential for the integration of the two technologies is expected since hydrothermal gasification requires heat at 673–773 K, whereas SOFC is characterized by heat excess at high temperature due to the limited electrochemical fuel conversion. This work presents a systematic process integration and optimization of a SOFC-gas turbine (GT) hybrid cycle fueled with hydrothermally gasified waste biomass. Several design options are systematically developed and compared through a thermodynamic optimization approach based on First Law and exergy analysis. The work demonstrates the considerable potential of the system that allows for converting wet waste biomass into electricity at a First Law efficiency of up to 63%, while simultaneously enabling the separation of biogenic carbon dioxide for further use or sequestration. -- Highlights: ► Hydrothermal gasification is a promising process for the valorization of waste wet biomass. ► Solid Oxide Fuel Cell – Gas Turbine hybrid cycle emerges as the best candidates for conversion of biofuels. ► A systematic process integration and optimization of a SOFC-GT hybrid cycle fuelled with hydrothermally gasified biomass is presented. ► The system may convert wet waste biomass to electricity at a First Law efficiency of 63% while separating the biogenic carbon dioxide. ► The process integration enables to improve the First Law efficiency of around 4% with respect to a non-integrated system.

  17. MIL SPEC 28 Square Foot Fire Burnback and Extinguishment Testing of FireAde, FlameOut II and Hawk ALLFIRE

    National Research Council Canada - National Science Library

    Barrett, Kimberly D; Kalberer, Jennifer L

    2008-01-01

    ... for hydrocarbon fuel fires. This report documents the evaluation performed on the fire extinguishing agents FireAde 2000 AFFF LP, FlameOut II and Hawk ALLFORE in accordance with the parameters set forth in Military Specification ( MIL SPEC...

  18. Performance Comparison on Repowering of a Steam Power Plant with Gas Turbines and Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2016-01-01

    Repowering is a process for transforming an old power plant for greater capacity and/or higher efficiency. As a consequence, the repowered plant is characterized by higher power output and less specific CO2 emissions. Usually, repowering is performed by adding one or more gas turbines into an exi......Repowering is a process for transforming an old power plant for greater capacity and/or higher efficiency. As a consequence, the repowered plant is characterized by higher power output and less specific CO2 emissions. Usually, repowering is performed by adding one or more gas turbines...... into an existing steam cycle which was built decades ago. Thus, traditional repowering results in combined cycles (CC). High temperature fuel cells (such as solid oxide fuel cell (SOFC)) could also be used as a topping cycle, achieving even higher global plant efficiency and even lower specific CO2 emissions....... Decreasing the operating temperature in a SOFC allows the use of less complex materials and construction methods, consequently reducing plant and the electricity costs. A lower working temperature makes it also suitable for topping an existing steam cycle, instead of gas turbines. This is also the target...

  19. Analysis and performance assessment of a new solar-based multigeneration system integrated with ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle

    Science.gov (United States)

    Siddiqui, Osamah; Dincer, Ibrahim

    2017-12-01

    In the present study, a new solar-based multigeneration system integrated with an ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle to produce electricity, hydrogen, cooling and hot water is developed for analysis and performance assessment. In this regard, thermodynamic analyses and modeling through both energy and exergy approaches are employed to assess and evaluate the overall system performance. Various parametric studies are conducted to study the effects of varying system parameters and operating conditions on the energy and exergy efficiencies. The results of this study show that the overall multigeneration system energy efficiency is obtained as 39.1% while the overall system exergy efficiency is calculated as 38.7%, respectively. The performance of this multigeneration system results in an increase of 19.3% in energy efficiency as compared to single generation system. Furthermore, the exergy efficiency of the multigeneration system is 17.8% higher than the single generation system. Moreover, both energy and exergy efficiencies of the solid oxide fuel cell-gas turbine combined cycle are determined as 68.5% and 55.9% respectively.

  20. Petits mils

    International Development Research Centre (IDRC) Digital Library (Canada)

    cinq fois moins d'eau que le riz ? Note d'analyse ... dont une teneur élevée en micronutriments et en fibres alimentaires et un indice glycémique faible. ... Malgré les qualités nutritionnelles supérieures et la résilience au climat des petits mils, ...

  1. Experimental evaluation of sorbents for sulfur control in a coal-fueled gas turbine slagging combustor

    International Nuclear Information System (INIS)

    Cowell, L.H.; Wen, C.S.; LeCren, R.T.

    1992-01-01

    This paper reports on a slagging combustor that has been used to evaluate three calcium-based sorbents for sulfur capture efficiency in order to assess their applicability for use in a oil-fueled gas turbine. Testing is competed in a bench-scale combustor with one-tenth the heat input needed for the full-scale gas turbine. The bench-scale rig is a two-stage combustor featuring a fuel-rich primary zone an a fuel-lean secondary zone. The combustor is operated at 6.5 bars with inlet air preheated to 600 K. Gas temperatures of 1840 K are generated in the primary zone and 1280 K in the secondary zone. Sorbents are either fed into the secondary zone or mixed with the coal-water mixture and fed into the primary zone. Dry powered sorbents are fed into the secondary zone by an auger into one of six secondary air inlet ports. The three sorbents tested in the secondary zone include dolomite, pressure-hydrated dolomitic lime, and hydrated lime. Sorbents have been tested while burning coal-water mixtures with coal sulfur loadings of 0.56 to 3.13 weight percent sulfur. Sorbents are injected into the secondary zone at varying flow rates such that the calcium/sulfur ratio varies from 0.5 to 10.0

  2. Feldspathic Meteorites MIL 090034 and 090070: Late Additions to the Lunar Crust

    Science.gov (United States)

    Nyquist, L. E.; Shirai, N.; Yamaguchi, A.; Shih, C.-Y.; Park, J.; Ebihara, M.

    2016-01-01

    Our studies of the Miller Range lunar meteorites MIL 090034, 090036, and 090070 show them to be a diverse suite of rocks from the lunar highlands hereafter referred to as MIL 34, MIL 36, and MIL 70, resp. MIL34 and MIL70, the focus of this work, are crystalline melt breccias. Plagioclase compositions in both peak sharply around An96-97. Mg numbers of olivine vary from 58-65 with a few higher values. MIL36 is a regolith breccia. MIL 34 and MIL 70 have some of the highest Al2O3 abundances of lunar highland meteorites, indicating that they have among the largest modal abundances of plagioclase for lunar meteorites. They have lower Sc and Cr abundances than nearly all lunar highland meteorites except Dho 081, Dho 489 and Dho 733. MIL34 and MIL70 also have similar cosmic ray exposure (CRE) ages of approximately 1-2 Ma indicating they are launch paired. (MIL36 has a larger CRE age approximately greater than 70 Ma). Park et al. found a variation in Ar-Ar ages among subsamples of MIL 34 and MIL70, but preferred ages of 3500+/-110 Ma for the "Dark" phase of MIL 34 anorthite and 3520+/-30 Ma for the "Light" phase of MIL70. Bouvier et al. reported a Pb-Pb age of 3894+/-39 Ma for a feldspathic clast of MIL 34 and a similar age for a melt lithology. Here we reexamine the Rb-Sr and Sm-Nd isotopic data, which show complexities qualitatively consistent with those of the Ar-Ar and Pb-Pb data. The Sm-Nd data in particular suggest that the feldspathic compositions of MIL 34 and MIL 70 formed during initial lunar geochemical differentiation, and REE modeling suggests a relatively late-stage formation.

  3. C60 fullerenes from combustion of common fuels

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Andrea J., E-mail: ajtiwari@vt.edu [Department of Civil & Environmental Engineering, Virginia Tech, 200 Patton Hall, 750 Drillfield Drive, Blacksburg, VA 24061 (United States); Ashraf-Khorassani, Mehdi, E-mail: mashraf@vt.edu [Department of Chemistry, Virginia Tech, 480 Davidson Hall, 900 West Campus Drive, Virginia Tech, Blacksburg, VA 24061 (United States); Marr, Linsey C., E-mail: lmarr@vt.edu [Department of Civil & Environmental Engineering, Virginia Tech, 200 Patton Hall, 750 Drillfield Drive, Blacksburg, VA 24061 (United States)

    2016-03-15

    Releases of C{sub 60} fullerenes to the environment will increase with the growth of nanotechnology. Assessing the potential risks of manufactured C{sub 60} requires an understanding of how its prevalence in the environment compares to that of natural and incidental C{sub 60}. This work describes the characterization of incidental C{sub 60} present in aerosols generated by combustion of five common fuels: coal, firewood, diesel, gasoline, and propane. C{sub 60} was found in exhaust generated by all five fuels; the highest concentrations in terms of mass of C{sub 60} per mass of particulate matter were associated with diesel and coal. Individual aerosols from these combustion processes were examined by transmission electron microscopy. No relationship was found between C{sub 60} content and either the separation of graphitic layers (lamellae) within the particles, nor the curvature of those lamellae. Estimated global emissions of incidental C{sub 60} to the atmosphere from coal and diesel combustion range from 1.6 to 6.3 t yr{sup −1}, depending upon combustion conditions. These emissions may be similar in magnitude to the total amount of manufactured C{sub 60} produced on an annual basis. Consequent loading of incidental C{sub 60} to the environment may be several orders of magnitude higher than has previously been modeled for manufactured C{sub 60}. - Highlights: • Exhaust of common fuels (coal, diesel, etc.) analyzed via chromatography for C{sub 60.} • All five fuels tested produced C{sub 60} in aerosols in mass fractions up to several ppm. • Emissions of incidental C{sub 60} may be comparable to the total amount manufactured.

  4. Experimental Investigation of A Twin Shaft Micro Gas-Turbine System

    International Nuclear Information System (INIS)

    Sadig, Hussain; Sulaiman, Shaharin Anwar; Ibrahim, Idris

    2013-01-01

    Due to the fast depletion of fossil fuels and its negative impact on the environment, more attention has been concentrated to find new resources, policies and technologies, which meet the global needs with regard to fuel sustainability and emissions. In this paper, as a step to study the effect of burning low calorific value fuels on gas-turbine performance; a 50 kW slightly pressurized non-premixed tubular combustor along with turbocharger based twin shaft micro gas-turbine was designed and fabricated. A series of tests were conducted to characterize the system using LPG fuel. The tests include the analysis of the temperature profile, pressure and combustor efficiency as well as air fuel ratio and speed of the second turbine. The tests showed a stable operation with acceptable efficiency, air fuel ratio, and temperature gradient for the single and twin shaft turbines.

  5. Predicting fuel performance for SP-100 conditions

    International Nuclear Information System (INIS)

    Baars, R.E.

    1985-01-01

    This paper reports on methods for analyzing fuel designs proposed for the thermionic and thermoelectric concepts for SP-100 application. The proposed fuel design for the thermionic concept consisted of fully-enriched oxide fuel clad in chemical vapor deposition (CVD) tungsten, which also served as the emitter for the thermionic fuel element (TFE). The fuel density was 95% of theoretical with the linear heat rate flattened radially by removing fuel from the center of the fuel pellet. The fuel inner diameter varied from approx.0.45 in. at the core center to zero at the edge of the core. The as-fabricated gap between fuel and emitter was 10 mils radial. The emitter thickness was 80 mils, and the outer diameter was 1.099 in. The LIFE-4 code was used for evaluation of this concept after extensive review of the code and development of a procedure that corrects certain deficiencies noted in analysis of several tests

  6. Metal organic framework MIL-101(Cr) for dehydration reactions

    Indian Academy of Sciences (India)

    Porous chromium terephthalate MIL-101 (Cr-MIL-101) has been prepared by direct method under hydrothermal conditions and characterized using X-ray diffraction, N2 sorption, TGA and FT-IR. The nitrogen adsorption-desorption isotherm shows that the Cr-MIL-101 possesses BET specific surface area of 2563 m2/g.

  7. The metal-organic framework MIL-53(Al) constructed from multiple metal sources: alumina, aluminum hydroxide, and boehmite.

    Science.gov (United States)

    Li, Zehua; Wu, Yi-nan; Li, Jie; Zhang, Yiming; Zou, Xin; Li, Fengting

    2015-04-27

    Three aluminum compounds, namely alumina, aluminum hydroxide, and boehmite, are probed as the metal sources for the hydrothermal synthesis of a typical metal-organic framework MIL-53(Al). The process exhibits enhanced synthetic efficiency without the generation of strongly acidic byproducts. The time-course monitoring of conversion from different aluminum sources into MIL-53(Al) is achieved by multiple characterization that reveals a similar but differentiated crystallinity, porosity, and morphology relative to typical MIL-53(Al) prepared from water-soluble aluminum salts. Moreover, the prepared MIL-53(Al) constructed with the three insoluble aluminum sources exhibit an improved thermal stability of up to nearly 600 °C and enhanced yields. Alumina and boehmite are more preferable than aluminum hydroxide in terms of product porosity, yield, and reaction time. The adsorption performances of a typical environmental endocrine disruptor, dimethyl phthalate, on the prepared MIL-53(Al) samples are also investigated. The improved structural stability of MIL-53(Al) prepared from these alternative aluminum sources enables double-enhanced adsorption performance (up to 206 mg g(-1)) relative to the conventionally obtained MIL-53(Al). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nanometric MIL-125-NH2 Metal–Organic Framework as a Potential Nerve Agent Antidote Carrier

    Directory of Open Access Journals (Sweden)

    Sérgio M. F. Vilela

    2017-10-01

    Full Text Available The three-dimensional (3D microporous titanium aminoterephthalate MIL-125-NH2 (MIL: Material of Institut Lavoisier was successfully isolated as monodispersed nanoparticles, which are compatible with intravenous administration, by using a simple, safe and low-cost synthetic approach (100 °C/32 h under atmospheric pressure so that for the first time it could be considered for encapsulation and the release of drugs. The nerve agent antidote 2-[(hydroxyiminomethyl]-1-methyl-pyridinium chloride (2-PAM or pralidoxime was effectively encapsulated into the pores of MIL-125-NH2 as a result of the interactions between 2-PAM and the pore walls being mediated by π-stacking and hydrogen bonds, as deduced from infrared spectroscopy and Monte Carlo simulation studies. Finally, colloidal solutions of MIL-125-NH2 nanoparticles exhibited remarkable stability in different organic media, aqueous solutions at different pH and under relevant physiological conditions over time (24 h. 2-PAM was rapidly released from the pores of MIL-125-NH2 in vitro.

  9. Three-dimensional analysis of the Pratt and Whitney alternate design SSME fuel turbine

    Science.gov (United States)

    Kirtley, K. R.; Beach, T. A.; Adamczyk, J. J.

    1991-01-01

    The three dimensional viscous time-mean flow in the Pratt and Whitney alternate design space shuttle main engine fuel turbine is simulated using the average passage Navier-Stokes equations. The migration of secondary flows generated by upstream blade rows and their effect on the performance of downstream blade rows is studied. The present simulation confirms that the flow in this two stage turbine is highly three dimensional and dominated by the tip leakage flow. The tip leakage vortex generated by the first blade persists through the second blade and adversely affects its performance. The greatest mixing of the inlet total temperature distortion occurs in the second vane and is due to the large leakage vortex generated by the upstream rotor. It is assumed that the predominant spanwise mixing mechanism in this low aspect ratio turbine is the radial transport due to the deterministically unsteady vortical flow generated by upstream blade rows. A by-product of the analysis is accurate pressure and heat loads for all blade rows under the influence of neighboring blade rows. These aero loads are useful for advanced structural analysis of the vanes and blades.

  10. The AGT 101 advanced automotive gas turbine

    Science.gov (United States)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    A development program is described whose goal is the accumulation of the technology base needed by the U.S. automotive industry for the production of automotive gas turbine powertrains. Such gas turbine designs must exhibit reduced fuel consumption, a multi-fuel capability, and low exhaust emissions. The AGT101 powertrain described is a 74.6 kW, regenerated single-shaft gas turbine, operating at a maximum inlet temperature of 1644 K and coupled to a split differential gearbox and automatic overdrive transmission. The engine's single stage centrifugal compressor and single stage radial inflow turbine are mounted on a common shaft, and will operate at a maximum rotor speed of 100,000 rpm. All high temperature components, including the turbine rotor, are ceramic.

  11. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    Science.gov (United States)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  12. Comparative tests of bench equipment for fuel control system testing of gas-turbine engine

    Science.gov (United States)

    Shendaleva, E. V.

    2018-04-01

    The relevance of interlaboratory comparative researches is confirmed by attention of world metrological community to this field of activity. Use of the interlaboratory comparative research methodology not only for single gages collation, but also for bench equipment complexes, such as modeling stands for fuel control system testing of gas-turbine engine, is offered. In this case a comparative measure of different bench equipment will be the control fuel pump. Ensuring traceability of measuring result received at test benches of various air enterprises, development and introduction of national standards to practice of bench tests and, eventually, improvement of quality and safety of a aircraft equipment is result of this approach.

  13. Staged combustion with piston engine and turbine engine supercharger

    Science.gov (United States)

    Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O'Brien, Kevin C [San Ramon, CA

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  14. Fuel quality processing study, volume 1

    Science.gov (United States)

    Ohara, J. B.; Bela, A.; Jentz, N. E.; Syverson, H. T.; Klumpe, H. W.; Kessler, R. E.; Kotzot, H. T.; Loran, B. L.

    1981-01-01

    A fuel quality processing study to provide a data base for an intelligent tradeoff between advanced turbine technology and liquid fuel quality, and also, to guide the development of specifications of future synthetic fuels anticipated for use in the time period 1985 to 2000 is given. Four technical performance tests are discussed: on-site pretreating, existing refineries to upgrade fuels, new refineries to upgrade fuels, and data evaluation. The base case refinery is a modern Midwest refinery processing 200,000 BPD of a 60/40 domestic/import petroleum crude mix. The synthetic crudes used for upgrading to marketable products and turbine fuel are shale oil and coal liquids. Of these syncrudes, 50,000 BPD are processed in the existing petroleum refinery, requiring additional process units and reducing petroleum feed, and in a new refinery designed for processing each syncrude to produce gasoline, distillate fuels, resid fuels, and turbine fuel, JPGs and coke. An extensive collection of synfuel properties and upgrading data was prepared for the application of a linear program model to investigate the most economical production slate meeting petroleum product specifications and turbine fuels of various quality grades. Technical and economic projections were developed for 36 scenarios, based on 4 different crude feeds to either modified existing or new refineries operated in 2 different modes to produce 7 differing grades of turbine fuels. A required product selling price of turbine fuel for each processing route was calculated. Procedures and projected economics were developed for on-site treatment of turbine fuel to meet limitations of impurities and emission of pollutants.

  15. Feasibility study on rehabilitation of KESC gas turbine power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    As to power generation facilities of Karachi Electric Power Supply Corporation in Karachi (KESC), the Islamic Republic of Pakistan, feasibility study on the rehabilitation was conducted in consideration of the CDM (clean development mechanism) project. In Pakistan, 13 gas turbine power plants started operation at the same time as the time when the power plant studied this time started operation, and therefore it is predicted that they also have the same troubles caused by the aged deterioration. As the rehabilitation project, two cases were proposed: In Case 1, gas turbine and generator are both exchanged, and in Case 2, gas turbine is only exchanged, and generator is reused after repair. The work term is approximately 9 months in both cases. The initial investment is $84 million in Case 1 and $78 million in Case 2. The energy conservation effect per cost is 107 t/y/million yen and 101 t/y/million yen, respectively. Further, the amount of greenhouse effect gas reduction per cost is 330 t-CO2/y/million yen and 313 t-CO2/y/million yen, respectively. The effect of profits can be obtained after the depreciation period since the fuel price is reduced approximately 0.5%. (NEDO)

  16. Thermodynamic Performance Study of Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid Systems

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud

    2010-01-01

    A system level modelling study of three combined heat and power systems based on biomass gasification is presented. Product gas is converted in a micro gas turbine (MGT) in the first system, in a solid oxide fuel cell (SOFC) in the second system and in a combined SOFC–MGT arrangement in the third...

  17. Dynamic life-time assessing method for the N1C700 turbine's rotor

    International Nuclear Information System (INIS)

    Popescu-Vifor, B.

    1993-01-01

    The N1C700 turbine's rotor subject to different sorts of stress variations was investigated through dynamic life-time assessing method. To obtain the temperature fields at different steam parameters inside the turbine components, a computer code named DENOPAR was developed

  18. Performance analysis of hybrid solid oxide fuel cell and gas turbine cycle: Application of alternative fuels

    International Nuclear Information System (INIS)

    Zabihian, Farshid; Fung, Alan S.

    2013-01-01

    Highlights: • Variation of the stream properties in the syngas-fueled hybrid SOFC–GT cycle. • Detailed analysis of the operation of the methane-fueled SOFC–GT cycle. • Investigate effects of inlet fuel type and composition on performance of cycle. • Comparison of system operation when operated with and without anode recirculation. - Abstract: In this paper, the hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) model was applied to investigate the effects of the inlet fuel type and composition on the performance of the cycle. This type of analysis is vital for the real world utilization of manufactured fuels in the hybrid SOFC–GT system due to the fact that these fuel compositions depends on the type of material that is processed, the fuel production process, and process control parameters. In the first part of this paper, it is shown that the results of a limited number of studies on the utilization of non-conventional fuels have been published in the open literature. However, further studies are required in this area to investigate all aspects of the issue for different configurations and assumptions. Then, the results of the simulation of the syngas-fueled hybrid SOFC–GT cycle are employed to explain the variation of the stream properties throughout the cycle. This analysis can be very helpful in understanding cycle internal working and can provide some interesting insights to the system operation. Then, the detailed information of the operation of the methane-fueled SOFC–GT cycle is presented. For both syngas- and methane-fueled cycles, the operating conditions of the equipment are presented and compared. Moreover, the comparison of the characteristics of the system when it is operated with two different schemes to provide the required steam for the cycle, with anode recirculation and with an external source of water, provides some interesting insights to the system operation. For instance, it was shown that although the physical

  19. Conceptual designs parameters for MURR LEU U-Mo fuel conversion design demonstration experiment. Revision 1

    International Nuclear Information System (INIS)

    Stillman, J.; Feldman, E.; Stevens, J.

    2013-01-01

    The design parameters for the conceptual design of a fuel assembly containing U-10Mo fuel foils with low-enriched uranium (LEU) for the University of Missouri Research Reactor (MURR) are described. The Design Demonstration Experiment (MURR-DDE) will use a prototypic MURR-LEU element manufactured according to the parameters specified here. Also provided are calculated performance parameters for the LEU element in the MURR, and a set of goals for the MURR-DDE related to those parameters. The conversion objectives are to develop a fuel element design that will ensure safe reactor operations, as well as maintaining existing performance. The element was designed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL) and the MURR Facility. A set of manufacturing assumptions were provided by the Fuel Development (FD) and Fuel Fabrication Capability (FFC) pillars of the GTRI Reduced Enrichment for Research and Test Reactors (RERTR) program to reliably manufacture the fuel plates. The proposed LEU fuel element has an overall design and exterior dimensions that are similar to those of the current highly-enriched uranium (HEU) fuel elements. There are 23 fuel plates in the LEU design. The overall thickness of each plate is 44 mil, except for the exterior plate that is furthest from the center flux trap (plate 23), which is 49 mil thick. The proposed LEU fuel plates have U-10Mo monolithic fuel foils with a 235U enrichment of 19.75% varying from 9 mil to 20 mil thick, and clad with Al-6061 aluminum. A thin layer of zirconium exists between the fuel foils and the aluminum as a diffusion barrier. The thinnest nominal combined zirconium and aluminum clad thickness on each side of the fuel plates is 12 mil. The LEU U-10Mo monolithic fuel is not yet qualified as driver fuel in research reactors, but is under intense development under the auspices of the GTRI FD and FFC programs.

  20. Study on gas turbines. Leading role of high efficiency power generation; Gas turbine kenkyu. Kokoritsu hatsuden no shuyaku wo nerau

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-31

    This review summarizes research works of Central Research Institute of Electric Power Industry on gas turbines playing a leading role of high efficiency power generation. This article describes historical changes of gas turbine technology, changes and current status from the viewpoint of electric power industry, and development trend in various makers. Increase in the flow-in gas temperature, low NOx combustion technology, use of various fuels, and durability evaluation and improvement technology for high temperature parts are described as technological problems and development trends. The increase in temperature is indispensable for the improvement of efficiency. Materials having heat resistance, anticorrosion and strength are required. Accordingly, Ni-based single crystal super alloy has been developed. Developments of ceramic gas turbine and catalytic combustor are also described. The coal gasification combined power generation is expected as a new power generation technology having availability of various coals, high efficiency, and excellent environmental protection. Development of 1500 {degree}C class combustor for turbines has been promoted. Evaluation and improvement of durability of high temperature parts are also described. For the new utilization technology of gas turbines, repowering and compressed air storage gas turbine power generation technology are introduced. 92 figs., 14 tabs.

  1. Gas turbine premixing systems

    Science.gov (United States)

    Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

    2013-12-31

    Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

  2. DEVELOPMENT OF A WELDING PROCEDURE FOR MIL A 46100 ARMOR STEEL JOINTS USING GAS METAL ARC WELDING

    Directory of Open Access Journals (Sweden)

    DAVID MAZUERA ROBLEDO

    2011-01-01

    Full Text Available Se desarrolló un procedimiento de soldadura (WPS para unir láminas de acero para blindaje bajo especificación MIL A46100 usando el proceso GMAW, el cual fue calificado mediante ensayos mecánicos y no destructivos (NDT de acuerdo con los requerimientos de códigos militares. Los resultados obtenidos fueron comparados con procedimientos de soldadura para este material realizados con el proceso SMAW. Los resultados obtenidos mostraron que el WPS diseñado es una opción viable para la soldadura de blindajes de acero MIL A 46100. Además, con el WPS diseñado se obtuvo una reducción en el ancho de la zona afectada térmicamente (ZAT que debería conducir a un mejor desempeño en servicio de los blindajes de acuerdo con los resultados de estudios previos. Finalmente, se encontró un incremento en la energía absorbida en los ensayos de impacto Charpy V comparada con la de soldaduras realizadas con el proceso SMAW.

  3. Evaluation of the energy efficiency of combined cycle gas turbine. Case study of Tashkent thermal power plant, Uzbekistan

    International Nuclear Information System (INIS)

    Aminov, Zarif; Nakagoshi, Nobukazu; Xuan, Tran Dang; Higashi, Osamu; Alikulov, Khusniddin

    2016-01-01

    Highlights: • The combined cycle power plant (CCPP) has a steam turbine and a gas turbine. • Fossil fuel savings and reduction of the CCGT of was evaluated. • The performance of a three pressure CCGT is modelled under different modes. • Energy efficiency of the combined cycle was 58.28%. • An annual reduction of 1760.18 tNO_x/annum and 981.25 ktCO_2/annum can be achieved. - Abstract: The power generation of Tashkent Thermal Power Plant (TPP) is based on conventional power units. Moreover, the facility suffers from limited efficiency in electricity generation. The plant was constructed during the Soviet era. Furthermore, the power plant is being used for inter-hour power generation regulation. As a result, the efficiency can be reduced by increasing specific fuel consumption. This research focuses on the evaluation of the energy efficiency of the combined cycle gas turbine (CCGT) for the Tashkent TPP. Specifically, the objective is an evaluation of fossil fuel savings and reduction of CO_2 and NO_x emissions with the using CCGT technology at conventional power plant. The proposed combined cycle power plant (CCPP) includes an existing steam turbine (ST) with 160 MW capacity, heat recovery steam generator (HRSG), and gas turbine (GT) technology with 300 MW capacity. The performance of a three pressure CCGT is modelled under different modes. As a result, the efficiency of the combined cycle was evaluated at 58.28%, while the conventional cycle had an efficiency of 34.5%. We can achieve an annual reduction of 1760.18 tNO_x/annum and 981.25 ktCO_2/annum.

  4. Effets de la microdose sur la production du niébé, du mil et du ...

    African Journals Online (AJOL)

    respectivement pour le sorgho, le mil et le niébé comparativement au témoin. La microdose a été .... Les prix utilisés sont celui du marché local au moment des semis pour les engrais soit 17500 FCFA pour NPK et ..... Projet « Transfert de la.

  5. The flexibility of modified-linker MIL-53 materials.

    Science.gov (United States)

    Munn, Alexis S; Pillai, Renjith S; Biswas, Shyam; Stock, Norbert; Maurin, Guillaume; Walton, Richard I

    2016-03-14

    The flexibility of eight aluminium hydroxo terephthalates [Al(OH)(BDC-X)]·n(guest) (BDC = 1,4-benzene-dicarboxylate; X = -H, -CH3, -Cl, -Br, -NH2, -NO2, -(OH)2, -CO2H) crystallising in the MIL-53-type structure was investigated upon thermal dehydration of as-made samples, superhydration and methanol adsorption/desorption using in situ powder X-ray diffraction (PXRD). Profile fitting was used to determine lattice parameters as a function of time and/or temperature to describe their structural evolution. It has thus been shown that while methanol vapour adsorption induces an opening of all the modified frameworks, except the -NH2 material, superhydration only leads to open structures for Al-MIL-53-NO2, -Br and -(OH)2. All the MIL-53 solids, except Al-MIL-53-(OH)2 are present in the open structures upon thermal dehydration. In addition to the exploration of the breathing behavior of this MIL-53 series, the issue of disorder in the distribution of the functional groups between the organic linkers was explored. As a typical illustration, density functional theory calculations were carried out on different structures of Al-MIL-53-Cl, in which the distribution of -Cl within two adjacent BDC linkers is varied. The results show that the most energetically stable configuration leads to the best agreement with the experimental PXRD pattern. This observation supports that the distribution of the selected linker substituent in the functionalised solid is governed by energetics and that there is a preference for an ordering of this arrangement.

  6. Model Predictive Control of Wind Turbines

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    Wind turbines play a major role in the transformation from a fossil fuel based energy production to a more sustainable production of energy. Total-cost-of-ownership is an important parameter when investors decide in which energy technology they should place their capital. Modern wind turbines...... the need for maintenance of the wind turbine. Either way, better total-cost-of-ownership for wind turbine operators can be achieved by improved control of the wind turbines. Wind turbine control can be improved in two ways, by improving the model on which the controller bases its design or by improving...

  7. 1000 MW steam turbine for nuclear power station

    International Nuclear Information System (INIS)

    Drahy, J.

    1987-01-01

    Skoda Works started the manufacture of the 1000 MW steam turbine for the Temelin nuclear power plant. The turbine will use saturated steam at 3,000 r.p.m. It will allow steam supply to heat water for district heating, this of an output of 893 MW for a three-stage water heating at a temperature of 150/60 degC or of 570 MW for a two-stage heating at a temperature of 120/60 degC. The turbine features one high-pressure and three identical low-pressure stages. The pressure gradient between the high-pressure and the low-pressure parts was optimized as concerns the thermal efficiency of the cycle and the thermodynamic efficiency of the low-pressure part. A value of 0.79 MPa was selected corresponding to the maximum flow rate of the steam entering the turbine. This is 5,495 t/h, the admission steam parameters are 273.3 degC and 5.8 MPa. The feed water temperature is 220.9 degC. It is expected that throughout the life of the turbine, there will be 300 cold starts, 1,000 starts following shutdown for 55 to 88 hours, and 600 starts following shutdown for 8 hours. (Z.M.). 8 figs., 1 ref

  8. Juegos de palabras y música en El Cortesano de Luis Milán

    Directory of Open Access Journals (Sweden)

    Alfonso Colella

    2015-12-01

    Full Text Available Este artículo analiza cómo, en El Cortesano, la música y la actuación musical se ven fuertemente afectadas por el carácter burlesco e ingenioso de todos los personajes que frecuentan las reuniones de Fernando de Aragón y de la reina Germana de Foix. Por lo tanto, el músico Milán, para cumplir con todas las expectativas de este mundo del entretenimiento y del juego, debe basarse necesariamente en una serie de opciones interpretativas que permitan actuaciones rápidas en función de las demandas de su público. Lo que emerge es una imagen del músico y de la música diferente de lo que se esperaría normalmente. En una sociedad de este tipo, no cuenta la música entendida en su estética y aspectos técnicos, sino la capacidad de gestionar las apariencias y someterse a las pruebas y los mandatos impuestos por los rituales del juego cortesano. Tenemos muchos ejemplos en que Milán se muestra con pasividad y sumisión. Pero es normal, porque esto entra en los códigos de la vida de la corte. This article takes into consideration El Cortesano (1561 by Luis Milán: in this text the musical performance is strongly influenced by the playful attitudes of the individuals who attended the court meetings of Fernando de Aragón and Germana de Foix. Therefore, the musician has to keep in mind every expectation of courtly entertainment and gaming, and morevoer he must open his interpretative options to meet also the demands of the public. What emerges is a picture of the musician and his music that is different from what one would expect in another social context. In such aristocratic society as the Duke of Calabria, music was not understood only in terms of its aesthetic values and technical aspects, but it also required that the player accepted the rituals of the courtly game.

  9. Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Stephen P. Bergin

    2006-06-30

    The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer

  10. Compact, Low-Overhead, MIL-STD-1553B Controller

    Science.gov (United States)

    Katz, Richard; Barto, Rod

    2009-01-01

    A compact and flexible controller has been developed to provide MIL-STD- 1553B Remote Terminal (RT) communications and supporting and related functions with minimal demand on the resources of the system in which the controller is to be installed. (MIL-STD-1553B is a military standard that encompasses a method of communication and electrical-interface requirements for digital electronic subsystems connected to a data bus. MIL-STD-1553B is commonly used in defense and space applications.) Many other MIL-STD-1553B RT controllers are complicated, and to enable them to function, it is necessary to provide software and to use such ancillary separate hardware devices as microprocessors and dual-port memories. The present controller functions without need for software and any ancillary hardware. In addition, it contains a flexible system interface and extensive support hardware while including on-chip error-checking and diagnostic support circuitry. This controller is implemented within part of a modern field-programmable gate array.

  11. Integration of a municipal solid waste gasification plant with solid oxide fuel cell and gas turbine

    DEFF Research Database (Denmark)

    Bellomare, Filippo; Rokni, Masoud

    2013-01-01

    An interesting source of producing energy with low pollutants emission and reduced environmental impact are the biomasses; particularly using Municipal Solid Waste (MSW) as fuel, can be a competitive solution not only to produce energy with negligible costs but also to decrease the storage...... in landfills. A Municipal Solid Waste Gasification Plant Integrated with Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) has been studied and the plant is called IGSG (Integrated Gasification SOFC and GT). Gasification plant is fed by MSW to produce syngas by which the anode side of an SOFC is fed wherein...

  12. Development of a Microchannel High Temperature Recuperator for Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, Michael [Fuelcell Energy, Inc., Danbury, CT (United States)

    2014-03-24

    This report summarizes the progress made in development of microchannel recuperators for high temperature fuel cell/turbine hybrid systems for generation of clean power at very high efficiencies. Both Solid Oxide Fuel Cell/Turbine (SOFC/T) and Direct FuelCell/Turbine (DFC/T) systems employ an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell’s byproduct heat in a Brayton cycle. Features of the SOFC/T and DFC/T systems include: electrical efficiencies of up to 65% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, and potential cost competitiveness with existing combined cycle power plants. Project work consisted of candidate material selection from FuelCell Energy (FCE) and Pacific Northwest National Laboratory (PNNL) institutional databases as well as from industrial and academic literature. Candidate materials were then downselected and actual samples were tested under representative environmental conditions resulting in further downselection. A microchannel thermal-mechanical model was developed to calculate overall device cost to be later used in developing a final Tier 1 material candidate list. Specifications and operating conditions were developed for both SOFC/T and DFC/T systems. This development included system conceptualization and progression to process flow diagrams (PFD’s) including all major equipment. Material and energy balances were then developed for the two types of systems which were then used for extensive sensitivity studies that used high temperature recuperator (HTR) design parameters (e.g., operating temperature) as inputs and calculated overall system parameters (e.g., system efficiency). The results of the sensitivity studies determined the final HTR design temperatures, pressure drops, and gas compositions. The results also established operating conditions and

  13. Design optimisation of a hybrid solid oxide fuel cell and gas turbine power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.J.; Siddle, A.; Pointon, K.

    2001-07-01

    The objectives of the combined ALSTOM Power Technology and Advantica Technologies project are reported as: (a) to design a gas turbine (GT) unit compatible with a solid oxide fuel cell (SOFC) in a high efficiency power system and aimed at the Distributed Power application range of 1-20MW, and (b) to identify the main features and components of a 'Proof of Concept' hybrid unit of output around 0.1MW, based on existing or near-market technology. The study showed: (i) while the potential for high efficiency SOFC + GT hybrid cycles is clear, little effort has been put into the design of the gas turbine and some other components and (ii) there is room for commercial exploitation in the areas of both component manufacture and system supply.

  14. Assessment of C-Type Darrieus Wind Turbine Under Low Wind Speed Condition

    Science.gov (United States)

    Misaran, M. S.; Rahman, Md. M.; Muzammil, W. K.; Ismail, M. A.

    2017-07-01

    Harvesting wind energy in in a low wind speed region is deem un-economical if not daunting task. Study shows that a minimum cut in speed of 3.5 m/s is required to extract a meaningful wind energy for electricity while a mean speed of 6 m/s is preferred. However, in Malaysia the mean speed is at 2 m/s with certain potential areas having 3 m/s mean speed. Thus, this work aims to develop a wind turbine that able to operate at lower cut-in speed and produce meaningful power for electricity generation. A C-type Darrieus blade is selected as it shows good potential to operate in arbitrary wind speed condition. The wind turbine is designed and fabricated in UMS labs while the performance of the wind turbine is evaluated in a simulated wind condition. Test result shows that the wind turbine started to rotate at 1 m/s compared to a NACA 0012 Darrieus turbine that started to rotate at 3 m/s. The performance of the turbine shows that it have good potential to be used in an intermittent arbitrary wind speed condition as well as low mean wind speed condition.

  15. Natural gas turbine topping for the iris reactor

    International Nuclear Information System (INIS)

    Oriani, L.; Lombardi, C.; Paramonov, D.

    2001-01-01

    Nuclear power plant designs are typically characterized by high capital and low fuel costs, while the opposite is true for fossil power generation including the natural gas-fired gas turbine combined cycle currently favored by many utilities worldwide. This paper examines potential advantages of combining nuclear and fossil (natural gas) generation options in a single plant. Technical and economic feasibility and attractiveness of a gas turbine - nuclear reactor combined cycle where gas turbine exhaust is used to superheat saturated steam produced by a low power light water reactor are examined. It is shown that in a certain range of fuel and capital costs of nuclear and fossil options, the proposed cycle offers an immediate economic advantage over stand-alone plants resulting from higher efficiency of the nuclear plant. Additionally, the gas turbine topping will result in higher fuel flexibility without the economic penalty typically associated with nuclear power. (author)

  16. Natural gas turbine topping for the iris reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oriani, L.; Lombardi, C. [Politecnico di Milano, Milan (Italy); Paramonov, D. [Westinghouse Electric Corp., LLC, Pittsburgh, PA (United States)

    2001-07-01

    Nuclear power plant designs are typically characterized by high capital and low fuel costs, while the opposite is true for fossil power generation including the natural gas-fired gas turbine combined cycle currently favored by many utilities worldwide. This paper examines potential advantages of combining nuclear and fossil (natural gas) generation options in a single plant. Technical and economic feasibility and attractiveness of a gas turbine - nuclear reactor combined cycle where gas turbine exhaust is used to superheat saturated steam produced by a low power light water reactor are examined. It is shown that in a certain range of fuel and capital costs of nuclear and fossil options, the proposed cycle offers an immediate economic advantage over stand-alone plants resulting from higher efficiency of the nuclear plant. Additionally, the gas turbine topping will result in higher fuel flexibility without the economic penalty typically associated with nuclear power. (author)

  17. Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance

    International Nuclear Information System (INIS)

    Mohapatra, Alok Ku; Sanjay

    2014-01-01

    The article is focused on the comparison of impact of two different methods of inlet air cooling (vapor compression and vapor absorption cooling) integrated to a cooled gas turbine based combined cycle plant. Air-film cooling has been adopted as the cooling technique for gas turbine blades. A parametric study of the effect of compressor pressure ratio, compressor inlet temperature (T i , C ), turbine inlet temperature (T i , T ), ambient relative humidity and ambient temperature on performance parameters of plant has been carried out. Optimum T i , T corresponding to maximum plant efficiency of combined cycle increases by 100 °C due to the integration of inlet air cooling. It has been observed that vapor compression cooling improves the efficiency of gas turbine cycle by 4.88% and work output by 14.77%. In case of vapor absorption cooling an improvement of 17.2% in gas cycle work output and 9.47% in gas cycle efficiency has been observed. For combined cycle configuration, however, vapor compression cooling should be preferred over absorption cooling in terms of higher plant performance. The optimum value of compressor inlet temperature has been observed to be 20 °C for the chosen set of conditions for both the inlet air cooling schemes. - Highlights: • Inlet air cooling improves performance of cooled gas turbine based combined cycle. • Vapor compression inlet air cooling is superior to vapor absorption inlet cooling. • For every turbine inlet temperature, there exists an optimum pressure ratio. • The optimum compressor inlet temperature is found to be 293 K

  18. T700 power turbine rotor multiplane/multispeed balancing demonstration

    Science.gov (United States)

    Burgess, G.; Rio, R.

    1979-01-01

    Research was conducted to demonstrate the ability of influence coefficient based multispeed balancing to control rotor vibration through bending criticals. Rotor dynamic analyses were conducted of the General Electric T700 power turbine rotor. The information was used to generate expected rotor behavior for optimal considerations in designing a balance rig and a balance technique. The rotor was successfully balanced 9500 rpm. Uncontrollable coupling behavior prevented observations through the 16,000 rpm service speed. The balance technique is practical and with additional refinement it can meet production standards.

  19. Comparison Between Conventional Design and Cathode Gas Recirculation Design of a Direct-Syngas Solid Oxide Fuel Cell–Gas Turbine Hybrid Systems Part I: Design Performance

    Directory of Open Access Journals (Sweden)

    Vahid Azami

    2017-06-01

    Keywords: Solid oxide fuel cell, Gas turbine, Cathode gas recirculation, Exergy. Article History: Received Feb 23rd 2017; Received in revised form May 26th 2017; Accepted June 1st 2017; Available online How to Cite This Article: Azami, V, and Yari, M. (2017 Comparison between conventional design and cathode gas recirculation design of a direct-syngas solid oxide fuel cell–gas turbine hybrid systems part I: Design performance. International Journal of Renewable Energy Develeopment, 6(2, 127-136. https://doi.org/10.14710/ijred.6.2.127-136

  20. Cycle analysis of MCFC/gas turbine system

    Directory of Open Access Journals (Sweden)

    Musa Abdullatif

    2017-01-01

    Full Text Available High temperature fuel cells such as the solid oxide fuel cell (SOFC and the molten carbonate fuel cell (MCFC are considered extremely suitable for electrical power plant application. The molten carbonate fuel cell (MCFC performances is evaluated using validated model for the internally reformed (IR fuel cell. This model is integrated in Aspen Plus™. Therefore, several MCFC/Gas Turbine systems are introduced and investigated. One of this a new cycle is called a heat recovery (HR cycle. In the HR cycle, a regenerator is used to preheat water by outlet air compressor. So the waste heat of the outlet air compressor and the exhaust gases of turbine are recovered and used to produce steam. This steam is injected in the gas turbine, resulting in a high specific power and a high thermal efficiency. The cycles are simulated in order to evaluate and compare their performances. Moreover, the effects of an important parameters such as the ambient air temperature on the cycle performance are evaluated. The simulation results show that the HR cycle has high efficiency.

  1. Cycle analysis of MCFC/gas turbine system

    Science.gov (United States)

    Musa, Abdullatif; Alaktiwi, Abdulsalam; Talbi, Mosbah

    2017-11-01

    High temperature fuel cells such as the solid oxide fuel cell (SOFC) and the molten carbonate fuel cell (MCFC) are considered extremely suitable for electrical power plant application. The molten carbonate fuel cell (MCFC) performances is evaluated using validated model for the internally reformed (IR) fuel cell. This model is integrated in Aspen Plus™. Therefore, several MCFC/Gas Turbine systems are introduced and investigated. One of this a new cycle is called a heat recovery (HR) cycle. In the HR cycle, a regenerator is used to preheat water by outlet air compressor. So the waste heat of the outlet air compressor and the exhaust gases of turbine are recovered and used to produce steam. This steam is injected in the gas turbine, resulting in a high specific power and a high thermal efficiency. The cycles are simulated in order to evaluate and compare their performances. Moreover, the effects of an important parameters such as the ambient air temperature on the cycle performance are evaluated. The simulation results show that the HR cycle has high efficiency.

  2. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  3. Proceedings of the 1998 international joint power generation conference (FACT-Vol.22). Volume 1: Fuels and combustion technologies; Gas turbines; Environmental engineering; Nuclear engineering

    International Nuclear Information System (INIS)

    Gupta, A.; Natole, R.; Sanyal, A.; Veilleux, J.

    1998-01-01

    Papers are arranged under the following topical sections: Fuels and combustion technologies; Low NOx burner applications; Low cost solutions to utility NOx compliance issues; Coal combustion--Retrofit experiences, low NOx, and efficiency; Highly preheated air combustion; Combustion control and optimization; Advanced technology for gas fuel combustion; Spray combustion and mixing; Efficient power generation using gas turbines; Safety issues in power industry; Efficient and environmentally benign conversion of wastes to energy; Artificial intelligence monitoring, control, and optimization of power plants; Combustion modeling and diagnostics; Advanced combustion technologies and combustion synthesis; Aero and industrial gas turbine presentations IGTI gas turbine division; NOx/SO 2 ; Plant cooling water system problems and solutions; Issues affecting plant operations and maintenance; and Costs associated with operating and not operating a nuclear power plant. Papers within scope have been processed separately for inclusion on the database

  4. General overview of the AxialT project: A partnership for low head turbine developments

    International Nuclear Information System (INIS)

    Deschenes, C; Ciocan, G D; Henau, V De; Flemming, F; Qian, R; Huang, J; Koller, M; Vu, T; Naime, F A; Page, M

    2010-01-01

    An overview of the AxialT project is presented. Initiated in 2007 by the Consortium on Hydraulic Machines, the aim of this four years project is to contribute to the study of time-dependent hydraulic phenomena in a propeller turbine. The geometry of the entire turbine is generously shared by all partners. Numerical simulations carried out by all partners are confronted with experimental measurements carried out at the LAMH laboratory in Laval University. A mix of 2D LDA, 3D PIV and unsteady pressure measurements are adapted to yield precise measurements at eight strategic locations within the turbine and for nine operating points. Phase resolved analysis is performed wherever applicable. An illustration of potential analysis accessible with the database is shown for the identification of a vortex in the runner at part load.

  5. MEMS and mil/aero: technology push and market pull

    Science.gov (United States)

    Clifford, Thomas H.

    2001-04-01

    MEMS offers attractive solutions to high-density fluidics, inertial, optical, switching and other demanding military/aerospace (mil/aero) challenges. However, full acceptance must confront the realities of production-scale producibility, verifiability, testability, survivability, as well as long-term reliability. Data on these `..ilities' are crucial, and are central in funding and deployment decisions. Similarly, mil/aero users must highlight specific missions, environmental exposures, and procurement issues, as well as the quirks of its designers. These issues are particularly challenging in MEMS, because of the laws of physics and business economics, as well as the risks of deploying leading-edge technology into no-fail applications. This paper highlights mil/aero requirements, and suggests reliability/qualification protocols, to guide development effort and to reassure mil/aero users that MEMS labs are mindful of the necessary realities.

  6. Identificada una malformació dental no gaire comuna en un individu del III mil·lenni aC

    OpenAIRE

    López Onaindia, Diego

    2016-01-01

    Un estudi de la UAB ha permès identificar el cas més antic de macrodòncia bilateral aïllada a les segones premolars inferiors descrit fins a la data. Es tracta d'una malformació dental no gaire comuna que s'ha trobat en un individu de la Cova del Pantà de Foix (Castellet i la Gornal, Barcelona), les inhumacions de la qual estan datades al III mil·lenni aC. Tot i que no es coneix la causa d'aquesta malformació, els resultats la relacionen amb l'existència de factors d'estrès ambiental que haur...

  7. Steam turbine cycle

    International Nuclear Information System (INIS)

    Okuzumi, Naoaki.

    1994-01-01

    In a steam turbine cycle, steams exhausted from the turbine are extracted, and they are connected to a steam sucking pipe of a steam injector, and a discharge pipe of the steam injector is connected to an inlet of a water turbine. High pressure discharge water is obtained from low pressure steams by utilizing a pressurizing performance of the steam injector and the water turbine is rotated by the high pressure water to generate electric power. This recover and reutilize discharged heat of the steam turbine effectively, thereby enabling to improve heat efficiency of the steam turbine cycle. (T.M.)

  8. Improving the efficiency of gas turbine systems with volumetric solar receivers

    International Nuclear Information System (INIS)

    Petrakopoulou, Fontina; Sánchez-Delgado, Sergio; Marugán-Cruz, Carolina; Santana, Domingo

    2017-01-01

    Highlights: • Study of small and large-scale solar-combined cycle plants with volumetric receivers. • Increase of inlet temperature of combustion air using solar energy. • The combustion exergy efficiency starts to decrease over a certain temperature. • Indications obtained from the energy and exergy analyses differ. - Abstract: The combustion process of gas turbine systems is typically associated with the highest thermodynamic inefficiencies among the system components. A method to increase the efficiency of a combustor and, consequently that of the gas turbine, is to increase the temperature of the entering combustion air. This measure reduces the consumption of fuel and improves the environmental performance of the turbine. This paper studies the incorporation of a volumetric solar receiver into existing gas turbines in order to increase the temperature of the inlet combustion air to 800 °C and 1000 °C. For the first time, detailed thermodynamic analyses involving both energy and exergy principles of both small-scale and large-scale hybrid (solar-combined cycle) power plants including volumetric receivers are realized. The plants are based on real gas turbine systems, the base operational characteristics of which are derived and reported in detail. It is found that the indications obtained from the energy and exergy analyses differ. The addition of the solar plant achieves an increase in the exergetic efficiency when the conversion of solar radiation into thermal energy (i.e., solar plant efficiency) is not accounted for in the definition of the overall plant efficiency. On the other hand, it is seen that it does not have a significant effect on the energy efficiency. Nevertheless, when the solar efficiency is included in the definition of the overall efficiency of the plants, the addition of the solar receiver always leads to an efficiency reduction. It is found that the exergy efficiency of the combustion chamber depends on the varying air-to-fuel

  9. Emissions characteristics of Military Helicopter Engines Fueled with JP-8 and a Fischer-Tropsch Fuel

    International Nuclear Information System (INIS)

    Corporan, E.; DeWitt, M.; Klingshirn, Christopher D.; Striebich, Richard; Cheng, Mengdawn

    2010-01-01

    The rapid growth in aviation activities and more stringent U.S. Environmental Protection Agency regulations have increased concerns regarding aircraft emissions, due to their harmful health and environmental impacts, especially in the vicinity of airports and military bases. In this study, the gaseous and particulate-matter emissions of two General Electric T701C engines and one T700 engine were evaluated. The T700 series engines power the U.S. Army's Black Hawk and Apache helicopters. The engines were fueled with standard military JP-8 fuel and were tested at three power settings. In addition, one of the T701C engines was operated on a natural-gas-derived Fischer-Tropsch synthetic paraffinic kerosene jet fuel. Test results show that the T701C engine emits significantly lower particulate-matter emissions than the T700 for all conditions tested. Particulate-matter mass emission indices ranged from 0.2-1.4 g/kg fuel for the T700 and 0.2-0.6 g/kg fuel for the T701C. Slightly higher NOx and lower CO emissions were observed for the T701C compared with the T700. Operation of the T701C with the Fischer-Tropsch fuel rendered dramatic reductions in soot emissions relative to operation on JP-8, due primarily to the lack of aromatic compounds in the alternative fuel. The Fischer-Tropsch fuel also produced smaller particles and slight reductions in CO emissions.

  10. Self and transport diffusivity of CO2 in the metal-organic framework MIL-47(V) explored by quasi-elastic neutron scattering experiments and molecular dynamics simulations.

    Science.gov (United States)

    Salles, Fabrice; Jobic, Hervé; Devic, Thomas; Llewellyn, Philip L; Serre, Christian; Férey, Gérard; Maurin, Guillaume

    2010-01-26

    Quasi-elastic neutron scattering measurements are combined with molecular dynamics simulations to determine the self-diffusivity, corrected diffusivity, and transport diffusivity of CO(2) in the metal-organic framework MIL-47(V) (MIL = Materials Institut Lavoisier) over a wide range of loading. The force field used for describing the host/guest interactions is first validated on the thermodynamics of the MIL-47(V)/CO(2) system, prior to being transferred to the investigations of the dynamics. A decreasing profile is then deduced for D(s) and D(o) whereas D(t) presents a non monotonous evolution with a slight decrease at low loading followed by a sharp increase at higher loading. Such decrease of D(t) which has never been evidenced in any microporous systems comes from the atypical evolution of the thermodynamic correction factor that reaches values below 1 at low loading. This implies that, due to intermolecular interactions, the CO(2) molecules in MIL-47(V) do not behave like an ideal gas. Further, molecular simulations enabled us to elucidate unambiguously a 3D diffusion mechanism within the pores of MIL-47(V).

  11. Variable geometry gas turbines for improving the part-load performance of marine combined cycles - Gas turbine performance

    DEFF Research Database (Denmark)

    Haglind, Fredrik

    2010-01-01

    The part-load performance of gas and steam turbine combined cycles intended for naval use is of great importance, and it is influenced by the gas turbine configuration and load control strategy. This paper is aimed at quantifying the effects of variable geometry on the gas turbine part...... of various components within gas turbines. Two different gas turbine configurations are studied, a two-shaft aero-derivative configuration and a single-shaft industrial configuration. When both gas turbine configurations are running in part-load using fuel flow control, the results indicate better part......-load performance for the two-shaft gas turbine. Reducing the load this way is accompanied by a much larger decrease in exhaust gas temperature for the single-shaft gas turbine than for the two-shaft configuration. As used here, the results suggest that variable geometry generally deteriorates the gas turbine part...

  12. Advanced In-Core Fuel Cycles for the Gas Turbine-Modular Helium Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto

    2006-04-15

    Amid generation IV of nuclear power plants, the Gas Turbine - Modular Helium Reactor, designed by General Atomics, is the only core with an energy conversion efficiency of 50%; the safety aspects, coupled to construction and operation costs lower than ordinary Light Water Reactors, renders the Gas Turbine - Modular Helium reactor rather unequaled. In the present studies we investigated the possibility to operate the GT-MHR with two types of fuels: LWRs waste and thorium; since thorium is made of only fertile {sup 232}Th, we tried to mix it with pure {sup 233}U, {sup 235}U or {sup 239}Pu; ex post facto, only uranium isotopes allow the reactor operation, that induced us to examine the possibility to use a mixture of uranium, enriched 20% in {sup 235}U, and thorium. We performed all calculations by the MCNP and MCB codes, which allowed to model the reactor in a very detailed three-dimensional geometry and to describe the nuclides transmutation in a continuous energy approach; finally, we completed our studies by verifying the influence of the major nuclear data libraries, JEFF, JENDL and ENDF/B, on the obtained results.

  13. Joint DoD/DoE Shale Oil Project. Volume 3. Testing of Refined Shale Oil Fuels.

    Science.gov (United States)

    1983-12-01

    10-9. GROWTH RATINGS OF CLADOSPORIUM RESINAE AT VARIOUS INCUBATION STAGES ......................... 10-25 S 0 xv - LIST OF TABLES (Continued) TABLE 10...test_nC are sho’ T, in Trbl]e .3 d :: ab ffr stead..--staoe zerfrrmance was noted wcrh the snale fel. Wh’le a ..6 :o:n: = in Scecifiz Fuel Consumption...both shale DFM and shale JP-5 support heavy growth of Cladosporium resinae . Short-term engine performance tests were conducted on two gas turbine

  14. Development of biomass gasification systems for gas turbine power generation

    International Nuclear Information System (INIS)

    Larson, E.D.; Svenningsson, P.

    1991-01-01

    Gas turbines are of interest for biomass applications because, unlike steam turbines, they have relatively high efficiencies and low unit capital costs in the small sizes appropriate for biomass installations. Gasification is a simple and efficient way to make biomass usable in gas turbines. The authors evaluate here the technical requirements for gas turbine power generation with biomass gas and the status of pressurized biomass gasification and hot gas cleanup systems. They also discuss the economics of gasifier-gas turbine cycles and make some comparisons with competing technologies. Their analysis indicates that biomass gasifiers fueling advanced gas turbines are promising for cost-competitive cogeneration and central station power generation. Gasifier-gas turbine systems are not available commercially, but could probably be developed in 3 to 5 years. Extensive past work related to coal gasification and pressurized combustion of solid fuels for gas turbines would be relevant in this effort, as would work on pressurized biomass gasification for methanol synthesis

  15. Hydraulic Evaluation and Optimisation of T. Basses Wave Turbine

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter

    The present study investigates designs of the wing profiles and layouts of the wave turbine in order to optimize the design. Furthermore, the overall power production capability of the device has been estimated for the selected wing profiles and turbine layout.......The present study investigates designs of the wing profiles and layouts of the wave turbine in order to optimize the design. Furthermore, the overall power production capability of the device has been estimated for the selected wing profiles and turbine layout....

  16. Kinetics for exchange of imino protons in the d(C-G-C-G-A-A-T-T-C-G-C-G) double helix and in two similar helices that contain a G . T base pair, d(C-G-T-G-A-A-T-T-C-G-C-G), and an extra adenine, d(C-G-C-A-G-A-A-T-T-C-G-C-G).

    Science.gov (United States)

    Pardi, A; Morden, K M; Patel, D J; Tinoco, I

    1982-12-07

    The relaxation lifetimes of imino protons from individual base pairs were measured in (I) a perfect helix, d(C-G-C-G-A-A-T-T-C-G-C-G), (II) this helix with a G . C base pair replaced with a G . T base pair, d(C-G-T-G-A-A-T-T-C-G-C-G), and (III) the perfect helix with an extra adenine base in a mismatch, d(C-G-C-A-G-A-A-T-T-C-G-C-G). The lifetimes were measured by saturation recovery proton nuclear magnetic resonance experiments performed on the imino protons of these duplexes. The measured lifetimes of the imino protons were shown to correspond to chemical exchange lifetimes at higher temperatures and spin-lattice relaxation times at lower temperatures. Comparison of the lifetimes in these duplexes showed that the destabilizing effect of the G . T base pair in II affected the opening rate of only the nearest-neighbor base pairs. For helix III, the extra adenine affected the opening rates of all the base pairs in the helix and thus was a larger perturbation for opening of the base pairs than the G . T base pair. The temperature dependence of the exchange rates of the imino proton in the perfect helix gives values of 14-15 kcal/mol for activation energies of A . T imino protons. These relaxation rates were shown to correspond to exchange involving individual base pair opening in this helix, which means that one base-paired imino proton can exchange independent of the others. For the other two helices that contain perturbations, much larger activation energies for exchange of the imino protons were found, indicating that a cooperative transition involving exchange of at least several base pairs was the exchange mechanism of the imino protons. The effects of a perturbation in a helix on the exchange rates and the mechanisms for exchange of imino protons from oligonucleotide helices are discussed.

  17. Effect of the thickness of the anode electrode catalyst layers on the performance in direct methanol fuel cells

    Science.gov (United States)

    Glass, Dean E.; Olah, George A.; Prakash, G. K. Surya

    2017-06-01

    For the large scale fuel cell manufacture, the catalyst loading and layer thickness are critical factors affecting the performance and cost of membrane electrode assemblies (MEAs). The influence of catalyst layer thicknesses at the anode of a PEM based direct methanol fuel cell (DMFC) has been investigated. Catalysts were applied with the drawdown method with varied thicknesses ranging from 1 mil to 8 mils (1 mil = 25.4 μm) with a Pt/Ru anode loading of 0.25 mg cm-2 to 2.0 mg cm-2. The MEAs with the thicker individual layers (8 mils and 4 mils) performed better overall compared to the those with the thinner layers (1 mil and painted). The peak power densities for the different loading levels followed an exponential decrease of Pt/Ru utilization at the higher loading levels. The highest power density achieved was 49 mW cm-2 with the 4 mil layers at 2.0 mg cm-2 catalyst loading whereas the highest normalized power density was 116 mW mg-1 with the 8 mil layers at 0.25 mg cm-2 loading. The 8 mil drawdowns displayed a 50% and 23% increase in normalized power density compared to the 1 mil drawdowns at 0.25 mg cm-2 and 0.5 mg cm-2 loadings, respectively.

  18. B-1 Aircraft Main Hydraulic Pump Tests With MIL-H-87257 Hydraulic Fluid

    National Research Council Canada - National Science Library

    Sharma, Shashi

    1998-01-01

    In an effort to convert the B-1 aircraft from MIL-H-5606 to M1-H-87257, the Air Force sponsored a study conducted by Rockwell International from April 1991 through June 1992, under contract F34601-89-C-0401...

  19. Miniature Gas-Turbine Power Generator

    Science.gov (United States)

    Wiberg, Dean; Vargo, Stephen; White, Victor; Shcheglov, Kirill

    2003-01-01

    A proposed microelectromechanical system (MEMS) containing a closed- Brayton-cycle turbine would serve as a prototype of electric-power generators for special applications in which high energy densities are required and in which, heretofore, batteries have been used. The system would have a volume of about 6 cm3 and would operate with a thermal efficiency >30 percent, generating up to 50 W of electrical power. The energy density of the proposed system would be about 10 times that of the best battery-based systems now available, and, as such, would be comparable to that of a fuel cell. The working gas for the turbine would be Xe containing small quantities of CO2, O2, and H2O as gaseous lubricants. The gas would be contained in an enclosed circulation system, within which the pressure would typically range between 5 and 50 atm (between 0.5 and 5 MPa). The heat for the Brayton cycle could be supplied by any of a number of sources, including a solar concentrator or a combustor burning a hydrocarbon or other fuel. The system would include novel heat-transfer and heat-management components. The turbine would be connected to an electric power generator/starter motor. The system would include a main rotor shaft with gas bearings; the bearing surfaces would be made of a ceramic material coated with nanocrystalline diamond. The shaft could withstand speed of 400,000 rpm or perhaps more, with bearing-wear rates less than 10(exp -)4 those of silicon bearings and 0.05 to 0.1 those of SiC bearings, and with a coefficient of friction about 0.1 that of Si or SiC bearings. The components of the system would be fabricated by a combination of (1) three-dimensional xray lithography and (2) highly precise injection molding of diamond-compatible metals and ceramic materials. The materials and fabrication techniques would be suitable for mass production. The disadvantages of the proposed system are that unlike a battery-based system, it could generate a perceptible amount of sound, and

  20. Economic aspects of advanced coal-fired gas turbine locomotives

    Science.gov (United States)

    Liddle, S. G.; Bonzo, B. B.; Houser, B. C.

    1983-01-01

    Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.

  1. Uranium and plutonium determinations for evaluation of high burnup fuel performance

    International Nuclear Information System (INIS)

    Heinrich, R.R.; Popek, R.J.; Bowers, D.L.; Essling, A.M.; Callis, E.L.; Persiani, P.J.

    1985-01-01

    Purpose of this work is to experimentally test computational methods being developed for reactor fuel operation. Described are the analytical techniques used in the determination of uranium and plutonium compositions on PWR fuel that has spanned five power cycles, culminating in 55,000 to 57,000 MWd/T burnup. Analyses have been performed on ten samples excised from selected sections of the fuel rods. Hot cell operations required the separation of fuel from cladding and the comminution of the fuel. These tasks were successfully accomplished using a SpectroMil, a ball pestle impact grinding and blending instrument manufactured by Chemplex Industries, Inc., Eastchester, New York. The fuel was dissolved using strong mineral acids and bomb dissolution techniques. Separation of the fuel from fission products was done by solvent (hexone) extraction. Fuel isotopic compositions and assays were determined by the mass spectrometric isotope dilution (MSID) method using NBS standards SRM-993 and SRM-996. Alpha spectrometry was used to determine the 238 Pu composition. Relative correlations of composition with burnup were obtained by gamma-ray spectrometry of selected fission products in the dissolved fuel

  2. Gas--steam turbine combined cycle power plants

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1978-10-01

    The purpose of this technology evaluation is to provide performance and cost characteristics of the combined gas and steam turbine, cycle system applied to an Integrated Community Energy System (ICES). To date, most of the applications of combined cycles have been for electric power generation only. The basic gas--steam turbine combined cycle consists of: (1) a gas turbine-generator set, (2) a waste-heat recovery boiler in the gas turbine exhaust stream designed to produce steam, and (3) a steam turbine acting as a bottoming cycle. Because modification of the standard steam portion of the combined cycle would be necessary to recover waste heat at a useful temperature (> 212/sup 0/F), some sacrifice in the potential conversion efficiency is necessary at this temperature. The total energy efficiency ((electric power + recovered waste heat) divided by input fuel energy) varies from about 65 to 73% at full load to 34 to 49% at 20% rated electric power output. Two major factors that must be considered when installing a gas--steam turbine combines cycle are: the realiability of the gas turbine portion of the cycle, and the availability of liquid and gas fuels or the feasibility of hooking up with a coal gasification/liquefaction process.

  3. A Preliminary Report on the Strength and Metallography of a Bimetallic Friction Stir Weld Joint Between AA6061 and MIL-DTL-46100E High Hardness Steel Armor

    Science.gov (United States)

    2012-11-26

    bimetallic friction stir weld joint between AA6061 and MIL-DTL-46100E High Hardness steel armor. ABSTRACT One half inch thick plates of 6061-T6 aluminum...alloy and High Hardness steel armor (MIL- STD-46100) were successfully joined by the friction stir welding (FSW) process using a tungsten-rhenium...4. TITLE AND SUBTITLE A preliminary report on the strength and metallography of a bimetallic friction stir weld joint between AA6061 and MIL-DTL

  4. Navy.mil - Photo Galleries

    Science.gov (United States)

    Personnel Command (NPC) Navy SAPR Navy EEO Inclusion And Diversity Navy Standard Integrated Personnel System (OPSEC) Navy Trademarks Military One Source USA.gov U.S. Office of Special Counsel Social Media Directory Links Navy Reserve Navy.mil Underway Navy Personnel Command (NPC) Navy SAPR Navy EEO Inclusion And

  5. Study on the fuel cycle cost of gas turbine high temperature reactor (GTHTR300). Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Takei, Masanobu; Katanishi, Shoji; Nakata, Tetsuo; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Oda, Takefumi; Izumiya, Toru [Nuclear Fuel Industries, Ltd., Tokyo (Japan)

    2002-11-01

    In the basic design of gas turbine high temperature reactor (GTHTR300), reduction of the fuel cycle cost has a large benefit of improving overall plant economy. Then, fuel cycle cost was evaluated for GTHTR300. First, of fuel fabrication for high-temperature gas cooled reactor, since there was no actual experience with a commercial scale, a preliminary design for a fuel fabrication plant with annual processing of 7.7 ton-U sufficient four GTHTR300 was performed, and fuel fabrication cost was evaluated. Second, fuel cycle cost was evaluated based on the equilibrium cycle of GTHTR300. The factors which were considered in this cost evaluation include uranium price, conversion, enrichment, fabrication, storage of spent fuel, reprocessing, and waste disposal. The fuel cycle cost of GTHTR300 was estimated at about 1.07 yen/kWh. If the back-end cost of reprocessing and waste disposal is included and assumed to be nearly equivalent to LWR, the fuel cycle cost of GTHTR300 was estimated to be about 1.31 yen/kWh. Furthermore, the effects on fuel fabrication cost by such of fuel specification parameters as enrichment, the number of fuel types, and the layer thickness were considered. Even if the enrichment varies from 10 to 20%, the number of fuel types change from 1 to 4, the 1st layer thickness of fuel changes by 30 {mu}m, or the 2nd layer to the 4th layer thickness of fuel changes by 10 {mu}m, the impact on fuel fabrication cost was evaluated to be negligible. (author)

  6. The design of stationary and mobile solid oxide fuel cell-gas turbine systems

    Science.gov (United States)

    Winkler, Wolfgang; Lorenz, Hagen

    A general thermodynamic model has shown that combined fuel cell cycles may reach an electric-efficiency of more than 80%. This value is one of the targets of the Department of Energy (DOE) solid oxide fuel cell-gas turbine (SOFC-GT) program. The combination of a SOFC and GT connects the air flow of the heat engine and the cell cooling. The principle strategy in order to reach high electrical-efficiencies is to avoid a high excess air for the cell cooling and heat losses. Simple combined SOFC-GT cycles show an efficiency between 60 and 72%. The combination of the SOFC and the GT can be done by using an external cooling or by dividing the stack into multiple sub-stacks with a GT behind each sub-stack as the necessary heat sink. The heat exchangers (HEXs) of a system with an external cooling have the benefit of a pressurization on both sides and therefore, have a high heat exchange coefficient. The pressurization on both sides delivers a low stress to the HEX material. The combination of both principles leads to a reheat (RH)-SOFC-GT cycle that can be improved by a steam turbine (ST) cycle. The first results of a study of such a RH-SOFC-GT-ST cycle indicate that a cycle design with an efficiency of more than 80% is possible and confirm the predictions by the theoretical thermodynamic model mentioned above. The extremely short heat-up time of a thin tubular SOFC and the market entrance of the micro-turbines give the option of using these SOFC-GT designs for mobile applications. The possible use of hydrocarbons such as diesel oil is an important benefit of the SOFC. The micro-turbine and the SOFC stack will be matched depending on the start-up requirements of the mobile system. The minimization of the volume needed is a key issue. The efficiency of small GTs is lower than the efficiency of large GTs due to the influence of the leakage within the stages of GTs increasing with a decreasing size of the GT. Thus, the SOFC module pressure must be lower than in larger

  7. Research and development of ceramic gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazuo [National Aerospace Laboratory, Chofu-shi, Tokyo (Japan)

    1993-12-31

    The CO{sub 2} caused by the consumption of hydrocarbon fuel is one of the main gases which affect the global climate. In order to reduce the formation of CO{sub 2}, it is necessary to conserve energy as effectively as possible. Therefore the heat energy provided by the fuel should be utilized in multi-cascades. The energy at the high temperature should be used for the generation of electric power and the energy at low temperature could be used for making the steam and the hot water. The gas turbine is preferable for this purpose. The heat energy of exhaust gas can be reused more easily. The two systems are proposed by using the gas turbine as the high temperature stage. One is the cogeneration system and the other is the combined cycle. The former generates electric power by the gas turbine and make steam or hot water in the exhaust gas. The latter employs the gas turbine as the high temperature cycle and the steam turbine as the low temperature cycle.

  8. Design and Analysis of Wind Turbine Blade Hub using Aluminium Alloy AA 6061-T6

    Science.gov (United States)

    Ravikumar, S.; Jaswanthvenkatram, V.; Sai kumar, Y. J. N. V.; Sohaib, S. Md.

    2017-05-01

    This work presents the design and analysis of horizontal axis wind turbine blade hub using different material. The hub is very crucial part of the wind turbine, which experience the loads from the blades and the loads were transmitted to the main shaft. At present wind turbine is more expensive and weights more than a million pounds, with the nacelle, rotor hub and blades accounting for most of the weight. In this work Spheroidal graphite cast iron GGG 40.3 is replaced by aluminium alloy 6061-T6 to enhance the casting properties and also to improve the strength-weight ratio. This transition of material leads to reduction in weight of the wind turbine. All the loads caused by wind and extreme loads on the blades are transferred to the hub. Considering the IEC 61400-1 standard for defining extreme loads on the hub the stress and deflection were calculated on the hub by using Finite element Analysis. Result obtained from ANSYS is compared and discussed with the existing design.

  9. Bivalent metal-based MIL-53 analogues: Synthesis, properties and application

    International Nuclear Information System (INIS)

    Liu, Yongxin; Liu, Dan; Wang, Cheng

    2015-01-01

    Trivalent metal-based MIL-53 (Al 3+ , Cr 3+ , Fe 3+ , In 3+ ) compounds are interesting metal–organic frameworks (MOFs) with breathing effect and are promising gas sorption materials. Replacing bridging μ 2 -OH group by neutral ligands such as pyridine N-oxide and its derivatives (PNOs), the trivalent metal-based MIL-53 analogous structures could be extended to bivalent metal systems. The introduction of PNOs and bivalent metal elements endows the frameworks with new structural features and physical and chemical properties. This minireview summarizes the recent development of bivalent metal-based MIL-53 analogues (Mn 2+ , Co 2+ , Ni 2+ ), typically, focusing on the synthetic strategies and potential applications based on our own works and literatures. We present the synthetic strategy to achieve structures evolution from single-ligand-walled to double-ligand-walled channel. Properties and application of these new materials in a wide range of potential areas are discussed including thermal stability, gas adsorption, magnetism and liquid-phase separation. Promising directions of this research field are also highlighted. - Graphical abstract: The recent development of bivalent metal-based MIL-53 analogues (Mn 2+ , Co 2+ , Ni 2+ ) on their synthetic strategies, properties and potential applications was reviewed. - Highlights: • Structure features of bivalent metal-based MIL-53 analogues are illustrated. • Important properties and application are presented. • Host–guest interactions are main impetus for liquid-phase separation. • Promising directions of bivalent metal-based MIL-53 analogues are highlighted

  10. Numerical Investigation of Fuel Distribution Effect on Flow and Temperature Field in a Heavy Duty Gas Turbine Combustor

    Science.gov (United States)

    Deng, Xiaowen; Xing, Li; Yin, Hong; Tian, Feng; Zhang, Qun

    2018-03-01

    Multiple-swirlers structure is commonly adopted for combustion design strategy in heavy duty gas turbine. The multiple-swirlers structure might shorten the flame brush length and reduce emissions. In engineering application, small amount of gas fuel is distributed for non-premixed combustion as a pilot flame while most fuel is supplied to main burner for premixed combustion. The effect of fuel distribution on the flow and temperature field related to the combustor performance is a significant issue. This paper investigates the fuel distribution effect on the combustor performance by adjusting the pilot/main burner fuel percentage. Five pilot fuel distribution schemes are considered including 3 %, 5 %, 7 %, 10 % and 13 %. Altogether five pilot fuel distribution schemes are computed and deliberately examined. The flow field and temperature field are compared, especially on the multiple-swirlers flow field. Computational results show that there is the optimum value for the base load of combustion condition. The pilot fuel percentage curve is calculated to optimize the combustion operation. Under the combustor structure and fuel distribution scheme, the combustion achieves high efficiency with acceptable OTDF and low NOX emission. Besides, the CO emission is also presented.

  11. Effects of Gas Turbine Component Performance on Engine and Rotary Wing Vehicle Size and Performance

    Science.gov (United States)

    Snyder, Christopher A.; Thurman, Douglas R.

    2010-01-01

    In support of the Fundamental Aeronautics Program, Subsonic Rotary Wing Project, further gas turbine engine studies have been performed to quantify the effects of advanced gas turbine technologies on engine weight and fuel efficiency and the subsequent effects on a civilian rotary wing vehicle size and mission fuel. The Large Civil Tiltrotor (LCTR) vehicle and mission and a previous gas turbine engine study will be discussed as a starting point for this effort. Methodology used to assess effects of different compressor and turbine component performance on engine size, weight and fuel efficiency will be presented. A process to relate engine performance to overall LCTR vehicle size and fuel use will also be given. Technology assumptions and levels of performance used in this analysis for the compressor and turbine components performances will be discussed. Optimum cycles (in terms of power specific fuel consumption) will be determined with subsequent engine weight analysis. The combination of engine weight and specific fuel consumption will be used to estimate their effect on the overall LCTR vehicle size and mission fuel usage. All results will be summarized to help suggest which component performance areas have the most effect on the overall mission.

  12. Proceedings of the 1999 international joint power generation conference (FACT-vol. 23). Volume 1: Fuels and combustion technologies; Gas turbines; and Nuclear engineering

    International Nuclear Information System (INIS)

    Penfield, S.R. Jr.; Moussa, N.A.

    1999-01-01

    Papers are arranged under the following topical sections: Gas turbine combustion; Advanced energy conversion; Low NOx solutions; Burner developments; Alternative fuels combustion; Advanced energy conversion technologies; Numerical modeling of combustion; Fluidized bed combustion; Coal combustion; Combustion research; Gasification systems; Mercury emissions; Highly preheated air combustion; Selective catalytic reduction; Special topics in combustion research; Gas turbines and advanced energy; and How can the nuclear industry become more efficient? Papers within scope have been processed separately for inclusion on the database

  13. Solid oxide fuel cell/gas turbine hybrid system analysis for high-altitude long-endurance unmanned aerial vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, P.; Brandon, N.P. [Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Brett, D.J.L. [The Centre for CO{sub 2} Technology, University College London, London WC1E 7JE (United Kingdom)

    2008-12-15

    High-altitude long-endurance (HALE) unmanned aerial vehicles (UAVs) are ideally suited to provide surveillance, remote sensing and communication relay capabilities for both military and civilian applications. HALE UAVs typically cruise at an altitude between 15 km and 20 km, travelling at low speed and circling specific areas of interest. The work reported aims to investigate alternative power system architectures that enable an efficiency increase and consequent fuel consumption reduction to realise a one-week endurance target. Specifically, the application of a solid oxide fuel cell combined with a gas turbine is considered; with different system configurations modelled with a view to maximising overall efficiency. It is found that modularising the fuel cell capacity into a number of discrete stacks such that the fuel is distributed in parallel and air is fed in series results in an increased system efficiency compared with a single-stack design. An overall system efficiency of 66.3% (LHV) when operating on hydrogen is predicted for a three-stack system. (author)

  14. ADVANCED TURBINE SYSTEMS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  15. Liquid chromatographic analysis of a formulated ester from a gas-turbine engine test

    Science.gov (United States)

    Jones, W. R., Jr.; Morales, W.

    1983-01-01

    Size exclusion chromatography (SEC) utilizing mu-Bondagel and mu-Styragel columns with a tetrahydrofuran mobile phase was used to determine the chemical degradation of lubricant samples from a gas-turbine engine test. A MIL-L-27502 candidate, ester-based lubricant was run in a J57-29 engine at a bulk oil temperature of 216 C. In general, the analyses indicated a progressive loss of primary ester, additive depletion, and formation of higher molecular weight material. An oil sample taken at the conclusion of the test showed a reversal of this trend because of large additions of new oil. The high-molecular-weight product from the degraded ester absorbed strongly in the ultraviolet region at 254 nanometers. This would indicate the presence of chromophoric groups. An analysis of a similar ester lubricant from a separate high-temperature bearing test yielded qualitatively similar results.

  16. Exergy Analysis of an Intermediate Temperature Solid Oxide Fuel Cell-Gas Turbine Hybrid System Fed with Ethanol

    Directory of Open Access Journals (Sweden)

    Fotini Tzorbatzoglou

    2012-10-01

    Full Text Available In the present work, an ethanol fed Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT system has been parametrically analyzed in terms of exergy and compared with a single SOFC system. The solid oxide fuel cell was fed with hydrogen produced from ethanol steam reforming. The hydrogen utilization factor values were kept between 0.7 and 1. The SOFC’s Current-Volt performance was considered in the range of 0.1–3 A/cm2 at 0.9–0.3 V, respectively, and at the intermediate operating temperatures of 550 and 600 °C, respectively. The curves used represent experimental results obtained from the available bibliography. Results indicated that for low current density values the single SOFC system prevails over the SOFC-GT hybrid system in terms of exergy efficiency, while at higher current density values the latter is more efficient. It was found that as the value of the utilization factor increases the SOFC system becomes more efficient than the SOFC-GT system over a wider range of current density values. It was also revealed that at high current density values the increase of SOFC operation temperature leads in both cases to higher system efficiency values.

  17. Research of mercury removal from sintering flue gas of iron and steel by the open metal site of Mil-101(Cr).

    Science.gov (United States)

    Zhao, Songjian; Mei, Jian; Xu, Haomiao; Liu, Wei; Qu, Zan; Cui, Yong; Yan, Naiqiang

    2018-06-05

    Metal-organic frameworks (MOFs) adsorbent Mil-101(Cr) was introduced for the removal of elemental mercury from sintering flue gas. Physical and chemical characterization of the adsorbents showed that MIL-101(Cr) had the largest BET surface area, high thermal stability and oxidation capacity. Hg 0 removal performance analysis indicated that the Hg 0 removal efficiency of MIL-101(Cr) increased with the increasing temperature and oxygen content. Besides, MIL-101(Cr) had the highest Hg 0 removal performance compared with Cu-BTC, UiO-66 and activated carbon, which can reach about 88% at 250 °C. The XPS and Hg-TPD methods were used to analyze the Hg 0 removal mechanism; the results show that Hg 0 was first adsorbed on the surface of Mil-101(Cr), and then oxidized by the open metal site Cr 3+ . The generated Hg 2+ was then combined surface adsorbed oxygen of adsorbent to form HgO, and the open metal site Cr 2+ was oxidized to Cr 3+ by surface active oxygen again. Furthermore, MIL-101(Cr) had good chemical and thermal stability. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Ground noise measurements during static and flyby operations of the Cessna 02-T turbine powered airplane

    Science.gov (United States)

    Hilton, D. A.; Henderson, H. R.; Lawton, B. W.

    1975-01-01

    The field noise measurements on the Cessna 02-T turbine powered propeller aircraft are presented. The objective of the study was to obtain the basic noise characteristics of the aircraft during static ground runs and flyover tests, to identify the sources of the noise, and to correlate the noises with the aircraft operating conditions. The results are presented in the form of a overall noise levels, radiation patterns, and frequency spectra. The noise characteristics of the turbine powered aircraft are compared with those of the reciprocating engine powered aircraft.

  19. Diagnosis and Supervision of Industrial Gas Turbines

    OpenAIRE

    Larsson, Emil

    2012-01-01

    Monitoring of industrial gas turbines is of vital importance, since it gives valuable information for the customer about maintenance, performance, and process health. The performance of an industrial gas turbine degrades gradually due to factors such as environment air pollution, fuel content, and ageing to mention some of the degradation factors. The compressor in the gas turbine is especially vulnerable against contaminants in the air since these particles are stuck at the rotor and stator ...

  20. Effect of adoption of gas turbine in oil refinery

    Energy Technology Data Exchange (ETDEWEB)

    Tamai, Hiroto

    1988-08-01

    With progress in energy saving, and increase in automation in facilities, the dependence on electric power increases relative steam power. Further in order to reduce the production cost, the adoption of gas turbine combined cycle system, mainly aimed at power generation, is considered to be most suitable. This adoption, accompanied with the utilization of refinery offgas, dresults in a reduction in unit power generation cost, by increasing the ratio of domestic power generation. The gas turbine using deethanizing tower offgas as main fuel and butane as auxillary fuel, the combined cycle system, where steam produced from the turbine waste heat boiler drives the existing back pressure turbine, was constituted. The generator is 118 kVA in capacity. Against the maximum power demand being 16,500 kWh in the oil refinery, the obtainment of 11,000 kWh by the gas turbine and 2,500 kWh by the back pressure turbine was assured, with a considerable lowering in power to be purchased. (7 figs, 1 tab, 1 ref)

  1. MAINTAINANCE OF KAPLAN TURBINE TO ENHANCE THE EFFICIENCY

    OpenAIRE

    Mr. Shakti Prasanna Khadanga*; Nitish Kumar; Milind Kumar Singh; L. Raj Kumar

    2016-01-01

    Hydro power plant is the source of renewable energy which leads to reduction in burning of fossil fuels. So the environment is no longer polluted. This project depicts how sediment erosion occurs in Kaplan turbine and the various components of Kaplan turbine where actually erosion takes place. It reduces efficiency [7] and life of hydro power turbine but also causes problems in operations and maintenance. We conducted some necessary test on Kaplan turbine in fluid power laboratory. We are d...

  2. Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites for Turbine Engine Applications

    Science.gov (United States)

    Zhu, Dongming

    2018-01-01

    Ceramic materials play increasingly important roles in aerospace applications because ceramics have unique properties, including high temperature capability, high stiffness and strengths, excellent oxidation and corrosion resistance. Ceramic materials also generally have lower densities as compared to metallic materials, making them excellent candidates for light-weight hot-section components of aircraft turbine engines, rocket exhaust nozzles, and thermal protection systems for space vehicles when they are being used for high-temperature and ultra-high temperature ceramics applications. Ceramic matrix composites (CMCs), including non-oxide and oxide CMCs, are also recently being incorporated in gas turbine engines for high pressure and high temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods, compositions and microstructures, the relatively low fracture toughness of the ceramic materials, still remain the challenging factors for ceramic component design, validation, life prediction, and thus broader applications. This ceramic material section paper presents an overview of aerospace ceramic materials and their characteristics. A particular emphasis has been placed on high technology level (TRL) enabling ceramic systems, that is, turbine engine thermal and environmental barrier coating systems and non-oxide type SiC/SiC CMCs. The current status and future trend of thermal and environmental barrier coatings and SiC/SiC CMC development and applications are described.

  3. Fe-MIL-101 exhibits selective cytotoxicity and inhibition of angiogenesis in ovarian cancer cells via downregulation of MMP.

    Science.gov (United States)

    Wang, Jiaqiang; Chen, Daomei; Li, Bin; He, Jiao; Duan, Deliang; Shao, Dandan; Nie, Minfang

    2016-05-18

    Though metal-organic frameworks (MOFs) have inspired potential applications in biomedicine, cytotoxicity studies of MOFs have been relatively rare. Here we demonstrate for the first time that an easily available MOF, Fe-MIL-101, possesses intrinsic activity against human SKOV3 ovarian cancer cells and suppress the proliferation of SKOV3 cells (IC50 = 23.6 μg mL(-1)) and normal mouse embryonic fibroblasts (BABL-3T3, IC50 = 78.3 μg mL(-1)) cells. It was more effective against SKOV3 cells than typical anticancer drugs such as artesunate (ART, IC50 = 96.9 μg mL(-1)) and oxaliplatin (OXA, IC50 = 64.4 μg mL(-1)), but had less effect on normal BABL-3T3 cells compared with ART (IC50 = 36.6 μg mL(-1)) and OXA (IC50 = 13.8 μg mL(-1)). Fe-MIL-101 induced apoptosis of human umbilical vein endothelial cells (HUVECs) via G0/G1 cell cycle arrest and decreased the mitochondrial membrane potential in HUVECs and induced apoptosis. Furthermore, Fe-MIL-101 exhibited stronger antiangiogenic effects in HUVEC cells than antiangiogenic inhibitor (SU5416) via downregulation the expression of MMP-2/9. Our results reveal a new role of Fe-MIL-101 as a novel, non-toxic anti-angiogenic agent that restricted ovarian tumour growth. These findings could open a new avenue of using MOFs as potential therapeutics in angiogenesis-dependent diseases, including ovarian cancer.

  4. Development of 30-pin connectors for electronic modules of C and I systems for NPP's confirming to customized MIL STD-1344 requirements

    International Nuclear Information System (INIS)

    Marathe, P.P.; Madala, Kalyan C.; Ramakrishna, P.

    2014-01-01

    The electrical connectors form an important constituent of C and I system where customized circuits and hardware is required to be configured meeting the Nuclear Power Plant regulatory requirements. C and I hardware has to handle multiple hundreds of I/O's and the system architectures are made in modular construction having C and I system hardware packaged in plug-in electronic modules in the required form factors. In addition if the system has to satisfy customized JSS 55555 requirements meeting stringent shock, vibration and environmental specifications, the connectors used for the electronic modules shall meet the customized MIL STD-1344 requirements and meet reliability target for the system. 30-pin type special connectors for electronic modules and 2x30 (60) pin field cabling connectors were developed meeting the required qualification specifications. (author)

  5. Ceramics technology for advanced industrial gas turbines

    International Nuclear Information System (INIS)

    Anson, D.; Sheppard, W.J.; DeCorso, M.; Parks, W.J. Jr.

    1991-01-01

    Recent developments in the fabrication of high strength ceramic materials and in their application to automotive and aerospace gas turbine engines may lead also to significant improvements in the performance of industrial gas turbines. This paper presents a brief review of the improvements projected in a study initiated by the U.S. Department of Energy. The future costs of power generated by small gas turbines (up to 25 MW) are predicted, as well as the potential for fuel savings. Gas turbines in this size range are used extensively for gas compression and for cogeneration, as well as in a variety of more diverse applications. This paper includes results of analyses of the ways in which changes in gas turbine cost and performance are likely to affect market penetration. These results lead to predictions of future savings in U.S. fuel consumption in the industrial sector that would result. The paper also presents a brief overview of the scope of a suggested R and D program, with an appropriate schedule, which would provide a technical basis for achieving the projected results. Important parts of this program would cover ceramic design and fabrication technology, engine development and demonstration, and combustion technology

  6. Power fluctuations suppression of stand-alone hybrid generation combining solar photovoltaic/wind turbine and fuel cell systems

    International Nuclear Information System (INIS)

    Ahmed, Nabil A.; Miyatake, Masafumi; Al-Othman, A.K.

    2008-01-01

    In this paper a hybrid energy system combining variable speed wind turbine, solar photovoltaic and fuel cell generation systems is presented to supply continuous power to residential power applications as stand-alone loads. The wind and photovoltaic systems are used as main energy sources while the fuel cell is used as secondary or back-up energy source. Three individual dc-dc boost converters are used to control the power flow to the load. A simple and cost effective control with dc-dc converters is used for maximum power point tracking and hence maximum power extracting from the wind turbine and the solar photovoltaic systems. The hybrid system is sized to power a typical 2 kW/150 V dc load as telecommunication power plants or ac residential power applications in isolated islands continuously throughout the year. The results show that even when the sun and wind are not available; the system is reliable and available and it can supply high-quality power to the load. The simulation results which proved the accuracy of the proposed controllers are given to demonstrate the availability of the proposed system in this paper. Also, a complete description of the management and control system is presented

  7. Fabrication Parameters of Asymmetric Mixed Matrix Matrimid-MIL-53/PMHS Membrane for CO2/CH4 Separation

    Directory of Open Access Journals (Sweden)

    Fatereh Dorosti

    2017-03-01

    Full Text Available Asymmetrically mixed matrix Matrimid-MIL-53 membranes with silicone cover layer were fabricated. For better understanding of membrane fabrication process, three main parameters of fabrication, Matrimid concentration, silicone concentration and weight percentage of metal organic framework (MIL-53 particles, were optimized by an experimental design method. Cross-section SEM images were used to study the membrane structure and polymer-particles interface. Moreover, thermal resistance of the membranes and the existence of various bonds in them were investigated by FTIR and TGA analyses. The results showed that membranes had porous structure with finger-like morphology. At low and moderate percentages of particles, there were no non-selective voids observed at polymer-particles interface. The thermal resistance of membranes increased with the increase of MIL-53 weight percentage and the destruction temperature of polymer increased from 410°C to 450°C. The permeability tests results showed that the Matrimid (20% wt-MIL-53(15% wt/PMHS (10%wt membrane exhibited the highest level of CO2/CH4 selectivity (23.6. However, in the membrane with 30 wt% particles loading, selectivity decreased due to particles agglomeration and void formation. The experimental design results showed that the concentration of silicone in covering solution had significant effect. CO2 and CH4 permeability decreased and ideal selectivity of CO2/CH4 increased with silicone concentration enhancement. Although the Matrimid concentration had a little effect on CO2/CH4 ideal selectivity, its enhancement increased the selectivity of the gases. The optimization results showed the membrane with 17.8% of Matrimd polymer, 13.2% of silicone polymer and 15.5 wt% of MIL-53 particle displayed the highest selectivity and CO2 permeability.

  8. Hydrogen storage behaviors of Ni-doped graphene Oxide/MIL-101 hybrid composites.

    Science.gov (United States)

    Lee, Seul-Yi; Park, Soo-Jin

    2013-01-01

    In this work, Ni-doped graphene oxide/MIL-101 hybrid composites (Ni--GO/MIL) were prepared to investigate their hydrogen storage behaviors. Ni--GO/MIL was synthesized by adding Ni--GO in situ during the synthesis of MIL-101 using a hydrothermal process, which was conducted by conventional convection heating with Cr(III) ion as a metal center and telephthalic acid as organic ligands. The crystalline structures and morphologies were measured by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The specific surface area and micropore volume were investigated by N2/77 K adsorption isotherms using the Brunauer-Emmett-Teller (BET) method and Dubinin-Radushkevic (D-R) equation, respectively. The hydrogen storage capacity was investigated by BEL-HP at 77 K and 1 bar. The obtained results show that Ni--GO/MIL presents new directions for achieving novel hybrid materials with higher hydrogen storage capacity.

  9. STUDY ON DISCHARGE HEAT UTILIZATION OF 250 MWe PCMSR TURBINE SYSTEM FOR DESALINATION USING MODIFIED MED

    Directory of Open Access Journals (Sweden)

    Andang Widiharto

    2015-03-01

    Full Text Available PCMSR (Passive Compact Molten Salt Reactor is one type of Advanced Nuclear Reactors. The PCMSR has benefit charasteristics of very efficient fuel use, high safety charecteristic as well as high thermodinamics efficiency. This is due to its breeding capability, inherently safe characteristic and totally passive safety system. The PCMSR design consists of three module, i.e. reactor module, turbine module and fuel management module. Analysis in performed by parametric calculation of the turbine system to calculate the turbine system efficiency and the hat available for desalination. After that the mass and energi balance of desalination process are calculated to calculate the amount of distillate produced and the amount of feed sea water needed. The turbine module is designed to be operated at maximum temperature cycle of 1373 K (1200 0C and minimum temperature cycle of 333 K (60 0K. The parametric calculation shows that the optimum turbine pressure ratio is 4.3 that gives the conversion efficiency of 56 % for 4 stages turbine and 4 stages compressor and equiped with recuperator. In this optimum condition, the 250 MWe PCMSR turbine system produces 196 MWth of waste heat with the temperature of cooling fluid in the range from 327 K (54 0C to 368 K (92 0C. This waste heat can be utilized for desalination. By using MMED desalination system, this waste heat can be used to produce fresh water (distillate from sea water feed. The amount of the destillate produced is 48663 ton per day by using 15 distillation effects. The performance ratio value is 2.8727 kg/MJ by using 15 distillation effects. Keywords: PCMSR, discharged heat, MMED desalination   PCMSR (Passive Compact Molten Salt Reactor merupakan salah satu tipe dari Reaktor Nuklir Maju. PCMSR memiliki keuntungan berupa penggunaan bahan bakar yang sangat efisisien, sifat keselamatan tinggi dan sekaligus efisiensi termodinamika yang tinggi. Hal ini disebabkan oleh kemampuan pembiakan bahan bakar, sifat

  10. Experimental study of cyclone combustion of wood powder for gas turbine applications

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksson, J; Kallner, P [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Technology

    1994-12-31

    The objective of the present project is to study to what extent various elements in the ash, in particular Na and K, can be separated in the first stage of a two-stage combustor, with the first stage being a separation cyclone. Mass balances for the elements in the ash are determined from the fuel flow, the char collected from the cyclone bottom and particles in the combustor outlet gas. Experiments have been carried out at atmospheric pressure for wood powder feeding rates of 5-21 kg/h. The conditions in the cyclone have been kept fuel rich. The gas outlet temperature from this stage has been varied from 750 to 1150 deg C through control of the air/fuel ratio. Second stage combustion is achieved in a separate combustor. The results show that significant separation of Na and K is possible, and that the separation is improved when the cyclone temperature is kept low. At an outlet temperature of around 800 deg C about 60% of the input alkali is found in the char residue. At 1000 deg C, only 30% is separated. Mass balances show that about 80% of the ash elements in the fuel input are identified in char and fly ash. With 60% separation of Na and K the content of these elements in the gas would be less than 7 mg/kg gas for a turbine inlet temperature of 850 deg C. The total dust load would be 30-60 mg/kg gas. Ash sticking temperature tests on bottom char and fly ash show no ash sticking up to 1040 deg C. It is therefore concluded that the ash may pass through the turbine as solid particles and cause minimal deposits or corrosion. 15 refs

  11. Experimental study of cyclone combustion of wood powder for gas turbine applications

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksson, J.; Kallner, P. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Technology

    1993-12-31

    The objective of the present project is to study to what extent various elements in the ash, in particular Na and K, can be separated in the first stage of a two-stage combustor, with the first stage being a separation cyclone. Mass balances for the elements in the ash are determined from the fuel flow, the char collected from the cyclone bottom and particles in the combustor outlet gas. Experiments have been carried out at atmospheric pressure for wood powder feeding rates of 5-21 kg/h. The conditions in the cyclone have been kept fuel rich. The gas outlet temperature from this stage has been varied from 750 to 1150 deg C through control of the air/fuel ratio. Second stage combustion is achieved in a separate combustor. The results show that significant separation of Na and K is possible, and that the separation is improved when the cyclone temperature is kept low. At an outlet temperature of around 800 deg C about 60% of the input alkali is found in the char residue. At 1000 deg C, only 30% is separated. Mass balances show that about 80% of the ash elements in the fuel input are identified in char and fly ash. With 60% separation of Na and K the content of these elements in the gas would be less than 7 mg/kg gas for a turbine inlet temperature of 850 deg C. The total dust load would be 30-60 mg/kg gas. Ash sticking temperature tests on bottom char and fly ash show no ash sticking up to 1040 deg C. It is therefore concluded that the ash may pass through the turbine as solid particles and cause minimal deposits or corrosion. 15 refs

  12. FY 2000 report on the research cooperation project - Research cooperation in developmental support for oil producing countries. Development of the new field of usage of Orinoco oil for fuel of gas turbine combined power generation; 2000 nendo san'yukoku kaihatsu shien kenkyu kyoryoku jigyo seika hokokusho. Gasu tabin fukugo hatsuden nenryo muke Orinoko oil no shin yoto kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    For the purpose of spreading the usage of Orinoco crude oil which is suffering from sluggishness in the export and heightening the economical efficiency in Venezuela, research cooperation was made for a project for reduction of the power cost and environmental loads in Japan by producing the advanced gas turbine use fuel oil from Orinoco oil and exporting it to Japan. In this project, conducted were the technical verification that the gas turbine use fuel oil (GTF) can be produced from Orinoco oil and the economical verification based on the result thereof. As a result of the technical verification, it was confirmed that from the Orinoco crude oil which is heavy, high in sulfur and high in heavy metal concentration, a refined oil satisfying the following properties of the advanced gas turbine fuel oil could be trial-produced using the distilling unit, SDA unit, desulfurizer and de-metaling unit: vanadium concentration: 0.5 wtppm or below; sodium + potassium concentration: 1.0 wtppm or below; viscosity: 20 cSt or below at 135 degrees C. Further, from the economical verification, the good result was obtained that the price was lower than the LNG price and the domestic price of A heavy oil/C heavy oil. (NEDO)

  13. Stall/surge dynamics of a multi-stage air compressor in response to a load transient of a hybrid solid oxide fuel cell-gas turbine system

    Science.gov (United States)

    Azizi, Mohammad Ali; Brouwer, Jacob

    2017-10-01

    A better understanding of turbulent unsteady flows in gas turbine systems is necessary to design and control compressors for hybrid fuel cell-gas turbine systems. Compressor stall/surge analysis for a 4 MW hybrid solid oxide fuel cell-gas turbine system for locomotive applications is performed based upon a 1.7 MW multi-stage air compressor. Control strategies are applied to prevent operation of the hybrid SOFC-GT beyond the stall/surge lines of the compressor. Computational fluid dynamics tools are used to simulate the flow distribution and instabilities near the stall/surge line. The results show that a 1.7 MW system compressor like that of a Kawasaki gas turbine is an appropriate choice among the industrial compressors to be used in a 4 MW locomotive SOFC-GT with topping cycle design. The multi-stage radial design of the compressor enhances the ability of the compressor to maintain air flow rate during transient step-load changes. These transient step-load changes are exhibited in many potential applications for SOFC/GT systems. The compressor provides sustained air flow rate during the mild stall/surge event that occurs due to the transient step-load change that is applied, indicating that this type of compressor is well-suited for this hybrid application.

  14. FY 1998 annual report. Research and development on ceramic gas turbine (300kW class)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Research and development have been made on a small ceramic gas turbine which is high in efficiency, low in pollutant emission, capable of corresponding to different fuels, and can be utilized in cogeneration and/or movable electric power generation systems. Fundamental researches in developing and researching heat resistant ceramic parts have been carried out on a method for fabricating turbine nozzles using heat resistant silicon nitride, improvement in accuracy in fabricating combustors using the heat resistant silicon nitride, and casting of turbine blades made from sialon. In developing the devices, researches were made on reliability of bond between a ceramic blade and a metallic disk, air-fuel ratio in a combustor, distribution of fuel concentrations, fuel injection methods, reduction of loss in a diffuser in a compressor, and matching of the diffuser with an impeller. In addition, research and development were performed on a single shaft ceramic gas turbine for cogeneration and a double shaft ceramic gas turbine. Researches were executed on reliability of ceramic materials. (NEDO)

  15. Production costs: U.S. gas turbine ampersand combined-cycle power plants

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This fourth edition of UDI's gas turbine O ampersand M cost report gives 1991 operation and maintenance expenses for over 450 US gas turbine power plants. Modeled on UDI's popular series of O ampersand M cost reports for US steam-electric plants, this report shows operator and plant name, plant year-in-service, installed capacity, 1991 net generation, total fuel expenses, total non-fuel O ampersand M expenses, total production costs, and current plant capitalization. Coverage includes over 90 percent of the utility-owned gas/combustion turbine and combined-cycle plants installed in the country

  16. MIL-100 derived nitrogen-embodied carbon shells embedded with iron nanoparticles

    Science.gov (United States)

    Mao, Chengyu; Kong, Aiguo; Wang, Yuan; Bu, Xianhui; Feng, Pingyun

    2015-06-01

    The use of metal-organic frameworks (MOFs) as templates and precursors to synthesize new carbon materials with controllable morphology and pre-selected heteroatom doping holds promise for applications as efficient non-precious metal catalysts. Here, we report a facile pyrolysis pathway to convert MIL-100 into nitrogen-doped carbon shells encapsulating Fe nanoparticles in a comparative study involving multiple selected nitrogen sources. The hierarchical porous architecture, embedded Fe nanoparticles, and nitrogen decoration endow this composite with a superior oxygen reduction activity. Furthermore, the excellent durability and high methanol tolerance even outperform the commercial Pt-C catalyst.The use of metal-organic frameworks (MOFs) as templates and precursors to synthesize new carbon materials with controllable morphology and pre-selected heteroatom doping holds promise for applications as efficient non-precious metal catalysts. Here, we report a facile pyrolysis pathway to convert MIL-100 into nitrogen-doped carbon shells encapsulating Fe nanoparticles in a comparative study involving multiple selected nitrogen sources. The hierarchical porous architecture, embedded Fe nanoparticles, and nitrogen decoration endow this composite with a superior oxygen reduction activity. Furthermore, the excellent durability and high methanol tolerance even outperform the commercial Pt-C catalyst. Electronic supplementary information (ESI) available: Material synthesis and elemental analysis, electrochemistry measurements, and additional figures. See DOI: 10.1039/c5nr02346g

  17. Thermophysical properties of composite fuel based on T grade coal (Alardinskoe deposit) and timber industry wastes

    Science.gov (United States)

    Yankovsky, S. A.; Tolokolnikov, A. A.; Gubin, V. E.; Slyusarskiy, K. V.; Zenkov, A. V.

    2017-09-01

    Results of experimental studies of composite fuel thermal decomposition processes based on T grade coal (Alardinskoe deposit) and timber industry wastes (fine wood) are presented. C, H, N, S weight percentage of each component of composite fuel was determined experimentally. It has been established that with an increase in wood concentration up to 50% in composite fuel, its energy characteristics decrease by less than 3.6%, while the yield of fly ash is 39.7%. An effective composite fuel composition has been defined as 50%/50%. Results of performed experimental studies suggest that it is possible to use composite fuels based on coal and wood at thermal power plants.

  18. Biomass fueled closed cycle gas turbine with water injection

    Energy Technology Data Exchange (ETDEWEB)

    Bardi, Silvia [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2001-01-01

    Direct water injection has been studied for a small scale ({approx} 8 MW fuel input) closed cycle gas turbine coupled to a biomass fueled CFB furnace. Two different working fluids have been considered (helium-water mixture and nitrogen-water mixture). The water injection could take place between the compressor stages, as an intercooler, or after the high pressure compressor, as an aftercooler. Both this options have been studied, varying the relative humidity levels after the injection and the temperatures of the injected water. The effect of water injection on thermodynamic properties of the working fluids has been studied, together with its effect on turbomachinery isentropic efficiency. A sensitivity analysis on turbomachinery efficiency and cycle base pressure has been included. The results from this study have been compared to the performance of a dry closed cycle without water injection. The wet cycle shows an electric efficiency in the range 29-32% with helium-water mixture as working fluid and 30-32% with nitrogen-water mixture as working fluid, while the total efficiency (referring to the fuel LHV) is always higher than 100%. In the non-injected cycle the electric efficiency is 30-35% with helium and 32-36 with nitrogen. The total efficiency in the dry case with two level intercooling and postcooling is 87-89%, while is higher than 100% when only one stage inter- and postcooling is present. Aside from this, the study also includes a sizing of the heat exchangers for the different cycle variations. The heat transfer area is very sensible to the working fluid and to the amount of injected water and it's always higher when a nitrogen-water mixture is used. Compared to the cycle without water injection, by the way, the number of heat exchangers is reduced. This will lead to a lower pressure drop and a simpler plant layout. The total heat transfer area, however, is higher in the wet cycle than in the dry cycle.

  19. Programming MIL-101Cr for selective and enhanced CO2 adsorption at low pressure by postsynthetic amine functionalization.

    Science.gov (United States)

    Khutia, Anupam; Janiak, Christoph

    2014-01-21

    MIL-101Cr fully or partially (p) postsynthetically modified with nitro (-NO2) or amino (-NH2) groups was shown to be a robust, water stable, selective and enhanced carbon dioxide (CO2) adsorption material with the amine-functionality. The highly microporous amine-modified frameworks (up to 1.6 cm(3) g(-1) total pore volume) exhibit excellent thermal stability (>300 °C) with BET surface areas up to 2680 m(2) g(-1). At 1 bar (at 273 K) the gases CO2, CH4 and N2 are adsorbed up to 22.2 wt%, 1.67 wt% and 2.27 wt%, respectively. The two amine-modified MIL-101Cr-NH2 (4) and MIL-101Cr-pNH2 (5) showed the highest gas uptake capacities in the series with high ratios for the CO2 : N2 and CO2 : CH4 selectivities (up to 119 : 1 and 75 : 1, respectively, at 273 K). Comparison with non-modified MIL-101Cr traces the favorable CO2 adsorption properties of MIL-101Cr-NH2 (4) and MIL-101Cr-pNH2 (5) to the presence of the Lewis-basic amine groups. MIL-101Cr-NH2 (4) has a high isosteric heat of adsorption of 43 kJ mol(-1) at zero surface coverage and also >23 kJ mol(-1) over the entire adsorption range, which is well above the heat of liquefaction of bulk CO2. Large CO2 uptake capacities of amine-functionalized 4 and 5, coupled with high adsorption enthalpy, high selectivities and proven long-term water stability, make them suitable candidates for capturing CO2 at low pressure from gas mixtures including the use as a CO2 sorbent from moist air.

  20. The ecological quasi-turbine, the best of the piston and the turbine[The supremacy of piston engines questioned; La suprematie du moteur a pistons remise en cause]; La quasiturbine ecologique, le meilleur du piston et de la turbine

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Hilaire, R.; Saint-Hilaire, Y.; Saint-Hilaire, G.; Saint-Hilaire, F.

    2001-07-01

    This book presents the theory that forms the basis for quasi-turbines. The quasi-turbine is the culmination of three modern engines: it takes its inspiration from the turbine, perfects the piston, and improves Wankel engines. The quasi-turbine eliminates idle time by modifying the allocations to the various engine strokes and by replacing the progressive torque impulses by plateau impulses. The quasi-turbine optimizes engine performance with an almost constant instantaneous engine torque. The quasi-turbine can be powered by different fuels, including fossil fuels, steam, solar thermal, hydrogen, or diesel. There are several constraints associated with the quasi-turbine theory, each of which was discussed in turn. The quasi-turbine consists of four carriages which support the pivots of four pivoting blades of a variable shaped rotor and which roll as a roller bearing on the interior contour wall of a skating rink-like surface. This surface is also referred to as the Saint-Hilaire confinement profile. Engine technology is improved by increasing the mobile components utilization factor, eliminating all dead times, eliminating the excessive volume during expansion or power stroke, optimizing engine time management, allowing less time for compression and exhaust strokes, and by allowing more time and volume for intake and expansion strokes. The quasi-turbine engine satisfies the criteria of the envisioned hydrogen engine of the future. figs.

  1. Solid-State NMR Spectroscopy Proves the Presence of Penta-coordinated Sc Sites in MIL-100(Sc).

    Science.gov (United States)

    Giovine, Raynald; Volkringer, Christophe; Ashbrook, Sharon E; Trébosc, Julien; McKay, David; Loiseau, Thierry; Amoureux, Jean-Paul; Lafon, Olivier; Pourpoint, Frédérique

    2017-07-18

    Advanced solid-state NMR methods and first-principles calculations demonstrate for the first time the formation of penta-coordinated scandium sites. These coordinatively unsaturated sites were shown during the thermal activation of scandium-based metal-organic frameworks (MOFs). A 45 Sc NMR experiment allows their specific observation in activated Sc 3 BTB 2 (H 3 BTB=1,3,5-tris(4-carboxyphenyl)benzene) and MIL-100(Sc) MOFs. The assignment of the ScO 5 groups is supported by the DFT calculations of NMR parameters. The presence of ScO 5 Lewis acid sites in MIL-100(Sc) explains furthermore its catalytic activity. The first NMR experiment to probe 13 C- 45 Sc distances is also introduced. This advanced solid-state NMR pulse sequence allows the demonstration of the shrinkage of the MIL-100(Sc) network when the activation temperature is raised. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Surplus electricity production in sugarcane mills using residual bagasse and straw as fuel

    International Nuclear Information System (INIS)

    Alves, Moises; Ponce, Gustavo H.S.F.; Silva, Maria Aparecida; Ensinas, Adriano V.

    2015-01-01

    The cogeneration system is one of the most important parts of sugarcane mills which use the bagasse as fuel. In the recent years, modern equipments and energy efficiency measures made possible to the sugarcane industry, the production of surplus electricity which become, besides the sugar and ethanol, a third product from the same renewable source, the sugarcane. This work analyses the surplus electric power systems for three different schemes of cogeneration system in the sugarcane industry through the simulator Thermoflow"®. The analysis is made considering both the available bagasse and sugarcane straw recovery as fuel in three different scenarios for the industrial process energy requirements. The results show that the CEST (Condensing Extraction Steam Turbine) system can have a surplus of electricity of up to four times higher than the BPST (Backpressure Steam Turbine) system. The system CEST can have an increase in surplus power above 23% and 102% for the rate of 10% and 50% of cane straw recovery in the field respectively. The BPST-C (Backpressure and Condensing Turbines) system can produce similar values of surplus electricity when compared with the system CEST, but may represent an opportunity of flexible operation of the cogeneration systems in harvest and off-seasons. - Highlights: • At least three cogeneration system options are available in sugarcane mills. • Nowadays, only steam-based cycle cogeneration systems are used in sugarcane mills. • BPST system is limited to 70 e kWh/t cane of surplus electricity production. • CEST system increases the surplus electricity up to four times than the BPST. • Operation during off-season of the BPST-C system is an advantage for this option.

  3. Anti-UV Radiation Textiles Designed by Embracing with Nano-MIL (Ti, In)-Metal Organic Framework.

    Science.gov (United States)

    Emam, Hossam E; Abdelhameed, Reda M

    2017-08-23

    Protective textiles against harmful solar radiation are quite important materials for outdoor workers to secure their skin from several diseases. Current report focuses on production of anti-ultraviolet radiation (UVR) textiles by incorporation of nano-metal-organic frameworks (n-MOFs). Two different MIL-MOFs, namely, MIL-68(In)-NH 2 and MIL-125(Ti)-NH 2 , were immediately formed inside natural textiles (cotton and silk) matrix in nano size using quite simple and one-pot process. The formation of n-MIL-MOFs inside textiles were confirmed by using electron microscope and X-ray diffraction. Different size and morphology were seen depending on textile type reflecting the textiles' chemical composition role in the nature of prepared MIL-MOFs. For MIL-68(In)-NH 2 , particles with size distribution of 70.6-44.5 nm in cotton and 81.3-52.2 nm in silk were detected, while crystalline disc of MIL-125(Ti)-NH 2 was clearly seen inside textiles. The natural textiles exhibited full UVR blocking after modification, and the UV protection factor (UPF) was linearly proportional with MIL-MOFs and metal contents. Whatever metal type, direct incorporation of MIL-MOF contents greater than or equal to 10.4 g/kg was sufficient to attain excellent UV blocking property. Although 38.5-41.0% of MIL-MOFs was lost during five washings, the washed samples showed very good blocking rate (UPF = 26.7-36.2) supporting good laundering durability.

  4. Late Bombardment of the Lunar Highlands Recorded in MIL 090034, MIL 090036 and MIL 090070 Lunar Meteorites

    Science.gov (United States)

    Park, J.; Nyquist, L. E.; Shih, C.-Y.; Herzog, G. F.; Yamaguchi, A.; Shirai, N.; Ebihara, M.; Lindsay, F. N.; Delaney, J.; Turrin, B.; hide

    2013-01-01

    The Kaguya mission detected small but widespread outcrops of nearly pure ferroan anorthosite in and around large impact basins on the Moon. Along with certain lunar rocks, highly feldspathic lunar meteorites such as MIL 090034 (M34), 090036 (M36), and 090070 (M70) may provide samples of this material. We have measured the Ar-40/Ar-39 release patterns and cosmogenic Ar-38 concentrations of several small (<200 microg) samples separated from M34,36, and 70. From petrographic observations concluded that "some of the clasts and grains experienced generations of modifications," a conclusion that we examine in light of our data.

  5. Fracture toughness of Ceramic-Fiber-Reinforced Metallic-Intermetallic-Laminate (CFR-MIL) composites

    International Nuclear Information System (INIS)

    Vecchio, Kenneth S.; Jiang, Fengchun

    2016-01-01

    Novel Ceramic-Fiber-Reinforced-Metal-Intermetallic-Laminate (CFR-MIL) composites, Ti–Al 3 Ti–Al 2 O 3 –Al, were synthesized by reactive foil sintering in air. Microstructure controlled material architectures were achieved with continuous Al 2 O 3 fibers oriented in 0° and 90° layers to form fully dense composites in which the volume fractions of all four component phases can be tailored. Bend fracture specimens were cut from the laminate plates in divider orientation, and bend tests were performed to study the fracture behavior of CFR-MIL composites under three-point and four-point bending loading conditions. The microstructures and fractured surfaces of the CFR-MIL composites were examined using optical microscopy and scanning electron microscopy to establish a correlation between the fracture toughness, fracture surface morphology and microstructures of CFR-MIL composites. The fracture and toughening mechanisms of the CFR-MIL composites are also addressed. The present experimental results indicate that the fracture toughness of CFR-MIL composites determined by three- and four-point bend loading configurations are quite similar, and increased significantly compared to MIL composites without ceramic fiber reinforcement. The interface cracking behavior is related to the volume fraction of the brittle Al 3 Ti phase and residual ductile Al, but the fracture toughness values appear to be insensitive to the ratio of these two phases. The toughness appears to be dominated by the ductility/strength of the Ti layers and the strength and crack bridging effect of the ceramic fibers.

  6. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    Science.gov (United States)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative

  7. Evaluation of electrical test conditions in MIL-M-38510 slash sheets

    Science.gov (United States)

    Sandgren, K.

    1980-08-01

    Adequacy of MIL-M-38510 slash sheet requirements for electrical test conditions in an automated test environment were evaluated. Military temperature range commercial devices of 13 types from 6 manufacturers were purchased. Software for testing these devices and for varying the test conditions was written for the Tektronix S-3260 test system. The devices were tested to evaluate the effects of pin-condition settling time, measurement sequence of the same and different D-C parameters, temperature sequence, differently defined temperature ambients, variable measurement conditions, sequence of time measurements, pin-application sequence, and undesignated pin condition ambiguity. An alternative to current tri-state enable and disable time measurements is proposed; S-3260 'open' and 'ground' conditions are characterized; and suggestions for changes in MIL-M-38510 slash sheet specifications and MIL-STD-883 test methods are proposed, both to correct errors and ambiguities and to facilitate the gathering of repeatable data on automated test equipment. Data obtained showed no sensitivity to measurement or temperature sequence nor to temperature ambient, provided that test times were not excessive. V sub ICP tests and some low current measurements required allowance for a pin condition settling time because of the test system speed. Some pin condition application sequences yielded incorrect measurements. Undefined terminal conditions of output pins were found to affect I sub OS and propagation delay time measurements. Truth table test results varied with test frequency and V sub IL for low-power Schottky devices.

  8. Study of a hybrid system using solid oxide fuel cells (SOFC) and gas turbine; Estudo de um sistema hibrido empregando celula de combustivel de oxido solido (SOFC) e turbina a gas

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Antonio Carlos Caetano de; Gallo, Giulliano Batelochi; Silveira, Jose Luz [UNESP, Guaratingueta, SP (Brazil). Faculdade de Engenharia. Dept. de Energia], e-mail: caetano@feg.unesp.br

    2004-07-01

    In this paper a hybrid solid oxide fuel cell (SOFC) system, applying a combined cycle using gas turbine for rational decentralized energy production is analyzed. The relative concepts about the fuel cell are presented, followed by some chemical and technical information such as the change of Gibbs free energy in isothermal fuel oxidation directly into electricity. This represents a very high fraction of the lower heating value (LHV) of a hydrocarbon fuel. In the next step a methodology for the study of SOFC and gas turbine system is developed, considering the electricity and steam production for a hospital. This methodology is applied to energetic analysis. Natural gas is considered as a fuel. A Sankey Diagram shows that the hybrid SOFC system is a good opportunity to strengthen the decentralized energy production in Brazil. It is necessary to consider that the cogeneration in this version also is a good technical alternative, demanding special methods of design, equipment selection and contractual deals associated to electricity and fuel supply. (author)

  9. Curation and Allocation of the New Antarctic Nakhlite, MIL03346

    Science.gov (United States)

    McBride, K. M.; Righter, K.; Satterwhite, C. E.; Schwarz, C.; Robinson, P.

    2005-01-01

    In January 2004, the ANSMET reconnaissance field team (Fig. 1) working in the Miller Range of the Transantarctic Mountains discovered a 715 g achondrite that was instantly recognized as unique. Named MIL03346, initial processing (NASA Johnson Space Center or JSC) and classification (Smithsonian Institution or SI) revealed this achondrite to be a nakhlite (Fig. 2). MIL03346 is the seventh nakhlite recognized in world collections [2], the third nakhlite returned from Antartica, and the first nakhlite in the US Antarctic collection (Table 1). The following is a summary of the steps taken in the processing and allocating of MIL 03346 and some comparisons to some other lunar and martian meteorites processed and allocated at JSC.

  10. Development, implementation and operational experience with 900 mm R1T pocket-type bearings at Oskarshamn unit 3 nuclear steam turbine generator

    International Nuclear Information System (INIS)

    Peel, P.; Roos, A.

    2015-01-01

    The Oskarshamn unit 3 nuclear steam turbine generator in Sweden is operated by OKG and, following the extensive PULS upgrade project, delivers an increased rated output of 1450 MW making it the most powerful BWR unit worldwide. Several turbine bearing incidents occurred in 2009 and 2010, which initiated a detailed root cause analysis to determine the reasons and propose appropriate mitigation measures to ensure reliable unit operation. Together with OKG, ALSTOM Power implemented a short-term solution to operate the unit over the winter period of 2010-11. Subsequently, during the annual outage in June 2011, a permanent solution involving a R1T pocket-type bearing design was installed at three shaft-line positions. Since the 1980's, R1T bearings with diameters from 250 to 670 mm have been operating in numerous full-speed (3000/3600 rpm) steam turbine generators. However, this was the first application of a R1T bearing developed at a diameter of 900 mm and for half-speed operation. This paper presents an overview of the bearing development and details the successful operational feedback gathered to date on the three installed bearings. In comparison with the three tilting pad bearing design, which has typically been used on large half-speed ALSTOM Power steam turbine generators to date, it confirms the R1T bearing design as a viable alternative. (authors)

  11. Experimental results showing the internal three-component velocity field and outlet temperature contours for a model gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC

    2011-09-01

    Full Text Available by the American Institute of Aeronautics and Astronautics Inc. All rights reserved ISABE-2011-1129 EXPERIMENTAL RESULTS SHOWING THE INTERNAL THREE-COMPONENT VELOCITY FIELD AND OUTLET TEMPERATURE CONTOURS FOR A MODEL GAS TURBINE COMBUSTOR BC Meyers*, GC... identifier c Position identifier F Fuel i Index L (Combustor) Liner OP Orifice plate Introduction There are often inconsistencies when comparing experimental and Computational Fluid Dynamics (CFD) simulations for gas turbine combustors [1...

  12. Application of Metal-Organic Framework Nano-MIL-100(Fe) for Sustainable Release of Doxycycline and Tetracycline.

    Science.gov (United States)

    Taherzade, Seyed Dariush; Soleimannejad, Janet; Tarlani, Aliakbar

    2017-08-06

    Nanostructures of MIL-100 were synthesized and used as a drug delivery platform for two members of the Tetracycline family. Doxycycline monohydrate (DOX) and Tetracycline hydrochloride (TC) were loaded separately on nano-MIL-100 (nanoparticles of drug@carrier were abbreviated as DOX@MIL-100 and TC@MIL-100). Characterizations were carried out using FT-IR, XRD, BET, DLS, and SEM. The FT-IR spectra revealed that the drugs were loaded into the framework of the carrier. The XRD patterns of DOX@MIL-100 and TC@MIL-100 indicated that no free DOX or TC were present. It could be concluded that the drugs are well dispersed into the pores of nano-MIL-100. The microporosity of the carrier was confirmed by BJH data. BET analysis showed a reduction in the free surface for both DOX@MIL-100 and TC@MIL-100. The release of TC and DOX was investigated, and it was revealed that MIL-100 mediated the drug solubility in water, which in turn resulted in a decrease in the release rate of TC (accelerating in DOX case) without lowering the total amount of released drug. After 48 h, 96 percent of the TC was sustain released, which is an unprecedented amount in comparison with other methods.

  13. Pitchcontrol of wind turbines using model free adaptivecontrol based on wind turbine code

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Chen, Zhe; Cheng, Ming

    2011-01-01

    value is only based on I/O data of the wind turbine is identified and then the wind turbine system is replaced by a dynamic linear time-varying model. In order to verify the correctness and robustness of the proposed model free adaptive pitch controller, the wind turbine code FAST which can predict......As the wind turbine is a nonlinear high-order system, to achieve good pitch control performance, model free adaptive control (MFAC) approach which doesn't need the mathematical model of the wind turbine is adopted in the pitch control system in this paper. A pseudo gradient vector whose estimation...... the wind turbine loads and response in high accuracy is used. The results show that the controller produces good dynamic performance, good robustness and adaptability....

  14. Certification Report: Army Aviation Alternative Fuels Certification Program

    Science.gov (United States)

    2016-08-01

    Fuel Injector Coking Rig Description • Combustor Section Rig • Full Annular Rig • Sea Level and Simulated Altitude Engine Testing...purpose requirements in ASTM D4054 and MIL-HDBK- 510 for aviation fuel, as modified by the tri-service group to include diesel engine-related properties...atomized and vaporized when passing through the fuel nozzles into the combustor. In the combustor, it is vaporized, ignited and burned to provide the

  15. Modernization of turbines in fossil and nuclear power plants

    International Nuclear Information System (INIS)

    Harig, T.; Oeynhausen, H.

    2004-01-01

    Steam turbine power plants have a big share in power generation world-wide. In view of their age structure, they offer the biggest potential for increasing power plant performance, availability and environmental protection. Modernisation and replacement of key components by improved components will reduce fuel consumption and improve power plant performance by higher capacity, higher power, shorter start-up and shutdown times, and reduced standstill times. Modern steam turbine bladings will result in further improvements without additional fuel consumption. (orig.)

  16. A requiem for AdS4×C P3 fermionic self-T duality

    Science.gov (United States)

    O'Colgáin, E.; Pittelli, A.

    2016-11-01

    Strong evidence for dual superconformal symmetry in N =6 superconformal Chern-Simons theory has fueled expectations that the AdS /CFT dual geometry AdS4×C P3 is self-dual under T duality. We revisit the problem to identify commuting bosonic and fermionic isometries in a systematic fashion and show that fermionic T duality, a symmetry originally proposed by Berkovits and Maldacena, inevitably leads to a singularity in the dilaton transformation. We show that TsT deformations commute with fermionic T duality and comment on T duality in the corresponding sigma model. Our results rule out self-duality based on fermionic T duality for AdS4×C P3 or its TsT deformations but leave the door open for new possibilities.

  17. Presentation summary: Gas Turbine - Modular Helium Reactor (GT-MHR)

    International Nuclear Information System (INIS)

    2001-01-01

    Numerous prototypes and demonstration plants have been constructed and operated beginning with the Dragon plant in the early 1960s. The MHTGR was the U.S. developed modular plant and underwent pre application review by NRC. The GT-MHR represents a further refinement on this concept with the steam cycle being replaced by a closed loop gas turbine (Brayton) cycle. Modular gas reactors and the GT-MHR represent a fundamental shift in reactor design and safety philosophy. The reactor system is contained in a 3 vessel, side-by-side arrangement. The reactor and a shutdown cooling system are in one vessel, and the gas turbine based power conversion system, including the generator, in a second parallel vessel. A more detailed look at the system shows the compact arrangement of gas turbine, compressors, recuperator, heat exchanges, and generator. Fueled blocks are stacked in three concentric rings with inert graphite blocks making up the inner and outer reflectors. Operating control rods are located outside the active core while startup control rods and channels for reserve shutdown pellets are located near the core center. Ceramic coated fuel is the key to the GT-MHR's safety and economics. A kernel of Uranium oxycarbide (or UO 2 ) is placed in a porous carbon buffer and then encapsulated in multiple layers of pyrolytic carbon and silicon carbide. These micro pressure vessels withstand internal pressures of up to 2,000 psi and temperatures of nearly 2,000 C providing extremely resilient containment of fission products under both normal operating and accident conditions. The fuel particles are blended in carbon pitch, forming fuel rods, and then loaded into holes within large graphite fuel elements. Fuel elements are stacked to form the core. Fuel particle testing in has repeatedly demonstrated the high temperature resilience of coated particle fuel to temperature approaching 2,000 C. As an conservative design goal, GT-MHR has been sized to keep maximum fuel temperatures

  18. Computational Fluid Dynamics based Fault Simulations of a Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    Park, Kyoo-seon; Asim, Taimoor; Mishra, Rakesh

    2012-01-01

    Due to depleting fossil fuels and a rapid increase in the fuel prices globally, the search for alternative energy sources is becoming more and more significant. One of such energy source is the wind energy which can be harnessed with the use of wind turbines. The fundamental principle of wind turbines is to convert the wind energy into first mechanical and then into electrical form. The relatively simple operation of such turbines has stirred the researchers to come up with innovative designs for global acceptance and to make these turbines commercially viable. Furthermore, the maintenance of wind turbines has long been a topic of interest. Condition based monitoring of wind turbines is essential to maintain continuous operation of wind turbines. The present work focuses on the difference in the outputs of a vertical axis wind turbine (VAWT) under different operational conditions. A Computational Fluid Dynamics (CFD) technique has been used for various blade configurations of a VAWT. The results indicate that there is significant degradation in the performance output of wind turbines as the number of blades broken or missing from the VAWT increases. The study predicts the faults in the blades of VAWTs by monitoring its output.

  19. Performance analysis of a biogas-fueled micro gas turbine using a validated thermodynamic model

    International Nuclear Information System (INIS)

    Nikpey Somehsaraei, Homam; Mansouri Majoumerd, Mohammad; Breuhaus, Peter; Assadi, Mohsen

    2014-01-01

    This study focuses on an investigation of the fuel flexibility and performance analysis of micro gas turbines (MGTs) in biogas application. For this purpose, a steady state thermodynamic model of an MGT was developed and validated by experimental data obtained from a 100 kW MGT test rig. Quite good agreement was obtained between the measurements and the simulation results. A wide range of biogas compositions with varying methane content was simulated for this study. Necessary minor modifications to fuel valves and compressor were assumed to allow engine operation with the simulated biogas composition. The effects of biogas on the engine performance were fully analyzed at various operational conditions by changing the power demand and also the ambient temperature. Compared to the natural gas fueled case, the mass flow and pressure ratio in the MGT decreased, which resulted in a slight reduction of the surge margin. This effect became more severe, however, at low power loads and/or low ambient temperatures. For all operational conditions, the electrical efficiency decreased with decreasing methane content of the biogas. The results also indicated the negative effect of the biogas on the heat recovery in the recuperator, which lowered as the methane content of the fuel decreased. - Highlights: •The MGT performance and fuel flexibility were investigated in biogas application. •A thermodynamic model of the MGT was developed and validated with experimental data. •Changes in performance and operating conditions of components were studied. •The results showed the viability of the MGT for use in biogas application

  20. Determination of the isotopic (C-13/C-12) discrimination by terrestrial biology from a global network of observations

    International Nuclear Information System (INIS)

    Bakwin, P.S.; Tans, P.P.; White, J.W.C.; Andres, R.J.

    1998-01-01

    Data from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory global air sampling network are analysed in order to extract the signatures of isotopic (C-13/C-12) discrimination by the terrestrial iota and of fossil fuel combustion for the regions surrounding the sampling sites. Measurements of carbon monoxide (CO) are used to give an estimate of the contribution of fossil fuel combustion to the short-term variability of carbon dioxide. In general, variations of CO 2 are more strongly dominated by biological exchange, so the isotopic signature of fossil fuel combustion, while consistent with inventory estimates, is not well constrained by the observations. Conversely, results for isotope discrimination by the terrestrial biosphere are not strongly dependent on assumptions about fossil fuel combustion. The analysis appears valid primarily for stations fairly near continental source/sink regions, particularly for midlatitude regions of the northern hemisphere. For these stations a mean discrimination of -16.8 per mil (%) is derived, with site-to-site variability of 0.8% and with little or no consistent latitudinal gradient

  1. Fatigue and creep cracking of nickel alloys for 700 C steam turbines

    International Nuclear Information System (INIS)

    Berger, C.; Granacher, J.; Thoma, A.; Roesler, J.; Del Genovese, D.

    2001-01-01

    Four materials of the types Inconel 706 (two heat treatment states), Inconel 617, and Waspaloy were tested as shaft materials for 700 to 720 C steam turbines. At an extrapolation time ratio of 10, Waspaloy was expected to have the highest creep strength (about 270 MPa at 700 C), with values of about 140 MPa at 700 C for Inconel 617. A preliminary evaluation of the 700 C creep rupture tests showed the highest creep rupture resistance for Inconel 617, followed by Waspaloy and Inconel 706 [de

  2. The environmentally friendly technology for bio fuel production

    International Nuclear Information System (INIS)

    Bekers, M.; Danilevics, A.; Guriniece, E.; Gulbis, V.

    2003-01-01

    . Friendly for environment and sustainable development of this region will be guarantied. Conclusion: The presented system can produce followed quantities of products per year: Fuel ethanol 21,37 milj.l, bio diesel 20016,7 t, distillery dried grain with soluble 30300 t, meat 74458,4 t, raw glycerol 3488,8 t, greenhouse vegetables 6452,6 t, honey 3750 t, spirit beverages 27,5 milj. l, neutral ethanol 1,0 mil.l, pressed CO 2 1800 t

  3. Multifunctional polyoxometalates encapsulated in MIL-100(Fe): highly efficient photocatalysts for selective transformation under visible light.

    Science.gov (United States)

    Liang, Ruowen; Chen, Rui; Jing, Fenfen; Qin, Na; Wu, Ling

    2015-11-07

    H3PMo12O40 molecules have been successfully encapsulated in the cavities of MIL-100(Fe) via a facile hydrothermal method (denoted as HPMo@MIL-100(Fe)). A series of characterization has corroborated the insertion of H3PMo12O40 within the cavities of MIL-100(Fe). The resulting HPMo@MIL-100(Fe) nanocomposites have exhibited much higher photoactivity than the original-MIL-100(Fe) toward the photocatalytic selective oxidation of benzylic alcohols and the reduction of Cr(vi) under visible light irradiation (λ≥ 420 nm). The higher photoactivity of HPMo@MIL-100(Fe) can be attributed to the integrative effect of enhanced light absorption intensity and more efficient separation of photogenerated electron-hole pairs. The host porous structure of MIL-100(Fe) can achieve a uniform composition with H3PMo12O40, which is significantly important for producing highly reactive dispersed H3PMo12O40 molecules and enhancing the photocatalytic activity of HPMo@MIL-100(Fe) nanocomposites. And the immobilized H3PMo12O40 molecules are more convenient for recycling. Importantly, almost no Fe and Mo ions leach from the MIL-100(Fe) during the reaction, which verifies the photostability of the HPMo@MIL-100(Fe). In addition, possible photocatalytic redox reaction mechanisms have been investigated.

  4. Shared technologies in the development of the Titan 250 trademark gas turbine system; Anwendung bewaehrter Technologien bei der Entwicklung des Titan 250 trademark Gasturbinensystems

    Energy Technology Data Exchange (ETDEWEB)

    Stang, Ulrich; Knodle, Mark; Novaresi, Mark [Solar Turbines, Inc., San Diego, CA (United States); Ottoboni, Luigi [Turbomach SA, Riazzino (Switzerland)

    2010-07-01

    The Titan 250 gas turbine and C85 centrifugal gas compressor are the latest additions to the Solar Turbines product family. These new products leverage core technologies that have been developed and proven in several other well-established products. The Titan 250 gas turbine is a conservative hybrid design grounded in advanced aerodynamic, thermal and mechanical design tools and methodologies. It is ISO rated at 22.4 MW (30,000 HP), with a best-in-class shaft efficiency of 40% reducing fuel costs and emissions. The engine is a two-shaft design that includes a 16-stage axial flow compressor (PR 24:1), a dry low emissions combustor (<15 ppmv NOx), a two-stage gas producer turbine operating at a firing temperature of 1200 C (2200 F), and a three-stage, maximum efficiency, fully shrouded power turbine. (orig.)

  5. Fuel Quality/Processing Study. Volume II. Appendix, Task I, literature survey

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J B; Bela, A; Jentz, N E; Klumpe, H W; Kessler, R E; Kotzot, H T; Loran, B I

    1981-04-01

    This activity was begun with the assembly of information from Parsons' files and from contacts in the development and commercial fields. A further more extensive literature search was carried out using the Energy Data Base and the American Petroleum Institute Data Base. These are part of the DOE/RECON system. Approximately 6000 references and abstracts were obtained from the EDB search. These were reviewed and the especially pertinent documents, approximately 300, were acquired in the form of paper copy or microfiche. A Fuel Properties form was developed for listing information pertinent to gas turbine liquid fuel properties specifications. Fuel properties data for liquid fuels from selected synfuel processes, deemed to be successful candidates for near future commercial plants were tabulated on the forms. The processes selected consisted of H-Coal, SRC-II and Exxon Donor Solvent (EDS) coal liquefaction processes plus Paraho and Tosco shale oil processes. Fuel properties analyses for crude and distillate syncrude process products are contained in Section 2. Analyses representing synthetic fuels given refinery treatments, mostly bench scale hydrotreating, are contained in Section 3. Section 4 discusses gas turbine fuel specifications based on petroleum source fuels as developed by the major gas turbine manufacturers. Section 5 presents the on-site gas turbine fuel treatments applicable to petroleum base fuels impurities content in order to prevent adverse contaminant effects. Section 7 relates the environmental aspects of gas turbine fuel usage and combustion performance. It appears that the near future stationary industrial gas turbine fuel market will require that some of the synthetic fuels be refined to the point that they resemble petroleum based fuels.

  6. Ceramics for Turbine Engine Applications.

    Science.gov (United States)

    1980-03-01

    permet de travailler en compression. 2 - LES TURBINES CONTRAROTATIVES Connues depuis plus de 50 ans dsns lea turbines A vapeur (A grilles radiales) lea...AD-AO87 594 ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT--ETC F/6 11/2 CERAMICS FOR TURBINE ENGINE APPICATIONS.(U) MAR 8G H M GURTE, J...for Turbine Engine Applications ( X.,, ~LAJ DISTRIBUTION AND AVAILABILITY Ths ai’-t~ ~ru O ACK COVER forp"~ ~So’ 8 6 0 40 NORTH ATLANTIC TREATY

  7. Polycyclic aromatic hydrocarbon emissions from the combustion of alternative fuels in a gas turbine engine.

    Science.gov (United States)

    Christie, Simon; Raper, David; Lee, David S; Williams, Paul I; Rye, Lucas; Blakey, Simon; Wilson, Chris W; Lobo, Prem; Hagen, Donald; Whitefield, Philip D

    2012-06-05

    We report on the particulate-bound polycyclic aromatic hydrocarbons (PAH) in the exhaust of a test-bed gas turbine engine when powered by Jet A-1 aviation fuel and a number of alternative fuels: Sasol fully synthetic jet fuel (FSJF), Shell gas-to-liquid (GTL) kerosene, and Jet A-1/GTL 50:50 blended kerosene. The concentration of PAH compounds in the exhaust emissions vary greatly between fuels. Combustion of FSJF produces the greatest total concentration of PAH compounds while combustion of GTL produces the least. However, when PAHs in the exhaust sample are measured in terms of the regulatory marker compound benzo[a]pyrene, then all of the alternative fuels emit a lower concentration of PAH in comparison to Jet A-1. Emissions from the combustion of Jet A-1/GTL blended kerosene were found to have a disproportionately low concentration of PAHs and appear to inherit a greater proportion of the GTL emission characteristics than would be expected from volume fraction alone. The data imply the presence of a nonlinear relation between fuel blend composition and the emission of PAH compounds. For each of the fuels, the speciation of PAH compounds present in the exhaust emissions were found to be remarkably similar (R(2) = 0.94-0.62), and the results do provide evidence to support the premise that PAH speciation is to some extent indicative of the emission source. In contrast, no correlation was found between the PAH species present in the fuel with those subsequently emitted in the exhaust. The results strongly suggests that local air quality measured in terms of the particulate-bound PAH burden could be significantly improved by the use of GTL kerosene either blended with or in place of Jet A-1 kerosene.

  8. Solid electrolyte fuel cells

    Science.gov (United States)

    Isaacs, H. S.

    Progress in the development of functioning solid electrolyte fuel cells is summarized. The solid electrolyte cells perform at 1000 C, a temperature elevated enough to indicate high efficiencies are available, especially if the cell is combined with a steam generator/turbine system. The system is noted to be sulfur tolerant, so coal containing significant amounts of sulfur is expected to yield satisfactory performances with low parasitic losses for gasification and purification. Solid oxide systems are electrically reversible, and are usable in both fuel cell and electrolysis modes. Employing zirconium and yttrium in the electrolyte provides component stability with time, a feature not present with other fuel cells. The chemical reactions producing the cell current are reviewed, along with materials choices for the cathodes, anodes, and interconnections.

  9. Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Eteman, Shahrokh

    2013-06-30

    Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

  10. Molecular simulations of a CO2/CO mixture in MIL-127

    Science.gov (United States)

    Chokbunpiam, Tatiya; Fritzsche, Siegfried; Parasuk, Vudhichai; Caro, Jürgen; Assabumrungrat, Suttichai

    2018-03-01

    Adsorption and diffusion of an equimolar feed mixture of CO2 and CO in MIL-127 at three different temperatures and pressures up to 12 bar were investigated by molecular simulations. The adsorption was simulated using Gibbs-Ensemble Monte Carlo (GEMC). The structure of the adsorbed phase and the diffusion in the MIL were investigated using Molecular Dynamics (MD) simulations. The adsorption selectivity of MIL-127 for CO2 over CO at 233 K was about 15. When combining adsorption and diffusion selectivities, a membrane selectivity of about 12 is predicted. For higher temperatures, both adsorption and diffusion selectivity are found to be smaller.

  11. Failure probabilities of SiC clad fuel during a LOCA in public acceptable simple SMR (PASS)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho, E-mail: euo@kaist.ac.kr; Kim, Ho Sik, E-mail: hskim25@kaist.ac.kr; NO, Hee Cheon, E-mail: hcno@kaist.ac.kr

    2015-10-15

    Highlights: • Graceful operating conditions of SMRs markedly lower SiC cladding stress. • Steady-state fracture probabilities of SiC cladding is below 10{sup −7} in SMRs. • PASS demonstrates fuel coolability (T < 1300 °C) with sole radiation in LOCA. • SiC cladding failure probabilities of PASS are ∼10{sup −2} in LOCA. • Cold gas gap pressure controls SiC cladding tensile stress level in LOCA. - Abstract: Structural integrity of SiC clad fuels in reference Small Modular Reactors (SMRs) (NuScale, SMART, IRIS) and a commercial pressurized water reactor (PWR) are assessed with a multi-layered SiC cladding structural analysis code. Featured with low fuel pin power and temperature, SMRs demonstrate markedly reduced incore-residence fracture probabilities below ∼10{sup −7}, compared to those of commercial PWRs ∼10{sup −6}–10{sup −1}. This demonstrates that SMRs can serve as a near-term deployment fit to SiC cladding with a sound management of its statistical brittle fracture. We proposed a novel SMR named Public Acceptable Simple SMR (PASS), which is featured with 14 × 14 assemblies of SiC clad fuels arranged in a square ring layout. PASS aims to rely on radiative cooling of fuel rods during a loss of coolant accident (LOCA) by fully leveraging high temperature tolerance of SiC cladding. An overarching assessment of SiC clad fuel performance in PASS was conducted with a combined methodology—(1) FRAPCON-SiC for steady-state performance analysis of PASS fuel rods, (2) computational fluid dynamics code FLUENT for radiative cooling rate of fuel rods during a LOCA, and (3) multi-layered SiC cladding structural analysis code with previously developed SiC recession correlations under steam environments for both steady-state and LOCA. The results show that PASS simultaneously maintains desirable fuel cooling rate with the sole radiation and sound structural integrity of fuel rods for over 36 days of a LOCA without water supply. The stress level of

  12. MIL-53(Fe) MOF-mediated catalytic chemiluminescence for sensitive detection of glucose.

    Science.gov (United States)

    Yi, Xueling; Dong, Wenfei; Zhang, Xiaodan; Xie, Jianxin; Huang, Yuming

    2016-12-01

    Various analytical applications of metal-organic frameworks (MOFs) have been rapidly developed in the past few years. However, the employment of MOFs as catalysts in chemiluminescence (CL) analysis is rare. Here, for the first time, we found that MIL-53(Fe) MOFs could significantly enhance the CL of luminol in the presence of H 2 O 2 in an alkaline medium. The CL intensity in the luminol-H 2 O 2 -MIL-53(Fe) system was about 20 times higher than that in the luminol-H 2 O 2 system. Moreover, the XRD pattern of MIL-53(Fe) after CL reaction was almost the same as that of the original MIL-53(Fe), confirming the catalytic role of MIL-53(Fe) in the luminol-H 2 O 2 -MIL-53(Fe) system. The possible mechanism behind the enhancing phenomenon was discussed based on the results from the CL spectra, FL probe experiments, and active oxygen species measurements. By coupling with the glucose oxidase-based catalytic oxidation reaction, a sensitive and selective CL method was developed for the detection of glucose. There is a linear relationship between the logarithm of CL intensity and the logarithm of glucose concentration in the range from 0.1 to 10 μM, and a detection limit of 0.05 μM (S/N = 3) is obtained. The proposed method has been applied to the determination of glucose in human serum samples with satisfactory results. Graphical abstract MIL-53(Fe) MOFs are found to greatly enhance the chemiluminescence emission of the luminol-H 2 O 2 system, and this finding resulted in a new chemiluminescence method for biosensing of glucose when coupled with the glucose oxidase.

  13. Gas turbine requirements for a carbon constrained environment

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.M.; Lacy, B.P.; Yilmaz, E.; (and others) [GE Energy, Schenectady, NY (United States)

    2006-07-01

    With carbon capture, the pre-combustion decarbonization of natural gas, or syngas derived from coal gasification results in gas turbines fuels that consist of 90% or higher hydrogen content. This paper discusses the challenge of low CO{sub 2} processes for advanced gas turbines with particular focus on high hydrogen combustion. 4 refs., 13 figs.

  14. Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference

    Energy Technology Data Exchange (ETDEWEB)

    Geiling, D.W. [ed.

    1993-08-01

    The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

  15. CO2/CH4 Separation by a Mixed Matrix Membrane of Polymethylpentyne/MIL-53 Particles

    Directory of Open Access Journals (Sweden)

    Reza Abedini

    2014-10-01

    Full Text Available The effect of Materials Institute Lavoisier-53 (MIL-53 particles on gas transport properties of polymethylpentyne (PMP was investigated. MIL-53 was added to the polymer matrix with different loadings of 10, 20 and 30 wt%. The properties of MIL-53 and prepared membranes were analyzed through FTIR, SEM and TGA methods. The adsorption of CO2 and CH4 was conducted and analyzed accurately through Langmuir equation to investigate the gas transport properties of membranes. The results from TGA showed that degradation temperature (Td increases significantly with increasing MIL-53 loading. SEM images demonstrated that MIL-53 particles dispersed well in polymer matrix with no considerable agglomeration and no non-selective void formation at polymer/filler interface. In addition, CO2 and CH4 permeability measurement along with calculation of CO2/CH4 selectivity were performed. The results showed that the permeability of gases (especially for CO2 increased significantly by increasing the MIL-53 loading. Additionally, CO2/CH4 selectivity showed an increasing trend with increasing the MIL-53 weight percent. Unlike CH4, the CO2 solubility coefficient increased with increasing the MIL-53 loading because of high free volume of membrane and selective adsorption of CO2 with MIL-53. Despite CO2 solubility enhancement its diffusivity coefficient remained more or less unchanged. The enhancement in CH4 permeability has been mainly attributed to its slight incremental diffusivity due to the membrane's increasingly higher free volume. Finally, a comparison between membranes performance and CO2/CH4 Robeson upper bound showed that, the performance of membranes improved due to the presence of MIL-53 which was very close to the Robeson bound.

  16. Study of two-stage turbine characteristic and its influence on turbo-compound engine performance

    International Nuclear Information System (INIS)

    Zhao, Rongchao; Zhuge, Weilin; Zhang, Yangjun; Yang, Mingyang; Martinez-Botas, Ricardo; Yin, Yong

    2015-01-01

    Highlights: • An analytical model was built to study the interactions between two turbines in series. • The impacts of HP VGT and LP VGT on turbo-compound engine performance were investigated. • The fuel reductions obtained by HP VGT at 1900 rpm and 1000 rpm are 3.08% and 7.83% respectively. • The optimum value of AR ranged from 2.0 to 2.5 as the turbo-compound engine speed decreases. - Abstract: Turbo-compounding is an effective way to recover waste heat from engine exhaust and reduce fuel consumption for internal combustion engine (ICE). The characteristics of two-stage turbine, including turbocharger turbine and power turbine, have significant effects on the overall performance of turbo-compound engine. This paper investigates the interaction between two turbines in a turbo-compound engine and its impact on the engine performance. Firstly an analytical model is built to investigate the effects of turbine equivalent flow area on the two-stage turbine characteristics, including swallowing capacity and load split. Next both simulation and experimental method are carried out to study the effects of high pressure variable geometry turbine (HP VGT), low pressure variable geometry turbine (LP VGT) and combined VGT on the engine overall performance. The results show that the engine performance is more sensitive to HP VGT compared with LP VGT at all the operation conditions, which is caused by the larger influences of HP VGT on the total expansion ratio and engine air–fuel ratio. Using the HP VGT method, the fuel reductions of the turbo-compound engine at 1900 rpm and 1000 rpm are 3.08% and 7.83% respectively, in comparison with the baseline engine. The corresponding optimum values of AR are 2.0 and 2.5

  17. Dual-cycle power plant with internal and external heating of a gas turbine circuit

    International Nuclear Information System (INIS)

    Strach, L.

    1976-01-01

    The present proposal, after a preceding invention by the same inventor, aims at making possible the increased use of gas turbines in nuclear and coal-fired power plants. This is to be achieved by bringing the temperature of the combustion easily from a maximum of 900 0 C, as may be supplied, e.g., by the cooling media of nuclear reactors, up to the 1,700 to 2,000 0 C required as inlet temperature for gas turbines, with the aid of a fossil-fired recuperator. In fossil and nuclear power plants, gas turbines will more and more substitute steam turbines which affect the environment because of their high waste-heat losses. In coal power plants, only that part of the coal will be gasified whose resulting gas causes internal combustion within the furnace, while the remaining part of the coal is used for external combustion in a tabular heater. In a nuclear power plant, undisturbed maximum generation of electric power is to be achieved, even at reactor outages and shutdown periods for refuelling and maintenance, by almost inertia-free increase of the fossil fuel supply to the furnace (provided an extension of the latter for the capacity of heating the combustion air from room temperature till 1,700 to 2,000 0 C). The hazard of ruptures in the primary heat exchanging system is very low, because it is operated with a relative pressure of nearly zero between reactor coolant and gas turbine circuit. (RW) [de

  18. Glucose recovery from aqueous solutions by adsorption in metal-organic framework MIL-101: a molecular simulation study.

    Science.gov (United States)

    Gupta, Krishna M; Zhang, Kang; Jiang, Jianwen

    2015-08-05

    A molecular simulation study is reported on glucose recovery from aqueous solutions by adsorption in metal-organic framework MIL-101. The F atom of MIL-101 is identified to be the most favorable adsorption site. Among three MIL-101-X (X = H, NH2 or CH3), the parent MIL-101 exhibits the highest adsorption capacity and recovery efficacy. Upon functionalization by -NH2 or -CH3 group, the steric hindrance in MIL-101 increases; consequently, the interactions between glucose and framework become less attractive, thus reducing the capacity and mobility of glucose. The presence of ionic liquid, 1-ethyl-3-methyl-imidazolium acetate, as an impurity reduces the strength of hydrogen-bonding between glucose and MIL-101, and leads to lower capacity and mobility. Upon adding anti-solvent (ethanol or acetone), a similar adverse effect is observed. The simulation study provides useful structural and dynamic properties of glucose in MIL-101, and it suggests that MIL-101 might be a potential candidate for glucose recovery.

  19. Experimental investigation on the off-design performance of a small-sized humid air turbine cycle

    International Nuclear Information System (INIS)

    Wei, Chenyu; Zang, Shusheng

    2013-01-01

    This research aimed to study the improvement of the gas turbine performance of a humid air turbine (HAT) cycle at low pressure ratio and at low turbine inlet temperature (TIT). To achieve this goal, an off-design performance test investigation was conducted on a small-sized, two-shaft gas turbine test rig. The test rig consisted of a centrifugal compressor, a centripetal turbine, an individual direct flow flame tube, a free power turbine, a dynamometer, and a saturator with structured packing. Two different conditions were considered for the test investigation: in Case I, the control system kept the fuel flow constant at 57 kg/h, and in Case II, the turbine inlet temperature was kept constant at 665 °C. In Case I, when the air humidity ratio increased from 30 g/kg dry air (DA) to 43 g/kg DA, the power output increased by 3 kW. At the same time, the turbine inlet temperature decreased by 19 °C, and the NO x emissions were reduced from 25 ppm to 16 ppm. In Case II, when the air humidity ratio increased from 48 g/kg DA to 57 g/kg DA, the power output increased by 9.5 kW. Based on the actual gas turbine parts, characteristics, and test conditions, the off-design performance of the HAT cycle was calculated. Upon comparing the measured and calculated results, the HAT cycle was found to perform better than the two-shaft cycle in terms of specific work, efficiency, and specific fuel consumption. The effect of performance improvement became more obvious as the air humidity ratio increased. Under the same inlet air flow, turbine inlet temperature, and power output, the surge margin on compressor curves became enlarged as the humidity ratio increased. The off-design performance of a HAT cycle with regenerator was also investigated. The results show that the highest efficiency can be increased by 3.1%, which will greatly improve the gas turbine performance. -- Highlights: ► We built a flexible small-size test rig of HAT cycle gas turbine and the real test data were

  20. Adapting the deep burn in-core fuel management strategy for the gas turbine - modular helium reactor to a uranium-thorium fuel

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gudowski, Waclaw

    2005-01-01

    In 1966, Philadelphia Electric has put into operation the Peach Bottom I nuclear reactor, it was the first high temperature gas reactor (HTGR); the pioneering of the helium-cooled and graphite-moderated power reactors continued with the Fort St. Vrain and THTR reactors, which operated until 1989. The experience on HTGRs lead General Atomics to design the gas turbine - modular helium reactor (GT-MHR), which adapts the previous HTGRs to the generation IV of nuclear reactors. One of the major benefits of the GT-MHR is the ability to work on the most different types of fuels: light water reactors waste, military plutonium, MOX and thorium. In this work, we focused on the last type of fuel and we propose a mixture of 40% thorium and 60% uranium. In a uranium-thorium fuel, three fissile isotopes mainly sustain the criticality of the reactor: 235 U, which represents the 20% of the fresh uranium, 233 U, which is produced by the transmutation of fertile 232 Th, and 239 Pu, which is produced by the transmutation of fertile 238 U. In order to compensate the depletion of 235 U with the breeding of 233 U and 239 Pu, the quantity of fertile nuclides must be much larger than that one of 235 U because of the small capture cross-section of the fertile nuclides, in the thermal neutron energy range, compared to that one of 235 U. At the same time, the amount of 235 U must be large enough to set the criticality condition of the reactor. The simultaneous satisfaction of the two above constrains induces the necessity to load the reactor with a huge mass of fuel; that is accomplished by equipping the fuel pins with the JAERI TRISO particles. We start the operation of the reactor with loading fresh fuel into all the three rings of the GT-MHR and after 810 days we initiate a refueling and shuffling schedule that, in 9 irradiation periods, approaches the equilibrium of the fuel composition. The analysis of the k eff and mass evolution, reaction rates, neutron flux and spectrum at the

  1. Small Explorer Data System MIL-STD-1773 fiber optic bus

    Science.gov (United States)

    Flanegan, Mark; Label, Ken

    1992-01-01

    The MIL-STD-1773 Fiber Optic Data Bus as implemented in the GSFC Small Explorer Data System (SEDS) for the Small Explorer Program is described. It provides an overview of the SEDS MIL-STD-1773 bus components system design considerations, reliability figures, acceptance and qualification testing requirements, radiation requirements and tests, error handling considerations, and component heritage. The first mission using the bus will be launched in June of 1992.

  2. Preliminary analysis of compound systems based on high temperature fuel cell, gas turbine and Organic Rankine Cycle

    Science.gov (United States)

    Sánchez, D.; Muñoz de Escalona, J. M.; Monje, B.; Chacartegui, R.; Sánchez, T.

    This article presents a novel proposal for complex hybrid systems comprising high temperature fuel cells and thermal engines. In this case, the system is composed by a molten carbonate fuel cell with cascaded hot air turbine and Organic Rankine Cycle (ORC), a layout that is based on subsequent waste heat recovery for additional power production. The work will credit that it is possible to achieve 60% efficiency even if the fuel cell operates at atmospheric pressure. The first part of the analysis focuses on selecting the working fluid of the Organic Rankine Cycle. After a thermodynamic optimisation, toluene turns out to be the most efficient fluid in terms of cycle performance. However, it is also detected that the performance of the heat recovery vapour generator is equally important, what makes R245fa be the most interesting fluid due to its balanced thermal and HRVG efficiencies that yield the highest global bottoming cycle efficiency. When this fluid is employed in the compound system, conservative operating conditions permit achieving 60% global system efficiency, therefore accomplishing the initial objective set up in the work. A simultaneous optimisation of gas turbine (pressure ratio) and ORC (live vapour pressure) is then presented, to check if the previous results are improved or if the fluid of choice must be replaced. Eventually, even if system performance improves for some fluids, it is concluded that (i) R245fa is the most efficient fluid and (ii) the operating conditions considered in the previous analysis are still valid. The work concludes with an assessment about safety-related aspects of using hydrocarbons in the system. Flammability is studied, showing that R245fa is the most interesting fluid also in this regard due to its inert behaviour, as opposed to the other fluids under consideration all of which are highly flammable.

  3. Application of particle swarm optimization in gas turbine engine fuel controller gain tuning

    Science.gov (United States)

    Montazeri-Gh, M.; Jafari, S.; Ilkhani, M. R.

    2012-02-01

    This article presents the application of particle swarm optimization (PSO) for gain tuning of the gas turbine engine (GTE) fuel controller. For this purpose, the structure of a fuel controller is firstly designed based on the GTE control requirements and constraints. The controller gains are then tuned by PSO where the tuning process is formulated as an engineering optimization problem. In this study, the response time during engine acceleration and deceleration as well as the engine fuel consumption are considered as the objective functions. A computer simulation is also developed to evaluate the objective values for a single spool GTE. The GTE model employed for the simulation is a Wiener model, the parameters of which are extracted from experimental tests. In addition, the effect of neighbour acceleration on PSO results is studied. The results show that the neighbour acceleration factor has a considerable effect on the convergence rate of the PSO process. The PSO results are also compared with the results obtained through a genetic algorithm (GA) to show the relative merits of PSO. Moreover, the PSO results are compared with the results obtained from the dynamic programming (DP) method in order to illustrate the ability of proposed method in finding the global optimal solution. Furthermore, the objective function is also defined in multi-objective manner and the multi-objective particle swarm optimization (MOPSO) is applied to find the Pareto-front for the problem. Finally, the results obtained from the simulation of the optimized controller confirm the effectiveness of the proposed approach to design an optimal fuel controller resulting in an improved GTE performance as well as protection against the physical limitations.

  4. 1 mil gold bond wire study.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  5. Improved PFB operations: 400-hour turbine test results. [coal combustion products and hot corrosion in gas turbines

    Science.gov (United States)

    Rollbuhler, R. J.; Benford, S. M.; Zellars, G. R.

    1980-01-01

    A pressurized fluidized bed (PFB) coal-burning reactor was used to provide hot effluent gases for operation of a small gas turbine. Preliminary tests determined the optimum operating conditions that would result in minimum bed particle carryover in the combustion gases. Solids were removed from the gases before they could be transported into the test turbine by use of a modified two stage cyclone separator. Design changes and refined operation procedures resulted in a significant decrease in particle carryover, from 2800 to 93 ppm (1.5 to 0.05 grains/std cu ft), with minimal drop in gas temperature and pressure. The achievement of stable burn conditions and low solids loadings made possible a 400 hr test of small superalloy rotor, 15 cm (6 in.) in diameter, operating in the effluent. Blades removed and examined metallographically after 200 hr exhibited accelerated oxidation over most of the blade surface, with subsurface alumina penetration to 20 micron m. After 400 hours, average erosion loss was about 25 micron m (1 mil). Sulfide particles, indicating hot corrosion, were present in depletion zones, and their presence corresponded in general to the areas of adherent solids deposit. Sulfidation appears to be a materials problem equal in importance to erosion.

  6. Effect of thermal barrier coatings on the performance of steam and water-cooled gas turbine/steam turbine combined cycle system

    Science.gov (United States)

    Nainiger, J. J.

    1978-01-01

    An analytical study was made of the performance of air, steam, and water-cooled gas-turbine/steam turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal barrier coatings permit an increase in the turbine inlet temperature from 1205 C (2200 F), resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4 percent, when the turbine inlet temperature is increased from 1425 C (2600 F) to 1675 C (3050 F) and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683 C (3062 F) and the maximum specific power improvement is 36.6 percent by increasing the turbine inlet temperature from 1425 C (2600 F) to 1730 C (3150 F) and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air cooling at a turbine inlet temperature of 1205 C (2200 F). The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.

  7. Micro-gas turbine performance optimization by off-design characteristics prediction

    Energy Technology Data Exchange (ETDEWEB)

    Asgari, M.B.; Pahlevanzadeh, H. [Power and Water University of Technology, Tehran (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2005-07-01

    Micro-gas turbines are increasingly seen as a good option for supplying distributed electric or combined heat and power (CHP) systems. Micro turbines operate on the same thermodynamic cycle as the Brayton cycle. Fresh air enters a compressor and air pressure increases isentropically and high-pressure air and fuel are mixed and burnt in the combustion chamber at constant pressure. During this process the flue gas expands to lower pressure and increase volume isentropically. In this study a model was developed using parameters obtained from the compressor and turbine. Ambient temperature and and pressure effects on micro-gas turbines were examined. Customer requirements were used as constraints on micro-gas turbine parameters. The computer software Matlab was used to study the effect of the surge margin on the behaviour of the engine. Optimum performance speeds were presented, and a marginal envelope was obtained at the optimal speed. Issues concerning fuel consumption, power output, and efficiency were considered. The principal results of the simulation presented an optimum region of operation rather than any single optimal point. It was suggested that further research is needed to study the influence of the heat exchanger on efficiency and development of a model of the power electronics so that the complete system can be simulated from power generation. It was noted that although operation of microturbines at high speeds of revolution causes more net power output, this affects the thermal efficiency of the system and fuel consumption is high. It was concluded that optimum operating conditions should be evaluated by satisfying the trade off between net power generated and fuel consumption, as well as the achievable efficiency. 8 refs., 12 figs.

  8. Preparation of magnetic MIL-101 (Cr) for efficient removal of ciprofloxacin.

    Science.gov (United States)

    Bayazit, Şahika Sena; Danalıoğlu, Selen Tuğba; Abdel Salam, Mohamed; Kerkez Kuyumcu, Özge

    2017-11-01

    Metal organic frameworks are widely used as adsorbent materials in recent years. In this study, the most prepared metal organic framework MIL-101 was prepared by hydrothermal method and featured magnetic property using co-precipitation method Fe 3 O 4 . Then, the prepared composite (MIL-101/Fe 3 O 4 ) was first characterized using XRD, FTIR, SEM-EDS, and surface area analysis, then was used for the adsorptive removal of the most used antibiotic, ciprofloxacin (CIP). The effect of different adsorption variables which may affect the removal of CIP by MIL-101/Fe 3 O 4 was investigated, as well as their adsorbent quantity, initial CIP concentration, pH, temperature, and contact time. The non-linear Langmuir and Freundlich isotherm were applied to experimental data. It was observed that rising solution temperature decreases adsorption efficiency, as the maximum adsorption uptake value was 63.28 mg g -1 at 298 K and 22.93 mg g -1 at 313 K, indicating the exothermic nature of the adsorption. The adsorption was studied kinetically and found to follow the pseudo-second-order kinetic model. The desorption of CIP from the MIL-101/Fe 3 O 4 was investigated using three different eluents, and the results showed that phosphate-buffered solution was the most effective desorption eluent. Graphical abstract Schematic diagram of the preparation steps of MIL-101/Fe3O4.

  9. Glucose recovery from aqueous solutions by adsorption in metal–organic framework MIL-101: a molecular simulation study

    Science.gov (United States)

    Gupta, Krishna M.; Zhang, Kang; Jiang, Jianwen

    2015-01-01

    A molecular simulation study is reported on glucose recovery from aqueous solutions by adsorption in metal-organic framework MIL-101. The F atom of MIL-101 is identified to be the most favorable adsorption site. Among three MIL-101-X (X = H, NH2 or CH3), the parent MIL-101 exhibits the highest adsorption capacity and recovery efficacy. Upon functionalization by -NH2 or -CH3 group, the steric hindrance in MIL-101 increases; consequently, the interactions between glucose and framework become less attractive, thus reducing the capacity and mobility of glucose. The presence of ionic liquid, 1-ethyl-3-methyl-imidazolium acetate, as an impurity reduces the strength of hydrogen-bonding between glucose and MIL-101, and leads to lower capacity and mobility. Upon adding anti-solvent (ethanol or acetone), a similar adverse effect is observed. The simulation study provides useful structural and dynamic properties of glucose in MIL-101, and it suggests that MIL-101 might be a potential candidate for glucose recovery. PMID:26242874

  10. Comparative Study of MIL-96(Al) as Continuous Metal-Organic Frameworks Layer and Mixed-Matrix Membrane.

    Science.gov (United States)

    Knebel, Alexander; Friebe, Sebastian; Bigall, Nadja Carola; Benzaqui, Marvin; Serre, Christian; Caro, Jürgen

    2016-03-23

    MIL-96(Al) layers were prepared as supported metal-organic frameworks membrane via reactive seeding using the α-alumina support as the Al source for the formation of the MIL-96(Al) seeds. Depending on the solvent mixture employed during seed formation, two different crystal morphologies, with different orientation of the transport-active channels, have been formed. This crystal orientation and habit is predefined by the seed crystals and is kept in the subsequent growth of the seeds to continuous layers. In the gas separation of an equimolar H2/CO2 mixture, the hydrogen permeability of the two supported MIL-96(Al) layers was found to be highly dependent on the crystal morphology and the accompanied channel orientation in the layer. In addition to the neat supported MIL-96(Al) membrane layers, mixed-matrix membranes (MMMs, 10 wt % filler loading) as a composite of MIL-96(Al) particles as filler in a continuous Matrimid polymer phase have been prepared. Five particle sizes of MIL-96(Al) between 3.2 μm and 55 nm were synthesized. In the preparation of the MIL-96(Al)/Matrimid MMM (10 wt % filler loading), the following preparation problems have been identified: The bigger micrometer-sized MIL-96(Al) crystals show a trend toward sedimentation during casting of the MMM, whereas for nanoparticles aggregation and recrystallization to micrometer-sized MIL-96(Al) crystals has been observed. Because of these preparation problems for MMM, the neat supported MIL-96(Al) layers show a relatively high H2/CO2 selectivity (≈9) and a hydrogen permeance approximately 2 magnitudes higher than that of the best MMM.

  11. Combined cycles and cogeneration with natural gas and alternative fuels

    International Nuclear Information System (INIS)

    Gusso, R.

    1992-01-01

    Since 1985 there has been a sharp increase world-wide in the sales of gas turbines. The main reasons for this are: the improved designs allowing better gas turbine and, thus, combined cycle efficiencies; the good fuel use indices in the the case of cogeneration; the versatility of the gas turbines even with poly-fuel plants; greatly limited exhaust emissions; and lower manufacturing costs and delivery times with respect to conventional plants. This paper after a brief discussion on the evolution in gas turbine applications in the world and in Italy, assesses their use and environmental impacts with fuels other than natural gas. The paper then reviews Italian efforts to develop power plants incorporating combined cycles and the gasification of coal, residual, and other low calorific value fuels

  12. Small-scale biomass CHP using gasa turbines: a scoping study

    International Nuclear Information System (INIS)

    James, D.W.; Landen, R.

    1996-01-01

    Various options for small-scale (up to 250 KWe) Combined Heat and Power (CHP) plants evaluated in this scoping study. Plants using small gas turbines, and able to use biomass fuels when available are included. Three detailed case studies of small-scale biomass CHP plants are compared to match specific technical options with customer requirements. The commercial development of such biomass-fired CHP units, using gas turbines, is shown to be economically viable depending on fuel costs and the continuation of existing financial incentives. (UK)

  13. Mixer Assembly for a Gas Turbine Engine

    Science.gov (United States)

    Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Fotache, Catalin G. (Inventor); Smith, Lance L. (Inventor); Hautman, Donald J. (Inventor)

    2018-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer with fuel injection holes located between at least one radial swirler and at least one axial swirler, wherein the fuel injected into the main mixer is atomized and dispersed by the air flowing through the radial swirler and the axial swirler.

  14. A New Adaptive Response Surface Model for Reliability Analysis of 2.5D C/SiC Composite Turbine Blade

    Science.gov (United States)

    Chang, Yaning; Sun, Zhigang; Sun, Weiyi; Song, Yingdong

    2017-11-01

    In order to calculate the failure probability of complex structures such as a 2.5D/SiC composites turbine blade and improve the structure safety, a new adaptive model of Response Surface (RS) analysis has been developed in this paper, which can improve the computational efficiency of structural failure problem while ensure the accuracy. The Gaussian Process Regression (GPR) theory was used to establish the RS and reconstruct the performance function of structure. And, an Adaptive Latin hypercube Sampling (ALHS) strategy was adopted in the process of establishing and correcting the RS. Finally the Direct Simulation Monte Carlo(DSMC)was utilized to calculate the failure probability of the performance function replacing the complex structure. Two numerical examples were calculated to validate the accuracy and computational efficiency of the proposed method. Additionally the finite element stress analysis results of 2.5D C/SiC composite turbine blade were used to structural reliability analysis by the proposed method. The approach in this paper provides a new way to evaluate the risk of the complex structures.

  15. Deposition of CdS nanoparticles on MIL-53(Fe) metal-organic framework with enhanced photocatalytic degradation of RhB under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Longxing, E-mail: hulxhhhb@shu.edu.cn [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Deng, Guihua [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Lu, Wencong [College of Sciences, Shanghai University, Shanghai 200444 (China); Pang, Siwei; Hu, Xing [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)

    2017-07-15

    Graphical abstract: The CdS/MIL-53(Fe) photocatalyst has been synthesized by a facile two-step solvothermal method and applied for photocatalytic degradation of organic pollutant RhB under visible light irradiation. - Highlights: • A novel CdS/MIL-53(Fe) photocatalyst was successfully synthesized via a facile two-step solvothermal method. • CdS/MIL-53(Fe) exhibited an enhanced visible-light photocatalytic degradation of RhB in water. • The mechanisms for the formation of CdS/MIL-53(Fe) and photocatalytic degradation of RhB were proposed. - Abstract: A novel composite, CdS/MIL-53(Fe), was successfully fabricated via a facile solvothermal method and characterized with XRD, SEM, TEM, XPS, FT-IR and UV–vis DRS. The results showed that the fabrication was able to result in a good dispersion of CdS nanoparticles onto MIL-53(Fe). The photocatalytic activities of the as-synthesized composite were investigated through the degradation of Rhodamine B (RhB) in water under visible light irradiation. It was found that the composite prepared at the mass ratio of CdS to MIL-53(Fe) of 1.5:1 displayed the highest photocatalytic activity. An approximately 92.5% of photocatalytic degradation of RhB was achieved at 0.5 g/L of 1.5-CdS/MIL dosage, 10 mg/L of initial RhB concentration and 23 °C of reaction temperature under visible light irradiation. The RhB photocatalytic degradation followed well the first-order kinetics equation and the increased catalyst dosage and optimal initial RhB concentration were responsible for the enhanced photocatalytic degradation. Quenching tests revealed that the predominant free radicals in the CdS/MIL-(53)-RhB{sub aq}-visible light system was O{sub 2}{sup −}·; nevertheless, h{sup +} and ·OH also contributed to a certain degree. The enhanced photocatalytic performance was ascribed to the formation of heterojunction structure between CdS and MIL-53(Fe) which significantly suppressed the recombination of photogenerated electron-hole pairs

  16. Deposition of CdS nanoparticles on MIL-53(Fe) metal-organic framework with enhanced photocatalytic degradation of RhB under visible light irradiation

    International Nuclear Information System (INIS)

    Hu, Longxing; Deng, Guihua; Lu, Wencong; Pang, Siwei; Hu, Xing

    2017-01-01

    Graphical abstract: The CdS/MIL-53(Fe) photocatalyst has been synthesized by a facile two-step solvothermal method and applied for photocatalytic degradation of organic pollutant RhB under visible light irradiation. - Highlights: • A novel CdS/MIL-53(Fe) photocatalyst was successfully synthesized via a facile two-step solvothermal method. • CdS/MIL-53(Fe) exhibited an enhanced visible-light photocatalytic degradation of RhB in water. • The mechanisms for the formation of CdS/MIL-53(Fe) and photocatalytic degradation of RhB were proposed. - Abstract: A novel composite, CdS/MIL-53(Fe), was successfully fabricated via a facile solvothermal method and characterized with XRD, SEM, TEM, XPS, FT-IR and UV–vis DRS. The results showed that the fabrication was able to result in a good dispersion of CdS nanoparticles onto MIL-53(Fe). The photocatalytic activities of the as-synthesized composite were investigated through the degradation of Rhodamine B (RhB) in water under visible light irradiation. It was found that the composite prepared at the mass ratio of CdS to MIL-53(Fe) of 1.5:1 displayed the highest photocatalytic activity. An approximately 92.5% of photocatalytic degradation of RhB was achieved at 0.5 g/L of 1.5-CdS/MIL dosage, 10 mg/L of initial RhB concentration and 23 °C of reaction temperature under visible light irradiation. The RhB photocatalytic degradation followed well the first-order kinetics equation and the increased catalyst dosage and optimal initial RhB concentration were responsible for the enhanced photocatalytic degradation. Quenching tests revealed that the predominant free radicals in the CdS/MIL-(53)-RhB aq -visible light system was O 2 − ·; nevertheless, h + and ·OH also contributed to a certain degree. The enhanced photocatalytic performance was ascribed to the formation of heterojunction structure between CdS and MIL-53(Fe) which significantly suppressed the recombination of photogenerated electron-hole pairs. Moreover, the

  17. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on hydrogen utilizing subsystems and research on peripheral technologies (Research related to hydrogen gas turbines); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu. Suiso gas turbine ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This paper describes development of hydrogen gas turbines from among the comprehensive discussions on hydrogen utilizing subsystems. Hydrogen and oxygen gas turbine cycle has varying optimal conditions of plant efficiency depending on fuel patterns. The regenerative cycle may have the turbine inlet temperature at about 1,000 degrees C. The inlet pressure would be ten and odds atmospheric pressure. It is better to keep the inlet temperature higher in order to obtain high specific power. Reduction of power generation cost in using this plant requires that construction cost be decreased, and the specific power be increased if the plant efficiency (in other words, running cost) is assumed constant. Further development is required on technologies to use higher temperatures and pressures. For that purpose, discussions should be given on material development, structural design, and inspection. Hydrogen gas turbines, which present low pollution depending on combustion methods, have great significance for such social problem as environmental contamination. In terms of economy, since hydrogen gas turbines depend on efficiency and fuel unit cost, the evaluation thereon may vary depending on how well the regenerative gas turbines have been established, in addition to future change in hydrogen price and the technologies to use higher temperatures and pressures. (NEDO)

  18. Understanding and solving disorder in the substitution pattern of amino functionalized MIL-47(V).

    Science.gov (United States)

    Heinen, Jurn; Dubbeldam, David

    2016-03-14

    Electronic energies and elastic constants of four amino functionalized MIL-47(V) supercells were computed using plane wave density functional theory to determine the influence of the substituent positions on the organic linker. An inverse relationship between the ab initio energies and the elastic constants was found, indicating that the high electronic stability correlates with high mechanical stability. Torsion in all supercells was induced upon substitution, which caused strain in the NH2-MIL-47(V) supercell. The combined effect of the substituent bulkiness and the induced torsion reduced the pore volume of the NH2-MIL-47(V) structures by >7% and the surface area by >14% with respect to MIL-47(V). This reduction was confirmed by lower saturation capacities of methane, CO2 and benzene. When unfavourable substituent positions are chosen, large torsions caused a further reduction of the saturation capacity. Differences in surface area, pore volume and saturation capacity illustrate the importance of choosing the correct NH2-MIL-47(V) supercell.

  19. Application of the Combined Cycle LWR-Gas Turbine to PWR for NPP Life Extension Safety Upgrade and Improving Economy

    International Nuclear Information System (INIS)

    Kuznetsov, Yu. N.

    2006-01-01

    Currently, some of the most important problem for the nuclear industry are life extension, advance competitiveness and safety of aging LWR NPPs. Based on results of studies performed in the USA (Battelle Memorial Institute) and in Russia (NIKIET), a new power technology, using a combined cycle gas-turbine facility CCGT - LWR, so called TD-Cycle, can significantly help in resolution of some problems of nuclear power industry. The nuclear steam and gas topping cycle is used for re-powering a light water pressurized reactor of PWR or VVER type. An existing NPP is topped with a gas turbine facility with a heat recovery steam generator (HRSG) generating steam from waste heat. The superheated steam of high pressure (P=90-165 bar, T=500-550 C) generated in the HRSG, is expanded in a high pressure (HP) turbine for producing electricity. The HP turbine can work on one shaft with the the gas turbine or at one shaft with intermediate (IP) or low (LP) pressure parts of the main nuclear steam turbine, or with a separate electric generator. The exhausted steam from the HP turbine is injected into the steam mixer where it is mixed with the saturated steam from the NPP steam generator (SG). The mixer is intended to superheat the main nuclear steam and should be characterized by minimum losses during mixing superheated and saturated steam. Steam from the mixer superheated by 20-60 C directs to the existing IP turbine, and then, through a separator-reheater flows into the LP turbine. Feed water re-heaters of LP and HP are actually unchanged in this case. Feed water extraction to the HRSG is supplied after one of LP water heaters. This proposal is intended to re-power existing LWR NPPs. To minimize cost, the IP and LP turbines and electric generator would remain the same. The reactor thermal power and fast neutron flux to the reactor vessel would decrease by 30-50 percent of nominal values. The external peripheral row of fuel elements can be replaced with metal absorber rods to

  20. Thermodynamic simulation of a multi-step externally fired gas turbine powered by biomass

    International Nuclear Information System (INIS)

    Durante, A.; Pena-Vergara, G.; Curto-Risso, P.L.; Medina, A.; Calvo Hernández, A.

    2017-01-01

    Highlights: • A realistic model for an EFGT fueled with solid biomass is presented. • Detailed submodels for the HTHE and the chemical reactions are incorporated. • An arbitrary number of compression and expansion stages is considered. • Model validation leads to good agreement with experimental results. • A layout with two-stage compression leads to good efficiencies and power output. - Abstract: A thermodynamic model for a realistic Brayton cycle, working as an externally fired gas turbine fueled with biomass is presented. The use of an external combustion chamber, allows to burn dirty fuels to preheat pure air, which is the working fluid for the turbine. It also avoids direct contact of ashes with the turbine blades, resulting in a higher life cycle for the turbine. The model incorporates a high temperature heat exchanger and an arbitrary number of turbines and compressors, with the corresponding number of intercoolers and reheaters. It considers irreversibilities such as non-isentropic compressions and expansions, and pressure losses in heat input and release. The composition and temperature of the combustion gases, as well as the variable flow rate of air and combustion gases, are calculated for specific biomasses. The numerical model for a single stage configuration has been validated by comparing its predictions with the data sheets of two commercial turbines. Results are in good agreement. Curves on the dependence of thermal efficiency and power output with the overall pressure ratio will be shown for several plant configurations with variable number of compression/expansion stages. Also the influence of different types of biomasses and their moisture will be analyzed on parameters such as fuel consumption and exhaust gases temperature. For a single step plant layout fueled with eucalyptus wood an efficiency of 23% is predicted, whereas for a configuration with two compressors and one turbine efficiency increases up to 25%. But it is remarkable

  1. Flashback mechanisms in lean premixed gas turbine combustion

    CERN Document Server

    Benim, Ali Cemal

    2014-01-01

    Blending fuels with hydrogen offers the potential to reduce NOx and CO2 emissions in gas turbines, but doing so introduces potential new problems such as flashback.  Flashback can lead to thermal overload and destruction of hardware in the turbine engine, with potentially expensive consequences. The little research on flashback that is available is fragmented. Flashback Mechanisms in Lean Premixed Gas Turbine Combustion by Ali Cemal Benim will address not only the overall issue of the flashback phenomenon, but also the issue of fragmented and incomplete research.Presents a coherent review of f

  2. Novel composite material polyoxovanadate@MIL-101(Cr): a highly efficient electrocatalyst for ascorbic acid oxidation.

    Science.gov (United States)

    Fernandes, Diana M; Barbosa, André D S; Pires, João; Balula, Salete S; Cunha-Silva, Luís; Freire, Cristina

    2013-12-26

    A novel hybrid composite material, PMo10V2@MIL-101 was prepared by the encapsulation of the tetra-butylammonium (TBA) salt of the vanadium-substituted phosphomolybdate [PMo10V2O40](5-) (PMo10V2) into the porous metal-organic framework (MOF) MIL-101(Cr). The materials characterization by powder X-ray diffraction, Fourier transform infrared spectra and scanning electron microscopy confirmed the preparation of the composite material without disruption of the MOF porous structure. Pyrolytic graphite electrodes modified with the original components (MIL-101(Cr), PMo10V2), and the composite material PMo10V2@MIL-101 were prepared and their electrochemical responses were studied by cyclic voltammetry. Surface confined redox processes were observed for all the immobilized materials. MIL-101(Cr) showed one-electron reduction process due to chromium centers (Cr(III) → Cr(II)), while PMo10V2 presented five reduction processes: the peak at more positive potentials is attributed to two superimposed 1-electron vanadium reduction processes (V(V) → V(IV)) and the other four peaks to Mo-centred two-electron reduction processes (Mo(VI) → Mo(V)). The electrochemical behavior of the composite material PMo10V2@MIL-101 showed both MIL-101(Cr) and PMo10V2 redox features, although with the splitting of the two vanadium processes and the shift of the Mo- and Cr- centered processes to more negative potentials. Finally, PMo10V2@MIL-101 modified electrode showed outstanding enhanced vanadium-based electrocatalytic properties towards ascorbic acid oxidation, in comparison with the free PMo10V2, as a result of its immobilization into the porous structure of the MOF. Furthermore, PMo10V2@MIL-101 modified electrode showed successful simultaneous detection of ascorbic acid and dopamine.

  3. Fluorescent metal-organic framework MIL-53(Al) for highly selective and sensitive detection of Fe3+ in aqueous solution.

    Science.gov (United States)

    Yang, Cheng-Xiong; Ren, Hu-Bo; Yan, Xiu-Ping

    2013-08-06

    Fluorescent metal-organic frameworks (MOFs) have received great attention in sensing application. Here, we report the exploration of fluorescent MIL-53(Al) for highly selective and sensitive detection of Fe(3+) in aqueous solution. The cation exchange between Fe(3+) and the framework metal ion Al(3+) in MIL-53(Al) led to the quenching of the fluorescence of MIL-53(Al) due to the transformation of strong-fluorescent MIL-53(Al) to weak-fluorescent MIL-53(Fe), allowing highly selective and sensitive detection of Fe(3+) in aqueous solution with a linear range of 3-200 μM and a detection limit of 0.9 μM. No interferences from 0.8 M Na(+); 0.35 M K(+); 11 mM Cu(2+); 10 mM Ni(2+); 6 mM Ca(2+), Pb(2+), and Al(3+); 5.5 mM Mn(2+); 5 mM Co(2+) and Cr(3+); 4 mM Hg(2+), Cd(2+), Zn(2+), and Mg(2+); 3 mM Fe(2+); 0.8 M Cl(-); 60 mM NO2(-) and NO3(-); 10 mM HPO4(2-), H2PO4(-), SO3(2-), SO4(2-), and HCOO(-); 8 mM CO3(2-), HCO3(-), and C2O4(2-); and 5 mM CH3COO(-) were found for the detection of 150 μM Fe(3+). The possible mechanism for the quenching effect of Fe(3+) on the fluorescence of MIL-53(Al) was elucidated by inductively coupled plasma-mass spectrometry, X-ray diffraction spectrometry, and Fourier transform infrared spectrometry. The specific cation exchange behavior between Fe(3+) and the framework Al(3+) along with the excellent stability of MIL-53(Al) allows highly selective and sensitive detection of Fe(3+) in aqueous solution. The developed method was applied to the determination of Fe(3+) in human urine samples with the quantitative spike recoveries from 98.2% to 106.2%.

  4. Lean-rich axial stage combustion in a can-annular gas turbine engine

    Science.gov (United States)

    Laster, Walter R.; Szedlacsek, Peter

    2016-06-14

    An apparatus and method for lean/rich combustion in a gas turbine engine (10), which includes a combustor (12), a transition (14) and a combustor extender (16) that is positioned between the combustor (12) and the transition (14) to connect the combustor (12) to the transition (14). Openings (18) are formed along an outer surface (20) of the combustor extender (16). The gas turbine (10) also includes a fuel manifold (28) to extend along the outer surface (20) of the combustor extender (16), with fuel nozzles (30) to align with the respective openings (18). A method (200) for axial stage combustion in the gas turbine engine (10) is also presented.

  5. Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2013-12-01

    Full Text Available Strong restrictions on emissions from marine power plants (particularly SOx, NOx will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC and gas turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. It includes a study of a heat-recovery system for 18 MW SOFC fuelled by natural gas, to provide the electric power demand onboard commercial vessels. Feasible heat-recovery systems are investigated, taking into account different operating conditions of the combined system. Two types of SOFC are considered, tubular and planar SOFCs, operated with either natural gas or hydrogen fuels. This paper includes a detailed thermodynamic analysis for the combined system. Mass and energy balances are performed, not only for the whole plant but also for each individual component, in order to evaluate the thermal efficiency of the combined cycle. In addition, the effect of using natural gas as a fuel on the fuel cell voltage and performance is investigated. It is found that a high overall efficiency approaching 70% may be achieved with an optimum configuration using SOFC system under pressure. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

  6. Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications

    Science.gov (United States)

    Welaya, Yousri M. A.; Mosleh, M.; Ammar, Nader R.

    2013-12-01

    Strong restrictions on emissions from marine power plants (particularly SOx, NOx) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and gas turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. It includes a study of a heatrecovery system for 18 MW SOFC fuelled by natural gas, to provide the electric power demand onboard commercial vessels. Feasible heat-recovery systems are investigated, taking into account different operating conditions of the combined system. Two types of SOFC are considered, tubular and planar SOFCs, operated with either natural gas or hydrogen fuels. This paper includes a detailed thermodynamic analysis for the combined system. Mass and energy balances are performed, not only for the whole plant but also for each individual component, in order to evaluate the thermal efficiency of the combined cycle. In addition, the effect of using natural gas as a fuel on the fuel cell voltage and performance is investigated. It is found that a high overall efficiency approaching 70% may be achieved with an optimum configuration using SOFC system under pressure. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

  7. 1170-MW(t) HTGR-PS/C plant application study report: SRC-II process application

    International Nuclear Information System (INIS)

    Rao, R.; McMain, A.T. Jr.

    1981-05-01

    The solvent refined coal (SRC-II) process is an advanced process being developed by Gulf Mineral Resources Ltd. (a Gulf Oil Corporation subsidiary) to produce a clean, non-polluting liquid fuel from high-sulfur bituminous coals. The SRC-II commercial plant will process about 24,300 tonnes (26,800 tons) of feed coal per stream day, producing primarily fuel oil plus secondary fuel gases. This summary report describes the integration of a high-temperature gas-cooled reactor operating in a process steam/cogeneration mode (HTGR-PS/C) to provide the energy requirements for the SRC-II process. The HTGR-PS/C plant was developed by General Atomic Company (GA) specifically for industries which require energy in the form of both steam and electricity. General Atomic has developed an 1170-MW(t) HTGR-PS/C design which is particularly well suited to industrial applications and is expected to have excellent cost benefits over other sources of energy

  8. Deposition of CdS nanoparticles on MIL-53(Fe) metal-organic framework with enhanced photocatalytic degradation of RhB under visible light irradiation

    Science.gov (United States)

    Hu, Longxing; Deng, Guihua; Lu, Wencong; Pang, Siwei; Hu, Xing

    2017-07-01

    A novel composite, CdS/MIL-53(Fe), was successfully fabricated via a facile solvothermal method and characterized with XRD, SEM, TEM, XPS, FT-IR and UV-vis DRS. The results showed that the fabrication was able to result in a good dispersion of CdS nanoparticles onto MIL-53(Fe). The photocatalytic activities of the as-synthesized composite were investigated through the degradation of Rhodamine B (RhB) in water under visible light irradiation. It was found that the composite prepared at the mass ratio of CdS to MIL-53(Fe) of 1.5:1 displayed the highest photocatalytic activity. An approximately 92.5% of photocatalytic degradation of RhB was achieved at 0.5 g/L of 1.5-CdS/MIL dosage, 10 mg/L of initial RhB concentration and 23 °C of reaction temperature under visible light irradiation. The RhB photocatalytic degradation followed well the first-order kinetics equation and the increased catalyst dosage and optimal initial RhB concentration were responsible for the enhanced photocatalytic degradation. Quenching tests revealed that the predominant free radicals in the CdS/MIL-(53)-RhBaq-visible light system was O2-rad ; nevertheless, h+ and rad OH also contributed to a certain degree. The enhanced photocatalytic performance was ascribed to the formation of heterojunction structure between CdS and MIL-53(Fe) which significantly suppressed the recombination of photogenerated electron-hole pairs. Moreover, the reusability of 1.5-CdS/MIL composite was also studied.

  9. Irradiation project of SiC/SiC fuel pin 'INSPIRE': Status and future plan

    International Nuclear Information System (INIS)

    Kohyama, Akira; Kishimoto, Hirotatsu

    2015-01-01

    After the March 11 Disaster in East-Japan, Research and Development towards Ensuring Nuclear Safety Enhancement for LWR becomes a top priority R and D in nuclear energy policy of Japan. The role of high temperature non-metallic materials, such as SiC/SiC, is becoming important for the advanced nuclear reactor systems. SiC fibre reinforced SiC composite has been recognised to be the most attractive option for the future, now, METI fund based project, INSPIRE, has been launched as 5-year termed project at OASIS in Muroran Institute of Technology aiming at early realisation of this system. INSPIRE is the irradiation project of SiC/SiC fuel pins aiming to accumulate material, thermal, irradiation effect data of NITE-SiC/SiC in BWR environment. Nuclear fuel inserted SiC/SiC fuel pins are planned to be installed in the Halden reactor. The project includes preparing the NITE-SiC/SiC tubes, joining of end caps, preparation of rigs to control the irradiation environment to BWR condition and the instruments to measure the condition of rigs and pins in operation. Also, basic neutron irradiation data will be accumulated by SiC/SiC coupon samples currently under irradiation in BR2. The output from this project may present the potentiality of NITE-SiC/SiC fuel cladding with the first stage fuel-cladding interaction. (authors)

  10. Advanced IGCC/Hydrogen Gas Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    York, William [General Electric Company, Schenectady, NY (United States); Hughes, Michael [General Electric Company, Schenectady, NY (United States); Berry, Jonathan [General Electric Company, Schenectady, NY (United States); Russell, Tamara [General Electric Company, Schenectady, NY (United States); Lau, Y. C. [General Electric Company, Schenectady, NY (United States); Liu, Shan [General Electric Company, Schenectady, NY (United States); Arnett, Michael [General Electric Company, Schenectady, NY (United States); Peck, Arthur [General Electric Company, Schenectady, NY (United States); Tralshawala, Nilesh [General Electric Company, Schenectady, NY (United States); Weber, Joseph [General Electric Company, Schenectady, NY (United States); Benjamin, Marc [General Electric Company, Schenectady, NY (United States); Iduate, Michelle [General Electric Company, Schenectady, NY (United States); Kittleson, Jacob [General Electric Company, Schenectady, NY (United States); Garcia-Crespo, Andres [General Electric Company, Schenectady, NY (United States); Delvaux, John [General Electric Company, Schenectady, NY (United States); Casanova, Fernando [General Electric Company, Schenectady, NY (United States); Lacy, Ben [General Electric Company, Schenectady, NY (United States); Brzek, Brian [General Electric Company, Schenectady, NY (United States); Wolfe, Chris [General Electric Company, Schenectady, NY (United States); Palafox, Pepe [General Electric Company, Schenectady, NY (United States); Ding, Ben [General Electric Company, Schenectady, NY (United States); Badding, Bruce [General Electric Company, Schenectady, NY (United States); McDuffie, Dwayne [General Electric Company, Schenectady, NY (United States); Zemsky, Christine [General Electric Company, Schenectady, NY (United States)

    2015-07-30

    The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CC efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in first

  11. Nuclear combined cycle gas turbines for variable electricity and heat using firebrick heat storage and low-carbon fuels

    International Nuclear Information System (INIS)

    Forsberg, Charles; Peterson, Per F.; McDaniel, Patrick; Bindra, Hitesh

    2017-01-01

    The world is transitioning to a low-carbon energy system. Variable electricity and industrial energy demands have been met with storable fossil fuels. The low-carbon energy sources (nuclear, wind and solar) are characterized by high-capital-costs and low-operating costs. High utilization is required to produce economic energy. Wind and solar are non-dispatchable; but, nuclear is the dispatchable energy source. Advanced combined cycle gas turbines with firebrick heat storage coupled to high-temperature reactors may enable economic variable electricity and heat production with constant full-power reactor output. Such systems efficiently couple to fluoride-salt-cooled high-temperature reactors (FHRs) with solid fuel and clean salt coolants, molten salt reactors (MSRs) with fuel dissolved in the salt coolant and salt-cooled fusion machines. Open Brayton combined cycles allow the use of natural gas, hydrogen, other fuels and firebrick heat storage for peak electricity production with incremental heat-to-electricity efficiencies from 66 to 70+% efficient. There are closed Brayton cycle options that use firebrick heat storage but these have not been investigated in any detail. Many of these cycles couple to high-temperature gas-cooled reactors (HTGRs). (author)

  12. Research and development of cooled turbine for aircraft engines. Koku engine yo reikyaku turbine no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Maya, T; Yamawaki, S [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1994-05-01

    For the turbine which is one of the principal elements of aircraft engine, progress in turbine use material development and cooling performance further heightened for the turbine are needed to grapple with the required heightening of turbine inlet temperature. In the present paper based on the turbine inlet temperature designed to be 1600[degree]C as a target, a two-dimensional model used for the turbine cooling performance test was structurally given together with the result of the above test which aimed at confirming the design calculation. As a result of cooling design for the turbine which was about 1600[degree]C in inlet temperature, the highest gas temperature was 1890 and 1470[degree]C on the stator blade and rotor blade, respectively. Both those blades were 0.66 and 0.62, respectively in cooling efficiency. To test the cooling performance, a two-dimensional cascade was tested with a doubly amplified model of cooling blade, the use of which could set its Reynolds number near that of the actual one. As compared with the actual operation, the test was made at low temperatures of 400 to 500[degree]C and low pressures of 0.02 to 0.03MPa. The test agreed with the design calculation in result. 4 refs., 8 figs.

  13. Computational sensitivity study of spray dispersion and mixing on the fuel properties in a gas turbine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Grosshans, Holger; Szász, Robert-Zoltán [Division of Fluid Mechanics, Lund University (Sweden); Cao, Le [Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing (China); Fuchs, Laszlo, E-mail: holger.grosshans@uclouvain.be [Department of Mechanics, KTH, Stockholm (Sweden)

    2017-04-15

    A swirl stabilized gas turbine burner has been simulated in order to assess the effects of the fuel properties on spray dispersion and fuel–air mixing. The properties under consideration include fuel surface tension, viscosity and density. The turbulence of the gas phase is modeled applying the methodology of large eddy simulation whereas the dispersed liquid phase is described by Lagrangian particle tracking. The exchange of mass, momentum and energy between the two phases is accounted for by two-way coupling. Bag and stripping breakup regimes are considered for secondary droplet breakup, using the Reitz–Diwakar and the Taylor analogy breakup models. Moreover, a model for droplet evaporation is included. The results reveal a high sensitivity of the spray structure to variations of all investigated parameters. In particular, a decrease in the surface tension or the fuel viscosity, or an increase in the fuel density, lead to less stable liquid structures. As a consequence, smaller droplets are generated and the overall spray surface area increases, leading to faster evaporation and mixing. Furthermore, with the trajectories of the small droplets being strongly influenced by aerodynamic forces (and less by their own inertia), the spray is more affected by the turbulent structures of the gaseous phase and the spray dispersion is enhanced. (paper)

  14. POLCA-T simulation of OECD/NRC BWR turbine trip benchmark exercise 3 best estimate scenario TT2 test and four extreme scenarios

    International Nuclear Information System (INIS)

    Panayotov, D.

    2004-01-01

    Westinghouse transient code POLCA-T brings together the system thermal-hydraulics plant models and the 3D neutron kinetics core model. Code validation plan includes the calculations of Peach Bottom end of cycle 2 turbine trip transients and low-flow stability tests. The paper describes the objectives, method, and results of analyses performed in the final phase of OECD/NRC Peach Bottom 2 Boiling Water Reactor Turbine Trip Benchmark. Brief overview of the code features, the method of simulation, the developed 3D core model and system input deck for Peach Bottom 2 are given. The paper presents the results of benchmark exercise 3 best estimate scenario: coupled 3D core neutron kinetics with system thermal-hydraulics analyses. Performed sensitivity studies cover the SCRAM initiation, carry-under, and decay power. Obtained results including total power, steam dome, core exit, lower and upper plenum, main steam line and turbine inlet pressures showed good agreement with measured plant data Thus the POLCA-T code capabilities for correct simulation of turbine trip transients were proved The performed calculations and obtained results for extreme cases demonstrate the POLCA-T code wide range capabilities to simulate transients when scram, steam bypass, and safety and relief valves are not activated. The code is able to handle such transients even when the reactor power and pressure reach values higher than 600 % of rated power, and 10.8 MPa. (authors)

  15. Analysis of gas turbine systems for sustainable energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Anheden, Marie

    2000-02-01

    Increased energy demands and fear of global warming due to the emission of greenhouse gases call for development of new efficient power generation systems with low or no carbon dioxide (CO{sub 2}) emissions. In this thesis, two different gas turbine power generation systems, which are designed with these issues in mind, are theoretically investigated and analyzed. In the first gas turbine system, the fuel is combusted using a metal oxide as an oxidant instead of oxygen in the air. This process is known as Chemical Looping Combustion (CLC). CLC is claimed to decrease combustion exergy destruction and increase the power generation efficiency. Another advantage is the possibility to separate CO{sub 2} without a costly and energy demanding gas separation process. The system analysis presented includes computer-based simulations of CLC gas turbine systems with different metal oxides as oxygen carriers and different fuels. An exergy analysis comparing the exergy destruction of the gas turbine system with CLC and conventional combustion is also presented. The results show that it is theoretically possible to increase the power generation efficiency of a simple gas turbine system by introducing CLC. A combined gas/steam turbine cycle system with CLC is, however, estimated to reach a similar efficiency as the conventional combined cycle system. If the benefit of easy and energy-efficient CO{sub 2} separation is accounted for, a CLC combined cycle system has a potential to be favorable compared to a combined cycle system with CO{sub 2} separation. In the second investigation, a solid, CO{sub 2}-neutral biomass fuel is used in a small-scale externally fired gas turbine system for cogeneration of power and district heating. Both open and closed gas turbines with different working fluids are simulated and analyzed regarding thermodynamic performance, equipment size, and economics. The results show that it is possible to reach high power generation efficiency and total (power

  16. Seal Technology in Gas Turbine Engines

    Science.gov (United States)

    1978-08-01

    the case inner wall (Fig.. 6 (a) and 7 (a)) und for shrouded rotors between blade shroud and the came (Figs. 6() snd 7(b)) (b) Blade roots and platforms ...work is required to fully validate these rig tests. Abradable coatings and linings used in turbines, produce wear of the fins on the root platforms ...Division of Rolls-Royce Limited for their permission to publish. ILI w% C - IL I L 2-10 1’t 00z It. ’K 0 0 ý - -C u -4% uj % z. 9 0 < m m wz I- 10 wIx u 2

  17. Adapting the deep burn in-core fuel management strategy for the gas turbine - modular helium reactor to a uranium-thorium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Department of Nuclear and Reactor Physics, Royal Institute of Technology, Roslagstullsbacken 21, S-10691, Stockholm (Sweden)]. E-mail: alby@neutron.kth.se; Gudowski, Waclaw [Department of Nuclear and Reactor Physics, Royal Institute of Technology, Roslagstullsbacken 21, S-10691, Stockholm (Sweden)

    2005-11-15

    In 1966, Philadelphia Electric has put into operation the Peach Bottom I nuclear reactor, it was the first high temperature gas reactor (HTGR); the pioneering of the helium-cooled and graphite-moderated power reactors continued with the Fort St. Vrain and THTR reactors, which operated until 1989. The experience on HTGRs lead General Atomics to design the gas turbine - modular helium reactor (GT-MHR), which adapts the previous HTGRs to the generation IV of nuclear reactors. One of the major benefits of the GT-MHR is the ability to work on the most different types of fuels: light water reactors waste, military plutonium, MOX and thorium. In this work, we focused on the last type of fuel and we propose a mixture of 40% thorium and 60% uranium. In a uranium-thorium fuel, three fissile isotopes mainly sustain the criticality of the reactor: {sup 235}U, which represents the 20% of the fresh uranium, {sup 233}U, which is produced by the transmutation of fertile {sup 232}Th, and {sup 239}Pu, which is produced by the transmutation of fertile {sup 238}U. In order to compensate the depletion of {sup 235}U with the breeding of {sup 233}U and {sup 239}Pu, the quantity of fertile nuclides must be much larger than that one of {sup 235}U because of the small capture cross-section of the fertile nuclides, in the thermal neutron energy range, compared to that one of {sup 235}U. At the same time, the amount of {sup 235}U must be large enough to set the criticality condition of the reactor. The simultaneous satisfaction of the two above constrains induces the necessity to load the reactor with a huge mass of fuel; that is accomplished by equipping the fuel pins with the JAERI TRISO particles. We start the operation of the reactor with loading fresh fuel into all the three rings of the GT-MHR and after 810 days we initiate a refueling and shuffling schedule that, in 9 irradiation periods, approaches the equilibrium of the fuel composition. The analysis of the k {sub eff} and mass

  18. The effect of water injection on nitric oxide emissions of a gas turbine combustor burning ASTM Jet-A fuel

    Science.gov (United States)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of water injection on oxides of nitrogen (NOx) emissions of a full annular, ram induction gas turbine combustor burning ASTM Jet-A fuel. The combustor was operated at conditions simulating sea-level takeoff and cruise conditions. Water at ambient temperature was injected into the combustor primary zone at water-fuel ratios up to 2. At an inlet-air temperature of 589 K (600 F) water injection decreased the NOx emission index at a constant exponential rate: NOx = NOx (o) e to the -15 W/F power (where W/F is the water-fuel ratio and NOx(o) indicates the value with no injection). The effect of increasing combustor inlet-air temperature was to decrease the effect of the water injection. Other operating variables such as pressure and reference Mach number did not appear to significantly affect the percent reduction in NOx. Smoke emissions were found to decrease with increasing water injection.

  19. Concept for premixed combustion of hydrogen-containing fuels in gas turbines; Konzept zur vorgemischten Verbrennung wasserstoffhaltiger Brennstoffe in Gasturbinen

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Christoph

    2012-07-19

    One of the main challenges for future gas turbines and their combustion systems is to provide fuel flexibility. The fuel range is expected to reach from the lowly reactive natural gas to highly reactive hydrogen-containing syngases. The objective of the project in which this work was pursued is to develop such a combustion system. The burner has to ensure premixed operation with an aerodynamically stabilized flame. The focus of this work is on characterizing and optimizing the operational safety of the system, but also on ensuring sufficientmixing and lowemissions. A burner and fuel injection design is achieved that leads not only to emissions far below the permissible values, but also to flashback safety for hydrogen combustion that comes close to the theoretically achievable maximum at atmospheric pressure conditions. In this design flashback due to combustion-induced vortex breakdown and wall boundary layer flashback is avoided. Flashback only takes place when the flow velocity reaches the flame velocity.

  20. Efficient Pd@MIL-101(Cr) hetero-catalysts for 2-butyne-1,4-diol hydrogenation exhibiting high selectivity

    KAUST Repository

    Yin, Dongdong

    2017-01-05

    Pd@MIL-101(Cr) hetero-catalysts have been successfully prepared using the metal-organic chemical vapour deposition (MOCVD) approach, by choosing [Pd(η-CH)(η-CH)] as a volatile precursor, and the hydrothermally stable metal-organic framework, MIL-101(Cr) as a support. The prepared Pd@MIL-101(Cr) hetero-catalysts characterized with various analytical techniques, exhibited highly monodispersed immobilized Pd nanoparticles in the MIL-101(Cr) cavities, while retaining the pristine crystallinity and porosity. The intact hybrid Pd@MIL-101(Cr) has been demonstrated to be an efficient catalyst for 2-butyne-1,4-diol hydrogenation with excellent activity, stability and selectivity (2-butene-1,4-diol (>94%)).

  1. Fiscal 1975 Sunshine Project research report. General research on hydrogen energy subsystems and their peripheral technologies (Research on hydrogen gas turbine); 1975 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Suiso gas turbine ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-31

    This research aims at establishment of the meaning of using hydrogen as gas turbine fuel in the hydrogen energy system and various conditions for hydrogen gas turbines, and approaches to the feasibility study and R and D of hydrogen gas turbines in the future. In fiscal 1975, researches were made on (1) feasibility study on hydrogen-oxygen gas turbine, (2) establishment of various conditions for technical, social and economic realization of hydrogen gas turbines in the total energy system, and (3) study on technical troubles to be solved for realization of hydrogen gas turbines. For the above researches, study was made on hydrogen combustion based on the hydrogen combustion test result of gas mixture including hydrogen, and on the feasibility of aphodid cycle. In addition, study on the applicability of hydrogen-oxygen gas turbines, comparative study on hydrogen-oxygen gas turbine, MHD power generation and fuel cell, and the future prospect of hydrogen gas turbines for ships were made to place this hydrogen gas turbine. (NEDO)

  2. Aeroderivative gas turbines for cogeneration

    International Nuclear Information System (INIS)

    Horner, M.W.; Thames, J.M.

    1988-01-01

    Aircraft jet engine derivative gas turbines have gained acceptance for cogeneration applications through impressive advances in technology and especially in maintainability and reliability. The best advantages of heavy industrial turbines and of reliable commercial airline jet engines have been successfully joined to meet the requirements for industrial cogeneration service. The next generation is under development and offers improved thermal efficiencies, alternate fuel capabilities, low environmental emissions, flexibility of operation and improved competitive system economics. This paper summarizes the current aero-derivative engine features and advantages with various systems, and discusses advanced features under consideration at this time

  3. Irradiation behavior of uranium-silicide dispersion fuels

    International Nuclear Information System (INIS)

    Hofman, G.L.; Neimark, L.A.

    1984-01-01

    This paper describes and analyzes the irradiation behavior of experimental fuel plates containing U 3 Si, U 3 Si-1.5 w/o Al, and U 3 Si 2 particulate fuel dispersed and clad in aluminum. The fuel is nominally 19.9%-enriched 235 U and the fuel volume fraction in the central ''meat'' section of the plates is approximately 33%. Sets of fuel plates were removed from the Oak Ridge Research reactor at burnup levels of 35, 83, and 94% 235 U depletion and examined at the Alpha-Gamma Hot-Cell Facility at Argonne National Laboratory. The results of the examination may be summarized as follows. The dimensional stability of the U 3 Si 2 and pure U 3 Si fuel was excellent throughout the entire burnup range, with uniform plate thickness increases up to a maximum of 4 mils at the highest burnup level (94% 235 U depletion). This corresponds to a meat volume increase of 11%. The swelling was partially due to solid fission products but to a larger extent to fission gas bubbles. The fission gas bubbles in U 3 Si 2 were small (submicrometer size) and very uniformly distributed, indicating great stability. To a large extent this was also the case for U 3 Si; however, larger bubbles ( 3 Si-1.5 w/o Al fuel became unstable at the higher burnup levels. Fission gas bubbles were larger than in the other two fuels and were present throughout the fuel particles. At 94% 235 U depletion, the formation of fission gas bubbles with diameters up to 20 mils caused the plates to pillow. It is proposed that aluminum in U 3 Si destabilizes fission gas bubble formation to the point of severe breakaway swelling in the prealloyed silicide fuel. (author)

  4. Parametric Evaluation of SiC/SiC Composite Cladding with UO2 Fuel for LWR Applications: Fuel Rod Interactions and Impact of Nonuniform Power Profile in Fuel Rod

    Science.gov (United States)

    Singh, G.; Sweet, R.; Brown, N. R.; Wirth, B. D.; Katoh, Y.; Terrani, K.

    2018-02-01

    SiC/SiC composites are candidates for accident tolerant fuel cladding in light water reactors. In the extreme nuclear reactor environment, SiC-based fuel cladding will be exposed to neutron damage, significant heat flux, and a corrosive environment. To ensure reliable and safe operation of accident tolerant fuel cladding concepts such as SiC-based materials, it is important to assess thermo-mechanical performance under in-reactor conditions including irradiation and realistic temperature distributions. The effect of non-uniform dimensional changes caused by neutron irradiation with spatially varying temperatures, along with the closing of the fuel-cladding gap, on the stress development in the cladding over the course of irradiation were evaluated. The effect of non-uniform circumferential power profile in the fuel rod on the mechanical performance of the cladding is also evaluated. These analyses have been performed using the BISON fuel performance modeling code and the commercial finite element analysis code Abaqus. A constitutive model is constructed and solved numerically to predict the stress distribution in the cladding under normal operating conditions. The dependence of dimensions and thermophysical properties on irradiation dose and temperature has been incorporated into the models. Initial scoping results from parametric analyses provide time varying stress distributions in the cladding as well as the interaction of fuel rod with the cladding under different conditions of initial fuel rod-cladding gap and linear heat rate. It is found that a non-uniform circumferential power profile in the fuel rod may cause significant lateral bowing in the cladding, and motivates further analysis and evaluation.

  5. Wind Turbine Control: Robust Model Based Approach

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood

    . Wind turbines are the most common wind energy conversion systems and are hoped to be able to compete economically with fossil fuel power plants in near future. However this demands better technology to reduce the price of electricity production. Control can play an essential part in this context....... This is because, on the one hand, control methods can decrease the cost of energy by keeping the turbine close to its maximum efficiency. On the other hand, they can reduce structural fatigue and therefore increase the lifetime of the wind turbine. The power produced by a wind turbine is proportional...... to the square of its rotor radius, therefore it seems reasonable to increase the size of the wind turbine in order to capture more power. However as the size increases, the mass of the blades increases by cube of the rotor size. This means in order to keep structural feasibility and mass of the whole structure...

  6. Probability of Detection Study to Assess the Performance of Nondestructive Inspection Methods for Wind Turbine Blades.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rice, Thomas M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Paquette, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Wind turbine blades pose a unique set of inspection challenges that span from very thick and attentive spar cap structures to porous bond lines, varying core material and a multitude of manufacturing defects of interest. The need for viable, accurate nondestructive inspection (NDI) technology becomes more important as the cost per blade, and lost revenue from downtime, grows. NDI methods must not only be able to contend with the challenges associated with inspecting extremely thick composite laminates and subsurface bond lines, but must also address new inspection requirements stemming from the growing understanding of blade structural aging phenomena. Under its Blade Reliability Collaborative program, Sandia Labs quantitatively assessed the performance of a wide range of NDI methods that are candidates for wind blade inspections. Custom wind turbine blade test specimens, containing engineered defects, were used to determine critical aspects of NDI performance including sensitivity, accuracy, repeatability, speed of inspection coverage, and ease of equipment deployment. The detection of fabrication defects helps enhance plant reliability and increase blade life while improved inspection of operating blades can result in efficient blade maintenance, facilitate repairs before critical damage levels are reached and minimize turbine downtime. The Sandia Wind Blade Flaw Detection Experiment was completed to evaluate different NDI methods that have demonstrated promise for interrogating wind blades for manufacturing flaws or in-service damage. These tests provided the Probability of Detection information needed to generate industry-wide performance curves that quantify: 1) how well current inspection techniques are able to reliably find flaws in wind turbine blades (industry baseline) and 2) the degree of improvements possible through integrating more advanced NDI techniques and procedures. _____________ S a n d i a N a t i o n a l L a b o r a t o r i e s i s a m u l t i

  7. Synthesis of highly efficient Mn{sub 2}O{sub 3} catalysts for CO oxidation derived from Mn-MIL-100

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaodong, E-mail: fatzhxd@126.com [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Li, Hongxin; Hou, Fulin; Yang, Yang; Dong, Han; Liu, Ning [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Wang, Yuxin [Institute of Applied Biotechnology, Taizhou Vocation & Technical College, Taizhou, Zhejiang 318000 (China); Cui, Lifeng, E-mail: lifeng.cui@gmail.com [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2017-07-31

    Highlights: • The morphology of porous Mn{sub 2}O{sub 3} cubes was inherited from Mn-MIL-100 template. • Mn{sub 2}O{sub 3} obtained at calcined temperature of 700 °C displayed high activity. • Enhanced activity is attributed to surface active oxygen, and reduction behavior. - Abstract: In this work, metal-organic frameworks (MOFs) Mn-MIL-100 were first prepared, which were next used as templates to obtain the irregular porous Mn{sub 2}O{sub 3} cubes through calcination with air at different temperature. The catalysts were characterized by N{sub 2} adsorption-desorption, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), H{sub 2}-temperature program reduction (H{sub 2}-TPR) and X-ray photoelectron spectroscopic (XPS). The catalytic activity for CO oxidation over Mn{sub 2}O{sub 3} catalysts was investigated. It was found that calcination temperature had a strong effect on the structure and catalytic activity of Mn{sub 2}O{sub 3} catalyst. Mn{sub 2}O{sub 3} catalyst obtained by calcined at 700 °C (Mn{sub 2}O{sub 3}-700) showed a smaller specific surface area, but displayed a high catalytic activity and excellent stability with a complete CO conversion temperature (T{sub 98}) of 240 °C, which was attributed to the unique structure, a high quantity of surface active oxygen species, smaller particle size, oxygen vacancies and good low temperature reduction behavior. The effect of water vapor on catalytic activity was also examined. The introduction of water vapor to the feedstock induced a positive effect on CO oxidation over Mn{sub 2}O{sub 3}-700 catalyst. Furthermore, no obvious drop is observed in activity over catalysts even in the presence of water vapor during 48 h.

  8. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    Science.gov (United States)

    2015-12-30

    emissions demonstration . 46 6 Figure 24. T63 engine with extension pipe to direct exhaust outside of the test cell for exhaust sampling with tip...to assess their effectiveness in conditioning turbine engine exhaust for total PM emissions measurements. Both were designed to promote the... effectively control and mitigate PM emissions. Aircraft PM is formed in the engine combustor due to incomplete combustion of fuel, and in the

  9. Fuel cycle integration issues associated with P/T technology

    International Nuclear Information System (INIS)

    Michaels, G.E.; Ludwig, S.B.

    1992-01-01

    The three primary interfaces between a generic partitioning and transmutation (P/T) technology and the existing United States fuel cycle are the light-water reactor (LWR) spent fuel inventory, the reprocessed uranium (RU) stream, and the high-level waste stream. The features and implications of these three interfaces are reviewed and their implications for P/T system design and for waste management are assessed. The variability of transuranic nuclide composition in the LWR spent fuel is calculated and its potential implications for transmutation system core design are discussed. The radiological characteristics of the RU stream are presented, and options for disposition of the stream are reviewed. Most P/T scenarios assume that RU will be recycled to LWRs. This study demonstrates, however, that LWR recycle cannot totally consume the reprocessed stream, and disposal of a waste uranium steam with high levels of radiologically-significant isotopes will still be necessary. The radioactivity of the tails stream for enrichment plants resulting from a dedicated RU campaign is calculated. The tendency of gaseous diffusion plant enrichment technology to deplete the tails stream of minor uranium isotopes is seen as a benefit and an advantage over Atomic Vapor Laser Isotope Separation-type technology. Finally, the implications of P/T on LWR-origin wastes reporting to the repository is discussed, and several significant differences between LWR-origin waste originating from transmutation systems are assessed

  10. Combustor nozzles in gas turbine engines

    Science.gov (United States)

    Johnson, Thomas Edward; Keener, Christopher Paul; Stewart, Jason Thurman; Ostebee, Heath Michael

    2017-09-12

    A micro-mixer nozzle for use in a combustor of a combustion turbine engine, the micro-mixer nozzle including: a fuel plenum defined by a shroud wall connecting a periphery of a forward tube sheet to a periphery of an aft tubesheet; a plurality of mixing tubes extending across the fuel plenum for mixing a supply of compressed air and fuel, each of the mixing tubes forming a passageway between an inlet formed through the forward tubesheet and an outlet formed through the aft tubesheet; and a wall mixing tube formed in the shroud wall.

  11. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NO{sub x} with NH{sub 3} at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng [School of Environmental Science and Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Dalian 116024 (China); Sun, Hong [School of Environmental & Chemical Engineering, Dalian Jiaotong University, Dalian 116028 (China); Quan, Xie, E-mail: quanxie@dlut.edu.cn [School of Environmental Science and Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Dalian 116024 (China); Chen, Shuo [School of Environmental Science and Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Dalian 116024 (China)

    2016-01-15

    Highlights: • Nano-ceria was successfully encapsulated into MIL-100(Fe) for the SCR of NO{sub x}. • The incorporated ceria in MIL-100(Fe) showed high content of chemisorbed oxygen. • The added ceria into MIL-100(Fe) improved the formation of adsorbed NO{sub 2} species. • The addition of ceria into MIL-100(Fe) enhanced SCR activity at low temperature. - Abstract: The development of catalysts for selective catalytic reduction (SCR) reactions that are highly active at low temperatures and show good resistance to SO{sub 2} and H{sub 2}O is still a challenge. In this study, we have designed and developed a high-performance SCR catalyst based on nano-sized ceria encapsulated inside the pores of MIL-100(Fe) that combines excellent catalytic power with a metal organic framework architecture synthesized by the impregnation method (IM). Transmission electron microscopy (TEM) revealed the encapsulation of ceria in the cavities of MIL-100(Fe). The prepared IM-CeO{sub 2}/MIL-100(Fe) catalyst shows improved catalytic activity both at low temperatures and throughout a wide temperature window. The temperature window for 90% NO{sub x} conversion ranges from 196 to 300 °C. X-ray photoelectron spectroscopy (XPS) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) analysis indicated that the nano-sized ceria encapsulated inside MIL-100(Fe) promotes the production of chemisorbed oxygen on the catalyst surface, which greatly enhances the formation of the NO{sub 2} species responsible for fast SCR reactions.

  12. Fuel flexibility within a carbon limited energy world

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.M.; Raddings, T.; Scholz, M. [GE Energy (United States)

    2007-07-01

    This paper focuses on technical aspects of Integrated Gasification Combined Cycles (IGCC) from a coal, pre-combustion perspective, now and towards the future, including gasification and hydrogen gas turbines. The advantages of gasification and pre-combustion fuel clean-up range from the potential to utilize various low cost feedstock, which can be converted into synthetic fuels, to providing a viable and secure alternative to natural gas. GE has delivered over 650 licensed gasification facilities operational in the field, 12 with solid feedstock and 25 utilizing shift reaction for hydrogen production and CO{sub 2} capture. The process for pre-combustion de-carbonisation of natural gas or syngas derived from coals will result in gas turbine fuels that consist of 90% or higher hydrogen content fuel. Over 25 GE heavy-duty gas turbines are operating presently, on a large variation of syngas fuels, ranging from B and E to F-class technologies. 7 refs., 15 figs.

  13. Study of a fuel injection quantity sensor in diesel engine. Part 3. Experimental evaluation of the improved type micro turbine sensor; Diesel kikan ni okeru nenryo funsharyo sensor no kenkyu. 3. Funsharyo keisoku no seido kojo ni kansuru jikken hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Maehara, H; Iwasaki, T; Kobayashi, T [Zexel Corp., Tokyo (Japan)

    1997-10-01

    A Micro Turbine Sensor has been developed to measure fuel injection quantity and injection rate. Previous reports described results of experiments on the MTS which were carried out under steady and unsteady flow conditions. The MTS has been improved in shape of a holder tip and a detecting procedure for rotating speed of a turbine. As a result revolution speed of the turbine increased 18% over the conventional type holder under steady flow condition. Furthermore the measurement resolution of the MTS came up to about 2(mm{sup 3}/pulse) at 20(mm{sup 3}/stroke) under intermittent spray conditions using fuel injection pump. 11 refs., 11 figs., 1 tab.

  14. Straight vegetable oil use in Micro-Gas Turbines: System adaptation and testing

    International Nuclear Information System (INIS)

    Prussi, M.; Chiaramonti, D.; Riccio, G.; Martelli, F.; Pari, L.

    2012-01-01

    Highlights: → The possibility to feed a Micro Gas Turbine with Straight Vegetable Oil (SVO) has been investigated. → Correlative analysis and CFD were used to model the effect of SVO characteristics on atomization and evaporation. → Minor modifications to a the commercial MGT were adopted. → Measured power output and specific fuel consumption were close to standard fuel, taking into account the LHV of SVO. → Emissions were higher than for standard fossil fuel but strongly affected by SVO temperature. -- Abstract: The aim of this research work is to investigate the use of straight vegetable sunflower oil (SFO), a liquid biofuel, in a Micro-Gas Turbine (MGT). Compared to conventional diesel engines, micro-gas turbines represent a very reliable, clean and performing small scale cogeneration technology. Commercial gas turbines have already been tested with unconventional fuels, such as biomass derived fuels; however, research work on using Straight Vegetable Oil (SVO) as fuel in MGTs are really scarce. The chemical and physical characteristics of SVO are different from fossil diesel oil and rather far from the common technical specifications for gas turbine liquid fuels, not only in terms of kinematic viscosity and Lower Heating Value, but also as regards other issues as contaminant levels and composition, fuel cold properties, ignition properties, etc. Therefore, particular attention has to be given to the atomization and evaporation phases, as these are the most critical steps to achieve stable and efficient long term operation. An analysis based on numerical correlations available from literature was initially adopted for the analysis of the atomization process, supported by CFD modeling to qualitatively investigate the flow pattern. Control parameters were revised and set so to produce a sunflower oil spray having evaporation time comparable to diesel, and minor adaptations to the fuel line were designed and installed on the MGT. Tests with blends and

  15. Environmental Life Cycle Assessment of Coal-Biomass to Liquid Jet Fuel Compared to Petroleum-Derived JP-8 Jet Fuel

    Science.gov (United States)

    2010-03-01

    is a Metal Deactivator Additive (MDA) to prevent fuel oxidation with trace metals such as copper or zinc that may be in the jet fuel (MIL- HDBK-510-1...react in the FT synthesis process). The gasifier is of the slagging type and a direct contact water quench spray system is used to cool the syngas...exiting the gasifier. The quench also removes particulate matter and contaminants not removed in the slag . However, because the ash from biomass is

  16. Advanced anodes for high-temperature fuel cells

    DEFF Research Database (Denmark)

    Atkinson, A.; Barnett, S.; Gorte, R.J.

    2004-01-01

    Fuel cells will undoubtedly find widespread use in this new millennium in the conversion of chemical to electrical energy, as they offer very high efficiencies and have unique scalability in electricity-generation applications. The solid-oxide fuel cell (SOFC) is one of the most exciting...... of these energy technologies; it is an all-ceramic device that operates at temperatures in the range 500-1,000degreesC. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use carbon monoxide as a fuel rather than being poisoned by it, and the availability of high......-grade exhaust heat for combined heat and power, or combined cycle gas-turbine applications. Although cost is clearly the most important barrier to widespread SOFC implementation, perhaps the most important technical barriers currently being addressed relate to the electrodes, particularly the fuel electrode...

  17. Status and promise of fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C. [National Energy Technology Lab., Pittsburgh, PA (United States). Dept. of Energy

    2001-09-01

    The niche or early entry market penetration by ONSI and its phosphoric acid fuel cell technology has proven that fuel cells are reliable and suitable for premium power and other opportunity fuel niche market applications. Now, new fuel cell technologies - solid oxide fuel cells, molten carbonate fuel cells, and polymer electrolyte fuel cells - are being developed for near-term distributed generation shortly after 2003. Some of the evolving fuel cell systems are incorporating gas turbines in hybrid configurations. The combination of the gas turbine with the fuel cell promises to lower system costs and increase efficiency to enhance market penetration. Market estimates indicate that significant early entry markets exist to sustain the initially high cost of some distributed generation technologies. However, distributed generation technologies must have low introductory first cost, low installation cost, and high system reliability to be viable options in competitive commercial and industrial markets. In the long-term, solid state fuel cell technology with stack costs under $100/kilowatt (kW) promises deeper and wider market penetration in a range of applications including a residential, auxillary power, and the mature distributed generation markets. The solid state energy conversion alliance (SECA) with its vision for fuel cells in 2010 was recently formed to commercialize solid state fuel cells and realize the full potential of the fuel cell technology. Ultimately, the SECA concept could lead to megawatt-size fuel-cell systems for commercial and industrial applications and Vision 21 fuel cell turbine hybrid energy plants in 2015. (orig.)

  18. The Onset and Duration of Action of 0.2% Lidocaine in a One-per-Mil Tumescent Solution for Hand Surgery.

    Science.gov (United States)

    Prasetyono, Theddeus O H; Lestari, Puri A

    2016-05-01

    One-per-mil tumescent solution, which contains 0.2% lidocaine with 1:1,000,000 epinephrine, has been reported to be clinically effective for hand surgery under local anesthesia. However, it was lacking in its basic pharmacokinetics profile in regard to the onset of action (OOA) and duration of action (DOA). A randomized, double-blind study was conducted on 12 volunteers who met the inclusion criteria from October to November 2014. All volunteers had their right and left ring finger pulps injected with either one-per-mil solution or 2% lidocaine. Semmes-Weinstein and two-point discrimination tests were used to test sensation. Visual analogue scale was recorded at the time when the finger lost its sensation and when it regained normal sensation to measure the OOA and DOA. The data were then analyzed with a paired t-test and a Wilcoxon signed-rank test. The OOA and DOA of 2% plain lidocaine were 1 minute and 99.67 minutes, respectively. Meanwhile, 0.2% lidocaine in a one-per-mil tumescent solution showed an OOA of 5 minutes and a DOA of 186.83 minutes. The OOA of 0.2% lidocaine in a one-per-mil tumescent solution is statistically shorter than 2% plain lidocaine (P=0.04); while its DOA is statistically longer than 2% plain lidocaine (Pmil tumescent solution is statistically and clinically superior to 2% plain lidocaine in achieving longer duration of local anesthesia.

  19. Gas Turbines: ''low NOx'' technologies at EGT

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    For more than 15 years, European Gas Turbines (EGT - GEC Alsthom Group) has gained an important know-how culture and can use its rich feedback experience in the domain of gas turbine emissions. The EGT gas turbine units equipped with denitrogenation technologies cover the 4 to 226 MW power range and cumulate more than 1.7 hours of functioning in the different existing installations in the world. This paper describes the economical and environmental interests of gas turbines for power production and the combustion technologies developed by EGT to reduce the NOx emissions. The selective catalytic reduction technique is the only available secondary technique with can allow NOx and CO emissions lower than 10 ppm. Other technologies involving diluent injection (water, water-fuel mixture, vapor..) are also described and were developed in several countries to reduce the emission of these pollutants. (J.S.)

  20. Study of an advanced General Aviation Turbine Engine (GATE)

    Science.gov (United States)

    Gill, J. C.; Short, F. R.; Staton, D. V.; Zolezzi, B. A.; Curry, C. E.; Orelup, M. J.; Vaught, J. M.; Humphrey, J. M.

    1979-01-01

    The best technology program for a small, economically viable gas turbine engine applicable to the general aviation helicopter and aircraft market for 1985-1990 was studied. Turboshaft and turboprop engines in the 112 to 746 kW (150 to 1000 hp) range and turbofan engines up to 6672 N (1500 lbf) thrust were considered. A good market for new turbine engines was predicted for 1988 providing aircraft are designed to capitalize on the advantages of the turbine engine. Parametric engine families were defined in terms of design and off-design performance, mass, and cost. These were evaluated in aircraft design missions selected to represent important market segments for fixed and rotary-wing applications. Payoff parameters influenced by engine cycle and configuration changes were aircraft gross mass, acquisition cost, total cost of ownership, and cash flow. Significant advantage over a current technology, small gas turbine engines was found especially in cost of ownership and fuel economy for airframes incorporating an air-cooled high-pressure ratio engine. A power class of 373 kW (500 hp) was recommended as the next frontier for technology advance where large improvements in fuel economy and engine mass appear possible through component research and development.

  1. Preliminary safety evaluation of the Gas Turbine-Modular Helium Reactor (GT-MHR)

    International Nuclear Information System (INIS)

    Dunn, T.D.; Lommers, L.J.; Tangirala, V.E.

    1994-04-01

    A qualitative comparison between the safety characteristics of the Gas Turbine-Modular Helium Reactor (GT-MHR) and those of the steam cycle shows that the two designs achieve equivalent levels of overall safety performance. This comparison is obtained by applying the scaling laws to detailed steam-cycle computations as well as the conclusions obtained from preliminary GT-MHR model simulations. The gas turbine design is predicted to be superior for some event categories, while the steam cycle design is better for others. From a safety perspective, the GT-MHR has a modest advantage for pressurized conduction cooldown events. Recent computational simulations of 102 column, 550 MW(t) GT-MHR during a depressurized conduction cooldown show that peak fuel temperatures are within the limits. The GT-MHR has a significantly lower risk due to water ingress events under operating conditions. Two additional scenarios, namely loss of load event and turbine deblading event that are specific to the GT-MHR design are discussed. Preliminary evaluation of the GT-MHR's safety characteristics indicate that the GT-MHR can be expected to satisfy or exceed its safety requirements

  2. FRAP-T, Temperature and Pressure in Oxide Fuel During LWR LOCA

    International Nuclear Information System (INIS)

    Siefken, L.J.; Shah, V.N.; Berna, G.A.; Hohorst, J.K.

    1984-01-01

    1 - Description of problem or function: FRAP-T6 is the most recent in the FRAP-T (Fuel Rod Analysis Program - Transient) series of programs for calculating the transient behavior of light water reactor fuel rods during reactor transients and hypothetical accidents, such as loss-of-coolant and reactivity-initiated accidents. The program calculates the temperature and deformation histories of fuel rods as functions of time-dependent fuel rod power and coolant boundary conditions. FRAP-T6 can be used as a 'stand-alone' code or, using steady state fuel rod conditions supplied by FRAPCON2 (NESC NO. 694), can perform a transient analysis. In either case, the phenomena modeled by FRAP-T6 include: heat conduction, heat transfer from cladding to coolant, elastic- plastic fuel and cladding deformation, cladding oxidation, fission gas release, fuel rod gas pressure, and pellet cladding mechanical interaction. Licensing audit models have been added, also. The program includes a user's option that automatically provides a detailed uncertainty analysis of the calculated fuel rod variables due to uncertainties in fuel rod fabrication, material properties, power and cooling. 2 - Method of solution: The models in FRAP-T6 use finite difference techniques to calculate the variables which influence fuel rod performance. The variables are calculated at user-specified slices of the fuel rod. Each slice is at a different elevation and is defined to be an axial node. At each axial node, the variables are calculated at user-specified locations. Each location is at a different radius and is defined to be a radial node. The variables at any given axial node are assumed to be independent of the variables at all other axial nodes. The solution for the fuel rod variables begins with the calculation of the fuel and cladding temperatures. Then, the temperature of the gases in the plenum of the fuel rod is calculated. Next, the stresses and strains in the fuel and cladding and the pressure of the

  3. Operation of a T63 Turbine Engine Using F24 Contaminated Skydrol 5 Hydraulic Fluid

    Science.gov (United States)

    2016-09-01

    hydraulic fluids were originally developed by the Douglas Aircraft Company during the 1940s to reduce fire risk from leaking high pressure mineral oil...thermal load demands in modern hydraulic systems and reduced density to lower weight impact on the aircraft. Eastman Chemical is the current producer of...AFRL-RQ-WP-TM-2016-0155 OPERATION OF A T63 TURBINE ENGINE USING F24 CONTAMINATED SKYDROL 5 HYDRAULIC FLUID Matthew J. Wagner (AFRL/RQTM) James

  4. Elucidating the breathing of the metal-organic framework MIL-53(Sc) with ab initio molecular dynamics simulations and in situ X-ray powder diffraction experiments.

    Science.gov (United States)

    Chen, Linjiang; Mowat, John P S; Fairen-Jimenez, David; Morrison, Carole A; Thompson, Stephen P; Wright, Paul A; Düren, Tina

    2013-10-23

    Ab initio molecular dynamics (AIMD) simulations have been used to predict structural transitions of the breathing metal-organic framework (MOF) MIL-53(Sc) in response to changes in temperature over the range 100-623 K and adsorption of CO2 at 0-0.9 bar at 196 K. The method has for the first time been shown to predict successfully both temperature-dependent structural changes and the structural response to variable sorbate uptake of a flexible MOF. AIMD employing dispersion-corrected density functional theory accurately simulated the experimentally observed closure of MIL-53(Sc) upon solvent removal and the transition of the empty MOF from the closed-pore phase to the very-narrow-pore phase (symmetry change from P2(1)/c to C2/c) with increasing temperature, indicating that it can directly take into account entropic as well as enthalpic effects. We also used AIMD simulations to mimic the CO2 adsorption of MIL-53(Sc) in silico by allowing the MIL-53(Sc) framework to evolve freely in response to CO2 loadings corresponding to the two steps in the experimental adsorption isotherm. The resulting structures enabled the structure determination of the two CO2-containing intermediate and large-pore phases observed by experimental synchrotron X-ray diffraction studies with increasing CO2 pressure; this would not have been possible for the intermediate structure via conventional methods because of diffraction peak broadening. Furthermore, the strong and anisotropic peak broadening observed for the intermediate structure could be explained in terms of fluctuations of the framework predicted by the AIMD simulations. Fundamental insights from the molecular-level interactions further revealed the origin of the breathing of MIL-53(Sc) upon temperature variation and CO2 adsorption. These simulations illustrate the power of the AIMD method for the prediction and understanding of the behavior of flexible microporous solids.

  5. Performance assessment of simple and modified cycle turboshaft gas turbines

    Directory of Open Access Journals (Sweden)

    Barinyima Nkoi

    2013-06-01

    Full Text Available This paper focuses on investigations encompassing comparative assessment of gas turbine cycle options. More specifically, investigation was carried out of technical performance of turboshaft engine cycles based on existing simple cycle (SC and its projected modified cycles for civil helicopter application. Technically, thermal efficiency, specific fuel consumption, and power output are of paramount importance to the overall performance of gas turbine engines. In course of carrying out this research, turbomatch software established at Cranfield University based on gas turbine theory was applied to conduct simulation of a simple cycle (baseline two-spool helicopter turboshaft engine model with free power turbine. Similarly, some modified gas turbine cycle configurations incorporating unconventional components, such as engine cycle with low pressure compressor (LPC zero-staged, recuperated engine cycle, and intercooled/recuperated (ICR engine cycle, were also simulated. In doing so, design point (DP and off-design point (OD performances of the engine models were established. The percentage changes in performance parameters of the modified cycle engines over the simple cycle were evaluated and it was found that to a large extent, the modified engine cycles with unconventional components exhibit better performances in terms of thermal efficiency and specific fuel consumption than the traditional simple cycle engine. This research made use of public domain open source references.

  6. Study of core characteristics on fuel and coolant type. Results of F/S phase-I

    International Nuclear Information System (INIS)

    Ikegami, Tetsuo; Hayashi, Hideyuki; Sasaki, Makoto; Mizuno, Tomoyasu; Yamadate, Megumi; Takaki, Naoyuki; Kurosawa, Norifumi; Sakashita, Yoshiaki; Naganuma, Masayuki

    2001-03-01

    a sodium coolant core. (5) There is a possibility that a He coolant core with nitride shield pin fuel, 850degC outlet temperature and direct generation by a gas turbine achieves the F/S's target. (6) There is possibility that a He coolant core with nitride coated particle fuel, 850degC outlet temperature, direct generation by a gas turbine and capability of avoiding fuel melt event in accidents without scram achieves discharged burn-up 100,000 MWd/t and breeding ratio 1.1. (7) It shows rare small influence for core characteristics to use various kinds of TRU composition and low decontamination fuel which supplied from a FR recycle and a LWR recycle included plutonium thermal utilization. (author)

  7. Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content (HHC) - Fueled Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Mumm, Daniel

    2013-08-31

    The overarching goal of this research program has been to evaluate the potential impacts of coal-derived syngas and high-hydrogen content fuels on the degradation of turbine hot-section components through attack of protective oxides and thermal barrier coatings. The primary focus of this research program has been to explore mechanisms underpinning the observed degradation processes, and connections to the combustion environments and characteristic non-combustible constituents. Based on the mechanistic understanding of how these emerging fuel streams affect materials degradation, the ultimate goal of the program is to advance the goals of the Advanced Turbine Program by developing materials design protocols leading to turbine hot-section components with improved resistance to service lifetime degradation under advanced fuels exposures. This research program has been focused on studying how: (1) differing combustion environments – relative to traditional natural gas fired systems – affect both the growth rate of thermally grown oxide (TGO) layers and the stability of these oxides and of protective thermal barrier coatings (TBCs); and (2) how low levels of fuel impurities and characteristic non-combustibles interact with surface oxides, for instance through the development of molten deposits that lead to hot corrosion of protective TBC coatings. The overall program has been comprised of six inter-related themes, each comprising a research thrust over the program period, including: (i) evaluating the role of syngas and high hydrogen content (HHC) combustion environments in modifying component surface temperatures, heat transfer to the TBC coatings, and thermal gradients within these coatings; (ii) understanding the instability of TBC coatings in the syngas and high hydrogen environment with regards to decomposition, phase changes and sintering; (iii) characterizing ash deposition, molten phase development and infiltration, and associated corrosive

  8. Thermally driven refrigeration by methanol adsorption on coatings of HKUST-1 and MIL-101(Cr)

    International Nuclear Information System (INIS)

    Kummer, Harry; Baumgartner, Max; Hügenell, Philipp; Fröhlich, Dominik; Henninger, Stefan K.; Gläser, Roger

    2017-01-01

    Highlights: • A novel approach of shaping MOFs as coatings on Al-substrates used as HX materials. • The efficiency of HKUST-1 and MIL-101(Cr) for refrigeration via Methanol sorption. • The thermal stability of the MOF coatings under application relevant conditions. • Focus on early implementation by use of commercially and pre-industrially MOFs. • Modelling of sorption uptakes under application conditions for apparatus design. - Abstract: A new and versatile binder-based metal organic framework-(MOF-) coating enables efficient use in fast-cycle adsorption chillers for cooling and refrigeration applications. Two different adsorbents were presented, HKUST-1 and Mil-101(Cr), with promising methanol adsorption characteristics and high loading capacities up to 1.22 g g"−"1. Polysiloxane-based coatings containing 65 and 80 wt% of the MOF adsorbents were produced and the adsorption characteristics were studied before and after extensive thermal treatment over 1000 cycles between 20 °C and 130 °C under methanol atmosphere by thermogravimetric analysis and X-ray diffractometry. Using the Dubinin-Astakhov approach, possible methanol loading lifts in a refrigeration process under different application conditions were quantified.

  9. Water rod and fuel assembly

    International Nuclear Information System (INIS)

    Tsutsumi, Shinro; Tada, Nobuo; Nakajima, Junjiro; Aizawa, Yasuhiro.

    1995-01-01

    A water rod disposed in a fuel assembly comprises a larger diameter tube constituting an upwarding flow channel for coolants flown from the lower portion of a reactor core, and a smaller diameter tube connected fixedly to the larger diameter tube at the periphery of the upper end thereof and constituting a downwarding flow channel for coolants upwardly flown in the larger diameter tube. The larger diameter tube is formed by subjecting a base tube made of a zirconium alloy to PILGER mil fabrication and annealing in α region repeatingly for several times, then subjecting it to α + β treatment for once. The smaller diameter tube is formed by subjecting a base tube made of a zirconium alloy to PILGER mil fabrication and annealing in α region repeatingly for several times, then subjecting it to β treatment for once. With such procedures, the amount of irradiation growth of the tube in the axial direction is made greater in the larger diameter tube than that in the smaller diameter tube. Accordingly, since the smaller diameter tube is never bent by pressing, mechanical integrity of the fuel assembly is never lost. (I.N.)

  10. Modeling syngas-fired gas turbine engines with two dilutants

    Science.gov (United States)

    Hawk, Mitchell E.

    2011-12-01

    Prior gas turbine engine modeling work at the University of Wyoming studied cycle performance and turbine design with air and CO2-diluted GTE cycles fired with methane and syngas fuels. Two of the cycles examined were unconventional and innovative. The work presented herein reexamines prior results and expands the modeling by including the impacts of turbine cooling and CO2 sequestration on GTE cycle performance. The simple, conventional regeneration and two alternative regeneration cycle configurations were examined. In contrast to air dilution, CO2 -diluted cycle efficiencies increased by approximately 1.0 percentage point for the three regeneration configurations examined, while the efficiency of the CO2-diluted simple cycle decreased by approximately 5.0 percentage points. For CO2-diluted cycles with a closed-exhaust recycling path, an optimum CO2-recycle pressure was determined for each configuration that was significantly lower than atmospheric pressure. Un-cooled alternative regeneration configurations with CO2 recycling achieved efficiencies near 50%, which was approximately 3.0 percentage points higher than the conventional regeneration cycle and simple cycle configurations that utilized CO2 recycling. Accounting for cooling of the first two turbine stages resulted in a 2--3 percentage point reduction in un-cooled efficiency, with air dilution corresponding to the upper extreme. Additionally, when the work required to sequester CO2 was accounted for, cooled cycle efficiency decreased by 4--6 percentage points, and was more negatively impacted when syngas fuels were used. Finally, turbine design models showed that turbine blades are shorter with CO2 dilution, resulting in fewer design restrictions.

  11. Integrating a SOFC Plant with a Steam Turbine Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Scappin, Fabio

    2009-01-01

    A Solid Oxide Fuel Cell (SOFC) is integrated with a Steam Turbine (ST) cycle. Different hybrid configurations are studied. The fuel for the plants is assumed to be natural gas (NG). Since the NG cannot be sent to the anode side of the SOFC directly, a desulfurization reactor is used to remove...

  12. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NOx with NH₃ at low temperature.

    Science.gov (United States)

    Wang, Peng; Sun, Hong; Quan, Xie; Chen, Shuo

    2016-01-15

    The development of catalysts for selective catalytic reduction (SCR) reactions that are highly active at low temperatures and show good resistance to SO2 and H2O is still a challenge. In this study, we have designed and developed a high-performance SCR catalyst based on nano-sized ceria encapsulated inside the pores of MIL-100(Fe) that combines excellent catalytic power with a metal organic framework architecture synthesized by the impregnation method (IM). Transmission electron microscopy (TEM) revealed the encapsulation of ceria in the cavities of MIL-100(Fe). The prepared IM-CeO2/MIL-100(Fe) catalyst shows improved catalytic activity both at low temperatures and throughout a wide temperature window. The temperature window for 90% NOx conversion ranges from 196 to 300°C. X-ray photoelectron spectroscopy (XPS) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) analysis indicated that the nano-sized ceria encapsulated inside MIL-100(Fe) promotes the production of chemisorbed oxygen on the catalyst surface, which greatly enhances the formation of the NO2 species responsible for fast SCR reactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Next Generation Engineered Materials for Ultra Supercritical Steam Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Douglas Arrell

    2006-05-31

    To reduce the effect of global warming on our climate, the levels of CO{sub 2} emissions should be reduced. One way to do this is to increase the efficiency of electricity production from fossil fuels. This will in turn reduce the amount of CO{sub 2} emissions for a given power output. Using US practice for efficiency calculations, then a move from a typical US plant running at 37% efficiency to a 760 C /38.5 MPa (1400 F/5580 psi) plant running at 48% efficiency would reduce CO2 emissions by 170kg/MW.hr or 25%. This report presents a literature review and roadmap for the materials development required to produce a 760 C (1400 F) / 38.5MPa (5580 psi) steam turbine without use of cooling steam to reduce the material temperature. The report reviews the materials solutions available for operation in components exposed to temperatures in the range of 600 to 760 C, i.e. above the current range of operating conditions for today's turbines. A roadmap of the timescale and approximate cost for carrying out the required development is also included. The nano-structured austenitic alloy CF8C+ was investigated during the program, and the mechanical behavior of this alloy is presented and discussed as an illustration of the potential benefits available from nano-control of the material structure.

  14. Association between VEGF polymorphisms (936c/t, -460t/c and -634g/c) with haplotypes and coronary heart disease susceptibility.

    Science.gov (United States)

    Han, Xia; Liu, Lili; Niu, Jiamin; Yang, Jun; Zhang, Zengtang; Zhang, Zhiqiang

    2015-01-01

    Our aim was to investigate the association between single nucleotide polymorphisms (SNPs) of vascular endothelial growth factor (VEGF) and coronary heart disease (CHD) susceptibility in Chinese Han population. 144 CHD patients and 150 healthy individuals were enrolled in the study. Three SNPs (936C/T, -460T/C and -634G/C) of VEGF were chose and then were genotyped with Sequenom time-of-flight mass spectrometry (TOFMS). Odds ratio (OR) with 95% confidence interval (CI) were used to evaluate the association of genotypes and haplotypes and CHD susceptibility. The frequencies of -460T/C CC genotype (13.6%) was found higher in the case group than that of control group (6.7%), which indicated that CC genotype was a risk factor for CHD (OR=2.50, 95% CI=1.10-5.68). Correspondently, the C allele appeared to increase the risk of CHD (OR=1.54, 95% CI=1.07-2.22). For -634G/C polymorphism, the risk of the CC genotype carrier for CHD increased 2.24 fold compared to the wild genotype. Moreover, -634G/CC allele was significantly associated with CHD susceptibility (OR=1.65, 95% CI=1.15-2.36). In addition, +936C/T CT genotype and C allele appeared to be a genetic-susceptibility factors for CHD (OR=2.43, 95% CI=1.44-4.10; OR=1.95, 95% CI=1.26-3.02). The haplotype analysis showed that T-C-T, C-C-C and C-G-C haplotypes all could increase the risk for CHD (OR: 2.43, 2.77 and 2.33). we concluded VEGF polymorphisms were associated with CHD susceptibility. Moreover, the haplotypes of T-C-T, C-C-C and C-G-C all could increase the risk for CHD.

  15. Experimental Assessment of the Mass of Ash Residue During the Burning of Droplets of a Composite Liquid Fuel

    Science.gov (United States)

    Glushkov, D. O.; Zakharevich, A. V.; Strizhak, P. A.; Syrodoi, S. V.

    2018-05-01

    An experimental study has been made of the regularities of burning of single droplets of typical compositions of a composite liquid fuel during the heating by an air flow with a varied temperature (600-900 K). As the basic components of the compositions of the composite liquid fuel, use was made of the: waste of processing (filter cakes) of bituminous coals of ranks K, C, and T, waste motor, turbine, and transformer oils, process mixture of mazut and oil, heavy crude, and plasticizer. The weight fraction of a liquid combustible component (petroleum) product) ranged within 0-15%. Consideration has been given to droplets of a composite liquid fuel with dimensions (radius) of 0.5 to 2 mm. Conditions of low-temperature initiation of combustion to ensure a minimum possible mass of solid incombustible residue have been determined. Petroleum products have been singled out whose addition to the composition of the composite liquid fuel tends to increase the ash mass (compared to the corresponding composition without a liquid combustible component). Approximation dependences have been obtained which permit predicting the influence of the concentration of the liquid petroleum product as part of the composite liquid fuel on the ash-residue mass.

  16. Comprehensive Assessment of Composition and Thermochemical Variability by High Resolution GC/QToF-MS and the Advanced Distillation-Curve Method as a Basis of Comparison for Reference Fuel Development.

    Science.gov (United States)

    Lovestead, Tara M; Burger, Jessica L; Schneider, Nico; Bruno, Thomas J

    2016-12-15

    Commercial and military aviation is faced with challenges that include high fuel costs, undesirable emissions, and supply chain insecurity that result from the reliance on petroleum-based feedstocks. The development of alternative gas turbine fuels from renewable resources will likely be part of addressing these issues. The United States has established a target for one billion gallons of renewable fuels to enter the supply chain by 2018. These alternative fuels will have to be very similar in properties, chemistry, and composition to existing fuels. To further this goal, the National Jet Fuel Combustion Program (a collaboration of multiple U.S. agencies under the auspices of the Federal Aviation Administration, FAA) is coordinating measurements on three reference gas turbine fuels to be used as a basis of comparison. These fuels are reference fuels with certain properties that are at the limits of experience. These fuels include a low viscosity, low flash point, high hydrogen content "best case" JP-8 (POSF 10264) fuel, a relatively high viscosity, high flash point, low hydrogen content "worst case" JP-5 (POSF 10259) fuel, and a Jet-A (POSF 10325) fuel with relatively average properties. A comprehensive speciation of these fuels is provided in this paper by use of high resolution gas chromatography/quadrupole time-of-flight - mass spectrometry (GC/QToF-MS), which affords unprecedented resolution and exact molecular formula capabilities. The volatility information as derived from the measurement of the advanced distillation curve temperatures, T k and T h , provides an approximation of the vapor liquid equilibrium and examination of the composition channels provides detailed insight into thermochemical data. A comprehensive understanding of the compositional and thermophysical data of gas turbine fuels is required not only for comparison but also for modeling of such complex mixtures, which will, in turn, aid in the development of new fuels with the goals of

  17. Hydrogen selective NH{sub 2}-MIL-53(Al) MOF membranes with high permeability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Zou, Xiaoqin; Gao, Xue; Fan, Songjie; Sun, Fuxing; Ren, Hao; Zhu, Guangshan [State Key Laboratory of Inorganic, Synthesis and Preparative Chemistry, Jilin University, Changchun (China)

    2012-09-11

    Hydrogen-based energy is a promising renewable and clean resource. Thus, hydrogen selective microporous membranes with high performance and high stability are demanded. Novel NH{sub 2}-MIL-53(Al) membranes are evaluated for hydrogen separation for this goal. Continuous NH{sub 2}-MIL-53(Al) membranes have been prepared successfully on macroporous glass frit discs assisted with colloidal seeds. The gas sorption ability of NH{sub 2}-MIL-53(Al) materials is studied by gas adsorption measurement. The isosteric heats of adsorption in a sequence of CO{sub 2}> N{sub 2}> CH{sub 4}{approx} H{sub 2} indicates different interactions between NH{sub 2}-MIL-53(Al) framework and these gases. As-prepared membranes are measured by single and binary gas permeation at different temperatures. The results of singe gas permeation show a decreasing permeance in an order of H{sub 2}> CH{sub 4}> N{sub 2}> CO{sub 2}, suggesting that the diffusion and adsorption properties make significant contributions in the gas permeation through the membrane. In binary gas permeation, the NH{sub 2}-MIL-53(Al) membrane shows high selectivity for H{sub 2} with separation factors of 20.7, 23.9 and 30.9 at room temperature (288 K) for H{sub 2} over CH{sub 4}, N{sub 2} and CO{sub 2}, respectively. In comparison to single gas permeation, a slightly higher separation factor is obtained due to the competitive adsorption effect between the gases in the porous MOF membrane. Additionally, the NH{sub 2}-MIL-53(Al) membrane exhibits very high permeance for H{sub 2} in the mixtures separation (above 1.5 x 10{sup -6} mol m{sup -2} s{sup -1} Pa{sup -1}) due to its large cavity, resulting in a very high separation power. The details of the temperature effect on the permeances of H{sub 2} over other gases are investigated from 288 to 353 K. The supported NH{sub 2}-MIL-53(Al) membranes with high hydrogen separation power possess high stability, resistance to cracking, temperature cycling and show high reproducibility

  18. Technical and Economic Analysis of a Hybrid Generation System of Wind Turbines, Photovoltaic Modules and a Fuel Cell

    Directory of Open Access Journals (Sweden)

    Szczerbowsk Radosław

    2016-01-01

    Full Text Available The paper presents the results of the analysis of the economic and manufacturing system consisting of wind turbines, photovoltaic modules, polymer membrane fuel cell and the electrolyzer. The system supplies the customer profile at the assumed wind and solar conditions. Energy analysis was conducted on the basis of the balance equations produced and received electric power. To assess the economic efficiency of investments adopted the following economic indicators: NPV, IRR, MIRR, MNPV, DPP. The authors describe the limits of investment costs intended for the construction, which use hybrid power generation system (HPGS is viable.

  19. Technical considerations in repowering a nuclear plant for fossil fueled operation

    International Nuclear Information System (INIS)

    Patti, F.J.

    1996-01-01

    Repowering involves replacement of the reactor by a fossil fuel source of steam. This source can be a conventional fossil fueled boiler or the heat recovery steam generator (HRSG) on a gas turbine exhaust. The existing steam turbine plant is used to the extent possible. Alternative fuels for repowering a nuclear plant are coal, natural gas and oil. In today's world oil is not usually an alternative. Selection of coal or natural gas is largely a matter of availability of the fuel near the location of the plant. Both the fossil boiler and the HRSG produce steam at higher pressures and temperatures than the throttle conditions for a saturated steam nuclear turbine. It is necessary to match the steam conditions from the new source to the existing turbine as closely as possible. Technical approaches to achieve a match range from using a topping turbine at the front end of the cycle to attemperation of the throttle steam with feedwater. The electrical output from the repowered plant is usually greater than that of the original nuclear fueled design. This requires consideration of the ability to use the excess electricity. Interfacing of the new facility with the existing turbine plant requires consideration of facility layout and design. Site factors must also be considered, especially for a coal fired boiler, since rail and coal handling facilities must be added to a site for which these were not considered. Additional site factors that require consideration are ash handling and disposal

  20. Airbreathing Propulsion Fuels and Energy Exploratory Research and Development (APFEERD) Sub Task: Review of Bulk Physical Properties of Synthesized Hydrocarbon:Kerosenes and Blends

    Science.gov (United States)

    2017-06-01

    Fuels and Energy Branch Turbine Engine Division Turbine Engine Division CHARLES W. STEVENS, Lead Engineer Turbine Engine Division Aerospace Systems...evaluation concludes, based on fundamental physical chemistry , that all hydrocarbon kerosenes that meet the minimum density requirement will have bulk...alternative jet fuels; renewable jet fuel; fuel physical properties; fuel chemistry ; fuel properties 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  1. Spent fuel workshop'2002

    International Nuclear Information System (INIS)

    Poinssot, Ch.

    2002-01-01

    UO 2 (s): experimental approach and preliminary results on uranium oxide - water interface (J. Devoy), Preliminary results on studies on radiolysis effects on dissolution of UO 2 (E. Ekeroth, M. Jonnson); Session 5 - Modeling of the Spent Fuel Dissolution: tUO 2 dissolution and the effect of radiolysis (T. Lundstrom), Prediction of the effect of radiolysis (F. King), Experimental determination and chemical modeling of radiolytic processes at the spent fuel / water interface (E. Cera, J. Bruno, T. Eriksen, M. Grive, L. Duro); Session 6 - Influence of the Potential Evolution prior to the Water Access on IRF: Potential occurrence of α self-irradiation enhanced-diffusion (H.J. Matzke, T. Petit), Are grain boundaries a stable microstructure? (Y. Guerin), Modeling RN instant release fractions from spent nuclear fuel under repository conditions (C.Poinssot, L. Johnson, P. Lovera). (J.S.)

  2. Glycine post-synthetic modification of MIL-53(Fe) metal-organic framework with enhanced and stable peroxidase-like activity for sensitive glucose biosensing.

    Science.gov (United States)

    Dong, Wenfei; Yang, Liaoyuan; Huang, Yuming

    2017-05-15

    A facile and rapid post-synthetic strategy was proposed to prepare a glycine functionalized MIL-53(Fe), namely glycine-MIL-53(Fe), by a simple mixing of water dispersible MIL-53(Fe) and glycine. The FT-IR, SEM, XRD and zeta potential were used to characterize the glycine-MIL-53(Fe). The result showed that glycine post-synthetic modification of MIL-53(Fe) did not change in the morphology and crystal structure of MIL-53(Fe). Interestingly, compared with MIL-53(Fe), the glycine-MIL-53(Fe) exhibits an enhanced peroxidase-like activity, which could catalyze the oxidation of TMB by H 2 O 2 to produce an intensive color reaction. Kinetic analysis indicated that the K m of glycine-MIL-53(Fe) for TMB was one-tenth of that of MIL-53(Fe). The glycine-MIL-53(Fe) as peroxidase mimetic displays better stability under alkaline or acidic conditions than MIL-53(Fe). The good performance of glycine-MIL-53(Fe) over MIL-53(Fe) may be attributed to the increase of affinity between TMB and the glycine-MIL-53(Fe). With these characteristics, a simple and sensitive method was developed for the detection of H 2 O 2 and glucose. The linear detection range for H 2 O 2 is 0.10-10μM with a detection limit of 49nM, and glucose could be linearly detected in the range from 0.25 to 10μM with a detection limit of 0.13μM. The proposed method was successfully used for glucose detection in human serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Pilot scale testing of biomass feedstocks for use in gasification/gas turbine based power generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Najewicz, D.J.; Furman, A.H. [General Electric Corporate Research and Development Center, Schenectady, NY (United States)

    1993-12-31

    A biomass gasification pilot program was performed at the GE Corporate Research and Development Center using two types of biomass feedstock. The object of the testing was to determine the properties of biomass product gas and its` suitability as a fuel for gas turbine based power generation cycles. The test program was sponsored by the State of Vermont, the US Environmental Protection Agency, the US Department of Energy and Winrock International/US Agency for International Development. Gasification of bagasse and wood chip feedstock was performed at a feed rate of approximately one ton per hour, using the Ge pressurized fixed bed gasifier and a single stage of cyclone particulate removal, operating at a temperature of 1,000 F. Both biomass feedstocks were found to gasify easily, and gasification capacity was limited by volumetric capacity of the fuel feed equipment. The biomass product gas was analyzed for chemical composition, particulate loading, fuel bound nitrogen levels, sulfur and alkali metal content. The results of the testing indicated the combustion characteristics of the biomass product gas are compatible with gas turbine combustor requirements. However, the particulate removal performance of the pilot facility single stage cyclone was found to be inadequate to meet turbine particulate contamination specifications. In addition, alkali metals found in biomass based fuels, which are known to cause corrosion of high temperature gas turbine components, were found to exceed allowable levels in the fuel gas. These alkali metal compounds are found in the particulate matter (at 1000 F) carried over from the gasifier, thus improved particulate removal technology, designed specifically for biomass particulate characteristics could meet the turbine requirements for both particulate and alkali loading. The paper will present the results of the biomass gasification testing and discuss the development needs in the area of gas clean-up and turbine combustion.

  4. Turbine steam path replacement at the Grafenrheinfeld Nuclear Power Station

    International Nuclear Information System (INIS)

    Weschenfelder, K.D.; Oeynhausen, H.; Bergmann, D.; Hosbein, P.; Termuehlen, H.

    1994-01-01

    In the last few years, replacement of old vintage steam turbine flow path components has been well established as a valid approach to improve thermal performance of aged turbines. In nuclear power plants, performance improvement is generally achieved only by design improvements since performance deterioration of old units is minor or nonexistent. With fossil units operating over decades loss in performance is an additional factor which can be taken into account. Such loss of performance can be caused by deposits, solid particle erosion, loss of shaft and inter-stage seal strips, etc. Improvement of performance is typically guaranteed as output increases for operation at full load. This value can be evaluated as a direct gain in unit capacity without fuel or steam supply increase. Since fuel intake does not change, the relative improvement of the net plant heat rate or efficiency is equal to the relative increase in output. The heat rate improvement is achieved not only at full load but for the entire load range. Such heat rate improvement not only moves a plant up on the load dispatch list increasing its capacity factor, but also extensive fuel savings can pay off for the investment cost of new steam path components. Another important factor is that quite often older turbine designs show a deterioration of their reliability and need costly repairs. With new flow path components an aged steam turbine starts a new useful life

  5. The effect of HBB:c.*+96T>C (3’UTR +1570 T>C on the mild b-thalassemia intermedia phenotype

    Directory of Open Access Journals (Sweden)

    Türker Bilgen

    2011-09-01

    Full Text Available Hemoglobin beta (HBB:c.*+96T>C substitution is very rare among β-globin gene mutations and its clinical significance remains to be clarified. The present study aimed to investigate the role of HBB:c.*+96T>C in the β-thalassemia intermedia phenotype in a Turkish family. The proband and parents were screened for β-globin gene mutations via direct sequencing. Hematological and physical examination results were recorded, and correlated according to genotype. The proband was compound heterozygous for Cod 8 (-AA and HBB:c.*+96T>C, whereas his mother and father were heterozygous for Cod 8 (-AA and HBB:c.*+96T>C, respectively. The father had almost normal hematological findings, whereas the mother had the typical β-thalassemia trait phenotype. The proband was diagnosed as mild β-thalassemia intermedia based on hepatosplenomegaly and hematological findings. To the best of our knowledge this is the first report of HBB:c.*+96T>C mutation in a Turkish family. HBB:c.* 96T>C substitution is a very rare, but clinically relevant β-globin gene mutation. Additionally, we think that if 1 spouse is a carrier for β-globin gene mutation the other should be screened for silent mutations, such as HBB:c.*+96T>C mutation of the β-globin gene, even if she/he does not have any clinical or hematological signs of the β-thalassemia trait phenotype.

  6. MilQuant: a free, generic software tool for isobaric tagging-based quantitation.

    Science.gov (United States)

    Zou, Xiao; Zhao, Minzhi; Shen, Hongyan; Zhao, Xuyang; Tong, Yuanpeng; Wang, Qingsong; Wei, Shicheng; Ji, Jianguo

    2012-09-18

    Isobaric tagging techniques such as iTRAQ and TMT are widely used in quantitative proteomics and especially useful for samples that demand in vitro labeling. Due to diversity in choices of MS acquisition approaches, identification algorithms, and relative abundance deduction strategies, researchers are faced with a plethora of possibilities when it comes to data analysis. However, the lack of generic and flexible software tool often makes it cumbersome for researchers to perform the analysis entirely as desired. In this paper, we present MilQuant, mzXML-based isobaric labeling quantitator, a pipeline of freely available programs that supports native acquisition files produced by all mass spectrometer types and collection approaches currently used in isobaric tagging based MS data collection. Moreover, aside from effective normalization and abundance ratio deduction algorithms, MilQuant exports various intermediate results along each step of the pipeline, making it easy for researchers to customize the analysis. The functionality of MilQuant was demonstrated by four distinct datasets from different laboratories. The compatibility and extendibility of MilQuant makes it a generic and flexible tool that can serve as a full solution to data analysis of isobaric tagging-based quantitation. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Demonstrating the benefits of fuel cells: further significant progress towards commercialisation

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1995-01-01

    The fourteenth Fuel Cell Seminar held in San Diego, California in 1994 is reported. The phosphoric acid fuel cell (PAFC) is the closest to widespread commercialization. PAFC cogeneration plants have to be shown to compare favourable in reliability with current mature natural gas-fuelled engine and turbine technologies. Although highly efficient, further development is necessary to produce cost effective generators. Progress is being made on proton exchange membrane fuel cell (PEMFC) stationary power plants, too, which may prove to be cost effective. In view of its lower operating temperature, at below 100[sup o]C compared with about 200[sup o]C for the PAFC, the principal use of the PEMFC has been identified as powering vehicles. Fuel cells have significant environmental advantages but further capital cost reductions are necessary if they are to compete with established technologies. (UK)

  8. Fuel cell power plants for decentralised CHP applications

    International Nuclear Information System (INIS)

    Ohmer, Martin; Mattner, Katja

    2015-01-01

    Fuel cells are the most efficient technology to convert chemical energy into electricity and heat and thus they could have a major impact on reducing fuel consumption, CO 2 and other emissions (NO x , SO x and particulate matter). Fired with natural or biogas and operated with an efficiency of up to 49 % a significant reduction of fuel costs can be achieved in decentralised applications. Combined heat and power (CHP) configurations add value for a wide range of industrial applications. The exhaust heat of approximately 400 C can be utilised for heating purposes and the production of steam. Besides, it can be also fed directly to adsorption cooling systems. With more than 110 fuel cell power plants operating worldwide, this technology is a serious alternative to conventional gas turbines or gas engines.

  9. Operation window and part-load performance study of a syngas fired gas turbine

    International Nuclear Information System (INIS)

    He, Fen; Li, Zheng; Liu, Pei; Ma, Linwei; Pistikopoulos, Efstratios N.

    2012-01-01

    Integrated coal gasification combined cycle (IGCC) provides a great opportunity for clean utilization of coal while maintaining the advantage of high energy efficiency brought by gas turbines. A challenging problem arising from the integration of an existing gas turbine to an IGCC system is the performance change of the gas turbine due to the shift of fuel from natural gas to synthesis gas, or syngas, mainly consisting of carbon monoxide and hydrogen. Besides the change of base-load performance, which has been extensively studied, the change of part-load performance is also of great significance for the operation of a gas turbine and an IGCC plant. In this paper, a detailed mathematical model of a syngas fired gas turbine is developed to study its part-load performance. A baseline is firstly established using the part-load performance of a natural gas fired gas turbine, then the part-load performance of the gas turbine running with different compositions of syngas is investigated and compared with the baseline. Particularly, the impacts of the variable inlet guide vane, the degree of fuel dilution, and the degree of air bleed are investigated. Results indicate that insufficient cooling of turbine blades and a reduced compressor surge margin are the major factors that constrain the part-load performance of a syngas fired gas turbine. Results also show that air bleed from the compressor can greatly improve the working condition of a syngas fired gas turbine, especially for those fired with low lower heating value syngas. The regulating strategy of a syngas fired gas turbine should also be adjusted in accordance to the changes of part-load performance, and a reduced scope of constant TAT (turbine exhaust temperature) control mode is required.

  10. Catalytic Performance of Microwave Functionalized NH2-MIL-53 for Cyclic Carbonate Synthesis from CO2 and Epoxides.

    Science.gov (United States)

    Seok, Han-Geul; Kim, Dong-Woo; Yang, Jeung-Gyu; Kim, Moon-Il; Park, Dae-Won

    2016-05-01

    The efficacy of microwave irradiation in the quaternization of amino-functionalized MIL-53 metal-organic framework (MOF) as well as the catalytic activity of the resultant MOF in the cycloaddition of carbon dioxide with epoxides under solvent-free conditions has been studied. A series of NH2-MIL-53 were synthesized and quaternized by reacting alkyl halide of various alkyl chains and anions under microwave irradiation. The post-functionalized F-MIL-53-AXs were characterized through solid-state XRD, FT-IR, XPS, and TGA. F-MIL-53-Mel prepared by microwave method showed higher AGC yield than that by the conventional heating method. F-MIL-53-AXs with iodide anion exhibited the best catalytic activity irrespective of the alkyl chain length, in agreement with the generally accepting order of nucleophilicity, ClMIL-53-AX catalysts were found to exhibit high thermal stability and were reusable over than three times, without any significant lowering of activity.

  11. Alternative Liquid Fuel Effects on Cooled Silicon Nitride Marine Gas Turbine Airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Holowczak, J.

    2002-03-01

    With prior support from the Office of Naval Research, DARPA, and U.S. Department of Energy, United Technologies is developing and engine environment testing what we believe to be the first internally cooled silicon nitride ceramic turbine vane in the United States. The vanes are being developed for the FT8, an aeroderivative stationary/marine gas turbine. The current effort resulted in further manufacturing and development and prototyping by two U.S. based gas turbine grade silicon nitride component manufacturers, preliminary development of both alumina, and YTRIA based environmental barrier coatings (EBC's) and testing or ceramic vanes with an EBC coating.

  12. Effect of Diamine in Amine-Functionalized MIL-101 for Knoevenagel Condensation

    International Nuclear Information System (INIS)

    Kasinathan, Palraj; Seo, You Kyong; Shim, Kyu Eun; Hwang, Young Kyu; Lee, U Hwang; Hwang, Dong Won; Hong, Do Young; Halligudi, Shiva B.; Chang, Jong San

    2011-01-01

    Have demonstrated that amines with different basicities successfully functionalized into the pores of MIL-101 and amine functionalized chromium terephthalate used as a base catalyst. The catalytic activity of amine functionalized MIL-101 in Knoevenagel condensation of ethylcyanoacetate and benzaldehyde depends on their basi-cities. The reactivity of these catalytic materials could be also affected by their pore size and/or surface area, which governs the facile diffusion of the molecules through the channels of the MIL-101. The present strategy ensures the development of new functionalities and lead to MOF applications of practically useful heterogeneous base catalysts for chemical transformations. Crystalline Metal-Organic Frameworks (MOFs) are currently an important kind of advanced functional materials due to their novel coordination structures, diverse topologies, and potential applications. As one of topical MOFs, porous chromium terephthalate with giant pores labeled MIL-101(Cr) possesses several unique features such as hierarchical pore structure including a mesoporous zeotype architecture, mesoporous cages and microporous windows, outstanding sorption properties, numerous unsaturated metal cation sites, and high hydrothermal and chemical stability. These properties have led to a number of application potential in catalysis, gas storage, drug delivery and adsorptive separation. One important challenge has to realize is funtionalization via incorporation of binding site or reactive centers for catalysis. The functionalization methods of metal organic frameworks (MOFs) in a wide range of applications are two possible approaches including pre- and post-modification with functional groups

  13. Computer Aided Design of Kaplan Turbine Piston with\tSolidWorks

    Directory of Open Access Journals (Sweden)

    Camelia Jianu

    2010-10-01

    Full Text Available The paper presents the steps for 3D computer aided design (CAD of Kaplan turbine piston made in SolidWorks.The present paper is a tutorial for a Kaplan turbine piston 3D geometry, which is dedicaded to the Parts Sketch and Parts Features design and Drawing Geometry and Drawing Annotation.

  14. Modulated synthesis of chromium-based metal-organic framework (MIL-101) with enhanced hydrogen uptake

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2014-08-01

    Full Text Available Modulated synthesis of MIL-101(Cr) in high yield and with good reproducibility using formic acid as a modulator is reported. Higher molar ratio of formic acid/CrCl(sub3) was found to form better shape-defined MIL-101(Cr) crystals with higher surface...

  15. Fe II/Fe III mixed-valence state induced by Li-insertion into the metal-organic-framework Mil53(Fe): A DFT+U study

    Science.gov (United States)

    Combelles, C.; Ben Yahia, M.; Pedesseau, L.; Doublet, M.-L.

    The iron-based metal-organic-framework MIL53(Fe) has recently been tested as a cathode materials for Li-Ion batteries, leading to promising cycling life and rate capability. Despite a poor capacity of 70 mAh g -1 associated with the exchange of almost 0.5Li/Fe, this result is the first evidence of a reversible lithium insertion never observed in a MOF system. In the present study, the MIL53(Fe) redox mechanism is investigated through first-principles DFT+U calculations. The results show that MIL53(Fe) is a weak antiferromagnetic charge transfer insulator at T = 0 K, with iron ions in the high-spin S = 5/2 state. Its reactivity vs elemental lithium is then investigated as a function of lithium composition and distribution over the most probable Li-sites of the MOF structure. The redox mechanism is fully interpreted as a two-step insertion/conversion mechanism, associated with the stabilization of the Fe 3+/Fe 2+ mixed-valence state prior to the complete decomposition of the inorganic-organic interactions within the porous MOF architecture.

  16. Stable ABTS Immobilized in the MIL-100(Fe) Metal-Organic Framework as an Efficient Mediator for Laccase-Catalyzed Decolorization.

    Science.gov (United States)

    Liu, Youxun; Geng, Yuanyuan; Yan, Mingyang; Huang, Juan

    2017-06-02

    The successful encapsulation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), a well-known laccase mediator, within a mesoporous metal-organic framework sample (i.e., MIL-100(Fe)) was achieved using a one-pot hydrothermal synthetic method. The as-prepared ABTS@MIL-100(Fe) was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, nitrogen sorption, and cyclic voltammetry (CV). Our ABTS@MIL-100(Fe)-based electrode exhibited an excellent electrochemical response, indicating that MIL-100(Fe) provides an appropriate microenvironment for the immobilization and electroactivity of ABTS molecules. ABTS@MIL-100(Fe) was then evaluated as an immobilized laccase mediator for dye removal using indigo carmine (IC) as a model dye. Through the application of laccase in combination with a free (ABTS) or immobilized (ABTS@MIL-100(Fe)) mediator, decolorization yields of 95% and 94%, respectively, were obtained for IC after 50 min. In addition, following seven reuse cycles of ABTS@MIL-100(Fe) for dye treatment, a decolorization yield of 74% was obtained. Dye decolorization occurred through the breakdown of the chromophoric group by the Laccase/ABTS@MIL-100(Fe) system, and a catalytic mechanism was proposed. We therefore expect that the stability, reusability, and validity of ABTS@MIL-100(Fe) as a laccase mediator potentially render it a promising tool for dye removal, in addition to reducing the high running costs and potential toxicity associated with synthetic mediators.

  17. The Oxygen Isotopic Composition of MIL 090001: A CR2 Chondrite with Abundant Refractory Inclusions

    Science.gov (United States)

    Keller, Lindsay P.; McKeegan, K. D.; Sharp, Z. D.

    2012-01-01

    MIL 090001 is a large (>6 kg) carbonaceous chondrite that was classified as a member of the CV reduced subgroup (CVred) that was recovered during the 2009-2010 ANSMET field season [1]. Based on the abundance of refractory inclusions and the extent of aqueous alteration, Keller [2] suggested a CV2 classification. Here we report additional mineralogical and petrographic data for MIL 090001, its whole-rock oxygen isotopic composition and ion microprobe analyses of individual phases. The whole rock oxygen isotopic analyses show that MIL 090001 should be classified as a CR chondrite.

  18. Parametric study of power turbine for diesel engine waste heat recovery

    International Nuclear Information System (INIS)

    Zhao, Rongchao; Zhuge, Weilin; Zhang, Yangjun; Yin, Yong; Chen, Zhen; Li, Zhigang

    2014-01-01

    Turbocompounding is a promising technology to recover waste heat from the exhaust and reduce fuel consumption for internal combustion engine. The design of a power turbine plays a key role in turbocompound engine performance. This paper presents a set of parametric studies of power turbine performed on a turbocompound diesel engine by means of turbine through-flow model developed by the authors. This simulation model was verified and validated using engine performance test data and achieved reasonable accuracy. The paper first analyzed the influence of three key geometrical parameters (blade height, blade radius and nozzle exit blade angle) on turbine expansion ratio and engine fuel consumptions. After that, the impacts of the geometrical parameters on power distribution, air mass flow rate and exhaust temperature were analyzed. Results showed that these parameters had significant effects on engine BSFC and power. At high engine speeds, there existed an optimum value of geometry parameter to obtain the lowest BSFC. At low engine speeds, the engine BSFC kept increasing or decreasing continuously as the geometry parameters changed. Research also found that the engine BSFC was most sensitive to the nozzle exit blade angle, which should be considered carefully during the design process. This paper provides a useful method for matching and designing of a power turbine for turbocompound engine. - Highlights: •Through-flow model of axial-flow power turbine for turbocompound engine was established. •Turbocompound engine performance test was carried out to validate the cycle simulation model. •Influences of power turbine geometry parameters on engine BSFC and power were presented

  19. Behavior of ceramics at 1200 C in a simulated gas turbine environment

    Science.gov (United States)

    Sanders, W. A.; Probst, H. B.

    1974-01-01

    This report summarizes programs at the NASA Lewis Research Center evaluating several classes of commercial ceramics, in a high gas velocity burner rig simulating a gas turbine engine environment. Testing of 23 ceramics in rod geometry identified SiC and Si3N4 as outstanding in resistance to oxidation and thermal stress and identified the failure modes of other ceramics. Further testing of a group of 15 types of SiC and Si3N4 in simulated vane shape geometry has identified a hot pressed SiC, a reaction sintered SiC, and hot pressed Si3N4 as the best of that group. SiC and Si3N4 test specimens were compared on the basis of weight change, dimensional reductions, metallography, fluorescent penetrant inspection, X-ray diffraction analyses, and failure mode.

  20. Ambient temperature effects on gas turbine power plant: A case study in Iran

    International Nuclear Information System (INIS)

    Gorji, M.; Fouladi, F.

    2007-01-01

    Actual thermal efficiency, electric-power output, fuel-air ratio and specific fuel consumption (SFC) vary according to the ambient conditions. The amount of these variations greatly affects those parameters as well as the plant incomes. In this paper the effect of ambient temperature as a seasonal variation on a gas power plant has been numerically studied. For this purpose, the gas turbine model and different climate seasonal variations of Ray in Iran are considered in this study. For the model, by using average monthly temperature data of the region, the different effective parameters were compared to those in standard design conditions. The results show that ambient temperature increase will decrease thermal efficiency, electric-power out put and fuel-air ratio of the gas turbine plant whereas increases the specific fuel consumption

  1. Cryogenic distillation: a fuel enrichment system for near-term tokamak-type D-T fusion reactors

    International Nuclear Information System (INIS)

    Misra, B.; Davis, J.F.

    1980-02-01

    The successful operation and economic viability of deuterium-tritium- (D-T-) fueled tokamak-type commercial power fusion reactors will depend to a large extent on the development of reliable tritium-containment and fuel-recycle systems. Of the many operating steps in the fuel recycle scheme, separation or enrichment of the isotropic species of hydrogen by cryogenic distillation is one of the most important. A parametric investigation was carried out to study the effects of the various operating conditions and the composition of the spent fuel on the degree of separation. A computer program was developed for the design and analysis of a system of interconnected distillation columns for isotopic separation such that the requirements of near-term D-T-fueled reactors are met. The analytical results show that a distillation cascade consisting of four columns is capable of reprocessing spent fuel varying over a wide range of compositions to yield reinjection-grade fuel with essentially unlimited D/T ratio

  2. Proposed Wind Turbine Aeroelasticity Studies Using Helicopter Systems Analysis

    Science.gov (United States)

    Ladkany, Samaan G.

    1998-01-01

    Advanced systems for the analysis of rotary wing aeroelastic structures (helicopters) are being developed at NASA Ames by the Rotorcraft Aeromechanics Branch, ARA. The research has recently been extended to the study of wind turbines, used for electric power generation Wind turbines play an important role in Europe, Japan & many other countries because they are non polluting & use a renewable source of energy. European countries such as Holland, Norway & France have been the world leaders in the design & manufacture of wind turbines due to their historical experience of several centuries, in building complex wind mill structures, which were used in water pumping, grain grinding & for lumbering. Fossil fuel cost in Japan & in Europe is two to three times higher than in the USA due to very high import taxes. High fuel cost combined with substantial governmental subsidies, allow wind generated power to be competitive with the more traditional sources of power generation. In the USA, the use of wind energy has been limited mainly because power production from wind is twice as expensive as from other traditional sources. Studies conducted at the National Renewable Energy Laboratories (NREL) indicate that the main cost in the production of wind turbines is due to the materials & the labor intensive processes used in the construction of turbine structures. Thus, for the US to assume world leadership in wind power generation, new lightweight & consequently very flexible wind turbines, that could be economically mass produced, would have to be developed [4,5]. This effort, if successful, would result in great benefit to the US & the developing nations that suffer from overpopulation & a very high cost of energy.

  3. Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up

    Energy Technology Data Exchange (ETDEWEB)

    Venkiteswaran, C.N., E-mail: cnv@igcar.gov.in; Jayaraj, V.V.; Ojha, B.K.; Anandaraj, V.; Padalakshmi, M.; Vinodkumar, S.; Karthik, V.; Vijaykumar, Ran; Vijayaraghavan, A.; Divakar, R.; Johny, T.; Joseph, Jojo; Thirunavakkarasu, S.; Saravanan, T.; Philip, John; Rao, B.P.C.; Kasiviswanathan, K.V.; Jayakumar, T.

    2014-06-01

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India, will use mixed oxide (MOX) fuel with a target burnup of 100 GWd/t. The fuel pellet is of annular design to enable operation at a peak linear power of 450 W/cm with the requirement of minimum duration of pre-conditioning. The performance of the MOX fuel and the D9 clad and wrapper material was assessed through Post Irradiation Examinations (PIE) after test irradiation of 37 fuel pin subassembly in Fast Breeder Test Reactor (FBTR) to a burn-up of 112 GWd/t. Fission product distribution, swelling and fuel–clad gap evolution, central hole diameter variation, restructuring, fission gas release and clad wastage due to fuel–clad chemical interaction were evaluated through non-destructive and destructive examinations. The examinations have indicated that the MOX fuel can safely attain the desired target burn-up in PFBR.

  4. 1000 MW steam turbine for Temelin nuclear power station

    International Nuclear Information System (INIS)

    Drahy, J.

    1992-01-01

    Before the end 1991 the delivery was completed of the main parts (3 low-pressure sections and 1 high-pressure section, all of double-flow design) of the first full-speed (3000 r.p.m.) 1000 MW steam turbine for saturated admission steam for the Temelin nuclear power plant. Description of the turbine design and of new technologies and tools used in the manufacture are given. Basic technical parameters of the steam turbine are as follows: maximum output of steam generators 6060 th -1 ; maximum steam flow into turbine 5494.7 th -1 ; output of turbo-set 1024 MW; steam conditions before the turbine inlet: pressure 5.8 MPa, temperature 273.3 degC, steam wetness 0.5%; nominal temperature of cooling water 21 degC; temperature of feed water 220.8 degC; maximum consumption of heat from turbine for heating at 3-stage heating of heating water 60/150 degC. (Z.S.) 7 figs., 2 refs

  5. Fuel charging machine

    International Nuclear Information System (INIS)

    Uchikawa, Sadao.

    1978-01-01

    Purpose: To enable continuous fuel discharging and charging steps in a bwr type reactor by effecting positioning only for once by providing a plurality of fuel assembly grippers and their drives co-axially on a rotatable surface. Constitution: A plurality of fuel assembly grippers and their drives are provided co-axially on a rotatable surface. For example, a gripper A, a drive B, a gripper C and a drive D are arranged co-axially in symmetric positions on a disk rotated on rails by wheels and rotational drives. A new fuel in a fuel pool is gripped by the gripper A and transported above the reactor core. Then, the disk is positioned so that the gripper C can grip the spent fuel in the core, and the fuel to be discharged is gripped and raised by the gripper C. Then the disk is rotated by 180 0 and the new fuel in the gripper A is charged into the position from which the old fuel has been discharged and, finally, the discharged fuel is sent to the fuel pool for storage. (Seki, T.)

  6. Eu(III)-functionalized MIL-124 as fluorescent probe for highly selectively sensing ions and organic small molecules especially for Fe(III) and Fe(II).

    Science.gov (United States)

    Xu, Xiao-Yu; Yan, Bing

    2015-01-14

    A layerlike MOF (MIL-124, orGa2(OH)4(C9O6H4)) has been prepared and chosen as a parent compound to encapsulate Eu(3+) cations by one uncoordinated carbonyl group in its pores. The Eu(3+)-incorporated sample (Eu(3+)@MIL-124) is fully characterized, which shows excellent luminescence and good fluorescence stability in water or other organic solvents. Subsequently, we choose Eu(3+)@MIL-124 as sensitive probe for sensing metal ions, anions, and organic small molecules because of its robust framework. Studying of the luminescence properties reveals that the complex Eu(3+)@MIL-124 was developed as a highly selective and sensitive probe for detection of Fe(3+) (detection limit, 0.28 μM) and Fe(2+) ions through fluorescence quenching of Eu(3+) and MOF over other metal ions. In connection to this, a probable sensing mechanism was also discussed in this paper. In addition, when Eu(3+)@MIL-124 was immersed in the different anions solutions and organic solvents, it also shows highly selective for Cr2O7(2-)(detection limit, 0.15 μM)and acetone. Remarkably, it is the first Eu-doped MOF to exhibit an excellent ability for the detection of Fe(3+) and Fe(2+) in an aqueous environment without any structural disintegration of the framework.

  7. Enhancing the water stability of Al-MIL-101-NH2 via postsynthetic modification.

    Science.gov (United States)

    Wittmann, Thomas; Siegel, Renée; Reimer, Nele; Milius, Wolfgang; Stock, Norbert; Senker, Jürgen

    2015-01-02

    The resistance of metal-organic frameworks towards water is a very critical issue concerning their practical use. Recently, it was shown for microporous MOFs that the water stability could be increased by introducing hydrophobic pendant groups. Here, we demonstrate a remarkable stabilisation of the mesoporous MOF Al-MIL-101-NH2 by postsynthetic modification with phenyl isocyanate. In this process 86 % of the amino groups were converted into phenylurea units. As a consequence, the long-term stability of Al-MIL-101-URPh in liquid water could be extended beyond a week. In water saturated atmospheres Al-MIL-101-URPh decomposed at least 12-times slower than the unfunctionalised analogue. To study the underlying processes both materials were characterised by Ar, N2 and H2 O sorption measurements, powder X-ray diffraction, thermogravimetric and chemical analysis as well as solid-state NMR and IR spectroscopy. Postsynthetic modification decreased the BET equivalent surface area from 3363 to 1555 m(2)  g(-1) for Al-MIL-101-URPh and reduced the mean diameters of the mesopores by 0.6 nm without degrading the structure significantly and reducing thermal stability. In spite of similar water uptake capacities, the relative humidity-dependent uptake of Al-MIL-101-URPh is slowed and occurs at higher relative humidity values. In combination with (1) H-(27) Al D-HMQC NMR spectroscopy experiments this favours a shielding mechanism of the Al clusters by the pendant phenyl groups and rules out pore blocking. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Evaluation of Suppression of Hydroprocessed Renewable Jet (HRJ) Fuel Fires with Aqueous Film Forming Foam (AFFF)

    Science.gov (United States)

    2011-07-01

    Collecting particles from an open pan fire would preclude the consideration of isokinetic sampling usually required in Method 5, but this would...hydroprocessed renewable jet fuel in2 square inches JP-8 jet propellant 8, i.e. jet fuel kW kilowatts m2 square meters Mil-Spec Military Specification min

  9. NATO Pallet with Javelin Missiles, MIL-STD-1660 Tests

    National Research Council Canada - National Science Library

    2004-01-01

    The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division (SJMAC-DEV) conducted tests in accordance with MIL-STD-1660, "Design Criteria for Ammunition Unit Loads" on the NATO pallet with Javelin missiles...

  10. Fission-product SiC reaction in HTGR fuel

    International Nuclear Information System (INIS)

    Montgomery, F.

    1981-01-01

    The primary barrier to release of fission product from any of the fuel types into the primary circuit of the HTGR are the coatings on the fuel particles. Both pyrolytic carbon and silicon carbide coatings are very effective in retaining fission gases under normal operating conditions. One of the possible performance limitations which has been observed in irradiation tests of TRISO fuel is chemical interaction of the SiC layer with fission products. This reaction reduces the thickness of the SiC layer in TRISO particles and can lead to release of fission products from the particles if the SiC layer is completely penetrated. The experimental section of this report describes the results of work at General Atomic concerning the reaction of fission products with silicon carbide. The discussion section describes data obtained by various laboratories and includes (1) a description of the fission products which have been found to react with SiC; (2) a description of the kinetics of silicon carbide thinning caused by fission product reaction during out-of-pile thermal gradient heating and the application of these kinetics to in-pile irradiation; and (3) a comparison of silicon carbide thinning in LEU and HEU fuels

  11. Evaporative gas turbine cycles. A thermodynamic evaluation of their potential

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, P M

    1993-03-01

    The report presents a systematic method of thermodynamically evaluating different gas turbine cycles, treating the working fluids as ideal gases (c{sub p}=c{sub p}(T)). All models used to simulate different components in the cycles are presented in the report in detail and then connected in a computer program fully developed by the author. The report focuses on the theme of evaporative gas turbine cycles, in which low level heat is used to evaporate water into the compressed air stream between the compressor and recuperator. This leads to efficiency levels close to a comparable combined cycle but without the steam bottoming cycle. A parametric analysis has been conducted with the aim of deciding the best configuration of an evaporative cycle both for an uncooled expander and for a cooled expander. The model proposed to simulate the cooled expander is a combination between two existing models. (121 refs., 35 figs.,).

  12. Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst

    Directory of Open Access Journals (Sweden)

    Karen Leus

    2016-03-01

    Full Text Available We present the in situ synthesis of Pt nanoparticles within MIL-101-Cr (MIL = Materials Institute Lavoisier by means of atomic layer deposition (ALD. The obtained Pt@MIL-101 materials were characterized by means of N2 adsorption and X-ray powder diffraction (XRPD measurements, showing that the structure of the metal organic framework was well preserved during the ALD deposition. X-ray fluorescence (XRF and transmission electron microscopy (TEM analysis confirmed the deposition of highly dispersed Pt nanoparticles with sizes determined by the MIL-101-Cr pore sizes and with an increased Pt loading for an increasing number of ALD cycles. The Pt@MIL-101 material was examined as catalyst in the hydrogenation of different linear and cyclic olefins at room temperature, showing full conversion for each substrate. Moreover, even under solvent free conditions, full conversion of the substrate was observed. A high concentration test has been performed showing that the Pt@MIL-101 is stable for a long reaction time without loss of activity, crystallinity and with very low Pt leaching.

  13. Turbine Airfoil With CMC Leading-Edge Concept Tested Under Simulated Gas Turbine Conditions

    Science.gov (United States)

    Robinson, R. Craig; Hatton, Kenneth S.

    2000-01-01

    Silicon-based ceramics have been proposed as component materials for gas turbine engine hot-sections. When the Navy s Harrier fighter experienced engine (Pegasus F402) failure because of leading-edge durability problems on the second-stage high-pressure turbine vane, the Office of Naval Research came to the NASA Glenn Research Center at Lewis Field for test support in evaluating a concept for eliminating the vane-edge degradation. The High Pressure Burner Rig (HPBR) was selected for testing since it could provide temperature, pressure, velocity, and combustion gas compositions that closely simulate the engine environment. The study focused on equipping the stationary metal airfoil (Pegasus F402) with a ceramic matrix composite (CMC) leading-edge insert and evaluating the feasibility and benefits of such a configuration. The test exposed the component, with and without the CMC insert, to the harsh engine environment in an unloaded condition, with cooling to provide temperature relief to the metal blade underneath. The insert was made using an AlliedSignal Composites, Inc., enhanced HiNicalon (Nippon Carbon Co. LTD., Yokohama, Japan) fiber-reinforced silicon carbide composite (SiC/SiC CMC) material fabricated via chemical vapor infiltration. This insert was 45-mils thick and occupied a recessed area in the leading edge and shroud of the vane. It was designed to be free floating with an end cap design. The HPBR tests provided a comparative evaluation of the temperature response and leading-edge durability and included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were aircooled, uniquely instrumented, and exposed to the exact set of internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). In addition to documenting the temperature response of the metal vane for comparison with the CMC, a demonstration of improved leading-edge durability was a primary goal. First, the

  14. 1170-MW(t) HTGR-PS/C plant application study report: Geismar, Louisiana refinery/chemical complex application

    International Nuclear Information System (INIS)

    McMain, A.T. Jr.; Stanley, J.D.

    1981-05-01

    This report summarizes a study to apply an 1170-MW(t) high-temperature gas-cooled reactor - process steam/cogeneration (HTGR-PS/C) to an industrial complex at Geismar, Louisiana. This study compares the HTGR with coal and oil as process plant fuels. This study uses a previous broad energy alternative study by the Stone and Webster Corporation on refinery and chemical plant needs in the Gulf States Utilities service area. The HTGR-PS/C was developed by General Atomic (GA) specifically for industries which require both steam and electric energy. The GA 1170-MW(t) HTGR-PC/C design is particularly well suited to industrial applications and is expected to have excellent cost benefits over other energy sources

  15. TVSA-T fuel assembly for 'Temelin' NPP. Main results of design and safety analyses. Trends of development

    International Nuclear Information System (INIS)

    Samojlov, O.B.; Kajdalov, V.B.; Falkov, A.A.; Bolnov, V.A.; Morozkin, O.N.; Molchanov, V.L.; Ugryumov, A.V.

    2010-01-01

    TVSA is a fuel assembly with rigid skeleton formed by 6 angle pieces and SG is successfully operated at 17 VVER-1000 power units of Kalinin NPP, as well as at Ukrainian and Bulgarian NPPs. Based on a contract for fuel supply to the Temelin NPP, the TVSA-T fuel assembly was developed, building on proven solutions confirmed by operation of TVSA modifications during 4-6 years and by the results of post-irradiation examination. The TVSA-T design includes combined spacer grids (SG+MG) and by fuel column elongation by 150 mm. A set of analyses and experiments was performed to validate the design, including thermal hydraulic tests, validation of critical heat flux correlation for TVSA-T, integrated mechanical, vibration and lifetime tests. A licence to use the fuel has been granted by the Czech State Office for Nuclear Safety. The TVSA-T core is currently in operation at the Temelin-1 reactor unit. The presentation is concluded as follows: TVSA-T fuel assembly for Temelin has been validated. The TVSA-T design is based on approved technical decisions and meets the current requirements for lifetime, operational maneuverability and safety. The results of post-irradiation examination of TVSA-T operated at the Kalinin-1 unit for 4 years confirm the assembly operability, skeleton stiffness, geometric stability and normal fuel rod cladding condition. The properties of the TVSA fuel with MG allow the core power to be increased up to 3300 MW to match the envisaged future VVER (MIR-1200) design, providing allowable fuel rod power FΔh =1.63 (to implement effective fuel cycles). (P.A.)

  16. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in COAL IGCC Powerplants

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Yackly

    2004-09-30

    The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, has been re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for Coal IGCC powerplants. The new program has been re-titled as ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants'' to better match the new scope. This technical progress report summarizes the work accomplished in the reporting period April 1, 2004 to August 31, 2004 on the revised Re-Directed and De-Scoped program activity. The program Tasks are: Task 1--IGCC Environmental Impact on high Temperature Materials: This first materials task has been refocused to address Coal IGCC environmental impacts on high temperature materials use in gas turbines and remains in the program. This task will screen material performance and quantify the effects of high temperature erosion and corrosion of hot gas path materials in Coal IGCC applications. The materials of interest will include those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: This second task develops and demonstrates new sensor technologies to determine the in-service health of advanced technology Coal IGCC powerplants, and remains in the program with a reduced scope. Its focus is now on only two critical sensor need areas for advanced Coal IGCC gas turbines: (1) Fuel Quality Sensor for detection of fuel impurities that could lead to rapid component degradation, and a Fuel Heating Value Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware.

  17. Functionalized MIL-101 with imidazolium-based ionic liquids for the cycloaddition of CO2 and epoxides under mild condition

    Science.gov (United States)

    Liu, Dan; Li, Gang; Liu, Haiou

    2018-01-01

    A kind of multi-functional sites metal-organic framework (MOF) composite (MIL-101-IMBr) was successfully prepared by post-synthesis modification of MIL-101 with imidazolium-based ionic liquids. The ionic liquids not only functionalize as basic sites but also provide halide anions, which serve as a nucleophile in cycloaddition reaction. The prepared functional MOF materials were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, N2 adsorption-desorption and CO2 temperature programmed desorption. The results of fourier transform infrared spectroscopy and energy dispersive spectroscopy show that the MIL-101-IMBr composite was successfully synthesized. The N2 adsorption-desorption results clearly demonstrated that the modified composites still preserve high BET surface area and total pore volume. The composite exhibits high catalytic activity for the cycloaddition of CO2 with epoxides under mild and co-catalyst free conditions. The conversion of propylene oxide was 95.8% and the selectivity of cyclic carbonate was 97.6% under 0.8 MPa at 80 °C for 4 h. Moreover, the catalyst can be used for at least five times.

  18. Mil rosas roubadas, Work of Silviano Santiago a Bakhitinian Analysis

    Directory of Open Access Journals (Sweden)

    Renata Coelho Marchezan

    2017-10-01

    Full Text Available This article analyzes Mil rosas roubadas, written by Silviano Santiago in 2014, dealing with the notions of (autobiography, (autobiographical novel, metafiction and autofiction. Although the creation of this last word may indicate the existence of a new genre – it is even adopted by the writer himself to name his work –, the article shows the pertinence of placing Mil rosas roubadas in the route of the transformations and stylisations of the (autobiographical novel, such as examined by M. Bakhtin. The novel is, for Bakhtin, a genre without rigid forms, an unfinished genre, as it always follows the inflections of social life. In this way the ressemantization of the self, proposed by Silviano Santiago, is analyzed.

  19. Renewable energy and negative externalities: the effect of wind turbines on house prices

    NARCIS (Netherlands)

    Dröes, M.I.; Koster, H.R.A.

    2014-01-01

    In many countries, wind turbines are constructed as part of a strategy to reduce dependence on fossil fuels. In this paper, we measure the external effect of wind turbines on the transaction prices of nearby houses. A unique house price dataset covering the period 1985-2011 is used, including the

  20. Wind Turbine and Power Production, the Danish Development

    Energy Technology Data Exchange (ETDEWEB)

    Kjems, Joergen; Oester, Flemming

    2007-07-01

    The progress within the Danish wind energy sector in Denmark is reviewed. Excluding minor intermission periods the R and D development of electricity producing wind turbines has taken place continuously for more than 100 years in Denmark. After the first oil crisis in 1973 this development accelerated and has led to a remarkable scientific and commercial success. For a few years turbines in Denmark have been producing electricity corresponding to almost 20% of the Danish demand. Danish manufacturers produce components and export turbines in large quantities, amounting in 2005 to a total capacity of about 3.8 GW which is about one third of the world market. Important present day R&D topics are offshore technology and interaction between turbines and the grid, including the ability of turbines to contribute to regulation and stabilization of the power system. These questions are crucial when handling fluctuating electricity production in networks with large fractions of wind energy and CHP power production. In the future, a main point may be storage of wind energy, e.g. in the form of hydrogen produced by fuel cells. (auth)

  1. Mitochondrial tRNALeu(UUR) C3275T, tRNAGln T4363C and tRNALys A8343G mutations may be associated with PCOS and metabolic syndrome.

    Science.gov (United States)

    Ding, Yu; Xia, Bo-Hou; Zhang, Cai-Juan; Zhuo, Guang-Chao

    2018-02-05

    Polycystic ovary syndrome (PCOS) is a very prevalent endocrine disease affecting reproductive women. Clinically, patients with this disorder are more vulnerable to develop type 2 diabetes mellitus (T2DM), cardiovascular events, as well as metabolic syndrome (MetS). To date, the molecular mechanism underlying PCOS remains largely unknown. Previously, we showed that mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) mutation was an important cause for PCOS. In the current study, we described the clinical and biochemical features of a three-generation pedigree with maternally transmitted MetS, combined with PCOS. A total of three matrilineal relatives exhibited MetS including obesity, high triglyceride (TG) and Hemoglobin A1c (HbA1c) levels, and hypertension. Whereas one patient from the third generation manifestated PCOS. Mutational analysis of the whole mitochondrial genes from the affected individuals identified a set of genetic variations belonging to East Asia haplogroup B4b1c. Among these variants, the homoplasmic C3275T mutation disrupted a highly evolutionary conserved base-pairing (28A-46C) on the variable region of tRNA Leu(UUR) , whereas the T4363C mutation created a new base-pairing (31T-37A) in the anticodon stem of tRNA Gln , furthermore, the A8343G mutation occurred at the very conserved position of tRNA Lys and may result the failure in mitochondrial tRNAs (mt-tRNAs) metabolism. Biochemical analysis revealed the deficiency in mitochondrial functions including lower levels of mitochondrial membrane potential (MMP), ATP production and mtDNA copy number, while a significantly increased reactive oxygen species (ROS) generation was observed in polymononuclear leukocytes (PMNs) from the individuals carrying these mt-tRNA mutations, suggesting that these mutations may cause mitochondrial dysfunction that was responsible for the clinical phenotypes. Taken together, our data indicated that mt-tRNA mutations were associated with MetS and PCOS in this

  2. Fuel enrichment and temperature distribution in nuclear fuel rod in (D-T) driven hybrid reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Ypek [Suleyman Demirel Universitesi Muhendislik-Mimarlyk Fakultesi, Isparta (Turkey)

    2001-07-01

    In this study, melting point of the fuel rod and temperature distribution in nuclear fuel rod are investigated for different coolants under various first wall loads (P{sub w}, =5, 6, 7, 8, 9, and 10 MWm{sup -2}) in Fusion-Fission reactor fueled with 50%LWR +50%CANDU. The fusion source of neutrons of 14.1 MeV is simulated by a movable target along the main axis of cylindrical geometry as a line source. In addition, the fusion chamber was thought as a cylindrical cavity with a diameter of 300 cm that is comparatively small value. The fissile fuel zone is considered to be cooled with four different coolants, gas, flibe (Li{sub 2}BeF{sub 4}), natural lithium (Li), and eutectic lithium (Li{sub 17}Pb{sub 83}). Investigations are observed during 4 years for discrete time intervals of{delta}t= 0.5 month and by a plant factor (PF) of 75%. Volumetric ratio of coolant-to fuel is 1:1, 45.515% coolant, 45.515% fuel, 8.971% clad, in fuel zone. (author)

  3. Spent fuel workshop'2002

    Energy Technology Data Exchange (ETDEWEB)

    Poinssot, Ch

    2002-07-01

    (M. Kelm), On the potential catalytic behavior of UO{sub 2}(s): experimental approach and preliminary results on uranium oxide - water interface (J. Devoy), Preliminary results on studies on radiolysis effects on dissolution of UO{sub 2} (E. Ekeroth, M. Jonnson); Session 5 - Modeling of the Spent Fuel Dissolution: tUO{sub 2} dissolution and the effect of radiolysis (T. Lundstrom), Prediction of the effect of radiolysis (F. King), Experimental determination and chemical modeling of radiolytic processes at the spent fuel / water interface (E. Cera, J. Bruno, T. Eriksen, M. Grive, L. Duro); Session 6 - Influence of the Potential Evolution prior to the Water Access on IRF: Potential occurrence of {alpha} self-irradiation enhanced-diffusion (H.J. Matzke, T. Petit), Are grain boundaries a stable microstructure? (Y. Guerin), Modeling RN instant release fractions from spent nuclear fuel under repository conditions (C.Poinssot, L. Johnson, P. Lovera). (J.S.)

  4. Variable volume combustor with nested fuel manifold system

    Science.gov (United States)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-13

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles, a fuel manifold system in communication with the micro-mixer fuel nozzles to deliver a flow of fuel thereto, and a linear actuator to maneuver the micro-mixer fuel nozzles and the fuel manifold system.

  5. MIL-Ti metal-organic frameworks (MOFs) nanomaterials as superior adsorbents: Synthesis and ultrasound-aided dye adsorption from multicomponent wastewater systems.

    Science.gov (United States)

    Oveisi, Mina; Asli, Mokhtar Alina; Mahmoodi, Niyaz Mohammad

    2018-04-05

    Herein, 1,4-benzenedicarboxylate (BDC) and 2-amino-1,4-benzenedicarboxylate (NH 2 -BDC) as organic linkers and tetraisopropyl orthotitanate as a metal source were used to synthesize several metal-organic frameworks (MOFs) nanomaterials. Five Materials Institut Lavoisiers (MILs) as MOFs include MIL-125(Ti), NH 2 -MIL-125(Ti) and three MILs with different organic linkers molar ratios (BDC/NH 2 -BDC: 75/25, 50/50 and 25/75 denoted as MIL-X1, MIL-X2 and MIL-X3, respectively). The synthesized nanomaterials were used for ultrasound-aided adsorption of cationic dyes (Basic Red 46 (BR46), Basic Blue 41 (BB41) and Methylene Blue (MB)) from single and multicomponent (binary) systems. The BET, XRD, FTIR, SEM, TEM, TGA and zeta potential were used for characterizing the MILs. Dye removal followed pseudo-second order kinetics with constant rate of 0.20833, 0.00481 and 0.00051 mg/g min for BR46, BB41 and MB, respectively. In addition dye adsorption obeyed the Langmuir isotherm model and the experimental dye adsorption capacity for BR46, BB41 and MB was 1296, 1257 and 862 mg/g, respectively. The synthesized MIL showed high reusability and stability over three cycles. The adsorption thermodynamics data presented that dye removal was a spontaneous, endothermic and physical reaction. The free Gibbs energy for dye removal by the NH 2 -MIL-125(Ti) at 308K was -19.424, -15.721 and -17.413 kJ/mol for BR46, BB41 and MB, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. High temperature turbine engine structure

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, W.D.; Boyd, G.L.

    1993-07-20

    A hybrid ceramic/metallic gas turbine is described comprising; a housing defining an inlet, an outlet, and a flow path communicating the inlet with the outlet for conveying a flow of fluid through the housing, a rotor member journaled by the housing in the flow path, the rotor member including a compressor rotor portion rotatively inducting ambient air via the inlet and delivering this air pressurized to the flow path downstream of the compressor rotor, a combustor disposed in the flow path downstream of the compressor receiving the pressurized air along with a supply of fuel to maintain combustion providing a flow of high temperature pressurized combustion products in the flow path downstream thereof, the rotor member including a turbine rotor portion disposed in the flow path downstream of the combustor and rotatively expanding the combustion products toward ambient for flow from the turbine engine via the outlet, the turbine rotor portion providing shaft power driving the compressor rotor portion and an output shaft portion of the rotor member, a disk-like metallic housing portion journaling the rotor member to define a rotational axis therefore, and a disk-like annular ceramic turbine shroud member bounding the flow path downstream of the combustor and circumscribing the turbine rotor portion to define a running clearance therewith, the disk-like ceramic turbine shroud member having a reference axis coaxial with the rotational axis and being spaced axially from the metallic housing portion in mutually parallel concentric relation therewith and a plurality of spacers disposed between ceramic disk-like shroud member and the metallic disk-like housing portion and circumferentially spaced apart, each of the spacers having a first and second end portion having an end surface adjacent the shroud member and the housing portion respectively, the end surfaces having a cylindrical curvature extending transversely relative to the shroud member and the housing portion.

  7. Ação antitumoral in vitro do extrato da folha de oliveira (Olea europae L.) e dos flavonoides morina, naringina e rutina em linhagens de células carcinogênicas

    OpenAIRE

    Pereira, Wander Lopes

    2014-01-01

    O câncer é uma doença crônica que atinge milhares de pessoas ao redor do mundo, sendo responsável por elevadas taxas de morbidade e mortalidade. No Brasil, em 2012, foram registrados 321 mil novos casos de câncer e 190 mil óbitos em decorrência desta patologia. Por se tratar de uma doença que acomete a população mundial, o câncer produz impactos na saúde pública e na economia, pois o tumor atinge uma parcela da população economicamente ativa, podendo ser de rápido desenvolvimento e de altas t...

  8. Inverse correlation between quasiparticle mass and T c in a cuprate high-T c superconductor.

    Science.gov (United States)

    Putzke, Carsten; Malone, Liam; Badoux, Sven; Vignolle, Baptiste; Vignolles, David; Tabis, Wojciech; Walmsley, Philip; Bird, Matthew; Hussey, Nigel E; Proust, Cyril; Carrington, Antony

    2016-03-01

    Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature T c is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-δ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-T c superconductivity. We have tested the robustness of this correlation between m* and T c by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-δ, we find that in YBa2Cu4O8, the mass decreases as T c increases under pressure. This inverse correlation between m* and T c suggests that quantum fluctuations of the charge order enhance m* but do not enhance T c.

  9. Simulation and Parametric Analysis of a Hybrid SOFC-Gas Turbine Power Generation System

    International Nuclear Information System (INIS)

    Hassan, A.M.; Fahmy

    2004-01-01

    Combined SOFC-Gas Turbine Power Generation Systems are aimed to increase the power and efficiency obtained from the technology of using high temperature fuel cells by integrating them with gas turbines. Hybrid systems are considered in the last few years as one of the most promising technologies to obtain electric energy from the natural gas at very high efficiency with a serious potential for commercial use. The use of high temperature allows internal reforming for natural gas and thus disparity of fuel composition is allowed. Also air preheating is performed thanks to the high operating cell temperature as a task of energy integration. In this paper a modeling approach is presented for the fuel cell-gas turbine hybrid power generation systems, to obtain the sofc output voltage, power, and the overall hybrid system efficiency. The system has been simulated using HYSYS, the process simulation software to help improving the process understanding and provide a quick system solution. Parametric analysis is also presented in this paper to discuss the effect of some important SOFC operating parameters on the system performance and efficiency

  10. FY 1998 annual report on the research and development of advanced ceramic gas turbines. Study on social adaptability; 1998 nendo senshingata ceramic gas turbine no kenkyu kaihatsu seika hokokusho. Shakai tekigosei kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The New Sunshine Project, promoted by Ministry of International Trade and Industry, has developed a 300 kW ceramic gas turbine CGT302 (biaxial, regenerative type) in March 1999, which attains a turbine inlet temperature of 1,334 degrees C and thermal efficiency of 42.1%. The conditions of optimum utilization of the system are studied for eventual commercialization and spread of these systems, including analysis of load types for specific purposes, prediction of operation management, economics of CGT, environmental impacts, and possibility of diversification of the fuel. The CGT cost analysis results indicate that a CGT system is well viable when the incremental initial cost of the power generator is kept below 70,000 yen/kW over the conventional system. The system can be doubled in scale at the largest. It can be further scaled up, when hybrid members with metallic materials are used. CGT is a basic technique for (system energy). In other words, the 21st. century will be the age of (system energy), i.e., (gas turbine). (NEDO)

  11. Renewable Energy and Negative Externalities: The Effect of Wind Turbines on House Prices

    NARCIS (Netherlands)

    Dröes, M.I.; Koster, H.R.A.

    2016-01-01

    In many countries, wind turbines are constructed as part of a strategy to reduce dependence on fossil fuels. In this paper, we measure the external effect of wind turbines on the transaction prices of nearby houses. A unique Dutch house price dataset covering the period 1985–2011 is used, as well as

  12. Petits mils, énorme potentiel : diversifiés, nutritifs et adaptés aux ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    29 avr. 2016 ... La culture des petits mils en complément des cultures existantes ... Redynamiser la production de petits mils pourrait améliorer la nutrition et la santé en Inde, ... que nécessite leur transformation et de la perception négative que l'on en ... Increasing gender equality among small millet farmers in South Asia.

  13. Variable volume combustor with pre-nozzle fuel injection system

    Science.gov (United States)

    Keener, Christopher Paul; Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Ostebee, Heath Michael

    2016-09-06

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of fuel nozzles, a pre-nozzle fuel injection system supporting the fuel nozzles, and a linear actuator to maneuver the fuel nozzles and the pre-nozzle fuel injection system.

  14. Aeroelastic instability problems for wind turbines

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2007-01-01

    This paper deals with the aeroelostic instabilities that have occurred and may still occur for modem commercial wind turbines: stall-induced vibrations for stall-turbines, and classical flutter for pitch-regulated turbines. A review of previous works is combined with derivations of analytical...... stiffness and chordwise position of the center of gravity along the blades are the main parameters for flutter. These instability characteristics are exemplified by aeroelastic stability analyses of different wind turbines. The review of each aeroelastic instability ends with a list of current research...... issues that represent unsolved aeroelostic instability problems for wind turbines. Copyright (c) 2007 John Wiley & Sons, Ltd....

  15. Solid fuel applications to transportation engines

    Energy Technology Data Exchange (ETDEWEB)

    Rentz, Richard L.; Renner, Roy A.

    1980-06-01

    The utilization of solid fuels as alternatives to liquid fuels for future transportation engines is reviewed. Alternative liquid fuels will not be addressed nor will petroleum/solid fuel blends except for the case of diesel engines. With respect to diesel engines, coal/oil mixtures will be addressed because of the high interest in this specific application as a result of the large number of diesel engines currently in transportation use. Final assessments refer to solid fuels only for diesel engines. The technical assessments of solid fuels utilization for transportation engines is summarized: solid fuel combustion in transportation engines is in a non-developed state; highway transportation is not amenable to solid fuels utilization due to severe environmental, packaging, control, and disposal problems; diesel and open-cycle gas turbines do not appear worthy of further development, although coal/oil mixtures for slow speed diesels may offer some promise as a transition technology; closed-cycle gas turbines show some promise for solid fuels utilization for limited applications as does the Stirling engine for use of cleaner solid fuels; Rankine cycle engines show good potential for limited applications, such as for locomotives and ships; and any development program will require large resources and sophisticated equipment in order to advance the state-of-the-art.

  16. Evaluating the Implementation of the Re-Engineering Systems of Primary Care Treatment in the Military (RESPECT-Mil)

    Science.gov (United States)

    Wong, Eunice C.; Jaycox, Lisa H.; Ayer, Lynsay; Batka, Caroline; Harris, Racine; Naftel, Scott; Paddock, Susan M.

    2015-01-01

    Abstract A RAND team conducted an independent implementation evaluation of the Re-Engineering Systems of Primary Care Treatment in the Military (RESPECT-Mil) Program, a system of care designed to screen, assess, and treat posttraumatic stress disorder and depression among active duty service members in the Army's primary care settings. Evaluating the Implementation of the Re-Engineering Systems of Primary Care Treatment in the Military (RESPECT-Mil) presents the results from RAND's assessment of the implementation of RESPECT-Mil in military treatment facilities and makes recommendations to improve the delivery of mental health care in these settings. Analyses were based on existing program data used to monitor fidelity to RESPECT-Mil across the Army's primary care clinics, as well as discussions with key stakeholders. During the time of the evaluation, efforts were under way to implement the Patient Centered Medical Home, and uncertainties remained about the implications for the RESPECT-Mil program. Consideration of this transition was made in designing the evaluation and applying its findings more broadly to the implementation of collaborative care within military primary care settings. PMID:28083389

  17. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Yackly

    2001-06-01

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every

  18. Preliminary study of Low-Cost Micro Gas Turbine

    Science.gov (United States)

    Fikri, M.; Ridzuan, M.; Salleh, Hamidon

    2016-11-01

    The electricity consumption nowadays has increased due to the increasing development of portable electronic devices. The development of low cost micro gas turbine engine, which is designed for the purposes of new electrical generation Micro turbines are a relatively new distributed generation technology being used for stationary energy generation applications. They are a type of combustion turbine that produces both heat and electricity on a relatively small scaled.. This research are focusing of developing a low-cost micro gas turbine engine based on automotive turbocharger and to evaluation the performance of the developed micro gas turbine. The test rig engine basically was constructed using a Nissan 45V3 automotive turbocharger, containing compressor and turbine assemblies on a common shaft. The operating performance of developed micro gas turbine was analyzed experimentally with the increment of 5000 RPM on the compressor speed. The speed of the compressor was limited at 70000 RPM and only 1000 degree Celsius at maximum were allowed to operate the system in order to avoid any failure on the turbocharger bearing and the other components. Performance parameters such as inlet temperature, compressor temperature, exhaust gas temperature, and fuel and air flow rates were measured. The data was collected electronically by 74972A data acquisition and evaluated manually by calculation. From the independent test shows the result of the system, The speed of the LP turbine can be reached up to 35000 RPM and produced 18.5kw of mechanical power.

  19. Demonstration of coupling correction below the per-mil limit in the LHC

    CERN Document Server

    Maclean, Ewen Hamish; Fartoukh, Stephane; Persson, Tobias Hakan Bjorn; Skowronski, Piotr Krzysztof; Tomas Garcia, Rogelio; Wierichs, David Alexander; CERN. Geneva. ATS Department

    2016-01-01

    Linear coupling between betatron motion in the transverse planes is one of the key optics parameters for any accelerator. It can substantially affect the nonlinear dynamics, influencing both lifetime and the damping of instabilities, as well as affecting the ability to measure and control the linear optics. A review of published material revealed no account of coupling having been corrected significantly below the per-mil level in any hadron accelerator. This note reports the achievement of a sub-per-mil coupling correction during an LHC Machine Development study.

  20. Reliability-Based Design of Wind Turbine Foundations – Computational Modelling

    DEFF Research Database (Denmark)

    Vahdatirad, Mohammad Javad

    Among renewable green energy generators, wind turbines are the most technically and economically efficient. Therefore, wind power plants are experiencing a competitive increased trend in global growth. The gas and oil industry is shrouded by political conflict, not the least of which is burning...... of fossil fuels causing pollution, environmental degradation, and climate change, and finally mixed messages regarding declining domestic and foreign oil reserves. Therefore, the wind power industry is becoming a key player as the green energy producer in many developed countries. However, consumers demand...... increased cost-effectiveness in wind turbines, and an optimized design must be implemented on the expensive structural components. The traditional wind turbine foundation typically expends 25-30% of the total wind turbine budget; thus it is one of the most costly fabrication components. Therefore...

  1. Studies and solutions of steam turbines for nuclear heating power stations

    International Nuclear Information System (INIS)

    Drahy, J.

    1979-01-01

    The possibilities of combined generation of heat and electric power and special features of the corresponding equipment for WWER type reactors are considered. Condensing steam turbines with bled steam points and the constructional solution of bled points are presented for heating the network water to 110 0 C, 120 0 C, and 160 0 C, respectively. The dimensions of the low pressure final stage of the turbine are given. Problems concerning condensing and bleeding turbines and combination types of back-pressure and condensing turbines as well as solutions to the design of 250 MW and 500 MW turbines are discussed

  2. Chromium-based metal-organic framework MIL-101 as a highly effective catalyst in plasma for toluene removal

    Science.gov (United States)

    Wu, Junliang; Xia, Qibin; Xiao, Jing; Li, Zhong

    2017-11-01

    Catalytic performance of MIL-101—a type of chromium-based metal-organic frameworks (MOFs)—in a plasma catalysis system for toluene removal was experimentally studied. The MIL-101 was synthesized using a hydrothermal method, and its catalytic performance was compared to two other catalysts, Cr2O3/γ-Al2O3 and γ-Al2O3, in a dielectric barrier discharge (DBD) reactor. Results showed that the presence of a catalyst in plasma changed the voltage and current characteristic substantially, and promoted the performance of the plasma reactor. Among the catalysts, the MIL-101 exhibited a significantly high toluene conversion, which was 20% and 35% higher than Cr2O3/γ-Al2O3 and γ-Al2O3, respectively, under the same testing conditions, as well as higher carbon balance and CO2 selectivity. The analysis of by-products on the surfaces of the catalysts before and after reaction demonstrated that MIL-101 had better resistance towards by-products accumulation compared to Cr2O3/γ-Al2O3 and γ-Al2O3. The loading of MnO x on MIL-101 further promoted its catalytic performance. MIL-101 exhibits attractive catalytic properties as a catalyst in a plasma catalysis system for the decomposition of volatile organic compounds.

  3. Chromium-based metal-organic framework MIL-101 as a highly effective catalyst in plasma for toluene removal

    International Nuclear Information System (INIS)

    Wu, Junliang; Xia, Qibin; Xiao, Jing; Li, Zhong

    2017-01-01

    Catalytic performance of MIL-101—a type of chromium-based metal-organic frameworks (MOFs)—in a plasma catalysis system for toluene removal was experimentally studied. The MIL-101 was synthesized using a hydrothermal method, and its catalytic performance was compared to two other catalysts, Cr 2 O 3 / γ -Al 2 O 3 and γ -Al 2 O 3 , in a dielectric barrier discharge (DBD) reactor. Results showed that the presence of a catalyst in plasma changed the voltage and current characteristic substantially, and promoted the performance of the plasma reactor. Among the catalysts, the MIL-101 exhibited a significantly high toluene conversion, which was 20% and 35% higher than Cr 2 O 3 / γ -Al 2 O 3 and γ -Al 2 O 3 , respectively, under the same testing conditions, as well as higher carbon balance and CO 2 selectivity. The analysis of by-products on the surfaces of the catalysts before and after reaction demonstrated that MIL-101 had better resistance towards by-products accumulation compared to Cr 2 O 3 / γ -Al 2 O 3 and γ -Al 2 O 3 . The loading of MnO x on MIL-101 further promoted its catalytic performance. MIL-101 exhibits attractive catalytic properties as a catalyst in a plasma catalysis system for the decomposition of volatile organic compounds. (paper)

  4. Facile synthesis of highly efficient amorphous Mn-MIL-100 catalysts: The formation mechanism and the structure changes during the application for CO oxidation.

    Science.gov (United States)

    Zhang, Xiaodong; Li, Hongxin; Lv, Xutian; Xu, Jingcheng; Wang, Yuxin; He, Chi; Liu, Ning; Yang, Yiqiong; Wang, Yin

    2018-04-13

    A comprehensive study was carried out on amorphous metal-organic frameworks Mn-MIL-100 as efficient catalysts towards CO oxidation. This study focuses on explaining the crystalline-amorphous-crystalline transformations during thermolysis process of Mn-MIL-100 and studying the structure changes during the reaction process for CO oxidation. A possible formation mechanism of amorphous Mn-MIL-100 was proposed. Amorphous Mn-MIL-100 obtained by calcination at 250°C (a-Mn-250) showed a smaller specific surface area (4 m2/g), but displayed a high catalytic activity. Furthermore, the structure of amorphous Mn-MIL-100 was labile during the reaction process. When used a-Mn-250 were treated with reaction atmosphere at high temperature (named used a-Mn-250-S), the amorphous catalysts transformed to Mn2O3. Meanwhile, BET surface area (164 m2/g) and the catalytic performance both sharply increased. In addition, used a-Mn-250-S catalyst transformed from Mn2O3 to Mn3O4, resulting in the slightly decrease of catalytic activity under the presence of 1 vol% water vapor in the stream. A schematic of the structure changes during the reaction process was proposed. The achievement of our synthesis relies on the increase of BET surface area using CO as retreatment atmosphere, and the enhanced catalytic activity was attributed to the unique structure, a high quantity of surface active oxygen species, oxygen vacancies and good low temperature reduction behavior. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fuels and Lubricants Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Modern naval aircraft and turbine-powered craft require reliable and high-quality fuels and lubricants to satisfy the demands imposed upon them for top performance...

  6. Are prostate carcinoma clinical stages T1C and T2 similar?

    Directory of Open Access Journals (Sweden)

    Athanase Billis

    2006-04-01

    Full Text Available PURPOSE: A recent study has found that PSA recurrence rate for clinical T1c tumors is similar to T2 tumors, indicating a need for further refinement of clinical staging system. To test this finding we compared clinicopathologic characteristics and the time to PSA progression following radical retropubic prostatectomy of patients with clinical stage T1c tumors to those with stage T2, T2a or T2b tumors. MATERIALS AND METHODS: From a total of 186 consecutive patients submitted to prostatectomy, 33.52% had clinical stage T1c tumors, 45.45% stage T2a tumors and 21.02% stage T2b tumors. The variables studied were age, preoperative PSA, prostate weight, Gleason score, tumor extent, positive surgical margins, extraprostatic extension (pT3a, seminal vesicle invasion (pT3b, and time to PSA progression. Tumor extent was evaluated by a point-count method. RESULTS: Patients with clinical stage T1c were younger and had the lowest mean preoperative PSA. In the surgical specimen, they had higher frequency of Gleason score < 7 and more organ confined cancer. In 40.54% of the patients with clinical stage T2b tumors, there was extraprostatic extension (pT3a. During the study period, 54 patients (30.68% developed a biochemical progression. Kaplan-Meier product-limit analysis revealed no significant difference in the time to PSA progression between men with clinical stage T1c versus clinical stage T2 (p = 0.7959, T2a (p = 0.6060 or T2b (p = 0.2941 as well as between men with clinical stage T2a versus stage T2b (p = 0.0994. CONCLUSION: Clinicopathological features are not similar considering clinical stage T1c versus clinical stages T2, T2a or T2b.

  7. Compatibility study between U-UO{sub 2} cermet fuel and T91 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Sudhir, E-mail: sudhir@barc.gov.in [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kaity, Santu; Khan, K.B. [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sengupta, Pranesh; Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-12-01

    Cermet is a new fuel concept for the fast reactor system and is ideally designed to combine beneficial properties of both ceramic and metal. In order to understand fuel clad chemical compatibility, diffusion couples were prepared with U-UO{sub 2} cermet fuel and T91 cladding material. These diffusion couples were annealed at 923–1073 K for 1000 h and 1223 K for 50 h, subsequently their microstructures were examined using scanning electron microscope (SEM), X-ray energy dispersive spectroscope (EDS) and electron probe microanalyser (EPMA). It was observed that the interaction between the fuel and constituents of T91 clad was limited to a very small region up to the temperature 993 K and discrete U{sub 6}(Fe,Cr) and U(Fe,Cr){sub 2} intermetallic phases developed. Eutectic microstructure was observed in the reaction zone at 1223 K. The activation energy for reaction at the fuel clad interface was determined.

  8. A Mixed Matrix Membrane of Poly (4-methyl-1-pentyne Filled with MIL 53 Particles and Its Application in Carbon Dioxide and Nitrogen Separation

    Directory of Open Access Journals (Sweden)

    Reza Abedini

    2016-05-01

    Full Text Available The performance of poly (4-metyl-1-pentyne as mixed matrix membrane (MMM mixed with MIL 53 particles was studied to separate mixtures of carbon dioxide and nitrogen. MIL 53 particles was added to the polymer matrix with 10, 20 and 30 weight percentages. The adsorption of CO2 and N2 gases by MIL 53 was evaluated and the adsorption data was analyzed by Langmuir equation. Structure and thermal/mechanical properties of prepared membranes were characterized by means of FTIR, SEM, TGA and elongation test. Moreover, the gas permeation properties of membranes were studied by measuring the permeation of pure CO2 and N2. Furthermore, for accurate understanding of the gas permeation properties of the membranes, diffusion and solution coefficient of gases in neat membrane and MMMs were calculated using modified time-lag method. The results from TGA analysis showed that the degradation temperature of MMMs was enhanced and increased to 348ºC for membrane containing 30 wt% of MIL 53. The SEM images also illustrated a relatively uniform dispersion of particles with proper polymer/filler interfaces in the polymer matrix. The gas permeation results revealed that the permeability of both gases (especially CO2 increased with increasing MIL 53 loading, in which the permeability of CO2 increased from 98.74 Barrer in neat membrane to 217.65 Barrer in MMM containing 30 wt% filler. Moreover, calculation of CO2/N2 selectivity depicted that the selectivity enhanced from 16.66 to 22.70. Finally, the performance of MMMs was compared with Robeson’s upper bound in CO2/N2 separation and results showed that the MMM having 30 wt% of MIL 53 took over the Robeson bound.

  9. Selective recognition of 6-mercaptopurine based on luminescent metal-organic frameworks Fe-MIL-88NH₂.

    Science.gov (United States)

    Sun, Zhengjuan; Liu, Yali; Li, Yuanfang

    2015-03-15

    A novel and rapid spectrofluorometry method for the recognition of 6-mercaptopurine (6-MP) has been developed based on luminescent metal-organic frameworks Fe-MIL-88NH2 as fluorescent probe. The strong fluorescence of Fe-MIL-88NH2 at 430 nm could be quenched by 6-MP directly, and the Fe-MIL-88NH2 shows high selectivity for 6-MP compared to other thiol-containing amino acids such as homocysteine (Hcy), cysteine (Cys), glutathione (GSH), etc. Under optimal conditions, the relative fluorescence intensity was linearly proportional to the concentration of 6-MP in the range of 5-600 μM with the detection limit at 1.17 μM (S/N=3). Furthermore, the present approach has been successfully applied to the determination of 6-MP in human serum samples. The possible fluorescence quenching mechanism has also been investigated, where it is revealed that the quenching was attributed to competition of absorption of the light source energy as well as electron transfer between Fe-MIL-88NH2 and 6-MP. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Effective Adsorption and Removal of Phosphate from Aqueous Solutions and Eutrophic Water by Fe-based MOFs of MIL-101.

    Science.gov (United States)

    Xie, Qiying; Li, Yan; Lv, Zhaoling; Zhou, Hang; Yang, Xiangjun; Chen, Jing; Guo, Hong

    2017-06-12

    Although many efforts have been devoted to the adsorptive removal of phosphate from aqueous solutions and eutrophic water, it is still highly desirable to develop novel adsorbents with high adsorption capacities. In this study, Fe-based metal-organic frameworks (MOFs), MIL-101 and NH 2 -MIL-101, are fabricated through a general facile strategy. Their performance as an adsorbent for phosphate removal is investigated. Experiments are performed to study the effects of various factors on the phosphate adsorption, including adsorbent dosage, contact time and co-existing ions. Both MIL-101(Fe) and NH 2 -MIL-101(Fe) show highly effective removal of phosphates from aqueous solutions, and the concentration of phosphates decrease sharply from the initial 0.60 mg·L -1 to 0.045 and 0.032 mg·L -1 , respectively, within just 30 min of exposure. The adsorption kinetics and adsorption isotherms reveal that NH 2 -MIL-101(Fe) has higher adsorption capacity than MIL-101(Fe) possibly due to the amine group. Furthermore, the Fe-based MOFs also exhibit a high selectivity towards phosphate over other anions such as chloride, bromide, nitrate and sulfate. Particularly, the prepared Fe-based MIL-101 materials are also capable of adsorbing phosphate in an actual eutrophic water sample and display better removal effect.

  11. Gas turbine cooling modeling - Thermodynamic analysis and cycle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jordal, Kristin

    1999-02-01

    Considering that blade and vane cooling are a vital point in the studies of modern gas turbines, there are many ways to include cooling in gas turbine models. Thermodynamic methods for doing this are reviewed in this report, and, based on some of these methods, a number of model requirements are set up and a Cooled Gas Turbine Model (CGTM) for design-point calculations of cooled gas turbines is established. Thereafter, it is shown that it is possible to simulate existing gas turbines with the CGTM. Knowledge of at least one temperature in the hot part of the turbine (TET, TRIT or possibly TIT) is found to be vital for a complete heat balance over the turbine. The losses, which are caused by the mixing of coolant and main flow, are in the CGTM considered through a polytropic efficiency reduction factor S. Through the study of S, it can be demonstrated that there is more to gain from coolant reduction in a small and/or old turbine with poor aerodynamics, than there is to gain in a large, modern turbine, where the losses due to interaction between coolant and main flow are, relatively speaking, small. It is demonstrated, at the design point (TET=1360 deg C, {pi}=20) for the simple-cycle gas turbine, that heat exchanging between coolant and fuel proves to have a large positive impact on cycle efficiency, with an increase of 0.9 percentage points if all of the coolant passes through the heat exchanger. The corresponding improvement for humidified coolant is 0.8 percentage points. A design-point study for the HAT cycle shows that if all of the coolant is extracted after the humidification tower, there is a decrease in coolant requirements of 7.16 percentage points, from 19.58% to 12.52% of the compressed air, and an increase in thermal efficiency of 0.46 percentage points, from 53.46% to 53.92%. Furthermore, it is demonstrated with a TET-parameter variation, that the cooling of a simple-cycle gas turbine with humid air can have a positive effect on thermal efficiency

  12. Combustion phenomenon, performance and emissions of a diesel engine with aviation turbine JP-8 fuel and rapeseed biodiesel blends

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2015-01-01

    Highlights: • The 5 vol% RME added to JP-8 fuel improved lubricity 1.7 times according corrected wear scar diameter, μm. • The reverse trends revealed in the autoignition delay when operating with identical fuel blends J10 and B10. • The brake thermal efficiency increased by 1.0–3.6% when running on bio-fuels J5–J30 at speed of 2200 rpm. • The NO_x emissions increased by 5.2% when operating on bio-jet fuel J30 at full load and speed of 2200 rpm. • CO, HC emissions and smoke decreased with biofuel J20 and higher blends at both speeds of 1400 and 2200 rpm. - Abstract: The article presents the test results of an engine operating with diesel fuel (B5), turbine type JP-8 fuel and its 5 vol%, 10 vol%, 20 vol%, and 30 vol% blends with rapeseed oil methyl ester (RME). Additional fuel blend B10 was prepared by pouring 10 vol% of RME to diesel fuel to extend interpretation of the test results. The purpose of this study was to examine the effects of using jet-biodiesel fuel blends J5, J10, J20, J30, and B10 on the start of injection, ignition delay, combustion history, heat release, engine performance, and exhaust emissions. The engine performance parameters were examined at light 15% (1400 rpm) and 10% (2200 rpm), medium 50%, and high 100% loads and the two speeds: 1400 rpm at which maximum torque occurs and a rated speed of 2200 rpm. The autoignition delay and maximum heat release rate decreased, maximum cylinder pressure, and pressure gradients increased, whereas brake specific fuel consumption changed little and brake thermal efficiency was 1.0–3.6% higher when running with fuel blends J5 to J30 at rated speed compared with the data measured with neat jet fuel. The NO_x emissions increased slightly, but the CO, THC emissions, and smoke opacity boosted up significantly when using jet fuel blend J10 with a smooth reduction of unburned hydrocarbons for jet-biodiesel fuel blends with higher CN ratings. Operation at a full (100%) load with fuel blend J10

  13. Review of FRAP-T4 performance based on fuel behavior tests conducted in the PBF

    International Nuclear Information System (INIS)

    Charyulu, M.K.

    1979-09-01

    The ability of the Fuel Rod Analysis Program - Transient (FRAP-T), a computer code developed at the Idaho National Engineering Laboratory to calculate fuel rod behavior during transient experiments conducted in the Power Burst Facility, is discussed. Fuel rod behavior calculations are compared with data from tests performed under postulated RIA, LOCA, and PCM accident conditions. Physical phenomena, rod damage, and damage mechanisms observed during the tests and not presently incorporated into the FRAP-T code are identified

  14. Radar Cross Section (RCS) Simulation for Wind Turbines

    Science.gov (United States)

    2013-06-01

    wind turbines are unsafe to operate. Also, helical wind turbines generally have less environmental concerns such as killing birds , especially in...SECTION (RCS) SIMULATION FOR WIND TURBINES by Cuong Ton June 2013 Thesis Advisor: David C. Jenn Second Reader: Ric Romero THIS PAGE...TITLE AND SUBTITLE RADAR CROSS SECTION (RCS) SIMULATION FOR WIND TURBINES 5. FUNDING NUMBERS 6. AUTHOR(S) Cuong Ton 7. PERFORMING ORGANIZATION

  15. Improved Formulation for the Optimization of Wind Turbine Placement in a Wind Farm

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2013-01-01

    Full Text Available As an alternative to fossil fuels, wind can be considered because it is a renewable and greenhouse gas-free natural resource. When wind power is generated by wind turbines in a wind farm, the optimal placement of turbines is critical because different layouts produce different efficiencies. The objective of the wind turbine placement problem is to maximize the generated power while minimizing the cost in installing the turbines. This study proposes an efficient optimization formulation for the optimal layout of wind turbine placements under the resources (e.g., number of turbines or budget limit by introducing corresponding constraints. The proposed formulation gave users more conveniences in considering resources and budget bounds. After performing the optimization, results were compared using two different methods (branch and bound method and genetic algorithm and two different objective functions.

  16. Ru Nanoparticles Supported on MIL-101 by Double Solvents Method as High-Performance Catalysts for Catalytic Hydrolysis of Ammonia Borane

    Directory of Open Access Journals (Sweden)

    Tong Liu

    2015-01-01

    Full Text Available Highly dispersed crystalline Ru nanoparticles (NPs were successfully immobilized inside the pores of MIL-101 by a double solvents method (DSM. HRTEM clearly demonstrated the uniform distribution of the ultrafine Ru NPs throughout the interior cavities of MIL-101. The synthesized Ru@MIL-101 catalyst was also characterized by X-ray diffraction (XRD, N2 adsorption desorption, and ICP-AES. The catalytic test indicated that the Ru NPs supported MIL-101 material exhibited exceedingly high activity and excellent durability for hydrogen generation from the catalytic hydrolysis of amine boranes.

  17. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Joesph Fadok

    2008-01-01

    advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to

  18. Materials and structural aspects of advanced gas-turbine helicopter engines

    Science.gov (United States)

    Freche, J. C.; Acurio, J.

    1979-01-01

    Advances in materials, coatings, turbine cooling technology, structural and design concepts, and component-life prediction of helicopter gas-turbine-engine components are presented. Stationary parts including the inlet particle separator, the front frame, rotor tip seals, vanes and combustors and rotating components - compressor blades, disks, and turbine blades - are discussed. Advanced composite materials are considered for the front frame and compressor blades, prealloyed powder superalloys will increase strength and reduce costs of disks, the oxide dispersion strengthened alloys will have 100C higher use temperature in combustors and vanes than conventional superalloys, ceramics will provide the highest use temperature of 1400C for stator vanes and 1370C for turbine blades, and directionally solidified eutectics will afford up to 50C temperature advantage at turbine blade operating conditions. Coatings for surface protection at higher surface temperatures and design trends in turbine cooling technology are discussed. New analytical methods of life prediction such as strain gage partitioning for high temperature prediction, fatigue life, computerized prediction of oxidation resistance, and advanced techniques for estimating coating life are described.

  19. Experimental measurements and analytical analysis related to gas turbine heat transfer. Part 1: Time-averaged heat-flux and surface-pressure measurements on the vanes and blades of the SSME fuel-side turbine and comparison with prediction. Part 2: Phase-resolved surface-pressure and heat-flux measurements on the first blade of the SSME fuel-side turbine

    Science.gov (United States)

    1994-01-01

    Time averaged Stanton number and surface-pressure distributions are reported for the first-stage vane row, the first stage blade row, and the second stage vane row of the Rocketdyne Space Shuttle Main Engine two-stage fuel-side turbine. Unsteady pressure envelope measurements for the first blade are also reported. These measurements were made at 10 percent, 50 percent, and 90 percent span on both the pressure and suction surfaces of the first stage components. Additional Stanton number measurements were made on the first stage blade platform blade tip, and shroud, and at 50 percent span on the second vane. A shock tube was used as a short duration source of heated and pressurized air to which the turbine was subjected. Platinum thin-film heat flux gages were used to obtain the heat flux measurements, while miniature silicon-diaphragm flush-mounted pressure transducers were used to obtain the pressure measurements. The first stage vane Stanton number distributions are compared with predictions obtained using a version of STAN5 and a quasi-3D Navier-Stokes solution. This same quasi-3D N-S code was also used to obtain predictions for the first blade and the second vane.

  20. Barrio residencial de Gratosoglio, Milán

    Directory of Open Access Journals (Sweden)

    Giannini, Sandro

    1967-04-01

    Full Text Available The group of 23 buildings in the residential zone of Gratosoglio, which provide space for 1,000 dwellings, has been built by the firm «Fintech Italcamus». This Italian firms applies in Italy the «Raymond Camus» system, which is a positive aid to heavy prefabrication in housing projects. The above group of buildings constitute part of the General Building Scheme so successfully initiated by the Autonomous Building Institute of the Province of Milan, with the purpose of helping to overcome the extensive lack of housing in the Milan region.El grupo de edificios levantado en el Barrio Residencial de Gratosoglio, Milán (23, con un total de 1.000 viviendas, ha sido construido por la firma «Fintech Italcamus», Sociedad italiana que aplica en Italia el sistema «Raymond Camus» y constituye una aportación positiva de la prefabricación pesada a la edificación residencial. Este conjunto forma parte del Plan General de edificación, emprendido con tanto éxito como acierto por el Instituto Autónomo de la Vivienda de la Provincia de Milán, para solucionar los problemas que la gigantesca presión demográfica planteaba en dicha provincia.

  1. Efficient Pd@MIL-101(Cr) hetero-catalysts for 2-butyne-1,4-diol hydrogenation exhibiting high selectivity

    KAUST Repository

    Yin, Dongdong; Li, Chuang; Ren, Hangxing; Shekhah, Osama; Liu, Jinxuan; Liang, Changhai

    2017-01-01

    Pd@MIL-101(Cr) hetero-catalysts have been successfully prepared using the metal-organic chemical vapour deposition (MOCVD) approach, by choosing [Pd(η-CH)(η-CH)] as a volatile precursor, and the hydrothermally stable metal-organic framework, MIL-101

  2. Fuel options for oil sands

    International Nuclear Information System (INIS)

    Wise, T.

    2005-01-01

    This presentation examined fuel options in relation to oil sands production. Options include steam and hydrogen (H 2 ) for upgrading; natural gas by pipeline; bitumen; petroleum coke; and coal. Various cost drivers were also considered for each of the fuel options. It was noted that natural gas has high energy value but the capital cost is low, and that coke's energy value is very low but the capital cost is high. A chart forecasting energy prices was presented. The disposition of Western Canada's northern gas situation was presented. Issues concerning rail transportation for coal were considered. Environmental concerns were also examined. A chart of typical gas requirements for 75,000 B/D oil sands projects was presented. Issues concerning steam generation with gas and mining cogeneration with gas fuel and steam turbines were discussed, as well as cogeneration and H 2 with gas fuels and steam turbines. Various technology and fuel utility options were examined, along with details of equipment and processes. Boiler technologies were reviewed by type as well as fuel and steam quality and pressure. Charts of cogeneration with gas turbine and circulation fluid bed boilers were presented. Gasification processes were reviewed and a supply cost basis was examined. Cost drivers were ranked according to energy, operating considerations and capital investment. Results indicated that fuel costs were significant for gas and coal. Capital costs and capital recovery charge was most significant with coal and gasification technology. Without capital recovery, cash costs favour the use of bitumen and coke. Gasification would need lower capital and lower capital recovery to compete with direct burning. It was concluded that direct burning of bitumen can compete with natural gas. With price volatility anticipated, dual fuel capability for bitumen and gas has merit. Petroleum coke can be produced or retrieved from stockpiles. Utility supply costs of direct burning of coke is

  3. MIL-L-87177 and CLT:X-10 Lubricants Improve Electrical Connector Fretting Corrosion Behavior

    International Nuclear Information System (INIS)

    AUKLAND, NEIL R.; HANLON, JAMES T.

    1999-01-01

    We have conducted a fretting research project using MIL-L-87177 and CLT: X-10 lubricants on Nano-miniature connectors. When they were fretted without lubricant, individual connectors first exceeded our 0.5 ohm failure criteria from 2,341 to 45,238 fretting cycles. With additional fretting, their contact resistance increased to more than 100,000 ohms. Unmodified MIL-L-87177 lubricant delayed the onset of first failure to between 430,000 and over 20,000,000 fretting cycles. MIL-L-87177 modified by addition of Teflon powder delayed first failure to beyond 5 million fretting cycles. Best results were obtained when Teflon was used and also when both the straight and modified lubricants were poured into and then out of the connector. CLT: X-10 lubricant delayed the onset of first failure to beyond 55 million cycles in one test where a failure was actually observed and to beyond 20 million cycles in another that was terminated without failure. CLT: X-10 recovered an unlubricated connector driven deeply into failure, with six failed pins recovering immediately and four more recovering during an additional 420 thousand fretting cycles. MIL-L-87177 was not able to recover a connector under similar conditions

  4. On usage of heat-condensation type nuclear heat-and-power plants with the TK type turbines

    International Nuclear Information System (INIS)

    Boldyrev, V.M.; Smirnov, I.A.; Fedyaev, A.V.; Khrilev, L.S.

    1978-01-01

    The problems of the efficiency of nuclear heat-and-plants (NHPP) in the heat-andpower energetics of the USSR are discussed. Most attention is centered on an NHPP of heat-condensation type equipped with constant steam flow turbines of the TK-450/500-60 and K-500-60 types and WWER-1000 reactors. According to the specially developed procedure, the problem of selecting the profile of a TK-type turbine, NHPP composition and applications are subjected to the technico-economic analysis. The distance to the urban area from a central heat-and-power plant utilizing organic and atomic fuel is adopted to be the same and equal to 5, 10 and 15 km, and the thermal load is variable between 500 and 7000 Gcal/hour (the share of hot water supply load in the total thermal load being 0.2). The heat supply system is open-circuited, the hot/return water temperatures being 150/70 deg C. The optimum calculated heat production factor for the NHPP does not exceed 0.7, and the optimum heat production values from controlled turbine outputs are within 500-600 Gcal/hour. The mininum thermal load, for which the NHPP with TK turbines is more effective than an organic fuel heat-and-power station, is about 1000-1500 Gcal/hour if cooling towers are used in the technical water supply system, and if it is possible to construct a water reservoir-cooler for the NHPP, this range is reduced to a thermal load level, at which the combined system becomes more effective than the separate power generation systems, i.e. to 500-600 Gcal/hour

  5. Development of high temperature turbine

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kitao; Nouse, Hiroyuki; Yoshida, Toyoaki; Minoda, Mitsuhiro; Matsusue, Katsutoshi; Yanagi, Ryoji

    1988-07-01

    For the contribution to the development of FJR710, high by-pass ratio turbofan engine, with the study for many years of the development of high efficiency turbine for the jet engine, the first technical prize from the Energy Resource Research Committee was awarded in April, 1988. This report introduced its technical contents. In order to improve the thermal efficiency and enlarge the output, it is very effective to raise the gas temperature at the inlet of gas turbine. For its purpose, by cooling the nozzle and moving blades and having those blades operate at lower temperature than that of the working limitation, they realized, for the first time in Japan, the technique of cooling turbine to heighten the operational gas temperature. By that technique, it was enabled to raise the gas temperature at the inlet of turbine, to 1,350/sup 0/C from 850/sup 0/C. This report explain many important points of study covering the basic test, visualizing flow experiment, material discussion and structural design in the process of development. (9 figs)

  6. Use of I.G.R.T. for prostate cancers (O.B.I.-C.B.C.T. VarianTM, ExacTrac BrainLABTM and M.V.C.T. Tomo-therapy)

    International Nuclear Information System (INIS)

    Delpon, G.; Llagostera, C.; Lisbona, A.; Le Blanc, M.; Rio, E.; Supiot, S.; Mahe, M.A.

    2009-01-01

    Introduction: The aim of this work was to report the experience of image-guided radiotherapy at the C.L.C.C. Nantes-Atlantique using three repositioning imaging devices, the ExacTrac (BrainLABTM), the on-board imager cone beam computed tomography (O.B.I.-C.B.C.T.) (Varian TM ) and the M.V.C.T. (Tomotherapy Inc TM ), in the case of prostate external radiotherapy.Material and methods: For each linac and its imaging device, a treatment plan was described. Moreover, studies concerning calculated shifts after imaging sessions were achieved. Using ExacTrac, for eight patients, a study compared daily shifts based on bony anatomy or on implanted markers. Considering mean values of displacements over a course of radiotherapy, dosimetric impact was evaluated. With the O.B.I.-C.B.C.T., two imaging modalities were used, kV-kV (0. and 270.) and C.B.C.T.. Up to now, whatever the images, displacements were calculated using the bony anatomy. For both modalities and for 26 patients, shifts were compared. Since the beginning of the Tomotherapy HiArt use, mega voltage cone tomography (M.V.C.T.) was performed for each session of each patient. For 12 patients, mean displacements were calculated after five fractions. Then the deviations to those values were calculated. This was done to show the relevance of daily M.V.C.T.. Results and conclusion: This work allows us to report the use of three repositioning imaging devices in the radiotherapy department. At least: they provide an efficient positioning tool. And they let us see the future radiotherapy which would probably be the dose-guided radiotherapy. (N.C.)

  7. Evaluation of fuel wood quality of four fuel tree species used for fish smoking in the Sene District of the Brong Ahafo Region of Ghana

    International Nuclear Information System (INIS)

    Neequaye-Tetteh, G.A.; Quashie-Sam, S.J.; Dassah, A. L.

    2004-01-01

    Full text. The fuel wood quality of four trees, Terminalia avicennoides, Anogeissus Ieiocarpus, Combretum ghasalense and Pterocarpus arinaceus, which are easily available and widely used as fuel wood for fish smoking in the Sene District of the Brong Ahafo Region of Ghana was assessed. The specific gravity, calorific values, and burning times were determined. The mean specific gravity values for T. avicennoides, A. leiocarpus, C. ghasalense, and P. erinaceus were 0.97, 0.96, and 0.97, respectively. These values were not significantly different (P<0.05). The calorific values were 19,368.0 kj/kg for T avicennoides, 18,905.2 kj/kg for A. leiocarpus, 18,665.8 kj/kg for C. ghasalense, and 19,694.1 kj/kg for P. erinaceus. The values were not significantly different (P<0.05) between T. avicennoides and A. leiocarpus and C. ghasalense. However, there were significant differences (P<0.05) in the calorific values between T. avicennoides and C. ghasalense, A. leiocarpus and P. erinaceus, and C. ghasalense and P. erinaceus. The time in minutes required in burning equal lengths (60 cm) of the four species of fuel wood were 360 for T. avicennoides, 260 for A. leiocarpus, 195 for C. ghasalense, and 175 for P. erinaceus. These values were significantly different (P<0.0 1), with P. erinaceus burning almost twice as fast as T. avicennoides. Ranking the four fuel wood species from least to highest burning times, T. avicennoides burnt slowest, followed by A. leiocarpus, C. ghasalense, and P. erinaceuse. The specific gravity and calorific values recorded indicate that wood from the four species is suitable for use as fuel. Terminalia avicennoides, which burnt slowest, was most preferred for fish smoking, followed by A. leiocarpus and C. ghasalense. The fast-burning P. erinaceus was least preferred for fish smoking. (au)

  8. Numerical investigation of aerodynamic performance of darrieus wind turbine based on the magnus effect

    Directory of Open Access Journals (Sweden)

    L Khadir

    2016-10-01

    Full Text Available The use of several developmental approaches is the researchers’ major preoccupation with the DARRIEUS wind turbine. This paper presents the first approach and results of a wide computational investigation on the aerodynamics of a vertical axis DARRIEUS wind turbine based on the MAGNUS effect. Consequently, wind tunnel tests were carried out to ascertain overall performance of the turbine and two-dimensional unsteady computational fluid dynamics (CFD models were generated to help understand the aerodynamics of this new performance. Accordingly, a moving mesh technique was used where the geometry of the turbine blade was cylinders. The turbine model was created in Gambit modeling software and then read into fluent software for fluid flow analysis. Flow field characteristics are investigated for several values of tip speed ratio (TSR, in this case we generated a new rotational speed ratio between the turbine and cylinder (δ = ωC/ωT. This new concept based on the MAGNUS approach provides the best configuration for better power coefficient values. The positive results of Cp obtained in this study are used to generate energy; on the other hand, the negative values of Cp could be used in order to supply the engines with energy.

  9. Jet fuel kerosene is not immunosuppressive in mice or rats following inhalation for 28 days.

    Science.gov (United States)

    White, Kimber L; DeLorme, Michael P; Beatty, Patrick W; Smith, Matthew J; Peachee, Vanessa L

    2013-01-01

    Previous reports indicated that inhalation of JP-8 aviation turbine fuel is immunosuppressive. However, in some of those studies, the exposure concentrations were underestimated, and percent of test article as vapor or aerosol was not determined. Furthermore, it is unknown whether the observed effects are attributable to the base hydrocarbon fuel (jet fuel kerosene) or to the various fuel additives in jet fuels. The present studies were conducted, in compliance with Good Laboratory Practice (GLP) regulations, to evaluate the effects of jet fuel kerosene on the immune system, in conjunction with an accurate, quantitative characterization of the aerosol and vapor exposure concentrations. Two female rodent species (B6C3F1 mice and Crl:CD rats) were exposed by nose-only inhalation to jet fuel kerosene at targeted concentrations of 0, 500, 1000, or 2000 mg/m(3) for 6 h daily for 28 d. Humoral, cell-mediated, and innate immune functions were subsequently evaluated. No marked effects were observed in either species on body weights, spleen or thymus weights, the T-dependent antibody-forming cell response (plaque assay), or the delayed-type hypersensitivity (DTH) response. With a few exceptions, spleen cell numbers and phenotypes were also unaffected. Natural killer (NK) cell activity in mice was unaffected, while the NK assessment in rats was not usable due to an unusually low response in all groups. These studies demonstrate that inhalation of jet fuel kerosene for 28 d at levels up to 2000 mg/m(3) did not adversely affect the functional immune responses of female mice and rats.

  10. Interleukin-1β-31C/T and -511T/C polymorphisms were associated with preeclampsia in Chinese Han population.

    Directory of Open Access Journals (Sweden)

    Xuefeng Wang

    Full Text Available OBJECTIVE: The purpose of our study is to investigate the relationship between IL-1β -31C/T (rs1143627 and -511T/C (rs16944 polymorphisms and the preeclampsia (PE, and analyze the Linkage disequilibrium (LD and haplotype frequency of the two polymorphism loci. METHODS: Polymorphisms at -31C/T and -511T/C of IL-1β were genotyped with the method of polymerase chain reaction-restriction fragment length polymorphism (PCR- RFLP in 232 PE and 447 control subjects. Genotype and allele frequencies between case-control groups were compared by chi-square(X2 tests. Two-point LD and haplotype frequency analyses were done with the software Haploview4.2. RESULTS: Significant statistical differences were found between PE and control groups regarding genotype and allele frequencies of the two polymorphisms of IL-1β (For IL-1β -31C/T: X2 = 11.478, P = 0.003; For IL-1β-511T/C: X2 = 9.687, P = 0.008. LD analysis revealed that the IL-1β -31C/T SNP was in high LD with the IL-1β-511C/T SNP(D' = 0.92, r2 = 0.79. Both CT and TC haplotypes showed significant differences between case and control groups. Only the plasma level of Prothrombin Time had a significantly statistical difference among TT, CT and CC groups of the preeclamptic two polymorphisms of IL-1β-31C/T and -511T/C (for IL-1β-31C/T, F = 1.644, P = 0.01; F = 1.587, P = 0.016. CONCLUSION: Our results revealed IL-1β was associated with the PE in Chinese Han population. The CT haplotype may increase the risk of PE, while haplotype TC could be considered as a protective haplotype of PE.

  11. ADVANCED TURBINE SYSTEM FEDERAL ASSISTANCE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Frank Macri

    2003-10-01

    Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

  12. Coupled-Flow Simulation of HP-LP Turbines Has Resulted in Significant Fuel Savings

    Science.gov (United States)

    Veres, Joseph P.

    2001-01-01

    Our objective was to create a high-fidelity Navier-Stokes computer simulation of the flow through the turbines of a modern high-bypass-ratio turbofan engine. The simulation would have to capture the aerodynamic interactions between closely coupled high- and low-pressure turbines. A computer simulation of the flow in the GE90 turbofan engine's high-pressure (HP) and low-pressure (LP) turbines was created at GE Aircraft Engines under contract with the NASA Glenn Research Center. The three-dimensional steady-state computer simulation was performed using Glenn's average-passage approach named APNASA. The areas upstream and downstream of each blade row mutually interact with each other during engine operation. The embedded blade row operating conditions are modeled since the average passage equations in APNASA actively include the effects of the adjacent blade rows. The turbine airfoils, platforms, and casing are actively cooled by compressor bleed air. Hot gas leaks around the tips of rotors through labyrinth seals. The flow exiting the high work HP turbines is partially transonic and, therefore, has a strong shock system in the transition region. The simulation was done using 121 processors of a Silicon Graphics Origin 2000 (NAS 02K) cluster at the NASA Ames Research Center, with a parallel efficiency of 87 percent in 15 hr. The typical average-passage analysis mesh size per blade row was 280 by 45 by 55, or approx.700,000 grid points. The total number of blade rows was 18 for a combined HP and LP turbine system including the struts in the transition duct and exit guide vane, which contain 12.6 million grid points. Design cycle turnaround time requirements ran typically from 24 to 48 hr of wall clock time. The number of iterations for convergence was 10,000 at 8.03x10(exp -5) sec/iteration/grid point (NAS O2K). Parallel processing by up to 40 processors is required to meet the design cycle time constraints. This is the first-ever flow simulation of an HP and LP

  13. Utilization and mitigation of VAM/CMM emissions by a catalytic combustion gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K.; Yoshino, Y.; Kashihara, H. [Kawasaki Heavy Industries Ltd., Hyougo (Japan); Kajita, S.

    2013-07-01

    A system configured with a catalytic combustion gas turbine generator unit is introduced. The system has been developed using technologies produced by Kawasaki Heavy Industries, Ltd., such as small gas turbines, recuperators and catalytic combustors, and catalytic oxidation units which use exhaust heat from gas turbines. The system combusts (oxidizes) ventilation air methane (less than 1% concentration) and low concentration coal mine methane (30% concentration or less) discharged as waste from coal mines. Thus, it cannot only reduce the consumption of high- quality fuel for power generation, but also mitigate greenhouse gas emissions.

  14. Fuel elements and safety engineering goals

    International Nuclear Information System (INIS)

    Schulten, R.; Bonnenberg, H.

    1990-01-01

    There are good prospects for silicon carbide anti-corrosion coatings on fuel elements to be realised, which opens up the chance to reduce the safety engineering requirements to the suitable design and safe performance of the ceramic fuel element. Another possibility offered is combined-cycle operation with high efficiencies, and thus good economic prospects, as with this design concept combining gas and steam turbines, air ingress due to turbine malfunction is an incident that can be managed by the system. This development will allow economically efficient operation also of nuclear power reactors with relatively small output, and hence contribute to reducing CO 2 emissions. (orig./DG) [de

  15. Alkaline polymer electrolyte fuel cells stably working at 80 °C

    Science.gov (United States)

    Peng, Hanqing; Li, Qihao; Hu, Meixue; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2018-06-01

    Alkaline polymer electrolyte fuel cells are a new class of polymer electrolyte fuel cells that fundamentally enables the use of nonprecious metal catalysts. The cell performance mostly relies on the quality of alkaline polymer electrolytes, including the ionic conductivity and the chemical/mechanical stability. For a long time, alkaline polymer electrolytes are thought to be too weak in stability to allow the fuel cell to be operated at elevated temperatures, e.g., above 60 °C. In the present work, we report a progress in the state-of-the-art alkaline polymer electrolyte fuel cell technology. By using a newly developed alkaline polymer electrolyte, quaternary ammonia poly (N-methyl-piperidine-co-p-terphenyl), which simultaneously possesses high ionic conductivity and excellent chemical/mechanical stability, the fuel cell can now be stably operated at 80 °C with high power density. The peak power density reaches ca. 1.5 W/cm2 at 80 °C with Pt/C catalysts used in both the anode and the cathode. The cell works stably in a period of study over 100 h.

  16. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand

    International Nuclear Information System (INIS)

    Udomsri, Seksan; Martin, Andrew R.; Fransson, Torsten H.

    2010-01-01

    Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessment of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO 2 levels by 3% in comparison with current thermal power plants.

  17. Experimental study of slight temperature rise combustion in trapped vortex combustors for gas turbines

    International Nuclear Information System (INIS)

    Zhang, R.C.; Fan, W.J.; Xing, F.; Song, S.W.; Shi, Q.; Tian, G.H.; Tan, W.L.

    2015-01-01

    Interstage turbine combustion used for improving efficiency of gas turbine was a new type of combustion mode. Operating conditions and technical requirements for this type of combustor were different from those of traditional combustor. It was expected to achieve engineering application in both ground-based and aviation gas turbine in the near future. In this study, a number of modifications in a base design were applied and examined experimentally. The trapped-vortex combustion technology was adopted for flame stability under high velocity conditions, and the preheating-fuel injection technology was used to improve the atomization and evaporation performance of liquid fuel. The experimental re