WorldWideScience

Sample records for turbine engine disks

  1. Ceramic Matrix Composite Turbine Disk for Rocket Engines

    Science.gov (United States)

    Effinger, Mike; Genge, Gary; Kiser, Doug

    2000-01-01

    NASA has recently completed testing of a ceramic matrix composite (CMC), integrally bladed disk (blisk) for rocket engine turbopumps. The turbopump's main function is to bring propellants from the tank to the combustion chamber at optimal pressures, temperatures, and flow rates. Advantages realized by using CMC blisks are increases in safety by increasing temperature margins and decreasing costs by increasing turbopump performance. A multidisciplinary team, involving materials, design, structural analysis, nondestructive inspection government, academia, and industry experts, was formed to accomplish the 4.5 year effort. This article will review some of the background and accomplishments of the CMC Blisk Program relative to the benefits of this technology.

  2. Propulsion health monitoring of a turbine engine disk using spin test data

    Science.gov (United States)

    Abdul-Aziz, Ali; Woike, Mark; Oza, Nikunj; Matthews, Bryan; Baakilini, George

    2010-03-01

    On line detection techniques to monitor the health of rotating engine components are becoming increasingly attractive options to aircraft engine companies in order to increase safety of operation and lower maintenance costs. Health monitoring remains a challenging feature to easily implement, especially, in the presence of scattered loading conditions, crack size, component geometry and materials properties. The current trend, however, is to utilize noninvasive types of health monitoring or nondestructive techniques to detect hidden flaws and mini cracks before any catastrophic event occurs. These techniques go further to evaluate materials' discontinuities and other anomalies that have grown to the level of critical defects which can lead to failure. Generally, health monitoring is highly dependent on sensor systems that are capable of performing in various engine environmental conditions and able to transmit a signal upon a predetermined crack length, while acting in a neutral form upon the overall performance of the engine system. Efforts are under way at NASA Glenn Research Center through support of the Intelligent Vehicle Health Management Project (IVHM) to develop and implement such sensor technology for a wide variety of applications. These efforts are focused on developing high temperature, wireless, low cost and durable products. Therefore, in an effort to address the technical issues concerning health monitoring of a rotor disk, this paper considers data collected from an experimental study using high frequency capacitive sensor technology to capture blade tip clearance and tip timing measurements in a rotating engine-like-disk-to predict the disk faults and assess its structural integrity. The experimental results collected at a range of rotational speeds from tests conducted at the NASA Glenn Research Center's Rotordynamics Laboratory will be evaluated using multiple data-driven anomaly detection techniques to identify anomalies in the disk. This study

  3. Propulsion Health Monitoring of a Turbine Engine Disk using Spin Test Data

    Data.gov (United States)

    National Aeronautics and Space Administration — On line detection techniques to monitor the health of rotating engine components are becoming increasingly attractive options to aircraft engine companies in order...

  4. Turbine main engines

    CERN Document Server

    Main, John B; Herbert, C W; Bennett, A J S

    1965-01-01

    Turbine Main Engines deals with the principle of operation of turbine main engines. Topics covered include practical considerations that affect turbine design and efficiency; steam turbine rotors, blades, nozzles, and diaphragms; lubricating oil systems; and gas turbines for use with nuclear reactors. Gas turbines for naval boost propulsion, merchant ship propulsion, and naval main propulsion are also considered. This book is divided into three parts and begins with an overview of the basic mode of operation of the steam turbine engine and how it converts the pressure energy of the ingoing ste

  5. High temperature turbine engine structure

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, W.D.; Boyd, G.L.

    1993-07-20

    A hybrid ceramic/metallic gas turbine is described comprising; a housing defining an inlet, an outlet, and a flow path communicating the inlet with the outlet for conveying a flow of fluid through the housing, a rotor member journaled by the housing in the flow path, the rotor member including a compressor rotor portion rotatively inducting ambient air via the inlet and delivering this air pressurized to the flow path downstream of the compressor rotor, a combustor disposed in the flow path downstream of the compressor receiving the pressurized air along with a supply of fuel to maintain combustion providing a flow of high temperature pressurized combustion products in the flow path downstream thereof, the rotor member including a turbine rotor portion disposed in the flow path downstream of the combustor and rotatively expanding the combustion products toward ambient for flow from the turbine engine via the outlet, the turbine rotor portion providing shaft power driving the compressor rotor portion and an output shaft portion of the rotor member, a disk-like metallic housing portion journaling the rotor member to define a rotational axis therefore, and a disk-like annular ceramic turbine shroud member bounding the flow path downstream of the combustor and circumscribing the turbine rotor portion to define a running clearance therewith, the disk-like ceramic turbine shroud member having a reference axis coaxial with the rotational axis and being spaced axially from the metallic housing portion in mutually parallel concentric relation therewith and a plurality of spacers disposed between ceramic disk-like shroud member and the metallic disk-like housing portion and circumferentially spaced apart, each of the spacers having a first and second end portion having an end surface adjacent the shroud member and the housing portion respectively, the end surfaces having a cylindrical curvature extending transversely relative to the shroud member and the housing portion.

  6. Single rotor turbine engine

    Science.gov (United States)

    Platts, David A.

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  7. Powder metallurgy processing of high strength turbine disk alloys

    Science.gov (United States)

    Evans, D. J.

    1976-01-01

    Using vacuum-atomized AF2-1DA and Mar-M432 powders, full-scale gas turbine engine disks were fabricated by hot isostatically pressing (HIP) billets which were then isothermally forged using the Pratt & Whitney Aircraft GATORIZING forging process. While a sound forging was produced in the AF2-1DA, a container leak had occurred in the Mar-M432 billet during HIP. This resulted in billet cracking during forging. In-process control procedures were developed to identify such leaks. The AF2-1DA forging was heat treated and metallographic and mechanical property evaluation was performed. Mechanical properties exceeded those of Astroloy, one of the highest temperature capability turbine disk alloys presently used.

  8. A novel strategy for the design of advanced engineering alloys - strengthening turbine disk superalloys via twinning structures

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yong; Gu, Yuefeng; Cui, Chuanyong; Osada, Toshio; Yokokawa, Tadaharu; Harada, Hiroshi [High Temperature Materials Center, National Institute for Materials Science 1-2-1 Sengen, Ibaraki 305-0047 (Japan)

    2011-04-15

    A novel strategy for designing advanced engineering superalloys using twin structure is presented. By inducing numerous annealing and deformation twins, a new advanced polycrystalline Ni-Co-base superalloy (TMW-4M3 alloy) has been developed, which has low stacking fault energy, enhanced tensile and creep strength without degrading other mechanical properties such as low cycle fatigue and crack growth resistance. Based on TEM analysis, the twin strengthening mechanism is proposed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. A plastic stress intensity factor approach to turbine disk structural integrity assessment

    Directory of Open Access Journals (Sweden)

    V. Shlyannikov

    2016-07-01

    Full Text Available This study based on a new fracture mechanics parameter is concerned with assessing the integrity of cracked steam turbine disk which operate under startup-shutdown cyclic loading conditions. Damage accumulation and growth in service have occurred on the inner surface of slot fillet of key. In order to determine elastic-plastic fracture mechanics parameters full-size stress-strain state analysis of turbine disk was performed for a quote-elliptical part-through cracks under considering loading conditions. As a result distributions of elastic and plastic stress intensity factors along crack front in slot fillet of key of turbine disk depending on surface crack form are defined. An engineering approach to the prediction of carrying capacity of cracked turbine disk which is sensitive to the loading history at maintenance is proposed. The predictions of the rate of crack growth and residual lifetime of steam turbine disk are compared for elastic and elastic-plastic solutions. It is shown that the previously proposed elastic crack growth models provide overestimate the lifetime with respect to the present one. An advantage to use the plastic stress intensity factor to characterize the fracture resistance as the self-dependent unified parameter for a variety of turbine disk configurations rather than the magnitude of the elastic stress intensity factors alone is discussed.

  10. Wireless In-situ Nondestructive Inspection of Engine Rotor Disks with Ultrasonic Guided Waves, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The structural integrity of jet engine turbine or fan rotor disks is vital for aviation safety. Cumulative cracks at critical loading and high stress areas, if not...

  11. Wireless In-situ Nondestructive Inspection of Engine Rotor Disks with Ultrasonic Guided Waves, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The integrity of rotor disks in engine turbines or fans is vital to aviation safety. Cumulative cracks at critical loading and high stress areas, if not detected and...

  12. Ceramics for Turbine Engine Applications.

    Science.gov (United States)

    1980-03-01

    DEVELOPMENT OF CERAMIC NOZZLE SECTION FOR SMIALL RADIAL GAS TURBINE by J.C.Napier and J.P. Arnold 12 DEVELOPMENT OF A CERAMIC TURBINE NOZZLE RING by H.Burfeindt...this way, for instance, a Daimler engine was in 1911 awarded the prize of the "Automobiltechnische Gesell - schaft". In 1912, a Benz engine won the...blade development Turtle U~nion RB 199 v)ln BENEFITS OF CERAMICS TO GAS TURBINES by Arnold Brooks and Albert I. Bellin Aircraft Engine Group General

  13. Aircraft propulsion and gas turbine engines

    National Research Council Canada - National Science Library

    El-Sayed, Ahmed F

    2008-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii xxxi xxxiii xxxv Part I Aero Engines and Gas Turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C...

  14. Improved automobile gas turbine engine

    Science.gov (United States)

    Kofskey, M. G.; Katsanis, T.; Roelke, R. J.; Mclallin, K. L.; Wong, R. Y.; Schumann, L. F.; Galvas, M. R.

    1976-01-01

    Upgraded engine delivers 100 hp in 3500 lb vehicle. Improved fuel economy is due to combined effects of reduced weight, reduced power-to-weight ratio, increased turbine inlet pressure, and improved component efficiencies at part power.

  15. Use of magnetic compression to support turbine engine rotors

    Science.gov (United States)

    Pomfret, Chris J.

    1994-02-01

    Ever since the advent of gas turbine engines, their rotating disks have been designed with sufficient size and weight to withstand the centrifugal forces generated when the engine is operating. Unfortunately, this requirement has always been a life and performance limiting feature of gas turbine engines and, as manufacturers strive to meet operator demands for more performance without increasing weight, the need for innovative technology has become more important. This has prompted engineers to consider a fundamental and radical breakaway from the traditional design of turbine and compressor disks which have been in use since the first jet engine was flown 50 years ago. Magnetic compression aims to counteract, by direct opposition rather than restraint, the centrifugal forces generated within the engine. A magnetic coupling is created between a rotating disk and a stationary superconducting coil to create a massive inwardly-directed magnetic force. With the centrifugal forces opposed by an equal and opposite magnetic force, the large heavy disks could be dispensed with and replaced with a torque tube to hold the blades. The proof of this concept has been demonstrated and the thermal management of such a system studied in detail; this aspect, especially in the hot end of a gas turbine engine, remains a stiff but not impossible challenge. The potential payoffs in both military and commercial aviation and in the power generation industry are sufficient to warrant further serious studies for its application and optimization.

  16. Analytical design of an advanced radial turbine. [automobile engines

    Science.gov (United States)

    Large, G. D.; Finger, D. G.; Linder, C. G.

    1981-01-01

    The aerodynamic and mechanical potential of a single stage ceramic radial inflow turbine was evaluated for a high temperature single stage automotive engine. The aerodynamic analysis utilizes a turbine system optimization technique to evaluate both radial and nonradial rotor blading. Selected turbine rotor configurations were evaluated mechanically with three dimensional finite element techniques. Results indicate that exceptionally high rotor tip speeds (2300 ft/sec) and performance potential are feasible with radial bladed rotors if the projected ceramic material properties are realized. Nonradial rotors reduced tip speed requirements (at constant turbine efficiency) but resulted in a lower cumulative probability of success due to higher blade and disk stresses.

  17. Wet-steam erosion of steam turbine disks and shafts

    International Nuclear Information System (INIS)

    Averkina, N. V.; Zheleznyak, I. V.; Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G.; Shishkin, V. I.

    2011-01-01

    A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

  18. Powder metallurgy Rene 95 rotating turbine engine parts, volume 2

    Science.gov (United States)

    Wilbers, L. G.; Redden, T. K.

    1981-01-01

    A Rene 95 alloy as-HIP high pressure turbine aft shaft in the CF6-50 engine and a HIP plus forged Rene 95 compressor disk in the CFM56 engine were tested. The CF6-50 engine test was conducted for 1000 C cycles and the CFM56 test for 2000 C cycles. Post test evaluation and analysis of the CF6-50 shaft and the CFM56 compressor disk included visual, fluorescent penetrant, and dimensional inspections. No defects or otherwise discrepant conditions were found. These parts were judged to have performed satisfactorily.

  19. Fabrication of Turbine Disk Materials by Additive Manufacturing

    Science.gov (United States)

    Sudbrack, Chantal; Bean, Quincy A.; Cooper, Ken; Carter, Robert; Semiatin, S. Lee; Gabb, Tim

    2014-01-01

    Precipitation-strengthened, nickel-based superalloys are widely used in the aerospace and energy industries due to their excellent environmental resistance and outstanding mechanical properties under extreme conditions. Powder-bed additive manufacturing (AM) technologies offer the potential to revolutionize the processing of superalloy turbine components by eliminating the need for extensive inventory or expensive legacy tooling. Like selective laser melting (SLM), electron beam melting (EBM) constructs three-dimensional dense components layer-by-layer by melting and solidification of atomized, pre-alloyed powder feedstock within 50-200 micron layers. While SLM has been more widely used for AM of nickel alloys like 718, EBM offers several distinct advantages, such as less retained residual stress, lower risk of contamination, and faster build rates with multiple-electron-beam configurations. These advantages are particularly attractive for turbine disks, for which excessive residual stress and contamination can shorten disk life during high-temperature operation. In this presentation, we will discuss the feasibility of fabricating disk superalloy components using EBM AM. Originally developed using powder metallurgy forging processing, disk superalloys contain a higher refractory content and precipitate volume fraction than alloy 718, thus making them more prone to thermal cracking during AM. This and other challenges to produce homogeneous builds with desired properties will be presented. In particular, the quality of lab-scale samples fabricated via a design of experiments, in which the beam current, build temperature, and beam velocity were varied, will be summarized. The relationship between processing parameters, microstructure, grain orientation, and mechanical response will be discussed.

  20. Detached-eddy simulations of hydrokinetic turbines using actuator disks

    Science.gov (United States)

    Sciolla, Domenico; Escauriaza, Cristian

    2012-11-01

    The development of new technologies to harness energy from tidal currents in coastal areas requires an understanding of the interaction of the flow over arbitrary bathymetries and the marine hydrokinetic (MHK) turbines that can be potentially installed at a specific site. When computing realistic flows past multiple MHK devices, numerical models should satisfy the following attributes: (1) Resolve the rich dynamics of the wakes to capture the instantaneous interactions of the turbulent coherent structures; (2) Deal with complex arbitrary bathymetries of the natural channels; and (3) Employ low-cost modeling techniques to incorporate the regions of interest with good resolution and multiple turbine arrangements. In this investigation we simulate the flow past porous disks using the detached-eddy simulation approach (DES). The results show that the model reproduces accurately the mean flow and turbulence statistics of the wakes, and constitutes a powerful tool for analyzing the flow field in realistic conditions using low computational resources. The simulation results are also employed to determine the forces induced by the turbine array on the entire flow, parameterizing its effects to be incorporated in regional-scale models. Support for this work has been provided by Fondef project D09I1052.

  1. GAS TURBINE ENGINES CONSUMING BIOGAS

    Directory of Open Access Journals (Sweden)

    Е. Ясиніцький

    2011-04-01

    Full Text Available A problem of implementation of biofuel for power plants of big capacity was considered in thisarticle. Up to date in the world practice a wide implementation of biogas plants of low and medialcapacity are integrated. It is explained by the big amount of enterprises in which relatively smallvolumes of organic sediment excrete in the process of its activity. An emphasis of article is on thatenterprises, which have big volumes of sediments for utilizing of which module system of medialcapacity biogas plants are non-effective. The possibility of using biogas and biomethane as a fuelfor gas turbine engine is described. The basic problems of this technology and ways of its solutionsare indicated. Approximate profitability of biogas due to example of compressor station locatednearby poultry factory was determined also. Such factors as process characteristics of engine withcapacity of 5 MW, approximate commercial price for natural gas and equipment costs due toofficial sources of “Zorg Ukraine” company was taken into consideration. The necessity forproviding researches on influence of biogas on the process characteristics of gas turbine engine andits reliability, constructing modern domestic purification system for biogas was shown.

  2. Staged combustion with piston engine and turbine engine supercharger

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O' Brien, Kevin C [San Ramon, CA

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  3. General Performance Calculations for Gas Turbine Engines

    Science.gov (United States)

    1946-08-01

    supplied by the engine. 6.4 Propeller - Turbine Engines At aircraft speeds of about JiDO m.p.h. a propeller may be expected to give a propulsive...not Bean , however, that it would always bo :norc eco- nomical to employ r. propeller turbine at these speeds. The ran^o of the aircraft has to

  4. Static seal for turbine engine

    Science.gov (United States)

    Salazar, Santiago; Gisch, Andrew

    2014-04-01

    A seal structure for a gas turbine engine, the seal structure including first and second components located adjacent to each other and forming a barrier between high and low pressure zones. A seal cavity is defined in the first and second components, the seal cavity extending to either side of an elongated gap extending generally in a first direction between the first and second components. A seal member is positioned within the seal cavity and spans across the elongated gap. The seal member includes first and second side edges extending into each of the components in a second direction transverse to the first direction, and opposing longitudinal edges extending between the side edges generally parallel to the first direction. The side edges include a groove formed therein for effecting a reduction of gas flow around the seal member at the side edges.

  5. Gas Turbine Engine Having Fan Rotor Driven by Turbine Exhaust and with a Bypass

    Science.gov (United States)

    Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)

    2016-01-01

    A gas turbine engine has a core engine incorporating a core engine turbine. A fan rotor is driven by a fan rotor turbine. The fan rotor turbine is in the path of gases downstream from the core engine turbine. A bypass door is moveable from a closed position at which the gases from the core engine turbine pass over the fan rotor turbine, and moveable to a bypass position at which the gases are directed away from the fan rotor turbine. An aircraft is also disclosed.

  6. Method of making an aero-derivative gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, David J.

    2018-02-06

    A method of making an aero-derivative gas turbine engine (100) is provided. A combustor outer casing (68) is removed from an existing aero gas turbine engine (60). An annular combustor (84) is removed from the existing aero gas turbine engine. A first row of turbine vanes (38) is removed from the existing aero gas turbine engine. A can annular combustor assembly (122) is installed within the existing aero gas turbine engine. The can annular combustor assembly is configured to accelerate and orient combustion gasses directly onto a first row of turbine blades of the existing aero gas turbine engine. A can annular combustor assembly outer casing (108) is installed to produce the aero-derivative gas turbine engine (100). The can annular combustor assembly is installed within an axial span (85) of the existing aero gas turbine engine vacated by the annular combustor and the first row of turbine vanes.

  7. Studying Wake Deflection of Wind Turbines in Yaw using Drag Disk Experiments and Actuator Disk Modeling in LES

    Science.gov (United States)

    Howland, Michael; Bossuyt, Juliaan; Meyers, Johan; Meneveau, Charles

    2015-11-01

    Recently, there has been a push towards the optimization in the power output of entire large wind farms through the control of individual turbines, as opposed to operating each turbine in a maximum power point tracking manner. In this vane, the wake deflection by wind turbines in yawed conditions has generated considerable interest in recent years. In order to effectively study the wake deflection according to classical actuator disk momentum theory, a 3D printed drag disk model with a coefficient of thrust of approximately 0.75 - 0.85 and a diameter of 3 cm is used, studied under uniform inflow in a wind tunnel with test section of 1 m by 1.3 m, operating with a negligible inlet turbulence level at an inflow velocity of 10 m/s. Mean velocity profile measurements are performed using Pitot probes. Different yaw angles are considered, including 10, 20, and 30 degrees. We confirm earlier results that (e.g.) a 30 degree yaw angle deflects the center of the wake around 1/2 of a rotor diameter when it impinges on a downstream turbine. Detailed comparisons between the experiments and Large Eddy Simulations using actuator disk model for the wind turbines are carried out in order to help validate the CFD model. Work supported by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project) and by ERC (ActiveWindFarms, grant no. 306471).

  8. Turbine adapted maps for turbocharger engine matching

    Energy Technology Data Exchange (ETDEWEB)

    Tancrez, M. [PSA - Peugeot Citroen, 18 rue des fauvelles, La Garenne-Colombes (France); Galindo, J.; Guardiola, C.; Fajardo, P.; Varnier, O. [CMT - Motores Termicos, Universidad Politecnica de Valencia (Spain)

    2011-01-15

    This paper presents a new representation of the turbine performance maps oriented for turbocharger characterization. The aim of this plot is to provide a more compact and suited form to implement in engine simulation models and to interpolate data from turbocharger test bench. The new map is based on the use of conservative parameters as turbocharger power and turbine mass flow to describe the turbine performance in all VGT positions. The curves obtained are accurately fitted with quadratic polynomials and simple interpolation techniques give reliable results. Two turbochargers characterized in an steady flow rig were used for illustrating the representation. After being implemented in a turbocharger submodel, the results obtained with the model have been compared with success against turbine performance evaluated in engine tests cells. A practical application in turbocharger matching is also provided to show how this new map can be directly employed in engine design. (author)

  9. 14 CFR 23.1111 - Turbine engine bleed air system.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine bleed air system. 23.1111... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the following apply: (a) No hazard may result if duct rupture or failure occurs anywhere between the engine port...

  10. Balancing Energy Processes in Turbine Engines

    Directory of Open Access Journals (Sweden)

    Balicki Włodzimierz

    2015-01-01

    Full Text Available The article discusses the issue of balancing energy processes in turbine engines in operation in aeronautic and marine propulsion systems with the aim to analyse and evaluate basic operating parameters. The first part presents the problem of enormous amounts of energy needed for driving fans and compressors of the largest contemporary turbofan engines commonly used in long-distance aviation. The amounts of the transmitted power and the effect of flow parameters and constructional properties of the engines on their performance and real efficiency are evaluated. The second part of the article, devoted to marine applications of turbine engines, presents the energy balance of the kinetic system of torque transmission from main engine turbines to screw propellers in the combined system of COGAG type. The physical model of energy conversion processes executed in this system is presented, along with the physical model of gasodynamic processes taking place in a separate driving turbine of a reversing engine. These models have made the basis for formulating balance equations, which then were used for analysing static and dynamic properties of the analysed type of propulsion, in particular in the aspect of mechanical loss evaluation in its kinematic system.

  11. Gas Turbine Engine with Air/Fuel Heat Exchanger

    Science.gov (United States)

    Karam, Michael Abraham (Inventor); Donovan, Eric Sean (Inventor); Krautheim, Michael Stephen (Inventor); Vetters, Daniel Kent (Inventor); Chouinard, Donald G. (Inventor)

    2017-01-01

    One embodiment of the present invention is a unique aircraft propulsion gas turbine engine. Another embodiment is a unique gas turbine engine. Another embodiment is a unique gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engines with heat exchange systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  12. Micro turbine engines for drones propulsion

    Science.gov (United States)

    Dutczak, J.

    2016-09-01

    Development of micro turbine engines began from attempts of application of that propulsion source by group of enthusiasts of aviation model making. Nowadays, the domain of micro turbojet engines is treated on a par with “full size” aviation constructions. The dynamic development of these engines is caused not only by aviation modellers, but also by use of micro turbojet engines by army to propulsion of contemporary drones, i.e. Unmanned Aerial Vehicles (UAV) or Unmanned Aerial Systems (UAS). On the base of selected examples the state of art in the mentioned group of engines has been presented in the article.

  13. 14 CFR 29.939 - Turbine engine operating characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in flight to determine that no adverse characteristics (such as stall, surge, of flameout) are...

  14. 14 CFR 27.939 - Turbine engine operating characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in flight to determine that no adverse characteristics (such as stall, surge, or flameout) are...

  15. Structural health monitoring on turbine engines using microwave blade tip clearance sensors

    Science.gov (United States)

    Woike, Mark; Abdul-Aziz, Ali; Clem, Michelle

    2014-04-01

    The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to the aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA) has taken a lead role in the investigation of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. As part of this effort, microwave sensor technology has been investigated as a means of making high temperature non-contact blade tip clearance, blade tip timing, and blade vibration measurements for use in gas turbine engines. This paper presents a summary of key results and findings obtained from the evaluation of two different types of microwave sensors that have been investigated for possible use in structural health monitoring applications. The first is a microwave blade tip clearance sensor that has been evaluated on a large scale Axial Vane Fan, a subscale Turbofan, and more recently on sub-scale turbine engine like disks. The second is a novel microwave based blade vibration sensor that was also used in parallel with the microwave blade tip clearance sensors on the same experiments with the sub-scale turbine engine disks.

  16. TEMPERATURE DIAGNOSTICS OF GAS TURBINE ENGINE BEARINGS

    Directory of Open Access Journals (Sweden)

    R. V. Birukov

    2014-01-01

    Full Text Available The objective of the current research was to develop methodology for diagnosing industrial gas turbine engine bearings using the standard performance parameters. This paper presents mathematical thermal model of combined thrust and radial bearing and provides the model application examples for diagnostics.

  17. Performance of a single nutating disk engine in the 2 to 500 kW power range

    International Nuclear Information System (INIS)

    Korakianitis, T.; Boruta, M.; Jerovsek, J.; Meitner, P.L.

    2009-01-01

    A new type of internal combustion engine with distinct advantages over conventional piston-engines and gas turbines in small power ranges is presented. The engine has analogies with piston engine operation, but like gas turbines it has dedicated spaces and devices for compression, burning and expansion. The engine operates on a modified limited-pressure thermodynamic cycle. The core of the engine is a nutating non-rotating disk, with the center of its hub mounted in the middle of a Z-shaped shaft. The two ends of the shaft rotate, while the disk nutates. The motion of the disk circumference prescribes a portion of a sphere. In the single-disk configuration a portion of the surface area of the disk is used for intake and compression, a portion is used to seal against a center casing, and the remaining portion is used for expansion and exhaust. The compressed air is admitted to an external accumulator, and then into an external combustion chamber before it is admitted to the power side of the disk. The external combustion chamber enables the engine to operate on a variable compression ratio cycle. Variations in cycle temperature ratio and compression ratio during normal operation enable the engine to effectively become a variable-cycle engine, allowing significant flexibility for optimizing efficiency or power output. The thermal efficiency is similar to that of medium sized diesel engines. For the same engine volume and weight this engine produces approximately twice the power of a two-stroke engine and four times the power of a four-stroke engine. The computed sea-level engine performance at design and off-design conditions in the 2 to 500 kW power range is presented.

  18. Development of advanced P/M Ni-base superalloys for turbine disks

    Directory of Open Access Journals (Sweden)

    Garibov Genrikh S.

    2014-01-01

    Full Text Available In the process of evolution of powder metallurgy in Russia the task permanently formulated was the following: to improve strength properties of P/M superalloys without application of additional complex HIPed blanks deformation operation. On the other hand development of a turbine disk material structure to ensure an improvement in aircraft engine performance requires the use of special HIP and heat treatment conditions. To ensure maximum strength properties of disk materials it is necessary to form a structure which would have optimum size of solid solution grains, γ′-phases and carbides. Along with that heating of the material up to a temperature determined by solvus of an alloy ensures a stable and reproducible level of mechanical properties of the disks. The above-said can be illustrated by successful mastering of new complex-alloyed VVP-class superalloys with the use of powder size − 100 μm. Application of special HIP and heat treatment conditions for these superalloys to obtain the desired grain size and the strengthening γ′-phase precipitates allowed a noticeable improvement in ultimate tensile strength and yield strength up to ≥1600 MPa and ≥1200 MPa respectively. 100 hrs rupture strength at 650 ∘C and 750 ∘C was improved up to 1140 MPa and 750 MPa respectively. P/M VVP nickel-base superalloys offer higher characteristics in comparison with many superalloys designed for the same purposes. HIPed disc compacts manufactured from PREP-powder have a homogeneous micro- and macrostructure, a stable level of mechanical properties.

  19. Installation of electric generators on turbine engines

    Science.gov (United States)

    Demel, H. F.

    1983-01-01

    The installation of generators on turbine aircraft is discussed. Emphasis is placed on the use of the samarium cobalt generator. Potential advantages of an electric secondary power system at the engine level are listed. The integrated generator and the externally mounted generator are discussed. It is concluded that the integrated generator is best used in turbojet and low bypass ratio engines where there is no easy way of placing generators externally without influencing frontal areas.

  20. More-Electric Gas Turbine Engines

    Science.gov (United States)

    Kascak, Albert F.

    1997-01-01

    A new NASA Lewis Research Center and U.S. Army Research Laboratory (ARL) thrust, the more-electric commercial engine, is creating significant interest in industry. This engine would have an integral starter-generator on the gas generator shaft and would be fully supported by magnetic bearings. The NASA/Army emphasis is on a high-temperature magnetic bearing for future gas turbine engines. Magnetic bearings could increase the reliability and reduce the weight of such engines by eliminating the lubrication system. They could also increase the DN (diameter of the bearing times the rpm) limit on engine speed and allow active vibration cancellation systems to be used, resulting in a more efficient, more-electric engine.

  1. Optical monitoring system for a turbine engine

    Science.gov (United States)

    Lemieux, Dennis H; Smed, Jan P; Williams, James P; Jonnalagadda, Vinay

    2013-05-14

    The monitoring system for a gas turbine engine including a viewing tube assembly having an inner end and an outer end. The inner end is located adjacent to a hot gas flow path within the gas turbine engine and the outer end is located adjacent to an outer casing of the gas turbine engine. An aperture wall is located at the inner end of the viewing tube assembly and an optical element is located within the viewing tube assembly adjacent to the inner end and is spaced from the aperture wall to define a cooling and purge chamber therebetween. An aperture is defined in the aperture wall for passage of light from the hot gas flow path to the optical element. Swirl passages are defined in the viewing tube assembly between the aperture wall and the optical element for passage of cooling air from a location outside the viewing tube assembly into the chamber, wherein swirl passages effect a swirling movement of air in a circumferential direction within the chamber.

  2. Grainex Mar-M 247 Turbine Disk Life Study for NASA's High Temperature High Speed Turbine Seal Test Facility

    Science.gov (United States)

    Delgado, Irebert R.

    2015-01-01

    An experimental and analytical fatigue life study was performed on the Grainex Mar-M 247 disk used in NASA s Turbine Seal Test Facility. To preclude fatigue cracks from growing to critical size in the NASA disk bolt holes due to cyclic loading at severe test conditions, a retirement-for-cause methodology was adopted to detect and monitor cracks within the bolt holes using eddy-current inspection. For the NASA disk material that was tested, the fatigue strain-life to crack initiation at a total strain of 0.5 percent, a minimum to maximum strain ratio of 0, and a bolt hole temperature of 649 C was calculated to be 665 cycles using -99.95 percent prediction intervals. The fatigue crack propagation life was calculated to be 367 cycles after implementing a safety factor of 2 on life. Thus, the NASA disk bolt hole total life or retirement life was determined to be 1032 cycles at a crack depth of 0.501 mm. An initial NASA disk bolt hole inspection at 665 cycles is suggested with 50 cycle inspection intervals thereafter to monitor fatigue crack growth.

  3. 14 CFR 25.939 - Turbine engine operating characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine operating characteristics... engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in flight to determine that no adverse characteristics (such as stall, surge, or flameout) are present, to a...

  4. Combustor nozzles in gas turbine engines

    Science.gov (United States)

    Johnson, Thomas Edward; Keener, Christopher Paul; Stewart, Jason Thurman; Ostebee, Heath Michael

    2017-09-12

    A micro-mixer nozzle for use in a combustor of a combustion turbine engine, the micro-mixer nozzle including: a fuel plenum defined by a shroud wall connecting a periphery of a forward tube sheet to a periphery of an aft tubesheet; a plurality of mixing tubes extending across the fuel plenum for mixing a supply of compressed air and fuel, each of the mixing tubes forming a passageway between an inlet formed through the forward tubesheet and an outlet formed through the aft tubesheet; and a wall mixing tube formed in the shroud wall.

  5. Combustor assembly in a gas turbine engine

    Science.gov (United States)

    Wiebe, David J; Fox, Timothy A

    2013-02-19

    A combustor assembly in a gas turbine engine. The combustor assembly includes a combustor device coupled to a main engine casing, a first fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner disposed radially inwardly from the flow sleeve. The first fuel injection system provides fuel that is ignited with the pressurized air creating first working gases. The intermediate duct is disposed between the liner and the transition duct and defines a path for the first working gases to flow from the liner to the transition duct. An intermediate duct inlet portion is associated with a liner outlet and allows movement between the intermediate duct and the liner. An intermediate duct outlet portion is associated with a transition duct inlet section and allows movement between the intermediate duct and the transition duct.

  6. Study of wind turbine wake modeling based on a modified actuator disk model and extended k-ε turbulence model

    DEFF Research Database (Denmark)

    Xu, Chang; Han, Xingxing; Wang, Xin

    2015-01-01

    This paper presented an improved computational fluid dynamics (CFD) model for simulating a horizontal-axis wind turbine wake. The model used the actuator disk model to simplify the wind turbine effect on the aerodynamic field by adding an extra momentum source and an improved term to correct...... the underestimation issue of the wind speed deficit when applying the STD k-ε model. In addition, the model also introduced a radial distribution function to assess the non-uniform load on the actuator disk and a coefficient C4ε of the turbulent source. To validate the model, the wind turbines of Nibe `B' and Dawin...

  7. Personal optical disk library (PODL) for knowledge engineering

    Science.gov (United States)

    Wang, Hong; Jia, Huibo; Xu, Duanyi

    2001-02-01

    This paper describes the structure of Personal Optical Disk Library (PODL), a kind of large capacity (40 GB) optical storage equipment for personal usage. With the knowledge engineering technology integrated in the PODL, it can be used on knowledge query, knowledge discovery, Computer-Aided Instruction (CAI) and Online Analysis Process (OLAP).

  8. Disk

    NARCIS (Netherlands)

    P.A. Boncz (Peter); L. Liu (Lei); M. Tamer Özsu

    2008-01-01

    htmlabstractIn disk storage, data is recorded on planar, round and rotating surfaces (disks, discs, or platters). A disk drive is a peripheral device of a computer system, connected by some communication medium to a disk controller. The disk controller is a chip, typically connected to the CPU of

  9. "Fish Friendly" Hydropower Turbine Development and Deployment. Alden Turbine Preliminary Engineering and Model Testing

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D. [Electric Power Research Institute, Palo Alto, CA (United States)

    2011-10-01

    This report presents the results of a collaborative research project funded by the Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE), and hydropower industry partners with the objective of completing the remaining developmental engineering required for a “fish-friendly” hydropower turbine called the Alden turbine.

  10. Corrosion fatigue of bladed disk attachments of low-pressure turbine

    International Nuclear Information System (INIS)

    Asai, K.; Sakurai, S.; Nomura, K.; Saito, E.; Namura, K.

    2004-01-01

    The mechanism of a disk cracking in a low-pressure steam turbine was investigated by finite-element and fracture mechanics analysis and, based on the results of the investigation, a life assessment method was derived. The disk cracking was found to be caused by growth of corrosion pits, superposition of multiple vibration modes, and an increase in the standard deviation of the natural frequency of grouped blades after long-term operation. Taking these findings into consideration, the authors then developed a life-assessment method for disk cracking composed of evaluations (1) maximum corrosion pit size at the current situation, (2) corrosion pit growth after a certain term, and (3) failure-occurrence ratio for the estimated corrosion pit depth. Maximum corrosion-pit size is evaluated by extreme value statistical analysis using the data obtained by replica inspection. The failure-occurrence ratio is evaluated by Monte Carlo simulation considering two uncertainties, namely, the standard deviation of the natural frequency of grouped blades and the stimulus ratio. The values of both uncertainties were determined by the inverse problem analysis of the disk cracking. In light of these results, the authors found that replacing conventional tenon-shroud grouped blades with continuous-cover blades is effective from the view point of vibratory behavior. (orig.)

  11. Composite hubs for low cost gas turbine engines

    Science.gov (United States)

    Chamis, C. C.

    1977-01-01

    A detailed stress analysis was performed using NASTRAN to demonstrate theoretically the adequacy of composite hubs for low cost turbine engine applications. Composite hubs are adequate for this application from the steady state stress view point.

  12. Anisotropic character and low dimensional representations of a model wind turbine array versus an array of porous disks

    Science.gov (United States)

    Camp, Elizabeth; Cal, Raúl

    2017-11-01

    A model turbine array is compared to an array of matched stationary porous disks via stereo particle image velocimetry. Wind tunnel measurements bracket the center turbine in the fourth row of a 4 × 3 model array. The invariants of the normalized Reynolds stress anisotropy tensor and the Proper Orthogonal Decomposition (POD) are employed to characterize the similarities and differences between the near as well as the far wake of the rotor and disk cases. The rotor case illustrates a greater degree of large scale spatial organization and more uniform values of the anisotropy stress invariants than the disk case. The anisotropic invariants of the POD modes are also examined in order to determine how the anisotropic character of the flow varies with turbulent kinetic energy content. Results are relevant in the modeling of rotors using a stationary disk parametrization in computational studies focusing on structural response.

  13. Performance characterization of different configurations of gas turbine engines

    Directory of Open Access Journals (Sweden)

    Tarek Nada

    2014-09-01

    Full Text Available This paper investigates the performance of different configurations of gas turbine engines. A full numerical model for the engine is built. This model takes into account the variations in specific heat and the effects of turbine cooling flow. Also, the model considers the efficiencies of all component, effectiveness of heat exchangers and the pressure drop in relevant components. The model is employed to compare the engine performances in cases of employing intercooler, recuperation and reheat on a single spool gas turbine engine. A comparison is made between single-spool engine and two-spool engine with free power turbine. Also, the performance of the engine with inter-stage turbine burner is investigated and compared with engine employing the nominal reheat concept. The engine employing inter-stage turbine burners produces superior improvements in both net work and efficiency over all other configurations. The effects of ignoring the variations on specific heat of gases and turbine cooling flow on engine performance are estimated. Ignoring the variation in specific heat can cause up to 30% difference in net specific work. The optimum locations of the intercooler and the reheat combustor are determined using the numerical model of the engine. The maximum net specific work is obtained if the reheat combustor is placed at 40% of the expansion section. On the other hand, to get maximum efficiency the reheat combustor has to be placed at nearly 10%-20% of the expansion section. The optimum location of the intercooler is almost at 50% of the compression section for both maximum net specific work and efficiency.

  14. Integrated Heat Exchange For Recuperation In Gas Turbine Engines

    Science.gov (United States)

    2016-12-01

    DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE INTEGRATED HEAT EXCHANGE FOR RECUPERATION IN GAS TURBINE ENGINES 5. FUNDING NUMBERS 6. AUTHOR...ship gas turbines is difficult due the size and weight of the heat exchanger components required. An alternate approach would be to embed a heat ... exchange system within the engine using existing blade surfaces to extract and insert heat . Due to the highly turbulent and transient flow, heat

  15. Practical Techniques for Modeling Gas Turbine Engine Performance

    Science.gov (United States)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.

    2016-01-01

    The cost and risk associated with the design and operation of gas turbine engine systems has led to an increasing dependence on mathematical models. In this paper, the fundamentals of engine simulation will be reviewed, an example performance analysis will be performed, and relationships useful for engine control system development will be highlighted. The focus will be on thermodynamic modeling utilizing techniques common in industry, such as: the Brayton cycle, component performance maps, map scaling, and design point criteria generation. In general, these topics will be viewed from the standpoint of an example turbojet engine model; however, demonstrated concepts may be adapted to other gas turbine systems, such as gas generators, marine engines, or high bypass aircraft engines. The purpose of this paper is to provide an example of gas turbine model generation and system performance analysis for educational uses, such as curriculum creation or student reference.

  16. Inspection system for a turbine blade region of a turbine engine

    Science.gov (United States)

    Smed, Jan P [Winter Springs, FL; Lemieux, Dennis H [Casselberry, FL; Williams, James P [Orlando, FL

    2007-06-19

    An inspection system formed at least from a viewing tube for inspecting aspects of a turbine engine during operation of the turbine engine. An outer housing of the viewing tube may be positioned within a turbine engine using at least one bearing configured to fit into an indentation of a support housing to form a ball and socket joint enabling the viewing tube to move during operation as a result of vibrations and other movements. The viewing tube may also include one or more lenses positioned within the viewing tube for viewing the turbine components. The lenses may be kept free of contamination by maintaining a higher pressure in the viewing tube than a pressure outside of the viewing tube and enabling gases to pass through an aperture in a cap at a viewing end of the viewing tube.

  17. The deterministic prediction of failure of low pressure steam turbine disks

    International Nuclear Information System (INIS)

    Liu, Chun; Macdonald, D.D.

    1993-01-01

    Localized corrosion phenomena, including pitting corrosion, stress corrosion cracking, and corrosion fatigue, are the principal causes of corrosion-induced damage in electric power generating facilities and typically result in more than 50% of the unscheduled outages. Prediction of damage, so that repairs and inspections can be made during scheduled outages, could have an enormous impact on the economics of electric power generation. To date, prediction of corrosion damage has been made on the basis of empirical/statistical methods that have proven to be insufficiently robust and accurate to form the basis for the desired inspection/repair protocol. In this paper, we describe a deterministic method for predicting localized corrosion damage. We have used the method to illustrate how pitting corrosion initiates stress corrosion cracking (SCC) for low pressure steam turbine disks downstream of the Wilson line, where a thin condensed liquid layer exists on the steel disk surfaces. Our calculations show that the SCC initiation and propagation are sensitive to the oxygen content of the steam, the environment in the thin liquid condensed layer, and the stresses that the disk experiences in service

  18. State of technology on hydrogen fueled gas turbine engines

    Science.gov (United States)

    Esgar, J. B.

    1974-01-01

    A series of investigations was conducted episodically from the 1950's to the early 1970's to investigate the feasibility and potential problem areas in the use of hydrogen fuel for gas turbine engines. A brief summary and bibliography are presented of the research that has been conducted by NASA, its predecessor NACA, and by industry under U. S. Air Force sponsorship. Although development efforts would be required to provide hydrogen fueled gas turbine engines for aircraft, past research has shown that hydrogen fueled engines are feasible, and except for flight weight liquid hydrogen pumps, there are no problem areas relating to engines requiring significant research.

  19. Disk Crack Detection for Seeded Fault Engine Test

    Science.gov (United States)

    Luo, Huageng; Rodriguez, Hector; Hallman, Darren; Corbly, Dennis; Lewicki, David G. (Technical Monitor)

    2004-01-01

    Work was performed to develop and demonstrate vibration diagnostic techniques for the on-line detection of engine rotor disk cracks and other anomalies through a real engine test. An existing single-degree-of-freedom non-resonance-based vibration algorithm was extended to a multi-degree-of-freedom model. In addition, a resonance-based algorithm was also proposed for the case of one or more resonances. The algorithms were integrated into a diagnostic system using state-of-the- art commercial analysis equipment. The system required only non-rotating vibration signals, such as accelerometers and proximity probes, and the rotor shaft 1/rev signal to conduct the health monitoring. Before the engine test, the integrated system was tested in the laboratory by using a small rotor with controlled mass unbalances. The laboratory tests verified the system integration and both the non-resonance and the resonance-based algorithm implementations. In the engine test, the system concluded that after two weeks of cycling, the seeded fan disk flaw did not propagate to a large enough size to be detected by changes in the synchronous vibration. The unbalance induced by mass shifting during the start up and coast down was still the dominant response in the synchronous vibration.

  20. The Combination of Internal-Combustion Engine and Gas Turbine

    Science.gov (United States)

    Zinner, K.

    1947-01-01

    While the gas turbine by itself has been applied in particular cases for power generation and is in a state of promising development in this field, it has already met with considerable success in two cases when used as an exhaust turbine in connection with a centrifugal compressor, namely, in the supercharging of combustion engines and in the Velox process, which is of particular application for furnaces. In the present paper the most important possibilities of combining a combustion engine with a gas turbine are considered. These "combination engines " are compared with the simple gas turbine on whose state of development a brief review will first be given. The critical evaluation of the possibilities of development and fields of application of the various combustion engine systems, wherever it is not clearly expressed in the publications referred to, represents the opinion of the author. The state of development of the internal-combustion engine is in its main features generally known. It is used predominantly at the present time for the propulsion of aircraft and road vehicles and, except for certain restrictions due to war conditions, has been used to an increasing extent in ships and rail cars and in some fields applied as stationary power generators. In the Diesel engine a most economical heat engine with a useful efficiency of about 40 percent exists and in the Otto aircraft engine a heat engine of greatest power per unit weight of about 0.5 kilogram per horsepower.

  1. Efficient, Low Pressure Ratio Propulsor for Gas Turbine Engines

    Science.gov (United States)

    Gallagher, Edward J. (Inventor); Monzon, Byron R. (Inventor)

    2018-01-01

    A gas turbine engine includes a bypass flow passage that has an inlet and defines a bypass ratio in a range of approximately 8.5 to 13.5. A fan is arranged within the bypass flow passage. A first turbine is a 5-stage turbine and is coupled with a first shaft, which is coupled with the fan. A first compressor is coupled with the first shaft and is a 3-stage compressor. A second turbine is coupled with a second shaft and is a 2-stage turbine. The fan includes a row of fan blades that extend from a hub. The row includes a number (N) of the fan blades, a solidity value (R) at tips of the fab blades, and a ratio of N/R that is from 14 to 16.

  2. Engineered Materials for Advanced Gas Turbine Engine, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop innovative composite powders and composites that will surpass the properties of currently identified materials for advanced gas turbine...

  3. DARWIN-HC: A Tool to Predict Hot Corrosion of Nickel-Based Turbine Disks, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Hot Corrosion of turbine engine components has been studied for many years. The underlying mechan-isms of Type I Hot Corrosion and Type II Hot Corrosion are...

  4. DARWIN-HC: A Tool to Predict Hot Corrosion of Nickel-Based Turbine Disks, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Hot Corrosion of turbine engine components has been studied for many years. The underlying mechan-isms of Type I Hot Corrosion and Type II Hot Corrosion are...

  5. Advanced Materials Test Methods for Improved Life Prediction of Turbine Engine Components

    National Research Council Canada - National Science Library

    Stubbs, Jack

    2000-01-01

    Phase I final report developed under SBIR contract for Topic # AF00-149, "Durability of Turbine Engine Materials/Advanced Material Test Methods for Improved Use Prediction of Turbine Engine Components...

  6. Methods of Si based ceramic components volatilization control in a gas turbine engine

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie

    2016-09-06

    A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.

  7. DPM evolution: a disk operations management engine for DPM

    Science.gov (United States)

    Manzi, A.; Furano, F.; Keeble, O.; Bitzes, G.

    2017-10-01

    The DPM (Disk Pool Manager) project is the most widely deployed solution for storage of large data repositories on Grid sites, and is completing the most important upgrade in its history, with the aim of bringing important new features, performance and easier long term maintainability. Work has been done to make the so-called “legacy stack” optional, and substitute it with an advanced implementation that is based on the fastCGI and RESTful technologies. Beside the obvious gain in making optional several legacy components that are difficult to maintain, this step brings important features together with performance enhancements. Among the most important features we can cite the simplification of the configuration, the possibility of working in a totally SRM-free mode, the implementation of quotas, free/used space on directories, and the implementation of volatile pools that can pull files from external sources, which can be used to deploy data caches. Moreover, the communication with the new core, called DOME (Disk Operations Management Engine) now happens through secure HTTPS channels through an extensively documented, industry-compliant protocol. For this leap, referred to with the codename “DPM Evolution”, the help of the DPM collaboration has been very important in the beta testing phases, and here we report about the technical choices.

  8. Design of a miniature hydrogen fueled gas turbine engine

    Science.gov (United States)

    Burnett, M.; Lopiccolo, R. C.; Simonson, M. R.; Serovy, G. K.; Okiishi, T. H.; Miller, M. J.; Sisto, F.

    1973-01-01

    The design, development, and delivery of a miniature hydrogen-fueled gas turbine engine are discussed. The engine was to be sized to approximate a scaled-down lift engine such as the teledyne CAE model 376. As a result, the engine design emerged as a 445N(100 lb.)-thrust engine flowing 0.86 kg (1.9 lbs.) air/sec. A 4-stage compressor was designed at a 4.0 to 1 pressure ratio for the above conditions. The compressor tip diameter was 9.14 cm (3.60 in.). To improve overall engine performance, another compressor with a 4.75 to 1 pressure ratio at the same tip diameter was designed. A matching turbine for each compressor was also designed. The turbine tip diameter was 10.16 cm (4.0 in.). A combustion chamber was designed, built, and tested for this engine. A preliminary design of the mechanical rotating parts also was completed and is discussed. Three exhaust nozzle designs are presented.

  9. Compressive stress system for a gas turbine engine

    Science.gov (United States)

    Hogberg, Nicholas Alvin

    2015-03-24

    The present application provides a compressive stress system for a gas turbine engine. The compressive stress system may include a first bucket attached to a rotor, a second bucket attached to the rotor, the first and the second buckets defining a shank pocket therebetween, and a compressive stress spring positioned within the shank pocket.

  10. Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing

    Energy Technology Data Exchange (ETDEWEB)

    Foust, J. [Voith Hydro, Inc., York, PA (USA); Hecker, G. [Alden Research Laboratory, Inc., Holden, MA (USA); Li, S. [Alden Research Laboratory, Inc., Holden, MA (USA); Allen, G. [Alden Research Laboratory, Inc., Holden, MA (USA)

    2011-10-01

    The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall

  11. Implementation of a generalized actuator disk wind turbine model into the weather research and forecasting model for large-eddy simulation applications

    Energy Technology Data Exchange (ETDEWEB)

    Mirocha, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kosovic, B. [National Center for Atmospheric Research, Boulder, CO (United States); Aitken, M. L. [Univ. of Colorado, Boulder, CO (United States); Lundquist, J. K. [Univ. of Colorado, Boulder, CO (United States); National Renewable Energy Lab., Golden, CO (United States)

    2014-01-10

    A generalized actuator disk (GAD) wind turbine parameterization designed for large-eddy simulation (LES) applications was implemented into the Weather Research and Forecasting (WRF) model. WRF-LES with the GAD model enables numerical investigation of the effects of an operating wind turbine on and interactions with a broad range of atmospheric boundary layer phenomena. Numerical simulations using WRF-LES with the GAD model were compared with measurements obtained from the Turbine Wake and Inflow Characterization Study (TWICS-2011), the goal of which was to measure both the inflow to and wake from a 2.3-MW wind turbine. Data from a meteorological tower and two light-detection and ranging (lidar) systems, one vertically profiling and another operated over a variety of scanning modes, were utilized to obtain forcing for the simulations, and to evaluate characteristics of the simulated wakes. Simulations produced wakes with physically consistent rotation and velocity deficits. Two surface heat flux values of 20 W m–2 and 100 W m–2 were used to examine the sensitivity of the simulated wakes to convective instability. Simulations using the smaller heat flux values showed good agreement with wake deficits observed during TWICS-2011, whereas those using the larger value showed enhanced spreading and more-rapid attenuation. This study demonstrates the utility of actuator models implemented within atmospheric LES to address a range of atmospheric science and engineering applications. In conclusion, validated implementation of the GAD in a numerical weather prediction code such as WRF will enable a wide range of studies related to the interaction of wind turbines with the atmosphere and surface.

  12. Stationary Engineers Apprenticeship. Related Training Modules. 15.1-15.5 Turbines.

    Science.gov (United States)

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with turbines. addressed in the individual instructional packages included in the module are the following topics: types and components of steam turbines, steam turbine auxiliaries, operation and maintenance of steam turbines, and gas…

  13. Turbofan gas turbine engine with variable fan outlet guide vanes

    Science.gov (United States)

    Wood, Peter John (Inventor); Zenon, Ruby Lasandra (Inventor); LaChapelle, Donald George (Inventor); Mielke, Mark Joseph (Inventor); Grant, Carl (Inventor)

    2010-01-01

    A turbofan gas turbine engine includes a forward fan section with a row of fan rotor blades, a core engine, and a fan bypass duct downstream of the forward fan section and radially outwardly of the core engine. The forward fan section has only a single stage of variable fan guide vanes which are variable fan outlet guide vanes downstream of the forward fan rotor blades. An exemplary embodiment of the engine includes an afterburner downstream of the fan bypass duct between the core engine and an exhaust nozzle. The variable fan outlet guide vanes are operable to pivot from a nominal OGV position at take-off to an open OGV position at a high flight Mach Number which may be in a range of between about 2.5-4+. Struts extend radially across a radially inwardly curved portion of a flowpath of the engine between the forward fan section and the core engine.

  14. Investigation of a ceramic vane with a metal disk thermal and mechanical contact in a gas turbine impeller

    Directory of Open Access Journals (Sweden)

    Resnick S.V.

    2015-01-01

    Full Text Available Promising directions of a new generation gas turbine engines development include using in gas turbines ceramic materials blades with high strength, thermal and chemical stability. One of the serious problems in developing such motors is insufficient knowledge of contact phenomena occurring in ceramic and metal details connection nodes. This work presents the numerical modeling results of thermal processes on ceramic and metal details rough boundaries. The investigation results are used in conducting experimental researches in conditions reproducing operating.

  15. CANDU combined cycles featuring gas-turbine engines

    International Nuclear Information System (INIS)

    Vecchiarelli, J.; Choy, E.; Peryoga, Y.; Aryono, N.A.

    1998-01-01

    In the present study, a power-plant analysis is conducted to evaluate the thermodynamic merit of various CANDU combined cycles in which continuously operating gas-turbine engines are employed as a source of class IV power restoration. It is proposed to utilize gas turbines in future CANDU power plants, for sites (such as Indonesia) where natural gas or other combustible fuels are abundant. The primary objective is to eliminate the standby diesel-generators (which serve as a backup supply of class III power) since they are nonproductive and expensive. In the proposed concept, the gas turbines would: (1) normally operate on a continuous basis and (2) serve as a reliable backup supply of class IV power (the Gentilly-2 nuclear power plant uses standby gas turbines for this purpose). The backup class IV power enables the plant to operate in poison-prevent mode until normal class IV power is restored. This feature is particularly beneficial to countries with relatively small and less stable grids. Thermodynamically, the advantage of the proposed concept is twofold. Firstly, the operation of the gas-turbine engines would directly increase the net (electrical) power output and the overall thermal efficiency of a CANDU power plant. Secondly, the hot exhaust gases from the gas turbines could be employed to heat water in the CANDU Balance Of Plant (BOP) and therefore improve the thermodynamic performance of the BOP. This may be accomplished via several different combined-cycle configurations, with no impact on the current CANDU Nuclear Steam Supply System (NSSS) full-power operating conditions when each gas turbine is at maximum power. For instance, the hot exhaust gases may be employed for feedwater preheating and steam reheating and/or superheating; heat exchange could be accomplished in a heat recovery steam generator, as in conventional gas-turbine combined-cycle plants. The commercially available GateCycle power plant analysis program was applied to conduct a

  16. Shear wire flange joint for a gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Grammel, L.P. Jr.

    1993-06-15

    A gas turbine engine shear wire flange assembly for use in an axial flow gas turbine engine including a turbine frame is described, comprising: an aft center body having a forward section and an aft section along a common axis; the forward section and the aft section having a substantially continuous external aerodynamic surface; the forward section including a forward end attached to the turbine frame and an aft end; an outer ring flange formed along the aft end of the forward section of the aft center body and including a circumferential groove facing radially inward; the aft section including a forward end and a closed, aft end; an inner ring flange formed in the forward end of the aft section adapted to matingly engage the outer ring flange, having a circumferential groove facing radially outward for being axially and circumferentially aligned with the groove in the outer ring flange, and having a similar cross-sectional size and shape, forming a substantially uniformly sized and shaped cross-sectional space therebetween when aligned; a removable wire having a first end, a second end, and a cross-sectional size and shape substantially matching the cross-sectional size and shape of the space; and means for removeably installing the wire into the space so as to lock the inner flange to the outer flange.

  17. Determination of Turbine Blade Life from Engine Field Data

    Science.gov (United States)

    Zaretsky, Erwin V.; Litt, Jonathan S.; Hendricks, Robert C.; Soditus, Sherry M.

    2013-01-01

    It is probable that no two engine companies determine the life of their engines or their components in the same way or apply the same experience and safety factors to their designs. Knowing the failure mode that is most likely to occur minimizes the amount of uncertainty and simplifies failure and life analysis. Available data regarding failure mode for aircraft engine blades, while favoring low-cycle, thermal-mechanical fatigue (TMF) as the controlling mode of failure, are not definitive. Sixteen high-pressure turbine (HPT) T-1 blade sets were removed from commercial aircraft engines that had been commercially flown by a single airline and inspected for damage. Each set contained 82 blades. The damage was cataloged into three categories related to their mode of failure: (1) TMF, (2) Oxidation/erosion (O/E), and (3) Other. From these field data, the turbine blade life was determined as well as the lives related to individual blade failure modes using Johnson-Weibull analysis. A simplified formula for calculating turbine blade life and reliability was formulated. The L10 blade life was calculated to be 2427 cycles (11 077 hr). The resulting blade life attributed to O/E equaled that attributed to TMF. The category that contributed most to blade failure was Other. If there were no blade failures attributed to O/E and TMF, the overall blade L(sub 10) life would increase approximately 11 to 17 percent.

  18. Modeling syngas-fired gas turbine engines with two dilutants

    Science.gov (United States)

    Hawk, Mitchell E.

    2011-12-01

    Prior gas turbine engine modeling work at the University of Wyoming studied cycle performance and turbine design with air and CO2-diluted GTE cycles fired with methane and syngas fuels. Two of the cycles examined were unconventional and innovative. The work presented herein reexamines prior results and expands the modeling by including the impacts of turbine cooling and CO2 sequestration on GTE cycle performance. The simple, conventional regeneration and two alternative regeneration cycle configurations were examined. In contrast to air dilution, CO2 -diluted cycle efficiencies increased by approximately 1.0 percentage point for the three regeneration configurations examined, while the efficiency of the CO2-diluted simple cycle decreased by approximately 5.0 percentage points. For CO2-diluted cycles with a closed-exhaust recycling path, an optimum CO2-recycle pressure was determined for each configuration that was significantly lower than atmospheric pressure. Un-cooled alternative regeneration configurations with CO2 recycling achieved efficiencies near 50%, which was approximately 3.0 percentage points higher than the conventional regeneration cycle and simple cycle configurations that utilized CO2 recycling. Accounting for cooling of the first two turbine stages resulted in a 2--3 percentage point reduction in un-cooled efficiency, with air dilution corresponding to the upper extreme. Additionally, when the work required to sequester CO2 was accounted for, cooled cycle efficiency decreased by 4--6 percentage points, and was more negatively impacted when syngas fuels were used. Finally, turbine design models showed that turbine blades are shorter with CO2 dilution, resulting in fewer design restrictions.

  19. Computer-Aided System of Virtual Testing of Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Rybakov Viktor N.

    2016-01-01

    Full Text Available The article describes the concept of a virtual lab that includes subsystem of gas turbine engine simulation, subsystem of experiment planning, subsystem of measurement errors simulation, subsystem of simulator identification and others. The basis for virtual lab development is the computer-aided system of thermogasdynamic research and analysis “ASTRA”. The features of gas turbine engine transient modes simulator are described. The principal difference between the simulators of transient and stationary modes of gas turbine engines is that the energy balance of the compressor and turbine becomes not applicable. The computer-aided system of virtual gas turbine engine testing was created using the developed transient modes simulator. This system solves the tasks of operational (throttling, speed, climatic, altitude characteristics calculation, analysis of transient dynamics and selection of optimal control laws. Besides, the system of virtual gas turbine engine testing is a clear demonstration of gas turbine engine working process and the regularities of engine elements collaboration. The interface of the system of virtual gas turbine engine testing is described in the article and some screenshots of the interface elements are provided. The developed system of virtual gas turbine engine testing provides means for reducing the laboriousness of gas turbine engines testing. Besides, the implementation of this system in the learning process allows the diversification of lab works and therefore improve the quality of training.

  20. Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra

    2005-09-30

    This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

  1. Study of applying reverse engineering to turbine blade manufacture

    International Nuclear Information System (INIS)

    She, Chen Hua; Chang, Chun Chi

    2007-01-01

    A turbine blade has complex shaped free-form surfaces that can be modelled as surfaces with variable curvature by high-degree polynomials. Industry typically utilizes a turnkey system and special-purpose machine tool to manufacture turbine blades. A turkey system is a closed form design. Users need only input relevant data to this system to manufacture the product directly. However, users are unaware of the internal operation of the system. With rapidly advances in computing technology, commercial CAD/CAM systems can be utilized to design freeform surfaces and generate a tool path for the designed surfaces. This study uses a reverse engineering technology that is used to reconstruct the CAD model for a turbine blade. The prototype is measured by a coordinate measuring machine to obtain the geometrical control data points that are used to generate the CAD model in the UniGraphics (UG) CAD/CAM system. The UG/GRIP (GRaphics interactive Programming) language is used to generate the cutter location data rather than using the default UG CAM module. A five-axis NC code is acquired by the developed postprocessor and verified by the solid cutting simulation software VERICUT. Real turbine blade machining is performed on a table/spindle tilting five-axis machine tool, demonstrating the effectiveness of the proposed approach

  2. Fuel burner and combustor assembly for a gas turbine engine

    Science.gov (United States)

    Leto, Anthony

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  3. Metallic and Ceramic Thin Film Thermocouples for Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Otto J. Gregory

    2013-11-01

    Full Text Available Temperatures of hot section components in today’s gas turbine engines reach as high as 1,500 °C, making in situ monitoring of the severe temperature gradients within the engine rather difficult. Therefore, there is a need to develop instrumentation (i.e., thermocouples and strain gauges for these turbine engines that can survive these harsh environments. Refractory metal and ceramic thin film thermocouples are well suited for this task since they have excellent chemical and electrical stability at high temperatures in oxidizing atmospheres, they are compatible with thermal barrier coatings commonly employed in today’s engines, they have greater sensitivity than conventional wire thermocouples, and they are non-invasive to combustion aerodynamics in the engine. Thin film thermocouples based on platinum:palladium and indium oxynitride:indium tin oxynitride as well as their oxide counterparts have been developed for this purpose and have proven to be more stable than conventional type-S and type-K thin film thermocouples. The metallic and ceramic thin film thermocouples described within this paper exhibited remarkable stability and drift rates similar to bulk (wire thermocouples.

  4. Oil cooling system for a gas turbine engine

    Science.gov (United States)

    Coffinberry, G. A.; Kast, H. B. (Inventor)

    1977-01-01

    A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess of fuel control requirements back to aircraft fuel tank, thereby increasing the fuel pump heat sink and decreasing the pump temperature rise without the addition of valving other than that normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. Fluid circuitry is provided to route hot engine oil through a plurality of heat exchangers disposed within the system to provide for selective cooling of the oil.

  5. Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

  6. Object-oriented approach for gas turbine engine simulation

    Science.gov (United States)

    Curlett, Brian P.; Felder, James L.

    1995-01-01

    An object-oriented gas turbine engine simulation program was developed. This program is a prototype for a more complete, commercial grade engine performance program now being proposed as part of the Numerical Propulsion System Simulator (NPSS). This report discusses architectural issues of this complex software system and the lessons learned from developing the prototype code. The prototype code is a fully functional, general purpose engine simulation program, however, only the component models necessary to model a transient compressor test rig have been written. The production system will be capable of steady state and transient modeling of almost any turbine engine configuration. Chief among the architectural considerations for this code was the framework in which the various software modules will interact. These modules include the equation solver, simulation code, data model, event handler, and user interface. Also documented in this report is the component based design of the simulation module and the inter-component communication paradigm. Object class hierarchies for some of the code modules are given.

  7. MEANS 2: Microstructure- and Micromechanism-Sensitive Property Models for Advanced Turbine Disk and Blade Systems

    National Research Council Canada - National Science Library

    Pollock, Tresa M; Mills, Michael J

    2008-01-01

    This effort has focused on verification and refinement of the mechanism transitions at intermediate temperatures in the disk alloy Rene 104, with the observation of microtwinning, continuous faulting...

  8. Durable, High Thermal Conductivity Melt Infiltrated Ceramic Composites for Turbine Engine Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Durable, creep-resistant ceramic composites are necessary to meet the increased operating temperatures targeted for advanced turbine engines. Higher operating...

  9. Method for Making Measurements of the Post-Combustion Residence Time in a Gas Turbine Engine

    Science.gov (United States)

    Miles, Jeffrey H. (Inventor)

    2017-01-01

    A method of measuring a residence time in a gas-turbine engine is disclosed that includes measuring a combustor pressure signal at a combustor entrance and a turbine exit pressure signal at a turbine exit. The method further includes computing a cross-spectrum function between the combustor pressure signal and the turbine exit pressure signal, calculating a slope of the cross-spectrum function, shifting the turbine exit pressure signal an amount corresponding to a time delay between the measurement of the combustor pressure signal and the turbine exit pressure signal, and recalculating the slope of the cross-spectrum function until the slope reaches zero.

  10. Thermal Barrier Coatings for Advanced Gas Turbine and Diesel Engines

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Ceramic thermal barrier coatings (TBCS) have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, durability issues of these thermal barrier coatings under high temperature cyclic conditions are still of major concern. The coating failure depends not only on the coating, but also on the ceramic sintering/creep and bond coat oxidation under the operating conditions. Novel test approaches have been established to obtain critical thermomechanical and thermophysical properties of the coating systems under near-realistic transient and steady state temperature and stress gradients encountered in advanced engine systems. This paper presents detailed experimental and modeling results describing processes occurring in the ZrO2-Y2O3 thermal barrier coating systems, thus providing a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  11. High freezing point fuels used for aviation turbine engines

    Science.gov (United States)

    Friedman, R.

    1979-01-01

    Broadened-specification aviation fuels could be produced from a greater fraction of crude source material with improvements in fuel supply and price. These fuels, particularly those with increased final boiling temperatures, would have higher freezing temperatures than current aviation turbine fuels. For the small but significant fraction of commercial flights where low fuel temperatures make higher freezing-point fuel use unacceptable, adaptations to the fuel or fuel system may be made to accommodate this fuel. Several techniques are discussed. Fuel heating is the most promising concept. One simple design uses existing heat rejection from the fuel-lubricating oil cooler, another uses an engine-driven generator for electrical heating.

  12. Ceramic thermal barrier coatings for electric utility gas turbine engines

    Science.gov (United States)

    Miller, R. A.

    1986-01-01

    Research and development into thermal barrier coatings for electric utility gas turbine engines is reviewed critically. The type of coating systems developed for aircraft applications are found to be preferred for clear fuel electric utility applications. These coating systems consists of a layer of plasma sprayed zirconia-yttria ceramic over a layer of MCrAly bond coat. They are not recommended for use when molten salts are presented. Efforts to understand coating degradation in dirty environments and to develop corrosion resistant thermal barrier coatings are discussed.

  13. Engineering computer graphics in gas turbine engine design, analysis and manufacture

    Science.gov (United States)

    Lopatka, R. S.

    1975-01-01

    A time-sharing and computer graphics facility designed to provide effective interactive tools to a large number of engineering users with varied requirements was described. The application of computer graphics displays at several levels of hardware complexity and capability is discussed, with examples of graphics systems tracing gas turbine product development, beginning with preliminary design through manufacture. Highlights of an operating system stylized for interactive engineering graphics is described.

  14. Finite element modeling of the residual stress evolution in forged and direct-aged alloy 718 turbine disks during manufacturing and its experimental validation

    Science.gov (United States)

    Drexler, Andreas; Ecker, Werner; Hessert, Roland; Oberwinkler, Bernd; Gänser, Hans-Peter; Keckes, Jozef; Hofmann, Michael; Fischersworring-Bunk, Andreas

    2017-10-01

    In this work the evolution of the residual stress field in a forged and heat treated turbine disk of Alloy 718 and its subsequent relaxation during machining was simulated and measured. After forging at around 1000 °C the disks were natural air cooled to room temperature and direct aged in a furnace at 720 °C for 8 hours and at 620 °C for 8 hours. The machining of the Alloy 718 turbine disk was performed in two steps: The machining of the Alloy 718 turbine disk was performed in two steps: First, from the forging contour to a contour used for ultra-sonic testing. Second, from the latter to the final contour. The thermal boundary conditions in the finite element model for air cooling and furnace heating were estimated based on analytical equations from literature. A constitutive model developed for the unified description of rate dependent and rate independent mechanical material behavior of Alloy 718 under in-service conditions up to temperatures of 1000 °C was extended and parametrized to meet the manufacturing conditions with temperatures up to 1000 °C. The results of the finite element model were validated with measurements on real-scale turbine disks. The thermal boundary conditions were validated in-field with measured cooling curves. For that purpose holes were drilled at different positions into the turbine disk and thermocouples were mounted in these holes to record the time-temperature curves during natural cooling and heating. The simulated residual stresses were validated by using the hole drilling method and the neutron diffraction technique. The accuracy of the finite element model for the final manufacturing step investigated was ±50 MPa.

  15. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    Science.gov (United States)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  16. The Mechanical Properties of Candidate Superalloys for a Hybrid Turbine Disk

    Science.gov (United States)

    Gabb, Timothy P.; MacKay, Rebecca A.; Draper, Susan L.; Sudbrack, Chantal K.; Nathal, Michael V.

    2013-01-01

    The mechanical properties of several cast blade superalloys and one powder metallurgy disk superalloy were assessed for potential use in a dual alloy hybrid disk concept of joined dissimilar bore and web materials. Grain size was varied for each superalloy class. Tensile, creep, fatigue, and notch fatigue tests were performed at 704 to 815 degC. Typical microstructures and failure modes were determined. Preferred materials were then selected for future study as the bore and rim alloys in this hybrid disk concept. Powder metallurgy superalloy LSHR at 15 micron grain size and single crystal superalloy LDS-1101+Hf were selected for further study, and future work is recommended to develop the hybrid disk concept.

  17. Fabrication Of Hybird Gas Turbine Disk Material System By Additive Manufacturing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — AM offers the potential to be revolutionary for GRC hybrid disk concept as it: i) bypasses joining through direct deposition or “building” of the PX bore...

  18. 14 CFR 121.197 - Airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Turbine engine powered: Landing limitations: Alternate airports. 121.197 Section 121.197 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Performance Operating Limitations § 121.197 Airplanes: Turbine engine powered: Landing limitations: Alternate...

  19. Performance of Blowdown Turbine Driven by Exhaust Gas of Nine-Cylinder Radial Engine

    Science.gov (United States)

    Turner, L Richard; Desmon, Leland G

    1944-01-01

    An investigation was made of an exhaust-gas turbine having four separate nozzle boxes each covering a 90 degree arc of the nozzle diaphragm and each connected to a pair of adjacent cylinders of a nine-cylinder radial engine. This type of turbine has been called a "blowdown" turbine because it recovers the kinetic energy developed in the exhaust stacks during the blowdown period, that is the first part of the exhaust process when the piston of the reciprocating engine is nearly stationary. The purpose of the investigation was to determine whether the blow turbine could develop appreciable power without imposing any large loss in engine power arising from restriction of the engine exhaust by the turbine.

  20. LES of an ignition sequence in a gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Boileau, M.; Staffelbach, G.; Cuenot, B. [CERFACS, Toulouse (France); Poinsot, T. [IMFT - CNRS, Toulouse (France); Berat, C. [Turbomeca (SAFRAN group), Bordes (France)

    2008-07-15

    Being able to ignite or reignite a gas turbine engine in a cold and rarefied atmosphere is a critical issue for many manufacturers. From a fundamental point of view, the ignition of the first burner and the flame propagation from one burner to another are phenomena that are usually not studied. The present work is a large eddy simulation (LES) of these phenomena. To simulate a complete ignition sequence in an annular chamber, LES has been applied to the full 360 geometry, including 18 burners. This geometry corresponds to a real gas turbine chamber. Massively parallel computing (700 processors on a Cray XT3 machine) was essential to perform such a large calculation. Results show that liquid fuel injection has a strong influence on the ignition times. Moreover, the rate of flame progress from burner to burner is much higher than the turbulent flame speed due to a major effect of thermal expansion. This flame speed is also strongly modified by the main burner aerodynamics due to the swirled injection. Finally, the variability of the combustor sectors and quadrant ignition times is highlighted. (author)

  1. High-freezing-point fuels used for aviation turbine engines

    Science.gov (United States)

    Friedman, R.

    1979-01-01

    Broadened-specification aviation fuels could be produced from a greater fraction of crude source material with improvements in fuel supply and price. These fuels, particularly those with increased final boiling temperatures, would have higher freezing temperatures than current aviation turbine fuels. The higher-freezing-point fuels can be substituted in the majority of present commercial flights, since temperature data indicate that in-flight fuel temperatures are relatively mild. For the small but significant fraction of commercial flights where low fuel temperatures make higher freezing-point fuel use unacceptable, adaptations to the fuel or fuel system may be made to accommodate this fuel. Several techniques are discussed. Fuel heating is the most promising concept. One simple system design uses existing heat rejection from the fuel-lubricating oil cooler, another uses an engine-driven generator for electrical heating. Both systems offer advantages that outweigh the obvious penalties.

  2. Failure analysis of gas turbine blades in a gas turbine engine used ...

    African Journals Online (AJOL)

    The gas turbine blade was made of Nickel based super alloys and was manufactured by investment casting method. The gas turbine blade under examination was operated at elevated temperatures in corrosive environmental attack such as oxidation, hot corrosion and sulphidation etc. The investigation on gas turbine ...

  3. Nondestructive Evaluation Technology Initiatives II. Delivery Order 0002: Whole Field Turbine Disk Inspection

    Science.gov (United States)

    2007-04-01

    Application of Sonic Infrared NDE to Detection of Fatigue Damage in Military Aircraft Components,” Steve Cargill, November 2007. Three of the...Stinchcomb, “ Thermography : An NDI Method for Damage Detection,” Journal of Metals, Sept. 1979, pp. 11-15. • Henneke, E.G., K.L. Reifsnider, and...Air Force aircraft components through empirical methods. As part of that effort, TF33 second stage turbine blades, F100 first stage high pressure

  4. Comparisons between the Wake of a Wind Turbine Generator Operated at Optimal Tip Speed Ratio and the Wake of a Stationary Disk

    Directory of Open Access Journals (Sweden)

    Takanori Uchida

    2011-01-01

    Full Text Available The wake of a wind turbine generator (WTG operated at the optimal tip speed ratio is compared to the wake of a WTG with its rotor replaced by a stationary disk. Numerical simulations are conducted with a large eddy simulation (LES model using a nonuniform staggered Cartesian grid. The results from the numerical simulations are compared to those from wind-tunnel experiments. The characteristics of the wake of the stationary disk are significantly different from those of the WTG. The velocity deficit at a downstream distance of 10 (: rotor diameter behind the WTG is approximately 30 to 40% of the inflow velocity. In contrast, flow separation is observed immediately behind the stationary disk (≤2, and the velocity deficit in the far wake (10 of the stationary disk is smaller than that of the WTG.

  5. Experimental analysis models for studying the dynamic behaviour of turbine shrouded bladed disk assemblies

    International Nuclear Information System (INIS)

    Costa, B.

    1996-05-01

    The study presented concerns the final blade assembly of a low-pressure body in an electric power station. The ultimate objective of the study is to check whether the fatigue damage is acceptable and that the actual stresses do not excite the bladed disk assembly in its own modes. A combined methodology of calculations and tests was adopted to carry out this test. The calculation part involves modelization, by finite elements, of the bladed disk assembly. This paper presents only the experimental part, i.e. the tests, and experimental analysis methods and models. Experimental analysis poses special problems on account of the complexity of the dynamic behaviour of this type of structure and the limited number of available measuring points. (author). 9 refs

  6. Internal combustion engine system having a power turbine with a broad efficiency range

    Science.gov (United States)

    Whiting, Todd Mathew; Vuk, Carl Thomas

    2010-04-13

    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  7. Engine Power Turbine and Propulsion Pod Arrangement Study

    Science.gov (United States)

    Robuck, Mark; Zhang, Yiyi

    2014-01-01

    A study has been conducted for NASA Glenn Research Center under contract NNC10BA05B, Task NNC11TA80T to identify beneficial arrangements of the turboshaft engine, transmissions and related systems within the propulsion pod nacelle of NASA's Large Civil Tilt-Rotor 2nd iteration (LCTR2) vehicle. Propulsion pod layouts were used to investigate potential advantages, disadvantages, as well as constraints of various arrangements assuming front or aft shafted engines. Results from previous NASA LCTR2 propulsion system studies and tasks performed by Boeing under NASA contracts are used as the basis for this study. This configuration consists of two Fixed Geometry Variable Speed Power Turbine Engines and related drive and rotor systems (per nacelle) arranged in tilting nacelles near the wing tip. Entry-into-service (EIS) 2035 technology is assumed for both the engine and drive systems. The variable speed rotor system changes from 100 percent speed for hover to 54 percent speed for cruise by the means of a two speed gearbox concept developed under previous NASA contracts. Propulsion and drive system configurations that resulted in minimum vehicle gross weight were identified in previous work and used here. Results reported in this study illustrate that a forward shafted engine has a slight weight benefit over an aft shafted engine for the LCTR2 vehicle. Although the aft shafted engines provide a more controlled and centered CG (between hover and cruise), the length of the long rotor shaft and complicated engine exhaust arrangement outweighed the potential benefits. A Multi-Disciplinary Analysis and Optimization (MDAO) approach for transmission sizing was also explored for this study. This tool offers quick analysis of gear loads, bearing lives, efficiencies, etc., through use of commercially available RomaxDESIGNER software. The goal was to create quick methods to explore various concept models. The output results from RomaxDESIGNER have been successfully linked to Boeing

  8. Preliminary study of Friction disk type turbine for S-CO{sub 2} cycle application (2016 Autumn Meeting of the KNS)

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Seungjoon; Heo, Jin Young; Kwon, Jinsu; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Among the next generation reactors, a sodium-cooled fast reactor (SFR) with the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle has been suggested as the advanced energy solution. The S-CO{sub 2} power conversion system can achieve high efficiency with the SFR core thermal condition (450-550℃) and also can reduce the total cycle footprint due to high density of the working fluid. Moreover, the S-CO{sub 2} power cycle can reduce the accident consequence compared to the steam Rankine cycle due to the mild sodium-CO{sub 2} interaction. The S-CO{sub 2} power cycle has different characteristic compare to the conventional steam Rankine cycle or gas Brayton cycle. For the turbine section, the expansion ratio is much smaller than the other cycles. Thus, different type of turbine should be evaluated for the advanced S-CO{sub 2} technology and the KAIST research team considered a friction disk type turbine (Tesla turbine) concept for the S-CO{sub 2} cycle applications. In this paper, the test result and analysis of a lab-scale Tesla turbine in the KAIST S-CO{sub 2} experimental facility (S-CO{sub 2}PE) are briefly discussed. The KAIST research team investigated a friction disk type turbine, named as Tesla turbine, for the S-CO{sub 2} power cycle applications. The preliminary test of a lab-scale Tesla turbine was conducted with compressed air. The generator, nozzle angle and bearing performances are tested. With the best performing nozzle angle and bearing, the Tesla turbine was tested under various S-CO{sub 2} conditions. As a result, the S-CO{sub 2}PE facility generated electricity (0.5-5W). The isentropic efficiency was relatively low (0.8-1.3%). It seemed that, the authors need further study to understand the main mechanism and maximize the efficiency. After developing the design methodology, the design optimization will be conducted to show the applicability of the friction disk type turbine for the S-CO{sub 2} power cycle.

  9. Generic Analysis Methods for Gas Turbine Engine Performance : The development of the gas turbine simulation program GSP

    NARCIS (Netherlands)

    Visser, W.P.J.

    2015-01-01

    Numerical modelling and simulation have played a critical role in the research and development towards today’s powerful and efficient gas turbine engines for both aviation and power generation. The simultaneous progress in modelling methods, numerical methods, software development tools and methods,

  10. Loadings in thermal barrier coatings of jet engine turbine blades an experimental research and numerical modeling

    CERN Document Server

    Sadowski, Tomasz

    2016-01-01

    This book discusses complex loadings of turbine blades and protective layer Thermal Barrier Coating (TBC), under real working airplane jet conditions. They obey both multi-axial mechanical loading and sudden temperature variation during starting and landing of the airplanes. In particular, two types of blades are analyzed: stationary and rotating, which are widely applied in turbine engines produced by airplane factories.

  11. Study and program plan for improved heavy duty gas turbine engine ceramic component development

    Science.gov (United States)

    Helms, H. E.

    1977-01-01

    Fuel economy in a commercially viable gas turbine engine was demonstrated through use of ceramic materials. Study results show that increased turbine inlet and generator inlet temperatures, through the use of ceramic materials, contribute the greatest amount to achieving fuel economy goals. Improved component efficiencies show significant additional gains in fuel economy.

  12. Strategies for Optimization and Automated Design of Gas Turbine Engines (Les strategies pour l’optimisation et la conception automatique de turbines a gaz)

    Science.gov (United States)

    2010-09-01

    Sep 2010 Strategies for Optimization and Automated Design of Gas Turbine Engines (Les Stratégies pour l’optimisation et la conception automatique de...Engines (Les Stratégies pour l’optimisation et la conception automatique de turbines à gaz) The material in this publication was assembled to support

  13. Thermal barrier coatings for the space shuttle main engine turbine blades

    Science.gov (United States)

    Bhat, B. N.; Gilmore, H. L.; Holmes, R. R.

    1985-01-01

    The Space Shuttle Main Engine (SSME) turbopump turbine blades experience extremely severe thermal shocks during start-up and shut-down. For instance, the high pressure fuel turbopump turbine which burns liquid hydrogen operates at approximately 1500 F, but is shut down fuel rich with turbine blades quenced in liquid hydrogen. This thermal shock is a major contributor to blade cracking. The same thermal shock cause the protective ZrO2 thermal barrier coatings to spall or flake off, leaving only the NiCrAlY bond coating which provides only a minimum thermal protection. The turbine blades are therefore life limited to about 3000 sec for want of a good thermal barrier. A suitable thermal barrier coating (TBC) is being developed for the SSME turbine blades. Various TBCs developed for the gas turbine engines were tested in a specially built turbine blade tester. This tester subjects the coated blades to thermal and pressure cycles similar to those during actual operation of the turbine. The coatings were applied using a plasma spraying techniques both under atmospheric conditions and in vacuum. Results are presented. In general vacuum plasma sprayed coatings performed much better than those sprayed under atmospheric conditions. A 50 to 50 blend of Cr2O3 and NiCrAlY, vacuum plasma sprayed on SSME turbopump turbine blades appear to provide significant improvements in coating durability and thermal protection.

  14. Composite hubs for low cost turbine engines. [stress analysis using NASTRAN

    Science.gov (United States)

    Chamis, C. C.

    1977-01-01

    A detailed stress analysis is performed using NASTRAN to demonstrate theoretically the adequacy of composite hubs for low cost turbine engine applications. The results show that composite hubs are adequate for this application from the steady state stress viewpoint.

  15. Replacement of Chromium Electroplating on Gas Turbine Engine Components Using Thermal Spray Coatings

    National Research Council Canada - National Science Library

    Sartwell, Bruce D; Legg, Keith O; Schell, Jerry; Bondaruk, Bob; Alford, Charles; Natishan, Paul; Lawrence, Steven; Shubert, Gary; Bretz, Philip; Kaltenhauser, Anne

    2005-01-01

    .... This document constitutes the final report on a project to qualify high-velocity oxygen-fuel (HVOF) and plasma thermal spray coatings as a replacement for hard chrome plating on gas turbine engine components...

  16. Evaluation of lightweight material concepts for aircraft turbine engine rotor failure protection

    Science.gov (United States)

    1997-07-01

    Results of the evaluation of lightweight materials for aircraft turbine engine rotor failure protection are presented in this report. The program consisted of two phases. Phase 1 was an evaluation of a group of composite materials which could possibl...

  17. A Physics-Based Starting Model for Gas Turbine Engines, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to demonstrate the feasibility of producing an integrated starting model for gas turbine engines using a new physics-based...

  18. Cooling system with compressor bleed and ambient air for gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, Jan H.; Marra, John J.

    2017-11-21

    A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed air through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.

  19. Seal plate with concentrate annular segments for a gas turbine engine

    International Nuclear Information System (INIS)

    Harris, D.P.; Light, S.H.

    1991-01-01

    This patent describes a gas turbine engine. It comprises a radial outflow, rotary compressor; a radial inflow turbine wheel; means coupling the compressor and the turbine wheel in slightly spaced back to back relating so that the turbine wheel may drive the compressor; a housing surrounding the compressor and the turbine wheel; and a stationary seal mounted on the housing and extending into the space between the compressor and the turbine wheel, the seal including a main sealing and support section adjacent the compressor and a multiple piece diaphragm mounted to the main section, but generally spaced therefrom, the pieces of the diaphragm being movable with respect to each other and with respect to the main section, and including a radially inner ring and a radially outer ring, one of the rings including a lip which overlaps an edge of the other of the rings, the lip and the edge being in sliding, sealing engagement

  20. Hybrid staging of a Lysholm positive displacement engine with two Westinghouse two stage impulse Curtis turbines

    Energy Technology Data Exchange (ETDEWEB)

    Parker, D.A.

    1982-06-01

    The University of California at Berkeley has tested and modeled satisfactorly a hybrid staged Lysholm engine (positive displacement) with a two stage Curtis wheel turbine. The system operates in a stable manner over its operating range (0/1-3/1 water ratio, 120 psia input). Proposals are made for controlling interstage pressure with a partial admission turbine and volume expansion to control mass flow and pressure ratio for the Lysholm engine.

  1. Study of advanced radial outflow turbine for solar steam Rankine engines

    Science.gov (United States)

    Martin, C.; Kolenc, T.

    1979-01-01

    The performance characteristics of various steam Rankine engine configurations for solar electric power generation were investigated. A radial outflow steam turbine was investigated to determine: (1) a method for predicting performance from experimental data; (2) the flexibility of a single design with regard to power output and pressure ratio; and (3) the effect of varying the number of turbine stages. All turbine designs were restricted to be compatible with commercially available gearboxes and generators. A study of several operating methods and control schemes for the steam Rankine engine shows that from an efficiency and control simplicity standpoint, the best approach is to hold turbine inlet temperature constant, vary turbine inlet pressure to match load, and allow condenser temperature to float maintaining constant heat rejection load.

  2. Experiments on the Performance of Small Horizontal Axis Wind Turbine with Passive Pitch Control by Disk Pulley

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    2016-05-01

    Full Text Available The present work is to design a passive pitch-control mechanism for small horizontal axis wind turbine (HAWT to generate stable power at high wind speeds. The mechanism uses a disk pulley as an actuator to passively adjust the pitch angle of blades by centrifugal force. For this design, aerodynamic braking is caused by the adjustment of pitch angles at high wind speeds. As a marked advantage, this does not require mechanical brakes that would incur electrical burn-out and structural failure under high speed rotation. This can ensure the survival of blades and generator in sever operation environments. In this paper, the analysis uses blade element momentum theory (BEMT to develop graphical user interface software to facilitate the performance assessment of the small-scale HAWT using passive pitch control (PPC. For verification, the HAWT system was tested in a full-scale wind tunnel for its aerodynamic performance. At low wind speeds, this system performed the same as usual, yet at high wind speeds, the equipped PPC system can effectively reduce the rotational speed to generate stable power.

  3. Considerations regarding a thermopower installation having a diesel engine with hydrogen combustion, and steam turbine

    International Nuclear Information System (INIS)

    Cardu, Mircea; Negrea, Vilgiliu Dan; Baica, Malvina

    2010-01-01

    In this paper the authors make a comparative analysis of thermopower installations operated with hydrogen and oxygen, installations appropriate to cover the daily peak loads in a power system. Comparing the type of installation having rotating motors and a gas turbine or steam turbine with an installation format of diesel engine and steam turbine, we argue the latter alternative as preferable. Here, we discuss in more detail the installation with diesel engine in which the oxygen and hydrogen obtained from water electrolysis are recombined. In order to utilize completely the steam energy resulting from this recombination after it is released from the diesel engine, this energy is used in a steam turbine with condensation. In this way the entire installation has an effective efficiency about 50% larger as compared with the former alternative cited above.

  4. Numerical analysis of flow interaction of turbine system in two-stage turbocharger of internal combustion engine

    Science.gov (United States)

    Liu, Y. B.; Zhuge, W. L.; Zhang, Y. J.; Zhang, S. Y.

    2016-05-01

    To reach the goal of energy conservation and emission reduction, high intake pressure is needed to meet the demand of high power density and high EGR rate for internal combustion engine. Present power density of diesel engine has reached 90KW/L and intake pressure ratio needed is over 5. Two-stage turbocharging system is an effective way to realize high compression ratio. Because turbocharging system compression work derives from exhaust gas energy. Efficiency of exhaust gas energy influenced by design and matching of turbine system is important to performance of high supercharging engine. Conventional turbine system is assembled by single-stage turbocharger turbines and turbine matching is based on turbine MAP measured on test rig. Flow between turbine system is assumed uniform and value of outlet physical quantities of turbine are regarded as the same as ambient value. However, there are three-dimension flow field distortion and outlet physical quantities value change which will influence performance of turbine system as were demonstrated by some studies. For engine equipped with two-stage turbocharging system, optimization of turbine system design will increase efficiency of exhaust gas energy and thereby increase engine power density. However flow interaction of turbine system will change flow in turbine and influence turbine performance. To recognize the interaction characteristics between high pressure turbine and low pressure turbine, flow in turbine system is modeled and simulated numerically. The calculation results suggested that static pressure field at inlet to low pressure turbine increases back pressure of high pressure turbine, however efficiency of high pressure turbine changes little; distorted velocity field at outlet to high pressure turbine results in swirl at inlet to low pressure turbine. Clockwise swirl results in large negative angle of attack at inlet to rotor which causes flow loss in turbine impeller passages and decreases turbine

  5. Environmental Barrier Coatings for Turbine Engines: A Design and Performance Perspective

    Science.gov (United States)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis; Smialek, James L.; Miller, Robert A.

    2009-01-01

    Ceramic thermal and environmental barrier coatings (TEBC) for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating long-term durability remains a major concern with the ever-increasing temperature, strength and stability requirements in engine high heat-flux combustion environments, especially for highly-loaded rotating turbine components. Advanced TEBC systems, including nano-composite based HfO2-aluminosilicate and rare earth silicate coatings are being developed and tested for higher temperature capable SiC/SiC ceramic matrix composite (CMC) turbine blade applications. This paper will emphasize coating composite and multilayer design approach and the resulting performance and durability in simulated engine high heat-flux, high stress and high pressure combustion environments. The advances in the environmental barrier coating development showed promise for future rotating CMC blade applications.

  6. Flight monitor for jet engine disk cracks and the use of critical length criterion of fracture mechanics

    Science.gov (United States)

    Barranger, J. P.

    1973-01-01

    A disk crack detector is discussed which is intended to operate under flight conditions. It monitors the disk rim for surface cracks emanating from the blade root interface. An eddy current type sensor, with a remotely located capacitance/conductance bridge and signal analyzer, can reliably detect a simulated crack 3 mm long. The sensor was tested on a spinning turbine disk at 540 C. Tests indicate that the system is useful at disk rim velocities to 460 m/sec. By using fracture mechanics, it is shown for Inconel 718 th at a crack operating under a rim stress of 34 x ten to the 7th power N/sqm has a critical length of 18 mm.

  7. Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method.

    Science.gov (United States)

    Chen, Jinglong; Wang, Yu; He, Zhengjia; Wang, Xiaodong

    2015-10-23

    The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. First, customized multiwavelet basis function with strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration signal is processed by customized ensemble multiwavelet transform. Next, normalized information entropy of multiwavelet decomposition coefficients is computed to directly reflect and evaluate the condition. The proposed approach is first applied to fault detection of an experimental aero-engine rotor. Finally, the proposed approach is used in an engineering application, where it successfully identified the crack fault of a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses excellent performance in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method against noise is also tested and verified by simulation and field experiments.

  8. Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method

    Directory of Open Access Journals (Sweden)

    Jinglong Chen

    2015-10-01

    Full Text Available The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. First, customized multiwavelet basis function with strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration signal is processed by customized ensemble multiwavelet transform. Next, normalized information entropy of multiwavelet decomposition coefficients is computed to directly reflect and evaluate the condition. The proposed approach is first applied to fault detection of an experimental aero-engine rotor. Finally, the proposed approach is used in an engineering application, where it successfully identified the crack fault of a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses excellent performance in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method against noise is also tested and verified by simulation and field experiments.

  9. The Effect of Blade Shape on the Performance of Six-Bladed Disk Turbine Impellers.

    Czech Academy of Sciences Publication Activity Database

    Vasconcelos, J.M.T.; Orvalho, Sandra; Rodrigues, A.M.A.F.; Alves, S. S.

    2000-01-01

    Roč. 39, 1 (2000) , s. 203-213 ISSN 0888-5885 Institutional research plan: CEZ:AV0Z4072921 Keywords : mass transfer * mixing * chemical reactors Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.294, year: 2000

  10. 14 CFR 135.383 - Large transport category airplanes: Turbine engine powered: En route limitations: Two engines...

    Science.gov (United States)

    2010-01-01

    ... in the Airplane Flight Manual, allows the airplane to fly from the point where the two engines are... the Airplane Flight Manual, allows the airplane to fly from the point where the two engines are... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine...

  11. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    Science.gov (United States)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  12. Compatibility of alternative fuels with advanced automotive gas turbine and stirling engines. A literature survey

    Science.gov (United States)

    Cairelli, J.; Horvath, D.

    1981-01-01

    The application of alternative fuels in advanced automotive gas turbine and Stirling engines is discussed on the basis of a literature survey. These alternative engines are briefly described, and the aspects that will influence fuel selection are identified. Fuel properties and combustion properties are discussed, with consideration given to advanced materials and components. Alternative fuels from petroleum, coal, oil shale, alcohol, and hydrogen are discussed, and some background is given about the origin and production of these fuels. Fuel requirements for automotive gas turbine and Stirling engines are developed, and the need for certain reseach efforts is discussed. Future research efforts planned at Lewis are described.

  13. Multiroller traction drive speed reducer: Evaluation for automotive gas turbine engine

    Science.gov (United States)

    Rohn, D. A.; Anderson, N. E.; Loewenthal, S. H.

    1982-01-01

    Tests were conducted on a nominal 14:1 fixed-ratio Nasvytis multiroller traction drive retrofitted as the speed reducer in an automotive gas turbine engine. Power turbine speeds of 45,000 rpm and a drive output power of 102 kW (137 hp) were reached. The drive operated under both variable roller loading (proportional to torque) and fixed roller loading (automatic loading mechanism locked). The drive operated smoothly and efficiently as the engine speed reducer. Engine specific fuel consumption with the traction speed reducer was comparable to that with the original helical gearset.

  14. A Plan for Revolutionary Change in Gas Turbine Engine Control System Architecture

    Science.gov (United States)

    Culley, Dennis E.

    2011-01-01

    The implementation of Distributed Engine Control technology on the gas turbine engine has been a vexing challenge for the controls community. A successful implementation requires the resolution of multiple technical issues in areas such as network communications, power distribution, and system integration, but especially in the area of high temperature electronics. Impeding the achievement has been the lack of a clearly articulated message about the importance of the distributed control technology to future turbine engine system goals and objectives. To resolve these issues and bring the technology to fruition has, and will continue to require, a broad coalition of resources from government, industry, and academia. This presentation will describe the broad challenges facing the next generation of advanced control systems and the plan which is being put into action to successfully implement the technology on the next generation of gas turbine engine systems.

  15. CF6 Jet Engine Performance Improvement Program: High Pressure Turbine Aerodynamic Performance Improvement

    Science.gov (United States)

    Fasching, W. A.

    1980-01-01

    The improved single shank high pressure turbine design was evaluated in component tests consisting of performance, heat transfer and mechanical tests, and in core engine tests. The instrumented core engine test verified the thermal, mechanical, and aeromechanical characteristics of the improved turbine design. An endurance test subjected the improved single shank turbine to 1000 simulated flight cycles, the equivalent of approximately 3000 hours of typical airline service. Initial back-to-back engine tests demonstrated an improvement in cruise sfc of 1.3% and a reduction in exhaust gas temperature of 10 C. An additional improvement of 0.3% in cruise sfc and 6 C in EGT is projected for long service engines.

  16. Teaching Risk Analysis in an Aircraft Gas Turbine Engine Design Capstone Course

    Science.gov (United States)

    2016-01-01

    fan blade flutter, fan rotor-to- stator rubbing which ignited titatium fires, and turbine rotor failures. Drewes2 argued that the “F100 entered...development costs, engine production costs, and scheduling (Byerley A. R., 2013) as well as the linkage between turbine inlet temperature, blade cooling...effectiveness, and maximum blade material temperature (Byerley A. R., 2015). This paper will provide a clearer explanation of the generic risk

  17. Two-dimensional modeling of an aircraft engine structural bladed disk-casing modal interaction

    Science.gov (United States)

    Legrand, Mathias; Pierre, Christophe; Cartraud, Patrice; Lombard, Jean-Pierre

    2009-01-01

    In modern turbo machines such as aircraft jet engines, structural contacts between the casing and bladed disk may occur through a variety of mechanisms: coincidence of vibration modes, thermal deformation of the casing, rotor imbalance due to design uncertainties to name a few. These nonlinear interactions may result in severe damage to both structures and it is important to understand the physical circumstances under which they occur. In this study, we focus on a modal coincidence during which the vibrations of each structure take the form of a k-nodal diameter traveling wave characteristic of axi-symmetric geometries. A realistic two-dimensional model of the casing and bladed disk is introduced in order to predict the occurrence of this very specific interaction phenomenon versus the rotation speed of the engine. The equations of motion are solved using an explicit time integration scheme in conjunction with the Lagrange multiplier method where friction is accounted for. This model is validated from the comparison with an analytical solution. The numerical results show that the structures may experience different kinds of behaviors (namely damped, sustained and divergent motions) mainly depending on the rotational velocity of the bladed disk.

  18. Elastic limit angular speed of solid and annular disks under thermo ...

    African Journals Online (AJOL)

    Prof. Kashi Nath Sah

    disks, gas as well as steam turbine rotors, internal combustion engines, centrifugal compressors, and in aerospace industries. Mechanical design of disks entails the assessment of centrifugal as well as thermal stresses and they need to be designed for approximate uniform stress distributions. The analyses of stresses and ...

  19. A feasibility study of a new ATREX engine system of aft-turbine configuration

    Science.gov (United States)

    Isomura, Kousuke; Omi, Junsuke; Tanatsugu, Nobuhiro; Sato, Tetsuya; Kobayashi, Hiroaki

    2002-07-01

    A feasibility of ATREX (Air-Turbo-Ram Expander cycle) engine with conventional aft-turbine configuration has been studied to be developed in about 10 years, if the development project has started under enough resources. The novel tip-turbine of the original ATREX engine is replaced by a conventional aft-turbine, and the maximum turbine inlet temperature (TTT) is reduced to 1200K, to realize the engine by only using approved metal technologies of modern jet engines. The capability of the performance has been shown by parametric studies by changing components' design parameters. The study shows that the performance of the ATREX engine is not less than that of pre-cooled turbo jet. Some technical issues on developing the new ATREX engine have been addressed. The most important issue would come from the transient total temperature change due to the rapid acceleration from sea level static (SLS) condition (288K) to Mach 6 at 30km of altitude (1680K) in 6 minutes. The deformation due to transient thermal expansion has to be controlled. Especially, the change of the tip clearance and the clearance between rotors and stators are pointed out to be important design issues. The ATREX engine, which has shorter axial length and simpler rotor, has structural advantage over turbo jet.

  20. Pulse Combustor Driven Pressure Gain Combustion for High Efficiency Gas Turbine Engines

    KAUST Repository

    Lisanti, Joel

    2017-02-01

    The gas turbine engine is an essential component of the global energy infrastructure which accounts for a significant portion of the total fossil fuel consumption in transportation and electric power generation sectors. For this reason there is significant interest in further increasing the efficiency and reducing the pollutant emissions of these devices. Conventional approaches to this goal, which include increasing the compression ratio, turbine inlet temperature, and turbine/compressor efficiency, have brought modern gas turbine engines near the limits of what may be achieved with the conventionally applied Brayton cycle. If a significant future step increase in gas turbine efficiency is to be realized some deviation from this convention is necessary. The pressure gain gas turbine concept is a well established new combustion technology that promises to provide a dramatic increase in gas turbine efficiency by replacing the isobaric heat addition process found in conventional technology with an isochoric process. The thermodynamic benefit of even a small increase in stagnation pressure across a gas turbine combustor translates to a significant increase in cycle efficiency. To date there have been a variety of methods proposed for achieving stagnation pressure gains across a gas turbine combustor and these concepts have seen a broad spectrum of levels of success. The following chapter provides an introduction to one of the proposed pressure gain methods that may be most easily realized in a practical application. This approach, known as pulse combustor driven pressure gain combustion, utilizes an acoustically resonant pulse combustor to approximate isochoric heat release and thus produce a rise in stagnation pressure.

  1. Geometry and Simulation Results for a Gas Turbine Representative of the Energy Efficient Engine (EEE)

    Science.gov (United States)

    Claus, Russell W.; Beach, Tim; Turner, Mark; Hendricks, Eric S.

    2015-01-01

    This paper describes the geometry and simulation results of a gas-turbine engine based on the original EEE engine developed in the 1980s. While the EEE engine was never in production, the technology developed during the program underpins many of the current generation of gas turbine engines. This geometry is being explored as a potential multi-stage turbomachinery test case that may be used to develop technology for virtual full-engine simulation. Simulation results were used to test the validity of each component geometry representation. Results are compared to a zero-dimensional engine model developed from experimental data. The geometry is captured in a series of Initial Graphical Exchange Specification (IGES) files and is available on a supplemental DVD to this report.

  2. Engineering design and exergy analyses for combustion gas turbine based power generation system

    International Nuclear Information System (INIS)

    Sue, D.-C.; Chuang, C.-C.

    2004-01-01

    This paper presents the engineering design and theoretical exergetic analyses of the plant for combustion gas turbine based power generation systems. Exergy analysis is performed based on the first and second laws of thermodynamics for power generation systems. The results show the exergy analyses for a steam cycle system predict the plant efficiency more precisely. The plant efficiency for partial load operation is lower than full load operation. Increasing the pinch points will decrease the combined cycle plant efficiency. The engineering design is based on inlet air-cooling and natural gas preheating for increasing the net power output and efficiency. To evaluate the energy utilization, one combined cycle unit and one cogeneration system, consisting of gas turbine generators, heat recovery steam generators, one steam turbine generator with steam extracted for process have been analyzed. The analytical results are used for engineering design and component selection

  3. Design and test of a small two stage counter-rotating turbine for rocket engine application

    Science.gov (United States)

    Huber, F. W.; Branstrom, B. R.; Finke, A. K.; Johnson, P. D.; Rowey, R. J.; Veres, J. P.

    1993-01-01

    The aerodynamic design and rig test evaluation of a small counter-rotating turbine system is described. The technology represented by this turbine is being developed for application in an advanced upper stage rocket engine turbopump. This engine will employ an oxygen/hydrogen expander cycle and achieve high performance through efficient combustion, high combustion pressure, and high area ratio exhaust nozzle expansion. Engine performance goals require that the turbopump drive turbines achieve high efficiency at low gas flow rates. The low flow rates result in very small airfoil diameter, height and chord. The high efficiency and small size requirements present a challenging turbine design problem. The unconventional approach employed to meet this challenge is described, along with the detailed design process and resulting airfoil configurations. The method and results of full scale aerodynamic performance evaluation testing of both one and two stage configurations, as well as operation without the secondary stage stator are presented. The overall results of this effort illustrate that advanced aerodynamic design tools and hardware fabrication techniques have provided improved capability to produce small high performance turbines for advanced rocket engines.

  4. Operation Evaluation Method for Marine Turbine Combustion Engines in Terms of Energetics

    Directory of Open Access Journals (Sweden)

    Dzida Marek

    2016-12-01

    Full Text Available An evaluation proposal (quantitative determination of any combustion turbine engine operation has been presented, wherein the impact energy occurs at a given time due to Energy conversion. The fact has been taken into account that in this type of internal combustion engines the energy conversion occurs first in the combustion chambers and in the spaces between the blade of the turbine engine. It was assumed that in the combustion chambers occurs a conversion of chemical energy contained in the fuel-air mixture to the internal energy of the produced exhaust gases. This form of energy conversion has been called heat. It was also assumed that in the spaces between the blades of the rotor turbine, a replacement occurs of part of the internal energy of the exhaust gas, which is their thermal energy into kinetic energy conversion of its rotation. This form of energy conversion has been called the work. Operation of the combustion engine has been thus interpreted as a transmission of power receivers in a predetermined time when there the processing and transfer in the form (means of work and heat occurs. Valuing the operation of this type of internal combustion engines, proposed by the authors of this article, is to determine their operation using physical size, which has a numerical value and a unit of measurement called joule-second [joule x second]. Operation of the combustion turbine engine resulting in the performance of the turbine rotor work has been presented, taking into account the fact that the impeller shaft is connected to the receiver, which may be a generator (in the case of one-shaft engine or a propeller of the ship (in the case of two or three shaft engine.

  5. Radiation pyrometer for gas turbine blades. [in LOX turbopump engine

    Science.gov (United States)

    Rohy, D. A.; Compton, W. A.

    1973-01-01

    A turbine blade temperature measuring system for liquid oxygen turbopumps is reported. The system includes a three mode, two-input optical signal processor, interconnecting cable, and four sensor heads. Two of the heads are aperture type, while the other two are lens type. This system is applicable to a temperature range of 1400 to 2200 F.

  6. Simulation and testing of new control methods for achieving low emissions in gas turbine engines

    Energy Technology Data Exchange (ETDEWEB)

    Boyce, P.M.

    1995-09-01

    In the past few years, development of clean burning land-based industrial gas turbines have been the focus for many manufacturers. This effort lead to the development of the LM6000 dry low emission engine. As a part of the control system, a real time mathematical model of the engine was included. This model is used to control the air and fuel low paths to the engine`s new combustor. A real time simulator was needed to simulate the control system hardware and engine. A brief discussion and some basic concepts of the combustor, along with a full discussion on the development of the real time simulator, follows in this paper.

  7. Device to lower NOx in a gas turbine engine combustion system

    Science.gov (United States)

    Laster, Walter R; Schilp, Reinhard; Wiebe, David J

    2015-02-24

    An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).

  8. Hybrid vehicle turbine engine technology support (HVTE-TS) project. 1995--1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This report presents a summary of technical work accomplished on the Hybrid Vehicle Turbine Engine--Technology Support (HVTE-TS) Project during calendar years 1995 and 1996. Work was performed under an initial National Aeronautics and Space Administration (NASA) contract DEN3-336. As of September 1996 the contract administration was transferred to the US Department of Energy (DoE) Chicago Operations Office, and renumbered as DE-AC02-96EE50553. The purpose of the HVTE-TS program is to develop gas turbine engine technology in support of DoE and automotive industry programs exploring the use of gas turbine generator sets in hybrid-electric automotive propulsion systems. The program focus is directed to the development of four key technologies to be applied to advanced turbogenerators for hybrid vehicles: Structural ceramic materials and processes; Low emissions combustion systems; Regenerators and seals systems; and Insulation systems and processes. 60 figs., 9 tabs.

  9. 76 FR 76072 - Revisions to the Export Administration Regulations (EAR): Control of Gas Turbine Engines and...

    Science.gov (United States)

    2011-12-06

    .... 111020646-1645-01] RIN 0694-AF41 Revisions to the Export Administration Regulations (EAR): Control of Gas... of the Administration's Export Control Reform Initiative under which various types of articles... would be used to control gas turbine engines that would remain on the USML. The Administration, however...

  10. A reverse engineering methodology for nickel alloy turbine blades with internal features

    DEFF Research Database (Denmark)

    Gameros, A.; De Chiffre, Leonardo; Siller, H.R.

    2015-01-01

    The scope of this work is to present a reverse engineering (RE) methodology for freeform surfaces, based on a case study of a turbine blade made of Inconel, including the reconstruction of its internal cooling system. The methodology uses an optical scanner and X-ray computed tomography (CT...

  11. Characterization of real gas properties for space shuttle main engine fuel turbine and performance calculations

    Science.gov (United States)

    Harloff, G. J.

    1986-01-01

    Real thermodynamic and transport properties of hydrogen, steam, the SSME mixture, and air are developed. The SSME mixture properties are needed for the analysis of the space shuttle main engine fuel turbine. The mixture conditions for the gases, except air, are presented graphically over a temperature range from 800 to 1200 K, and a pressure range from 1 to 500 atm. Air properties are given over a temperature range of 320 to 500 K, which are within the bounds of the thermodynamics programs used, in order to provide mixture data which is more easily checked (than H2/H2O). The real gas property variation of the SSME mixture is quantified. Polynomial expressions, needed for future computer analysis, for viscosity, Prandtl number, and thermal conductivity are given for the H2/H2O SSME fuel turbine mixture at a pressure of 305 atm over a range of temperatures from 950 to 1140 K. These conditions are representative of the SSME turbine operation. Performance calculations are presented for the space shuttle main engine (SSME) fuel turbine. The calculations use the air equivalent concept. Progress towards obtaining the capability to evaluate the performance of the SSME fuel turbine, with the H2/H2O mixture, is described.

  12. Modal analysis by holographic interferometry of a turbine blade for aircraft engines

    Science.gov (United States)

    Caponero, Michele A.; De Angelis, Alberto; Filetti, V. R.; Gammella, S.

    1994-11-01

    Within the planning stage devoted to realize an innovative turbine for an aircraft engine, an experimental prototype has been made. Several measurements have been carried out to experimentally verify the expected structural and dynamic features of such a prototype. Expected properties were worked out by finite elements method, using the well-known Nastran software package. Natural frequencies and vibration modes of the designed prototype were computed assuming the turbine being in both `dynamic condition' (rotating turbine at running speed and temperature), and in `static condition' (still turbine at room temperature). We present the experimental modal analysis carried out by time average holographic interferometry, being the prototype in `static condition;' results show the modal behavior of the prototype. Experimental and computed modal features are compared to evaluate the reliability of the finite elements model of the turbine used for computation by the Nastran package; reliability of the finite elements model must be checked to validate results computed assuming the turbine blade is in hostile environments, such as `dynamic condition,' which could hardly be tested by experimental measurements. A piezoelectric transducer was used to excite the turbine blade by sine variable pressure. To better estimate the natural vibration modes, two holographic interferograms have been made for each identified natural frequency, being the sensitivity vector directions of the two interferograms perpendicular to each other. The first ten lower natural frequencies and vibration modes of the blade have been analyzed; experimental and computed results are compared and discussed. Experimental and computed values of natural frequencies are in good agrement between each other. Several differences are present between experimental and computed modal patterns; a possible cause of such discrepancies is identified in wrong structural constraints imposed at nodes of the finite elements

  13. Virtual Turbine Engine Test Bench Using MGET Test Device

    Science.gov (United States)

    Kho, Seonghee; Kong, Changduk; Ki, Jayoung

    2015-05-01

    Test device using virtual engine simulator can help reduce the number of engine tests through tests similar to the actual engine tests and repeat the test under the same condition, and thus reduce the engine maintenance and operating costs [1]. Also, as it is possible to easily implement extreme conditions in which it is hard to conduct actual tests, it can prevent engine damages that may happen during the actual engine test under such conditions. In this study, an upgraded MGET test device was developed that can conduct both real and virtual engine test by applying real-time engine model to the existing MGET test device that was developed and has been sold by the Company. This newly developed multi-purpose MGET test device is expected to be used for various educational and research purposes.

  14. UNIVERSITY TURBINE SYSTEMS RESEARCH-HIGH EFFICIENCY ENGINES AND TURBINES (UTSR-HEET)

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence P. Golan; Richard A. Wenglarz; William H. Day

    2003-03-01

    In 2002, the U S Department of Energy established a cooperative agreement for a program now designated as the University Turbine Systems (UTSR) Program. As stated in the cooperative agreement, the objective of the program is to support and facilitate development of advanced energy systems incorporating turbines through a university research environment. This document is the first annual, technical progress report for the UTSR Program. The Executive Summary describes activities for the year of the South Carolina Institute for Energy Studies (SCIES), which administers the UTSR Program. Included are descriptions of: Outline of program administrative activities; Award of the first 10 university research projects resulting from a year 2001 RFP; Year 2002 solicitation and proposal selection for awards in 2003; Three UTSR Workshops in Combustion, Aero/Heat Transfer, and Materials; SCIES participation in workshops and meetings to provide input on technical direction for the DOE HEET Program; Eight Industrial Internships awarded to higher level university students; Increased membership of Performing Member Universities to 105 institutions in 40 states; Summary of outreach activities; and a Summary table describing the ten newly awarded UTSR research projects. Attachment A gives more detail on SCIES activities by providing the monthly exceptions reports sent to the DOE during the year. Attachment B provides additional information on outreach activities for 2002. The remainder of this report describes in detail the technical approach, results, and conclusions to date for the UTSR university projects.

  15. More Intelligent Gas Turbine Engines (Des turbomoteurs plus intelligents)

    Science.gov (United States)

    2009-04-01

    généralisé, aux diagnostics et aux pronostics évolués intégrés dans des commandes moteurs intelligentes ainsi que du contrôle distribué avec des capteurs et...des servomoteurs intelligents. Ce rapport met l’accent sur l’identification des besoins en capteurs et en servomoteurs, des technologies actuelles...sur les capteurs et les servomoteurs et des feuilles de route pour les technologies émergeantes du point de vue des performances des turbines à gaz

  16. Cooling system having reduced mass pin fins for components in a gas turbine engine

    Science.gov (United States)

    Lee, Ching-Pang; Jiang, Nan; Marra, John J

    2014-03-11

    A cooling system having one or more pin fins with reduced mass for a gas turbine engine is disclosed. The cooling system may include one or more first surfaces defining at least a portion of the cooling system. The pin fin may extend from the surface defining the cooling system and may have a noncircular cross-section taken generally parallel to the surface and at least part of an outer surface of the cross-section forms at least a quartercircle. A downstream side of the pin fin may have a cavity to reduce mass, thereby creating a more efficient turbine airfoil.

  17. The start-up of a gas turbine engine using compressed air tangentially fed onto the blades of the basic turbine

    Science.gov (United States)

    Slobodyanyuk, L. K.; Dayneko, V. I.

    1983-01-01

    The use of compressed air was suggested to increase the reliability and motor lifetime of a gas turbine engine. Experiments were carried out and the results are shown in the form of the variation in circumferential force as a function of the entry angle of the working jet onto the turbine blade. The described start-up method is recommended for use with massive rotors.

  18. Next Generation Engineered Materials for Ultra Supercritical Steam Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Douglas Arrell

    2006-05-31

    To reduce the effect of global warming on our climate, the levels of CO{sub 2} emissions should be reduced. One way to do this is to increase the efficiency of electricity production from fossil fuels. This will in turn reduce the amount of CO{sub 2} emissions for a given power output. Using US practice for efficiency calculations, then a move from a typical US plant running at 37% efficiency to a 760 C /38.5 MPa (1400 F/5580 psi) plant running at 48% efficiency would reduce CO2 emissions by 170kg/MW.hr or 25%. This report presents a literature review and roadmap for the materials development required to produce a 760 C (1400 F) / 38.5MPa (5580 psi) steam turbine without use of cooling steam to reduce the material temperature. The report reviews the materials solutions available for operation in components exposed to temperatures in the range of 600 to 760 C, i.e. above the current range of operating conditions for today's turbines. A roadmap of the timescale and approximate cost for carrying out the required development is also included. The nano-structured austenitic alloy CF8C+ was investigated during the program, and the mechanical behavior of this alloy is presented and discussed as an illustration of the potential benefits available from nano-control of the material structure.

  19. Fiber-reinforced ceramic composites for Earth-to-orbit rocket engine turbines

    Science.gov (United States)

    Brockmeyer, Jerry W.; Schnittgrund, Gary D.

    1990-01-01

    Fiber reinforced ceramic matrix composites (FRCMC) are emerging materials systems that offer potential for use in liquid rocket engines. Advantages of these materials in rocket engine turbomachinery include performance gain due to higher turbine inlet temperature, reduced launch costs, reduced maintenance with associated cost benefits, and reduced weight. This program was initiated to assess the state of FRCMC development and to propose a plan for their implementation into liquid rocket engine turbomachinery. A complete range of FRCMC materials was investigated relative to their development status and feasibility for use in the hot gas path of earth-to-orbit rocket engine turbomachinery. Of the candidate systems, carbon fiber-reinforced silicon carbide (C/SiC) offers the greatest near-term potential. Critical hot gas path components were identified, and the first stage inlet nozzle and turbine rotor of the fuel turbopump for the liquid oxygen/hydrogen Space Transportation Main Engine (STME) were selected for conceptual design and analysis. The critical issues associated with the use of FRCMC were identified. Turbine blades were designed, analyzed and fabricated. The Technology Development Plan, completed as Task 5 of this program, provides a course of action for resolution of these issues.

  20. Counter-Rotatable Fan Gas Turbine Engine with Axial Flow Positive Displacement Worm Gas Generator

    Science.gov (United States)

    Giffin, Rollin George (Inventor); Murrow, Kurt David (Inventor); Fakunle, Oladapo (Inventor)

    2014-01-01

    A counter-rotatable fan turbine engine includes a counter-rotatable fan section, a worm gas generator, and a low pressure turbine to power the counter-rotatable fan section. The low pressure turbine maybe counter-rotatable or have a single direction of rotation in which case it powers the counter-rotatable fan section through a gearbox. The gas generator has inner and outer bodies having offset inner and outer axes extending through first, second, and third sections of a core assembly. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes and extending radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. A combustor section extends through at least a portion of the second section.

  1. Helicopter Gas Turbine Engine Performance Analysis : A Multivariable Approach

    NARCIS (Netherlands)

    Arush, Ilan; Pavel, M.D.

    2017-01-01

    Helicopter performance relies heavily on the available output power of the engine(s) installed. A simplistic single-variable analysis approach is often used within the flight-testing community to reduce raw flight-test data in order to predict the available output power under different atmospheric

  2. NASA/GE Energy Efficient Engine low pressure turbine scaled test vehicle performance report

    Science.gov (United States)

    Bridgeman, M. J.; Cherry, D. G.; Pedersen, J.

    1983-01-01

    The low pressure turbine for the NASA/General Electric Energy Efficient Engine is a highly loaded five-stage design featuring high outer wall slope, controlled vortex aerodynamics, low stage flow coefficient, and reduced clearances. An assessment of the performance of the LPT has been made based on a series of scaled air-turbine tests divided into two phases: Block 1 and Block 2. The transition duct and the first two stages of the turbine were evaluated during the Block 1 phase from March through August 1979. The full five-stage scale model, representing the final integrated core/low spool (ICLS) design and incorporating redesigns of stages 1 and 2 based on Block 1 data analysis, was tested as Block 2 in June through September 1981. Results from the scaled air-turbine tests, reviewed herein, indicate that the five-stage turbine designed for the ICLS application will attain an efficiency level of 91.5 percent at the Mach 0.8/10.67-km (35,000-ft), max-climb design point. This is relative to program goals of 91.1 percent for the ICLS and 91.7 percent for the flight propulsion system (FPS).

  3. Effects of chemical equilibrium on turbine engine performance for various fuels and combustor temperatures

    Science.gov (United States)

    Tran, Donald H.; Snyder, Christopher A.

    1992-01-01

    A study was performed to quantify the differences in turbine engine performance with and without the chemical dissociation effects for various fuel types over a range of combustor temperatures. Both turbojet and turbofan engines were studied with hydrocarbon fuels and cryogenic, nonhydrocarbon fuels. Results of the study indicate that accuracy of engine performance decreases when nonhydrocarbon fuels are used, especially at high temperatures where chemical dissociation becomes more significant. For instance, the deviation in net thrust for liquid hydrogen fuel can become as high as 20 percent at 4160 R. This study reveals that computer central processing unit (CPU) time increases significantly when dissociation effects are included in the cycle analysis.

  4. Optimization of Turbine Engine Cycle Analysis with Analytic Derivatives

    Science.gov (United States)

    Hearn, Tristan; Hendricks, Eric; Chin, Jeffrey; Gray, Justin; Moore, Kenneth T.

    2016-01-01

    A new engine cycle analysis tool, called Pycycle, was recently built using the OpenMDAO framework. This tool uses equilibrium chemistry based thermodynamics, and provides analytic derivatives. This allows for stable and efficient use of gradient-based optimization and sensitivity analysis methods on engine cycle models, without requiring the use of finite difference derivative approximation methods. To demonstrate this, a gradient-based design optimization was performed on a multi-point turbofan engine model. Results demonstrate very favorable performance compared to an optimization of an identical model using finite-difference approximated derivatives.

  5. Evaluation of PM emissions from two in-service gas turbine general aviation aircraft engines

    Science.gov (United States)

    Yu, Zhenhong; Liscinsky, David S.; Fortner, Edward C.; Yacovitch, Tara I.; Croteau, Philip; Herndon, Scott C.; Miake-Lye, Richard C.

    2017-07-01

    We determined particulate matter (PM) emissions in the exhaust plumes from two gas turbine aircraft engines: a CF34-3A1 turbofan engine and a TPE331-6-252B turboprop engine in a dedicated study on in-service general aviation aircraft. The engine power states were from 16% to 100% engine thrust. Both nucleation and soot mode particles were observed from the emission exhausts of the CF34-3A1 engine but only soot particle mode was detected from the TPE331-6-252B engine. For the CF34-3A1 engine, the contribution of soot mode to total PM emissions was dominant at high power, while at decreased engine power states nucleation mode organic PM became important. PM emissions indices of the TPE331-6-252B engine were found to be generally larger than those of the CF34-3A1 engine. For both engines, medium power conditions (40-60% of thrust) yielded the lowest PM emissions. For the TPE331-6-252B engine, volatile PM components including organic and sulfate were more than 50% in mass at low power, while non-volatile black carbon became dominant at high power conditions such as takeoff.

  6. Data-driven fault detection, isolation and estimation of aircraft gas turbine engine actuator and sensors

    Science.gov (United States)

    Naderi, E.; Khorasani, K.

    2018-02-01

    In this work, a data-driven fault detection, isolation, and estimation (FDI&E) methodology is proposed and developed specifically for monitoring the aircraft gas turbine engine actuator and sensors. The proposed FDI&E filters are directly constructed by using only the available system I/O data at each operating point of the engine. The healthy gas turbine engine is stimulated by a sinusoidal input containing a limited number of frequencies. First, the associated system Markov parameters are estimated by using the FFT of the input and output signals to obtain the frequency response of the gas turbine engine. These data are then used for direct design and realization of the fault detection, isolation and estimation filters. Our proposed scheme therefore does not require any a priori knowledge of the system linear model or its number of poles and zeros at each operating point. We have investigated the effects of the size of the frequency response data on the performance of our proposed schemes. We have shown through comprehensive case studies simulations that desirable fault detection, isolation and estimation performance metrics defined in terms of the confusion matrix criterion can be achieved by having access to only the frequency response of the system at only a limited number of frequencies.

  7. Durable fiber optic sensor for gas temperature measurement in the hot section of turbine engines

    Science.gov (United States)

    Tregay, George W.; Calabrese, Paul R.; Finney, Mark J.; Stukey, K. B.

    1994-10-01

    An optical sensor system extends gas temperature measurement capability in turbine engines beyond the present generation of thermocouple technology. The sensing element which consists of a thermally emissive insert embedded inside a sapphire lightguide is capable of operating above the melting point of nickel-based super alloys. The emissive insert generates an optical signal as a function of temperature. Continued development has led to an optically averaged system by combining the optical signals from four individual sensing elements at a single detector assembly. The size of the signal processor module has been reduced to overall dimensions of 2 X 4 X 0.7 inches. The durability of the optical probe design has been evaluated in an electric-utility operated gas turbine under the sponsorship of the Electric Power Research Institute. The temperature probe was installed between the first stage rotor and second stage nozzle on a General Electric MS7001B turbine. The combined length of the ceramic support tube and sensing element reached 1.5 inches into the hot gas stream. A total of over 2000 hours has been accumulated at probe operation temperatures near 1600 degree(s)F. An optically averaged sensor system was designed to replace the existing four thermocouple probes on the upper half of a GE F404 aircraft turbine engine. The system was ground tested for 250 hours as part of GE Aircraft Engines IR&D Optical Engine Program. Subsequently, two flight sensor systems were shipped for use on the FOCSI (Fiber Optic Control System Integration) Program. The optical harnesses, each with four optical probes, measure the exhaust gas temperature in a GE F404 engine.

  8. Improved Barriers to Turbine Engine Fragments: Interim Report II

    National Research Council Canada - National Science Library

    Shockey, Donald

    1999-01-01

    ... the effects of uncontained engine bursts. SRI International is evaluating the ballistic effectiveness of fabric structures made from advanced polymers and developing a computational ability to design fragment barriers...

  9. Distributed Control Architecture for Gas Turbine Engine. Chapter 4

    Science.gov (United States)

    Culley, Dennis; Garg, Sanjay

    2009-01-01

    The transformation of engine control systems from centralized to distributed architecture is both necessary and enabling for future aeropropulsion applications. The continued growth of adaptive control applications and the trend to smaller, light weight cores is a counter influence on the weight and volume of control system hardware. A distributed engine control system using high temperature electronics and open systems communications will reverse the growing trend of control system weight ratio to total engine weight and also be a major factor in decreasing overall cost of ownership for aeropropulsion systems. The implementation of distributed engine control is not without significant challenges. There are the needs for high temperature electronics, development of simple, robust communications, and power supply for the on-board electronics.

  10. Investigation of the Effect of the Non-uniform Flow Distribution After Compressor of Gas Turbine Engine on Inlet Parameters of the Turbine

    Science.gov (United States)

    Orlov, M. Yu; Lukachev, S. V.; Anisimov, V. M.

    2018-01-01

    The position of combustion chamber between compressor and turbine and combined action of these elements imply that the working processes of all these elements are interconnected. One of the main requirements of the combustion chamber is the formation of the desirable temperature field at the turbine inlet, which can realize necessary durability of nozzle assembly and blade wheel of the first stage of high-pressure turbine. The method of integrated simulation of combustion chamber and neighboring nodes (compressor and turbine) was developed. On the first stage of the study, this method was used to investigate the influence of non-uniformity of flow distribution, occurred after compressor blades on combustion chamber workflow. The goal of the study is to assess the impact of non-uniformity of flow distribution after the compressor on the parameters before the turbine. The calculation was carried out in a transient case for some operation mode of the engine. The simulation showed that the inclusion of compressor has an effect on combustion chamber workflow and allows us to determine temperature field at the turbine inlet and assesses its durability more accurately. In addition, the simulation with turbine showed the changes in flow velocity distribution and pressure in combustion chamber.

  11. Long duration blade loss simulations including thermal growths for dual-rotor gas turbine engine

    Science.gov (United States)

    Sun, Guangyoung; Palazzolo, Alan; Provenza, A.; Lawrence, C.; Carney, K.

    2008-09-01

    This paper presents an approach for blade loss simulation including thermal growth effects for a dual-rotor gas turbine engine supported on bearing and squeeze film damper. A nonlinear ball bearing model using the Hertzian formula predicts ball contact load and stress, while a simple thermal model estimates the thermal growths of bearing components during the blade loss event. The modal truncation augmentation method combined with a proposed staggered integration scheme is verified through simulation results as an efficient tool for analyzing a flexible dual-rotor gas turbine engine dynamics with the localized nonlinearities of the bearing and damper, with the thermal growths and with a flexible casing model. The new integration scheme with enhanced modeling capability reduces the computation time by a factor of 12, while providing a variety of solutions with acceptable accuracy for durations extending over several thermal time constants.

  12. Analysis of Thermal Radiation Effects on Temperatures in Turbine Engine Thermal Barrier Coatings

    Science.gov (United States)

    Siegel, Robert; Spuckler, Charles M.

    1998-01-01

    Thermal barrier coatings are important, and in some instances a necessity, for high temperature applications such as combustor liners, and turbine vanes and rotating blades for current and advanced turbine engines. Some of the insulating materials used for coatings, such as zirconia that currently has widespread use, are partially transparent to thermal radiation. A translucent coating permits energy to be transported internally by radiation, thereby increasing the total energy transfer and acting like an increase in thermal conductivity. This degrades the insulating ability of the coating. Because of the strong dependence of radiant emission on temperature, internal radiative transfer effects are increased as temperatures are raised. Hence evaluating the significance of internal radiation is of importance as temperatures are increased to obtain higher efficiencies in advanced engines.

  13. Preliminary investigation of the control of a gas-turbine engine for a helicopter / Richard P. Krebs

    Science.gov (United States)

    Krebs, Richard P

    1951-01-01

    An analog investigation of the power plant for a gas-turbine powered helicopter indicates that currently proposed turbine-propeller engine controls are satisfactory for helicopter application. Power increases from one-half to full rated at altitudes from sea level to 15,000 feet could be made in less than 4 seconds with either the rotor or propellers absorbing the engine power.

  14. Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Phil Ligrani

    2013-01-01

    Full Text Available To provide an overview of the current state of the art of heat transfer augmentation schemes employed for internal cooling of turbine blades and components, results from an extensive literature review are presented with data from internal cooling channels, both with and without rotation. According to this survey, a very small number of existing investigations consider the use of combination devices for internal passage heat transfer augmentation. Examples are rib turbulators, pin fins, and dimples together, a combination of pin fins and dimples, and rib turbulators and pin fins in combination. The results of such studies are compared with data obtained prior to 2003 without rotation influences. Those data are comprised of heat transfer augmentation results for internal cooling channels, with rib turbulators, pin fins, dimpled surfaces, surfaces with protrusions, swirl chambers, or surface roughness. This comparison reveals that all of the new data, obtained since 2003, collect within the distribution of globally averaged data obtained from investigations conducted prior to 2003 (without rotation influences. The same conclusion in regard to data distributions is also reached in regard to globally averaged thermal performance parameters as they vary with friction factor ratio. These comparisons, made on the basis of such judgment criteria, lead to the conclusion that improvements in our ability to provide better spatially-averaged thermal protection have been minimal since 2003. When rotation is present, existing investigations provide little evidence of overall increases or decreases in overall thermal performance characteristics with rotation, at any value of rotation number, buoyancy parameter, density ratio, or Reynolds number. Comparisons between existing rotating channel experimental data and the results obtained prior to 2003, without rotation influences, also show that rotation has little effect on overall spatially-averaged thermal

  15. Application of the aqueous coating suspension for the protection of Gas Turbine Engine parts from corrosion

    Directory of Open Access Journals (Sweden)

    E. G. Ivanov

    2015-01-01

    Full Text Available The article considers the physical nature of receiving diffusion coatings from aqueous suspensions of various alloys for various conditions and their further exploitation. Structure of coatings, advantages and features of the production of coatings from aqueous suspensions are shown. Based on the analysis of thermodynamic reactions in the systems of elements formulations of aqueous suspensions were developed and practical recommendations for their application to the parts of gas turbine engine were given.

  16. Transition in Gas Turbine Engine Control System Architecture: Modular, Distributed, Embedded

    Science.gov (United States)

    2009-08-01

    er ace • Similar to the way EHSV interfaces are controlled today (ARP490) • Bolt/connector interfaces should be standardized St d d f ti lit l l i ti...AFRL-RZ-WP-TP-2009-2179 TRANSITION IN GAS TURBINE ENGINE CONTROL SYSTEM ARCHITECTURE: MODULAR, DISTRIBUTED, EMBEDDED (POSTPRINT) Bruce...with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS

  17. Analytical Modelling of the Effects of Different Gas Turbine Cooling Techniques on Engine Performance =

    Science.gov (United States)

    Uysal, Selcuk Can

    In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).

  18. The High Level Mathematical Models in Calculating Aircraft Gas Turbine Engine Parameters

    Directory of Open Access Journals (Sweden)

    Yu. A. Ezrokhi

    2017-01-01

    Full Text Available The article describes high-level mathematical models developed to solve special problems arising at later stages of design with regard to calculation of the aircraft gas turbine engine (GTE under real operating conditions. The use of blade row mathematics models, as well as mathematical models of a higher level, including 2D and 3D description of the working process in the engine units and components, makes it possible to determine parameters and characteristics of the aircraft engine under conditions significantly different from the calculated ones.The paper considers application of mathematical modelling methods (MMM for solving a wide range of practical problems, such as forcing the engine by injection of water into the flowing part, estimate of the thermal instability effect on the GTE characteristics, simulation of engine start-up and windmill starting condition, etc. It shows that the MMM use, when optimizing the laws of the compressor stator control, as well as supplying cooling air to the hot turbine components in the motor system, can significantly improve the integral traction and economic characteristics of the engine in terms of its gas-dynamic stability, reliability and resource.It ought to bear in mind that blade row mathematical models of the engine are designed to solve purely "motor" problems and do not replace the existing models of various complexity levels used in calculation and design of compressors and turbines, because in “quality” a description of the working processes in these units is inevitably inferior to such specialized models.It is shown that the choice of the mathematical modelling level of an aircraft engine for solving a particular problem arising in its designing and computational study is to a large extent a compromise problem. Despite the significantly higher "resolution" and information ability the motor mathematical models containing 2D and 3D approaches to the calculation of flow in blade machine

  19. Utility gas turbine combustor viewing system: Volume 2, Engine operating envelope test: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Morey, W.W.

    1988-12-01

    This report summarizes the development and field testing of a combustor viewing probe (CVP) as a flame diagnostic monitor for utility gas turbine engines. The prototype system is capable of providing a visual record of combustor flame images, recording flame spectral data, analyzing image and spectral data, and diagnosing certain engine malfunctions. The system should provide useful diagnostic information to utility plant operators, and reduced maintenance costs. The field tests demonstrated the ability of the CVP to monitor combustor flame condition and to relate changes in the engine operation with variations in the flame signature. Engine light off, run up to full speed, the addition of load, and the effect of water injection for NO/sub x/ control could easily be identified on the video monitor. The viewing probe was also valuable in identifying hard startups and shutdowns, as well as transient effects that can seriously harm the engine.

  20. Communication Needs Assessment for Distributed Turbine Engine Control

    Science.gov (United States)

    Culley, Dennis E.; Behbahani, Alireza R.

    2008-01-01

    Control system architecture is a major contributor to future propulsion engine performance enhancement and life cycle cost reduction. The control system architecture can be a means to effect net weight reduction in future engine systems, provide a streamlined approach to system design and implementation, and enable new opportunities for performance optimization and increased awareness about system health. The transition from a centralized, point-to-point analog control topology to a modular, networked, distributed system is paramount to extracting these system improvements. However, distributed engine control systems are only possible through the successful design and implementation of a suitable communication system. In a networked system, understanding the data flow between control elements is a fundamental requirement for specifying the communication architecture which, itself, is dependent on the functional capability of electronics in the engine environment. This paper presents an assessment of the communication needs for distributed control using strawman designs and relates how system design decisions relate to overall goals as we progress from the baseline centralized architecture, through partially distributed and fully distributed control systems.

  1. Thermal barrier coatings for thermal insulation and corrosion resistance in industrial gas turbine engines

    Science.gov (United States)

    Vogan, J. W.; Hsu, L.; Stetson, A. R.

    1981-01-01

    Four thermal barrier coatings were subjected to a 500-hour gas turbine engine test. The coatings were two yttria stabilized zirconias, calcium ortho silicate and calcium meta titanate. The calcium silicate coating exhibited significant spalling. Yttria stabilized zirconia and calcium titanate coatings showed little degradation except in blade leading edge areas. Post-test examination showed variations in the coating due to manual application techniques. Improved process control is required if engineering quality coatings are to be developed. The results indicate that some leading edge loss of the coating can be expected near the tip.

  2. Design and optimization of the micro-engine turbine rotor manufacturing using the rapid prototyping technology

    Science.gov (United States)

    Vdovin, R. A.; Smelov, V. G.

    2017-02-01

    This work describes the experience in manufacturing the turbine rotor for the micro-engine. It demonstrates the design principles for the complex investment casting process combining the use of the ProCast software and the rapid prototyping techniques. At the virtual modelling stage, in addition to optimized process parameters, the casting structure was improved to obtain the defect-free section. The real production stage allowed demonstrating the performance and fitness of rapid prototyping techniques for the manufacture of geometrically-complex engine-building parts.

  3. Electrical Power Grid Delivery Dynamic Analysis: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    Energy Technology Data Exchange (ETDEWEB)

    Diana K. Grauer; Michael E. Reed

    2011-11-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  4. Performance of small-scale aero-derivative industrial gas turbines derived from helicopter engines

    Directory of Open Access Journals (Sweden)

    Barinyima Nkoi

    2013-12-01

    Full Text Available This paper considers comparative assessment of simple and advanced cycle small-scale aero-derivative industrial gas turbines derived from helicopter engines. More particularly, investigation was made of technical performance of the small-scale aero-derivative engine cycles based on existing and projected cycles for applications in industrial power generation, combined heat and power concept, rotating equipment driving, and/or allied processes. The investigation was done by carrying out preliminary design and performance simulation of a simple cycle (baseline two-spool small-scale aero-derivative turboshaft engine model, and some advanced counterpart aero-derivative configurations. The advanced configurations consist of recuperated and intercooled/recuperated engine cycles of same nominal power rating of 1.567 MW. The baseline model was derived from the conversion of an existing helicopter engine model. In doing so, design point and off-design point performances of the engine models were established. In comparing their performances, it was observed that to a large extent, the advanced engine cycles showed superior performance in terms of thermal efficiency, and specific fuel consumption. In numerical terms, thermal efficiencies of recuperated engine cycle, and intercooled/recuperated engine cycles, over the simple cycle at DP increased by 13.5%, and 14.5% respectively, whereas specific fuel consumption of these cycles over simple cycle at DP decreased by 12.5%, and 13% respectively. This research relied on open access public literature for data.

  5. Tribological Limitations in Gas Turbine Engines: A Workshop to Identify the Challenges and Set Future Directions

    Science.gov (United States)

    DellaCorte, Chris; Pinkus, Oscar

    2000-01-01

    The following report represents a compendium of selected speaker presentation materials and observations made by Prof O. Pinkus at the NASA/ASME/Industry sponsored workshop entitled "Tribological Limitations in Gas Turbine Engines" held on September 15-17, 1999 in Albany, New York. The impetus for the workshop came from the ASME's Research Committee on Tribology whose goal is to explore new tribological research topics which may become future research opportunities. Since this subject is of current interest to other industrial and government entities the conference received cosponsorship as noted above. The conference was well attended by government, industrial and academic participants. Topics discussed included current tribological issues in gas turbines as well as the potential impact (drawbacks and advantages) of future tribological technologies especially foil air bearings and magnetic beatings. It is hoped that this workshop report may serve as a starting point for continued discussions and activities in oil-free turbomachinery systems.

  6. An experimental evaluation of the performance deficit of an aircraft engine starter turbine

    Science.gov (United States)

    Haas, J. E.; Roelke, R. J.; Hermann, P.

    1980-01-01

    An experimental investigation is presented to determine the aerodynamic performance deficit of a 13.5 - centimeter-tip-diameter aircraft engine starter turbine. The two-phased evaluation comprised both the stator and the stage performance, and the experimental design is described in detail. Data obtained from the investigation of three honeycomb shrouds clearly showed that the filled honeycomb reached a total efficiency of 0.868, 8.2 points higher than the open honeycomb shroud, at design equivalent conditions of speed and blade-jet speed ratio. It was concluded that the use of an open honeycomb shroud caused the large performance deficit for the starter turbine. Further research is suggested to ascertain stator inlet boundary layer measurements.

  7. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    C. W. Spicer

    1994-08-01

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  8. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    T. F. Lyon

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  9. Gas Turbine Engine Control Design Using Fuzzy Logic and Neural Networks

    Directory of Open Access Journals (Sweden)

    M. Bazazzadeh

    2011-01-01

    Full Text Available This paper presents a successful approach in designing a Fuzzy Logic Controller (FLC for a specific Jet Engine. At first, a suitable mathematical model for the jet engine is presented by the aid of SIMULINK. Then by applying different reasonable fuel flow functions via the engine model, some important engine-transient operation parameters (such as thrust, compressor surge margin, turbine inlet temperature, etc. are obtained. These parameters provide a precious database, which train a neural network. At the second step, by designing and training a feedforward multilayer perceptron neural network according to this available database; a number of different reasonable fuel flow functions for various engine acceleration operations are determined. These functions are used to define the desired fuzzy fuel functions. Indeed, the neural networks are used as an effective method to define the optimum fuzzy fuel functions. At the next step, we propose a FLC by using the engine simulation model and the neural network results. The proposed control scheme is proved by computer simulation using the designed engine model. The simulation results of engine model with FLC illustrate that the proposed controller achieves the desired performance and stability.

  10. Aircraft engine-mounted camera system for long wavelength infrared imaging of in-service thermal barrier coated turbine blades

    Science.gov (United States)

    Markham, James; Cosgrove, Joseph; Scire, James; Haldeman, Charles; Agoos, Ian

    2014-12-01

    This paper announces the implementation of a long wavelength infrared camera to obtain high-speed thermal images of an aircraft engine's in-service thermal barrier coated turbine blades. Long wavelength thermal images were captured of first-stage blades. The achieved temporal and spatial resolutions allowed for the identification of cooling-hole locations. The software and synchronization components of the system allowed for the selection of any blade on the turbine wheel, with tuning capability to image from leading edge to trailing edge. Its first application delivered calibrated thermal images as a function of turbine rotational speed at both steady state conditions and during engine transients. In advance of presenting these data for the purpose of understanding engine operation, this paper focuses on the components of the system, verification of high-speed synchronized operation, and the integration of the system with the commercial jet engine test bed.

  11. Nonintrusive performance measurement of a gas turbine engine in real time

    Science.gov (United States)

    DeSilva, Upul P.; Claussen, Heiko

    2017-08-29

    Performance of a gas turbine engine is monitored by computing a mass flow rate through the engine. Acoustic time-of-flight measurements are taken between acoustic transmitters and receivers in the flow path of the engine. The measurements are processed to determine average speeds of sound and gas flow velocities along those lines-of-sound. A volumetric flow rate in the flow path is computed using the gas flow velocities together with a representation of the flow path geometry. A gas density in the flow path is computed using the speeds of sound and a measured static pressure. The mass flow rate is calculated from the gas density and the volumetric flow rate.

  12. Remaining Useful Life Prediction of Gas Turbine Engine using Autoregressive Model

    Directory of Open Access Journals (Sweden)

    Ahsan Shazaib

    2017-01-01

    Full Text Available Gas turbine (GT engines are known for their high availability and reliability and are extensively used for power generation, marine and aero-applications. Maintenance of such complex machines should be done proactively to reduce cost and sustain high availability of the GT. The aim of this paper is to explore the use of autoregressive (AR models to predict remaining useful life (RUL of a GT engine. The Turbofan Engine data from NASA benchmark data repository is used as case study. The parametric investigation is performed to check on any effect of changing model parameter on modelling accuracy. Results shows that a single sensory data cannot accurately predict RUL of GT and further research need to be carried out by incorporating multi-sensory data. Furthermore, the predictions made using AR model seems to give highly pessimistic values for RUL of GT.

  13. Ferrographic and spectrometer oil analysis from a failed gas turbine engine

    Science.gov (United States)

    Jones, W. R., Jr.

    1982-01-01

    An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. It was concluded that a severe surge may have caused interference between rotating and stationary compressor that either directly or indirectly ignited the titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph, a plasma, an atomic absorption, and an emission spectrometer to see if this information would aid in the engine failure diagnosis. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism nor a high level of wear debris was detected in the engine oil sample taken just prior to the test in which the failure occurred. However, low concentrations (0.2 to 0.5 ppm) of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations ( 2 ppm) were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure. The oil analyses eliminated a lubrication system bearing or shaft seal failure as the cause of the engine failure.

  14. Fault diagnosis for micro-gas turbine engine sensors via wavelet entropy.

    Science.gov (United States)

    Yu, Bing; Liu, Dongdong; Zhang, Tianhong

    2011-01-01

    Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can't be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient.

  15. Experimental and Numerical Research of a Novel Combustion Chamber for Small Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Hybl R.

    2013-04-01

    Full Text Available New combustion chamber concept (based on burner JETIS-JET Induced Swirl for small gas turbine engine (up to 200kW is presented in this article. The combustion chamber concept is based on the flame stabilization by the generated swirl swirl generated by two opposite tangentially arranged jet tubes in the intermediate zone, this arrangement replaces air swirler, which is very complicated and expensive part in the scope of small gas turbines with annular combustion chamber. The mixing primary jets are oriented partially opposite to the main exhaust gasses flow, this enhances hot product recirculation and fuel-air mixing necessary for low NOx production and flame stability. To evaluate the designed concept a JETIS burner demonstrator (methane fuel was manufactured and atmospheric experimental measurements of CO, NOx for various fuel nozzles and jet tubes the configuration were done. Results of these experiments and comparison with CFD simulation are presented here. Practical application of the new chamber concept in small gas turbine liquid fuel combustor was evaluated (verified on 3 nozzles planar combustor sector test rig at atmospheric conditions results of the experiment and numerical simulation are also presented.

  16. Effect of technological heredity on the fatigue strength in the manufacture of gas turbine engine blades

    Science.gov (United States)

    Smirnov, G. V.; Pronichev, N. D.; Nekhoroshev, M. V.

    2017-02-01

    In the study, the task of researching of the finishing-strengthening machining stage of gas turbine engine compressor blades manufactured of titanium and nickel-chromium alloys in order to extend their service life was solved. The application of electrochemical pulse machining as a technological heredity barrier was substantiated since this method allows a considerable decrease of the residual stress and surface layer work hardening. To ensure the extended service life of blades, the conditions for the subsequent finishing-strengthening machining were identified.

  17. Analysing the Possible Ways for Short-Term Forcing Gas Turbine Engines in Auxiliary Power Unit

    Directory of Open Access Journals (Sweden)

    N. I. Trotskii

    2016-01-01

    Full Text Available Using a gas turbine energy unit as an example, the article discusses possible ways for forcing the short-term gas turbine engines (GTE. The introduction explains the need for forcing the air transport and marine GTE in specific driving conditions and offers the main methods. Then it analyzes the three main short-term forcing methods according to GTE power, namely: precompressor water injection, a short-term rise in temperature after the combustion chamber, and feeding an additional compressed air into combustion chamber from the reserve cylinders.The analysis of the water injection method to force a GTE presents the main provisions and calculation results of the cycle, as a function of engine power on the amount of water injected into compressor inlet. It is shown that with water injection into compressor inlet in an amount of 1% of the total airflow there is a 17% power increase in the compressor. It also lists the main implementation problems of this method and makes a comparison with the results of other studies on the water injection into compressor.Next, the article concerns the GTE short-term forcing method through the pre-turbine short-term increase in the gas temperature. The article presents the calculation results of the cycle as a function of the power and the fuel-flow rate on the gas temperature at the turbine inlet. It is shown that with increasing temperature by 80 degrees the engine power increases by 11.2% and requires 11% more fuel. In the analysis of this method arises an issue of thermal barrier coating on the blade surface. The article discusses the most common types of coatings and their main shortcomings. It lists the main challenges and some ways of their solving when using this method to implement the short-term forcing.The last method under consideration is GTE short-term forcing by feeding the compressed air into the combustion chamber from the additional reserve cylinders. It should be noted that this method is

  18. Engineering diagnostics for vortex-induced stay vanes cracks in a Francis turbine

    Science.gov (United States)

    D'Agostini Neto, Alexandre; Gissoni, Humberto, Dr.; Gonçalves, Manuel, Dr.; Cardoso, Rogério; Jung, Alexander, Dr.; Meneghini, Julio, Prof.

    2016-11-01

    Despite the fact that vortex-induced vibration (VIV) in hydraulic turbines components (especially in stay vanes) is a well-known phenomenon, it still remains challenging for operation and maintenance teams in several power plants around the world. Since the first publication of a similar problem in 1967, literature shows that at least 27 other turbines witnessed strong stay vane vibrations associated with vortex shedding. Recurrent stay vane cracks in a 250 MW Francis turbine in Brazil motivated an engineering study involving prototype measurements, structural and Computational Fluid Dynamics (CFD) analysis in order to determine a proper geometry modification that could eliminate the periodic vortex wake generated at the stay vanes trailing edge. First cracks appeared in 1978 just after the machine was put into operation. A study published in 1982 associated these cracks with dynamic excitations caused by the water flow at high flow conditions. New stay vane profiles were proposed and executed as well as improved welding recommendations. Cracks however, continued to appear requiring welding repairs roughly every two years. Although Voith Hydro was not the original equipment manufacturer for these units, the necessary information was available to study the issue and propose and execute new stay vane profiles. This paper details the approach taken for the study. First, indirect vibration measurements were used to determine vibration frequencies to help to characterize the affected mode shapes. These results were compared to finite element (FE) calculations. Strain gage measurements performed afterwards confirmed the conclusions of this analysis. Next, transient CFD calculations were run to reproduce the measured phenomenon and to serve as a basis for a new stay vane geometry. This modification was then implemented in the actual turbine stay vanes. A new set of indirect vibration measurements indicated the effectiveness of the proposed solution. Final confirmation

  19. Case Studies of Fatigue Life Improvement Using Low Plasticity Burnishing in Gas Turbine Engine Applications

    Science.gov (United States)

    Prevey, Paul S.; Shepard, Michael; Ravindranath, Ravi A.; Gabb, Timothy

    2003-01-01

    Surface enhancement technologies such as shot peening, laser shock peening (LSP), and low plasticity burnishing (LPB) can provide substantial fatigue life improvement. However, to be effective, the compressive residual stresses that increase fatigue strength must be retained in service. For successful integration into turbine design, the process must be affordable and compatible with the manufacturing environment. LPB provides thermally stable compression of comparable magnitude and even greater depth than other methods, and can be performed in conventional machine shop environments on CNC machine tools. LPB provides a means to extend the fatigue lives of both new and legacy aircraft engines and ground-based turbines. Improving fatigue performance by introducing deep stable layers of compressive residual stress avoids the generally cost prohibitive alternative of modifying either material or design. The X-ray diffraction based background studies of thermal and mechanical stability of surface enhancement techniques are briefly reviewed, demonstrating the importance of minimizing cold work. The LPB process, tooling, and control systems are described. An overview of current research programs conducted for engine OEMs and the military to apply LPB to a variety of engine and aging aircraft components are presented. Fatigue performance and residual stress data developed to date for several case studies are presented including: * The effect of LPB on the fatigue performance of the nickel based super alloy IN718, showing fatigue benefit of thermal stability at engine temperatures. * An order of magnitude improvement in damage tolerance of LPB processed Ti-6-4 fan blade leading edges. * Elimination of the fretting fatigue debit for Ti-6-4 with prior LPB. * Corrosion fatigue mitigation with LPB in Carpenter 450 steel. *Damage tolerance improvement in 17-4PH steel. Where appropriate, the performance of LPB is compared to conventional shot peening after exposure to engine

  20. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    Science.gov (United States)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  1. GETRAN: A generic, modularly structured computer code for simulation of dynamic behavior of aero- and power generation gas turbine engines

    Science.gov (United States)

    Schobeiri, M. T.; Attia, M.; Lippke, C.

    1994-07-01

    The design concept, the theoretical background essential for the development of the modularly structured simulation code GETRAN, and several critical simulation cases are presented in this paper. The code being developed under contract with NASA Lewis Research Center is capable of simulating the nonlinear dynamic behavior of single- and multispool core engines, turbofan engines, and power generation gas turbine engines under adverse dynamic operating conditions. The modules implemented into GETRAN correspond to components of existing and new-generation aero- and stationary gas turbine engines with arbitrary configuration and arrangement. For precise simulation of turbine and compressor components, row-by-row diabatic and adiabatic calculation procedures are implemented that account for the specific turbine and compressor cascade, blade geometry, and characteristics. The nonlinear, dynamic behavior of the subject engine is calculated solving a number of systems of partial differential equations, which describe the unsteady behavior of each component individually. To identify each differential equation system unambiguously, special attention is paid to the addressing of each component. The code is capable of executing the simulation procedure at four levels, which increase with the degree of complexity of the system and dynamic event. As representative simulations, four different transient cases with single- and multispool thrust and power generation engines were simulated. These transient cases vary from throttling the exit nozzle area, operation with fuel schedule, rotor speed control, to rotating stall and surge.

  2. Data-Mining Toolset Developed for Determining Turbine Engine Part Life Consumption

    Science.gov (United States)

    Litt, Jonathan S.

    2003-01-01

    The current practice in aerospace turbine engine maintenance is to remove components defined as life-limited parts after a fixed time, on the basis of a predetermined number of flight cycles. Under this schedule-based maintenance practice, the worst-case usage scenario is used to determine the usable life of the component. As shown, this practice often requires removing a part before its useful life is fully consumed, thus leading to higher maintenance cost. To address this issue, the NASA Glenn Research Center, in a collaborative effort with Pratt & Whitney, has developed a generic modular toolset that uses data-mining technology to parameterize life usage models for maintenance purposes. The toolset enables a "condition-based" maintenance approach, where parts are removed on the basis of the cumulative history of the severity of operation they have experienced. The toolset uses data-mining technology to tune life-consumption models on the basis of operating and maintenance histories. The flight operating conditions, represented by measured variables within the engine, are correlated with repair records for the engines, generating a relationship between the operating condition of the part and its service life. As shown, with the condition-based maintenance approach, the lifelimited part is in service until its usable life is fully consumed. This approach will lower maintenance costs while maintaining the safety of the propulsion system. The toolset is a modular program that is easily customizable by users. First, appropriate parametric damage accumulation models, which will be functions of engine variables, must be defined. The tool then optimizes the models to match the historical data by computing an effective-cycle metric that reduces the unexplained variability in component life due to each damage mode by accounting for the variability in operational severity. The damage increment due to operating conditions experienced during each flight is used to compute

  3. Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air

    Science.gov (United States)

    Bland, Robert J [Oviedo, FL; Horazak, Dennis A [Orlando, FL

    2012-03-06

    A gas turbine engine is provided comprising an outer shell, a compressor assembly, at least one combustor assembly, a turbine assembly and duct structure. The outer shell includes a compressor section, a combustor section, an intermediate section and a turbine section. The intermediate section includes at least one first opening and at least one second opening. The compressor assembly is located in the compressor section to define with the compressor section a compressor apparatus to compress air. The at least one combustor assembly is coupled to the combustor section to define with the combustor section a combustor apparatus. The turbine assembly is located in the turbine section to define with the turbine section a turbine apparatus. The duct structure is coupled to the intermediate section to receive at least a portion of the compressed air from the compressor apparatus through the at least one first opening in the intermediate section, pass the compressed air to an apparatus for separating a portion of oxygen from the compressed air to produced vitiated compressed air and return the vitiated compressed air to the intermediate section via the at least one second opening in the intermediate section.

  4. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy Assessed

    Science.gov (United States)

    Gayda, John

    2002-01-01

    Gas turbine engines for future subsonic aircraft will require nickel-base disk alloys that can be used at temperatures in excess of 1300 F. Smaller turbine engines, with higher rotational speeds, also require disk alloys with high strength. To address these challenges, NASA funded a series of disk programs in the 1990's. Under these initiatives, Honeywell and Allison focused their attention on Alloy 10, a high-strength, nickel-base disk alloy developed by Honeywell for application in the small turbine engines used in regional jet aircraft. Since tensile, creep, and fatigue properties are strongly influenced by alloy grain size, the effect of heat treatment on grain size and the attendant properties were studied in detail. It was observed that a fine grain microstructure offered the best tensile and fatigue properties, whereas a coarse grain microstructure offered the best creep resistance at high temperatures. Therefore, a disk with a dual microstructure, consisting of a fine-grained bore and a coarse-grained rim, should have a high potential for optimal performance. Under NASA's Ultra-Safe Propulsion Project and Ultra-Efficient Engine Technology (UEET) Program, a disk program was initiated at the NASA Glenn Research Center to assess the feasibility of using Alloy 10 to produce a dual-microstructure disk. The objectives of this program were twofold. First, existing dual-microstructure heat treatment (DMHT) technology would be applied and refined as necessary for Alloy 10 to yield the desired grain structure in full-scale forgings appropriate for use in regional gas turbine engines. Second, key mechanical properties from the bore and rim of a DMHT Alloy 10 disk would be measured and compared with conventional heat treatments to assess the benefits of DMHT technology. At Wyman Gordon and Honeywell, an active-cooling DMHT process was used to convert four full-scale Alloy 10 disks to a dual-grain microstructure. The resulting microstructures are illustrated in the

  5. Quantification of aldehydes emissions from alternative and renewable aviation fuels using a gas turbine engine

    Science.gov (United States)

    Li, Hu; Altaher, Mohamed A.; Wilson, Chris W.; Blakey, Simon; Chung, Winson; Rye, Lucas

    2014-02-01

    In this research three renewable aviation fuel blends including two HEFA (Hydrotreated Ester and Fatty Acid) blends and one FAE (Fatty Acids Ethyl Ester) blend with conventional Jet A-1 along with a GTL (Gas To Liquid) fuel have been tested for their aldehydes emissions on a small gas turbine engine. Three strong ozone formation precursors: formaldehyde, acetaldehyde and acrolein were measured in the exhaust at different operational modes and compared to neat Jet A-1. The aim is to assess the impact of renewable and alternative aviation fuels on aldehydes emissions from aircraft gas turbine engines so as to provide informed knowledge for the future deployment of new fuels in aviation. The results show that formaldehyde was a major aldehyde species emitted with a fraction of around 60% of total measured aldehydes emissions for all fuels. Acrolein was the second major emitted aldehyde species with a fraction of ˜30%. Acetaldehyde emissions were very low for all the fuels and below the detention limit of the instrument. The formaldehyde emissions at cold idle were up to two to threefold higher than that at full power. The fractions of formaldehyde were 6-10% and 20% of total hydrocarbon emissions in ppm at idle and full power respectively and doubled on a g kg-1-fuel basis.

  6. Evaluation of Ceramic Matrix Composite Technology for Aircraft Turbine Engine Applications

    Science.gov (United States)

    Halbig, Michael C.; Jaskowiak, Martha H.; Kiser, James D.; Zhu, Dongming

    2013-01-01

    The goals of the NASA Environmentally Responsible Aviation (ERA) Project are to reduce the NO(x) emissions, fuel burn, and noise from turbine engines. In order to help meet these goals, commercially-produced ceramic matrix composite (CMC) components and environmental barrier coatings (EBCs) are being evaluated as parts and panels. The components include a CMC combustor liner, a CMC high pressure turbine vane, and a CMC exhaust nozzle as well as advanced EBCs that are tailored to the operating conditions of the CMC combustor and vane. The CMC combustor (w/EBC) could provide 2700 F temperature capability with less component cooling requirements to allow for more efficient combustion and reductions in NOx emissions. The CMC vane (w/EBC) will also have temperature capability up to 2700 F and allow for reduced fuel burn. The CMC mixer nozzle will offer reduced weight and improved mixing efficiency to provide reduced fuel burn. The main objectives are to evaluate the manufacturability of the complex-shaped components and to evaluate their performance under simulated engine operating conditions. Progress in CMC component fabrication, evaluation, and testing is presented in which the goal is to advance from the proof of concept validation (TRL 3) to a system/subsystem or prototype demonstration in a relevant environment (TRL 6).

  7. Design, fabrication and spin testing of ceramic blade metal disk attachment

    Science.gov (United States)

    Calvert, G.

    1979-01-01

    A ceramic turbine blade-metal disk attachment was designed for small, non man-rated turbine engine applications. The selected design consisted of a hot pressed silicon nitride blade having a skewed dovetail attachment with a compliant interlayer between the disk and the blade. Two-dimensional and three-dimensional analyses predicted that life goals could be achieved, considering both NDE limitations and crack growth rates for the ceramic material. Twenty ceramic blades were fabricated to closely-held manufacturing tolerances. New fracture mechanics data at elevated temperature are presented.

  8. Estimation of Efficiency of the Cooling Channel of the Nozzle Blade of Gas-Turbine Engines

    Science.gov (United States)

    Vikulin, A. V.; Yaroslavtsev, N. L.; Zemlyanaya, V. A.

    2018-02-01

    The main direction of improvement of gas-turbine plants (GTP) and gas-turbine engines (GTE) is increasing the gas temperature at the turbine inlet. For the solution of this problem, promising systems of intensification of heat exchange in cooled turbine blades are developed. With this purpose, studies of the efficiency of the cooling channel of the nozzle blade in the basic modification and of the channel after constructive measures for improvement of the cooling system by the method of calorimetry in a liquid-metal thermostat were conducted. The combined system of heat-exchange intensification with the complicated scheme of branched channels is developed; it consists of a vortex matrix and three rows of inclined intermittent trip strips. The maximum value of hydraulic resistance ξ is observed at the first row of the trip strips, which is connected with the effect of dynamic impact of airflow on the channel walls, its turbulence, and rotation by 117° at the inlet to the channels formed by the trip strips. These factors explain the high value of hydraulic resistance equal to 3.7-3.4 for the first row of the trip strips. The obtained effect was also confirmed by the results of thermal tests, i.e., the unevenness of heat transfer on the back and on the trough of the blade is observed at the first row of the trip strips, which amounts 8-12%. This unevenness has a fading character; at the second row of the trip strips, it amounts to 3-7%, and it is almost absent at the third row. At the area of vortex matrix, the intensity of heat exchange on the blade back is higher as compared to the trough, which is explained by the different height of the matrix ribs on its opposite sides. The design changes in the nozzle blade of basic modification made it possible to increase the intensity of heat exchange by 20-50% in the area of the vortex matrix and by 15-30% on the section of inclined intermittent trip strips. As a result of research, new criteria dependences for the

  9. Effect of Microstructure on Time Dependent Fatigue Crack Growth Behavior In a P/M Turbine Disk Alloy

    Science.gov (United States)

    Telesman, Ignacy J.; Gabb, T. P.; Bonacuse, P.; Gayda, J.

    2008-01-01

    A study was conducted to determine the processes which govern hold time crack growth behavior in the LSHR disk P/M superalloy. Nineteen different heat treatments of this alloy were evaluated by systematically controlling the cooling rate from the supersolvus solutioning step and applying various single and double step aging treatments. The resulting hold time crack growth rates varied by more than two orders of magnitude. It was shown that the associated stress relaxation behavior for these heat treatments was closely correlated with the crack growth behavior. As stress relaxation increased, the hold time crack growth resistance was also increased. The size of the tertiary gamma' in the general microstructure was found to be the key microstructural variable controlling both the hold time crack growth behavior and stress relaxation. No relationship between the presence of grain boundary M23C6 carbides and hold time crack growth was identified which further brings into question the importance of the grain boundary phases in determining hold time crack growth behavior. The linear elastic fracture mechanics parameter, Kmax, is unable to account for visco-plastic redistribution of the crack tip stress field during hold times and thus is inadequate for correlating time dependent crack growth data. A novel methodology was developed which captures the intrinsic crack driving force and was able to collapse hold time crack growth data onto a single curve.

  10. 14 CFR 121.193 - Airplanes: Turbine engine powered: En route limitations: Two engines inoperative.

    Science.gov (United States)

    2010-01-01

    ... the Airplane Flight Manual, allows the airplane to fly from the point where the two engines are...-inoperative, en route, net flight path data in the Airplane Flight Manual, allows the airplane to fly from the... Airplane Flight Manual, allows the airplane to fly from the point where the two engines are assumed to fail...

  11. Vibration Monitoring of Gas Turbine Engines: Machine-Learning Approaches and Their Challenges

    Directory of Open Access Journals (Sweden)

    Ioannis Matthaiou

    2017-09-01

    Full Text Available In this study, condition monitoring strategies are examined for gas turbine engines using vibration data. The focus is on data-driven approaches, for this reason a novelty detection framework is considered for the development of reliable data-driven models that can describe the underlying relationships of the processes taking place during an engine’s operation. From a data analysis perspective, the high dimensionality of features extracted and the data complexity are two problems that need to be dealt with throughout analyses of this type. The latter refers to the fact that the healthy engine state data can be non-stationary. To address this, the implementation of the wavelet transform is examined to get a set of features from vibration signals that describe the non-stationary parts. The problem of high dimensionality of the features is addressed by “compressing” them using the kernel principal component analysis so that more meaningful, lower-dimensional features can be used to train the pattern recognition algorithms. For feature discrimination, a novelty detection scheme that is based on the one-class support vector machine (OCSVM algorithm is chosen for investigation. The main advantage, when compared to other pattern recognition algorithms, is that the learning problem is being cast as a quadratic program. The developed condition monitoring strategy can be applied for detecting excessive vibration levels that can lead to engine component failure. Here, we demonstrate its performance on vibration data from an experimental gas turbine engine operating on different conditions. Engine vibration data that are designated as belonging to the engine’s “normal” condition correspond to fuels and air-to-fuel ratio combinations, in which the engine experienced low levels of vibration. Results demonstrate that such novelty detection schemes can achieve a satisfactory validation accuracy through appropriate selection of two parameters of the

  12. Durability of zirconia thermal-barrier ceramic coatings on air-cooled turbine blades in cyclic jet engine operation

    Science.gov (United States)

    Liebert, C. H.; Jacobs, R. E.; Stecura, S.; Morse, C. R.

    1976-01-01

    Thermal barrier ceramic coatings of stabilized zirconia over a bond coat of Ni Cr Al Y were tested for durability on air cooled turbine rotor blades in a research turbojet engine. Zirconia stabilized with either yttria, magnesia, or calcia was investigated. On the basis of durability and processing cost, the yttria stabilized zirconia was considered the best of the three coatings investigated.

  13. Compact Combustor Integrated (CI) with Compressor and Turbine for Perspective Turbojet Engine

    Science.gov (United States)

    Strokin, V. N.; Volkov, S. A.; Ljashenko, V. P.; Popov, V. I.; Startzev, A. N.; Nigmatullin, R. Z.; Shilova, T. V.; Belikov, U. V.

    2017-11-01

    For several years, CIAM has conducted comprehensive work on the development the combustor integrated (CI) with air swirling. This project involved an integrated development of three components: diffuser, combustion chamber and nozzle guide vanes of turbine to reduce their length and, respectively, the length of the engine and obtain high performance elements with low emissions of harmful substances. The new frontal device was proposed for CI combustor. The design optimization of this type combustor was conducted in the compartments and in a full-size combustion chamber. It was shown the possibility of obtaining high combustion efficiency and low NOx emissions at a short length on cruise condition. By a simplified model of the frontal device it was shown experimentally that the proposed device provided a lighting-up and flame spreading in a wide range of equivalence ratio ER (ER > 0.014) at idling. It was shown that short vane diffuser with moderate swirling ensured high parameters of the combustion chamber. The use of residual swirling of the combustion products at the exit of combustor allows reducing the size, or the number of nozzle guide vanes of the turbine. In General, the use of the swirling of the air stream gives a possibility of total length reduction for all three elements by about 20 – 25 %.

  14. Distributions of grain parameters on the surface of aircraft engine turbine blades

    Directory of Open Access Journals (Sweden)

    J. Chmiela

    2010-10-01

    Full Text Available In the quality assurance system for components cast using the lost wax method, the object of evaluation is the grain size on the surface of the casting. This paper describes a new method for evaluating the primary grain parameters on the surface of aircraft engine turbine blades. Effectiveness of the method has been tested on two macrostructures distinguished by a high degree of diversity in the grain size. The grounds for evaluating the grain parameters consist of geometric measurement of the turbine blade using a laser profilometer and of approximation of the measurement results using a polynomial of a proper degree. The so obtained analytical non-planar surface serves as a reference point for an assessment of the parameters of grains observed on the real blade surface of a variable curvature. The aspects subjected to evaluation included: the grain areas, shape and elongation coefficients of grains on a non-planar surface of the blade airfoil, using measurements taken on a perpendicular projection by means of a stereoscopic microscope and image analysis methods, and by making calculations using the Mathematica® package.

  15. Energy efficient engine. Low pressure turbine test hardware detailed design report

    Science.gov (United States)

    Cherry, D. G.; Gay, C. H.; Lenahan, D. T.

    1982-01-01

    The low pressure turbine for the energy efficient engine is a five-stage configuration with moderate aerodynamic loading incorporating advanced features of decambered airfoils and extended blade overlaps at platforms and shrouds. Mechanical integrity of 18,000 hours on flowpath components and 36,000 hours on all other components is achieved along with no aeromechanical instabilities within the steady-state operating range. Selection of a large number (156) of stage 4 blades, together with an increased stage 4 vane-to-blade gap, assists in achieving FAR 36 acoustic goals. Active clearance control (ACC) of gaps at blade tips and interstage seals is achieved by fan air cooling judiciously applied at responsive locations on the casing. This ACC system is a major improvement in preventing deterioration of the 0.0381 cm (0.015 in.) clearances required to meet the integrated-core/low-spool turbine efficiency goal of 91.1% and the light propulsion system efficiency goal of 91.7%.

  16. Similarity Theory Based Radial Turbine Performance and Loss Mechanism Comparison between R245fa and Air for Heavy-Duty Diesel Engine Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-01-01

    Full Text Available Organic Rankine Cycles using radial turbines as expanders are considered as one of the most efficient technologies to convert heavy-duty diesel engine waste heat into useful work. Turbine similarity design based on the existing air turbine profiles is time saving. Due to totally different thermodynamic properties between organic fluids and air, its influence on turbine performance and loss mechanisms need to be analyzed. This paper numerically simulated a radial turbine under similar conditions between R245fa and air, and compared the differences of the turbine performance and loss mechanisms. Larger specific heat ratio of air leads to air turbine operating at higher pressure ratios. As R245fa gas constant is only about one-fifth of air gas constant, reduced rotating speeds of R245fa turbine are only 0.4-fold of those of air turbine, and reduced mass flow rates are about twice of those of air turbine. When using R245fa as working fluid, the nozzle shock wave losses decrease but rotor suction surface separation vortex losses increase, and eventually leads that isentropic efficiencies of R245fa turbine in the commonly used velocity ratio range from 0.5 to 0.9 are 3%–4% lower than those of air turbine.

  17. Design of a microprocessor-based Control, Interface and Monitoring (CIM unit for turbine engine controls research

    Science.gov (United States)

    Delaat, J. C.; Soeder, J. F.

    1983-01-01

    High speed minicomputers were used in the past to implement advanced digital control algorithms for turbine engines. These minicomputers are typically large and expensive. It is desirable for a number of reasons to use microprocessor-based systems for future controls research. They are relatively compact, inexpensive, and are representative of the hardware that would be used for actual engine-mounted controls. The Control, Interface, and Monitoring Unit (CIM) contains a microprocessor-based controls computer, necessary interface hardware and a system to monitor while it is running an engine. It is presently being used to evaluate an advanced turbofan engine control algorithm.

  18. Fuel nozzle assembly for use in turbine engines and methods of assembling same

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward

    2015-02-03

    A fuel nozzle for use with a turbine engine is described herein. The fuel nozzle includes a housing that is coupled to a combustor liner defining a combustion chamber. The housing includes an endwall that at least partially defines the combustion chamber. A plurality of mixing tubes extends through the housing for channeling fuel to the combustion chamber. Each mixing tube of the plurality of mixing tubes includes an inner surface that extends between an inlet portion and an outlet portion. The outlet portion is oriented adjacent the housing endwall. At least one of the plurality of mixing tubes includes a plurality of projections that extend outwardly from the outlet portion. Adjacent projections are spaced a circumferential distance apart such that a groove is defined between each pair of circumferentially-apart projections to facilitate enhanced mixing of fuel in the combustion chamber.

  19. Fuel injection assembly for use in turbine engines and method of assembling same

    Science.gov (United States)

    Berry, Jonathan Dwight; Johnson, Thomas Edward; York, William David; Uhm, Jong Ho

    2015-12-15

    A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes an end cover, an endcap assembly, a fluid supply chamber, and a plurality of tube assemblies positioned at the endcap assembly. Each of the tube assemblies includes housing having a fuel plenum and a cooling fluid plenum. The cooling fluid plenum is positioned downstream from the fuel plenum and separated from the fuel plenum by an intermediate wall. The plurality of tube assemblies also include a plurality of tubes that extends through the housing. Each of the plurality of tubes is coupled in flow communication with the fluid supply chamber and a combustion chamber positioned downstream from the tube assembly. The plurality of tube assemblies further includes an aft plate at a downstream end of the cooling fluid plenum. The plate includes at least one aperture.

  20. Combustor assembly for use in a turbine engine and methods of assembling same

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward

    2013-05-14

    A fuel nozzle assembly for use with a turbine engine is described herein. The fuel nozzle assembly includes a plurality of fuel nozzles positioned within an air plenum defined by a casing. Each of the plurality of fuel nozzles is coupled to a combustion liner defining a combustion chamber. Each of the plurality of fuel nozzles includes a housing that includes an inner surface that defines a cooling fluid plenum and a fuel plenum therein, and a plurality of mixing tubes extending through the housing. Each of the mixing tubes includes an inner surface defining a flow channel extending between the air plenum and the combustion chamber. At least one mixing tube of the plurality of mixing tubes including at least one cooling fluid aperture for channeling a flow of cooling fluid from the cooling fluid plenum to the flow channel.

  1. Acoustic transducer in system for gas temperature measurement in gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    DeSilva, Upul P.; Claussen, Heiko

    2017-07-04

    An apparatus for controlling operation of a gas turbine engine including at least one acoustic transmitter/receiver device located on a flow path boundary structure. The acoustic transmitter/receiver device includes an elongated sound passage defined by a surface of revolution having opposing first and second ends and a central axis extending between the first and second ends, an acoustic sound source located at the first end, and an acoustic receiver located within the sound passage between the first and second ends. The boundary structure includes an opening extending from outside the boundary structure to the flow path, and the second end of the surface of revolution is affixed to the boundary structure at the opening for passage of acoustic signals between the sound passage and the flow path.

  2. Improved impact-resistant boron/aluminum composites for use as turbine engine fan blades

    Science.gov (United States)

    Mcdanels, D. L.; Signorelli, R. A.

    1976-01-01

    Thin-sheet Charpy and Izod impact tests and standard full-size Charpy impact tests were conducted on unidirectional and angleply composites containing 4, 5.6 and 8 mil boron in 1100, 2024, 5052 and 6061 Al matrices. Impact failure modes of B/Al are proposed to describe the mechanisms involved and to provide insight for maximizing impact resistance. The impact strength of B/Al was significantly increased by proper selection of materials and processing. The use of more ductile matrices and larger diameter boron fibers gave the highest impact strengths by allowing matrix shear deformation and multiple fiber breakage. Pendulum impact test results of improved B/Al were higher than notched titanium and indicate sufficient foreign object damage protection to warrant consideration of B/Al for application to fan blades in aircraft gas turbine engines.

  3. Review of the DOE/NASA wind turbine engineering information system

    Science.gov (United States)

    Neustadter, H. E.; Spera, D. A.

    1984-01-01

    A statistical analysis of data obtained from the Technology and Engineering Information Systems was made. The systems analyzed consist of the following elements: (1) sensors which measure critical parameters (e.g., wind speed and direction, output power, blade loads and component vibrations); (2) remote multiplexing units (RMUs) on each wind turbine which frequency-modulate, multiplex and transmit sensor outputs; (3) on-site instrumentation to record, process and display the sensor output; and (4) statistical analysis of data. Two examples of the capabilities of these systems are presented. The first illustrates the standardized format for application of statistical analysis to each directly measured parameter. The second shows the use of a model to estimate the variability of the rotor thrust loading, which is a derived parameter. Previously announced in STAR as N82-23696

  4. Design of Offshore Wind Turbine Support Structures: Selected topics in the field of geotechnical engineering

    DEFF Research Database (Denmark)

    Bakmar, Christian LeBlanc

    Breaking the dependence on fossil fuels offers many opportunities for strengthened competitiveness, technological development and progress. Offshore wind power is a domestic, sustainable and largely untapped energy resource that provides an alternative to fossil fuels, reduces carbon emissions......, and decreases the economic and supply risks associated with reliance on imported fuels. Today, the modern offshore wind turbine offers competitive production prices for renewable energy and is therefore a key technology in achieving the energy and climate goals of the future. The overall aim of this Ph.......D. thesis was to enable low-cost and low-risk support structures to be designed in order to improve the economic feasibility of future offshore wind farms. The research work was divided in the following four selected research topics in the field of geotechnical engineering, relating to the monopile...

  5. The conversion of SO{sub 2} to SO{sub 3} in gas turbine engines

    Energy Technology Data Exchange (ETDEWEB)

    Miake-Lye, R.C.; Anderson, M.R.; Brown, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The oxidation of fuel sulfur to S(6) (SO{sub 3}+H{sub 2}SO{sub 4}) in a supersonic (Concorde) and a subsonic (ATTAS) aircraft engine is estimated numerically. The results indicate between 2% and 10% of the fuel sulfur is emitted as S(6). It is also shown that conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, resulting in a higher oxidation efficiency as the sulfur mass loading is decreased. SO{sub 2} and SO{sub 3} are the primary sulfur oxidation products, with less than 1% of fuel sulfur converted to H{sub 2}SO{sub 4}. For the Concorde, H{sub 2}SO{sub 4} was primarily formed during the supersonic expansion through the divergent nozzle. (author) 20 refs.

  6. Air/fuel supply system for use in a gas turbine engine

    Science.gov (United States)

    Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

    2014-06-17

    A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

  7. Comparison of ORC Turbine and Stirling Engine to Produce Electricity from Gasified Poultry Waste

    Directory of Open Access Journals (Sweden)

    Franco Cotana

    2014-08-01

    Full Text Available The Biomass Research Centre, section of CIRIAF, has recently developed a biomass boiler (300 kW thermal powered, fed by the poultry manure collected in a nearby livestock. All the thermal requirements of the livestock will be covered by the heat produced by gas combustion in the gasifier boiler. Within the activities carried out by the research project ENERPOLL (Energy Valorization of Poultry Manure in a Thermal Power Plant, funded by the Italian Ministry of Agriculture and Forestry, this paper aims at studying an upgrade version of the existing thermal plant, investigating and analyzing the possible applications for electricity production recovering the exceeding thermal energy. A comparison of Organic Rankine Cycle turbines and Stirling engines, to produce electricity from gasified poultry waste, is proposed, evaluating technical and economic parameters, considering actual incentives on renewable produced electricity.

  8. A Novel Data Hierarchical Fusion Method for Gas Turbine Engine Performance Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Feng Lu

    2016-10-01

    Full Text Available Gas path fault diagnosis involves the effective utilization of condition-based sensor signals along engine gas path to accurately identify engine performance failure. The rapid development of information processing technology has led to the use of multiple-source information fusion for fault diagnostics. Numerous efforts have been paid to develop data-based fusion methods, such as neural networks fusion, while little research has focused on fusion architecture or the fusion of different method kinds. In this paper, a data hierarchical fusion using improved weighted Dempster–Shaffer evidence theory (WDS is proposed, and the integration of data-based and model-based methods is presented for engine gas-path fault diagnosis. For the purpose of simplifying learning machine typology, a recursive reduced kernel based extreme learning machine (RR-KELM is developed to produce the fault probability, which is considered as the data-based evidence. Meanwhile, the model-based evidence is achieved using particle filter-fuzzy logic algorithm (PF-FL by engine health estimation and component fault location in feature level. The outputs of two evidences are integrated using WDS evidence theory in decision level to reach a final recognition decision of gas-path fault pattern. The characteristics and advantages of two evidences are analyzed and used as guidelines for data hierarchical fusion framework. Our goal is that the proposed methodology provides much better performance of gas-path fault diagnosis compared to solely relying on data-based or model-based method. The hierarchical fusion framework is evaluated in terms to fault diagnosis accuracy and robustness through a case study involving fault mode dataset of a turbofan engine that is generated by the general gas turbine simulation. These applications confirm the effectiveness and usefulness of the proposed approach.

  9. Performance Prediction and Simulation of Gas Turbine Engine Operation for Aircraft, Marine, Vehicular, and Power Generation

    Science.gov (United States)

    2007-02-01

    Single Shaft Gas Turbine . Constant TIT, B-159 Operation with Different Fuels and Water Injection Figure B.147 Schematic Representation of a Twin Spool ...Function of the Amount of Injected B-169 Steam for a Single Shaft Gas Turbine Figure B.155 Change of Compressor Pressure Ratio with Water Injection...Water Injection, for a Twin Shaft Gas Turbine B-171 Figure B.158 Range of Variation of Power Deviation for Existing Gas Turbines

  10. Combustion and regulations. Impacts of new regulations on medium-power thermal equipment (boilers, engines, turbines, dryers and furnaces); Combustion et reglementation. Incidences des nouvelles reglementations sur les equipements thermiques de moyenne puissance (chaudieres, moteurs, turbines, secheurs et fours)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This conference is composed of 20 papers on the influence of French and European new pollution regulations on medium size thermal equipment such as boilers, engines, turbines, dryers and furnaces. It is discussed what is going to change with new regulations, how they will apply to existing plants, what will be the impact on future equipment costs. The evolution of energy suppliers and equipment manufacturers facing these new regulations is also examined: fuel substitution, improvements in turbines and engines with water injection and special chambers, diesel engine control, lean mixtures and electronic control for gas engines... Means for reducing SOx, NOx and ash emission levels in boilers are also examined

  11. Exhaust gas emissions evaluation in the flight of a multirole fighter equipped with a F100-PW-229 turbine engine

    Directory of Open Access Journals (Sweden)

    Markowski Jarosław

    2017-01-01

    Full Text Available The issue of exhaust gas emission generated by turbine engines described in ICAO Annex 16 of the International Civil Aviation Convention includes a number of procedures and requirements. Their implementation is aimed at determining the value of the engine’s environmental parameters and comparing them to the values specified in the norms. The turbine engine exhaust gas emission test procedures are defined as stationary and the operating parameters values are set according to the LTO test. The engine load setting values refer to engine operating parameters that occur when the plane is in the vicinity of airports. Such a procedure is dedicated to civilian passenger and transport aircraft. The operating conditions of a multirole fighter aircraft vary considerably from passenger aircraft and the variability of their flight characteristics requires a special approach in assessing its environmental impact. This article attempts to evaluate the exhaust gas emissions generated by the turbine engine in a multirole fighter flight using the parameters recorded by the onboard flight recorder.

  12. Converging flow joint insert system at an intersection between adjacent transitions extending between a combustor and a turbine assembly in a gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Robert T.

    2017-09-26

    A transition duct system (100) for routing a gas flow from a combustor (102) to the first stage (104) of a turbine section (106) in a combustion turbine engine (108), wherein the transition duct system (100) includes one or more converging flow joint inserts (120) forming a trailing edge (122) at an intersection (124) between adjacent transition ducts (126, 128) is disclosed. The transition duct system (100) may include a transition duct (126, 128) having an internal passage (130) extending between an inlet (132, 184) to an outlet (134, 186) and may expel gases into the first stage turbine (104) with a tangential component. The converging flow joint insert (120) may be contained within a converging flow joint insert receiver (136) and disconnected from the transition duct bodies (126, 128) by which the converging flow joint insert (120) is positioned. Being disconnected eliminates stress formation within the converging flow joint insert (120), thereby enhancing the life of the insert. The converging flow joint insert (120) may be removable such that the insert (120) can be replaced once worn beyond design limits.

  13. A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, J.R.; Arnau, F.J.; Dolz, V.; Tiseira, A. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Cervello, C. [Conselleria de Cultura, Educacion y Deporte, Generalitat Valenciana (Spain)

    2008-12-15

    The paper presents a model of fixed and variable geometry turbines. The aim of this model is to provide an efficient boundary condition to model turbocharged internal combustion engines with zero- and one-dimensional gas dynamic codes. The model is based from its very conception on the measured characteristics of the turbine. Nevertheless, it is capable of extrapolating operating conditions that differ from those included in the turbine maps, since the engines usually work within these zones. The presented model has been implemented in a one-dimensional gas dynamic code and has been used to calculate unsteady operating conditions for several turbines. The results obtained have been compared with success against pressure-time histories measured upstream and downstream of the turbine during on-engine operation. (author)

  14. A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling

    International Nuclear Information System (INIS)

    Serrano, J.R.; Arnau, F.J.; Dolz, V.; Tiseira, A.; Cervello, C.

    2008-01-01

    The paper presents a model of fixed and variable geometry turbines. The aim of this model is to provide an efficient boundary condition to model turbocharged internal combustion engines with zero- and one-dimensional gas dynamic codes. The model is based from its very conception on the measured characteristics of the turbine. Nevertheless, it is capable of extrapolating operating conditions that differ from those included in the turbine maps, since the engines usually work within these zones. The presented model has been implemented in a one-dimensional gas dynamic code and has been used to calculate unsteady operating conditions for several turbines. The results obtained have been compared with success against pressure-time histories measured upstream and downstream of the turbine during on-engine operation

  15. Converging flow joint insert system at an intersection between adjacent transitions extending between a combustor and a turbine assembly in a gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, David J.; Carlson, Andrew; Stoker, Kyle C.

    2017-10-31

    A transition duct system for routing a gas flow in a combustion turbine engine is provided. The transition duct system includes one or more converging flow joint inserts forming a trailing edge at an intersection between adjacent transition ducts. The converging flow joint insert may be contained within a converging flow joint insert receiver and may be disconnected from the transition duct bodies by which the converging flow joint insert is positioned. Being disconnected eliminates stress formation within the converging flow joint insert, thereby enhancing the life of the insert. The converging flow joint insert may be removable such that the insert can be replaced once worn beyond design limits.

  16. Looking for diagnostics parameters of bearings of the gas turbine engine LM 2500 on the basis of mechanical contaminations in the lubricating oil

    Directory of Open Access Journals (Sweden)

    Waldemar MIRONIUK

    2009-01-01

    Full Text Available While operation a gas turbine engine more modest methods of research are brought into effect. But one of the basic methods to estimate the technical condition of gas turbine engines bearing is oil analysis. To estimate the technical condition of gas turbine engines bearing systems on the basis of oil research on, an x-ray method of radio-isotope fluorescence was used. This method has been also satisfactorily used in aircraft engine diagnosis.This paper presents the method of diagnosis bearings of marine gas turbines on the basis of studies of mechanical contamination in oil. Results of mechanical contamination research in oil vs time of engine work are presented. On the basis of experiments results the analytical function that makes calculating the future value of the process possible was chosen.

  17. Application of particle swarm optimization in gas turbine engine fuel controller gain tuning

    Science.gov (United States)

    Montazeri-Gh, M.; Jafari, S.; Ilkhani, M. R.

    2012-02-01

    This article presents the application of particle swarm optimization (PSO) for gain tuning of the gas turbine engine (GTE) fuel controller. For this purpose, the structure of a fuel controller is firstly designed based on the GTE control requirements and constraints. The controller gains are then tuned by PSO where the tuning process is formulated as an engineering optimization problem. In this study, the response time during engine acceleration and deceleration as well as the engine fuel consumption are considered as the objective functions. A computer simulation is also developed to evaluate the objective values for a single spool GTE. The GTE model employed for the simulation is a Wiener model, the parameters of which are extracted from experimental tests. In addition, the effect of neighbour acceleration on PSO results is studied. The results show that the neighbour acceleration factor has a considerable effect on the convergence rate of the PSO process. The PSO results are also compared with the results obtained through a genetic algorithm (GA) to show the relative merits of PSO. Moreover, the PSO results are compared with the results obtained from the dynamic programming (DP) method in order to illustrate the ability of proposed method in finding the global optimal solution. Furthermore, the objective function is also defined in multi-objective manner and the multi-objective particle swarm optimization (MOPSO) is applied to find the Pareto-front for the problem. Finally, the results obtained from the simulation of the optimized controller confirm the effectiveness of the proposed approach to design an optimal fuel controller resulting in an improved GTE performance as well as protection against the physical limitations.

  18. Fuel property effects on USAF gas turbine engine combustors and afterburners

    Science.gov (United States)

    Reeves, C. M.

    1984-01-01

    Since the early 1970s, the cost and availability of aircraft fuel have changed drastically. These problems prompted a program to evaluate the effects of broadened specification fuels on current and future aircraft engine combustors employed by the USAF. Phase 1 of this program was to test a set of fuels having a broad range of chemical and physical properties in a select group of gas turbine engine combustors currently in use by the USAF. The fuels ranged from JP4 to Diesel Fuel number two (DF2) with hydrogen content ranging from 14.5 percent down to 12 percent by weight, density ranging from 752 kg/sq m to 837 kg/sq m, and viscosity ranging from 0.830 sq mm/s to 3.245 sq mm/s. In addition, there was a broad range of aromatic content and physical properties attained by using Gulf Mineral Seal Oil, Xylene Bottoms, and 2040 Solvent as blending agents in JP4, JP5, JP8, and DF2. The objective of Phase 2 was to develop simple correlations and models of fuel effects on combustor performance and durability. The major variables of concern were fuel chemical and physical properties, combustor design factors, and combustor operating conditions.

  19. Stainless Steel Foil with Improved Creep-Resistance for Use in Primary Surface Recuperators for Gas Turbine Engines

    International Nuclear Information System (INIS)

    Browning, P.F.; Fitzpatrick, M.; Grubb, J.F.; Klug, R.C.; Maziasz, P.J.; Montague, J.P.; Painter, R.A.; Swindeman, R.W.

    1998-01-01

    Primary surface recuperators (PSRs) are compact heat-exchangers made from thin-foil type 347 austenitic stainless steel, which boost the efficiency of land-based gas turbine engines. Solar Turbines uses foil folded into a unique corrugated pattern to maximize the primary surface area for efficient heat transfer between hot exhaust gas on one side, and the compressor discharge air on the other side of the foil. Allegheny-Ludlum produces 0.003 - 0.0035 in. thick foil for a range of current turbine engines using PSRs that operate at up to 660 degrees C. Laboratory-scale processing modification experiments recently have demonstrated that dramatic improvements can be achieved in the creep resistance of such typical 347 stainless steel foils. The modified processing enables fine NbC carbide precipitates to develop during creep at 650-700 degrees C, which provides strength even with a fine grain size. Such improved creep-resistance is necessary for advanced turbine systems that will demand greater materials performance and reliability at higher operating conditions. The next challenges are to better understand the nature of the improved creep resistance in these 347 stainless steel foil, and to achieve similar improvements with scale-up to commercial foil production

  20. Stainless Steel Foil with Improved Creep-Resistance for Use in Primary Surface Recuperators for Gas Turbine Engines

    Energy Technology Data Exchange (ETDEWEB)

    Browning, P.F.; Fitzpatrick, M.; Grubb, J.F.; Klug, R.C.; Maziasz, P.J.; Montague, J.P.; Painter, R.A.; Swindeman, R.W.

    1998-10-12

    Primary surface recuperators (PSRs) are compact heat-exchangers made from thin-foil type 347 austenitic stainless steel, which boost the efficiency of land-based gas turbine engines. Solar Turbines uses foil folded into a unique corrugated pattern to maximize the primary surface area for efficient heat transfer between hot exhaust gas on one side, and the compressor discharge air on the other side of the foil. Allegheny-Ludlum produces 0.003 - 0.0035 in. thick foil for a range of current turbine engines using PSRs that operate at up to 660 degrees C. Laboratory-scale processing modification experiments recently have demonstrated that dramatic improvements can be achieved in the creep resistance of such typical 347 stainless steel foils. The modified processing enables fine NbC carbide precipitates to develop during creep at 650-700 degrees C, which provides strength even with a fine grain size. Such improved creep-resistance is necessary for advanced turbine systems that will demand greater materials performance and reliability at higher operating conditions. The next challenges are to better understand the nature of the improved creep resistance in these 347 stainless steel foil, and to achieve similar improvements with scale-up to commercial foil production.

  1. Blades and disks in gas turbines. Material and component behaviour. Project department D. Final report; Schaufeln und Scheiben in Gasturbinen. Werkstoff- und Bauteilverhalten. Projektbereich D. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Special Research Department No. 339, ``Disks and Blades in Gas Turbines - Material and Component Characteristics`` received financial support from 1988 through 1996. This final report discusses activities of the years 1994, 1995, and 1996. Project group D, ``Production and Quality Assurance``, investigated rotors and blades. Grinding techniques were developed and optimized for nickel base materials, and the effects of grinding on the marginal zones was investigated, including an analysis of intrinsic stresses induced by machining. In the field of ceramics, separation and production of reinforced ceramics was investigated, and techniques for vacuum soldering of ceramic/ceramic and ceramic/metal compounds for high-temperature applications were developed. In the framework of a part-project carried out at HMI, neutron diffraction was used for nondestructive analysis of volume intrinsic stresses near the joint both on model geometries and on the joint between metal shaft and ceramic rotor. The development and application of computerized tomography for testing of ceramic rotors and joints was an important contribution to quality assurance. (orig./MM) [Deutsch] Der Sonderforschungsbereich 339 `Schaufeln und Scheiben in Gasturbinen - Werkstoff- und Bauteilverhalten` wurde von 1988 bis Ende 1996 gefoerdert. Der vorliegende Abschlussbericht behandelt vor allem die Arbeiten der Jahre 1994, 1995 und 1996. Am Bauteil Rotor und Schaufel orientierten sich die Arbeiten des Projektbereichs D `Fertigung und Qualitaetssicherung`. Zum einen wurden hier Schleifverfahren fuer Nickelbasis-Werkstoffe entwickelt und optimiert und der Einfluss der Schleifbearbeitung auf die Randzoneneigenschaften studiert. Zur Randzonencharakterisierung gehoerte insbesondere auch die Analyse bearbeitungsinduzierter Eigenspannungen. Auf der Seite der Keramiken wurde zum einen die trennende Fertigung verstaerkter Keramiken untersucht. Zum anderen wurden Techniken fuer das Hochvakuumloeten von Keramik

  2. Final Technical Report on Investigation of Selective Non-Catalytic Processes for In-Situ Reduction of NOx and CO Emissions from Marine Gas Turbines and Diesel Engines

    National Research Council Canada - National Science Library

    Bowman, Craig

    1997-01-01

    .... These observations suggest the possibility of utilizing SNCR for reducing NO(x) emissions from marine gas turbines and Diesel engines by direct injection of a reductant species into the combustion chamber, possibly as a fuel...

  3. Development of a high-temperature durable catalyst for use in catalytic combustors for advanced automotive gas turbine engines

    Science.gov (United States)

    Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.

    1981-01-01

    Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.

  4. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    Science.gov (United States)

    2016-09-01

    only), which includes hot and cold dilution with an evaporator , and finally to instrumentation for particle number measurements . However, several...DC, CDP and plume BC was measure using a Laser Induced Incandescence (LII) instrument. Data for the BC LII mass measurements at the plume and...AFRL-RQ-WP-TR-2016-0131 DEMONSTRATION OF NOVEL SAMPLING TECHNIQUES FOR MEASUREMENT OF TURBINE ENGINE VOLATILE AND NON-VOLATILE PARTICULATE

  5. Characterization and Simulation of Time-Dependent Response of Structural Materials for Aero Structures and Turbine Engines (Postprint)

    Science.gov (United States)

    2017-03-31

    Division at the Materials & Manufacturing Directorate whose research and dedication have been instrumental in affecting the design and life management...capability. It is the decrease of capability as a function of time/usage/exposure that must be understood and predicted to optimize the design and life ...and life management strategies of aerospace components that comprise aircraft structures and turbine engines. Historically predictive models in these

  6. Testing and analysis of the impact on engine cycle parameters and control system modifications using hydrogen or methane as fuel in an industrial gas turbine

    Science.gov (United States)

    Funke, H. H.-W.; Keinz, J.; Börner, S.; Hendrick, P.; Elsing, R.

    2016-07-01

    The paper highlights the modification of the engine control software of the hydrogen (H2) converted gas turbine Auxiliary Power Unit (APU) GTCP 36-300 allowing safe and accurate methane (CH4) operation achieved without mechanical changes of the metering unit. The acceleration and deceleration characteristics of the engine controller from idle to maximum load are analyzed comparing H2 and CH4. Also, the paper presents the influence on the thermodynamic cycle of gas turbine resulting from the different fuels supported by a gas turbine cycle simulation of H2 and CH4 using the software GasTurb.

  7. Pelton turbines

    CERN Document Server

    Zhang, Zhengji

    2016-01-01

    This book concerns the theoretical foundations of hydromechanics of Pelton turbines from the engineering viewpoint. For reference purposes, all relevant flow processes and hydraulic aspects in a Pelton turbine have been analyzed completely and systematically. The analyses especially include the quantification of all possible losses existing in the Pelton turbine and the indication of most available potential for further enhancing the system efficiency. As a guideline the book therefore supports further developments of Pelton turbines with regard to their hydraulic designs and optimizations. It is thus suitable for the development and design engineers as well as those working in the field of turbo machinery. Many laws described in the book can also be directly used to simplify aspects of computational fluid dynamics (CFD) or to develop new computational methods. The well-executed examples help better understand the related flow mechanics.

  8. Multi-mode diagnosis of a gas turbine engine using an adaptive neuro-fuzzy system

    Directory of Open Access Journals (Sweden)

    Houman HANACHI

    2018-01-01

    Full Text Available Gas Turbine Engines (GTEs are vastly used for generation of mechanical power in a wide range of applications from airplane propulsion systems to stationary power plants. The gas-path components of a GTE are exposed to harsh operating and ambient conditions, leading to several degradation mechanisms. Because GTE components are mostly inaccessible for direct measurements and their degradation levels must be inferred from the measurements of accessible parameters, it is a challenge to acquire reliable information on the degradation conditions of the parts in different fault modes. In this work, a data-driven fault detection and degradation estimation scheme is developed for GTE diagnostics based on an Adaptive Neuro-Fuzzy Inference System (ANFIS. To verify the performance and accuracy of the developed diagnostic framework on GTE data, an ensemble of measurable gas path parameters has been generated by a high-fidelity GTE model under (a diverse ambient conditions and control settings, (b every possible combination of degradation symptoms, and (c a broad range of signal to noise ratios. The results prove the competency of the developed framework in fault diagnostics and reveal the sensitivity of diagnostic results to measurement noise for different degradation symptoms.

  9. Emissions and performance of catalysts for gas turbine catalytic combustors. [automobile engines

    Science.gov (United States)

    Anderson, D. N.

    1977-01-01

    Three noble-metal monolithic catalysts were tested in a 12-cm-dia. combustion test rig to obtain emissions and performance data at conditions simulating the operation of a catalytic combustor for an automotive gas turbine engine. Tests with one of the catalysts at 800 K inlet mixture temperature, 3 x 10 to the 5th Pa pressure, and a reference velocity (catalyst bed inlet velocity) of 10 m/sec demonstrated greater than 99 percent combustion efficiency for reaction temperatures higher than 1300 K. With a reference velocity of 25 m/sec the reaction temperature required to achieve the same combustion-efficiency increased to 1380 K. The exit temperature pattern factors for all three catalysts were below 0.1 when adiabatic reaction temperatures were higher than 1400 K. The highest pressure drop was 4.5 percent at 25 m/sec reference velocity. Nitrogen oxides emissions were less than 0.1 g NO2/kg fuel for all test conditions.

  10. Characterization and comparative investigation of thermally insulating layers for the turbine and engine construction

    International Nuclear Information System (INIS)

    Steffens, H.D.; Fischer, U.

    1987-01-01

    The aim of the research project was to subject commercially produced thermal insulation layer systems, the use of which seems promising for engine and turbine construction, to standardized characterisation, testing and comparison. Suitable methods and procedures for this had to be developed, in order to be able to derive instructions for optimisation guidelines for the production of improved thermal insulation systems from the results of investigations. In the context of the research project, a computer-controlled thermal shock test rig was first developed, designed and built. This test rig was designed so that important test conditions, such as the heating and cooling speed could be varied reproducibly over wide ranges. Methods and procedures were worked out, which permit a comparative qualitative and quantitative characterisation of layers of thermal insulation. From metallographic investigations, the layer build-up, layer structure, porosity and crack morphology of the layers in the delivered state and after testing could be assessed and compared. X-ray fine structure investigations gave information on the type and quantity of the phases occurring in the ceramic layers. The results of thermal shock tests which were done at different temperature intervals depending on the substrate, could be correlated with the build-up of layers and supplied information on damage mechanisms and the course of failure. (orig.) With 57 figs., 16 tabs., 89 refs [de

  11. The atomization and burning of biofuels in the combustion chambers of gas turbine engines

    Science.gov (United States)

    Maiorova, A. I.; Vasil’ev, A. Yu; Sviridenkov, A. A.; Chelebyan, O. G.

    2017-11-01

    The present work analyzes the effect of physical properties of liquid fuels with high viscosity (including biofuels) on the spray and burning characteristics. The study showed that the spray characteristics behind devices well atomized fuel oil, may significantly deteriorate when using biofuels, until the collapse of the fuel bubble. To avoid this phenomenon it is necessary to carry out the calculation of the fuel film form when designing the nozzles. As a result of this calculation boundary curves in the coordinates of the Reynolds number on fuel - the Laplace number are built, characterizing the transition from sheet breakup to spraying. It is shown that these curves are described by a power function with the same exponent for nozzles of various designs. The swirl of air surrounding the nozzle in the same direction, as the swirl of fuel film, can significantly improve the performance of atomization of highly viscous fuel. Moreover the value of the tangential air velocity has the determining influence on the film shape. For carrying out of hot tests in aviation combustor some embodiments of liquid fuels were proved and the most preferred one was chosen. Fire tests of combustion chamber compartment at conventional fuel has shown comprehensible characteristics, in particular wide side-altars of the stable combustion. The blended biofuel application makes worse combustion stability in comparison with kerosene. A number of measures was recommended to modernize the conventional combustors when using biofuels in gas turbine engines.

  12. Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 2: Materials and coatings

    Science.gov (United States)

    Bhushan, B.; Ruscitto, D.; Gray, S.

    1978-01-01

    Material coatings for an air-lubricated, compliant journal bearing for an automotive gas turbine engine were exposed to service test temperatures of 540 C or 650 C for 300 hours, and to 10 temperature cycles from room temperatures to the service test temperatures. Selected coatings were then put on journal and partial-arc foils and tested in start-stop cycle tests at 14 kPa (2 psi) loading for 2000 cycles. Half of the test cycles were performed at a test chamber service temperature of 540 C (1000 F) or 650 C (1200 F); the other half were performed at room temperature. Based on test results, the following combinations and their service temperature limitations are recommended: HL-800 TM (CdO and graphite) on foil versus chrome carbide on journal up to 370 C (700 F); NASA PS 120 (Tribaloy 400, silver and CaF2 on journal versus uncoated foil up to 540 C (1000 F); and Kaman DES on journal and foil up to 640 C (1200 F). Kaman DES coating system was further tested successfully at 35 kPa (5 psi) loading for 2000 start-stop cycles.

  13. Inhomogeneity of the grain size of aircraft engine turbine polycrystalline blades

    Directory of Open Access Journals (Sweden)

    J. Chmiela

    2011-10-01

    Full Text Available The determination of the behaviour of inhomogeneous materials with a complex microstructure requires taking into account the inhomogeneity of the grain size, as it is the basis for the process of designing and modelling effective behaviours. Therefore, the functional description of the inhomogeneity is becoming an important issue. The paper presents an analytical approach to the grain size inhomogeneity, based on the derivative of a logarithmic-logistic function. The solution applied enabled an effective evaluation of the inhomogeneity of two macrostructures of aircraft engine turbine blades, characterized by a high degree of diversity in the grain size. For the investigated single-modal and bimodal grain size distributions on a perpendicular projection and for grains with a non-planar surface, we identified the parameters that describe the degree of inhomogeneity of the constituents of weight distributions and we also derived a formula describing the overall degree of inhomogeneity of bimodal distributions. The solution presented in the paper is of a general nature and it can be used to describe the degree of inhomogeneity of multi-modal distributions. All the calculations were performed using the Mathematica® package.

  14. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    Science.gov (United States)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; hide

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  15. A method to estimate weight and dimensions of aircraft gas turbine engines. Volume 1: Method of analysis

    Science.gov (United States)

    Pera, R. J.; Onat, E.; Klees, G. W.; Tjonneland, E.

    1977-01-01

    Weight and envelope dimensions of aircraft gas turbine engines are estimated within plus or minus 5% to 10% using a computer method based on correlations of component weight and design features of 29 data base engines. Rotating components are estimated by a preliminary design procedure where blade geometry, operating conditions, material properties, shaft speed, hub-tip ratio, etc., are the primary independent variables used. The development and justification of the method selected, the various methods of analysis, the use of the program, and a description of the input/output data are discussed.

  16. Thermal stress analysis of a graded zirconia/metal gas path seal system for aircraft gas turbine engines

    Science.gov (United States)

    Taylor, C. M.

    1977-01-01

    A ceramic/metallic aircraft gas turbine outer gas path seal designed to enable improved engine performance is studied. Flexible numerical analysis schemes suitable for the determination of transient temperature profiles and thermal stress distributions in the seal are outlined. An estimation of the stresses to which a test seal is subjected during simulated engine deceleration from sea level takeoff to idle conditions is made. Experimental evidence has indicated that the surface layer of the seal is probably subjected to excessive tensile stresses during cyclic temperature loading. This assertion is supported by the analytical results presented. Brief consideration is given to means of mitigating this adverse stressing.

  17. Advanced SiC/SiC Ceramic Composites For Gas-Turbine Engine Components

    Science.gov (United States)

    Yun, H. M.; DiCarlo, J. A.; Easler, T. E.

    2004-01-01

    NASA Glenn Research Center (GRC) is developing a variety of advanced SiC/SiC ceramic composite (ASC) systems that allow these materials to operate for hundreds of hours under stress in air at temperatures approaching 2700 F. These SiC/SiC composite systems are lightweight (approximately 30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive gas-turbine engine environments. The key for the ASC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays higher thermal stability than any other SiC- based ceramic fibers and possesses an in-situ grown BN surface layer for higher environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics (COIC). Further capability is then derived by using chemical vapor infiltration (CVI) and/or polymer infiltration and pyrolysis (PIP) to form a Sic-based matrix with high creep and rupture resistance as well as high thermal conductivity. The objectives of this study were (1) to optimize the constituents and processing parameters for a Sylramic-iBN fiber reinforced ceramic composite system in which the Sic-based matrix is formed at COIC almost entirely by PIP (full PIP approach), (2) to evaluate the properties of this system in comparison to other 2700 F Sylramic-iBN systems in which the matrix is formed by full CVI and CVI + PIP, and (3) to examine the pros and cons of the full PIP approach for fabricating hot-section engine components. A key goal is the development of a composite system with low porosity, thereby providing high modulus, high matrix cracking strength, high interlaminar strength, and high thermal conductivity, a major property requirement for engine components that will experience high thermal gradients during service. Other key composite property goals are demonstration at

  18. The Effect of Tungsten and Niobium on the Stress Relaxation Rates of Disk Alloy CH98

    Science.gov (United States)

    Gayda, John

    2003-01-01

    Gas turbine engines for future subsonic transports will probably have higher pressure ratios which will require nickel-base superalloy disks with 1300 to 1400 F temperature capability. Several advanced disk alloys are being developed to fill this need. One of these, CH98, is a promising candidate for gas turbine engines and is being studied in NASA s Advanced Subsonic Technology (AST) program. For large disks, residual stresses generated during quenching from solution heat treatment are often reduced by a stabilization heat treatment, in which the disk is heated to 1500 to 1600 F for several hours followed by a static air cool. The reduction in residual stress levels lessens distortion during machining of disks. However, previous work on CH98 has indicated that stabilization treatments decrease creep capability. Additions of the refractory elements tungsten and niobium improve tensile and creep properties after stabilization, while maintaining good crack growth resistance at elevated temperatures. As the additions of refractory elements increase creep capability, they might also effect stress relaxation rates and therefore the reduction in residual stress levels obtained for a given stabilization treatment. To answer this question, the stress relaxation rates of CH98 with and without tungsten and niobium additions are compared in this paper for temperatures and times generally employed in stabilization treatments on modern disk alloys.

  19. Dynamic Analysis of Electrical Power Grid Delivery: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    Energy Technology Data Exchange (ETDEWEB)

    Diana K. Grauer

    2011-10-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  20. Parametric (On-Design) Cycle Analysis for a Separate-Exhaust Turbofan Engine With Interstage Turbine Burner

    Science.gov (United States)

    Liew, K. H.; Urip, E.; Yang, S. L.; Siow, Y. K.; Marek, C. J.

    2005-01-01

    Today s modern aircraft is based on air-breathing jet propulsion systems, which use moving fluids as substances to transform energy carried by the fluids into power. Throughout aero-vehicle evolution, improvements have been made to the engine efficiency and pollutants reduction. The major advantages associated with the addition of ITB are an increase in thermal efficiency and reduction in NOx emission. Lower temperature peak in the main combustor results in lower thermal NOx emission and lower amount of cooling air required. This study focuses on a parametric (on-design) cycle analysis of a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). The ITB considered in this paper is a relatively new concept in modern jet engine propulsion. The ITB serves as a secondary combustor and is located between the high- and the low-pressure turbine, i.e., the transition duct. The objective of this study is to use design parameters, such as flight Mach number, compressor pressure ratio, fan pressure ratio, fan bypass ratio, and high-pressure turbine inlet temperature to obtain engine performance parameters, such as specific thrust and thrust specific fuel consumption. Results of this study can provide guidance in identifying the performance characteristics of various engine components, which can then be used to develop, analyze, integrate, and optimize the system performance of turbofan engines with an ITB. Visual Basic program, Microsoft Excel macrocode, and Microsoft Excel neuron code are used to facilitate Microsoft Excel software to plot engine performance versus engine design parameters. This program computes and plots the data sequentially without forcing users to open other types of plotting programs. A user s manual on how to use the program is also included in this report. Furthermore, this stand-alone program is written in conjunction with an off-design program which is an extension of this study. The computed result of a selected design

  1. New Structural-Dynamics Module for Offshore Multimember Substructures within the Wind Turbine Computer-Aided Engineering Tool FAST: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Song, H.; Damiani, R.; Robertson, A.; Jonkman, J.

    2013-08-01

    FAST, developed by the National Renewable Energy Laboratory (NREL), is a computer-aided engineering (CAE) tool for aero-hydro-servo-elastic analysis of land-based and offshore wind turbines. This paper discusses recent upgrades made to FAST to enable loads simulations of offshore wind turbines with fixed-bottom, multimember support structures (e.g., jackets and tripods, which are commonly used in transitional-depth waters). The main theory and strategies for the implementation of the multimember substructure dynamics module (SubDyn) within the new FAST modularization framework are introduced. SubDyn relies on two main engineering schematizations: 1) a linear frame finite-element beam (LFEB) model and 2) a dynamics system reduction via Craig-Bampton's method. A jacket support structure and an offshore system consisting of a turbine atop a jacket substructure were simulated to test the SubDyn module and to preliminarily assess results against results from a commercial finite-element code.

  2. Usage of Parameterized Fatigue Spectra and Physics-Based Systems Engineering Models for Wind Turbine Component Sizing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Taylor; Guo, Yi; Veers, Paul; Dykes, Katherine; Damiani, Rick

    2016-01-26

    Software models that use design-level input variables and physics-based engineering analysis for estimating the mass and geometrical properties of components in large-scale machinery can be very useful for analyzing design trade-offs in complex systems. This study uses DriveSE, an OpenMDAO-based drivetrain model that uses stress and deflection criteria to size drivetrain components within a geared, upwind wind turbine. Because a full lifetime fatigue load spectrum can only be defined using computationally-expensive simulations in programs such as FAST, a parameterized fatigue loads spectrum that depends on wind conditions, rotor diameter, and turbine design life has been implemented. The parameterized fatigue spectrum is only used in this paper to demonstrate the proposed fatigue analysis approach. This paper details a three-part investigation of the parameterized approach and a comparison of the DriveSE model with and without fatigue analysis on the main shaft system. It compares loads from three turbines of varying size and determines if and when fatigue governs drivetrain sizing compared to extreme load-driven design. It also investigates the model's sensitivity to shaft material parameters. The intent of this paper is to demonstrate how fatigue considerations in addition to extreme loads can be brought into a system engineering optimization.

  3. Disk Defect Data

    Data.gov (United States)

    National Aeronautics and Space Administration — How Data Was Acquired: The data presented is from a physical simulator that simulated engine disks. Sample Rates and Parameter Description: All parameters are...

  4. Prospective gas turbine and combined-cycle units for power engineering (a Review)

    Science.gov (United States)

    Ol'khovskii, G. G.

    2013-02-01

    The modern state of technology for making gas turbines around the world and heat-recovery combined-cycle units constructed on their basis are considered. The progress achieved in this field by Siemens, Mitsubishi, General Electric, and Alstom is analyzed, and the objectives these companies set forth for themselves for the near and more distant future are discussed. The 375-MW gas turbine unit with an efficiency of 40% produced by Siemens, which is presently the largest one, is subjected to a detailed analysis. The main specific features of this turbine are that the gas turbine unit's hot-path components have purely air cooling, due to which the installation has enhanced maneuverability. The single-shaft combined-cycle plant constructed on the basis of this turbine has a capacity of 570 MW and efficiency higher than 60%. Programs adopted by different companies for development of new-generation gas turbine units firing synthesis gas and fitted with low-emission combustion chambers and new cooling systems are considered. Concepts of rotor blades for new gas turbine units with improved thermal barrier coatings and composite blades different parts of which are made of materials selected in accordance with the conditions of their operation are discussed.

  5. Toward an engineering model for the aerodynamic forces acting on wind turbine blades in quasisteady standstill and blade installation situations

    DEFF Research Database (Denmark)

    Gaunaa, Mac; Heinz, Joachim Christian; Skrzypinski, Witold Robert

    2016-01-01

    The crossflow principle is one of the key elements used in engineering models for prediction of the aerodynamic loads on wind turbine blades in standstill or blade installation situations, where the flow direction relative to the wind turbine blade has a component in the direction of the blade span...... direction. In the present work, the performance of the crossflow principle is assessed on the DTU 10MW reference blade using extensive 3D CFD calculations. Analysis of the computational results shows that there is only a relatively narrow region in which the crossflow principle describes the aerodynamic...... for the key aerodynamic loads in crossflow situations. The general validity of this model for other blade shapes should be investigated in subsequent works....

  6. Tribological Limitations in Gas Turbine Engines: A Workshop to Identify the Challenges and Set Future Directions. Revised

    Science.gov (United States)

    DellaCorte, Chris; Pinkus, Oscar

    2002-01-01

    The following report represents a compendium of selected speaker presentation materials and observations made by Prof. O. Pinkus at the NASA/ASME/Industry sponsored workshop entitled "Tribological Limitations in Gas Turbine Engines" held on September 15-17, 1999 in Albany, New York. The impetus for the workshop came from the ASME's Research Committee on tribology whose goal is to explore new tribological research topics which may become future research opportunities. Since this subject is of current interest to other industrial and government entities the conference received cosponsorship as noted above. The conference was well attended by government, industrial, and academic participants. Topics discussed included current tribological issues in gas turbines as well as the potential impact (drawbacks and advantages) of future tribological technologies especially foil air bearings and magnetic bearings. It is hoped that this workshop report may serve as a starting point for continued discussions and activities in oil-free turbomachinery systems.

  7. Analysis of the impact of the use of broad specification fuels on combustors for commercial aircraft gas turbine engines

    Science.gov (United States)

    Szetela, E. J.; Lehmann, R. P.; Smith, A. L.

    1979-01-01

    An analytical study was conducted to assess the impact of the use of broad specification fuels with reduced hydrogen content on the design, performance, durability, emissions and operational characteristics of combustors for commercial aircraft gas turbine engines. The study was directed at defining necessary design revisions to combustors designed for use of Jet A when such are operated on ERBS (Experimental Referee Broad Specification Fuel) which has a nominal hydrogen content of 12.8 percent as opposed to 13.7 percent in current Jet A. The results indicate that improvements in combustor liner cooling, and/or materials, and methods of fuel atomization will be required if the hydrogen content of aircraft gas turbine fuel is decreased.

  8. Application of engineering models to predict wake deflection due to a tilted wind turbine

    DEFF Research Database (Denmark)

    Guntur, Srinivas; Troldborg, Niels; Gaunaa, Mac

    2012-01-01

    such a mechanism introduces control complications due to changing wind directions. Deflecting the wake in the vertical direction using tilt, on the other hand, overcomes this challenge. In this paper, the feasibility of steering wake is explored in a simple uniform inflow case. This is done by trying to model......It is a known fact that the power produced by wind turbines operating inside an array decreases due to the wake effects of the upstream turbines. It has been proposed previously to use the yaw mechanism as a potential means to steer the upstream wake away from downstream turbines, however...

  9. Development and matching of double entry turbines for the next generation of highly boosted gasoline engines; Entwicklung und Auslegung von zweiflutigen Turbinen fuer hochaufgeladene Ottomotoren der naechsten Generation

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, Tolga; Aymanns, Richard; Scharf, Johannes [FEV GmbH, Aachen (Germany); Lueckmann, Dominik; Hoepke, Bjoern [RWTH Aachen Univ. (Germany). VKA Lehrstuhl fuer Verbrennungskraftmaschinen; Scassa, Mauro [FEV Italia S.r.l., Rivoli (Italy); Schorn, Norbert; Kindl, Helmut [Ford Forschungszentrum Aachen GmbH, Aachen (Germany)

    2013-08-01

    Downsizing in combination with turbocharging represents the main technology trend for meeting climate relevant CO{sub 2} emission standards in gasoline engine applications. Extended levels of downsizing involve increasing degrees of pulse charging. Separation of cylinder blow downs, either with double entry turbines or valve train variability, is key for achieving enhanced rated power and low-end-torque targets in highly boosted four-cylinder engines. However, double entry turbines feature specific development challenges: The aerodynamic design via 3D CFD calculations presents a difficult task as well as the engine performance modeling and matching process in 1D gas exchange simulations. From a manufacturing standpoint, casting of the turbine housing is complex especially for small displacement applications below 1.6 l due to e.g. thermo-mechanical boundaries. This paper demonstrates how to design and model double entry turbine performance characteristics within 1D gas exchange simulations, requiring special measured and processed turbine data, which is experimentally assessed on a hot gas test bench using a double burner setup. It is shown how the collective of the described development strategies can be used in assessing the potential of different turbine design concepts. This allows the turbocharger to be designed exactly to specific engine requirements. (orig.)

  10. Polycyclic aromatic hydrocarbon emissions from the combustion of alternative fuels in a gas turbine engine.

    Science.gov (United States)

    Christie, Simon; Raper, David; Lee, David S; Williams, Paul I; Rye, Lucas; Blakey, Simon; Wilson, Chris W; Lobo, Prem; Hagen, Donald; Whitefield, Philip D

    2012-06-05

    We report on the particulate-bound polycyclic aromatic hydrocarbons (PAH) in the exhaust of a test-bed gas turbine engine when powered by Jet A-1 aviation fuel and a number of alternative fuels: Sasol fully synthetic jet fuel (FSJF), Shell gas-to-liquid (GTL) kerosene, and Jet A-1/GTL 50:50 blended kerosene. The concentration of PAH compounds in the exhaust emissions vary greatly between fuels. Combustion of FSJF produces the greatest total concentration of PAH compounds while combustion of GTL produces the least. However, when PAHs in the exhaust sample are measured in terms of the regulatory marker compound benzo[a]pyrene, then all of the alternative fuels emit a lower concentration of PAH in comparison to Jet A-1. Emissions from the combustion of Jet A-1/GTL blended kerosene were found to have a disproportionately low concentration of PAHs and appear to inherit a greater proportion of the GTL emission characteristics than would be expected from volume fraction alone. The data imply the presence of a nonlinear relation between fuel blend composition and the emission of PAH compounds. For each of the fuels, the speciation of PAH compounds present in the exhaust emissions were found to be remarkably similar (R(2) = 0.94-0.62), and the results do provide evidence to support the premise that PAH speciation is to some extent indicative of the emission source. In contrast, no correlation was found between the PAH species present in the fuel with those subsequently emitted in the exhaust. The results strongly suggests that local air quality measured in terms of the particulate-bound PAH burden could be significantly improved by the use of GTL kerosene either blended with or in place of Jet A-1 kerosene.

  11. CMC Property Variability and Life Prediction Methods for Turbine Engine Component Application

    Science.gov (United States)

    Cheplak, Matthew L.

    2004-01-01

    The ever increasing need for lower density and higher temperature-capable materials for aircraft engines has led to the development of Ceramic Matrix Composites (CMCs). Today's aircraft engines operate with >3000"F gas temperatures at the entrance to the turbine section, but unless heavily cooled, metallic components cannot operate above approx.2000 F. CMCs attempt to push component capability to nearly 2700 F with much less cooling, which can help improve engine efficiency and performance in terms of better fuel efficiency, higher thrust, and reduced emissions. The NASA Glenn Research Center has been researching the benefits of the SiC/SiC CMC for engine applications. A CMC is made up of a matrix material, fibers, and an interphase, which is a protective coating over the fibers. There are several methods or architectures in which the orientation of the fibers can be manipulated to achieve a particular material property objective as well as a particular component geometric shape and size. The required shape manipulation can be a limiting factor in the design and performance of the component if there is a lack of bending capability of the fiber as making the fiber more flexible typically sacrifices strength and other fiber properties. Various analysis codes are available (pcGINA, CEMCAN) that can predict the effective Young's Moduli, thermal conductivities, coefficients of thermal expansion (CTE), and various other properties of a CMC. There are also various analysis codes (NASAlife) that can be used to predict the life of CMCs under expected engine service conditions. The objective of this summer study is to utilize and optimize these codes for examining the tradeoffs between CMC properties and the complex fiber architectures that will be needed for several different component designs. For example, for the pcGINA code, there are six variations of architecture available. Depending on which architecture is analyzed, the user is able to specify the fiber tow size, tow

  12. Low Cost P/M Aluminum Syntactic Foam for Blade Containment in Turbine Engines, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase I SBIR proposes a low density (0.75-1.2g/cc)syntactic aluminum foam energy absorber co-manufactured inside a composite fan case for turbine...

  13. Performance Problems with Group II Hydro-Cracked Turbine Oils in Corps of Engineers Hydropower Facilities

    National Research Council Canada - National Science Library

    Micetic, John

    2004-01-01

    ... I) for lubricating hydroelectric turbines and associated governor systems. Products now being supplied by the lubrication industry for the same purpose are based on hydro-cracked paraffinic oils (Group II...

  14. Variations on the Kalman filter for enhanced performance monitoring of gas turbine engines

    OpenAIRE

    Borguet, Sébastien

    2012-01-01

    Since their advent in the 1940's, gas turbines have been used in a wide range of land, sea and air applications due to their high power density and reliability. In today's competitive market, gas turbine operators need to optimise the dispatch availability (it i.e., minimise operational issues such as aborted take-offs or in-flight shutdowns) as well as the direct operating costs of their assets. Besides improvements in the design and manufacture processes, proactive maintenance pract...

  15. Turbine and Structural Seals Team Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — Seals Team Facilities conceive, develop, and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. Current projects include...

  16. Unsteady flowfield in an integrated rocket ramjet engine and combustion dynamics of a gas turbine swirl-stabilized injector

    Science.gov (United States)

    Sung, Hong-Gye

    This research focuses on the time-accurate simulation and analysis of the unsteady flowfield in an integrated rocket-ramjet engine (IRR) and combustion dynamics of a swirl-stabilized gas turbine engine. The primary objectives are: (1) to establish a unified computational framework for studying unsteady flow and flame dynamics in ramjet propulsion systems and gas turbine combustion chambers, and (2) to investigate the parameters and mechanisms responsible for driving flow oscillations. The first part of the thesis deals with a complete axi-symmetric IRR engine. The domain of concern includes a supersonic inlet diffuser, a combustion chamber, and an exhaust nozzle. This study focused on the physical mechanism of the interaction between the oscillatory terminal shock in the inlet diffuser and the flame in the combustion chamber. In addition, the flow and ignition transitions from the booster to the sustainer phase were analyzed comprehensively. Even though the coupling between the inlet dynamics and the unsteady motions of flame shows that they are closely correlated, fortunately, those couplings are out of phase with a phase lag of 90 degrees, which compensates for the amplification of the pressure fluctuation in the inlet. The second part of the thesis treats the combustion dynamics of a lean-premixed gas turbine swirl injector. A three-dimensional computation method utilizing the message passing interface (MPI) Parallel architecture and large-eddy-simulation technique was applied. Vortex breakdown in the swirling flow is clearly visualized and explained on theoretical bases. The unsteady turbulent flame dynamics are carefully simulated so that the flow motion can be characterized in detail. It was observed that some fuel lumps escape from the primary combustion zone, and move downstream and consequently produce hot spots and large vortical structures in the azimuthal direction. The correlation between pressure oscillation and unsteady heat release is examined by

  17. High Specific Stiffness Shafts and Advanced Bearing Coatings for Gas Turbine Engines Final Report CRADA No. TC-1089-95

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, Troy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chin, Herbert [United Technologies Corporation, East Hartford, CT (United States)

    2017-11-09

    At the time of the CRADA, the largest in-service gas-turbine aircraft engines strove for increased thrust and power density to meet the requirements for take-off thrust, given the increase in take-off gross weight (TOGW) associated with longer range transport requirements. The trend in modem turbo shaft engines was toward turbine shafts with higher and higher length-to-diameter ratios, which reduced the shaft critical speed. Using co nventional shaft materials, this lead to shafts that needed to operate near or above sensitive shaft bending critical speeds, therefore requiring multiple bearings and/ or multiple squeeze-film dampers to control the dynamic response. Using new materials and d esign concepts this project demonstrated the use of new shaft materials which could provide increased shaft speed range above existing maximum engine speeds without encountering a critic al speed event and high vector deflections. This increased main shaft speed also resulted in decreased bearing life associated with lower heat dissipation and higher centrifugal forces. Thus, a limited effort was devoted to feasibility of higher performance bearing coatings to mitigate the speed effects.

  18. Transition duct system with arcuate ceramic liner for delivering hot-temperature gases in a combustion turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, David J.

    2017-11-07

    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include an arcuate connecting segment (36). An arcuate ceramic liner (60) may be inwardly disposed onto a metal outer shell (38) along the arcuate connecting segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liner can be readily removed and replaced as needed.

  19. Premixed direct injection disk

    Science.gov (United States)

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  20. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades

    Directory of Open Access Journals (Sweden)

    Zheng-Yong Yu

    2017-05-01

    Full Text Available As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB and Fatemi-Socie (FS models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models.

  1. The Gas turbine Engine-based Power Technology Plant Using Wood Waste Gasification Products

    Directory of Open Access Journals (Sweden)

    S. K. Danilova

    2016-01-01

    Full Text Available The paper outlines the problems of energy supply and waste utilization of the forest industries. As a solution, it proposes to use gasification to utilize wood leftovers, which is followed by electric power generation from combustion of producer gas. The plant was expected to have a power of 150 kW. The proposed power technology plant comprises a line for pre-treatment of wood chips, a gas generator (gasifier and a gas turbine unit.The paper justifies a need for preliminary preparation of wood waste, particularly chipping and drying. Various drying schemes have been analyzed. A line for pre-treatment of wood chips comprises a drum chipper, a receiving raw material wood container and a drum dryer using fume gases.A co-current gasifier is chosen because of the high content of tar in the original fuel. In the co-current gasifier, most of the tar, passing through the high temperature area, is burned. The paper offers high temperature dry cleaning of producer gas in the cyclone separator. Such a scheme of cleaning provides high efficiency of the plant and simplifies its design, but suspended particles still remain in the producer gas. When analyzing the schemes of power converters this is taken into account.A choice of the gas turbine as a power converter is justified. To reduce the erosion damage of the turbine blades there is a proposal to use an unconventional gas turbine scheme with air turbine and a combustion chamber located downstream of the turbine. In this plant the air rather than the combustion gas passes through the turbine. The air from turbine goes into the combustion chamber, the combustion gas passes through the air heater, where it transfers heat to the air. Such scheme allows reducing power costs for the fuel gas compression before the combustion chamber.Optimization of the gas turbine cycle is performed. The optimum compressor pressure ratio is 3,7. The plant efficiency for this pressure ratio is 25,7%. Calculation results of the

  2. Analysis of diamond-like carbon and Ti/MoS2 coatings on Ti-6Al-4V substrates for applicability to turbine engine applications

    International Nuclear Information System (INIS)

    Wu, L.; Holloway, B.C.; Kalil, C.; Manos, D.M.

    2000-01-01

    Ti-6Al-4V substrates have been coated by diamond-like carbon (DLC) films, with no surface pretreatment, and have been coated by Ti/MoS 2 films, with a simple surface pre-cleaning. The DLC films were deposited by planar coil r.f. inductively-coupled plasma-enhanced chemical vapor deposition (r.f. ICPECVD); the Ti/MoS 2 films were deposited by magnetron sputtering. Both the DLC and Ti/MoS 2 films were characterized by pull tests, hardness tests, scanning electron microscopy (SEM), and wear tests (pin-on-disk and block-on-ring) to compare their adhesion, hardness, surface topology, and wear properties to plasma-sprayed Cu-Ni-In coating currently used for turbine engine applications. The DLC films were easily characterized by their optical properties because they were highly transparent. We used variable-angle spectroscopic ellipsometry (VASE) to characterize thickness and to unequivocally extract real and complex index of refraction, providing a rapid assessment of film quality. Thicker coatings yielded the largest hardness values. The DLC coatings did not require abrasive pretreatment or the formation of bond-layers to ensure good adhesion to the substrate. Simple surface pre-cleaning was also adequate to form well-adhered Ti/MoS 2 on Ti-6Al-4V. The results show that the DLC and Ti/MoS 2 coatings are both much better fretting- and wear-resistant coatings than plasma-sprayed Cu-Ni-In. Both show excellent adhesion to the substrates, less surface roughness, harder surfaces, and more wear resistance than the Cu-Ni-In films. (orig.)

  3. Thermodynamic Modeling of a Solid Oxide Fuel Cell to Couple with an Existing Gas Turbine Engine Model

    Science.gov (United States)

    Brinson, Thomas E.; Kopasakis, George

    2004-01-01

    The Controls and Dynamics Technology Branch at NASA Glenn Research Center are interested in combining a solid oxide fuel cell (SOFC) to operate in conjunction with a gas turbine engine. A detailed engine model currently exists in the Matlab/Simulink environment. The idea is to incorporate a SOFC model within the turbine engine simulation and observe the hybrid system's performance. The fuel cell will be heated to its appropriate operating condition by the engine s combustor. Once the fuel cell is operating at its steady-state temperature, the gas burner will back down slowly until the engine is fully operating on the hot gases exhausted from the SOFC. The SOFC code is based on a steady-state model developed by The U.S. Department of Energy (DOE). In its current form, the DOE SOFC model exists in Microsoft Excel and uses Visual Basics to create an I-V (current-voltage) profile. For the project's application, the main issue with this model is that the gas path flow and fuel flow temperatures are used as input parameters instead of outputs. The objective is to create a SOFC model based on the DOE model that inputs the fuel cells flow rates and outputs temperature of the flow streams; therefore, creating a temperature profile as a function of fuel flow rate. This will be done by applying the First Law of Thermodynamics for a flow system to the fuel cell. Validation of this model will be done in two procedures. First, for a given flow rate the exit stream temperature will be calculated and compared to DOE SOFC temperature as a point comparison. Next, an I-V curve and temperature curve will be generated where the I-V curve will be compared with the DOE SOFC I-V curve. Matching I-V curves will suggest validation of the temperature curve because voltage is a function of temperature. Once the temperature profile is created and validated, the model will then be placed into the turbine engine simulation for system analysis.

  4. Modification and testing of an engine and fuel control system for a hydrogen fuelled gas turbine

    Science.gov (United States)

    Funke, H. H.-W.; Börner, S.; Hendrick, P.; Recker, E.

    2011-10-01

    The control of pollutant emissions has become more and more important by the development of new gas turbines. The use of hydrogen produced by renewable energy sources could be an alternative. Besides the reduction of NOx emissions emerged during the combustion process, another major question is how a hydrogen fuelled gas turbine including the metering unit can be controlled and operated. This paper presents a first insight in modifications on an Auxiliary Power Unit (APU) GTCP 36300 for using gaseous hydrogen as a gas turbine fuel. For safe operation with hydrogen, the metering of hydrogen has to be fast, precise, and secure. So, the quality of the metering unit's control loop has an important influence on this topic. The paper documents the empiric determination of the proportional integral derivative (PID) control parameters for the metering unit.

  5. History of Thermal Barrier Coatings for Gas Turbine Engines: Emphasizing NASA's Role from 1942 to 1990

    Science.gov (United States)

    Miller, Robert A.

    2009-01-01

    NASA has played a central role in the development of thermal barrier coatings (TBCs) for gas turbine applications. This report discusses the history of TBCs emphasizing the role NASA has played beginning with (1) frit coatings in the 1940s and 1950s; (2) thermally sprayed coatings for rocket application in the 1960s and early 1970s; (3) the beginnings of the modern era of turbine section coatings in the mid 1970s; and (4) failure mechanism and life prediction studies in the 1980s and 1990s. More recent efforts are also briefly discussed.

  6. Heat shield manifold system for a midframe case of a gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Clinton A.; Eng, Jesse; Schopf, Cheryl A.

    2017-07-25

    A heat shield manifold system for an inner casing between a compressor and turbine assembly is disclosed. The heat shield manifold system protects the outer case from high temperature compressor discharge air, thereby enabling the outer case extending between a compressor and a turbine assembly to be formed from less expensive materials than otherwise would be required. In addition, the heat shield manifold system may be configured such that compressor bleed air is passed from the compressor into the heat shield manifold system without passing through a conventional flange to flange joint that is susceptible to leakage.

  7. Proposal and Evaluation of a Gas Engine and Gas Turbine Hybrid Cogeneration System in which Cascaded Heat is Highly Utilized

    Science.gov (United States)

    Pak, Pyong Sik

    A high efficiency cogeneration system (CGS) is proposed for utilizing high temperature exhaust gas (HTEG) from a gas engine (GE). In the proposed system, for making use of heat energy of HTEG, H2O turbine (HTb) is incorporated and steam produced by utilizing HTEG is used as working fluid of HTb. HTb exhaust gas is also utilized for increasing power output and for satisfying heat demand in the proposed system. Both of the thermodynamic characteristics of the proposed system and a gas engine CGS (GE-CGS) constructed by using the original GE are estimated. Energy saving characteristics and CO2 reduction effects of the proposed CGS and the GE-CGS are also investigated. It was estimated that the net generated power of the proposed CGS has been increasd 25.5% and net power generation efficiency 6.7%, compared with the the original GE-CGS. It was also shown that the proposed CGS could save 27.0% of energy comsumption and reduce 1137 t-CO2/y, 1.41 times larger than those of GE-CGS, when a case syudy was set and investigated. Improvements of performance by increasing turbine inlet temperature were also investigated.

  8. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    Science.gov (United States)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  9. A methodology for the evaluation of the turbine jet engine fragment threat to generic air transportable containers

    International Nuclear Information System (INIS)

    Harding, D.C.; Pierce, J.D.

    1993-06-01

    Uncontained, high-energy gas turbine engine fragments are a potential threat to air-transportable containers carried aboard jet aircraft. The threat to a generic example container is evaluated by probability analyses and penetration testing to demonstrate the methodology to be used in the evaluation of a specific container/aircraft/engine combination. Fragment/container impact probability is the product of the uncontained fragment release rate and the geometric probability that a container is in the path of this fragment. The probability of a high-energy rotor burst fragment from four generic aircraft engines striking one of the containment vessels aboard a transport aircraft is approximately 1.2 x 10 -9 strikes/hour. Finite element penetration analyses and tests can be performed to identify specific fragments which have the potential to penetrate a generic or specific containment vessel. The relatively low probability of engine fragment/container impacts is primarily due to the low release rate of uncontained, hazardous jet engine fragments

  10. Galaxy Disks

    NARCIS (Netherlands)

    van der Kruit, P. C.; Freeman, K. C.

    The disks of disk galaxies contain a substantial fraction of their baryonic matter and angular momentum, and much of the evolutionary activity in these galaxies, such as the formation of stars, spiral arms, bars and rings, and the various forms of secular evolution, takes place in their disks. The

  11. 75 FR 12661 - Airworthiness Directives; General Electric Company CF6-45 and CF6-50 Series Turbofan Engines

    Science.gov (United States)

    2010-03-17

    ... Airworthiness Directives; General Electric Company CF6-45 and CF6-50 Series Turbofan Engines AGENCY: Federal... a new airworthiness directive (AD) for General Electric Company (GE) CF6-45 and CF6-50 series turbofan engines with certain low-pressure turbine (LPT) stage 3 disks installed. This AD requires...

  12. 76 FR 6323 - Airworthiness Directives; General Electric Company CF6-45 and CF6-50 Series Turbofan Engines

    Science.gov (United States)

    2011-02-04

    ... Airworthiness Directives; General Electric Company CF6-45 and CF6-50 Series Turbofan Engines AGENCY: Federal... an existing airworthiness directive (AD) for General Electric Company (GE) CF6-45 and CF6-50 series turbofan engines with certain low-pressure turbine (LPT) rotor stage 3 disks installed. That AD currently...

  13. Engine cyclic durability by analysis and material testing

    Science.gov (United States)

    Kaufman, A.; Halford, G. R.

    1984-01-01

    The problem of calculating turbine engine component durability is addressed. Nonlinear, finite-element structural analyses, cyclic constitutive behavior models, and an advanced creep-fatigue life prediction method called strainrange partitioning were assessed for their applicability to the solution of durability problems in hot-section components of gas turbine engines. Three different component or subcomponent geometries are examined: a stress concentration in a turbine disk; a louver lip of a half-scale combustor linear; and a squealer tip of a first-stage high-pressure turbine blade. Cyclic structural analyses were performed for all three problems. The computed strain-temperature histories at the critical locations of the combustor linear and turbine blade components were imposed on smooth specimens in uniaxial, strain-controlled, thermomechanical fatigue tests of evaluate the structural and life analysis methods.

  14. Development of a Dual-Fuel Gas Turbine Engine of Liquid and Low-Calorific Gas

    Science.gov (United States)

    Koyama, Masamichi; Fujiwara, Hiroshi

    We developed a dual-fuel single can combustor for the Niigata Gas Turbine (NGT2BC), which was developed as a continuous-duty gas turbine capable of burning both kerosene and digester gas. The output of the NGT2BC is 920kW for continuous use with digester gas and 1375kW for emergency use with liquid fuel. Digester gas, obtained from sludge processing at sewage treatment plants, is a biomass energy resource whose use reduces CO2 emissions and take advantage of an otherwise wasted energy source. Design features for good combustion with digester gas include optimized the good matching of gas injection and swirl air and reduced reference velocity. The optimal combination of these parameters was determined through CFD analysis and atmospheric rig testing.

  15. Sensitivity Analysis of Wind Plant Performance to Key Turbine Design Parameters: A Systems Engineering Approach; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Ning, A.; King, R.; Graf, P.; Scott, G.; Veers, P.

    2014-02-01

    This paper introduces the development of a new software framework for research, design, and development of wind energy systems which is meant to 1) represent a full wind plant including all physical and nonphysical assets and associated costs up to the point of grid interconnection, 2) allow use of interchangeable models of varying fidelity for different aspects of the system, and 3) support system level multidisciplinary analyses and optimizations. This paper describes the design of the overall software capability and applies it to a global sensitivity analysis of wind turbine and plant performance and cost. The analysis was performed using three different model configurations involving different levels of fidelity, which illustrate how increasing fidelity can preserve important system interactions that build up to overall system performance and cost. Analyses were performed for a reference wind plant based on the National Renewable Energy Laboratory's 5-MW reference turbine at a mid-Atlantic offshore location within the United States.

  16. An Investigation into Performance Modelling of a Small Gas Turbine Engine

    Science.gov (United States)

    2012-10-01

    Point EGT = Exhaust Gas Temperature HPC = High Pressure Compressor HPT = High Pressure Turbine RNI = Reynolds Number Index OL = Operating Line...0)ln(1 0)ln(1)ln(022.0 , RNI RNIRNI f RNIW       0)ln(1 0)ln(1)ln(011.0 , RNI RNIRNI f RNI  Where f is the scaling factor and RNI is

  17. Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference

    Energy Technology Data Exchange (ETDEWEB)

    Geiling, D.W. [ed.

    1993-08-01

    The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

  18. Neutron tomography as a reverse engineering method applied to the IS-60 Rover gas turbine

    CSIR Research Space (South Africa)

    Roos, TH

    2011-09-01

    Full Text Available Probably the most common method of reverse engineering in mechanical engineering involves measuring the physical geometry of a component using a coordinate measuring machine (CMM). Neutron tomography, in contrast, is used primarily as a non...

  19. Transition duct system with metal liners for delivering hot-temperature gases in a combustion turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, David J.

    2017-04-11

    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include a straight path segment (26) and an arcuate connecting segment (36). A respective straight metal liner (92) and an arcuate metal liner (94) may be each inwardly disposed onto a metal outer shell (38) along the straight path segment and the arcuate connecting segment (36) of the exit piece. Structural arrangements are provided to securely attach the respective liners in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liners can be readily removed and replaced as needed.

  20. Fuel nozzle assembly for use as structural support for a duct structure in a combustor of a gas turbine engine

    Science.gov (United States)

    Wiebe, David J; Fox, Timothy A

    2015-03-31

    A fuel nozzle assembly for use in a combustor apparatus of a gas turbine engine. An outer housing of the fuel nozzle assembly includes an inner volume and provides a direct structural connection between a duct structure and a fuel manifold. The duct structure defines a flow passage for combustion gases flowing within the combustor apparatus. The fuel manifold defines a fuel supply channel therein in fluid communication with a source of fuel. A fuel injector of the fuel nozzle assembly is provided in the inner volume of the outer housing and defines a fuel passage therein. The fuel passage is in fluid communication with the fuel supply channel of the fuel manifold for distributing the fuel from the fuel supply channel into the flow passage of the duct structure.

  1. Improving of the working process of axial compressors of gas turbine engines by using an optimization method

    Science.gov (United States)

    Marchukov, E.; Egorov, I.; Popov, G.; Baturin, O.; Goriachkin, E.; Novikova, Y.; Kolmakova, D.

    2017-08-01

    The article presents one optimization method for improving of the working process of an axial compressor of gas turbine engine. Developed method allows to perform search for the best geometry of compressor blades automatically by using optimization software IOSO and CFD software NUMECA Fine/Turbo. Optimization was performed by changing the form of the middle line in the three sections of each blade and shifts of three sections of the guide vanes in the circumferential and axial directions. The calculation of the compressor parameters was performed for work and stall point of its performance map on each optimization step. Study was carried out for seven-stage high-pressure compressor and three-stage low-pressure compressors. As a result of optimization, improvement of efficiency was achieved for all investigated compressors.

  2. Transition duct system with straight ceramic liner for delivering hot-temperature gases in a combustion turbine engine

    Science.gov (United States)

    Wiebe, David J.

    2017-05-16

    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include a straight path segment (26) for receiving a gas flow from a respective combustor. A straight ceramic liner (40) may be inwardly disposed onto a metal outer shell (38) along the straight path segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liner can be readily removed and replaced as needed.

  3. A new approach involving a multi transducer ultrasonic system for cleaning turbine engines' oil filters under practical conditions.

    Science.gov (United States)

    Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo; Chang, Soon Woong; Bui, Hong Ha

    2016-09-01

    The purpose of this paper is to provide a green technology that can clean turbine engine oil filters effectively in ships using ultrasound, with ultrasonic devices having a frequency of 25kHz and different powers of 300W and 600W, respectively. The effects of temperature, ultrasonic cleaning times, pressure losses through the oil filter, solvent washing, and ultrasonic power devices were investigated. In addition, the cleaning efficiency of three modes (hand washing, preliminary washing and ultrasonic washing) were compared to assess their relative effectiveness. Experimental results revealed that the necessary ultrasonic time varied significantly depending on which solvent was used for washing. For instance, the optimum ultrasonic cleaning time was 50-60min when the oil filter was cleaned in a solvent of kerosene oil (KO) and over 80min when in a solvent of diesel oil (DO) using the same ultrasonic generator device (25kHz, 600W) and experimental conditions. Furthermore, microscopic examination did not reveal any damage or breakdown on or within the structure of the filter after ultrasonic cleaning, even in the filter's surfaces at a constantly low frequency of 25kHz and power specific capacity (100W/gal). Overall, it may be concluded that ultrasound-assisted oil filter washing is effective, requiring a significantly shorter time than manual washing. This ultrasonic method also shows promise as a green technology for washing oil filters in turbine engines in general and Vietnamese navy ships in particular, because of its high cleaning efficiency, operational simplicity and savings. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Study on waste heat recovery from exhaust gas spark ignition (S.I. engine using steam turbine mechanism

    Directory of Open Access Journals (Sweden)

    Talib Kamarulhelmy

    2017-01-01

    Full Text Available The issue of global warming has pushed the effort of researchers not only to find alternative renewable energy, but also to improve the machine’s energy efficiency. This includes the utilization of waste energy into ‘useful energy’. For a vehicle using internal combustion engine (ICE, the waste energy produce by exhaust gas can be utilize to ‘useful energy’ up to 34%. The energy from the automotive exhaust can be harness by implementing heat pipe heat exchanger in the automotive system. In order to maximize the amount of waste energy that can be turned to ‘useful energy’, the used of appropriate fluid in the heat exchanger is important. In this study, the fluid used is water, thus converting the fluid into steam and thus drive the turbine that coupling with generator. The paper will explore the performance of a naturally aspirated spark ignition (S.I. engine equipped with waste heat recovery mechanism (WHRM that used water as the heat absorption medium. The experimental and simulation test suggest that the concept is thermodynamically feasible and could significantly enhance the system performance depending on the load applied to the engine.

  5. Impact of alternative fuels on emissions characteristics of a gas turbine engine - part 2: volatile and semivolatile particulate matter emissions.

    Science.gov (United States)

    Williams, Paul I; Allan, James D; Lobo, Prem; Coe, Hugh; Christie, Simon; Wilson, Christopher; Hagen, Donald; Whitefield, Philip; Raper, David; Rye, Lucas

    2012-10-02

    The work characterizes the changes in volatile and semivolatile PM emissions from a gas turbine engine resulting from burning alternative fuels, specifically gas-to-liquid (GTL), coal-to-liquid (CTL), a blend of Jet A-1 and GTL, biodiesel, and diesel, to the standard Jet A-1. The data presented here, compares the mass spectral fingerprints of the different fuels as measured by the Aerodyne high resolution time-of-flight aerosol mass spectrometer. There were three sample points, two at the exhaust exit plane with dilution added at different locations and another probe located 10 m downstream. For emissions measured at the downstream probe when the engine was operating at high power, all fuels produced chemically similar organic PM, dominated by C(x)H(y) fragments, suggesting the presence of long chain alkanes. The second largest contribution came from C(x)H(y)O(z) fragments, possibly from carbonyls or alcohols. For the nondiesel fuels, the highest loadings of organic PM were from the downstream probe at high power. Conversely, the diesel based fuels produced more organic material at low power from one of the exit plane probes. Differences in the composition of the PM for certain fuels were observed as the engine power decreased to idle and the measurements were made closer to the exit plane.

  6. Wind Turbine Technologies

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela

    2017-01-01

    The wind turbine technology is a very complex technology involving multidisciplinary and broad technical disciplines such as aerodynamics, mechanics, structure dynamics, meteorology as well as electrical engineering addressing the generation, transmission, and integration of wind turbines...... into the power system. Wind turbine technology has matured over the years and become the most promising and reliable renewable energy technology today. It has moved very fast, since the early 1980s, from wind turbines of a few kilowatts to today’s multimegawatt-sized wind turbines [13]. Besides their size......, the design of wind turbines has changed from being convention driven to being optimized driven within the operating regime and market environment. Wind turbine designs have progressed from fixed speed, passive controlled and with drive trains with gearboxes, to become variable speed, active controlled...

  7. The Gas turbine Engine-based Power Technology Plant Using Wood Waste Gasification Products

    OpenAIRE

    S. K. Danilova; R. Z. Tumashev

    2016-01-01

    The paper outlines the problems of energy supply and waste utilization of the forest industries. As a solution, it proposes to use gasification to utilize wood leftovers, which is followed by electric power generation from combustion of producer gas. The plant was expected to have a power of 150 kW. The proposed power technology plant comprises a line for pre-treatment of wood chips, a gas generator (gasifier) and a gas turbine unit.The paper justifies a need for preliminary preparation of wo...

  8. Advanced Turbine Blade Cooling Techniques, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Gas turbine engine technology is constantly challenged to operate at higher combustor outlet temperatures. In a modern gas turbine engine, these temperatures can...

  9. Research and engineering application of coordinated instrumentation control and protection technology between reactor and steam turbine generator on nuclear power plant

    International Nuclear Information System (INIS)

    Sun Xingdong

    2014-01-01

    The coordinated instrumentation control and protection technology between reactor and steam turbine generator (TG) usually is very significant and complicated for a new construction of nuclear power plant, because it carries the safety, economy and availability of nuclear power plant. Based on successful practice of a nuclear power plant, the experience on interface design and hardware architecture of coordinated instrumentation control and protection technology between reactor and steam turbine generator was abstracted and researched. In this paper, the key points and engineering experience were introduced to give the helpful instructions for the new project. (author)

  10. Evaluation of Electrostatic Probe Technique for Detection of Particles Emitted during Turbine Engine Distress

    Science.gov (United States)

    1974-11-01

    out and published by the AFAPL and AFFDL project engineers. The authors would like to thank Mr. David Elkins and Mr. Paul Habil of AFAPL for engine...operation; 2. record baseline probe data (counts and noia levels); 3. introduce distress and verify particle emission (to the extent possible); record

  11. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing, Part II: Additive Manufacturing and Characterization of Polymer Composites

    Science.gov (United States)

    Chuang, Kathy C.; Grady, Joseph E.; Arnold, Steven M.; Draper, Robert D.; Shin, Eugene; Patterson, Clark; Santelle, Tom; Lao, Chao; Rhein, Morgan; Mehl, Jeremy

    2015-01-01

    This publication is the second part of the three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides-Ultem 9085 and experimental Ultem 1000 mixed with 10% chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25 to 31%. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties. A preliminary modeling was also initiated to predict the mechanical properties of FDM-printed Ultem 9085 coupons in relation to varied raster angles and void contents, using the GRC-developed MAC/GMC program.

  12. The Thermochemical Degradation of Hot Section Materials for Gas Turbine Engines in Alternative-Fuel Combustion Environments

    Science.gov (United States)

    Montalbano, Timothy

    Gas turbine engines remain an integral part of providing the world's propulsion and power generation needs. The continued use of gas turbines requires increased temperature operation to reach higher efficiencies and the implementation of alternative fuels for a lower net-carbon footprint. This necessitates evaluation of the material coatings used to shield the hot section components of gas turbines in these new extreme environments in order to understand how material degradation mechanisms change. Recently, the US Navy has sought to reduce its use of fossil fuels by implementing a blended hydroprocessed renewable diesel (HRD) derived from algae in its fleet. To evaluate the material degradation in this alternative environment, metal alloys are exposed in a simulated combustion environment using this blended fuel or the traditional diesel-like fuel. Evaluation of the metal alloys showed the development of thick, porous scales with a large depletion of aluminum for the blend fuel test. A mechanism linking an increased solubility of the scale to the blend fuel test environment will be discussed. For power generation applications, Integrated Gasification Combined Cycle (IGCC) power plants can provide electricity with 45% efficiency and full carbon capture by using a synthetic gas (syngas) derived from coal, biomass, or another carbon feedstock. However, the combustion of syngas is known to cause high water vapor content levels in the exhaust stream with unknown material consequences. To evaluate the effect of increased humidity, air-plasma sprayed (APS), yttria-stabilized zirconia (YSZ) is thermally aged in an environment with and without humidity. An enhanced destabilization of the parent phase by humid aging is revealed by x-ray diffraction (XRD) and Raman spectroscopy. Microstructural analysis by transmission electron microscopy (TEM) and scanning-TEM (STEM) indicate an enhanced coarsening of the domain structure of the YSZ in the humid environment. The enhanced

  13. Study of a flight monitor for jet engine disk cracks using the critical length criterion of fracture mechanics

    Science.gov (United States)

    Barranger, J. P.

    1974-01-01

    A disk crack detector is discussed which is intended to operate while in flight. The crack detector monitors the disk rim for radial surface cracks emanating from the blade root interface. An eddy current type sensor with a remotely located capacitance-resistance bridge and signal analyzer is able to detect reliably a simulated crack 1/8 in. long. The sensor was tested at rim velocities of 600 fps and at 1000 F. Fracture mechanics is used to calculate the critical crack length. Knowledge of the crack growth rate permits the calculation of the number of stress cycles remaining for the detected crack to grow to critical size. A plot is presented of the remaining life as a function of the critical crack length and the operating stress. It is shown that for a disk of Inconel 718 a through-the-thickness crack operating under a rim stress of 50 kpsi has a critical length of 0.7-in. and a remaining life of 130 flights.

  14. Application of Probabilistic Methods to Assess Risk Due to Resonance in the Design of J-2X Rocket Engine Turbine Blades

    Science.gov (United States)

    Brown, Andrew M.; DeHaye, Michael; DeLessio, Steven

    2011-01-01

    The LOX-Hydrogen J-2X Rocket Engine, which is proposed for use as an upper-stage engine for numerous earth-to-orbit and heavy lift launch vehicle architectures, is presently in the design phase and will move shortly to the initial development test phase. Analysis of the design has revealed numerous potential resonance issues with hardware in the turbomachinery turbine-side flow-path. The analysis of the fuel pump turbine blades requires particular care because resonant failure of the blades, which are rotating in excess of 30,000 revolutions/minutes (RPM), could be catastrophic for the engine and the entire launch vehicle. This paper describes a series of probabilistic analyses performed to assess the risk of failure of the turbine blades due to resonant vibration during past and present test series. Some significant results are that the probability of failure during a single complete engine hot-fire test is low (1%) because of the small likelihood of resonance, but that the probability increases to around 30% for a more focused turbomachinery-only test because all speeds will be ramped through and there is a greater likelihood of dwelling at more speeds. These risk calculations have been invaluable for use by program management in deciding if risk-reduction methods such as dampers are necessary immediately or if the test can be performed before the risk-reduction hardware is ready.

  15. Herniated Disk

    Science.gov (United States)

    ... It is often caused by natural aging and deterioration. To keep your disks and back in good ... Injury Prevention Crisis Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and ...

  16. Combustion generated noise in gas turbine combustors. [engine noise/noise reduction

    Science.gov (United States)

    Strahle, W. C.; Shivashankara, B. N.

    1974-01-01

    Experiments were conducted to determine the noise power and spectra emitted from a gas turbine combustor can exhausting to the atmosphere. Limited hot wire measurements were made of the cold flow turbulence level and spectra within the can. The fuels used were JP-4, acetone and methyl alcohol burning with air at atmospheric pressure. The experimental results show that for a fixed fuel the noise output is dominated by the airflow rate and not the fuel/air ratio. The spectra are dominated by the spectra of the cold flow turbulence spectra which were invariant with airflow rate in the experiments. The effect of fuel type on the noise power output was primarily through the heat of combustion and not the reactivity. A theory of combustion noise based upon the flame radiating to open surroundings is able to reasonably explain the observed results. A thermoacoustic efficiency for noise radiation as high as .00003 was observed in this program for JP-4 fuel. Scaling rules are presented for installed configurations.

  17. Forced Response Prediction of Turbine Blades with Flexible Dampers: The Impact of Engineering Modelling Choices

    Directory of Open Access Journals (Sweden)

    Chiara Gastaldi

    2017-12-01

    Full Text Available This paper focuses on flexible friction dampers (or “strips” mounted on the underside of adjacent turbine blade platforms for sealing and damping purposes. A key parameter to ensure a robust and trustworthy design is the correct prediction of the maximum frequency shift induced by the strip damper coupling adjacent blades. While this topic has been extensively addressed on rigid friction dampers, both experimentally and numerically, no such investigation is available as far as flexible dampers are concerned. This paper builds on the authors’ prior experience with rigid dampers to investigate the peculiarities and challenges of a robust dynamic model of blade-strips systems. The starting point is a numerical tool implementing state-of-the-art techniques for the efficient solution of the nonlinear equations, e.g., multi-harmonic balance method with coupled static solution and state-of-the-art contact elements. The full step-by-step modelling process is here retraced and upgraded to take into account the damper flexibility: for each step, key modelling choices (e.g., mesh size, master nodes selection, contact parameters which may affect the predicted response are addressed. The outcome is a series of guidelines which will help the designer assign numerical predictions the proper level of trust and outline a much-needed experimental campaign.

  18. Review of modern low emissions combustion technologies for aero gas turbine engines

    Science.gov (United States)

    Liu, Yize; Sun, Xiaoxiao; Sethi, Vishal; Nalianda, Devaiah; Li, Yi-Guang; Wang, Lu

    2017-10-01

    Pollutant emissions from aircraft in the vicinity of airports and at altitude are of great public concern due to their impact on environment and human health. The legislations aimed at limiting aircraft emissions have become more stringent over the past few decades. This has resulted in an urgent need to develop low emissions combustors in order to meet legislative requirements and reduce the impact of civil aviation on the environment. This article provides a comprehensive review of low emissions combustion technologies for modern aero gas turbines. The review considers current high Technologies Readiness Level (TRL) technologies including Rich-Burn Quick-quench Lean-burn (RQL), Double Annular Combustor (DAC), Twin Annular Premixing Swirler combustors (TAPS), Lean Direct Injection (LDI). It further reviews some of the advanced technologies at lower TRL. These include NASA multi-point LDI, Lean Premixed Prevaporised (LPP), Axially Staged Combustors (ASC) and Variable Geometry Combustors (VGC). The focus of the review is placed on working principles, a review of the key technologies (includes the key technology features, methods of realising the technology, associated technology advantages and design challenges, progress in development), technology application and emissions mitigation potential. The article concludes the technology review by providing a technology evaluation matrix based on a number of combustion performance criteria including altitude relight auto-ignition flashback, combustion stability, combustion efficiency, pressure loss, size and weight, liner life and exit temperature distribution.

  19. Probing the Accretion Disk and Central Engine Structure of the NGC 4258 with Suzaku and XMM-Newton Observations

    Science.gov (United States)

    Reynolds, Christopher S.; Nowak, Michael A.; Markoff, Sera; Tueller, Jack; Wilms, Joern; Young, Andrew

    2009-01-01

    We present an X-ray study of the low-luminosity active galactic nucleus (AGN) in NGC 4258 using data from Suzaku, XMM-Newton, and the Swift/Burst Alert Telescope survey. We find that signatures of X-ray reprocessing by cold gas are very weak in the spectrum of this Seyfert-2 galaxy; a weak, narrow fluorescent K(alpha) emission line of cod iron is robustly detected in both the Suzaku and XMM-Newton spectra but at a level much below that of most other Seyfert-2 galaxies. We conclude that the circumnuclear environment of this AGN is very "clean" and lacks the Compton-thick obscuring torus of unified Seyfert schemes. From the narrowness of the iron line, together with evidence of line flux variability between the Suzaku and XMM-Newton observations, we constrain the line emitting region to be between 3 x 10(exp 3)r(sub g) and 4 x 10(exp 4)r(sub g), from the black hole. We show that the observed properties of the iron line can be explained if the line originates from the surface layers of a warped accretion disk. In particular, we present explicit calculations of the expected iron line from a disk warped by Lens-Thirring precession from a misaligned central black hole. Finally, the Suzaku data reveal clear evidence of large amplitude 2-10 keV variability on timescales of 50 ksec and smaller amplitude flares on timescales as short as 5-10 ksec. If associated with accretion disk processes, such rapid variability requires an origin in the innermost regions of the disk (r approx. equals 10(r(sub g) or less). Analysis of the difference spectrum between a high- and low-flux states suggests that the variable component of the X-ray emission is steeper and more absorbed than the average AGN emission, suggesting that the primary X-ray source and absorbing screen have a spatial structure on comparable scales. We note the remarkable similarity between the circumnuclear environment of NGC 4258 and another well studied low-luminosity AGN, M81*.

  20. Status of Technological Advancements for Reducing Aircraft Gas Turbine Engine Pollutant Emissions

    Science.gov (United States)

    Rudey, R. A.

    1975-01-01

    Combustor test rig results indicate that substantial reductions from current emission levels of carbon monoxide (CO), total unburned hydrocarbons (THC), oxides of nitrogen (NOx), and smoke are achievable by employing varying degrees of technological advancements in combustion systems. Minor to moderate modifications to existing conventional combustors produced significant reductions in CO and THC emissions at engine low power (idle/taxi) operating conditions but did not effectively reduce NOx at engine full power (takeoff) operating conditions. Staged combusiton techniques were needed to simultaneously reduce the levels of all the emissions over the entire engine operating range (from idle to takeoff). Emission levels that approached or were below the requirements of the 1979 EPA standards were achieved with the staged combustion systems and in some cases with the minor to moderate modifications to existing conventional combustion systems. Results from research programs indicate that an entire new generation of combustor technology with extremely low emission levels may be possible in the future.

  1. The Use of an Ultra-Compact Combustor as an Inter-Turbine Burner for Improved Engine Performance

    Science.gov (United States)

    2014-03-27

    Alstom , formally known as ABB Power Generation, developed a line of SCgas turbines for the power generation industry [12]. The Alstom GT24 and GT26...consist of a primary combustor a turbine and a reheat combustor, with the aim of achieving high efficiency while delivering low emissions. Alstom has been...utilizing the SC concepts since the 1940’s using diffusion type combustors. In 1995 Alstom developed their modern line SC gas turbines shown in Figure

  2. Effects of a Dual-Loop Exhaust Gas Recirculation System and Variable Nozzle Turbine Control on the Operating Parameters of an Automotive Diesel Engine

    Directory of Open Access Journals (Sweden)

    Giorgio Zamboni

    2017-01-01

    Full Text Available Reduction of NOX emissions and fuel consumption are the main topics in engine development, forcing the adoption of complex techniques and components, whose interactions have to be clearly understood for proper and reliable operations and management of the whole system. The investigation presented in this paper aimed at the development of integrated control strategies of turbocharging, high pressure (HP and low pressure (LP exhaust gas recirculation (EGR systems for better NOX emissions and fuel consumption, while analyzing their reciprocal influence and the resulting variations of engine quantities. The study was based on an extended experimental program in three part load engine operating conditions. In the paper a comparison of the behavior of the main engine sub-systems (intake and exhaust circuits, turbocharger turbine and compressor, HP and LP EGR loops in a wide range of operating modes is presented and discussed, considering open and closed loop approaches for variable nozzle turbine (VNT control, and showing how these affect engine performance and emissions. The potential of significant decrease in NOX emissions through the integration of HP and LP EGR was confirmed, while a proper VNT management allowed for improved fuel consumption level, if an open loop control scheme is followed. At higher engine speed and load, further actions have to be applied to compensate for observed soot emissions increase.

  3. R&D on Composition and Processing of Titanium Aluminide Alloys for Turbine Engines

    Science.gov (United States)

    1982-07-01

    and is approved for publication. 4.2 / /;ARRY LIPS NORMA M. GEYER Projec Engineer Technical Area Manager Processing & High Temperature Materials...of as- forged Ti- 25A1-10Nb- 3V- iMo 24 alloy pancake forging. This was forged on iso - thermal dies at 1120C (20SOF) in one step from a cast ingot. 14

  4. Resonant Vibrations Resulting from the Re-Engineering of a Constant-Speed 2-Bladed Turbine to a Variable-Speed 3-Bladed Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, P.; Wright, A. D.; Finersh, L. J.

    2010-12-01

    The CART3 (Controls Advanced Research Turbine, 3-bladed) at the National Wind Technology Center has recently been converted from a 2-bladed constant speed machine to a 3-bladed variable speed machine designed specically for controls research. The purpose of this conversion was to develop an advanced controls field-testing platform which has the more typical 3-bladed configuration. A result of this conversion was the emergence of several resonant vibrations, some of which initially prevented operation of the turbine until they could be explained and resolved. In this paper, the investigations into these vibrations are presented as 'lessons-learned'. Additionally, a frequency-domain technique called waterfall plotting is discussed and its usefulness in this research is illustrated.

  5. Combustion noise from gas turbine aircraft engines measurement of far-field levels

    Science.gov (United States)

    Krejsa, Eugene A.

    1987-01-01

    Combustion noise can be a significant contributor to total aircraft noise. Measurement of combustion noise is made difficult by the fact that both jet noise and combustion noise exhibit broadband spectra and peak in the same frequency range. Since in-flight reduction of jet noise is greater than that of combustion noise, the latter can be a major contributor to the in-flight noise of an aircraft but will be less evident, and more difficult to measure, under static conditions. Several methods for measuring the far-field combustion noise of aircraft engines are discussed in this paper. These methods make it possible to measure combustion noise levels even in situations where other noise sources, such as jet noise, dominate. Measured far-field combustion noise levels for several turbofan engines are presented. These levels were obtained using a method referred to as three-signal coherence, requiring that fluctuating pressures be measured at two locations within the engine core in addition to the far-field noise measurement. Cross-spectra are used to separate the far-field combustion noise from far-field noise due to other sources. Spectra and directivities are presented. Comparisons with existing combustion noise predictions are made.

  6. An Architecture for On-Line Measurement of the Tip Clearance and Time of Arrival of a Bladed Disk of an Aircraft Engine

    Directory of Open Access Journals (Sweden)

    José Miguel Gil-García

    2017-09-01

    Full Text Available Safety and performance of the turbo-engine in an aircraft is directly affected by the health of its blades. In recent years, several improvements to the sensors have taken place to monitor the blades in a non-intrusive way. The parameters that are usually measured are the distance between the blade tip and the casing, and the passing time at a given point. Simultaneously, several techniques have been developed that allow for the inference—from those parameters and under certain conditions—of the amplitude and frequency of the blade vibration. These measurements are carried out on engines set on a rig, before being installed in an airplane. In order to incorporate these methods during the regular operation of the engine, signal processing that allows for the monitoring of those parameters at all times should be developed. This article introduces an architecture, based on a trifurcated optic sensor and a hardware processor, that fulfills this need. The proposed architecture is scalable and allows several sensors to be simultaneously monitored at different points around a bladed disk. Furthermore, the results obtained by the electronic system will be compared with the results obtained by the validation of the optic sensor.

  7. Modeling and simulation of combustion dynamics in lean-premixed swirl-stabilized gas-turbine engines

    Science.gov (United States)

    Huang, Ying

    This research focuses on the modeling and simulation of combustion dynamics in lean-premixed gas-turbines engines. The primary objectives are: (1) to establish an efficient and accurate numerical framework for the treatment of unsteady flame dynamics; and (2) to investigate the parameters and mechanisms responsible for driving flow oscillations in a lean-premixed gas-turbine combustor. The energy transfer mechanisms among mean flow motions, periodic motions and background turbulent motions in turbulent reacting flow are first explored using a triple decomposition technique. Then a comprehensive numerical study of the combustion dynamics in a lean-premixed swirl-stabilized combustor is performed. The analysis treats the conservation equations in three dimensions and takes into account finite-rate chemical reactions and variable thermophysical properties. Turbulence closure is achieved using a large-eddy-simulation (LES) technique. The compressible-flow version of the Smagorinsky model is employed to describe subgrid-scale turbulent motions and their effect on large-scale structures. A level-set flamelet library approach is used to simulate premixed turbulent combustion. In this approach, the mean flame location is modeled using a level-set G-equation, where G is defined as a distance function. Thermophysical properties are obtained using a presumed probability density function (PDF) along with a laminar flamelet library. The governing equations and the associated boundary conditions are solved by means of a four-step Runge-Kutta scheme along with the implementation of the message passing interface (MPI) parallel computing architecture. The analysis allows for a detailed investigation into the interaction between turbulent flow motions and oscillatory combustion of a swirl-stabilized injector. Results show good agreement with an analytical solution and experimental data in terms of acoustic properties and flame evolution. A study of flame bifurcation from a stable

  8. Comparison of Stirling engines for use with a 25-kW disk-electric conversion system

    Science.gov (United States)

    Shaltens, Richard K.

    1987-01-01

    Heat engines were evaluated for terrestrial solar heat receivers. The Stirling Engine was identified as one of the most promising engines for terrestrial applications. The potential to meet the Department of Energy (DOE) goals for performance and cost can be met by the free-piston Stirling engine. NASA Lewis is providing technical management for an Advanced Stirling Conversion System (ASCS) through a cooperative interagency agreement with DOE. Parallel contracts were awarded for conceptual designs of an ASCS. Each design will feature a free-piston Stirling engine, a liquid-metal heat pipe receiver, and a means to provide about 25 kW of electric power to a utility grid while meeting long-term performance and goals. The Mechanical Technology, Ins. (MTI) design incorporates a linear alternator to directly convert the solar energy to electricity while the Stirling Technology Company (STC) generates electrical power indirectly by using a hydraulic output to a ground-bases hydraulic pump/motor coupled to a rotating alternator. Both designs use technology which can reasonably be expected to be available in the 1980's. The ASCS designs using a free-piston Stirling engine, a heat transport system, a receiver, and the methods of providing electricity to the utility grid will be discussed.

  9. Turbinate surgery

    Science.gov (United States)

    Turbinectomy; Turbinoplasty; Turbinate reduction; Nasal airway surgery; Nasal obstruction - turbinate surgery ... There are several types of turbinate surgery: Turbinectomy: All or ... This can be done in several different ways, but sometimes a ...

  10. Tool for the Integrated Dynamic Numerical Propulsion System Simulation (NPSS)/Turbine Engine Closed-Loop Transient Analysis (TTECTrA) User's Guide

    Science.gov (United States)

    Chin, Jeffrey C.; Csank, Jeffrey T.

    2016-01-01

    The Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA ver2) is a control design tool thatenables preliminary estimation of transient performance for models without requiring a full nonlinear controller to bedesigned. The program is compatible with subsonic engine models implemented in the MATLAB/Simulink (TheMathworks, Inc.) environment and Numerical Propulsion System Simulation (NPSS) framework. At a specified flightcondition, TTECTrA will design a closed-loop controller meeting user-defined requirements in a semi or fully automatedfashion. Multiple specifications may be provided, in which case TTECTrA will design one controller for each, producing acollection of controllers in a single run. Each resulting controller contains a setpoint map, a schedule of setpointcontroller gains, and limiters; all contributing to transient characteristics. The goal of the program is to providesteady-state engine designers with more immediate feedback on the transient engine performance earlier in the design cycle.

  11. Development of a high strength hot isostatically pressed /HIP/ disk alloy, MERL 76

    Science.gov (United States)

    Evans, D. J.; Eng, R. D.

    1980-01-01

    A nickel-based powder metal disk alloy developed for use in advanced commercial gas turbines is described. Consideration is given to final alloy chemistry modifications made to achieve a desirable balance between tensile strength and stress rupture life and ductility. The effects of post-consolidation heat treatment are discussed, the preliminary mechanical properties obtained from full-scale turbine disks are presented.

  12. Application of FDI metrics to detection and isolation of sensor failures in turbine engines

    Science.gov (United States)

    Weiss, J. L.; Willsky, A. S.; Pattipati, K. R.; Eterno, J. S.

    1985-01-01

    This paper develops a framework for the design of failure detection and isolation (FDI) algorithms. Rather than trying to apply 'optimal' techniques in a top-down manner, the system redundancies are evaluated with respect to their ability to provide reliable FDI information. Previous work of Pattipati et al. (1984) and Weiss et al. (1984) defined a useful context and several useful analytical results, which provide a basis for the FDI design methodology developed here. A general decision structure which can take advantage of redundancy evaluation is presented, and examples of typical design considerations are discussed. The operation of the decision structure is then demonstrated for a sensor FDI application involving the F-100 jet engine.

  13. Confirmatory radiological survey of the BORAX-V turbine building Idaho National Engineering Laboratory, Idaho Falls, Idaho

    International Nuclear Information System (INIS)

    Stevens, G.H.; Coleman, R.L.; Jensen, M.K.; Pierce, G.A.; Egidi, P.V.; Mather, S.K.

    1993-01-01

    An independent assessment of the remediation of the BORAX-V (Boiling Water Reactor Experiment) turbine building at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho, was accomplished by the Oak Ridge National Laboratory Pollutant Assessments Group (ORNL/PAG). The purpose of the assessment was to confirm the site's compliance with applicable Department of Energy guidelines. The assessment included reviews of both the decontamination and decommissioning Plan and data provided from the pre- and post-remedial action surveys and an independent verification survey of the facility. The independent verification survey included determination of background exposure rates and soil concentrations, beta-gamma and gamma radiation scans, smears for detection of removable contamination, and direct measurements for alpha and beta-gamma radiation activity on the basement and mezzanine floors and the building's interior and exterior walls. Soil samples were taken, and beta-gamma and gamma radiation exposure rates were measured on areas adjacent to the building. Results of measurements on building surfaces at this facility were within established contamination guidelines except for elevated beta-gamma radiation levels located on three isolated areas of the basement floor. Following remediation of these areas, ORNL/PAG reviewed the remedial action contractor's report and agreed that remediation was effective in removing the source of the elevated direct radiation. Results of all independent soil analyses for 60 Co were below the detection limit. The highest 137 Cs analysis result was 4.6 pCi/g; this value is below the INEL site-specific guideline of 10 pCi/g

  14. Braking System for Wind Turbines

    Science.gov (United States)

    Krysiak, J. E.; Webb, F. E.

    1987-01-01

    Operating turbine stopped smoothly by fail-safe mechanism. Windturbine braking systems improved by system consisting of two large steel-alloy disks mounted on high-speed shaft of gear box, and brakepad assembly mounted on bracket fastened to top of gear box. Lever arms (with brake pads) actuated by spring-powered, pneumatic cylinders connected to these arms. Springs give specific spring-loading constant and exert predetermined load onto brake pads through lever arms. Pneumatic cylinders actuated positively to compress springs and disengage brake pads from disks. During power failure, brakes automatically lock onto disks, producing highly reliable, fail-safe stops. System doubles as stopping brake and "parking" brake.

  15. Advanced LP turbine blade design

    International Nuclear Information System (INIS)

    Jansen, M.; Pfeiffer, R.; Termuehlen, H.

    1990-01-01

    In the 1960's and early 1970's, the development of steam turbines for the utility industry was mainly influenced by the demand for increasing unit sizes. Nuclear plants in particular, required the design of LP turbines with large annulus areas for substantial mass and volumetric steam flows. Since then the development of more efficient LP turbines became an ongoing challenge. Extensive R and D work was performed in order to build efficient and reliable LP turbines often exposed to severe corrosion, erosion and dynamic excitation conditions. This task led to the introduction of an advanced disk-type rotor design for 1800 rpm LP turbines and the application of a more efficient, reaction-type blading for all steam turbine sections including the first stages of LP turbines. The most recent developments have resulted in an advanced design of large LP turbine blading, typically used in the last three stages of each LP turbine flow section. Development of such blading required detailed knowledge of the three dimensional, largely transonic, flow conditions of saturated steam. Also the precise assessment of blade stressing from dynamic conditions, such as speed and torsional resonance, as well as stochastic and aerodynamic excitation is of extreme importance

  16. Control Performance of General Electric Fuel and Torque Regulator Operating on T31-3 Turbine-Propeller Engine in Sea-Level Test Stand

    Science.gov (United States)

    Oppenheimer, Frank L.; Lazar, James

    1951-01-01

    A .General Electric fuel and torque regulator was tested in conjunction with a T31-3 turbine-propeller engine in the sea-level static test stand at the NACA Lewis laboratory. The engine and control were operated over the entire speed range: 11,000 rpm, nominal flight idle, to 13,000 rpm, full power. Steady-state and transient data were recorded and are presented with a description of the four control loops being used in the system. Results of this investigation indicated that single-lever control operation was satisfactory under conditions of test. Transient data presented showed that turbine-outlet temperature did overshoot maximum operating value on acceleration but that the time duration of overshoot did not exceed approximately 1 second. This temperature limiting resulted from a control on fuel flow as a function of engine speed. Speed and torque first reached their desired values 0.4 second from the time of change in power-setting lever position. Maximum speed overshoot was 3 percent.

  17. Microtextured Surfaces for Turbine Blade Impingement Cooling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Gas turbine engine technology is constantly challenged to operate at higher combustor outlet temperatures. In a modern gas turbine engine, these temperatures can...

  18. Advanced turbine study. [airfoil coling in rocket turbines

    Science.gov (United States)

    1982-01-01

    Experiments to determine the available increase in turbine horsepower achieved by increasing turbine inlet temperature over a range of 1800 to 2600 R, while applying current gas turbine airfoil cling technology are discussed. Four cases of rocket turbine operating conditions were investigated. Two of the cases used O2/H2 propellant, one with a fuel flowrate of 160 pps, the other 80 pps. Two cases used O2/CH4 propellant, each having different fuel flowrates, pressure ratios, and inlet pressures. Film cooling was found to be the required scheme for these rocket turbine applications because of the high heat flux environments. Conventional convective or impingement cooling, used in jet engines, is inadequate in a rocket turbine environment because of the resulting high temperature gradients in the airfoil wall, causing high strains and low cyclic life. The hydrogen-rich turbine environment experienced a loss, or no gain, in delivered horsepower as turbine inlet temperature was increased at constant airfoil life. The effects of film cooling with regard to reduced flow available for turbine work, dilution of mainstream gas temperature and cooling reentry losses, offset the relatively low specific work capability of hydrogen when increasing turbine inlet temperature over the 1800 to 2600 R range. However, the methane-rich environment experienced an increase in delivered horsepower as turbine inlet temperature was increased at constant airfoil life. The results of a materials survey and heat transfer and durability analysis are discussed.

  19. Numerical Evaluation ofThe Performance ofA Compression Ignition Cng Engine For Heavy DutyTrucksWithAn Optimum Speed PowerTurbine

    Directory of Open Access Journals (Sweden)

    Alberto A. Boretti

    2011-10-01

    Full Text Available The turbocharged direct injection lean burn Diesel engine is the most efficient engine now in production for transport applications. CNG is an alternative fuel with a better carbon to hydrogen ratio therefore permitting reduced carbon dioxide emissions. It is injected in gaseous form for a much cleaner combustion almost cancelling some of the emissions of the Diesel and it permits a much better energy security within Australia. The paper discusses the best options currently available to convert Diesel engine platforms to CNG, with particular emphasis to the use of these CNG engines within Australia where the refuelling network is scarce. This option is determined in the dual fuel operation with a double injector design that couples a second CNG injector to the Diesel injector. This configuration permits the operation Diesel only or Diesel pilot and CNG main depending on the availability of refuelling stations where the vehicle operates. Results of engine performance simulations are performed for a straight six cylinder 13 litres truck engine with a novel power turbine connected to the crankshaft through a constant variable transmission that may be by-passed when non helpful to increase the fuel economy of the vehicle or when damaging the performances of the after treatment system.

  20. Turbine Engine Testing.

    Science.gov (United States)

    1981-01-01

    coax lus i (sust Pur oviun. 2.2. Caract6r istique essentielle des essa is roacteur 1 l’aviuno(_ Les essa is A 1 avionnage sont caraclerimen par 1...centrifugation. La centrale eat munie d’un Echangeur huils / eau. Lea pompes sont doubldes pour des raisons de sdcuritd et en cas de panne Electrique le...lea mesures effectudes sur les parties tournantes, essentiellement des contraintes Bur lea aubages. Des sondes mobiles de pression ou de tempdrature t

  1. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  2. Marine gas turbine; Hakuyo gas turbine suishin plant

    Energy Technology Data Exchange (ETDEWEB)

    Gomi, I.; Shikina, T.; Chiba, M. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-09-01

    Aero-derivative gas turbines have been used widely worldwide in warship propulsion engines. On the other hand, their application is expanding to high-speed commercial ships, in which their advantage of being small in size and light in weight is most effectively utilized. In particular, the gas turbine LM6000 having high output in excess of 40 MW and high reliability realizes low operation cost in large high-speed ships. In addition, expanded gas turbine utilization may be expected in marine propulsion engines if fuel consumption of the gas turbine is improved, where the recuperated cycle use is one of the directions. IHI is continuing research and development of a heat exchanger which holds the key to the practical application of the recuperated cycle gas turbine, and a power turbine with variable nozzles which will further expand the advantage of the recuperated cycle use. The former turbine is a plate fin type with inner fins arranged off-set. The latter turbine controls air flow rate in the gas turbine by varying nozzle angle to match the output, and maintains the heat exchanger inlet temperature at a high level constantly. 3 refs., 7 figs., 2 tabs.

  3. Regenerative superheated steam turbine cycles

    Science.gov (United States)

    Fuller, L. C.; Stovall, T. K.

    1980-01-01

    PRESTO computer program was developed to analyze performance of wide range of steam turbine cycles with special attention given to regenerative superheated steam turbine cycles. It can be used to model standard turbine cycles, including such features as process steam extraction, induction and feedwater heating by external sources, peaking, and high back pressure. Expansion line efficiencies, exhaust loss, leakages, mechanical losses, and generator losses are used to calculate cycle heat rate and generator output. Program provides power engineer with flexible aid for design and analysis of steam turbine systems.

  4. New low pressure (LP) turbines for NE Krsko

    International Nuclear Information System (INIS)

    Nemcic, K.; Novsak, M.

    2004-01-01

    During the evaluation of possible future maintenance strategies on steam turbine in very short period of time, engineering decision was made by NE Krsko in agreement with Owners to replace the existing two Low Pressure (LP) Turbines with new upgrading LP Turbines. This decision is presented with review of the various steam turbine problems as: SCC on turbine discs; blades cracking; erosion-corrosion with comparison of various maintenance options and efforts undertaken by the NE Krsko to improve performance of the original low pressure turbines. This paper presents the NEK approach to solve the possible future problems with steam turbine operation in NE Krsko as pro-active engineering and maintenance activities on the steam turbine. This paper also presents improvements involving retrofits, confined to the main steam turbine path, with major differences between original and new LP Turbines as beneficial replacement because of turbine MWe upgrading and return capital expenditures.(author)

  5. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  6. On the Effects of Wind Turbine Wake Skew Caused by Wind Veer

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, Matthew J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sirnivas, Senu [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-12

    Because of Coriolis forces caused by the Earth's rotation, the structure of the atmospheric boundary layer often contains wind-direction change with height, also known as wind-direction veer. Under low turbulence conditions, such as in stably stratified atmospheric conditions, this veer can be significant, even across the vertical extent of a wind turbine's rotor disk. The veer then causes the wind turbine wake to skew as it advects downstream. This wake skew has been observed both experimentally and numerically. In this work, we attempt to examine the wake skewing process in some detail, and quantify how differently a skewed wake versus a non skewed wake affects a downstream turbine. We do this by performing atmospheric large-eddy simulations to create turbulent inflow winds with and without veer. In the veer case, there is a roughly 8 degree wind direction change across the turbine rotor. We then perform subsequent large-eddy simulations using these inflow data with an actuator line rotor model to create wakes. The turbine modeled is a large, modern, offshore, multimegawatt turbine. We examine the unsteady wake data in detail and show that the skewed wake recovers faster than the non skewed wake. We also show that the wake deficit does not skew to the same degree that a passive tracer would if subject to veered inflow. Last, we use the wake data to place a hypothetical turbine 9 rotor diameters downstream by running aeroelastic simulations with the simulated wake data. We see differences in power and loads if this downstream turbine is subject to a skewed or non skewed wake. We feel that the differences observed between the skewed and nonskewed wake are important enough that the skewing effect should be included in engineering wake models.

  7. On the Effects of Wind Turbine Wake Skew Caused by Wind Veer: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, Matthew J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sirnivas, Senu [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-01

    Because of Coriolis forces caused by the Earth's rotation, the structure of the atmospheric boundary layer often contains wind-direction change with height, also known as wind-direction veer. Under low turbulence conditions, such as in stably stratified atmospheric conditions, this veer can be significant, even across the vertical extent of a wind turbine's rotor disk. The veer then causes the wind turbine wake to skew as it advects downstream. This wake skew has been observed both experimentally and numerically. In this work, we attempt to examine the wake skewing process in some detail, and quantify how differently a skewed wake versus a non skewed wake affects a downstream turbine. We do this by performing atmospheric large-eddy simulations to create turbulent inflow winds with and without veer. In the veer case, there is a roughly 8 degree wind direction change across the turbine rotor. We then perform subsequent large-eddy simulations using these inflow data with an actuator line rotor model to create wakes. The turbine modeled is a large, modern, offshore, multimegawatt turbine. We examine the unsteady wake data in detail and show that the skewed wake recovers faster than the non skewed wake. We also show that the wake deficit does not skew to the same degree that a passive tracer would if subject to veered inflow. Last, we use the wake data to place a hypothetical turbine 9 rotor diameters downstream by running aeroelastic simulations with the simulated wake data. We see differences in power and loads if this downstream turbine is subject to a skewed or non skewed wake. We feel that the differences observed between the skewed and nonskewed wake are important enough that the skewing effect should be included in engineering wake models.

  8. Probabilistic Design of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard

    During the last decades, wind turbines have been continuously developed with the aim of maximizing the life cycle benefits (production of electricity) minus the costs of planning, materials, installation, operation & maintenance as well as possible failure. In order to continue this development...... turbines and the central topics considered are statistical load extrapolation of extreme loads during operation and reliability assessment of wind turbine blades. Wind turbines differ from most civil engineering structures by having a control system which highly influences the loading. In the literature......, methods for estimating the extreme load-effects on a wind turbine during operation, where the control system is active, have been proposed. But these methods and thereby the estimated loads are often subjected to a significant uncertainty which influences the reliability of the wind turbine...

  9. Surface Temperature Measurements from a Stator Vane Doublet in a Turbine Engine Afterburner Flame Using a YAG:Tm Thermographic Phosphor

    Science.gov (United States)

    Eldridge, J. I.; Walker, D. G.; Gollub, S. L.; Jenkins, T. P.; Allison, S. W.

    2015-01-01

    Luminescence-based surface temperature measurements were obtained from a YAG:Tm-coated stator vane doublet exposed to the afterburner flame of a J85 test engine at University of Tennessee Space Institute (UTSI). The objective of the testing was to demonstrate that reliable surface temperatures based on luminescence decay of a thermographic phosphor producing short-wavelength emission could be obtained from the surface of an actual engine component in a high gas velocity, highly radiative afterburner flame environment. YAG:Tm was selected as the thermographic phosphor for its blue emission at 456 nm (1D23F4 transition) and UV emission at 365 nm (1D23H6 transition) because background thermal radiation is lower at these wavelengths, which are shorter than those of many previously used thermographic phosphors. Luminescence decay measurements were acquired using a probe designed to operate in the afterburner flame environment. The probe was mounted on the sidewall of a high-pressure turbine vane doublet from a Honeywell TECH7000 turbine engine coated with a standard electron-beam physical vapor deposited (EB-PVD) 200-m-thick TBC composed of yttria-stabilized zirconia (YSZ) onto which a 25-m-thick YAG:Tm thermographic phosphor layer was deposited by solution precursor plasma spray (SPPS). Spot temperature measurements were obtained by measuring luminescence decay times at different afterburner power settings and then converting decay time to temperature via calibration curves. Temperature measurements using the decays of the 456 and 365 nm emissions are compared. While successful afterburner environment measurements were obtained to about 1300C with the 456 nm emission, successful temperature measurements using the 365 nm emission were limited to about 1100C due to interference by autofluorescence of probe optics at short decay times.

  10. Hydraulic turbines

    International Nuclear Information System (INIS)

    Meluk O, G.

    1998-01-01

    The hydraulic turbines are defined according to the specific speed, in impulse turbines and in reaction turbines. Currently, the Pelton turbines (of impulse) and the Francis and Kaplan turbines (of reaction), they are the most important machines in the hydroelectric generation. The hydraulic turbines are capable of generating in short times, large powers, from its loads zero until the total load and reject the load instantly without producing damages in the operation. When the hydraulic resources are important, the hydraulic turbines are converted in the axle of the electric system. Its combination with thermoelectric generation systems, it allow the continuing supply of the variations in demand of energy system. The available hydraulic resource in Colombia is of 93085 MW, of which solely 9% is exploited, become 79% of all the electrical country generation, 21% remaining is provided by means of the thermoelectric generation

  11. Report on the fifth gas turbine education symposium; Dai 5 kai gas turbine kyoiku symposium

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T. [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1999-09-20

    This paper reports the fifth gas turbine education symposium held by the Gas Turbine Society of Japan. The symposium was held at the IHI Mizuho factory on July 15 and 16, 1999. Its objective is to have young men, who will bear the future of Japan's technologies, get interested in gas turbines. It is a project held once a year to make visits to gas turbine manufacturing factories in operation, together with lectures given by experts actively at work in their respective fields. The symposium was attended as many as 35 students and 70 young engineers, 105 persons in total. In the first day, after lectures have been given on an outline of gas turbines, and gas turbines and fluid engineering, visits were made to the factory manufacturing aircraft gas turbines, the assembly factory, the engine performance testing facilities, and the power generation facility LM6000 (output of 41200 kW) using gas turbines diverted from aircraft use. Furthermore, tours were made to items of equipment constituting a space station, and turbo pumps for Japanese made robots. The second day was used for lectures on gas turbines and heat transfer engineering, gas turbines and combustion engineering, and gas turbines and material engineering. (NEDO)

  12. A New Superalloy Enabling Heavy Duty Gas Turbine Wheels for Improved Combined Cycle Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Detor, Andrew [General Electric Company, Niskayuna, NY (United States). GE Global Research; DiDomizio, Richard [General Electric Company, Niskayuna, NY (United States). GE Global Research; McAllister, Don [The Ohio State Univ., Columbus, OH (United States); Sampson, Erica [General Electric Company, Niskayuna, NY (United States). GE Global Research; Shi, Rongpei [The Ohio State Univ., Columbus, OH (United States); Zhou, Ning [General Electric Company, Niskayuna, NY (United States). GE Global Research

    2017-01-03

    The drive to increase combined cycle turbine efficiency from 62% to 65% for the next-generation advanced cycle requires a new heavy duty gas turbine wheel material capable of operating at 1200°F and above. Current wheel materials are limited by the stability of their major strengthening phase (gamma double prime), which coarsens at temperatures approaching 1200°F, resulting in a substantial reduction in strength. More advanced gamma prime superalloys, such as those used in jet engine turbine disks, are also not suitable due to size constraints; the gamma prime phase overages during the slow cooling rates inherent in processing thick-section turbine wheels. The current program addresses this need by screening two new alloy design concepts. The first concept exploits a gamma prime/gamma double prime coprecipitation reaction. Through manipulation of alloy chemistry, coprecipitation is controlled such that gamma double prime is used only to slow the growth of gamma prime during slow cooling, preventing over-aging, and allowing for subsequent heat treatment to maximize strength. In parallel, phase field modeling provides fundamental understanding of the coprecipitation reaction. The second concept uses oxide dispersion strengthening to improve on two existing alloys that exhibit excellent hold time fatigue crack growth resistance, but have insufficient strength to be considered for gas turbine wheels. Mechanical milling forces the dissolution of starting oxide powders into a metal matrix allowing for solid state precipitation of new, nanometer scale oxides that are effective at dispersion strengthening.

  13. Exhaust turbine and jet propulsion systems

    Science.gov (United States)

    Leist, Karl; Knornschild, Eugen

    1951-01-01

    DVL experimental and analytical work on the cooling of turbine blades by using ram air as the working fluid over a sector or sectors of the turbine annulus area is summarized. The subsonic performance of ram-jet, turbo-jet, and turbine-propeller engines with both constant pressure and pulsating-flow combustion is investigated. Comparison is made with the performance of a reciprocating engine and the advantages of the gas turbine and jet-propulsion engines are analyzed. Nacelle installation methods and power-level control are discussed.

  14. ADVANCED TURBINE SYSTEMS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  15. Influence analysis of electronically and vibrationally excited particles on the ignition of methane and hydrogen under the conditions of a gas turbine engine

    Science.gov (United States)

    Deminskii, M. A.; Konina, K. M.; Potapkin, B. V.

    2018-03-01

    The vibronic and electronic energy relaxation phenomena in the specific conditions of a gas turbine engine were investigated in this paper. The plasma-chemical mechanism has been augmented with the results of recent investigations of the processes that involve electronically and vibrationally excited species. The updated mechanism was employed for the computer simulation of plasma-assisted combustion of hydrogen-air and methane-air mixtures under high pressure and in the range of initial temperatures T  =  500-900 K. The updated mechanism was verified using the experimental data. The influence of electronically excited nitrogen on the ignition delay time was analyzed. The rate coefficient of the vibration-vibration exchange between N2 and HO2 was calculated as well as the rate coefficient of HO2 decomposition.

  16. LM6000 gas turbine plant; LM6000 gas turbine plant

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, N.; Sato, T. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-09-01

    The LM6000 gas turbine is a most advanced industrial gas turbine derived from an aero-engine. The gas turbine has a power output of 45 MW with over 42% thermal efficiency, and such features as high efficiency, compactness, and easy maintenance. The gas turbine is used widely for electric power generation, marine propulsion and mechanical drive applications, particularly frequently for medium-capacity power plants because of its high efficiency. This paper summarizes the newest form of this LM6000 gas turbine, and introduces as its application example to power plants two examples of practical use in combined cycle power generation which is anticipated of increased use in the future. A combined cycle power plant for a paper mill in Indonesia is characterized by the gas turbine being a back-pressure turbine, where low pressure steam after having been used for power generation is fed to the paper mill. A combined cycle power plant for the Xinzhu scientific and industrial complex in Taiwan is characterized by adoption of a sucked air cooling device, which cools gas turbine sucked air temperature down to 7.2 deg C, and the gas turbine power generator being operated upto its maximum output of 45 MW. 7 figs., 1 tab.

  17. Gas fired advanced turbine system

    Science.gov (United States)

    Lecren, R. T.; White, D. J.

    The basic concept thus derived from the Ericsson cycle is an intercooled, recuperated, and reheated gas turbine. Theoretical performance analyses, however, showed that reheat at high turbine rotor inlet temperatures (TRIT) did not provide significant efficiency gains and that the 50 percent efficiency goal could be met without reheat. Based upon these findings, the engine concept adopted as a starting point for the gas-fired advanced turbine system is an intercooled, recuperated (ICR) gas turbine. It was found that, at inlet temperatures greater than 2450 F, the thermal efficiency could be maintained above 50%, provided that the turbine cooling flows could be reduced to 7% of the main air flow or lower. This dual and conflicting requirement of increased temperatures and reduced cooling will probably force the abandonment of traditional air cooled turbine parts. Thus, the use of either ceramic materials or non-air cooling fluids has to be considered for the turbine nozzle guide vanes and turbine blades. The use of ceramic components for the proposed engine system is generally preferred because of the potential growth to higher temperatures that is available with such materials.

  18. Steam Turbines

    Science.gov (United States)

    1981-01-01

    Turbonetics Energy, Inc.'s steam turbines are used as power generating systems in the oil and gas, chemical, pharmaceuticals, metals and mining, and pulp and paper industries. The Turbonetics line benefited from use of NASA research data on radial inflow steam turbines and from company contact with personnel of Lewis Research Center, also use of Lewis-developed computer programs to determine performance characteristics of turbines.

  19. Two stage turbine for rockets

    Science.gov (United States)

    Veres, Joseph P.

    1993-01-01

    The aerodynamic design and rig test evaluation of a small counter-rotating turbine system is described. The advanced turbine airfoils were designed and tested by Pratt & Whitney. The technology represented by this turbine is being developed for a turbopump to be used in an advanced upper stage rocket engine. The advanced engine will use a hydrogen expander cycle and achieve high performance through efficient combustion of hydrogen/oxygen propellants, high combustion pressure, and high area ratio exhaust nozzle expansion. Engine performance goals require that the turbopump drive turbines achieve high efficiency at low gas flow rates. The low mass flow rates and high operating pressures result in very small airfoil heights and diameters. The high efficiency and small size requirements present a challenging turbine design problem. The shrouded axial turbine blades are 50 percent reaction with a maximum thickness to chord ratio near 1. At 6 deg from the tangential direction, the nozzle and blade exit flow angles are well below the traditional design minimum limits. The blade turning angle of 160 deg also exceeds the maximum limits used in traditional turbine designs.

  20. Some matters concerned with selecting steam parameters and process-circuit solutions to optimize the parameters of steam turbine equipment and engineering design developments

    Science.gov (United States)

    Kultyshev, A. Yu.; Stepanov, M. Yu.; Polyaeva, E. N.

    2014-12-01

    The possibility and advantages of increasing steam pressure in the steam-turbine low-pressure loop for combined-cycle power plants are considered. The question about the advisability of developing and manufacturing steam turbines for being used in combined-cycle power units equipped with modern class F gas turbines for supercritical and ultrasupercritical steam parameters is raised.

  1. Micro turbines on gas

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2003-01-01

    Microturbines are small gas turbine engines that drive a generator with sizes ranging from 30-350 kW. Although similar in function to bigger gas turbines, their simple radial flow turbine and high-speed generator offer better performance, greater reliability, longer service intervals, reduced maintenance lower emission and lower noise. Microturbines can generate power continuously and very economically to reduce electricity costs or they can be operated selectively for peak shaving. These benefits are further enhanced by the economics of using the microturbine's waste heat for hot water needs or other heating applications. That is why on-site microturbine power is widely used for independent production of electricity and heat in industrial and commercial facilities, hotels, hospitals, office buildings, residential buildings etc. (Original)

  2. Model Wind Turbine Design in a Project-Based Middle School Engineering Curriculum Built on State Frameworks

    Science.gov (United States)

    Cogger, Steven D.; Miley, Daniel H.

    2012-01-01

    This paper proposes that project-based active learning is a key part of engineering education at the middle school level. One project from a comprehensive middle school engineering curriculum developed by the authors is described to show how active learning and state frameworks can coexist. The theoretical basis for learning and assessment in a…

  3. Reliability assessment of Wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines can be considered as structures that are in between civil engineering structures and machines since they consist of structural components and many electrical and machine components together with a control system. Further, a wind turbine is not a one-of-a-kind structure...... but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...

  4. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  5. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing of Ceramic Composites. Part III; Additive Manufacturing and Characterization of Ceramic Composites

    Science.gov (United States)

    Halbig, Michael C.; Grady, Joseph E.; Singh, Mrityunjay; Ramsey, Jack; Patterson, Clark; Santelle, Tom

    2015-01-01

    This publication is the third part of a three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce ceramic matrix composite materials and aircraft engine components by the binder jet process. Different SiC powders with median sizes ranging from 9.3 to 53.0 microns were investigated solely and in powder blends in order to maximize powder packing. Various infiltration approaches were investigated to include polycarbosilane (SMP-10), phenolic, and liquid silicon. Single infiltrations of SMP-10 and phenolic only slightly filled in the interior. When the SMP-10 was loaded with sub-micron sized SiC powders, the infiltrant gave a much better result of filling in the interior. Silicon carbide fibers were added to the powder bed to make ceramic matrix composite materials. Microscopy showed that the fibers were well distributed with no preferred orientation on the horizontal plane and fibers in the vertical plane were at angles as much as 45deg. Secondary infiltration steps were necessary to further densify the material. Two to three extra infiltration steps of SMP-10 increased the density by 0.20 to 0.55 g/cc. However, the highest densities achieved were 2.10 to 2.15 g/cc. Mechanical tests consisting of 4 point bend tests were conducted. Samples from the two CMC panels had higher strengths and strains to failure than the samples from the two nonfiber reinforced panels. The highest strengths were from Set N with 65 vol% fiber loading which had an average strength of 66 MPa. Analysis of the fracture surfaces did not reveal pullout of the reinforcing fibers. Blunt fiber failure suggested that there was not composite behavior. The binder jet additive manufacturing method was used to also demonstrate the fabrication of turbine engine vane components of two different designs and sizes. The

  6. Advanced technology for aero gas turbine components

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    The Symposium is aimed at highlighting the development of advanced components for new aero gas turbine propulsion systems in order to provide engineers and scientists with a forum to discuss recent progress in these technologies and to identify requirements for future research. Axial flow compressors, the operation of gas turbine engines in dust laden atmospheres, turbine engine design, blade cooling, unsteady gas flow through the stator and rotor of a turbomachine, gear systems for advanced turboprops, transonic blade design and the development of a plenum chamber burner system for an advanced VTOL engine are among the topics discussed.

  7. Economic aspects of advanced coal-fired gas turbine locomotives

    Science.gov (United States)

    Liddle, S. G.; Bonzo, B. B.; Houser, B. C.

    1983-01-01

    Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.

  8. Disk Storage Server

    CERN Multimedia

    This model was a disk storage server used in the Data Centre up until 2012. Each tray contains a hard disk drive (see the 5TB hard disk drive on the main disk display section - this actually fits into one of the trays). There are 16 trays in all per server. There are hundreds of these servers mounted on racks in the Data Centre, as can be seen.

  9. Improving fish survival through turbines

    International Nuclear Information System (INIS)

    Ferguson, J.W.

    1993-01-01

    Much of what is known about fish passage through hydroturbines has been developed by studying migratory species of fish passing through large Kaplan turbine units. A review of the literature on previous fish passage research presented in the accompanying story illustrates that studies have focused on determining mortality levels, rather than identifying the causal mechanism involved. There is a need for understanding how turbine designs could be altered to improve fish passage conditions, how to retrofit existing units, and how proposed hydro plant operational changes may affect fish survival. The US Army Corps of Engineers has developed a research program to define biologically based engineering criteria for improving fish passage conditions. Turbine designs incorporating these criteria can be evaluated for their effects on fish survival, engineering issues, costs, and power production. The research program has the following objectives: To gain a thorough knowledge of the mechanisms of fish mortality; To define the biological sensitivities of key fish species to these mechanisms of mortality; To develop new turbine design criteria to reduce fish mortality; To construct prototype turbine designs, and to test these designs for fish passage, hydro-mechanical operation, and power production; and To identify construction and power costs associated with new turbine designs

  10. Optimizing Dam Operations for Power and for Fish: an Overview of the US Department of Energy and US Army Corps of Engineers ADvanced Turbine Development R&D. A Pre-Conference Workshop at HydroVision 2006, Oregon Convention Center, Portland, Oregon July 31, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, Dennis D.

    2006-08-01

    This booklet contains abstracts of presentations made at a preconference workshop on the US Department of Energy and US Army Corps of Engineers hydroturbine programs. The workshop was held in conjunction with Hydrovision 2006 July 31, 2006 at the Oregon Convention Center in Portland Oregon. The workshop was organized by the Corps of Engineers, PNNL, and the DOE Wind and Hydropower Program. Presenters gave overviews of the Corps' Turbine Survival Program and the history of the DOE Advanced Turbine Development Program. They also spoke on physical hydraulic models, biocriteria for safe fish passage, pressure investigations using the Sensor Fish Device, blade strike models, optimization of power plant operations, bioindex testing of turbine performance, approaches to measuring fish survival, a systems view of turbine performance, and the Turbine Survival Program design approach.

  11. Gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Farahan, E.; Eudaly, J.P.

    1978-10-01

    This evaluation provides performance and cost data for commercially available simple- and regenerative-cycle gas turbines. Intercooled, reheat, and compound cycles are discussed from theoretical basis only, because actual units are not currently available, except on a special-order basis. Performance characteristics investigated include unit efficiency at full-load and off-design conditions, and at rated capacity. Costs are tabulated for both simple- and regenerative-cycle gas turbines. The output capacity of the gas turbines investigated ranges from 80 to 134,000 hp for simple units and from 12,000 to 50,000 hp for regenerative units.

  12. Innovative technologies for powder metallurgy-based disk superalloys: Progress and proposal

    Science.gov (United States)

    Chong-Lin, Jia; Chang-Chun, Ge; Qing-Zhi, Yan

    2016-02-01

    Powder metallurgy (PM) superalloys are an important class of high temperature structural materials, key to the rotating components of aero engines. In the purview of the present challenges associated with PM superalloys, two novel approaches namely, powder preparation and the innovative spray-forming technique (for making turbine disk) are proposed and studied. Subsequently, advanced technologies like electrode-induction-melting gas atomization (EIGA), and spark-plasma discharge spheroidization (SPDS) are introduced, for ceramic-free superalloy powders. Presently, new processing routes are sought after for preparing finer and cleaner raw powders for disk superalloys. The progress of research in spray-formed PM superalloys is first summarized in detail. The spray-formed superalloy disks specifically exhibit excellent mechanical properties. This paper reviews the recent progress in innovative technologies for PM superalloys, with an emphasis on new ideas and approaches, central to the innovation driving techniques like powder processing and spray forming. Project supported by the National Natural Science Foundation of China (Grant Nos. 50974016 and 50071014).

  13. An Experimental and Theoretical Investigation of Micropiiting in Wind Turbine Gears and Bearings

    Energy Technology Data Exchange (ETDEWEB)

    Kahraman, Ahmet

    2012-03-28

    In this research study, the micro-pitting related contact failures of wind turbine gearbox components were investigated both experimentally and theoretically. On the experimental side, a twin-disk type test machine was used to simulate wind turbine transmission contacts in terms of their kinematic (rolling and sliding speeds), surface roughnesses, material parameters and lubricant conditions. A test matrix that represents the ranges of contact conditions of the wind turbine gear boxes was defined and executed to bring an empirical understanding to the micro-pitting problem in terms of key contact parameters and operating conditions. On the theoretical side, the first deterministic micro-pitting model based on a mixed elastohydrodynamic lubrication formulations and multi-axial near-surface crack initiation model was developed. This physics-based model includes actual instantaneous asperity contacts associated with real surface roughness profiles for predicting the onset of the micro-pit formation. The predictions from the theoretical model were compared to the experimental data for validation of the models. The close agreement between the model and measurements was demonstrated. With this, the proposed model can be deemed suitable for identifying the mechanisms leading to micro-pitting of gear and bearing surfaces of wind turbine gear boxes, including all key material, lubricant and surface engineering aspects of the problem, and providing solutions to these micro-pitting problems.

  14. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    Science.gov (United States)

    2017-03-06

    Automotive Engineers vi SAEPA Simulated Aircraft Exhaust Plume Aging SBIR Small Business Innovative Research SMPS Scanning Mobility Particle Sizer...Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or...devices can partially simulate the thermophysical processes in the plume that lead to the formation of volatile PM. However, several of the

  15. Engine Environment Research Facility (EERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility supports research and development testing of the behavior of turbine engine lubricants, fuels and sensors in an actual engine environment....

  16. An Overview of Prognosis Health Management Research at Glenn Research Center for Gas Turbine Engine Structures With Special Emphasis on Deformation and Damage Modeling

    Science.gov (United States)

    Arnold, Steven M.; Goldberg, Robert K.; Lerch, Bradley A.; Saleeb, Atef F.

    2009-01-01

    Herein a general, multimechanism, physics-based viscoelastoplastic model is presented in the context of an integrated diagnosis and prognosis methodology which is proposed for structural health monitoring, with particular applicability to gas turbine engine structures. In this methodology, diagnostics and prognostics will be linked through state awareness variable(s). Key technologies which comprise the proposed integrated approach include (1) diagnostic/detection methodology, (2) prognosis/lifing methodology, (3) diagnostic/prognosis linkage, (4) experimental validation, and (5) material data information management system. A specific prognosis lifing methodology, experimental characterization and validation and data information management are the focal point of current activities being pursued within this integrated approach. The prognostic lifing methodology is based on an advanced multimechanism viscoelastoplastic model which accounts for both stiffness and/or strength reduction damage variables. Methods to characterize both the reversible and irreversible portions of the model are discussed. Once the multiscale model is validated the intent is to link it to appropriate diagnostic methods to provide a full-featured structural health monitoring system.

  17. An Overview of Prognosis Health Management Research at GRC for Gas Turbine Engine Structures With Special Emphasis on Deformation and Damage Modeling

    Science.gov (United States)

    Arnold, Steven M.; Goldberg, Robert K.; Lerch, Bradley A.; Saleeb, Atef F.

    2009-01-01

    Herein a general, multimechanism, physics-based viscoelastoplastic model is presented in the context of an integrated diagnosis and prognosis methodology which is proposed for structural health monitoring, with particular applicability to gas turbine engine structures. In this methodology, diagnostics and prognostics will be linked through state awareness variable(s). Key technologies which comprise the proposed integrated approach include 1) diagnostic/detection methodology, 2) prognosis/lifing methodology, 3) diagnostic/prognosis linkage, 4) experimental validation and 5) material data information management system. A specific prognosis lifing methodology, experimental characterization and validation and data information management are the focal point of current activities being pursued within this integrated approach. The prognostic lifing methodology is based on an advanced multi-mechanism viscoelastoplastic model which accounts for both stiffness and/or strength reduction damage variables. Methods to characterize both the reversible and irreversible portions of the model are discussed. Once the multiscale model is validated the intent is to link it to appropriate diagnostic methods to provide a full-featured structural health monitoring system.

  18. Update on DOE Advanced IGCC/H2 Gas Turbine

    Science.gov (United States)

    Chupp, Ray

    2009-01-01

    Cooling Flow Reduction: a) Focus on improving turbine hot gas path part cooling efficiency. b) Applicable to current metallic turbine components and synergistic with advanced materials. c) Address challenges of IGCC/hydrogen fuel environment (for example, possible cooling hole plugging). Leakage Flow Reduction: a) Focus on decreasing turbine parasitic leakages, i.e. between static-to-static, static-to-rotating turbine parts. b) Develop improved seal designs in a variety of important areas. Purge Flow Reduction: a) Focus on decreasing required flows to keep rotor disk cavities within temperature limits. b) Develop improved sealing at the cavity rims and modified flow geometries to minimize hot gas ingestion and aerodynamic impact.

  19. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    Science.gov (United States)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to

  20. Self-balancing air riding seal for a turbine

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Jacob A.

    2017-08-15

    A turbine of a gas turbine engine has an air riding seal that forms a seal between a rotor and a stator of the turbine, the air riding seal including an annular piston movable in an axial direction under the influence of a pressure on one side with a pressure acting on an opposite side that self-balances the air riding seal during the steady state condition of the engine and lifts off the seal during engine transients.

  1. A Comprehensive Solution of the Problems of Ensuring the Strength of Gas Turbine Engine Compressor at the Design Stage

    Science.gov (United States)

    Vedeneev, V. V.; Kolotnikov, M. E.; Mossakovskii, P. A.; Kostyreva, L. A.; Abdukhakimov, F. A.; Makarov, P. V.; Pyhalov, A. A.; Dudaev, M. A.

    2018-01-01

    In this paper we present a complex numerical workflow for analysis of blade flutter and high-amplitude resonant oscillations, impenetrability of casing if the blade is broken off, and the rotor reaction to the blade detachment and following misbalance, with the assessment of a safe flight possibility at the auto-rotation regime. All the methods used are carefully verified by numerical convergence study and correlations with experiments. The use of the workflow developed significantly improves the efficiency of the design process of modern jet engine compressors. It ensures a significant reduction of time and cost of the compressor design with the required level of strength and durability.

  2. Surface engineering of artificial heart valve disks using nanostructured thin films deposited by chemical vapour deposition and sol-gel methods.

    Science.gov (United States)

    Jackson, M J; Robinson, G M; Ali, N; Kousar, Y; Mei, S; Gracio, J; Taylor, H; Ahmed, W

    2006-01-01

    Pyrolytic carbon (PyC) is widely used in manufacturing commercial artificial heart valve disks (HVD). Although PyC is commonly used in HVD, it is not the best material for this application since its blood compatibility is not ideal for prolonged clinical use. As a result thrombosis often occurs and the patients are required to take anti-coagulation drugs on a regular basis in order to minimize the formation of thrombosis. However, anti-coagulation therapy gives rise to some detrimental side effects in patients. Therefore, it is extremely urgent that newer and more technically advanced materials with better surface and bulk properties are developed. In this paper, we report the mechanical properties of PyC-HVD, i.e. strength, wear resistance and coefficient of friction. The strength of the material was assessed using Brinell indentation tests. Furthermore, wear resistance and coefficient of friction values were obtained from pin-on-disk testing. The micro-structural properties of PyC were characterized using XRD, Raman spectroscopy and SEM analysis. Also in this paper we report the preparation of freestanding nanocrystalline diamond films (FSND) using the time-modulated chemical vapour deposition (TMCVD) process. Furthermore, the sol-gel technique was used to uniformly coat PyC-HVD with dense, nanocrystalline-titanium oxide (nc-TiO2) coatings. The as-grown nc-TiO2 coatings were characterized for microstructure using SEM and XRD analysis.

  3. Characterization and Modeling of Residual Stress and Cold Work Evolution in PM Nickel Base Disk Superalloy, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Powder metal (PM) superalloys used for critical compressor and turbine disk applications are prone to fatigue failures in stress concentration features such as holes...

  4. Global Value Chain and Manufacturing Analysis on Geothermal Power Plant Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Sertac [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Augustine, Chad R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mann, Margaret K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-03

    The global geothermal electricity market has significantly grown over the last decade and is expected to reach a total installed capacity of 18.4 GWe in 2021 (GEA, 2016). Currently, geothermal project developers customize the size of the power plant to fit the resource being developed. In particular, the turbine is designed and sized to optimize efficiency and resource utilization for electricity production; most often, other power plant components are then chosen to complement the turbine design. These custom turbine designs demand one-off manufacturing processes, which result in higher manufacturing setup costs, longer lead-times, and higher capital costs overall in comparison to larger-volume line manufacturing processes. In contrast, turbines produced in standard increments, manufactured in larger volumes, could result in lower costs per turbine. This study focuses on analysis of the global supply chain and manufacturing costs for Organic Rankine Cycle (ORC) turboexpanders and steam turbines used in geothermal power plants. In this study, we developed a manufacturing cost model to identify requirements for equipment, facilities, raw materials, and labor. We analyzed three different cases 1) 1 MWe geothermal ORC turboexpander 2) 5 MWe ORC turboexpander and 3) 20 MWe geothermal steam turbine, and calculated the cost of manufacturing the major components, such as the impellers/blades, shaft/rotor, nozzles, inlet guide lanes, disks, and casings. Then we used discounted cash flow (DCF) analysis to calculate the minimum sustainable price (MSP). MSP is the minimum price that a company must sell its product for in order to pay back the capital and operating expenses during the plant lifetime (CEMAC, 2017). The results showed that MSP could highly vary between 893 dollar/kW and 30 dollar/kW based on turbine size, standardization and volume of manufacturing. The analysis also showed that the economy of scale applies both to the size of the turbine and the number

  5. Global Value Chain and Manufacturing Analysis on Geothermal Power Plant Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Sertac [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Augustine, Chad R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mann, Margaret K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    The global geothermal electricity market has significantly grown over the last decade and is expected to reach a total installed capacity of 18.4 GWe in 2021 (GEA, 2016). Currently, geothermal project developers customize the size of the power plant to fit the resource being developed. In particular, the turbine is designed and sized to optimize efficiency and resource utilization for electricity production; most often, other power plant components are then chosen to complement the turbine design. These custom turbine designs demand one-off manufacturing processes, which result in higher manufacturing setup costs, longer lead-times, and higher capital costs overall in comparison to larger-volume line manufacturing processes. In contrast, turbines produced in standard increments, manufactured in larger volumes, could result in lower costs per turbine. This study focuses on analysis of the global supply chain and manufacturing costs for Organic Rankine Cycle (ORC) turboexpanders and steam turbines used in geothermal power plants. In this study, we developed a manufacturing cost model to identify requirements for equipment, facilities, raw materials, and labor. We analyzed three different cases 1) 1 MWe geothermal ORC turboexpander 2) 5 MWe ORC turboexpander and 3) 20 MWe geothermal steam turbine, and calculated the cost of manufacturing the major components, such as the impellers/blades, shaft/rotor, nozzles, inlet guide lanes, disks, and casings. Then we used discounted cash flow (DCF) analysis to calculate the minimum sustainable price (MSP). MSP is the minimum price that a company must sell its product for in order to pay back the capital and operating expenses during the plant lifetime (CEMAC, 2017). The results showed that MSP could highly vary between 893 dollar/kW and 30 dollar/kW based on turbine size, standardization and volume of manufacturing. The analysis also showed that the economy of scale applies both to the size of the turbine and the number

  6. [OI] in circumstellar disks

    Science.gov (United States)

    Sandell, Goran

    2018-01-01

    In the far-infrared, [OI] 63 micron is the most sensitive probe of gas in protoplanetary disks and has even been detected in several young debris disks.We have now obtained velocity resolved spectra (velocity resolution 0.1 km/s) using the heterodyne receiver GREAT on the Stratospheric Observatory for Infrared Astronomy (SOFIA) of five of the brightest circumstellar disks in the [OI] 63 micron line. Four of these are protoplanetary disks (AB Aur, HL Tau, HD 100546 and HD 97048), while one is a disk around an FS CMa star, HD 50138. Since all the stars are surrounded by disks in Keplerian rotation, our observations allow us to explore where the [OI] emission originates and the physical conditions of the [OI] emitting layers. In this presentation we present preliminary results of our findings.

  7. Power turbine ventilation system

    Science.gov (United States)

    Wakeman, Thomas G. (Inventor); Brown, Richard W. (Inventor)

    1991-01-01

    Air control mechanism within a power turbine section of a gas turbine engine. The power turbine section includes a rotor and at least one variable pitch propulsor blade. The propulsor blade is coupled to and extends radially outwardly of the rotor. A first annular fairing is rotatable with the propulsor blade and interposed between the propulsor blade and the rotor. A second fairing is located longitudinally adjacent to the first fairing. The first fairing and the second fairing are differentially rotatable. The air control mechanism includes a platform fixedly coupled to a radially inner end of the propulsor blade. The platform is generally positioned in a first opening and a first fairing. The platform and the first fairing define an outer space. In a first position corresponding with a first propulsor blade pitch, the platform is substantially conformal with the first fairing. In a second position corresponding with the second propulsor blade pitch, an edge portion of the platform is displaced radially outwardly from the first fairing. When the blades are in the second position and rotating about the engine axis, the displacement of the edge portion with respect to the first fairing allows air to flow from the outer space to the annular cavity.

  8. Applications and Limitations of Infrared Thermography in Turbine Cooling Visualisation

    OpenAIRE

    Gribanov, Ilya

    2014-01-01

    Fierce international competition for efficient power plants and vehiclepropulsion systems has fuelled evolution of gas turbines over the last eightdecades of production. Power output can be increased with Turbine EntryTemperature (TET), which can typically be 500K higher than the melting pointof turbine components. Safe engine operation in such extreme conditions ispartly ensured by coating turbine components with a film of coolant air. Anadditional 1% in coolant air flow can raise TET by 100...

  9. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  10. Cooled Ceramic Turbine Vane, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — N&R Engineering will investigate the feasibility of cooled ceramics, such as ceramic matrix composite (CMC) turbine blade concepts that can decrease specific...

  11. Turbine seal assembly

    Science.gov (United States)

    Little, David A.

    2013-04-16

    A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.

  12. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Siemens Energy, Inc., Orlando, FL (United States)

    2015-09-30

    Under the sponsorship of the U.S. Department of Energy (DOE) National Energy Technology Laboratories, Siemens has completed the Advanced Hydrogen Turbine Development Program to develop an advanced gas turbine for incorporation into future coal-based Integrated Gasification Combined Cycle (IGCC) plants. All the scheduled DOE Milestones were completed and significant technical progress was made in the development of new technologies and concepts. Advanced computer simulations and modeling, as well as subscale, full scale laboratory, rig and engine testing were utilized to evaluate and select concepts for further development. Program Requirements of: A 3 to 5 percentage point improvement in overall plant combined cycle efficiency when compared to the reference baseline plant; 20 to 30 percent reduction in overall plant capital cost when compared to the reference baseline plant; and NOx emissions of 2 PPM out of the stack. were all met. The program was completed on schedule and within the allotted budget

  13. Reprocessing in Luminous Disks

    Science.gov (United States)

    Bell, K. Robbins; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    We develop and investigate a procedure that accounts for disk reprocessing of photons that originate in the disk itself. Surface temperatures and simple, black body spectral energy distributions (SEDs) of protostellar disks are calculated. In disks that flare with radius, reprocessing of stellar photons results in temperature profiles considerably shallower than r(sup -3/4). Including the disk as a radiation source (as in the case of actively secreting disks) along with the stellar source further flattens the temperature profile. Disks that flare strongly near the star and then smoothly curve over and become shadowed at some distance ("decreasing curvature" disks) exhibit nearly power-law temperature profiles which result in power-law infrared SEDs with slopes in agreement with typical observations of young stellar objects. Disk models in which the photospheric thickness is controlled by the local opacity and in which the temperature decreases with radius naturally show this shape. Uniformly flaring models do not match observations as well; progressively stronger reprocessing at larger radii leads to SEDs that flatten toward the infrared or even have a second peak at the wavelength corresponding (through the Wien law) to the temperature of the outer edge of the disk. In FU Orionis outbursting systems, the dominant source of energy is the disk itself. The details of the reprocessing depend sensitively on the assumed disk shape and emitted temperature profile. The thermal instability outburst models of Bell Lin reproduce trends in the observed SEDs of Fuors with T varies as r(sup -3/4) in the inner disk (r approx. less than 0.25au corresponding to lambda approx. less than 10 microns) and T varies as r(sup -1/2) in the outer disk. Surface irradiation during outburst and quiescence is compared in the region of planet formation (1 - 10 au). The contrast between the two phases is diminished by the importance of the reprocessing of photons from the relatively high mass

  14. 3D Numerical Study of Velocity Profiles and Thermal Mixing in Passive, Infrared Suppression Devices for Gas Turbine Engine Driven Generators

    National Research Council Canada - National Science Library

    Blackwell, Neal E

    2002-01-01

    ...) suppression device for exhaust ducting. The results, for a gas turbine driven generator, yield a novel design that is more compact and allows for shorter duct lengths, hence enabling associated camouflage netting to be lower in height...

  15. Proceedings of the 1999 international joint power generation conference (FACT-vol. 23). Volume 1: Fuels and combustion technologies; Gas turbines; and Nuclear engineering

    International Nuclear Information System (INIS)

    Penfield, S.R. Jr.; Moussa, N.A.

    1999-01-01

    Papers are arranged under the following topical sections: Gas turbine combustion; Advanced energy conversion; Low NOx solutions; Burner developments; Alternative fuels combustion; Advanced energy conversion technologies; Numerical modeling of combustion; Fluidized bed combustion; Coal combustion; Combustion research; Gasification systems; Mercury emissions; Highly preheated air combustion; Selective catalytic reduction; Special topics in combustion research; Gas turbines and advanced energy; and How can the nuclear industry become more efficient? Papers within scope have been processed separately for inclusion on the database

  16. Magnetohydrodynamics of accretion disks

    International Nuclear Information System (INIS)

    Torkelsson, U.

    1994-04-01

    The thesis consists of an introduction and summary, and five research papers. The introduction and summary provides the background in accretion disk physics and magnetohydrodynamics. The research papers describe numerical studies of magnetohydrodynamical processes in accretion disks. Paper 1 is a one-dimensional study of the effect of magnetic buoyancy on a flux tube in an accretion disk. The stabilizing influence of an accretion disk corona on the flux tube is demonstrated. Paper 2-4 present numerical simulations of mean-field dynamos in accretion disks. Paper 11 verifies the correctness of the numerical code by comparing linear models to previous work by other groups. The results are also extended to somewhat modified disk models. A transition from an oscillatory mode of negative parity for thick disks to a steady mode of even parity for thin disks is found. Preliminary results for nonlinear dynamos at very high dynamo numbers are also presented. Paper 3 describes the bifurcation behaviour of the nonlinear dynamos. For positive dynamo numbers it is found that the initial steady solution is replaced by an oscillatory solution of odd parity. For negative dynamo numbers the solution becomes chaotic at sufficiently high dynamo numbers. Paper 4 continues the studies of nonlinear dynamos, and it is demonstrated that a chaotic solution appears even for positive dynamo numbers, but that it returns to a steady solution of mixed parity at very high dynamo numbers. Paper 5 describes a first attempt at simulating the small-scale turbulence of an accretion disk in three dimensions. There is only find cases of decaying turbulence, but this is rather due to limitations of the simulations than that turbulence is really absent in accretion disks

  17. Recommended Practices for Measurement of Gas Path Pressures and Temperatures for Performance Assessment of Aircraft Turbine Engines and Components (Les Methodes Recommandees pour la Mesure de la Pression et de la Temperature de la Veine Gazeuse en Vue de l’Evaluation des Performances des Turbines Aeronautiques et de leurs Composants

    Science.gov (United States)

    1990-06-01

    of the code i5 S J2 J112 1 C 03 which the unique problems encountered in gas turbine development, would normally be written or stamped on labels as A...Remember that plastic can equally well be destroyed P2603H04 by brittleness when cold as by melting when hot and that high temperature plastics, when...and the attachment of the tag To Engine Center Line while satisfying the requirements in I above. Aluminium or stainless steel are preferred. Two

  18. Foundations for offshore wind turbines.

    Science.gov (United States)

    Byrne, B W; Houlsby, G T

    2003-12-15

    An important engineering challenge of today, and a vital one for the future, is to develop and harvest alternative sources of energy. This is a firm priority in the UK, with the government setting a target of 10% of electricity from renewable sources by 2010. A component central to this commitment will be to harvest electrical power from the vast energy reserves offshore, through wind turbines or current or wave power generators. The most mature of these technologies is that of wind, as much technology transfer can be gained from onshore experience. Onshore wind farms, although supplying 'green energy', tend to provoke some objections on aesthetic grounds. These objections can be countered by locating the turbines offshore, where it will also be possible to install larger capacity turbines, thus maximizing the potential of each wind farm location. This paper explores some civil-engineering problems encountered for offshore wind turbines. A critical component is the connection of the structure to the ground, and in particular how the load applied to the structure is transferred safely to the surrounding soil. We review previous work on the design of offshore foundations, and then present some simple design calculations for sizing foundations and structures appropriate to the wind-turbine problem. We examine the deficiencies in the current design approaches, and the research currently under way to overcome these deficiencies. Designs must be improved so that these alternative energy sources can compete economically with traditional energy suppliers.

  19. Progress in advanced high temperature turbine materials, coatings, and technology

    Science.gov (United States)

    Freche, J. C.; Ault, G. M.

    1978-01-01

    Advanced materials, coatings, and cooling technology is assessed in terms of improved aircraft turbine engine performance. High cycle operating temperatures, lighter structural components, and adequate resistance to the various environmental factors associated with aircraft gas turbine engines are among the factors considered. Emphasis is placed on progress in development of high temperature materials for coating protection against oxidation, hot corrosion and erosion, and in turbine cooling technology. Specific topics discussed include metal matrix composites, superalloys, directionally solidified eutectics, and ceramics.

  20. NEXT GENERATION TURBINE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    William H. Day

    2002-05-03

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which

  1. Hydraulic turbines and auxiliary equipment

    Energy Technology Data Exchange (ETDEWEB)

    Luo Gaorong [Organization of the United Nations, Beijing (China). International Centre of Small Hydroelectric Power Plants

    1995-07-01

    This document presents a general overview on hydraulic turbines and auxiliary equipment, emphasizing the turbine classification, in accordance with the different types of turbines, standard turbine series in China, turbine selection based on the basic data required for the preliminary design, general hill model curves, chart of turbine series and the arrangement of application for hydraulic turbines, hydraulic turbine testing, and speed regulating device.

  2. Deformation behaviour of turbine foundations

    International Nuclear Information System (INIS)

    Koch, W.; Klitzing, R.; Pietzonka, R.; Wehr, J.

    1979-01-01

    The effects of foundation deformation on alignment in turbine generator sets have gained significance with the transition to modern units at the limit of design possibilities. It is therefore necessary to obtain clarification about the remaining operational variations of turbine foundations. Static measurement programmes, which cover both deformation processes as well as individual conditions of deformation are described in the paper. In order to explain the deformations measured structural engineering model calculations are being undertaken which indicate the effect of limiting factors. (orig.) [de

  3. The aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Troldborg, Niels

    2013-01-01

    In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical...... Engineering at DTU. In particular, we show some new results on the classical problem of the ideal rotor and present a series of new results from an on-going research project dealing with the modelling and simulation of turbulent flow structures in the wake behind wind turbines....

  4. Wet steam turbines for nuclear generating stations -design and operating experience

    International Nuclear Information System (INIS)

    Usher, J.

    1977-01-01

    Lecture to the Institution of Nuclear Engineers, 11 Jan. 1977. The object of this lecture was to give an account of some design features of large wet steam turbines and to show by describing some recent operational experience how their design concepts were fulfilled. Headings are as follows: effects of wet steam cycle on turbine layout and operation (H.P. turbine, L.P. turbine); turbine control and operation; water separators; and steam reheaters. (U.K.)

  5. Turbine stage model

    International Nuclear Information System (INIS)

    Kazantsev, A.A.

    2009-01-01

    A model of turbine stage for calculations of NPP turbine department dynamics in real time was developed. The simulation results were compared with manufacturer calculations for NPP low-speed and fast turbines. The comparison results have shown that the model is valid for real time simulation of all modes of turbines operation. The model allows calculating turbine stage parameters with 1% accuracy. It was shown that the developed turbine stage model meets the accuracy requirements if the data of turbine blades setting angles for all turbine stages are available [ru

  6. The Effect of Boron on the Low Cycle Fatigue Behavior of Disk Alloy KM4

    Science.gov (United States)

    Gabb, Timothy; Gayda, John; Sweeney, Joseph

    2000-01-01

    The durability of powder metallurgy nickel base superalloys employed as compressor and turbine disks is often limited by low cycle fatigue (LCF) crack initiation and crack growth from highly stressed surface locations (corners, holes, etc.). Crack growth induced by dwells at high stresses during aerospace engine operation can be particularly severe. Supersolvus solution heat treatments can be used to produce coarse grain sizes approaching ASTM 6 for improved resistance to dwell fatigue crack growth. However, the coarse grain sizes reduce yield strength, which can lower LCF initiation life. These high temperature heat treatments also can encourage pores to form. In the advanced General Electric disk superalloy KM4, such pores can initiate fatigue cracks that limit LCF initiation life. Hot isostatic pressing (HIP) during the supersolvus solution heat treatment has been shown to improve LCF initiation life in KM4, as the HIP pressure minimizes formation of the pores. Reduction of boron levels in KM4 has also been shown to increase LCF initiation life after a conventional supersolvus heat treatment, again possibly due to effects on the formation tendencies of these pores. However, the effects of reduced boron levels on microstructure, pore characteristics, and LCF failure modes in KM4 still need to be fully quantified. The objective of this study was to determine the effect of boron level on the microstructure, porosity, LCF behavior, and failure modes of supersolvus heat treated KM4.

  7. Residual Stresses in a NiCrY-Coated Powder Metallurgy Disk Superalloy

    Science.gov (United States)

    Gabb, Timothy P.; Rogers, Richard B.; Nesbitt, James A.; Puleo, Bernadette J.; Miller, Robert A.; Telesman, Ignacy; Draper, Susan L.; Locci, Ivan E.

    2017-01-01

    Protective ductile coatings will be necessary to mitigate oxidation and corrosion attack on superalloy disks exposed to increasing operating temperatures in some turbine engine environments. However, such coatings must be resistant to harmful surface cracking during service. The objective of this study was to investigate how residual stresses evolve in such coatings. Cylindrical gage fatigue specimens of powder metallurgy-processed disk superalloy LSHR were coated with a NiCrY coating, shot peened, and then subjected to fatigue in air at room and high temperatures. The effects of shot peening and fatigue cycling on average residual stresses and other aspects of the coating were assessed. Shot peening did induce beneficial compressive residual stresses in the coating and substrate. However, these stresses became more tensile in the coating with subsequent heating and contributed to cracking of the coating in long intervals of cycling at 760 C. Substantial compressive residual stresses remained in the substrate adjacent to the coating, sufficient to suppress fatigue cracking. The coating continued to protect the substrate from hot corrosion pitting, even after fatigue cracks initiated in the coating.

  8. Verbatim Floppy Disk

    CERN Multimedia

    1976-01-01

    Introduced under the name "Verbatim", Latin for "literally", these disks that sized more than 5¼ inches have become almost universal on dedicated word processing systems and personal computers. This format was replaced more slowly by the 3½-inch format, introduced for the first time in 1982. Compared to today, these large format disks stored very little data. In reality, they could only contain a few pages of text.

  9. Coatings for Oxidation and Hot Corrosion Protection of Disk Alloys

    Science.gov (United States)

    Nesbitt, Jim; Gabb, Tim; Draper, Sue; Miller, Bob; Locci, Ivan; Sudbrack, Chantal

    2017-01-01

    Increasing temperatures in aero gas turbines is resulting in oxidation and hot corrosion attack of turbine disks. Since disks are sensitive to low cycle fatigue (LCF), any environmental attack, and especially hot corrosion pitting, can potentially seriously degrade the life of the disk. Application of metallic coatings are one means of protecting disk alloys from this environmental attack. However, simply the presence of a metallic coating, even without environmental exposure, can degrade the LCF life of a disk alloy. Therefore, coatings must be designed which are not only resistant to oxidation and corrosion attack, but must not significantly degrade the LCF life of the alloy. Three different Ni-Cr coating compositions (29, 35.5, 45wt. Cr) were applied at two thicknesses by Plasma Enhanced Magnetron Sputtering (PEMS) to two similar Ni-based disk alloys. One coating also received a thin ZrO2 overcoat. The coated samples were also given a short oxidation exposure in a low PO2 environment to encourage chromia scale formation. Without further environmental exposure, the LCF life of the coated samples, evaluated at 760C, was less than that of uncoated samples. Hence, application of the coating alone degraded the LCF life of the disk alloy. Since shot peening is commonly employed to improve LCF life, the effect of shot peening the coated and uncoated surface was also evaluated. For all cases, shot peening improved the LCF life of the coated samples. Coated and uncoated samples were shot peened and given environmental exposures consisting of 500 hrs of oxidation followed by 50 hrs of hot corrosion, both at 760C). The high-Cr coating showed the best LCF life after the environmental exposures. Results of the LCF testing and post-test characterization of the various coatings will be presented and future research directions discussed.

  10. Modal characteristics of turbine blade packets under lacing wire damage induced mistuning

    Science.gov (United States)

    Chatterjee, Animesh; Kotambkar, Mangesh S.

    2015-05-01

    Effect of mistuning on turbo machine blade vibration in a packeted blade-disk system has become an important area of research in the recent past, mainly due to the critical applications in aero engines and power plant turbines. It has been shown that even a small mistuning can lead to stress build up through mode localization under forced vibration. Such mistuning can come from initial geometric blade to blade variation due to manufacturing tolerances or from a crack growing in the bladed disk system during operational life stages. The literature review indicates that researchers have mainly considered blade damage as a cause of mistuning. However, lacing wire damage, although not as catastrophic as blade damage, are more frequent in occurrences and often act as a precursor to subsequent blade damage. Detection of lacing wire damage is therefore equally important. Present work has investigated nature of mistuning induced by lacing wire damage and its effect on the characteristic modal properties. A damage severity index has been introduced and effect of damage on the blade group natural frequencies is investigated. Scope of developing a damage identification methodology in packeted blade-disk system is also discussed.

  11. Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A. D.; Fingersh, L. J.

    2008-03-01

    The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

  12. Investigation of Separation Control in Low Pressure Turbine Using Pulsed Vortex Generator Jets (Postprint)

    National Research Council Canada - National Science Library

    Woods, N; Boxx, I; Sondergaard, R; McQuilling, M; Wolf, M

    2006-01-01

    ...) injected over the suction surface of the Pack-B turbine blade is reported. Blade Reynolds numbers in the turbine cascade match those that occur in aircraft engines while at high altitude cruise...

  13. High-Temperature, High-Bandwidth Fiber Optic Pressure and Temperature Sensors for Gas Turbine Applications

    National Research Council Canada - National Science Library

    Fielder, Robert S; Palmer, Matthew E

    2003-01-01

    ..., and redesign compressor and turbine stages based on actual measurements. There currently exists no sensor technology capable of making pressure measurements in the critical hot regions of gas turbine engines...

  14. Mechanical and thermal stresses in a functionally graded rotating disk with variable thickness due to radially symmetry loads

    International Nuclear Information System (INIS)

    Bayat, Mehdi; Saleem, M.; Sahari, B.B.; Hamouda, A.M.S.; Mahdi, E.

    2009-01-01

    Rotating disks have many applications in the aerospace industry such as gas turbines and gears. These disks normally work under thermo mechanical loads. Minimizing the weight of such components can help reduce the overall payload in aerospace industry. For this purpose, a rotating functionally graded (FG) disk with variable thickness under a steady temperature field is considered in this paper. Thermo elastic solutions and the weight of the disk are related to the material grading index and the geometry of the disk. It is found that a disk with parabolic or hyperbolic convergent thickness profile has smaller stresses and displacements compared to a uniform thickness disk. Maximum radial stress due to centrifugal load in the solid disk with parabolic thickness profile may not be at the center unlike uniform thickness disk. Functionally graded disk with variable thickness has smaller stresses due to thermal load compared to those with uniform thickness. It is seen that for a given value of grading index, the FG disk having concave thickness profile is the lightest in weight whereas the FG disk with uniform thickness profile is the heaviest. Also for any given thickness profile, the weight of the FG disk lies in between the weights of the all-metal and the all-ceramic disks.

  15. Turbine Engine Diagnostics System Study

    Science.gov (United States)

    1991-10-01

    I" oIdo 0 oL o * elnieiedwej. 0 0 10 0IeoeIo 0 0 - 0 6uo!uoI40OiI I! 0 0 1!uqJ41 * 0 0 0 0 0 0 -umejp~ 0 * * 0 0 * uoisind_________ 0 0 0 0 0 00 0...0 U 0 𔃺 10 E0 -5 8 0 _ 0) -0 > EL . Ea 0) Co 0 ) CL . m 0 r _ 0 .9 0*- 0) C -0,’ 0 ca -0 w -0x IC a- mI-* . ’ - oE 4)" w (U 0> .0 Z0 - S- >) *- C

  16. Mass distributions in disk galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas; Verheijen, Marc; Bershady, Matthew; Westfall, Kyle; Andersen, David; Swaters, Rob

    We present results on luminous and dark matter mass distributions in disk galaxies from the DiskMass Survey. As expected for normal disk galaxies, stars dominate the baryonic mass budget in the inner region of the disk; however, at about four optical scale lengths (hR ) the atomic gas starts to

  17. 'Wind turbine syndrome': fact or fiction?

    Science.gov (United States)

    Farboud, A; Crunkhorn, R; Trinidade, A

    2013-03-01

    Symptoms, including tinnitus, ear pain and vertigo, have been reported following exposure to wind turbine noise. This review addresses the effects of infrasound and low frequency noise and questions the existence of 'wind turbine syndrome'. This review is based on a search for articles published within the last 10 years, conducted using the PubMed database and Google Scholar search engine, which included in their title or abstract the terms 'wind turbine', 'infrasound' or 'low frequency noise'. There is evidence that infrasound has a physiological effect on the ear. Until this effect is fully understood, it is impossible to conclude that wind turbine noise does not cause any of the symptoms described. However, many believe that these symptoms are related largely to the stress caused by unwanted noise exposure. There is some evidence of symptoms in patients exposed to wind turbine noise. The effects of infrasound require further investigation.

  18. Turbine Inflow Characterization at the National Wind Technology Center: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results shown that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  19. 2TB hard disk drive

    CERN Multimedia

    This particular object was used up until 2012 in the Data Centre. It slots into one of the Disk Server trays. Hard disks were invented in the 1950s. They started as large disks up to 20 inches in diameter holding just a few megabytes (link is external). They were originally called "fixed disks" or "Winchesters" (a code name used for a popular IBM product). They later became known as "hard disks" to distinguish them from "floppy disks (link is external)." Hard disks have a hard platter that holds the magnetic medium, as opposed to the flexible plastic film found in tapes and floppies.

  20. Current status and future prospects of gas-turbine development in the USSR

    Science.gov (United States)

    Liulka, A. M.

    1981-06-01

    It is noted that gas turbine engines are widely used in the USSR in the gas industry as main drives for superchargers in main stations. In addition, gas turbine engines are widely used in the chemical industry as well as in the iron and steel industries; a series of standard units with output up to 100 MW operate in electric power engineering under base and peak load. Gas turbine engines are also used in shipbuilding and civil aviation.

  1. Source to Accretion Disk Tilt

    OpenAIRE

    Montgomery, M. M.; Martin, E. L.

    2010-01-01

    Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source to cause and maintain disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through...

  2. Diagnostics of gas turbines based on changes in thermodynamics parameters

    Science.gov (United States)

    Hocko, Marián; Klimko, Marek

    2016-03-01

    This article is focused on solving the problems of determining the true state of gas turbine based on measured changes in thermodynamic parameters. Dependence between the real individual parts for gas turbines and changing the thermodynamic parameters were experimentally verified and confirmed on a small jet engine MPM-20 in the laboratory of the Department of Aviation Engineering at Technical University in Košice. The results of experiments confirm that the wear and tear of basic parts for gas turbines (turbo-compressor engines) to effect the change of thermodynamic parameters of the engine.

  3. Diagnostics of gas turbines based on changes in thermodynamics parameters

    Directory of Open Access Journals (Sweden)

    Hocko Marián

    2016-01-01

    Full Text Available This article is focused on solving the problems of determining the true state of gas turbine based on measured changes in thermodynamic parameters. Dependence between the real individual parts for gas turbines and changing the thermodynamic parameters were experimentally verified and confirmed on a small jet engine MPM-20 in the laboratory of the Department of Aviation Engineering at Technical University in Košice. The results of experiments confirm that the wear and tear of basic parts for gas turbines (turbo-compressor engines to effect the change of thermodynamic parameters of the engine.

  4. Engine Handling.

    Science.gov (United States)

    1983-02-01

    air seal for long life turbine engine. AIAA - 81 - 1440 4.- STEWART P.A.E., BRASNETT K.A., The contribution of dynamic x - ray to gas turbine air...trio exigeant A ce nivoau. Los calculo 4’int~gration du syotime adjoint sont trio p~nalisanto en tempo de calcul. LuA vatu g.aeh d & apt~If adjoint

  5. Comparison of Disk Diffusionand

    Directory of Open Access Journals (Sweden)

    Mohsen Rezazadeh

    2014-08-01

    Full Text Available Background: Increasing prevalence of Methicillin-resistant Staphylococcus aureus (MRSA in different communities is clearly visible. Because of this, treatment of patients with infections caused by those bacteria has fallen into critical troubles .Current study, therefore, is aimed to compare phenotypic (disk diffusion and genotypic (PCR methods for fast diagnosis of methicillin-resistant strains, isolated from patients of Arak Central Hospital Materials and Methods:In a cross sectional study whithin one year of period , a total of 100 samples were taken and tested from the patients of Arak hospital (located in the central part of Iran . Isolates' sensitivity to Cefoxitin Disk and Oxacillin was confirmed through disk diffusion. Using PCR , the isolates were tested for the presence of mecA gene. Results were compared from the points of sensitivity and specificity by application of chi square test in SPSS software.. Results: Seventy five 75% out of the total 100 samples (through oxacillin disk diffusion method , already isolated from patients were resistant to oxacillin. Meanwhile, 83(83% of cefoxitin disk diffusion method samples’ were resistant to cefoxitin. Three resistant samples to cefoxitin were negative for mecA gene and 80 (80% samples were positive for mecA gene using PCR. Sensitivity were respectively 93.75% , 100% , and specificity were 100% and 100% , 85% , 100 Conclusion: Findings indicate that oxacillin disk diffusion method is a simple phenotypic method, however, it has lower sensitivity compared to cefoxitin disk diffusion and polymerase chain reaction (PCR methods. Therfore, it is not recommended for detection of Methicillin-resistant Staphylococcus aureus (MRSA. Existence of strains resistant to cefoxitin without mecA gene, shows the outset of another type of resistance or mutation in Methicillin-resistant Staphylococcus aureus (MRSA .

  6. Hybrid Turbine Electric Vehicle

    Science.gov (United States)

    Viterna, Larry A.

    1997-01-01

    Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.

  7. ALTERNATIVE AVIATION FUELS FOR USE IN MILITARY APUS AND ENGINES VERSATILE AFFORDABLE ADVANCED TURBINE ENGINE (VAATE), PHASE II AND III. Delivery Order 0007: Alternative Aviation Fuels for Use in Military Auxiliary Power Units (APUs) and Engines

    Science.gov (United States)

    2017-06-03

    PHASE II AND III Delivery Order 0007: Alternative Aviation Fuels for Use in Military Auxiliary Power Units (APUs) and Engines Brad Culbertson and Randy...PHASE II AND III Delivery Order 0007: Alternative Aviation Fuels for Use in Military Auxiliary Power Units (APUs) and Engines 5a. CONTRACT NUMBER...the entire exit annulus. The fast-scan method was employed for all cases using both forward and reverse traverses in order to ensure repeatable

  8. Flow visualization system for wind turbines without blades applied to micro reactors

    International Nuclear Information System (INIS)

    Santos, G.S.B.; Guimarães, L.N.F.; Placco, G.M.

    2017-01-01

    Flow visualization systems is a tool used in science and industry for characterization of projects that operate with drainage. This work presents the design and construction of a flow visualization system for passive turbines used in advanced fast micro reactors. In the system were generated images where it is possible to see the supersonic and transonic flow through the turbine disks. A test bench was assembled to generate images of the interior of the turbine where the flow is supersonic, allowing the study of the behavior of the boundary layer between disks. It is necessary to characterize the boundary layer of this type of turbine because its operation occurs in the transfer of kinetic energy between the fluid and the disks. The images generated, as well as their analyzes are presented as a result of this work

  9. ADVANCED TURBINE SYSTEM FEDERAL ASSISTANCE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Frank Macri

    2003-10-01

    Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

  10. Impingement jet cooling in gas turbines

    CERN Document Server

    Amano, R S

    2014-01-01

    Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Impingement jet cooling is one of the most effective in terms of cooling, manufacturability and cost. This is the first to book to focus on impingement cooling alone.

  11. Review paper on wind turbine aerodynamics

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Aagaard Madsen, Helge

    2011-01-01

    The paper describes the development and description of the aerodynamic models used to estimate the aerodynamic loads on wind turbine constructions. This includes a status of the capabilities of computation fluid dynamics and the need for reliable airfoil data for the simpler engineering models....... © 2011 American Society of Mechanical Engineers....

  12. Recent Development in Turbine Blade Film Cooling

    Directory of Open Access Journals (Sweden)

    Je-Chin Han

    2001-01-01

    Full Text Available Gas turbines are extensively used for aircraft propulsion, land-based power generation, and industrial applications. Thermal efficiency and power output of gas turbines increase with increasing turbine rotor inlet temperature (RIT. The current RIT level in advanced gas turbines is far above the .melting point of the blade material. Therefore, along with high temperature material development, a sophisticated cooling scheme must be developed for continuous safe operation of gas turbines with high performance. Gas turbine blades are cooled internally and externally. This paper focuses on external blade cooling or so-called film cooling. In film cooling, relatively cool air is injected from the inside of the blade to the outside surface which forms a protective layer between the blade surface and hot gas streams. Performance of film cooling primarily depends on the coolant to mainstream pressure ratio, temperature ratio, and film hole location and geometry under representative engine flow conditions. In the past number of years there has been considerable progress in turbine film cooling research and this paper is limited to review a few selected publications to reflect recent development in turbine blade film cooling.

  13. Stabilization of gas turbine unit power

    Science.gov (United States)

    Dolotovskii, I.; Larin, E.

    2017-11-01

    We propose a new cycle air preparation unit which helps increasing energy power of gas turbine units (GTU) operating as a part of combined cycle gas turbine (CCGT) units of thermal power stations and energy and water supply systems of industrial enterprises as well as reducing power loss of gas turbine engines of process blowers resulting from variable ambient air temperatures. Installation of GTU power stabilizer at CCGT unit with electric and thermal power of 192 and 163 MW, respectively, has resulted in reduction of produced electrical energy production costs by 2.4% and thermal energy production costs by 1.6% while capital expenditures after installation of this equipment increased insignificantly.

  14. PLANETESIMAL DISK MICROLENSING

    International Nuclear Information System (INIS)

    Heng, Kevin; Keeton, Charles R.

    2009-01-01

    Motivated by debris disk studies, we investigate the gravitational microlensing of background starlight by a planetesimal disk around a foreground star. We use dynamical survival models to construct a plausible example of a planetesimal disk and study its microlensing properties using established ideas of microlensing by small bodies. When a solar-type source star passes behind a planetesimal disk, the microlensing light curve may exhibit short-term, low-amplitude residuals caused by planetesimals several orders of magnitude below Earth mass. The minimum planetesimal mass probed depends on the photometric sensitivity and the size of the source star, and is lower when the planetesimal lens is located closer to us. Planetesimal lenses may be found more nearby than stellar lenses because the steepness of the planetesimal mass distribution changes how the microlensing signal depends on the lens/source distance ratio. Microlensing searches for planetesimals require essentially continuous monitoring programs that are already feasible and can potentially set constraints on models of debris disks, the progeny of the supposed extrasolar analogues of Kuiper Belts.

  15. A CFD code comparison of wind turbine wakes

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Storey, R. C.; Sørensen, Niels N.

    2014-01-01

    A comparison is made between the EllipSys3D and SnS CFD codes. Both codes are used to perform Large-Eddy Simulations (LES) of single wind turbine wakes, using the actuator disk method. The comparison shows that both LES models predict similar velocity deficits and stream-wise Reynolds-stresses fo...

  16. N18, powder metallurgy superalloy for disks: Development and applications

    Energy Technology Data Exchange (ETDEWEB)

    Guedou, J.Y.; Lautridou, J.C.; Honnorat, Y. (SNECMA, Evry (France). Materials and Processes Dept.)

    1993-08-01

    The preliminary industrial development of a powder metallurgy (PM) superalloy, designated N18, for disk applications has been completed. This alloy exhibits good overall mechanical properties after appropriate processing of the material. These properties have been measured on both isothermally forged and extruded billets, as well as on specimens cut from actual parts. The temperature capability of the alloy is about 700 C for long-term applications and approximately 750 C for short-term use because of microstructural instability. Further improvements in creep and crack propagation properties, without significant reduction in tensile strength, are possible through appropriate thermomechanical processing, which results in a large controlled grain size. Spin pit tests on subscale disks have confirmed that the N18 alloy has a higher resistance than PM Astrology and is therefore an excellent alloy for modern turbine disk applications.

  17. Turbine system and adapter

    Energy Technology Data Exchange (ETDEWEB)

    Hogberg, Nicholas Alvin; Garcia-Crespo, Andres Jose

    2017-05-30

    A turbine system and adapter are disclosed. The adapter includes a turbine attachment portion having a first geometry arranged to receive a corresponding geometry of a wheelpost of a turbine rotor, and a bucket attachment portion having a second geometry arranged to receive a corresponding geometry of a root portion of a non-metallic turbine bucket. Another adapter includes a turbine attachment portion arranged to receive a plurality of wheelposts of a turbine rotor, and a bucket attachment portion arranged to receive a plurality of non-metallic turbine buckets having single dovetail configuration root portions. The turbine system includes a turbine rotor wheel configured to receive metal buckets, at least one adapter secured to at least one wheelpost on the turbine rotor wheel, and at least one non-metallic bucket secured to the at least one adapter.

  18. Relativistic, accreting disks

    International Nuclear Information System (INIS)

    Abramowicz, M.A; Jaroszynski, M.; Sikora, M.

    1978-01-01

    An analytic theory of the hydrodynamical structure of accreting disks (without self-gravitation but with pressure) orbiting around and axially symmetric, stationary, compact body (e.g. black hole) is presented. The inner edge of the marginally stable accreting disk (i.e. disk with constant angular momentum density) has a sharp cusp located on the equatorial plane between rsub(ms) and rsub(mb). The existence of the cusp is also typical for any angular momentum distribution. The physical importance of the cusp follows from the close analogy with the case of a close binary system (L 1 Lagrange point on the Roche lobe). The existence of the cusp is thus a crucial phenomenon in such problems as boundary condition for the viscous stresses, accretion rate etc. (orig.) [de

  19. Turbine maintenance and modernization

    Energy Technology Data Exchange (ETDEWEB)

    Unga, E. [Teollisuuden Voima Oy, Olkiluoto (Finland)

    1998-12-31

    The disturbance-free operation of the turbine plant plays an important role in reaching good production results. In the turbine maintenance of the Olkiluoto nuclear power plant the lifetime and efficiency of turbine components and the lifetime costs are taken into account in determining the turbine maintenance and modernization/improvement program. The turbine maintenance program and improvement/modernization measures taken in the plant units are described in this presentation. (orig.)

  20. Microfabricated rankine cycle steam turbine for power generation and methods of making the same

    Science.gov (United States)

    Frechette, Luc (Inventor); Muller, Norbert (Inventor); Lee, Changgu (Inventor)

    2009-01-01

    In accordance with the present invention, an integrated micro steam turbine power plant on-a-chip has been provided. The integrated micro steam turbine power plant on-a-chip of the present invention comprises a miniature electric power generation system fabricated using silicon microfabrication technology and lithographic patterning. The present invention converts heat to electricity by implementing a thermodynamic power cycle on a chip. The steam turbine power plant on-a-chip generally comprises a turbine, a pump, an electric generator, an evaporator, and a condenser. The turbine is formed by a rotatable, disk-shaped rotor having a plurality of rotor blades disposed thereon and a plurality of stator blades. The plurality of stator blades are interdigitated with the plurality of rotor blades to form the turbine. The generator is driven by the turbine and converts mechanical energy into electrical energy.

  1. 76 FR 72087 - Special Conditions: Diamond Aircraft Industries, Model DA-40NG; Electronic Engine Control (EEC...

    Science.gov (United States)

    2011-11-22

    ... turbine engine compressor variable geometry (VG): the VG function in itself is not an airplane function... is intended for turbine engine installations; however, the intent is applicable to piston engine...

  2. Heavy duty gas turbines experience with ash-forming fuels

    OpenAIRE

    Molière, M.; Sire, J.

    1993-01-01

    The heavy duty gas turbines operating in power plants can burn various fuels ranging from natural gas to heavy oils. Ash-forming fuels can have detrimental effects on the turbine hardware such as : combustion troubles, erosion, corrosion and fouling by ashes. For decades, progress has been made by the gas turbine industry, especially in the fields of superalloy metallurgy, coating and cooling technology. Furthermore, fuel treatments inspired by the petroleum and marine-engine industries (elec...

  3. Study of wind turbine foundations in cold climates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    This report provides an overview of the processes at work in soil in cold climates and their effect on wind turbine foundations. Havsnaes wind farm consists of 48 turbines located in Jaemtland county in central Sweden. Havsnaes has provided an appropriate research environment to investigate the engineering challenges related to the design and construction of wind turbine foundations in sub-arctic conditions and the experienced gained from this project informs this report.

  4. Theory and Tests of Two-Phase Turbines

    Science.gov (United States)

    Elliott, D. G.

    1986-01-01

    New turbines open possibility of new types of power cycles. Report describes theoretical analysis and experimental testing of two-phase impulse turbines. Such turbines open possibility of new types of power cycles operating with extremely wet mixtures of steam and water, organic fluids, or immiscible liquids and gases. Possible applications are geothermal power, waste-heat recovery, refrigerant expansion, solar conversion, transportation, and engine-bottoming cycles.

  5. A Take Stock of Turbine Blades Failure Phenomenon

    Science.gov (United States)

    Roy, Abhijit

    2018-02-01

    Turbine Blade design and engineering is one of the most complicated and important aspects of turbine technology. Experiments with blades can be simple or very complicated, depending upon parameters of analysis. Turbine blades are subjected to vigorous environments, such as high temperatures, high stresses, and a potentially high vibration environment. All these factors can lead to blade failures, which can destroy the turbine, and engine, so careful design is the prime consideration to resist those conditions. A high cycle of fatigue of compressor and turbine blades due to high dynamic stress caused by blade vibration and resonance within the operating range of machinery is common failure mode for turbine machine. Continuous study and investigation on failure of turbine blades are going on since last five decades. Some review papers published during these days aiming to present a review on recent studies and investigations done on failures of turbine blades. All the detailed literature related with the turbine blades has not been described but emphasized to provide all the methodologies of failures adopted by various researches to investigate turbine blade. This paper illustrate on various factors of failure.

  6. Using machine learning to predict wind turbine power output

    International Nuclear Information System (INIS)

    Clifton, A; Kilcher, L; Lundquist, J K; Fleming, P

    2013-01-01

    Wind turbine power output is known to be a strong function of wind speed, but is also affected by turbulence and shear. In this work, new aerostructural simulations of a generic 1.5 MW turbine are used to rank atmospheric influences on power output. Most significant is the hub height wind speed, followed by hub height turbulence intensity and then wind speed shear across the rotor disk. These simulation data are used to train regression trees that predict the turbine response for any combination of wind speed, turbulence intensity, and wind shear that might be expected at a turbine site. For a randomly selected atmospheric condition, the accuracy of the regression tree power predictions is three times higher than that from the traditional power curve methodology. The regression tree method can also be applied to turbine test data and used to predict turbine performance at a new site. No new data are required in comparison to the data that are usually collected for a wind resource assessment. Implementing the method requires turbine manufacturers to create a turbine regression tree model from test site data. Such an approach could significantly reduce bias in power predictions that arise because of the different turbulence and shear at the new site, compared to the test site. (letter)

  7. The Need and Challenges for Distributed Engine Control

    Science.gov (United States)

    Culley, Dennis E.

    2013-01-01

    The presentation describes the challenges facing the turbine engine control system. These challenges are primarily driven by a dependence on commercial electronics and an increasingly severe environment on board the turbine engine. The need for distributed control is driven by the need to overcome these system constraints and develop a new growth path for control technology and, as a result, improved turbine engine performance.

  8. Gas turbine blades and disks. Materials and component behaviour

    International Nuclear Information System (INIS)

    1990-01-01

    This progress report summarizes the research results obtained by the special research programme 339 in the years 1988 and 1989. Emphasis is given to the following aspects and problems: Optimisation of structure, protective coatings, connection between structure parameters and mechanical materials behaviour, tribologic materials and component behaviour, impacts of overall loads, and of stress and deformation state in the inelastic regime under mechanical and thermal load, and impacts of the manufacturing process on component behaviour, quality assurance. Eleven of the fifteen papers of the report have been separately analysed for the ENERGY database, and thirteen for the DELURA database. (orig./MM) With 191 figs., 13 tabs [de

  9. System definition and analysis gas-fired industrial advanced turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, G.M.

    1997-05-01

    The objective is to define and analyze an engine system based on the gas fuel Advanced Turbine from Task 3. Using the cycle results of Task 3, a technical effort was started for Task 6 which would establish the definition of the engine flowpath and the key engine component systems. The key engine systems are: gas turbine engine overall flowpath; booster (low pressure compressor); intercooler; high pressure compressor; combustor; high pressure turbine; low pressure turbine and materials; engine system packaging; and power plant configurations. The design objective is to use the GE90 engine as the platform for the GE Industrial Advanced Turbine System. This objective sets the bounds for the engine flowpath and component systems.

  10. Multiple electronic permanent turbogenerator for turbine engines of the 90th. Final report; MED-Turbogeneratoren fuer Stroemungskraftmaschinen der 90er Jahre. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Reiner, G.

    1997-12-01

    Present state of research and technology: Usually generators are coupled over a reduction gear to high-speed gas turbines. Independent of the load requirements the number of revolutions of the gas turbine must remain constant and rigidly coupled to the frequency. In the partial load range the efficiency of the gas turbine sinks substantially. Reason/objective of the investigation: This project is supposed to prove the feasibility and the functionality of a turbogenerator (TG) in Multiple Electronic Permanent Magnet (MED) construction principle, which is directly coupled to the high-speed drive turbine. Further on the preconditions for the construction of prototypes in the size class 20 kW up to 100 kW as well as 100 kW to 1 MW should be created. Method: Preliminary investigation, dimensioning, calculation and construction of a 40 kW and a 400 kW (MED) turbogenerator. Production and commissioning of one operating model each. Production and/or procurement as well as construction of necessary testing facilities. Experimental proof of the target data. Results: 3 operating models including power electroncis and necessary periphery were manufactured, measured and tested at the test stand. The projected data: rated voltage and rated output power could be proven experimentally. Conclusion/application possibilities: The MED turbogenerator represents a compact construction principle (weight and volume advantages). Direct coupling on the shaft of the drive turbine is possible (high efficiency; reduction gear is void; noise minimisation). In connection with a static inverter a constant frequency independently of the number of revolutions of the drive turbine can be achieved. Althogether, compared with conventional technology, one can expect around 3-5% reduced fuel consumption. The TG can be applied both in stationary electrical power units and plants for decentralised cogeneration as well as mobilely for the electric drive of heavy trucks and buses. (orig.) [Deutsch

  11. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the

  12. The Effects of Accretion Disk Geometry on AGN Reflection Spectra

    Science.gov (United States)

    Taylor, Corbin James; Reynolds, Christopher S.

    2017-08-01

    Despite being the gravitational engines that power galactic-scale winds and mega parsec-scale jets in active galaxies, black holes are remarkably simple objects, typically being fully described by their angular momenta (spin) and masses. The modelling of AGN X-ray reflection spectra has proven fruitful in estimating the spin of AGN, as well as giving insight into their accretion histories and the properties of plasmas in the strong gravity regime. However, current models make simplifying assumptions about the geometry of the reflecting material in the accretion disk and the irradiating X-ray corona, approximating the disk as an optically thick, infinitely thin disk of material in the orbital plane. We present results from the new relativistic raytracing suite, Fenrir, that explore the effects that disk thickness may have on the reflection spectrum and the accompanying reverberation signatures. Approximating the accretion disk as an optically thick, geometrically thin, radiation pressure dominated disk (Shakura & Sunyaev 1973), one finds that the disk geometry is non-negligible in many cases, with significant changes in the broad Fe K line profile. Finally, we explore the systematic errors inherent in approximating the disk as being infinitely thin when modeling reflection spectrum, potentially biasing determinations of black hole and corona properties.

  13. Multiple Turbine Wakes

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Mann, Jakob

    and to obtain an estimate of the wake expansion in a fixed frame of reference. A comparison of selected datasets from the campaign showed good far wake agreements of mean wake expansion with Actuator Line CFD computations and simpler engineering models. An empirical relationship, relating maximum wake induction......, the Bulk-Richardson and the Froude number approach. Three test cases are subsequently defined covering various atmospheric conditions. Simulations based on the EllipSys3D ABL flow solver are carried out using Large Eddy Simulation and Actuator disc rotor modeling.The turbulence properties of the incoming...... characteristics was investigated.Later, wake interaction resulting from two stall regulated turbines aligned with the incoming wind were studied experimentally and numerically. The experimental work was based on a new dedicated full-scale measurement campaign involving 3 nacelle mounted Continuous Wave scanning...

  14. Diesel engine catalytic combustor system. [aircraft engines

    Science.gov (United States)

    Ream, L. W. (Inventor)

    1984-01-01

    A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.

  15. Reliability of low pressure Steam Turbine for Electricity Power ...

    African Journals Online (AJOL)

    In other words failure was expected after every 8 days for 60% of the years investigated. This indicated that the reliability of the steam engine was very low. Aging and maintenance is suspected to be the cause of the poor reliability of the turbine and remedial actions are recommended. Keywords: reliability, steam turbine, ...

  16. Identifying Likely Disk-hosting M dwarfs with Disk Detective

    Science.gov (United States)

    Silverberg, Steven; Wisniewski, John; Kuchner, Marc J.; Disk Detective Collaboration

    2018-01-01

    M dwarfs are critical targets for exoplanet searches. Debris disks often provide key information as to the formation and evolution of planetary systems around higher-mass stars, alongside the planet themselves. However, less than 300 M dwarf debris disks are known, despite M dwarfs making up 70% of the local neighborhood. The Disk Detective citizen science project has identified over 6000 new potential disk host stars from the AllWISE catalog over the past three years. Here, we present preliminary results of our search for new disk-hosting M dwarfs in the survey. Based on near-infrared color cuts and fitting stellar models to photometry, we have identified over 500 potential new M dwarf disk hosts, nearly doubling the known number of such systems. In this talk, we present our methodology, and outline our ongoing work to confirm systems as M dwarf disks.

  17. AGT (Advanced Gas Turbine) technology project

    Science.gov (United States)

    1988-01-01

    An overall summary documentation is provided for the Advanced Gas Turbine Technology Project conducted by the Allison Gas Turbine Division of General Motors. This advanced, high risk work was initiated in October 1979 under charter from the U.S. Congress to promote an engine for transportation that would provide an alternate to reciprocating spark ignition (SI) engines for the U.S. automotive industry and simultaneously establish the feasibility of advanced ceramic materials for hot section components to be used in an automotive gas turbine. As this program evolved, dictates of available funding, Government charter, and technical developments caused program emphases to focus on the development and demonstration of the ceramic turbine hot section and away from the development of engine and powertrain technologies and subsequent vehicular demonstrations. Program technical performance concluded in June 1987. The AGT 100 program successfully achieved project objectives with significant technology advances. Specific AGT 100 program achievements are: (1) Ceramic component feasibility for use in gas turbine engines has been demonstrated; (2) A new, 100 hp engine was designed, fabricated, and tested for 572 hour at operating temperatures to 2200 F, uncooled; (3) Statistical design methodology has been applied and correlated to experimental data acquired from over 5500 hour of rig and engine testing; (4) Ceramic component processing capability has progressed from a rudimentary level able to fabricate simple parts to a sophisticated level able to provide complex geometries such as rotors and scrolls; (5) Required improvements for monolithic and composite ceramic gas turbine components to meet automotive reliability, performance, and cost goals have been identified; (6) The combustor design demonstrated lower emissions than 1986 Federal Standards on methanol, JP-5, and diesel fuel. Thus, the potential for meeting emission standards and multifuel capability has been initiated

  18. Nonintrusive transceiver and method for characterizing temperature and velocity fields in a gas turbine combustor

    Energy Technology Data Exchange (ETDEWEB)

    DeSilva, Upul P.; Claussen, Heiko

    2017-09-05

    An acoustic transceiver is implemented for measuring acoustic properties of a gas in a turbine engine combustor. The transceiver housing defines a measurement chamber and has an opening adapted for attachment to a turbine engine combustor wall. The opening permits propagation of acoustic signals between the gas in the turbine engine combustor and gas in the measurement chamber. An acoustic sensor mounted to the housing receives acoustic signals propagating in the measurement chamber, and an acoustic transmitter mounted to the housing creates acoustic signals within the measurement chamber. An acoustic measurement system includes at least two such transceivers attached to a turbine engine combustor wall and connected to a controller.

  19. Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-Strike Modeling

    Directory of Open Access Journals (Sweden)

    Zhiqun Deng

    2011-01-01

    Full Text Available Hydropower is the largest renewable energy source in the world. However, in the Columbia and Snake River basins, several species of Pacific salmon and steelhead have been listed for protection under the Endangered Species Act due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making hydroelectric facilities more fish friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for relicensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to compare fish passage performance of the newly installed advanced turbine to an existing turbine. Modeled probabilities were compared to the results of a large-scale live-fish survival study and a Sensor Fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury, while those predicted by the stochastic model were in close agreement with experimental results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, no statistical evidence suggested significant differences in blade-strike injuries between the two turbines, thus the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal to or higher than that for fish passing through the conventional turbine could not be rejected.

  20. AGT-102 automotive gas turbine

    Science.gov (United States)

    1981-01-01

    Development of a gas turbine powertrain with a 30% fuel economy improvement over a comparable S1 reciprocating engine, operation within 0.41 HC, 3.4 CO, and 0.40 NOx grams per mile emissions levels, and ability to use a variety of alternate fuels is summarized. The powertrain concept consists of a single-shaft engine with a ceramic inner shell for containment of hot gasses and support of twin regenerators. It uses a fixed-geometry, lean, premixed, prevaporized combustor, and a ceramic radial turbine rotor supported by an air-lubricated journal bearing. The engine is coupled to the vehicle through a widerange continuously variable transmission, which utilizes gearing and a variable-ratio metal compression belt. A response assist flywheel is used to achieve acceptable levels of engine response. The package offers a 100 lb weight advantage in a Chrysler K Car front-wheel-drive installation. Initial layout studies, preliminary transient thermal analysis, ceramic inner housing structural analysis, and detailed performance analysis were carried out for the basic engine.

  1. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...... is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate...

  2. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further...

  3. Brown dwarf disks with ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, L.; Isella, A. [Department of Astronomy, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Testi, L.; De Gregorio-Monsalvo, I. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Natta, A. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Scholz, A., E-mail: lricci@astro.caltech.edu [School of Cosmic Physics, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2014-08-10

    We present Atacama Large Millimeter/submillimeter Array continuum and spectral line data at 0.89 mm and 3.2 mm for three disks surrounding young brown dwarfs and very low mass stars in the Taurus star forming region. Dust thermal emission is detected and spatially resolved for all the three disks, while CO(J = 3-2) emission is seen in two disks. We analyze the continuum visibilities and constrain the disks' physical structure in dust. The results of our analysis show that the disks are relatively large; the smallest one has an outer radius of about 70 AU. The inferred disk radii, radial profiles of the dust surface density, and disk to central object mass ratios lie within the ranges found for disks around more massive young stars. We derive from our observations the wavelength dependence of the millimeter dust opacity. In all the three disks, data are consistent with the presence of grains with at least millimeter sizes, as also found for disks around young stars, and confirm that the early stages of the solid growth toward planetesimals occur also around very low-mass objects. We discuss the implications of our findings on models of solids evolution in protoplanetary disks, the main mechanisms proposed for the formation of brown dwarfs and very low-mass stars, as well as the potential of finding rocky and giant planets around very low-mass objects.

  4. Performance assessment of simple and modified cycle turboshaft gas turbines

    Directory of Open Access Journals (Sweden)

    Barinyima Nkoi

    2013-06-01

    Full Text Available This paper focuses on investigations encompassing comparative assessment of gas turbine cycle options. More specifically, investigation was carried out of technical performance of turboshaft engine cycles based on existing simple cycle (SC and its projected modified cycles for civil helicopter application. Technically, thermal efficiency, specific fuel consumption, and power output are of paramount importance to the overall performance of gas turbine engines. In course of carrying out this research, turbomatch software established at Cranfield University based on gas turbine theory was applied to conduct simulation of a simple cycle (baseline two-spool helicopter turboshaft engine model with free power turbine. Similarly, some modified gas turbine cycle configurations incorporating unconventional components, such as engine cycle with low pressure compressor (LPC zero-staged, recuperated engine cycle, and intercooled/recuperated (ICR engine cycle, were also simulated. In doing so, design point (DP and off-design point (OD performances of the engine models were established. The percentage changes in performance parameters of the modified cycle engines over the simple cycle were evaluated and it was found that to a large extent, the modified engine cycles with unconventional components exhibit better performances in terms of thermal efficiency and specific fuel consumption than the traditional simple cycle engine. This research made use of public domain open source references.

  5. Exploring Our Galaxy's Thick Disk

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    What is the structure of the Milky Ways disk, and how did it form? A new study uses giant stars to explore these questions.A View from the InsideSchematic showing an edge-on, not-to-scale view of what we think the Milky Ways structurelookslike. The thick disk is shown in yellow and the thin disk is shown in green. [Gaba p]Spiral galaxies like ours are often observed to have disks consisting of two components: a thin disk that lies close to the galactic midplane, and a thick disk that extends above and below this. Past studies have suggested that the Milky Ways disk hosts the same structure, but our position embedded in the Milky Way makes this difficult to confirm.If we can measure the properties of a broad sample of distant tracer stars and use this to better understand the construction of the Milky Ways disk, then we can start to ask additional questions like, how did the disk components form? Formation pictures for the thick disk generally fall into two categories:Stars in the thick disk formed within the Milky Way either in situ or by migrating to their current locations.Stars in the thick disk formed in satellite galaxies around the Milky Way and then accreted when the satellites were disrupted.Scientists Chengdong Li and Gang Zhao (NAO Chinese Academy of Sciences, University of Chinese Academy of Sciences) have now used observations of giant stars which can be detected out to great distances due to their brightness to trace the properties of the Milky Ways thick disk and address the question of its origin.Best fits for the radial (top) and vertical (bottom) metallicity gradients of the thick-disk stars. [Adapted from Li Zhao 2017]Probing OriginsLi and Zhao used data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) in China to examine a sample of 35,000 giant stars. The authors sorted these stars into different disk components halo, thin disk, and thick disk based on their kinematic properties, and then explored how the orbital and

  6. Superconducting Wind Turbine Generators

    OpenAIRE

    Yunying Pan; Danhzen Gu

    2016-01-01

    Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends ...

  7. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  8. Advanced Seal Development for Large Industrial Gas Turbines

    Science.gov (United States)

    Chupp, Raymond E.

    2006-01-01

    Efforts are in progress to develop advanced sealing for large utility industrial gas turbine engines (combustion turbines). Such seals have been under developed for some time for aero gas turbines. It is desired to transition this technology to combustion turbines. Brush seals, film riding face and circumferential seals, and other dynamic and static sealing approaches are being incorporated into gas turbines for aero applications by several engine manufacturers. These seals replace labyrinth or other seals with significantly reduced leakage rates. For utility industrial gas turbines, leakage reduction with advanced sealing can be even greater with the enormous size of the components. Challenges to transitioning technology include: extremely long operating times between overhauls; infrequent but large radial and axial excursions; difficulty in coating larger components; and maintenance, installation, and durability requirements. Advanced sealing is part of the Advanced Turbine Systems (ATS) engine development being done under a cooperative agreement between Westinghouse and the US Department of Energy, Office of Fossil Energy. Seal development focuses on various types of seals in the 501ATS engine both at dynamic and static locations. Each development includes rig testing of candidate designs and subsequent engine validation testing of prototype seals. This presentation gives an update of the ongoing ATS sealing efforts with special emphasis on brush seals.

  9. Sliding vane geometry turbines

    Science.gov (United States)

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  10. DVD - digital versatile disks

    Energy Technology Data Exchange (ETDEWEB)

    Gaunt, R.

    1997-05-01

    An international standard has emerged for the first true multimedia format. Digital Versatile Disk (by its official name), you may know it as Digital Video Disks. DVD has applications in movies, music, games, information CD-ROMS, and many other areas where massive amounts of digital information is needed. Did I say massive amounts of data? Would you believe over 17 gigabytes on a single piece of plastic the size of an audio-CD? That`s the promise, at least, by the group of nine electronics manufacturers who have agreed to the format specification, and who hope to make this goal a reality by 1998. In this major agreement, which didn`t come easily, the manufacturers will combine Sony and Phillip`s one side double-layer NMCD format with Toshiba and Matsushita`s double sided Super-Density disk. By Spring of this year, they plan to market the first 4.7 gigabyte units. The question is: Will DVD take off? Some believe that read-only disks recorded with movies will be about as popular as video laser disks. They say that until the eraseable/writable DVD arrives, the consumer will most likely not buy it. Also, DVD has a good market for replacement of CD- Roms. Back in the early 80`s, the international committee deciding the format of the audio compact disk decided its length would be 73 minutes. This, they declared, would allow Beethoven`s 9th Symphony to be contained entirely on a single CD. Similarly, today it was agreed that playback length of a single sided, single layer DVD would be 133 minutes, long enough to hold 94% of all feature-length movies. Further, audio can be in Dolby`s AC-3 stereo or 5.1 tracks of surround sound, better than CD-quality audio (16-bits at 48kHz). In addition, there are three to five language tracks, copy protection and parental ``locks`` for R rated movies. DVD will be backwards compatible with current CD-ROM and audio CD formats. Added versatility comes by way of multiple aspect rations: 4:3 pan-scan, 4:3 letterbox, and 16:9 widescreen. MPEG

  11. Preliminary study of Low-Cost Micro Gas Turbine

    Science.gov (United States)

    Fikri, M.; Ridzuan, M.; Salleh, Hamidon

    2016-11-01

    The electricity consumption nowadays has increased due to the increasing development of portable electronic devices. The development of low cost micro gas turbine engine, which is designed for the purposes of new electrical generation Micro turbines are a relatively new distributed generation technology being used for stationary energy generation applications. They are a type of combustion turbine that produces both heat and electricity on a relatively small scaled.. This research are focusing of developing a low-cost micro gas turbine engine based on automotive turbocharger and to evaluation the performance of the developed micro gas turbine. The test rig engine basically was constructed using a Nissan 45V3 automotive turbocharger, containing compressor and turbine assemblies on a common shaft. The operating performance of developed micro gas turbine was analyzed experimentally with the increment of 5000 RPM on the compressor speed. The speed of the compressor was limited at 70000 RPM and only 1000 degree Celsius at maximum were allowed to operate the system in order to avoid any failure on the turbocharger bearing and the other components. Performance parameters such as inlet temperature, compressor temperature, exhaust gas temperature, and fuel and air flow rates were measured. The data was collected electronically by 74972A data acquisition and evaluated manually by calculation. From the independent test shows the result of the system, The speed of the LP turbine can be reached up to 35000 RPM and produced 18.5kw of mechanical power.

  12. Baseline Gas Turbine Development Program. Fourteenth quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, F W; Wagner, C E

    1976-04-30

    Progress is reported for a Baseline Gas Turbine Development Program sponsored by the Heat Engine Systems Branch, Division of Transportation Energy Conservation (TEC) of the Energy Research and Development Administration (ERDA). Structurally, this program is made up of three parts: (1) documentation of the existing automotive gas turbine state-of-the-art; (2) conduction of an extensive component improvement program; and (3) utilization of the improvements in the design, and building of an Upgraded Engine capable of demonstrating program goals.

  13. An MSc Course Module: Wind Turbine Measurement Techniques

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Pedersen, Knud Ole Helgesen

    2005-01-01

    The 2-year MSc in Wind power engineering at the Technical University of Denmark comprises modules from core engineering teaching and from other modules specifically designed to the MSc. This Note outlines the content of such a specific module on the subject of wind turbine measurement. The lectures......, practical exercises and work related to measurements from an operating 500 kW turbine are described....

  14. Commercialization of an Advanced Gearless Midsize Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    McKay, Chris [Northern Power Systems, Inc., Barre, VT (United States); Ellis, Kyle [Northern Power Systems, Inc., Barre, VT (United States)

    2017-03-24

    The objective of this project was the development and eventual commercialization of a Gearless Wind Turbine of rated power 450 kW. While the product was to be based on existing technology, a significant amount of new engineering effort was expected to be required to ensure maximum efficiency and realistic placement within the market. Expected benefits included positive impact on green job creation in over 15 states as well as strengthen the U.S. domestic capacity for turbine engineering.

  15. Turbine Imaging Technology Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moursund, Russell A.; Carlson, Thomas J.

    2004-12-31

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

  16. Turbine related fish mortality

    International Nuclear Information System (INIS)

    Eicher, G.J.

    1993-01-01

    A literature review was conducted to assess the factors affecting turbine-related fish mortality. The mechanics of fish passage through a turbine is outlined, and various turbine related stresses are described, including pressure and shear effects, hydraulic head, turbine efficiency, and tailwater level. The methodologies used in determining the effects of fish passage are evaluated. The necessity of adequate controls in each test is noted. It is concluded that mortality is the result of several factors such as hardiness of study fish, fish size, concentrations of dissolved gases, and amounts of cavitation. Comparisons between Francis and Kaplan turbines indicate little difference in percent mortality. 27 refs., 5 figs

  17. Advanced Turbine Technology Applications Project (ATTAP)

    Science.gov (United States)

    1994-01-01

    Reports technical effort by AlliedSignal Engines in sixth year of DOE/NASA funded project. Topics include: gas turbine engine design modifications of production APU to incorporate ceramic components; fabrication and processing of silicon nitride blades and nozzles; component and engine testing; and refinement and development of critical ceramics technologies, including: hot corrosion testing and environmental life predictive model; advanced NDE methods for internal flaws in ceramic components; and improved carbon pulverization modeling during impact. ATTAP project is oriented toward developing high-risk technology of ceramic structural component design and fabrication to carry forward to commercial production by 'bridging the gap' between structural ceramics in the laboratory and near-term commercial heat engine application. Current ATTAP project goal is to support accelerated commercialization of advanced, high-temperature engines for hybrid vehicles and other applications. Project objectives are to provide essential and substantial early field experience demonstrating ceramic component reliability and durability in modified, available, gas turbine engine applications; and to scale-up and improve manufacturing processes of ceramic turbine engine components and demonstrate application of these processes in the production environment.

  18. Micro-turbines

    International Nuclear Information System (INIS)

    Tashevski, Done

    2003-01-01

    In this paper a principle of micro-turbines operation, type of micro-turbines and their characteristics is presented. It is shown their usage in cogeneration and three generation application with the characteristics, the influence of more factors on micro-turbines operation as well as the possibility for application in Macedonia. The paper is result of the author's participation in the training program 'Micro-turbine technology' in Florida, USA. The characteristics of different types micro-turbines by several world producers are shown, with accent on US micro-turbines producers (Capstone, Elliott). By using the gathered Author's knowledge, contacts and the previous knowledge, conclusions and recommendations for implementation of micro-turbines in Macedonia are given. (Author)

  19. Thin accretion disks in stationary axisymmetric wormhole spacetimes

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Kovacs, Zoltan; Lobo, Francisco S. N.

    2009-01-01

    In this paper, we study the physical properties and the equilibrium thermal radiation emission characteristics of matter forming thin accretion disks in stationary axially symmetric wormhole spacetimes. The thin disk models are constructed by taking different values of the wormhole's angular velocity, and the time averaged energy flux, the disk temperature, and the emission spectra of the accretion disks are obtained. Comparing the mass accretion in a rotating wormhole geometry with the one of a Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for wormholes than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating wormholes provide a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Therefore specific signatures appear in the electromagnetic spectrum of thin disks around rotating wormholes, thus leading to the possibility of distinguishing wormhole geometries by using astrophysical observations of the emission spectra from accretion disks.

  20. Gas turbine system simulation: An object-oriented approach

    Science.gov (United States)

    Drummond, Colin K.; Follen, Gregory J.; Putt, Charles W.

    1993-01-01

    A prototype gas turbine engine simulation has been developed that offers a generalized framework for the simulation of engines subject to steady-state and transient operating conditions. The prototype is in preliminary form, but it successfully demonstrates the viability of an object-oriented approach for generalized simulation applications. Although object oriented programming languages are-relative to FORTRAN-somewhat austere, it is proposed that gas turbine simulations of an interdisciplinary nature will benefit significantly in terms of code reliability, maintainability, and manageability. This report elucidates specific gas turbine simulation obstacles that an object-oriented framework can overcome and describes the opportunity for interdisciplinary simulation that the approach offers.

  1. Audit: Automated Disk Investigation Toolkit

    Directory of Open Access Journals (Sweden)

    Umit Karabiyik

    2014-09-01

    Full Text Available Software tools designed for disk analysis play a critical role today in forensics investigations. However, these digital forensics tools are often difficult to use, usually task specific, and generally require professionally trained users with IT backgrounds. The relevant tools are also often open source requiring additional technical knowledge and proper configuration. This makes it difficult for investigators without some computer science background to easily conduct the needed disk analysis. In this paper, we present AUDIT, a novel automated disk investigation toolkit that supports investigations conducted by non-expert (in IT and disk technology and expert investigators. Our proof of concept design and implementation of AUDIT intelligently integrates open source tools and guides non-IT professionals while requiring minimal technical knowledge about the disk structures and file systems of the target disk image.

  2. Performance, Applications, and Analysis of Rotating Detonation Engine Technologies (Preprint)

    Science.gov (United States)

    2015-12-01

    a turboshaft engine for the first time. The performance of the RDE gas turbine engine is similar to or better than that of the conventional gas ...engines operating on hydrogen /air and ethylene/air mixtures. The encouraging results indicate that RDEs are capable of producing thrust with fuel ...for the first time. The performance of the RDE gas turbine engine is similar to or better than that of the conventional gas turbine engine across

  3. Analisa Teknis Perancangan Turbin Pada Turbocahrger Menggunakan CFD

    Directory of Open Access Journals (Sweden)

    Intan Essy Pandini

    2015-12-01

    Full Text Available Fungsi tambahan dari Turbocharger terhadap motor yakni dapat mengurangi SFOC (Specific Fuel Oil Consumption, memperkecil getaran, serta meningkatkan efisiensia. Prinsip kerja dari turbocharger adalah gas buang dari mesin diesel dialirkan menuju gas inlet cashing untuk menggerakan turbin turbocharger, setelah turbin bergerak aliran fluida akan keluar melalui gas outlet cashing. Karena turbin berputar maka shaft turbin yang telah terhubung dengan kompresor otomatis akan memutar impeller kompresor tersebut. Sehingga mengakibatka udara luar masuk melalui air inlet casing, akibat putaran kompresor fluida gas menjadi bertekanan dan dapat mensuplay ke mesin diesel tersebut. Pada penulisan tugas akhir ini akan membahas tentang analisa teknis perancangan turbin turbocharger dengan mevariasikan nilai putaran turbin sejumpah 5000 rpm,10000 rpm, 15000 rpm, 20000 rpm 25000 rpm dan 30000 rpm. Sedangkan mass flow rate fluida disesuaikan dengan exhaust gas mass flow rate berdasarkan kondisi engine 100%, 85%, 75 % sedangkan nilai mass flow rate sebesar 1.7 kg/s, 1.45 kg/s dan 1.28 kg/s. Jumlah blade dan diameter blade telah ditentukan dan tidak mengubah sudut setiap putaran turbin. Analisa menggunakan Computational Fluids Dynamics (CFD dengan memasukan nilai-nilai yang telah ditentukan. Dengan menghasilkan putaran RPM ketika engine power sebesar 75% maka putaran 18944 RPM,Ketika engine power sebesar 85% maka putaran 22346 RPM.,Ketika engine power sebesar 100% sebesar 26956 RPM.

  4. Optical Sensing of Combustion Instabilities in Gas Turbines

    Science.gov (United States)

    Markham, James R.; Marran, David F.; Scire, James J., Jr.

    2005-01-01

    In a continuing program of research and development, a system has been demonstrated that makes high-speed measurements of thermal infrared radiance from gas-turbine engine exhaust streams. When a gas-turbine engine is operated under conditions that minimize the emission of pollutants, there is a risk of crossing the boundary from stable to unstable combustion. Combustion instability can lead to engine damage and even catastrophic failure. Sensor systems of the type under development could provide valuable data during the development testing of gas-turbine engines or of engine components. A system of the type under development makes high-speed measurements of thermal infrared radiance from the engine exhaust stream. The sensors of this system can be mounted outside the engine, which eliminates the need for engine case penetrations typical with other engine dynamics monitors. This is an important advantage in that turbine-engine manufacturers consider such penetrations to be very undesirable. A prototype infrared sensor system has been built and demonstrated on a turbine engine. This system includes rugged and inexpensive near-infrared sensors and filters that select wavelengths of infrared radiation for high sensitivity. In experiments, low-frequency signatures were consistently observed in the detector outputs. Under some conditions, the signatures also included frequency components having one or two radiance cycles per engine revolution. Although it has yet to be verified, it is thought that the low-frequency signatures may be associated with bulk-mode combustion instabilities or flow instabilities in the compressor section of the engine, while the engine- revolution-related signatures may be indicative of mechanical problems in the engine. The system also demonstrated the ability to detect transient high-radiance events. These events indicate hot spots in the exhaust stream and were found to increase in frequency during engine acceleration.

  5. Optimization of wind turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Tor Anders

    1999-07-01

    The Constrained Steepest Descent method has been applied to the optimization of wind turbine rotors through the development of a numerical model. The model consists of an optimization kernel, an aerodynamic model, a structural dynamic model of a rotating beam, and a cost model for the wind turbine. The cost of energy is minimized directly by varying the blade design, the rotational speed and the resulting design of the drive-train and tower. The aerodynamic model is a combination of a fast engineering model based on strip-theory and two and three-dimensional Euler solvers. The two-dimensional Euler solver is used for generation of pre-stall airfoil data. Comparisons with experimental data verify that the engineering model effectively approximates non-stalled flow, except at the blade tip. The three-dimensional Euler solver is in good agreement with the experimental data at the tip, and is therefore a useful supplement for corrections of the tip-loss model, and evaluation of an optimized design. The structural dynamic model evaluates stresses and deformations for the blade. It is based on constitutive relations for a slender beam that are solved with the equations of motions using a finite-difference method. The cost model evaluates the design change of the wind turbine and the resulting costs that occur when a change in blade design modifies the blade mass and the overall forces. The cost model is based on engineering design rules for the drive-train and tower. The model was applied using a Danish 600 kW wind turbine as a reference. Two rotors were optimized using traditional NACA airfoils and a new low-lift airfoil family developed specifically for wind turbine purposes. The cost of energy decreased four percent for the NACA rotor, and seven percent for the low-lift rotor. Optimizations with a high number of degrees of freedom show that a designer has considerable flexibility in choosing some primary parameters such as rated power and rotor diameter, if the rest

  6. Self-gravity in Magnetized Neutrino-dominated Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Shahamat, Narjes; Abbassi, Shahram, E-mail: abbassi@um.ac.ir [Department of Physics, School of Science, Ferdowsi University of Mashhad, Mashhad, P.O. Box 91775-1436 (Iran, Islamic Republic of)

    2017-08-10

    In the present work we study self-gravity effects on the vertical structure of a magnetized neutrino-dominated accretion disk as a central engine for gamma-ray bursts (GRBs). Some of the disk physical timescales that are supposed to play a pivotal role in the late-time evolutions of the disk, such as viscous, cooling, and diffusion timescales, have been studied. We are interested in investigating the possibility of the occurrence of X-ray flares, observed in late-time GRBs’ extended emission through the “magnetic barrier” and “fragmentation” processes in our model. The results lead us to interpret self-gravity as an amplifier for Blandford–Payne luminosity (BP power) and the generated magnetic field, but a suppressor for neutrino luminosity and magnetic barrier processes via highlighting the fragmentation mechanism in the outer disk, especially for the higher mass accretion rates.

  7. IBM 3390 Hard Disk Platter

    CERN Multimedia

    1991-01-01

    The 3390 disks rotated faster than those in the previous model 3380. Faster disk rotation reduced rotational delay (ie. the time required for the correct area of the disk surface to move to the point where data could be read or written). In the 3390's initial models, the average rotational delay was reduced to 7.1 milliseconds from 8.3 milliseconds for the 3380 family.

  8. STELLAR MASS DEPENDENT DISK DISPERSAL

    International Nuclear Information System (INIS)

    Kennedy, Grant M.; Kenyon, Scott J.

    2009-01-01

    We use published optical spectral and infrared (IR) excess data from nine young clusters and associations to study the stellar mass dependent dispersal of circumstellar disks. All clusters older than ∼3 Myr show a decrease in disk fraction with increasing stellar mass for solar to higher mass stars. This result is significant at about the 1σ level in each cluster. For the complete set of clusters we reject the null hypothesis-that solar and intermediate-mass stars lose their disks at the same rate-with 95%-99.9% confidence. To interpret this behavior, we investigate the impact of grain growth, binary companions, and photoevaporation on the evolution of disk signatures. Changes in grain growth timescales at fixed disk temperature may explain why early-type stars with IR excesses appear to evolve faster than their later-type counterparts. Little evidence that binary companions affect disk evolution suggests that photoevaporation is the more likely mechanism for disk dispersal. A simple photoevaporation model provides a good fit to the observed disk fractions for solar and intermediate-mass stars. Although the current mass-dependent disk dispersal signal is not strong, larger and more complete samples of clusters with ages of 3-5 Myr can improve the significance and provide better tests of theoretical models. In addition, the orbits of extra-solar planets can constrain models of disk dispersal and migration. We suggest that the signature of stellar mass dependent disk dispersal due to photoevaporation may be present in the orbits of observed extra-solar planets. Planets orbiting hosts more massive than ∼1.6 M sun may have larger orbits because the disks in which they formed were dispersed before they could migrate.

  9. Disk storage at CERN

    CERN Document Server

    Mascetti, L; Chan, B; Espinal, X; Fiorot, A; Labrador, H Gonz; Iven, J; Lamanna, M; Presti, G Lo; Mościcki, JT; Peters, AJ; Ponce, S; Rousseau, H; van der Ster, D

    2015-01-01

    CERN IT DSS operates the main storage resources for data taking and physics analysis mainly via three system: AFS, CASTOR and EOS. The total usable space available on disk for users is about 100 PB (with relative ratios 1:20:120). EOS actively uses the two CERN Tier0 centres (Meyrin and Wigner) with 50:50 ratio. IT DSS also provide sizeable on-demand resources for IT services most notably OpenStack and NFS-based clients: this is provided by a Ceph infrastructure (3 PB) and few proprietary servers (NetApp). We will describe our operational experience and recent changes to these systems with special emphasis to the present usages for LHC data taking, the convergence to commodity hardware (nodes with 200-TB each with optional SSD) shared across all services. We also describe our experience in coupling commodity and home-grown solution (e.g. CERNBox integration in EOS, Ceph disk pools for AFS, CASTOR and NFS) and finally the future evolution of these systems for WLCG and beyond.

  10. [Disk calcifications in children].

    Science.gov (United States)

    Schmit, P; Fauré, C; Denarnaud, L

    1985-05-01

    It is not unusual for intervertebral disk calcifications to be detected in pediatric practice, the 150 or so cases reported in the literature probably representing only a small proportion of lesions actually diagnosed. Case reports of 33 children with intervertebral disk calcifications were analyzed. In the majority of these patients (31 of 33) a diagnosis of "idiopathic" calcifications had been made, the cervical localization of the lesions being related to repeated ORL infections and/or trauma. A pre-existing pathologic factor was found in two cases (one child with juvenile rheumatoid arthritis treated by corticoids and one child with Williams and Van Beuren's syndrome). An uncomplicated course was noted in 31 cases, the symptomatology (pain, spinal stiffness and febricula) improving after several days. Complications developed in two cases: one child had very disabling dysphagia due to an anteriorly protruding cervical herniated disc and surgery was necessary; the other child developed cervicobrachial neuralgia due to herniated disc protrusion into the cervical spinal canal, but symptoms regressed within several days although calcifications persisted unaltered. These findings and the course of the rare complications documented in the literature suggest the need for the most conservative treatment possible in cases of disc calcifications in children.

  11. Disk MHD generator study

    Science.gov (United States)

    Retallick, F. D.

    1980-10-01

    Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.

  12. Squeeze Film Damping for Aircraft Gas Turbines

    OpenAIRE

    R. W. Shende; S. K. Sane

    1988-01-01

    Modern aircraft gas turbine engines depend heavily on squeeze film damper supports at the bearings for abatement of vibrations caused by a number of probable excitation sources. This design ultimately results in light-weight construction together with higher efficiency and reliability of engines. Many investigations have been reported during past two decades concerning the functioning of the squeeze film damper, which is simple in construction yet complex in behaviour with its non-linearity a...

  13. A simple model of the wind turbine induction zone derived from numerical simulations

    DEFF Research Database (Denmark)

    Troldborg, Niels; Meyer Forsting, Alexander Raul

    2017-01-01

    The induction zone in front of different wind turbine rotors is studied by means of steady-state Navier-Stokes simulations combined with an actuator disk approach. It is shown that, for distances beyond 1 rotor radius upstream of the rotors, the induced velocity is self-similar and independent of...... of the rotor geometry. On the basis of these findings, a simple analytical model of the induction zone of wind turbines is proposed....

  14. Scour around a perforated disk modeling a marine hydrokinetic device

    Science.gov (United States)

    Beninati, M. L.; Soliani, G.; Zhou, C. C.; Krane, M.; Fontaine, A.

    2013-12-01

    A study was conducted to investigate the behavior of scour hole dimensions and scour rates around a bottom-mounted cylindrical support structure of a perforated disk. The experiments focus on collecting temporal variations of scour depth around the support structure of the perforated disk for two scour regimes: transitional (ReD = 8500 and 9400) and live-bed (ReD = 10200). A perforated disk is used to approximate the drag of a submerged, horizontal axis, marine hydrokinetic (MHK) turbine. The goal is to compare the scour behavior around a perforated disk to that of a marine hydrokinetic (MHK) device. This study is motivated by the need to predict the environmental effect of MHK devices on an erodible bed. Testing is conducted in the small-scale hydraulic flume facility (1.2 m wide, 0.38 m deep, and 9.75 m long) at Bucknell University. The base of the support structure is marked incrementally to allow for time based observations of changes in scour depth. Bed form topologies are then acquired after a three hour time interval using a 2D sediment bed profiler. Experimental results show that scour rate is dependent on flow speed. Additionally, an increase in scour hole size occurs as the scour conditions are varied from transitional to live-bed.

  15. Turbine interstage seal with self-balancing capability

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Jacob A; Jones, Russell B; Sexton, Thomas D

    2017-09-26

    An interstage seal for a turbine of a gas turbine engine, the interstage seal having a seal carrier with an axial extending seal tooth movable with a stator of the engine, and a rotor with a seal surface that forms the interstage seal with the seal tooth, where a magnetic force produced by two magnets and a gas force produced by a gas pressure acting on the seal carrier forms a balancing force to maintain a close clearance of the seal without the seal tooth contacting the rotor seal surfaces during engine operation. In other embodiments, two pairs of magnets produce first and second magnetic forces that balance the seal in the engine.

  16. Driving of Accretion Disk Variability by the Disk Dynamo

    Science.gov (United States)

    Hogg, J. Drew; Reynolds, Christopher S.

    2016-04-01

    Variability is a ubiquitous feature of emission from accreting objects, but many questions remain as to how the variability is driven and how it relates to the underlying accretion physics. In this talk I will discuss recent results from a long, semi-global MHD simulation of a thin accretion disk around a black hole used to perform a detailed study of the fluctuations in the internal disk stress and the influence these fluctuations have on the accretion flow. In the simulation, low frequency fluctuations of the effective α-parameter in the disk are linked to oscillations of the disk dynamo. These fluctuations in the effective alpha parameter drive “propagating fluctuations” in mass accretion rate through the disk that qualitatively resemble the variability from astrophysical black hole systems. The mass accretion rate has several of the ubiquitous phenomenological properties of black hole variability, including log-normal flux distributions, RMS-flux relationships, and radial coherence.

  17. Electrically charged small soot particles in the exhaust of an aircraft gas-turbine engine combustor: comparison of model and experiment

    Science.gov (United States)

    Sorokin, A.; Arnold, F.

    The emission of electrically charged soot particles by an aircraft gas-turbine combustor is investigated using a theoretical model. Particular emphasis is placed on the influence of the fuel sulfur content (FSC). The model considers the production of primary "combustion" electrons and ions in the flame zone and their following interaction with molecular oxygen, sulfur-bearing molecules (e.g. O 2, SO 2, SO 3, etc.) and soot particles. The soot particle size distribution is approximated by two different populations of mono-dispersed large and small soot particles with diameters of 20-30 and 5-7 nm, respectively. The effect of thermal ionization of soot and its interaction with electrons and positive and negative ions is included in the model. The computed positive and negative chemiion (CI) concentrations at the combustor exit and relative fractions of small neutral and charged soot particles were found to be in satisfactory agreement with experimental data. The results show that the FSC indeed may influence the concentration of negative CI at low fuel flow into combustor. Importantly the simulation indicates a very efficient mutual interaction of electrons and ions with soot particles with a large effect on both ion and charged soot particle concentrations. This result may be interpreted as a possible indirect effect of FSC on the growth and size distribution of soot particles.

  18. Prediction on Power Produced from Power Turbine as a Waste Heat Recovery Mechanism on Naturally Aspirated Spark Ignition Engine Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Safarudin Gazali Herawan

    2016-01-01

    Full Text Available The waste heat from exhaust gases represents a significant amount of thermal energy, which has conventionally been used for combined heating and power applications. This paper explores the performance of a naturally aspirated spark ignition engine equipped with waste heat recovery mechanism (WHRM in a sedan car. The amount of heat energy from exhaust is presented and the experimental test results suggest that the concept is thermodynamically feasible and could significantly enhance the system performance depending on the load applied to the engine. However, the existence of WHRM affects the performance of engine by slightly reducing the power. The simulation method is created using an artificial neural network (ANN which predicts the power produced from the WHRM.

  19. Computational Fluid Dynamic Analysis of a Vibrating Turbine Blade

    Directory of Open Access Journals (Sweden)

    Osama N. Alshroof

    2012-01-01

    Full Text Available This study presents the numerical fluid-structure interaction (FSI modelling of a vibrating turbine blade using the commercial software ANSYS-12.1. The study has two major aims: (i discussion of the current state of the art of modelling FSI in gas turbine engines and (ii development of a “tuned” one-way FSI model of a vibrating turbine blade to investigate the correlation between the pressure at the turbine casing surface and the vibrating blade motion. Firstly, the feasibility of the complete FSI coupled two-way, three-dimensional modelling of a turbine blade undergoing vibration using current commercial software is discussed. Various modelling simplifications, which reduce the full coupling between the fluid and structural domains, are then presented. The one-way FSI model of the vibrating turbine blade is introduced, which has the computational efficiency of a moving boundary CFD model. This one-way FSI model includes the corrected motion of the vibrating turbine blade under given engine flow conditions. This one-way FSI model is used to interrogate the pressure around a vibrating gas turbine blade. The results obtained show that the pressure distribution at the casing surface does not differ significantly, in its general form, from the pressure at the vibrating rotor blade tip.

  20. A Summary of Environmentally Friendly Turbine Design Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Odeh, Mufeed [United States Geological Survey - BRD, Turners Falls, MA (United States)

    1999-07-01

    The Advanced Hydropower Turbine System Program (AHTS) was created in 1994 by the U.S. Department of Energy, Electric Power Research Institute, and the Hydropower Research Foundation. The Program’s main goal is to develop “environmentally friendly” hydropower turbines. The Program’s first accomplishment was the development of conceptual designs of new environmentally friendly turbines. In order to do so, two contractors were competitively selected. The ARL/NREC team of engineers and biologists provided a conceptual design for a new turbine runner*. The new runner has the potential to generate hydroelectricity at close to 90% efficiency. The Voith team produced new fish-friendly design criteria for Kaplan and Francis turbines that can be incorporated in units during rehabilitation projects or in new hydroelectric facilities**. These include the use of advanced plant operation, minimum gap runners, placement of wicket gates behind stay vanes, among others. The Voith team will also provide design criteria on aerating Francis turbines to increase dissolved oxygen content. Detailed reviews of the available literature on fish mortality studies, causation of injuries to fish, and available biological design criteria that would assist in the design of fish-friendly turbines were performed. This review identified a need for more biological studies in order to develop performance criteria to assist turbine manufacturers in designing a more fish-friendly turbine.