Sample records for turbine engine component

  1. Advanced Materials Test Methods for Improved Life Prediction of Turbine Engine Components

    National Research Council Canada - National Science Library

    Stubbs, Jack


    Phase I final report developed under SBIR contract for Topic # AF00-149, "Durability of Turbine Engine Materials/Advanced Material Test Methods for Improved Use Prediction of Turbine Engine Components...

  2. Methods of Si based ceramic components volatilization control in a gas turbine engine (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie


    A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.

  3. Replacement of Chromium Electroplating on Gas Turbine Engine Components Using Thermal Spray Coatings

    National Research Council Canada - National Science Library

    Sartwell, Bruce D; Legg, Keith O; Schell, Jerry; Bondaruk, Bob; Alford, Charles; Natishan, Paul; Lawrence, Steven; Shubert, Gary; Bretz, Philip; Kaltenhauser, Anne


    .... This document constitutes the final report on a project to qualify high-velocity oxygen-fuel (HVOF) and plasma thermal spray coatings as a replacement for hard chrome plating on gas turbine engine components...

  4. Study and program plan for improved heavy duty gas turbine engine ceramic component development (United States)

    Helms, H. E.


    Fuel economy in a commercially viable gas turbine engine was demonstrated through use of ceramic materials. Study results show that increased turbine inlet and generator inlet temperatures, through the use of ceramic materials, contribute the greatest amount to achieving fuel economy goals. Improved component efficiencies show significant additional gains in fuel economy.

  5. Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Phil Ligrani


    Full Text Available To provide an overview of the current state of the art of heat transfer augmentation schemes employed for internal cooling of turbine blades and components, results from an extensive literature review are presented with data from internal cooling channels, both with and without rotation. According to this survey, a very small number of existing investigations consider the use of combination devices for internal passage heat transfer augmentation. Examples are rib turbulators, pin fins, and dimples together, a combination of pin fins and dimples, and rib turbulators and pin fins in combination. The results of such studies are compared with data obtained prior to 2003 without rotation influences. Those data are comprised of heat transfer augmentation results for internal cooling channels, with rib turbulators, pin fins, dimpled surfaces, surfaces with protrusions, swirl chambers, or surface roughness. This comparison reveals that all of the new data, obtained since 2003, collect within the distribution of globally averaged data obtained from investigations conducted prior to 2003 (without rotation influences. The same conclusion in regard to data distributions is also reached in regard to globally averaged thermal performance parameters as they vary with friction factor ratio. These comparisons, made on the basis of such judgment criteria, lead to the conclusion that improvements in our ability to provide better spatially-averaged thermal protection have been minimal since 2003. When rotation is present, existing investigations provide little evidence of overall increases or decreases in overall thermal performance characteristics with rotation, at any value of rotation number, buoyancy parameter, density ratio, or Reynolds number. Comparisons between existing rotating channel experimental data and the results obtained prior to 2003, without rotation influences, also show that rotation has little effect on overall spatially-averaged thermal

  6. Turbine main engines

    CERN Document Server

    Main, John B; Herbert, C W; Bennett, A J S


    Turbine Main Engines deals with the principle of operation of turbine main engines. Topics covered include practical considerations that affect turbine design and efficiency; steam turbine rotors, blades, nozzles, and diaphragms; lubricating oil systems; and gas turbines for use with nuclear reactors. Gas turbines for naval boost propulsion, merchant ship propulsion, and naval main propulsion are also considered. This book is divided into three parts and begins with an overview of the basic mode of operation of the steam turbine engine and how it converts the pressure energy of the ingoing ste

  7. Improved automobile gas turbine engine (United States)

    Kofskey, M. G.; Katsanis, T.; Roelke, R. J.; Mclallin, K. L.; Wong, R. Y.; Schumann, L. F.; Galvas, M. R.


    Upgraded engine delivers 100 hp in 3500 lb vehicle. Improved fuel economy is due to combined effects of reduced weight, reduced power-to-weight ratio, increased turbine inlet pressure, and improved component efficiencies at part power.

  8. Advanced SiC/SiC Ceramic Composites For Gas-Turbine Engine Components (United States)

    Yun, H. M.; DiCarlo, J. A.; Easler, T. E.


    NASA Glenn Research Center (GRC) is developing a variety of advanced SiC/SiC ceramic composite (ASC) systems that allow these materials to operate for hundreds of hours under stress in air at temperatures approaching 2700 F. These SiC/SiC composite systems are lightweight (approximately 30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive gas-turbine engine environments. The key for the ASC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays higher thermal stability than any other SiC- based ceramic fibers and possesses an in-situ grown BN surface layer for higher environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics (COIC). Further capability is then derived by using chemical vapor infiltration (CVI) and/or polymer infiltration and pyrolysis (PIP) to form a Sic-based matrix with high creep and rupture resistance as well as high thermal conductivity. The objectives of this study were (1) to optimize the constituents and processing parameters for a Sylramic-iBN fiber reinforced ceramic composite system in which the Sic-based matrix is formed at COIC almost entirely by PIP (full PIP approach), (2) to evaluate the properties of this system in comparison to other 2700 F Sylramic-iBN systems in which the matrix is formed by full CVI and CVI + PIP, and (3) to examine the pros and cons of the full PIP approach for fabricating hot-section engine components. A key goal is the development of a composite system with low porosity, thereby providing high modulus, high matrix cracking strength, high interlaminar strength, and high thermal conductivity, a major property requirement for engine components that will experience high thermal gradients during service. Other key composite property goals are demonstration at

  9. Cooling system having reduced mass pin fins for components in a gas turbine engine (United States)

    Lee, Ching-Pang; Jiang, Nan; Marra, John J


    A cooling system having one or more pin fins with reduced mass for a gas turbine engine is disclosed. The cooling system may include one or more first surfaces defining at least a portion of the cooling system. The pin fin may extend from the surface defining the cooling system and may have a noncircular cross-section taken generally parallel to the surface and at least part of an outer surface of the cross-section forms at least a quartercircle. A downstream side of the pin fin may have a cavity to reduce mass, thereby creating a more efficient turbine airfoil.

  10. CMC Property Variability and Life Prediction Methods for Turbine Engine Component Application (United States)

    Cheplak, Matthew L.


    The ever increasing need for lower density and higher temperature-capable materials for aircraft engines has led to the development of Ceramic Matrix Composites (CMCs). Today's aircraft engines operate with >3000"F gas temperatures at the entrance to the turbine section, but unless heavily cooled, metallic components cannot operate above approx.2000 F. CMCs attempt to push component capability to nearly 2700 F with much less cooling, which can help improve engine efficiency and performance in terms of better fuel efficiency, higher thrust, and reduced emissions. The NASA Glenn Research Center has been researching the benefits of the SiC/SiC CMC for engine applications. A CMC is made up of a matrix material, fibers, and an interphase, which is a protective coating over the fibers. There are several methods or architectures in which the orientation of the fibers can be manipulated to achieve a particular material property objective as well as a particular component geometric shape and size. The required shape manipulation can be a limiting factor in the design and performance of the component if there is a lack of bending capability of the fiber as making the fiber more flexible typically sacrifices strength and other fiber properties. Various analysis codes are available (pcGINA, CEMCAN) that can predict the effective Young's Moduli, thermal conductivities, coefficients of thermal expansion (CTE), and various other properties of a CMC. There are also various analysis codes (NASAlife) that can be used to predict the life of CMCs under expected engine service conditions. The objective of this summer study is to utilize and optimize these codes for examining the tradeoffs between CMC properties and the complex fiber architectures that will be needed for several different component designs. For example, for the pcGINA code, there are six variations of architecture available. Depending on which architecture is analyzed, the user is able to specify the fiber tow size, tow

  11. Single rotor turbine engine (United States)

    Platts, David A.


    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  12. Advanced technology for aero gas turbine components

    Energy Technology Data Exchange (ETDEWEB)


    The Symposium is aimed at highlighting the development of advanced components for new aero gas turbine propulsion systems in order to provide engineers and scientists with a forum to discuss recent progress in these technologies and to identify requirements for future research. Axial flow compressors, the operation of gas turbine engines in dust laden atmospheres, turbine engine design, blade cooling, unsteady gas flow through the stator and rotor of a turbomachine, gear systems for advanced turboprops, transonic blade design and the development of a plenum chamber burner system for an advanced VTOL engine are among the topics discussed.

  13. Usage of Parameterized Fatigue Spectra and Physics-Based Systems Engineering Models for Wind Turbine Component Sizing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Taylor; Guo, Yi; Veers, Paul; Dykes, Katherine; Damiani, Rick


    Software models that use design-level input variables and physics-based engineering analysis for estimating the mass and geometrical properties of components in large-scale machinery can be very useful for analyzing design trade-offs in complex systems. This study uses DriveSE, an OpenMDAO-based drivetrain model that uses stress and deflection criteria to size drivetrain components within a geared, upwind wind turbine. Because a full lifetime fatigue load spectrum can only be defined using computationally-expensive simulations in programs such as FAST, a parameterized fatigue loads spectrum that depends on wind conditions, rotor diameter, and turbine design life has been implemented. The parameterized fatigue spectrum is only used in this paper to demonstrate the proposed fatigue analysis approach. This paper details a three-part investigation of the parameterized approach and a comparison of the DriveSE model with and without fatigue analysis on the main shaft system. It compares loads from three turbines of varying size and determines if and when fatigue governs drivetrain sizing compared to extreme load-driven design. It also investigates the model's sensitivity to shaft material parameters. The intent of this paper is to demonstrate how fatigue considerations in addition to extreme loads can be brought into a system engineering optimization.

  14. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites (United States)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; hide


    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  15. Replacement of Chromium Electroplating on Gas Turbine Engine Components Using Thermal Spray Coatings

    National Research Council Canada - National Science Library

    Sartwell, Bruce D; Legg, Keith O; Schell, Jerry; Bondaruk, Bob; Alford, Charles; Natishan, Paul; Lawrence, Steven; Shubert, Gary; Bretz, Philip; Kaltenhauser, Anne


    Hard chromium electroplating is extensively used by aircraft manufacturers and military maintenance depots to provide wear and/or corrosion resistance or to restore dimensional tolerance to components...

  16. Static seal for turbine engine (United States)

    Salazar, Santiago; Gisch, Andrew


    A seal structure for a gas turbine engine, the seal structure including first and second components located adjacent to each other and forming a barrier between high and low pressure zones. A seal cavity is defined in the first and second components, the seal cavity extending to either side of an elongated gap extending generally in a first direction between the first and second components. A seal member is positioned within the seal cavity and spans across the elongated gap. The seal member includes first and second side edges extending into each of the components in a second direction transverse to the first direction, and opposing longitudinal edges extending between the side edges generally parallel to the first direction. The side edges include a groove formed therein for effecting a reduction of gas flow around the seal member at the side edges.

  17. Ceramics for Turbine Engine Applications. (United States)


    DEVELOPMENT OF CERAMIC NOZZLE SECTION FOR SMIALL RADIAL GAS TURBINE by J.C.Napier and J.P. Arnold 12 DEVELOPMENT OF A CERAMIC TURBINE NOZZLE RING by H.Burfeindt...this way, for instance, a Daimler engine was in 1911 awarded the prize of the "Automobiltechnische Gesell - schaft". In 1912, a Benz engine won the...blade development Turtle U~nion RB 199 v)ln BENEFITS OF CERAMICS TO GAS TURBINES by Arnold Brooks and Albert I. Bellin Aircraft Engine Group General

  18. Aircraft propulsion and gas turbine engines

    National Research Council Canada - National Science Library

    El-Sayed, Ahmed F


    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii xxxi xxxiii xxxv Part I Aero Engines and Gas Turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C...

  19. High temperature turbine engine structure

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, W.D.; Boyd, G.L.


    A hybrid ceramic/metallic gas turbine is described comprising; a housing defining an inlet, an outlet, and a flow path communicating the inlet with the outlet for conveying a flow of fluid through the housing, a rotor member journaled by the housing in the flow path, the rotor member including a compressor rotor portion rotatively inducting ambient air via the inlet and delivering this air pressurized to the flow path downstream of the compressor rotor, a combustor disposed in the flow path downstream of the compressor receiving the pressurized air along with a supply of fuel to maintain combustion providing a flow of high temperature pressurized combustion products in the flow path downstream thereof, the rotor member including a turbine rotor portion disposed in the flow path downstream of the combustor and rotatively expanding the combustion products toward ambient for flow from the turbine engine via the outlet, the turbine rotor portion providing shaft power driving the compressor rotor portion and an output shaft portion of the rotor member, a disk-like metallic housing portion journaling the rotor member to define a rotational axis therefore, and a disk-like annular ceramic turbine shroud member bounding the flow path downstream of the combustor and circumscribing the turbine rotor portion to define a running clearance therewith, the disk-like ceramic turbine shroud member having a reference axis coaxial with the rotational axis and being spaced axially from the metallic housing portion in mutually parallel concentric relation therewith and a plurality of spacers disposed between ceramic disk-like shroud member and the metallic disk-like housing portion and circumferentially spaced apart, each of the spacers having a first and second end portion having an end surface adjacent the shroud member and the housing portion respectively, the end surfaces having a cylindrical curvature extending transversely relative to the shroud member and the housing portion.

  20. Stochastic Modeling Of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard


    reliable components are needed for wind turbine. In this paper focus is on reliability of critical components in drivetrain such as bearings and shafts. High failure rates of these components imply a need for more reliable components. To estimate the reliability of these components, stochastic models...

  1. Stationary Engineers Apprenticeship. Related Training Modules. 15.1-15.5 Turbines. (United States)

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with turbines. addressed in the individual instructional packages included in the module are the following topics: types and components of steam turbines, steam turbine auxiliaries, operation and maintenance of steam turbines, and gas…

  2. Integrated Heat Exchange For Recuperation In Gas Turbine Engines (United States)


    DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE INTEGRATED HEAT EXCHANGE FOR RECUPERATION IN GAS TURBINE ENGINES 5. FUNDING NUMBERS 6. AUTHOR...ship gas turbines is difficult due the size and weight of the heat exchanger components required. An alternate approach would be to embed a heat ... exchange system within the engine using existing blade surfaces to extract and insert heat . Due to the highly turbulent and transient flow, heat


    Directory of Open Access Journals (Sweden)

    Е. Ясиніцький


    Full Text Available A problem of implementation of biofuel for power plants of big capacity was considered in thisarticle. Up to date in the world practice a wide implementation of biogas plants of low and medialcapacity are integrated. It is explained by the big amount of enterprises in which relatively smallvolumes of organic sediment excrete in the process of its activity. An emphasis of article is on thatenterprises, which have big volumes of sediments for utilizing of which module system of medialcapacity biogas plants are non-effective. The possibility of using biogas and biomethane as a fuelfor gas turbine engine is described. The basic problems of this technology and ways of its solutionsare indicated. Approximate profitability of biogas due to example of compressor station locatednearby poultry factory was determined also. Such factors as process characteristics of engine withcapacity of 5 MW, approximate commercial price for natural gas and equipment costs due toofficial sources of “Zorg Ukraine” company was taken into consideration. The necessity forproviding researches on influence of biogas on the process characteristics of gas turbine engine andits reliability, constructing modern domestic purification system for biogas was shown.

  4. Staged combustion with piston engine and turbine engine supercharger

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O' Brien, Kevin C [San Ramon, CA


    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  5. General Performance Calculations for Gas Turbine Engines (United States)


    supplied by the engine. 6.4 Propeller - Turbine Engines At aircraft speeds of about JiDO m.p.h. a propeller may be expected to give a propulsive...not Bean , however, that it would always bo :norc eco- nomical to employ r. propeller turbine at these speeds. The ran^o of the aircraft has to

  6. Performance characterization of different configurations of gas turbine engines

    Directory of Open Access Journals (Sweden)

    Tarek Nada


    Full Text Available This paper investigates the performance of different configurations of gas turbine engines. A full numerical model for the engine is built. This model takes into account the variations in specific heat and the effects of turbine cooling flow. Also, the model considers the efficiencies of all component, effectiveness of heat exchangers and the pressure drop in relevant components. The model is employed to compare the engine performances in cases of employing intercooler, recuperation and reheat on a single spool gas turbine engine. A comparison is made between single-spool engine and two-spool engine with free power turbine. Also, the performance of the engine with inter-stage turbine burner is investigated and compared with engine employing the nominal reheat concept. The engine employing inter-stage turbine burners produces superior improvements in both net work and efficiency over all other configurations. The effects of ignoring the variations on specific heat of gases and turbine cooling flow on engine performance are estimated. Ignoring the variation in specific heat can cause up to 30% difference in net specific work. The optimum locations of the intercooler and the reheat combustor are determined using the numerical model of the engine. The maximum net specific work is obtained if the reheat combustor is placed at 40% of the expansion section. On the other hand, to get maximum efficiency the reheat combustor has to be placed at nearly 10%-20% of the expansion section. The optimum location of the intercooler is almost at 50% of the compression section for both maximum net specific work and efficiency.

  7. Practical Techniques for Modeling Gas Turbine Engine Performance (United States)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.


    The cost and risk associated with the design and operation of gas turbine engine systems has led to an increasing dependence on mathematical models. In this paper, the fundamentals of engine simulation will be reviewed, an example performance analysis will be performed, and relationships useful for engine control system development will be highlighted. The focus will be on thermodynamic modeling utilizing techniques common in industry, such as: the Brayton cycle, component performance maps, map scaling, and design point criteria generation. In general, these topics will be viewed from the standpoint of an example turbojet engine model; however, demonstrated concepts may be adapted to other gas turbine systems, such as gas generators, marine engines, or high bypass aircraft engines. The purpose of this paper is to provide an example of gas turbine model generation and system performance analysis for educational uses, such as curriculum creation or student reference.

  8. Inspection system for a turbine blade region of a turbine engine (United States)

    Smed, Jan P [Winter Springs, FL; Lemieux, Dennis H [Casselberry, FL; Williams, James P [Orlando, FL


    An inspection system formed at least from a viewing tube for inspecting aspects of a turbine engine during operation of the turbine engine. An outer housing of the viewing tube may be positioned within a turbine engine using at least one bearing configured to fit into an indentation of a support housing to form a ball and socket joint enabling the viewing tube to move during operation as a result of vibrations and other movements. The viewing tube may also include one or more lenses positioned within the viewing tube for viewing the turbine components. The lenses may be kept free of contamination by maintaining a higher pressure in the viewing tube than a pressure outside of the viewing tube and enabling gases to pass through an aperture in a cap at a viewing end of the viewing tube.

  9. Gas Turbine Engine Having Fan Rotor Driven by Turbine Exhaust and with a Bypass (United States)

    Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)


    A gas turbine engine has a core engine incorporating a core engine turbine. A fan rotor is driven by a fan rotor turbine. The fan rotor turbine is in the path of gases downstream from the core engine turbine. A bypass door is moveable from a closed position at which the gases from the core engine turbine pass over the fan rotor turbine, and moveable to a bypass position at which the gases are directed away from the fan rotor turbine. An aircraft is also disclosed.

  10. Method of making an aero-derivative gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, David J.


    A method of making an aero-derivative gas turbine engine (100) is provided. A combustor outer casing (68) is removed from an existing aero gas turbine engine (60). An annular combustor (84) is removed from the existing aero gas turbine engine. A first row of turbine vanes (38) is removed from the existing aero gas turbine engine. A can annular combustor assembly (122) is installed within the existing aero gas turbine engine. The can annular combustor assembly is configured to accelerate and orient combustion gasses directly onto a first row of turbine blades of the existing aero gas turbine engine. A can annular combustor assembly outer casing (108) is installed to produce the aero-derivative gas turbine engine (100). The can annular combustor assembly is installed within an axial span (85) of the existing aero gas turbine engine vacated by the annular combustor and the first row of turbine vanes.

  11. Turbine adapted maps for turbocharger engine matching

    Energy Technology Data Exchange (ETDEWEB)

    Tancrez, M. [PSA - Peugeot Citroen, 18 rue des fauvelles, La Garenne-Colombes (France); Galindo, J.; Guardiola, C.; Fajardo, P.; Varnier, O. [CMT - Motores Termicos, Universidad Politecnica de Valencia (Spain)


    This paper presents a new representation of the turbine performance maps oriented for turbocharger characterization. The aim of this plot is to provide a more compact and suited form to implement in engine simulation models and to interpolate data from turbocharger test bench. The new map is based on the use of conservative parameters as turbocharger power and turbine mass flow to describe the turbine performance in all VGT positions. The curves obtained are accurately fitted with quadratic polynomials and simple interpolation techniques give reliable results. Two turbochargers characterized in an steady flow rig were used for illustrating the representation. After being implemented in a turbocharger submodel, the results obtained with the model have been compared with success against turbine performance evaluated in engine tests cells. A practical application in turbocharger matching is also provided to show how this new map can be directly employed in engine design. (author)

  12. Evaluation of premature failure of a gas turbine component

    CSIR Research Space (South Africa)

    Dedekind, MO


    Full Text Available about the actual engine operating histories. KEYWORDS Life assessment; MAR-M509; Gas turbine engines; CFD; finite element analysis. NOMENCLATURE a crack length E Young’s modulus k heat transfer coefficient N number of cycles Nf cycles to failure... of fatigue cracks of up to 10 mm in length at the leading and trailing edges. No cracks were visible anywhere else on the component. The material in question is MAR- M509, a cast cobalt-based superalloy commonly used in nozzle guide vanes. In this alloy...

  13. 14 CFR 23.1111 - Turbine engine bleed air system. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine bleed air system. 23.1111... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the following apply: (a) No hazard may result if duct rupture or failure occurs anywhere between the engine port...

  14. Research regarding reverse engineering for aircraft components

    Directory of Open Access Journals (Sweden)

    Udroiu Razvan


    Full Text Available Reverse engineering is a useful technique used in manufacturing and design process of new components. In aerospace industry new components can be developed, based on existing components without technical Computer Aided Design (CAD data, in order to reduce the development cycle of new products. This paper proposes a methodology wherein the CAD model of turbine blade can be build using computer aided reverse engineering technique utilising a 5 axis Coordinate Measuring Machine (CMM. The proposed methodology uses a scanning strategy by features, followed by a design methodology for 3D modelling of complex shapes.

  15. Balancing Energy Processes in Turbine Engines

    Directory of Open Access Journals (Sweden)

    Balicki Włodzimierz


    Full Text Available The article discusses the issue of balancing energy processes in turbine engines in operation in aeronautic and marine propulsion systems with the aim to analyse and evaluate basic operating parameters. The first part presents the problem of enormous amounts of energy needed for driving fans and compressors of the largest contemporary turbofan engines commonly used in long-distance aviation. The amounts of the transmitted power and the effect of flow parameters and constructional properties of the engines on their performance and real efficiency are evaluated. The second part of the article, devoted to marine applications of turbine engines, presents the energy balance of the kinetic system of torque transmission from main engine turbines to screw propellers in the combined system of COGAG type. The physical model of energy conversion processes executed in this system is presented, along with the physical model of gasodynamic processes taking place in a separate driving turbine of a reversing engine. These models have made the basis for formulating balance equations, which then were used for analysing static and dynamic properties of the analysed type of propulsion, in particular in the aspect of mechanical loss evaluation in its kinematic system.

  16. Gas Turbine Engine with Air/Fuel Heat Exchanger (United States)

    Karam, Michael Abraham (Inventor); Donovan, Eric Sean (Inventor); Krautheim, Michael Stephen (Inventor); Vetters, Daniel Kent (Inventor); Chouinard, Donald G. (Inventor)


    One embodiment of the present invention is a unique aircraft propulsion gas turbine engine. Another embodiment is a unique gas turbine engine. Another embodiment is a unique gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engines with heat exchange systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  17. Micro turbine engines for drones propulsion (United States)

    Dutczak, J.


    Development of micro turbine engines began from attempts of application of that propulsion source by group of enthusiasts of aviation model making. Nowadays, the domain of micro turbojet engines is treated on a par with “full size” aviation constructions. The dynamic development of these engines is caused not only by aviation modellers, but also by use of micro turbojet engines by army to propulsion of contemporary drones, i.e. Unmanned Aerial Vehicles (UAV) or Unmanned Aerial Systems (UAS). On the base of selected examples the state of art in the mentioned group of engines has been presented in the article.

  18. 14 CFR 29.939 - Turbine engine operating characteristics. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in flight to determine that no adverse characteristics (such as stall, surge, of flameout) are...

  19. 14 CFR 27.939 - Turbine engine operating characteristics. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in flight to determine that no adverse characteristics (such as stall, surge, or flameout) are...

  20. Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report

    Energy Technology Data Exchange (ETDEWEB)



    This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.


    Directory of Open Access Journals (Sweden)

    R. V. Birukov


    Full Text Available The objective of the current research was to develop methodology for diagnosing industrial gas turbine engine bearings using the standard performance parameters. This paper presents mathematical thermal model of combined thrust and radial bearing and provides the model application examples for diagnostics.

  2. Installation of electric generators on turbine engines (United States)

    Demel, H. F.


    The installation of generators on turbine aircraft is discussed. Emphasis is placed on the use of the samarium cobalt generator. Potential advantages of an electric secondary power system at the engine level are listed. The integrated generator and the externally mounted generator are discussed. It is concluded that the integrated generator is best used in turbojet and low bypass ratio engines where there is no easy way of placing generators externally without influencing frontal areas.

  3. CWTC business plan; Wind turbine component centre

    Energy Technology Data Exchange (ETDEWEB)

    Hjuler Jensen, P.; Hillestroem, A.; Markou, H.; Berring, P.; Friis, P.


    This report presents the Business Plan for the establishment of the Wind Turbine Component Centre (CWTC) to meet the objectives of performing theoretical research and experimental testing. The core idea of a CWTC is to support the Danish wind energy industry and research activities at the component level improving the competitive advantage of that industry. The CWTC will in itself operate its activities, including access to test and experimental facilities, on a semi commercial basis. The business model for the CWTC presented is based on revenues coming from component manufacturers as well as research grants, and will include membership fees as well as hourly payment and larger projects where payment is a limited project sum. The presented roadmap model clarifies the development path towards a fully developed CWTC, which will cover test of all important components along the drive-train as well as offering a comprehensive systematic understanding of the entire drive-train. The CWTC will over time market and sell its products and services on a global scale, but first and foremost the CWTC is established to support and strengthen the Danish wind energy industry and specifically the Danish sub suppliers to the Danish wind turbine industry and also the Danish research establishments. The presented organizational structure reflects that there are certain functions that are separated from the operations and it also reflects that scientific staffing are hired in on a project basis. Machine operators will be hired in on a permanent basis. The breakdown of the cost for running the rig, both for R and D and commercial projects is presented. The income from the other activities is calculated based on the cost for the research staff, both for R and D activities and commercial. In the first year the income will be 100% from R and D activities, which is the cost for the staff to set-up the test-rig, the guidelines and test procedures, and partly for running the rig. Within 3

  4. More-Electric Gas Turbine Engines (United States)

    Kascak, Albert F.


    A new NASA Lewis Research Center and U.S. Army Research Laboratory (ARL) thrust, the more-electric commercial engine, is creating significant interest in industry. This engine would have an integral starter-generator on the gas generator shaft and would be fully supported by magnetic bearings. The NASA/Army emphasis is on a high-temperature magnetic bearing for future gas turbine engines. Magnetic bearings could increase the reliability and reduce the weight of such engines by eliminating the lubrication system. They could also increase the DN (diameter of the bearing times the rpm) limit on engine speed and allow active vibration cancellation systems to be used, resulting in a more efficient, more-electric engine.

  5. Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing

    Energy Technology Data Exchange (ETDEWEB)

    Foust, J. [Voith Hydro, Inc., York, PA (USA); Hecker, G. [Alden Research Laboratory, Inc., Holden, MA (USA); Li, S. [Alden Research Laboratory, Inc., Holden, MA (USA); Allen, G. [Alden Research Laboratory, Inc., Holden, MA (USA)


    The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall

  6. Optical monitoring system for a turbine engine (United States)

    Lemieux, Dennis H; Smed, Jan P; Williams, James P; Jonnalagadda, Vinay


    The monitoring system for a gas turbine engine including a viewing tube assembly having an inner end and an outer end. The inner end is located adjacent to a hot gas flow path within the gas turbine engine and the outer end is located adjacent to an outer casing of the gas turbine engine. An aperture wall is located at the inner end of the viewing tube assembly and an optical element is located within the viewing tube assembly adjacent to the inner end and is spaced from the aperture wall to define a cooling and purge chamber therebetween. An aperture is defined in the aperture wall for passage of light from the hot gas flow path to the optical element. Swirl passages are defined in the viewing tube assembly between the aperture wall and the optical element for passage of cooling air from a location outside the viewing tube assembly into the chamber, wherein swirl passages effect a swirling movement of air in a circumferential direction within the chamber.

  7. Structural cooling fluid tube for supporting a turbine component and supplying cooling fluid (United States)

    Charron, Richard; Pierce, Daniel


    A shaft cover support for a gas turbine engine is disclosed. The shaft cover support not only provides enhanced support to a shaft cover of the gas turbine engine, but also includes a cooling fluid chamber for passing fluids from a rotor air cooling supply conduit to an inner ring cooling manifold. As such, the shaft cover support accomplishes in a single component what was only partially accomplished in two components in conventional configurations. The shaft cover support may also provide additional stiffness and reduce interference of the flow from the compressor. In addition, the shaft cover support accommodates a transition section extending between compressor and turbine sections of the engine. The shaft cover support has a radially extending region that is offset from the inlet and outlet that enables the shaft cover support to surround the transition, thereby reducing the overall length of this section of the engine.

  8. Determination of Turbine Blade Life from Engine Field Data (United States)

    Zaretsky, Erwin V.; Litt, Jonathan S.; Hendricks, Robert C.; Soditus, Sherry M.


    It is probable that no two engine companies determine the life of their engines or their components in the same way or apply the same experience and safety factors to their designs. Knowing the failure mode that is most likely to occur minimizes the amount of uncertainty and simplifies failure and life analysis. Available data regarding failure mode for aircraft engine blades, while favoring low-cycle, thermal-mechanical fatigue (TMF) as the controlling mode of failure, are not definitive. Sixteen high-pressure turbine (HPT) T-1 blade sets were removed from commercial aircraft engines that had been commercially flown by a single airline and inspected for damage. Each set contained 82 blades. The damage was cataloged into three categories related to their mode of failure: (1) TMF, (2) Oxidation/erosion (O/E), and (3) Other. From these field data, the turbine blade life was determined as well as the lives related to individual blade failure modes using Johnson-Weibull analysis. A simplified formula for calculating turbine blade life and reliability was formulated. The L10 blade life was calculated to be 2427 cycles (11 077 hr). The resulting blade life attributed to O/E equaled that attributed to TMF. The category that contributed most to blade failure was Other. If there were no blade failures attributed to O/E and TMF, the overall blade L(sub 10) life would increase approximately 11 to 17 percent.

  9. Object-oriented approach for gas turbine engine simulation (United States)

    Curlett, Brian P.; Felder, James L.


    An object-oriented gas turbine engine simulation program was developed. This program is a prototype for a more complete, commercial grade engine performance program now being proposed as part of the Numerical Propulsion System Simulator (NPSS). This report discusses architectural issues of this complex software system and the lessons learned from developing the prototype code. The prototype code is a fully functional, general purpose engine simulation program, however, only the component models necessary to model a transient compressor test rig have been written. The production system will be capable of steady state and transient modeling of almost any turbine engine configuration. Chief among the architectural considerations for this code was the framework in which the various software modules will interact. These modules include the equation solver, simulation code, data model, event handler, and user interface. Also documented in this report is the component based design of the simulation module and the inter-component communication paradigm. Object class hierarchies for some of the code modules are given.

  10. 14 CFR 25.939 - Turbine engine operating characteristics. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine operating characteristics... engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in flight to determine that no adverse characteristics (such as stall, surge, or flameout) are present, to a...

  11. Turbine component casting core with high resolution region (United States)

    Kamel, Ahmed; Merrill, Gary B.


    A hollow turbine engine component with complex internal features can include a first region and a second, high resolution region. The first region can be defined by a first ceramic core piece formed by any conventional process, such as by injection molding or transfer molding. The second region can be defined by a second ceramic core piece formed separately by a method effective to produce high resolution features, such as tomo lithographic molding. The first core piece and the second core piece can be joined by interlocking engagement that once subjected to an intermediate thermal heat treatment process thermally deform to form a three dimensional interlocking joint between the first and second core pieces by allowing thermal creep to irreversibly interlock the first and second core pieces together such that the joint becomes physically locked together providing joint stability through thermal processing.

  12. Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra


    This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

  13. Combustor nozzles in gas turbine engines (United States)

    Johnson, Thomas Edward; Keener, Christopher Paul; Stewart, Jason Thurman; Ostebee, Heath Michael


    A micro-mixer nozzle for use in a combustor of a combustion turbine engine, the micro-mixer nozzle including: a fuel plenum defined by a shroud wall connecting a periphery of a forward tube sheet to a periphery of an aft tubesheet; a plurality of mixing tubes extending across the fuel plenum for mixing a supply of compressed air and fuel, each of the mixing tubes forming a passageway between an inlet formed through the forward tubesheet and an outlet formed through the aft tubesheet; and a wall mixing tube formed in the shroud wall.

  14. Probabilistic Modeling of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei

    Wind energy is one of several energy sources in the world and a rapidly growing industry in the energy sector. When placed in offshore or onshore locations, wind turbines are exposed to wave excitations, highly dynamic wind loads and/or the wakes from other wind turbines. Therefore, most componen....../nodules on fatigue life of cast iron samples. The cast iron samples scanned by 3D tomography equipment at the DTU Wind Energy (Risø campus), and the distribution of nodules are used to estimate the fatigue life....

  15. Resistance of Silicon Nitride Turbine Components to Erosion and Hot Corrosion/oxidation Attack (United States)

    Strangmen, Thomas E.; Fox, Dennis S.


    Silicon nitride turbine components are under intensive development by AlliedSignal to enable a new generation of higher power density auxiliary power systems. In order to be viable in the intended applications, silicon nitride turbine airfoils must be designed for survival in aggressive oxidizing combustion gas environments. Erosive and corrosive damage to ceramic airfoils from ingested sand and sea salt must be avoided. Recent engine test experience demonstrated that NT154 silicon nitride turbine vanes have exceptional resistance to sand erosion, relative to superalloys used in production engines. Similarly, NT154 silicon nitride has excellent resistance to oxidation in the temperature range of interest - up to 1400 C. Hot corrosion attack of superalloy gas turbine components is well documented. While hot corrosion from ingested sea salt will attack silicon nitride substantially less than the superalloys being replaced in initial engine applications, this degradation has the potential to limit component lives in advanced engine applications. Hot corrosion adversely affects the strength of silicon nitride in the 850 to 1300 C range. Since unacceptable reductions in strength must be rapidly identified and avoided, AlliedSignal and the NASA Lewis Research Center have pioneered the development of an environmental life prediction model for silicon nitride turbine components. Strength retention in flexure specimens following 1 to 3300 hour exposures to high temperature oxidation and hot corrosion has been measured and used to calibrate the life prediction model. Predicted component life is dependent upon engine design (stress, temperature, pressure, fuel/air ratio, gas velocity, and inlet air filtration), mission usage (fuel sulfur content, location (salt in air), and times at duty cycle power points), and material parameters. Preliminary analyses indicate that the hot corrosion resistance of NT154 silicon nitride is adequate for AlliedSignal's initial engine

  16. Reliability-Based Design of Wind Turbine Components

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard


    influence the reliability is presented. For wind turbines tests with the basic materials or structural components are often performed during the design process. By adopting a reliability based design approach information from these tests can be taken into account in the design process. However, in normal...... demonstrated how partial safety factors can be derived for reliability-based design and how the partial safety factors changes dependent on the uncertainty in the test results.......Application of reliability-based design for wind turbines requires a definition of the probabilistic basis for the individual components of the wind turbine. In the present paper reliability-based design of structural wind turbine components is considered. A framework for the uncertainties which...

  17. Metallic and Ceramic Thin Film Thermocouples for Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Otto J. Gregory


    Full Text Available Temperatures of hot section components in today’s gas turbine engines reach as high as 1,500 °C, making in situ monitoring of the severe temperature gradients within the engine rather difficult. Therefore, there is a need to develop instrumentation (i.e., thermocouples and strain gauges for these turbine engines that can survive these harsh environments. Refractory metal and ceramic thin film thermocouples are well suited for this task since they have excellent chemical and electrical stability at high temperatures in oxidizing atmospheres, they are compatible with thermal barrier coatings commonly employed in today’s engines, they have greater sensitivity than conventional wire thermocouples, and they are non-invasive to combustion aerodynamics in the engine. Thin film thermocouples based on platinum:palladium and indium oxynitride:indium tin oxynitride as well as their oxide counterparts have been developed for this purpose and have proven to be more stable than conventional type-S and type-K thin film thermocouples. The metallic and ceramic thin film thermocouples described within this paper exhibited remarkable stability and drift rates similar to bulk (wire thermocouples.

  18. Stochastic Models of Defects in Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard


    The drivetrain in a wind turbine nacelle typically consists of a variety of heavily loaded components, like the main shaft, bearings, gearbox and generator. The variations in environmental load challenge the performance of all the components of the drivetrain. Failure of each of these components ...

  19. Combustor assembly in a gas turbine engine (United States)

    Wiebe, David J; Fox, Timothy A


    A combustor assembly in a gas turbine engine. The combustor assembly includes a combustor device coupled to a main engine casing, a first fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner disposed radially inwardly from the flow sleeve. The first fuel injection system provides fuel that is ignited with the pressurized air creating first working gases. The intermediate duct is disposed between the liner and the transition duct and defines a path for the first working gases to flow from the liner to the transition duct. An intermediate duct inlet portion is associated with a liner outlet and allows movement between the intermediate duct and the liner. An intermediate duct outlet portion is associated with a transition duct inlet section and allows movement between the intermediate duct and the transition duct.

  20. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing (United States)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay


    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  1. Environmental Barrier Coatings for Turbine Engines: A Design and Performance Perspective (United States)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis; Smialek, James L.; Miller, Robert A.


    Ceramic thermal and environmental barrier coatings (TEBC) for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating long-term durability remains a major concern with the ever-increasing temperature, strength and stability requirements in engine high heat-flux combustion environments, especially for highly-loaded rotating turbine components. Advanced TEBC systems, including nano-composite based HfO2-aluminosilicate and rare earth silicate coatings are being developed and tested for higher temperature capable SiC/SiC ceramic matrix composite (CMC) turbine blade applications. This paper will emphasize coating composite and multilayer design approach and the resulting performance and durability in simulated engine high heat-flux, high stress and high pressure combustion environments. The advances in the environmental barrier coating development showed promise for future rotating CMC blade applications.

  2. Electrical components library for HAWC2; Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Cutululis, N.A.; Larsen, Torben J.; Soerensen, Poul; Hansen, Anca D. (Risoe National Lab., DTU, Wind Energy Dept., Roskilde (DK)); Iov, F. (Aalborg Univ., Institute of Energy Technology (DK))


    The work presented in this report is part of the EFP project called ''A Simulation Platform to Model, Optimize and Design Wind Turbines'' partly funded by the Danish Energy Authority under contract number 1363/04-0008. The project is carried out in cooperation between Risoe National Laboratory and Aalborg University. In this project, the focus is on the development of a simulation platform for wind turbine systems using different simulation tools. This report presents the electric component library developed for use in the aeroelastic code HAWC2. The developed library includes both steady state and dynamical models for fixed and variable speed wind turbines. A simple steady-state slip model was developed for the fixed speed wind turbine. This model is suitable for aeroelastic design of wind turbines under normal operation. A dynamic model of an induction generator for the fixed speed wind turbine was developed. The model includes the dynamics of the rotor fluxes. The model is suitable for a more detailed investigation of the mechanical-electrical interaction, both under normal and fault operation. For the variable speed wind turbine, a steadystate model, typically used in aeroelastic design, was implemented. The model can be used for normal and, to some extent, for fault operation. The reduced order dynamic model of a DFIG was implemented. The model includes only the active power controller and can be used for normal operation conditions. (au)

  3. Life Assessment of Steam Turbine Components Based on Viscoplastic Analysis (United States)

    Choi, Woo-Sung; Fleury, Eric; Kim, Bum-Shin; Hyun, Jung-Seob

    Unsteady thermal and mechanical loading in turbine components is caused due to the transient regimes arising during start-ups and shut-downs and due to changes in the operating regime in steam power plants; this results in nonuniform strain and stress distribution. Thus, an accurate knowledge of the stresses caused by various loading conditions is required to ensure the integrity and to ensure an accurate life assessment of the components of a turbine. Although the materials of the components of the steam turbine deform inelastically at a high temperature, currently, only elastic calculations are performed for safety and simplicity. Numerous models have been proposed to describe the viscoplastic (time-dependent) behavior; these models are rather elaborate and it is difficult to incorporate them into a finite element code in order to simulate the loading of complex structures. In this paper, the total lifetime of the components of a steam turbine was calculated by combining the viscoplastic constitutive equation with the ABAQUS finite element code. Viscoplastic analysis was conducted by focusing mainly on simplified constitutive equations with linear kinematic hardening, which is simple enough to be used effectively in computer simulation. The von Mises stress distribution of an HIP turbine rotor was calculated during the cold start-up operation of the rotor, and a reasonable number of cycles were obtained from the equation of Langer.

  4. "Fish Friendly" Hydropower Turbine Development and Deployment. Alden Turbine Preliminary Engineering and Model Testing

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D. [Electric Power Research Institute, Palo Alto, CA (United States)


    This report presents the results of a collaborative research project funded by the Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE), and hydropower industry partners with the objective of completing the remaining developmental engineering required for a “fish-friendly” hydropower turbine called the Alden turbine.

  5. Compatibility of alternative fuels with advanced automotive gas turbine and stirling engines. A literature survey (United States)

    Cairelli, J.; Horvath, D.


    The application of alternative fuels in advanced automotive gas turbine and Stirling engines is discussed on the basis of a literature survey. These alternative engines are briefly described, and the aspects that will influence fuel selection are identified. Fuel properties and combustion properties are discussed, with consideration given to advanced materials and components. Alternative fuels from petroleum, coal, oil shale, alcohol, and hydrogen are discussed, and some background is given about the origin and production of these fuels. Fuel requirements for automotive gas turbine and Stirling engines are developed, and the need for certain reseach efforts is discussed. Future research efforts planned at Lewis are described.

  6. Analytical design of an advanced radial turbine. [automobile engines (United States)

    Large, G. D.; Finger, D. G.; Linder, C. G.


    The aerodynamic and mechanical potential of a single stage ceramic radial inflow turbine was evaluated for a high temperature single stage automotive engine. The aerodynamic analysis utilizes a turbine system optimization technique to evaluate both radial and nonradial rotor blading. Selected turbine rotor configurations were evaluated mechanically with three dimensional finite element techniques. Results indicate that exceptionally high rotor tip speeds (2300 ft/sec) and performance potential are feasible with radial bladed rotors if the projected ceramic material properties are realized. Nonradial rotors reduced tip speed requirements (at constant turbine efficiency) but resulted in a lower cumulative probability of success due to higher blade and disk stresses.

  7. Air cooled turbine component having an internal filtration system (United States)

    Beeck, Alexander R [Orlando, FL


    A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

  8. Composite hubs for low cost gas turbine engines (United States)

    Chamis, C. C.


    A detailed stress analysis was performed using NASTRAN to demonstrate theoretically the adequacy of composite hubs for low cost turbine engine applications. Composite hubs are adequate for this application from the steady state stress view point.

  9. Aircraft Turbine Engine Control Research at NASA Glenn Research Center (United States)

    Garg, Sanjay


    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  10. CF6 Jet Engine Performance Improvement Program: High Pressure Turbine Aerodynamic Performance Improvement (United States)

    Fasching, W. A.


    The improved single shank high pressure turbine design was evaluated in component tests consisting of performance, heat transfer and mechanical tests, and in core engine tests. The instrumented core engine test verified the thermal, mechanical, and aeromechanical characteristics of the improved turbine design. An endurance test subjected the improved single shank turbine to 1000 simulated flight cycles, the equivalent of approximately 3000 hours of typical airline service. Initial back-to-back engine tests demonstrated an improvement in cruise sfc of 1.3% and a reduction in exhaust gas temperature of 10 C. An additional improvement of 0.3% in cruise sfc and 6 C in EGT is projected for long service engines.

  11. Structural health monitoring on turbine engines using microwave blade tip clearance sensors (United States)

    Woike, Mark; Abdul-Aziz, Ali; Clem, Michelle


    The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to the aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA) has taken a lead role in the investigation of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. As part of this effort, microwave sensor technology has been investigated as a means of making high temperature non-contact blade tip clearance, blade tip timing, and blade vibration measurements for use in gas turbine engines. This paper presents a summary of key results and findings obtained from the evaluation of two different types of microwave sensors that have been investigated for possible use in structural health monitoring applications. The first is a microwave blade tip clearance sensor that has been evaluated on a large scale Axial Vane Fan, a subscale Turbofan, and more recently on sub-scale turbine engine like disks. The second is a novel microwave based blade vibration sensor that was also used in parallel with the microwave blade tip clearance sensors on the same experiments with the sub-scale turbine engine disks.

  12. State of technology on hydrogen fueled gas turbine engines (United States)

    Esgar, J. B.


    A series of investigations was conducted episodically from the 1950's to the early 1970's to investigate the feasibility and potential problem areas in the use of hydrogen fuel for gas turbine engines. A brief summary and bibliography are presented of the research that has been conducted by NASA, its predecessor NACA, and by industry under U. S. Air Force sponsorship. Although development efforts would be required to provide hydrogen fueled gas turbine engines for aircraft, past research has shown that hydrogen fueled engines are feasible, and except for flight weight liquid hydrogen pumps, there are no problem areas relating to engines requiring significant research.

  13. Safety engineering with COTS components

    International Nuclear Information System (INIS)

    O'Halloran, Mark; Hall, Jon G.; Rapanotti, Lucia


    Safety-critical systems are becoming more widespread, complex and reliant on software. Increasingly they are engineered through (COTS) (Commercial Off The Shelf) components to alleviate the spiralling costs and development time, often in the context of complex supply chains. A parallel increased concern for safety has resulted in a variety of safety standards, with a growing consensus that a safety life cycle is needed which is fully integrated with the design and development life cycle, to ensure that safety has appropriate influence on the design decisions as system development progresses. In this article we explore the application of an integrated approach to safety engineering in which assurance drives the engineering process. The paper reports on the outcome of a case study on a live industrial project with a view to evaluate: its suitability for application in a real-world safety engineering setting; its benefits and limitations in counteracting some of the difficulties of safety engineering with (COTS) components across supply chains; and, its effectiveness in generating evidence which can contribute directly to the construction of safety cases. - Highlights: • Assurance as effective driver for COTS-based safety-critical system development. • Engages stakeholders, captures requirements and provides rich traceability. • Shares appropriate safety requirements across the supply chain.

  14. The Combination of Internal-Combustion Engine and Gas Turbine (United States)

    Zinner, K.


    While the gas turbine by itself has been applied in particular cases for power generation and is in a state of promising development in this field, it has already met with considerable success in two cases when used as an exhaust turbine in connection with a centrifugal compressor, namely, in the supercharging of combustion engines and in the Velox process, which is of particular application for furnaces. In the present paper the most important possibilities of combining a combustion engine with a gas turbine are considered. These "combination engines " are compared with the simple gas turbine on whose state of development a brief review will first be given. The critical evaluation of the possibilities of development and fields of application of the various combustion engine systems, wherever it is not clearly expressed in the publications referred to, represents the opinion of the author. The state of development of the internal-combustion engine is in its main features generally known. It is used predominantly at the present time for the propulsion of aircraft and road vehicles and, except for certain restrictions due to war conditions, has been used to an increasing extent in ships and rail cars and in some fields applied as stationary power generators. In the Diesel engine a most economical heat engine with a useful efficiency of about 40 percent exists and in the Otto aircraft engine a heat engine of greatest power per unit weight of about 0.5 kilogram per horsepower.

  15. Efficient, Low Pressure Ratio Propulsor for Gas Turbine Engines (United States)

    Gallagher, Edward J. (Inventor); Monzon, Byron R. (Inventor)


    A gas turbine engine includes a bypass flow passage that has an inlet and defines a bypass ratio in a range of approximately 8.5 to 13.5. A fan is arranged within the bypass flow passage. A first turbine is a 5-stage turbine and is coupled with a first shaft, which is coupled with the fan. A first compressor is coupled with the first shaft and is a 3-stage compressor. A second turbine is coupled with a second shaft and is a 2-stage turbine. The fan includes a row of fan blades that extend from a hub. The row includes a number (N) of the fan blades, a solidity value (R) at tips of the fab blades, and a ratio of N/R that is from 14 to 16.

  16. Reliability Analysis of Fatigue Fracture of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Berzonskis, Arvydas; Sørensen, John Dalsgaard


    in the volume of the casted ductile iron main shaft, on the reliability of the component. The probabilistic reliability analysis conducted is based on fracture mechanics models. Additionally, the utilization of the probabilistic reliability for operation and maintenance planning and quality control is discussed....... of operation and maintenance. The manufacturing of casted drivetrain components, like the main shaft of the wind turbine, commonly result in many smaller defects through the volume of the component with sizes that depend on the manufacturing method. This paper considers the effect of the initial defect present...

  17. Geometry and Simulation Results for a Gas Turbine Representative of the Energy Efficient Engine (EEE) (United States)

    Claus, Russell W.; Beach, Tim; Turner, Mark; Hendricks, Eric S.


    This paper describes the geometry and simulation results of a gas-turbine engine based on the original EEE engine developed in the 1980s. While the EEE engine was never in production, the technology developed during the program underpins many of the current generation of gas turbine engines. This geometry is being explored as a potential multi-stage turbomachinery test case that may be used to develop technology for virtual full-engine simulation. Simulation results were used to test the validity of each component geometry representation. Results are compared to a zero-dimensional engine model developed from experimental data. The geometry is captured in a series of Initial Graphical Exchange Specification (IGES) files and is available on a supplemental DVD to this report.

  18. Turbine component having surface cooling channels and method of forming same (United States)

    Miranda, Carlos Miguel; Trimmer, Andrew Lee; Kottilingam, Srikanth Chandrudu


    A component for a turbine engine includes a substrate that includes a first surface, and an insert coupled to the substrate proximate the substrate first surface. The component also includes a channel. The channel is defined by a first channel wall formed in the substrate and a second channel wall formed by at least one coating disposed on the substrate first surface. The component further includes an inlet opening defined in flow communication with the channel. The inlet opening is defined by a first inlet wall formed in the substrate and a second inlet wall defined by the insert.

  19. Engineering design and exergy analyses for combustion gas turbine based power generation system

    International Nuclear Information System (INIS)

    Sue, D.-C.; Chuang, C.-C.


    This paper presents the engineering design and theoretical exergetic analyses of the plant for combustion gas turbine based power generation systems. Exergy analysis is performed based on the first and second laws of thermodynamics for power generation systems. The results show the exergy analyses for a steam cycle system predict the plant efficiency more precisely. The plant efficiency for partial load operation is lower than full load operation. Increasing the pinch points will decrease the combined cycle plant efficiency. The engineering design is based on inlet air-cooling and natural gas preheating for increasing the net power output and efficiency. To evaluate the energy utilization, one combined cycle unit and one cogeneration system, consisting of gas turbine generators, heat recovery steam generators, one steam turbine generator with steam extracted for process have been analyzed. The analytical results are used for engineering design and component selection

  20. A feasibility study of a new ATREX engine system of aft-turbine configuration (United States)

    Isomura, Kousuke; Omi, Junsuke; Tanatsugu, Nobuhiro; Sato, Tetsuya; Kobayashi, Hiroaki


    A feasibility of ATREX (Air-Turbo-Ram Expander cycle) engine with conventional aft-turbine configuration has been studied to be developed in about 10 years, if the development project has started under enough resources. The novel tip-turbine of the original ATREX engine is replaced by a conventional aft-turbine, and the maximum turbine inlet temperature (TTT) is reduced to 1200K, to realize the engine by only using approved metal technologies of modern jet engines. The capability of the performance has been shown by parametric studies by changing components' design parameters. The study shows that the performance of the ATREX engine is not less than that of pre-cooled turbo jet. Some technical issues on developing the new ATREX engine have been addressed. The most important issue would come from the transient total temperature change due to the rapid acceleration from sea level static (SLS) condition (288K) to Mach 6 at 30km of altitude (1680K) in 6 minutes. The deformation due to transient thermal expansion has to be controlled. Especially, the change of the tip clearance and the clearance between rotors and stators are pointed out to be important design issues. The ATREX engine, which has shorter axial length and simpler rotor, has structural advantage over turbo jet.

  1. Condition Based Monitoring of Gas Turbine Combustion Components

    Energy Technology Data Exchange (ETDEWEB)

    Ulerich, Nancy; Kidane, Getnet; Spiegelberg, Christine; Tevs, Nikolai


    The objective of this program is to develop sensors that allow condition based monitoring of critical combustion parts of gas turbines. Siemens teamed with innovative, small companies that were developing sensor concepts that could monitor wearing and cracking of hot turbine parts. A magnetic crack monitoring sensor concept developed by JENTEK Sensors, Inc. was evaluated in laboratory tests. Designs for engine application were evaluated. The inability to develop a robust lead wire to transmit the signal long distances resulted in a discontinuation of this concept. An optical wear sensor concept proposed by K Sciences GP, LLC was tested in proof-of concept testing. The sensor concept depended, however, on optical fiber tips wearing with the loaded part. The fiber tip wear resulted in too much optical input variability; the sensor could not provide adequate stability for measurement. Siemens developed an alternative optical wear sensor approach that used a commercial PHILTEC, Inc. optical gap sensor with an optical spacer to remove fibers from the wearing surface. The gap sensor measured the length of the wearing spacer to follow loaded part wear. This optical wear sensor was developed to a Technology Readiness Level (TRL) of 5. It was validated in lab tests and installed on a floating transition seal in an F-Class gas turbine. Laboratory tests indicate that the concept can measure wear on loaded parts at temperatures up to 800{degrees}C with uncertainty of < 0.3 mm. Testing in an F-Class engine installation showed that the optical spacer wore with the wearing part. The electro-optics box located outside the engine enclosure survived the engine enclosure environment. The fiber optic cable and the optical spacer, however, both degraded after about 100 operating hours, impacting the signal analysis.

  2. Use of magnetic compression to support turbine engine rotors (United States)

    Pomfret, Chris J.


    Ever since the advent of gas turbine engines, their rotating disks have been designed with sufficient size and weight to withstand the centrifugal forces generated when the engine is operating. Unfortunately, this requirement has always been a life and performance limiting feature of gas turbine engines and, as manufacturers strive to meet operator demands for more performance without increasing weight, the need for innovative technology has become more important. This has prompted engineers to consider a fundamental and radical breakaway from the traditional design of turbine and compressor disks which have been in use since the first jet engine was flown 50 years ago. Magnetic compression aims to counteract, by direct opposition rather than restraint, the centrifugal forces generated within the engine. A magnetic coupling is created between a rotating disk and a stationary superconducting coil to create a massive inwardly-directed magnetic force. With the centrifugal forces opposed by an equal and opposite magnetic force, the large heavy disks could be dispensed with and replaced with a torque tube to hold the blades. The proof of this concept has been demonstrated and the thermal management of such a system studied in detail; this aspect, especially in the hot end of a gas turbine engine, remains a stiff but not impossible challenge. The potential payoffs in both military and commercial aviation and in the power generation industry are sufficient to warrant further serious studies for its application and optimization.

  3. Pulse Combustor Driven Pressure Gain Combustion for High Efficiency Gas Turbine Engines

    KAUST Repository

    Lisanti, Joel


    The gas turbine engine is an essential component of the global energy infrastructure which accounts for a significant portion of the total fossil fuel consumption in transportation and electric power generation sectors. For this reason there is significant interest in further increasing the efficiency and reducing the pollutant emissions of these devices. Conventional approaches to this goal, which include increasing the compression ratio, turbine inlet temperature, and turbine/compressor efficiency, have brought modern gas turbine engines near the limits of what may be achieved with the conventionally applied Brayton cycle. If a significant future step increase in gas turbine efficiency is to be realized some deviation from this convention is necessary. The pressure gain gas turbine concept is a well established new combustion technology that promises to provide a dramatic increase in gas turbine efficiency by replacing the isobaric heat addition process found in conventional technology with an isochoric process. The thermodynamic benefit of even a small increase in stagnation pressure across a gas turbine combustor translates to a significant increase in cycle efficiency. To date there have been a variety of methods proposed for achieving stagnation pressure gains across a gas turbine combustor and these concepts have seen a broad spectrum of levels of success. The following chapter provides an introduction to one of the proposed pressure gain methods that may be most easily realized in a practical application. This approach, known as pulse combustor driven pressure gain combustion, utilizes an acoustically resonant pulse combustor to approximate isochoric heat release and thus produce a rise in stagnation pressure.

  4. The status of ceramic turbine component fabrication and quality assurance relevant to automotive turbine needs

    Energy Technology Data Exchange (ETDEWEB)

    Richerson, D.W.


    This report documents a study funded by the U.S. Department of Energy (DOE) Office of Transportation Technologies (OTT) with guidance from the Ceramics Division of the United States Automotive Materials Partnership (USAMP). DOE and the automotive companies have funded extensive development of ceramic materials for automotive gas turbine components, the most recent effort being under the Partnership for a New Generation of Vehicles (PNGV) program.

  5. Aerothermodynamics of aircraft engine components

    National Research Council Canada - National Science Library

    Oates, Gordon C


    ....A45A37 1985 ISBN 0-915928-97-3 2. Aircraft gas turbines. 629.134'353 85-13355 Copyright © 1985 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Printed in the ...

  6. Engineered Materials for Advanced Gas Turbine Engine, Phase I (United States)

    National Aeronautics and Space Administration — This project will develop innovative composite powders and composites that will surpass the properties of currently identified materials for advanced gas turbine...

  7. SCADA alarms processing for wind turbine component failure detection (United States)

    Gonzalez, E.; Reder, M.; Melero, J. J.


    Wind turbine failure and downtime can often compromise the profitability of a wind farm due to their high impact on the operation and maintenance (O&M) costs. Early detection of failures can facilitate the changeover from corrective maintenance towards a predictive approach. This paper presents a cost-effective methodology to combine various alarm analysis techniques, using data from the Supervisory Control and Data Acquisition (SCADA) system, in order to detect component failures. The approach categorises the alarms according to a reviewed taxonomy, turning overwhelming data into valuable information to assess component status. Then, different alarms analysis techniques are applied for two purposes: the evaluation of the SCADA alarm system capability to detect failures, and the investigation of the relation between components faults being followed by failure occurrences in others. Various case studies are presented and discussed. The study highlights the relationship between faulty behaviour in different components and between failures and adverse environmental conditions.

  8. Design of a miniature hydrogen fueled gas turbine engine (United States)

    Burnett, M.; Lopiccolo, R. C.; Simonson, M. R.; Serovy, G. K.; Okiishi, T. H.; Miller, M. J.; Sisto, F.


    The design, development, and delivery of a miniature hydrogen-fueled gas turbine engine are discussed. The engine was to be sized to approximate a scaled-down lift engine such as the teledyne CAE model 376. As a result, the engine design emerged as a 445N(100 lb.)-thrust engine flowing 0.86 kg (1.9 lbs.) air/sec. A 4-stage compressor was designed at a 4.0 to 1 pressure ratio for the above conditions. The compressor tip diameter was 9.14 cm (3.60 in.). To improve overall engine performance, another compressor with a 4.75 to 1 pressure ratio at the same tip diameter was designed. A matching turbine for each compressor was also designed. The turbine tip diameter was 10.16 cm (4.0 in.). A combustion chamber was designed, built, and tested for this engine. A preliminary design of the mechanical rotating parts also was completed and is discussed. Three exhaust nozzle designs are presented.

  9. Compressive stress system for a gas turbine engine (United States)

    Hogberg, Nicholas Alvin


    The present application provides a compressive stress system for a gas turbine engine. The compressive stress system may include a first bucket attached to a rotor, a second bucket attached to the rotor, the first and the second buckets defining a shank pocket therebetween, and a compressive stress spring positioned within the shank pocket.

  10. Aircraft engine-mounted camera system for long wavelength infrared imaging of in-service thermal barrier coated turbine blades (United States)

    Markham, James; Cosgrove, Joseph; Scire, James; Haldeman, Charles; Agoos, Ian


    This paper announces the implementation of a long wavelength infrared camera to obtain high-speed thermal images of an aircraft engine's in-service thermal barrier coated turbine blades. Long wavelength thermal images were captured of first-stage blades. The achieved temporal and spatial resolutions allowed for the identification of cooling-hole locations. The software and synchronization components of the system allowed for the selection of any blade on the turbine wheel, with tuning capability to image from leading edge to trailing edge. Its first application delivered calibrated thermal images as a function of turbine rotational speed at both steady state conditions and during engine transients. In advance of presenting these data for the purpose of understanding engine operation, this paper focuses on the components of the system, verification of high-speed synchronized operation, and the integration of the system with the commercial jet engine test bed.

  11. Turbofan gas turbine engine with variable fan outlet guide vanes (United States)

    Wood, Peter John (Inventor); Zenon, Ruby Lasandra (Inventor); LaChapelle, Donald George (Inventor); Mielke, Mark Joseph (Inventor); Grant, Carl (Inventor)


    A turbofan gas turbine engine includes a forward fan section with a row of fan rotor blades, a core engine, and a fan bypass duct downstream of the forward fan section and radially outwardly of the core engine. The forward fan section has only a single stage of variable fan guide vanes which are variable fan outlet guide vanes downstream of the forward fan rotor blades. An exemplary embodiment of the engine includes an afterburner downstream of the fan bypass duct between the core engine and an exhaust nozzle. The variable fan outlet guide vanes are operable to pivot from a nominal OGV position at take-off to an open OGV position at a high flight Mach Number which may be in a range of between about 2.5-4+. Struts extend radially across a radially inwardly curved portion of a flowpath of the engine between the forward fan section and the core engine.

  12. Powder metallurgy Rene 95 rotating turbine engine parts, volume 2 (United States)

    Wilbers, L. G.; Redden, T. K.


    A Rene 95 alloy as-HIP high pressure turbine aft shaft in the CF6-50 engine and a HIP plus forged Rene 95 compressor disk in the CFM56 engine were tested. The CF6-50 engine test was conducted for 1000 C cycles and the CFM56 test for 2000 C cycles. Post test evaluation and analysis of the CF6-50 shaft and the CFM56 compressor disk included visual, fluorescent penetrant, and dimensional inspections. No defects or otherwise discrepant conditions were found. These parts were judged to have performed satisfactorily.

  13. CANDU combined cycles featuring gas-turbine engines

    International Nuclear Information System (INIS)

    Vecchiarelli, J.; Choy, E.; Peryoga, Y.; Aryono, N.A.


    In the present study, a power-plant analysis is conducted to evaluate the thermodynamic merit of various CANDU combined cycles in which continuously operating gas-turbine engines are employed as a source of class IV power restoration. It is proposed to utilize gas turbines in future CANDU power plants, for sites (such as Indonesia) where natural gas or other combustible fuels are abundant. The primary objective is to eliminate the standby diesel-generators (which serve as a backup supply of class III power) since they are nonproductive and expensive. In the proposed concept, the gas turbines would: (1) normally operate on a continuous basis and (2) serve as a reliable backup supply of class IV power (the Gentilly-2 nuclear power plant uses standby gas turbines for this purpose). The backup class IV power enables the plant to operate in poison-prevent mode until normal class IV power is restored. This feature is particularly beneficial to countries with relatively small and less stable grids. Thermodynamically, the advantage of the proposed concept is twofold. Firstly, the operation of the gas-turbine engines would directly increase the net (electrical) power output and the overall thermal efficiency of a CANDU power plant. Secondly, the hot exhaust gases from the gas turbines could be employed to heat water in the CANDU Balance Of Plant (BOP) and therefore improve the thermodynamic performance of the BOP. This may be accomplished via several different combined-cycle configurations, with no impact on the current CANDU Nuclear Steam Supply System (NSSS) full-power operating conditions when each gas turbine is at maximum power. For instance, the hot exhaust gases may be employed for feedwater preheating and steam reheating and/or superheating; heat exchange could be accomplished in a heat recovery steam generator, as in conventional gas-turbine combined-cycle plants. The commercially available GateCycle power plant analysis program was applied to conduct a

  14. GETRAN: A generic, modularly structured computer code for simulation of dynamic behavior of aero- and power generation gas turbine engines (United States)

    Schobeiri, M. T.; Attia, M.; Lippke, C.


    The design concept, the theoretical background essential for the development of the modularly structured simulation code GETRAN, and several critical simulation cases are presented in this paper. The code being developed under contract with NASA Lewis Research Center is capable of simulating the nonlinear dynamic behavior of single- and multispool core engines, turbofan engines, and power generation gas turbine engines under adverse dynamic operating conditions. The modules implemented into GETRAN correspond to components of existing and new-generation aero- and stationary gas turbine engines with arbitrary configuration and arrangement. For precise simulation of turbine and compressor components, row-by-row diabatic and adiabatic calculation procedures are implemented that account for the specific turbine and compressor cascade, blade geometry, and characteristics. The nonlinear, dynamic behavior of the subject engine is calculated solving a number of systems of partial differential equations, which describe the unsteady behavior of each component individually. To identify each differential equation system unambiguously, special attention is paid to the addressing of each component. The code is capable of executing the simulation procedure at four levels, which increase with the degree of complexity of the system and dynamic event. As representative simulations, four different transient cases with single- and multispool thrust and power generation engines were simulated. These transient cases vary from throttling the exit nozzle area, operation with fuel schedule, rotor speed control, to rotating stall and surge.

  15. Shear wire flange joint for a gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Grammel, L.P. Jr.


    A gas turbine engine shear wire flange assembly for use in an axial flow gas turbine engine including a turbine frame is described, comprising: an aft center body having a forward section and an aft section along a common axis; the forward section and the aft section having a substantially continuous external aerodynamic surface; the forward section including a forward end attached to the turbine frame and an aft end; an outer ring flange formed along the aft end of the forward section of the aft center body and including a circumferential groove facing radially inward; the aft section including a forward end and a closed, aft end; an inner ring flange formed in the forward end of the aft section adapted to matingly engage the outer ring flange, having a circumferential groove facing radially outward for being axially and circumferentially aligned with the groove in the outer ring flange, and having a similar cross-sectional size and shape, forming a substantially uniformly sized and shaped cross-sectional space therebetween when aligned; a removable wire having a first end, a second end, and a cross-sectional size and shape substantially matching the cross-sectional size and shape of the space; and means for removeably installing the wire into the space so as to lock the inner flange to the outer flange.

  16. Electrochemical machining - manufacturing of turbine and reactor components

    International Nuclear Information System (INIS)

    Otto, K.


    Electrochemical machining is a shaping process for metallic workpieces with complex geometries. Using an electrode corresponding to the negative of the desired shape, the material to be removed is dissolved anodically at erosion rates of up to 10 mm/min. The reproducible shape accuracy lies between 0,02 and 0,08 mm, depending on the machining problem. Surface finishes of less than 18 μm are attained. The hardness of the material has no influence on the metal removal process. The workpiece is not subjected to any thermal stressing during machining. The process is well suited for quantity production of complex parts and is used inter alia for turbine blades and components for nuclear reactors. (orig.) [de

  17. Full scale technology demonstration of a modern counterrotating unducted fan engine concept: Component test (United States)


    The UDF trademark (Unducted Fan) engine is a new aircraft engine concept based on an ungeared, counterrotating, unducted, ultra-high-bypass turbofan configuration. This engine is being developed to provide a high thrust-to-weight ratio powerplant with exceptional fuel efficiency for subsonic aircraft application. This report covers the testing of pertinent components of this engine such as the fan blades, control and actuation system, turbine blades and spools, seals, and mixer frame.

  18. Fiber-reinforced ceramic composites for Earth-to-orbit rocket engine turbines (United States)

    Brockmeyer, Jerry W.; Schnittgrund, Gary D.


    Fiber reinforced ceramic matrix composites (FRCMC) are emerging materials systems that offer potential for use in liquid rocket engines. Advantages of these materials in rocket engine turbomachinery include performance gain due to higher turbine inlet temperature, reduced launch costs, reduced maintenance with associated cost benefits, and reduced weight. This program was initiated to assess the state of FRCMC development and to propose a plan for their implementation into liquid rocket engine turbomachinery. A complete range of FRCMC materials was investigated relative to their development status and feasibility for use in the hot gas path of earth-to-orbit rocket engine turbomachinery. Of the candidate systems, carbon fiber-reinforced silicon carbide (C/SiC) offers the greatest near-term potential. Critical hot gas path components were identified, and the first stage inlet nozzle and turbine rotor of the fuel turbopump for the liquid oxygen/hydrogen Space Transportation Main Engine (STME) were selected for conceptual design and analysis. The critical issues associated with the use of FRCMC were identified. Turbine blades were designed, analyzed and fabricated. The Technology Development Plan, completed as Task 5 of this program, provides a course of action for resolution of these issues.

  19. Recommended Practices for Measurement of Gas Path Pressures and Temperatures for Performance Assessment of Aircraft Turbine Engines and Components (Les Methodes Recommandees pour la Mesure de la Pression et de la Temperature de la Veine Gazeuse en Vue de l’Evaluation des Performances des Turbines Aeronautiques et de leurs Composants (United States)


    of the code i5 S J2 J112 1 C 03 which the unique problems encountered in gas turbine development, would normally be written or stamped on labels as A...Remember that plastic can equally well be destroyed P2603H04 by brittleness when cold as by melting when hot and that high temperature plastics, when...and the attachment of the tag To Engine Center Line while satisfying the requirements in I above. Aluminium or stainless steel are preferred. Two

  20. Modeling syngas-fired gas turbine engines with two dilutants (United States)

    Hawk, Mitchell E.


    Prior gas turbine engine modeling work at the University of Wyoming studied cycle performance and turbine design with air and CO2-diluted GTE cycles fired with methane and syngas fuels. Two of the cycles examined were unconventional and innovative. The work presented herein reexamines prior results and expands the modeling by including the impacts of turbine cooling and CO2 sequestration on GTE cycle performance. The simple, conventional regeneration and two alternative regeneration cycle configurations were examined. In contrast to air dilution, CO2 -diluted cycle efficiencies increased by approximately 1.0 percentage point for the three regeneration configurations examined, while the efficiency of the CO2-diluted simple cycle decreased by approximately 5.0 percentage points. For CO2-diluted cycles with a closed-exhaust recycling path, an optimum CO2-recycle pressure was determined for each configuration that was significantly lower than atmospheric pressure. Un-cooled alternative regeneration configurations with CO2 recycling achieved efficiencies near 50%, which was approximately 3.0 percentage points higher than the conventional regeneration cycle and simple cycle configurations that utilized CO2 recycling. Accounting for cooling of the first two turbine stages resulted in a 2--3 percentage point reduction in un-cooled efficiency, with air dilution corresponding to the upper extreme. Additionally, when the work required to sequester CO2 was accounted for, cooled cycle efficiency decreased by 4--6 percentage points, and was more negatively impacted when syngas fuels were used. Finally, turbine design models showed that turbine blades are shorter with CO2 dilution, resulting in fewer design restrictions.

  1. Computer-Aided System of Virtual Testing of Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Rybakov Viktor N.


    Full Text Available The article describes the concept of a virtual lab that includes subsystem of gas turbine engine simulation, subsystem of experiment planning, subsystem of measurement errors simulation, subsystem of simulator identification and others. The basis for virtual lab development is the computer-aided system of thermogasdynamic research and analysis “ASTRA”. The features of gas turbine engine transient modes simulator are described. The principal difference between the simulators of transient and stationary modes of gas turbine engines is that the energy balance of the compressor and turbine becomes not applicable. The computer-aided system of virtual gas turbine engine testing was created using the developed transient modes simulator. This system solves the tasks of operational (throttling, speed, climatic, altitude characteristics calculation, analysis of transient dynamics and selection of optimal control laws. Besides, the system of virtual gas turbine engine testing is a clear demonstration of gas turbine engine working process and the regularities of engine elements collaboration. The interface of the system of virtual gas turbine engine testing is described in the article and some screenshots of the interface elements are provided. The developed system of virtual gas turbine engine testing provides means for reducing the laboriousness of gas turbine engines testing. Besides, the implementation of this system in the learning process allows the diversification of lab works and therefore improve the quality of training.

  2. Novel Repair Technique for Life-Extension of Hydraulic Turbine Components in Hydroelectric Power Stations (United States)

    Hiramatsu, Yoichi; Ishii, Jun; Funato, Kazuhiro

    A significant number of hydraulic turbines operated in Japan were installed in the first half of the 20th century. Today, aging degradation and flaws are observed in these turbine equipments. So far, Japanese engineers have applied NDI technology of Ultrasonic Testing (UT) to detect the flaws, and after empirical evaluation of the remaining life they decided an adequate moment to replace the equipments. Since the replacement requires a large-scale field site works and high-cost, one of the solutions for life-extension of the equipments is introduction of repair services. We have been working in order to enhance the accuracy of results during the detection of flaws and flaws dimensioning, in particular focusing on the techniques of Tip-echo, TOFD and Phased-Array UT, accompanied by the conventional UT. These NDI methods made possible to recognize the entire image of surface and embedded flaws with complicated geometry. Then, we have developed an evaluation system of these flaws based on the theory of crack propagation, of the logic of crack growth driven by the stress-intensity factor of the crack tip front. The sophisticated evaluation system is constituted by a hand-made software and database of stress-intensity factor. Based on these elemental technologies, we propose a technique of repair welding to provide a life-extension of hydraulic turbine components.

  3. Long duration blade loss simulations including thermal growths for dual-rotor gas turbine engine (United States)

    Sun, Guangyoung; Palazzolo, Alan; Provenza, A.; Lawrence, C.; Carney, K.


    This paper presents an approach for blade loss simulation including thermal growth effects for a dual-rotor gas turbine engine supported on bearing and squeeze film damper. A nonlinear ball bearing model using the Hertzian formula predicts ball contact load and stress, while a simple thermal model estimates the thermal growths of bearing components during the blade loss event. The modal truncation augmentation method combined with a proposed staggered integration scheme is verified through simulation results as an efficient tool for analyzing a flexible dual-rotor gas turbine engine dynamics with the localized nonlinearities of the bearing and damper, with the thermal growths and with a flexible casing model. The new integration scheme with enhanced modeling capability reduces the computation time by a factor of 12, while providing a variety of solutions with acceptable accuracy for durations extending over several thermal time constants.

  4. Study of applying reverse engineering to turbine blade manufacture

    International Nuclear Information System (INIS)

    She, Chen Hua; Chang, Chun Chi


    A turbine blade has complex shaped free-form surfaces that can be modelled as surfaces with variable curvature by high-degree polynomials. Industry typically utilizes a turnkey system and special-purpose machine tool to manufacture turbine blades. A turkey system is a closed form design. Users need only input relevant data to this system to manufacture the product directly. However, users are unaware of the internal operation of the system. With rapidly advances in computing technology, commercial CAD/CAM systems can be utilized to design freeform surfaces and generate a tool path for the designed surfaces. This study uses a reverse engineering technology that is used to reconstruct the CAD model for a turbine blade. The prototype is measured by a coordinate measuring machine to obtain the geometrical control data points that are used to generate the CAD model in the UniGraphics (UG) CAD/CAM system. The UG/GRIP (GRaphics interactive Programming) language is used to generate the cutter location data rather than using the default UG CAM module. A five-axis NC code is acquired by the developed postprocessor and verified by the solid cutting simulation software VERICUT. Real turbine blade machining is performed on a table/spindle tilting five-axis machine tool, demonstrating the effectiveness of the proposed approach

  5. Evaluation of PM emissions from two in-service gas turbine general aviation aircraft engines (United States)

    Yu, Zhenhong; Liscinsky, David S.; Fortner, Edward C.; Yacovitch, Tara I.; Croteau, Philip; Herndon, Scott C.; Miake-Lye, Richard C.


    We determined particulate matter (PM) emissions in the exhaust plumes from two gas turbine aircraft engines: a CF34-3A1 turbofan engine and a TPE331-6-252B turboprop engine in a dedicated study on in-service general aviation aircraft. The engine power states were from 16% to 100% engine thrust. Both nucleation and soot mode particles were observed from the emission exhausts of the CF34-3A1 engine but only soot particle mode was detected from the TPE331-6-252B engine. For the CF34-3A1 engine, the contribution of soot mode to total PM emissions was dominant at high power, while at decreased engine power states nucleation mode organic PM became important. PM emissions indices of the TPE331-6-252B engine were found to be generally larger than those of the CF34-3A1 engine. For both engines, medium power conditions (40-60% of thrust) yielded the lowest PM emissions. For the TPE331-6-252B engine, volatile PM components including organic and sulfate were more than 50% in mass at low power, while non-volatile black carbon became dominant at high power conditions such as takeoff.

  6. Turbojet engines, optimized components; Turboreacteurs, des composants optimises

    Energy Technology Data Exchange (ETDEWEB)

    Beaufils, Ph.


    The technology development program Tech56, carried out by CFM International (Snecma - General Electric Aircraft Engines) is in process of completion. Its aim is the development of ready-to-use technologies for the development of turbojet engines conformable with the environment protection regulations and the specifications of use. The objectives of the program are: a 15-20% reduction of costs, a 4-7% reduction of the fuel consumption, a 20 dB reduction of the cumulated noise level with respect to present day specifications, and a 40-50% reduction of emissions with respect to the levels fixed by the international organisation of civil aviation. All components of the CFM 56 turbojet family have been reviewed and optimized. This article summarizes the main changes made on the different stages of the engine: fan, low- and high-pressure compressor and turbine, combustion chamber, brush seals. (J.S.)

  7. Fuel burner and combustor assembly for a gas turbine engine (United States)

    Leto, Anthony


    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  8. The High Level Mathematical Models in Calculating Aircraft Gas Turbine Engine Parameters

    Directory of Open Access Journals (Sweden)

    Yu. A. Ezrokhi


    Full Text Available The article describes high-level mathematical models developed to solve special problems arising at later stages of design with regard to calculation of the aircraft gas turbine engine (GTE under real operating conditions. The use of blade row mathematics models, as well as mathematical models of a higher level, including 2D and 3D description of the working process in the engine units and components, makes it possible to determine parameters and characteristics of the aircraft engine under conditions significantly different from the calculated ones.The paper considers application of mathematical modelling methods (MMM for solving a wide range of practical problems, such as forcing the engine by injection of water into the flowing part, estimate of the thermal instability effect on the GTE characteristics, simulation of engine start-up and windmill starting condition, etc. It shows that the MMM use, when optimizing the laws of the compressor stator control, as well as supplying cooling air to the hot turbine components in the motor system, can significantly improve the integral traction and economic characteristics of the engine in terms of its gas-dynamic stability, reliability and resource.It ought to bear in mind that blade row mathematical models of the engine are designed to solve purely "motor" problems and do not replace the existing models of various complexity levels used in calculation and design of compressors and turbines, because in “quality” a description of the working processes in these units is inevitably inferior to such specialized models.It is shown that the choice of the mathematical modelling level of an aircraft engine for solving a particular problem arising in its designing and computational study is to a large extent a compromise problem. Despite the significantly higher "resolution" and information ability the motor mathematical models containing 2D and 3D approaches to the calculation of flow in blade machine

  9. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines


    Hesam Mirzaei Rafsanjani; John Dalsgaard Sørensen


    Fatigue failure is one of the main failure modes for wind turbine drivetrain components made of cast iron. The wind turbine drivetrain consists of a variety of heavily loaded components, like the main shaft, the main bearings, the gearbox and the generator. The failure of each component will lead to substantial economic losses such as cost of lost energy production and cost of repairs. During the design lifetime, the drivetrain components are exposed to variable loads from winds and waves an...

  10. Oil cooling system for a gas turbine engine (United States)

    Coffinberry, G. A.; Kast, H. B. (Inventor)


    A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess of fuel control requirements back to aircraft fuel tank, thereby increasing the fuel pump heat sink and decreasing the pump temperature rise without the addition of valving other than that normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. Fluid circuitry is provided to route hot engine oil through a plurality of heat exchangers disposed within the system to provide for selective cooling of the oil.

  11. Durable, High Thermal Conductivity Melt Infiltrated Ceramic Composites for Turbine Engine Applications, Phase I (United States)

    National Aeronautics and Space Administration — Durable, creep-resistant ceramic composites are necessary to meet the increased operating temperatures targeted for advanced turbine engines. Higher operating...

  12. Method for Making Measurements of the Post-Combustion Residence Time in a Gas Turbine Engine (United States)

    Miles, Jeffrey H. (Inventor)


    A method of measuring a residence time in a gas-turbine engine is disclosed that includes measuring a combustor pressure signal at a combustor entrance and a turbine exit pressure signal at a turbine exit. The method further includes computing a cross-spectrum function between the combustor pressure signal and the turbine exit pressure signal, calculating a slope of the cross-spectrum function, shifting the turbine exit pressure signal an amount corresponding to a time delay between the measurement of the combustor pressure signal and the turbine exit pressure signal, and recalculating the slope of the cross-spectrum function until the slope reaches zero.

  13. Thermal Barrier Coatings for Advanced Gas Turbine and Diesel Engines (United States)

    Zhu, Dongming; Miller, Robert A.


    Ceramic thermal barrier coatings (TBCS) have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, durability issues of these thermal barrier coatings under high temperature cyclic conditions are still of major concern. The coating failure depends not only on the coating, but also on the ceramic sintering/creep and bond coat oxidation under the operating conditions. Novel test approaches have been established to obtain critical thermomechanical and thermophysical properties of the coating systems under near-realistic transient and steady state temperature and stress gradients encountered in advanced engine systems. This paper presents detailed experimental and modeling results describing processes occurring in the ZrO2-Y2O3 thermal barrier coating systems, thus providing a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  14. Evaluation of Ceramic Matrix Composite Technology for Aircraft Turbine Engine Applications (United States)

    Halbig, Michael C.; Jaskowiak, Martha H.; Kiser, James D.; Zhu, Dongming


    The goals of the NASA Environmentally Responsible Aviation (ERA) Project are to reduce the NO(x) emissions, fuel burn, and noise from turbine engines. In order to help meet these goals, commercially-produced ceramic matrix composite (CMC) components and environmental barrier coatings (EBCs) are being evaluated as parts and panels. The components include a CMC combustor liner, a CMC high pressure turbine vane, and a CMC exhaust nozzle as well as advanced EBCs that are tailored to the operating conditions of the CMC combustor and vane. The CMC combustor (w/EBC) could provide 2700 F temperature capability with less component cooling requirements to allow for more efficient combustion and reductions in NOx emissions. The CMC vane (w/EBC) will also have temperature capability up to 2700 F and allow for reduced fuel burn. The CMC mixer nozzle will offer reduced weight and improved mixing efficiency to provide reduced fuel burn. The main objectives are to evaluate the manufacturability of the complex-shaped components and to evaluate their performance under simulated engine operating conditions. Progress in CMC component fabrication, evaluation, and testing is presented in which the goal is to advance from the proof of concept validation (TRL 3) to a system/subsystem or prototype demonstration in a relevant environment (TRL 6).

  15. Environmental Severity Classes for Main Electrical Components in Offshore Wind Turbine

    DEFF Research Database (Denmark)

    Henriksen, Matthew Lee; Koldby, Erik; Holbøll, Joachim


    This paper works toward a better understanding of how the environmental operating conditions for offshore wind turbine electrical components should be quantified. Different aspects of the operating environment are introduced and discussed, with reference to their relevance in offshore wind turbines...

  16. Electrical and non-electrical environment of wind turbine main components

    DEFF Research Database (Denmark)

    Holboell, J.; Henriksen, M.; Olsen, R.S.

    of application standards for wind turbine electrical equipment. Component-level environmental requirements as given in equipment-specific standards are compared with the environment described in the IEC's 61400 series concerning wind turbines. Based on methods defined in IEC 60721, the non-electrical environment...

  17. Thermal barrier coatings for heat engine components (United States)

    Levine, S. R.; Miller, R. A.; Hodge, P. E.


    A comprehensive NASA-Lewis program of coating development for aircraft gas turbine blades and vanes is presented. Improved ceramic layer compositions are investigated, along the MCrAlY bond films and the methods of uniform deposition of the coatings; the thermomechanical and fuel impurity tolerance limits of the coatings are being studied. Materials include the ZrO2-Y2O3/NiCrAlY system; the effects of the bond coat and zirconia composition on coating life and Mach 1 burner rig test results are discussed. It is concluded that Diesel engines can also utilize thermal barrier coatings; they have been used successfully on piston crowns and exhaust valves of shipboard engines to combat lower grade fuel combustion corrosion.

  18. High freezing point fuels used for aviation turbine engines (United States)

    Friedman, R.


    Broadened-specification aviation fuels could be produced from a greater fraction of crude source material with improvements in fuel supply and price. These fuels, particularly those with increased final boiling temperatures, would have higher freezing temperatures than current aviation turbine fuels. For the small but significant fraction of commercial flights where low fuel temperatures make higher freezing-point fuel use unacceptable, adaptations to the fuel or fuel system may be made to accommodate this fuel. Several techniques are discussed. Fuel heating is the most promising concept. One simple design uses existing heat rejection from the fuel-lubricating oil cooler, another uses an engine-driven generator for electrical heating.

  19. Ceramic thermal barrier coatings for electric utility gas turbine engines (United States)

    Miller, R. A.


    Research and development into thermal barrier coatings for electric utility gas turbine engines is reviewed critically. The type of coating systems developed for aircraft applications are found to be preferred for clear fuel electric utility applications. These coating systems consists of a layer of plasma sprayed zirconia-yttria ceramic over a layer of MCrAly bond coat. They are not recommended for use when molten salts are presented. Efforts to understand coating degradation in dirty environments and to develop corrosion resistant thermal barrier coatings are discussed.

  20. Engineering computer graphics in gas turbine engine design, analysis and manufacture (United States)

    Lopatka, R. S.


    A time-sharing and computer graphics facility designed to provide effective interactive tools to a large number of engineering users with varied requirements was described. The application of computer graphics displays at several levels of hardware complexity and capability is discussed, with examples of graphics systems tracing gas turbine product development, beginning with preliminary design through manufacture. Highlights of an operating system stylized for interactive engineering graphics is described.

  1. Validated Loads Prediction Models for Offshore Wind Turbines for Enhanced Component Reliability

    DEFF Research Database (Denmark)

    Koukoura, Christina

    are used for the modification of the sub-structure/foundation design for possible material savings. First, the background of offshore wind engineering, including wind-wave conditions, support structure, blade loading and wind turbine dynamics are presented. Second, a detailed description of the site...... is given and the metocean conditions are analyzed. The joint wind-wave distribution and the probability of the misalignment angles are estimated. Third, the calibration process of the different components is thoroughly depicted. The turbulence intensity implemented in the simulations is extracted from...... response of a boat impact. The first and second modal damping of the system during normal operation both from measurements and simulations are identified with the implementation of the Enhanced Frequency Domain Decomposition technique. The effect of damping on the side-side fatigue of the support structure...

  2. 14 CFR 121.197 - Airplanes: Turbine engine powered: Landing limitations: Alternate airports. (United States)


    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Turbine engine powered: Landing limitations: Alternate airports. 121.197 Section 121.197 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Performance Operating Limitations § 121.197 Airplanes: Turbine engine powered: Landing limitations: Alternate...

  3. Ferrographic and spectrometer oil analysis from a failed gas turbine engine (United States)

    Jones, W. R., Jr.


    An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. It was concluded that a severe surge may have caused interference between rotating and stationary compressor that either directly or indirectly ignited the titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph, a plasma, an atomic absorption, and an emission spectrometer to see if this information would aid in the engine failure diagnosis. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism nor a high level of wear debris was detected in the engine oil sample taken just prior to the test in which the failure occurred. However, low concentrations (0.2 to 0.5 ppm) of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations ( 2 ppm) were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure. The oil analyses eliminated a lubrication system bearing or shaft seal failure as the cause of the engine failure.

  4. NASA/General Electric Engine Component Improvement Program (United States)

    Albright, A. J.; Lennard, D. J.; Ziemianski, J. A.


    The Engine Component Improvement (ECI) Program has been initiated in connection with projects designed to reduce the impact of the world-wide energy crisis in the area of aviation. The two parts of the ECI program have the overall objective to identify and quantify the sources and causes of CF6 engine performance deterioration, and to reduce the fuel consumption of CF6 engines through the development and the incorporation of various performance improvement concepts. The CF6 high-bypass turbofan engine was selected as a basis for this effort, since it is expected to be a significant fuel user in commercial revenue service for the next 15 to 20 years. The first part of the ECI program represents the initial step in an effort to achieve a goal of five percent reduction in fuel usage for CF6 engines in the 1979-82 time period. The first performance improvement concept selected is an improved efficiency fan blade. Other improvements are related to a short core exhaust system and an improved high pressure turbine.

  5. Diesel engine management systems and components

    CERN Document Server


    This reference book provides a comprehensive insight into todays diesel injection systems and electronic control. It focusses on minimizing emissions and exhaust-gas treatment. Innovations by Bosch in the field of diesel-injection technology have made a significant contribution to the diesel boom. Calls for lower fuel consumption, reduced exhaust-gas emissions and quiet engines are making greater demands on the engine and fuel-injection systems. Contents History of the diesel engine.- Areas of use for diesel engines.- Basic principles of the diesel engine.- Fuels: Diesel fuel.- Fuels: Alternative fuels.- Cylinder-charge control systems.- Basic principles of diesel fuel-injection.- Overview of diesel fuel-injection systems.- Fuel supply to the low pressure stage.- Overview of discrete cylinder systems.- Unit injector system.- Unit pump system.- Overview of common-rail systems.- High pressure components of the common-rail system.- Injection nozzles.- Nozzle holders.- High pressure lines.- Start assist systems.-...

  6. Performance of Blowdown Turbine Driven by Exhaust Gas of Nine-Cylinder Radial Engine (United States)

    Turner, L Richard; Desmon, Leland G


    An investigation was made of an exhaust-gas turbine having four separate nozzle boxes each covering a 90 degree arc of the nozzle diaphragm and each connected to a pair of adjacent cylinders of a nine-cylinder radial engine. This type of turbine has been called a "blowdown" turbine because it recovers the kinetic energy developed in the exhaust stacks during the blowdown period, that is the first part of the exhaust process when the piston of the reciprocating engine is nearly stationary. The purpose of the investigation was to determine whether the blow turbine could develop appreciable power without imposing any large loss in engine power arising from restriction of the engine exhaust by the turbine.

  7. LES of an ignition sequence in a gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Boileau, M.; Staffelbach, G.; Cuenot, B. [CERFACS, Toulouse (France); Poinsot, T. [IMFT - CNRS, Toulouse (France); Berat, C. [Turbomeca (SAFRAN group), Bordes (France)


    Being able to ignite or reignite a gas turbine engine in a cold and rarefied atmosphere is a critical issue for many manufacturers. From a fundamental point of view, the ignition of the first burner and the flame propagation from one burner to another are phenomena that are usually not studied. The present work is a large eddy simulation (LES) of these phenomena. To simulate a complete ignition sequence in an annular chamber, LES has been applied to the full 360 geometry, including 18 burners. This geometry corresponds to a real gas turbine chamber. Massively parallel computing (700 processors on a Cray XT3 machine) was essential to perform such a large calculation. Results show that liquid fuel injection has a strong influence on the ignition times. Moreover, the rate of flame progress from burner to burner is much higher than the turbulent flame speed due to a major effect of thermal expansion. This flame speed is also strongly modified by the main burner aerodynamics due to the swirled injection. Finally, the variability of the combustor sectors and quadrant ignition times is highlighted. (author)

  8. Improving Durability of Turbine Components Through Trenched Film Cooling and Contoured Endwalls

    Energy Technology Data Exchange (ETDEWEB)

    Bogard, David G. [Univ. of Texas, Austin, TX (United States); Thole, Karen A. [Pennsylvania State Univ., State College, PA (United States)


    The experimental and computational studies of the turbine endwall and vane models completed in this research program have provided a comprehensive understanding of turbine cooling with combined film cooling and TBC. To correctly simulate the cooling effects of TBC requires the use of matched Biot number models, a technique developed in our laboratories. This technique allows for the measurement of the overall cooling effectiveness which is a measure of the combined internal and external cooling for a turbine component. The overall cooling effectiveness provides an indication of the actual metal temperature that would occur at engine conditions, and is hence a more powerful performance indicator than the film effectiveness parameter that is commonly used for film cooling studies. Furthermore these studies include the effects of contaminant depositions which are expected to occur when gas turbines are operated with syngas fuels. Results from the endwall studies performed at Penn State University and the vane model studies performed at the University of Texas are the first direct measurements of the combined effects of film cooling and TBC. These results show that TBC has a dominating effect on the overall cooling effectiveness, which enhances the importance of the internal cooling mechanisms, and downplays the importance of the film cooling of the external surface. The TBC was found to increase overall cooling effectiveness by a factor of two to four. When combined with TBC, the primary cooling from film cooling holes was found to be due to the convective cooling within the holes, not from the film effectiveness on the surface of the TBC. Simulations of the deposition of contaminants on the endwall and vane surfaces showed that these depositions caused a large increase in surface roughness and significant degradation of film effectiveness. However, despite these negative factors, the depositions caused only a slight decrease in the overall cooling effectiveness on

  9. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard


    and a limit state equation for fatigue failure based on the SN-curve approach and Miner’s rule is presented. The statistical analysis of the fatigue data is performed using the Maximum Likelihood Method which also gives an estimate of the statistical uncertainties. Finally, illustrative examples are presented......Fatigue failure is one of the main failure modes for wind turbine drivetrain components made of cast iron. The wind turbine drivetrain consists of a variety of heavily loaded components, like the main shaft, the main bearings, the gearbox and the generator. The failure of each component will lead...... are different for offshore and onshore wind turbines. Moreover, uncertainties about the fatigue strength play an important role in modeling and assessment of the reliability of the components. In this paper, a generic stochastic model for fatigue failure of cast iron components based on fatigue test data...

  10. High-freezing-point fuels used for aviation turbine engines (United States)

    Friedman, R.


    Broadened-specification aviation fuels could be produced from a greater fraction of crude source material with improvements in fuel supply and price. These fuels, particularly those with increased final boiling temperatures, would have higher freezing temperatures than current aviation turbine fuels. The higher-freezing-point fuels can be substituted in the majority of present commercial flights, since temperature data indicate that in-flight fuel temperatures are relatively mild. For the small but significant fraction of commercial flights where low fuel temperatures make higher freezing-point fuel use unacceptable, adaptations to the fuel or fuel system may be made to accommodate this fuel. Several techniques are discussed. Fuel heating is the most promising concept. One simple system design uses existing heat rejection from the fuel-lubricating oil cooler, another uses an engine-driven generator for electrical heating. Both systems offer advantages that outweigh the obvious penalties.

  11. Failure analysis of gas turbine blades in a gas turbine engine used ...

    African Journals Online (AJOL)

    The gas turbine blade was made of Nickel based super alloys and was manufactured by investment casting method. The gas turbine blade under examination was operated at elevated temperatures in corrosive environmental attack such as oxidation, hot corrosion and sulphidation etc. The investigation on gas turbine ...

  12. In-situ formation of multiphase air plasma sprayed barrier coatings for turbine components (United States)

    Subramanian, Ramesh


    A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base, planar-grained thermal barrier layer (28) applied by air plasma spraying on the alloy surface, where a heat resistant ceramic oxide overlay material (32') covers the bottom thermal barrier coating (28), and the overlay material is the reaction product of the precursor ceramic oxide overlay material (32) and the base thermal barrier coating material (28).

  13. In-situ formation of multiphase electron beam physical vapor deposited barrier coatings for turbine components (United States)

    Subramanian, Ramesh


    A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base columnar thermal barrier coating (20) on the alloy surface, where a heat resistant ceramic oxide sheath material (32' or 34') covers the columns (28), and the sheath material is the reaction product of a precursor ceramic oxide sheath material and the base thermal barrier coating material.

  14. Next Generation Engineered Materials for Ultra Supercritical Steam Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Douglas Arrell


    To reduce the effect of global warming on our climate, the levels of CO{sub 2} emissions should be reduced. One way to do this is to increase the efficiency of electricity production from fossil fuels. This will in turn reduce the amount of CO{sub 2} emissions for a given power output. Using US practice for efficiency calculations, then a move from a typical US plant running at 37% efficiency to a 760 C /38.5 MPa (1400 F/5580 psi) plant running at 48% efficiency would reduce CO2 emissions by 170kg/ or 25%. This report presents a literature review and roadmap for the materials development required to produce a 760 C (1400 F) / 38.5MPa (5580 psi) steam turbine without use of cooling steam to reduce the material temperature. The report reviews the materials solutions available for operation in components exposed to temperatures in the range of 600 to 760 C, i.e. above the current range of operating conditions for today's turbines. A roadmap of the timescale and approximate cost for carrying out the required development is also included. The nano-structured austenitic alloy CF8C+ was investigated during the program, and the mechanical behavior of this alloy is presented and discussed as an illustration of the potential benefits available from nano-control of the material structure.

  15. A method to estimate weight and dimensions of aircraft gas turbine engines. Volume 1: Method of analysis (United States)

    Pera, R. J.; Onat, E.; Klees, G. W.; Tjonneland, E.


    Weight and envelope dimensions of aircraft gas turbine engines are estimated within plus or minus 5% to 10% using a computer method based on correlations of component weight and design features of 29 data base engines. Rotating components are estimated by a preliminary design procedure where blade geometry, operating conditions, material properties, shaft speed, hub-tip ratio, etc., are the primary independent variables used. The development and justification of the method selected, the various methods of analysis, the use of the program, and a description of the input/output data are discussed.

  16. Remaining lifetime determination and refurbishment of gas turbine components. Methods, measuring data acquisition and data assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mattheij, Sjef; Gooren, Luc; Gun, Marius van der [Sulzer TS Venlo B.V. (Sulzer Elbar B.V.), Venlo (Netherlands)


    Hot section components of gas turbines are expensive consumables. In the past, repair and reconditioning of gas turbine components was predominantly focussing on the repair of mechanical damage. Today the focus is shifting to assessing the remaining life time expectancy in parallel with rejuvenation of base material and recoating of components. The presentation will use a number of examples to demonstrate the methods and measuring technologies that are used for the remaining lifetime analysis like 3D dimensional inspection, base material condition determination, wall thickness measurement technologies and others. (orig.)

  17. Internal combustion engine system having a power turbine with a broad efficiency range (United States)

    Whiting, Todd Mathew; Vuk, Carl Thomas


    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately, portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  18. Engine Power Turbine and Propulsion Pod Arrangement Study (United States)

    Robuck, Mark; Zhang, Yiyi


    A study has been conducted for NASA Glenn Research Center under contract NNC10BA05B, Task NNC11TA80T to identify beneficial arrangements of the turboshaft engine, transmissions and related systems within the propulsion pod nacelle of NASA's Large Civil Tilt-Rotor 2nd iteration (LCTR2) vehicle. Propulsion pod layouts were used to investigate potential advantages, disadvantages, as well as constraints of various arrangements assuming front or aft shafted engines. Results from previous NASA LCTR2 propulsion system studies and tasks performed by Boeing under NASA contracts are used as the basis for this study. This configuration consists of two Fixed Geometry Variable Speed Power Turbine Engines and related drive and rotor systems (per nacelle) arranged in tilting nacelles near the wing tip. Entry-into-service (EIS) 2035 technology is assumed for both the engine and drive systems. The variable speed rotor system changes from 100 percent speed for hover to 54 percent speed for cruise by the means of a two speed gearbox concept developed under previous NASA contracts. Propulsion and drive system configurations that resulted in minimum vehicle gross weight were identified in previous work and used here. Results reported in this study illustrate that a forward shafted engine has a slight weight benefit over an aft shafted engine for the LCTR2 vehicle. Although the aft shafted engines provide a more controlled and centered CG (between hover and cruise), the length of the long rotor shaft and complicated engine exhaust arrangement outweighed the potential benefits. A Multi-Disciplinary Analysis and Optimization (MDAO) approach for transmission sizing was also explored for this study. This tool offers quick analysis of gear loads, bearing lives, efficiencies, etc., through use of commercially available RomaxDESIGNER software. The goal was to create quick methods to explore various concept models. The output results from RomaxDESIGNER have been successfully linked to Boeing

  19. An expert system for diagnostics and estimation of steam turbine components condition (United States)

    Murmansky, B. E.; Aronson, K. E.; Brodov, Yu. M.


    The report describes an expert system of probability type for diagnostics and state estimation of steam turbine technological subsystems components. The expert system is based on Bayes’ theorem and permits to troubleshoot the equipment components, using expert experience, when there is a lack of baseline information on the indicators of turbine operation. Within a unified approach the expert system solves the problems of diagnosing the flow steam path of the turbine, bearings, thermal expansion system, regulatory system, condensing unit, the systems of regenerative feed-water and hot water heating. The knowledge base of the expert system for turbine unit rotors and bearings contains a description of 34 defects and of 104 related diagnostic features that cause a change in its vibration state. The knowledge base for the condensing unit contains 12 hypotheses and 15 evidence (indications); the procedures are also designated for 20 state parameters estimation. Similar knowledge base containing the diagnostic features and faults hypotheses are formulated for other technological subsystems of turbine unit. With the necessary initial information available a number of problems can be solved within the expert system for various technological subsystems of steam turbine unit: for steam flow path it is the correlation and regression analysis of multifactor relationship between the vibration parameters variations and the regime parameters; for system of thermal expansions it is the evaluation of force acting on the longitudinal keys depending on the temperature state of the turbine cylinder; for condensing unit it is the evaluation of separate effect of the heat exchange surface contamination and of the presence of air in condenser steam space on condenser thermal efficiency performance, as well as the evaluation of term for condenser cleaning and for tube system replacement and so forth. With a lack of initial information the expert system enables to formulate a diagnosis

  20. Generic Analysis Methods for Gas Turbine Engine Performance : The development of the gas turbine simulation program GSP

    NARCIS (Netherlands)

    Visser, W.P.J.


    Numerical modelling and simulation have played a critical role in the research and development towards today’s powerful and efficient gas turbine engines for both aviation and power generation. The simultaneous progress in modelling methods, numerical methods, software development tools and methods,

  1. Loadings in thermal barrier coatings of jet engine turbine blades an experimental research and numerical modeling

    CERN Document Server

    Sadowski, Tomasz


    This book discusses complex loadings of turbine blades and protective layer Thermal Barrier Coating (TBC), under real working airplane jet conditions. They obey both multi-axial mechanical loading and sudden temperature variation during starting and landing of the airplanes. In particular, two types of blades are analyzed: stationary and rotating, which are widely applied in turbine engines produced by airplane factories.

  2. Characterization and Simulation of Time-Dependent Response of Structural Materials for Aero Structures and Turbine Engines (Postprint) (United States)


    Division at the Materials & Manufacturing Directorate whose research and dedication have been instrumental in affecting the design and life management...capability. It is the decrease of capability as a function of time/usage/exposure that must be understood and predicted to optimize the design and life ...and life management strategies of aerospace components that comprise aircraft structures and turbine engines. Historically predictive models in these

  3. Engineering diagnostics for vortex-induced stay vanes cracks in a Francis turbine (United States)

    D'Agostini Neto, Alexandre; Gissoni, Humberto, Dr.; Gonçalves, Manuel, Dr.; Cardoso, Rogério; Jung, Alexander, Dr.; Meneghini, Julio, Prof.


    Despite the fact that vortex-induced vibration (VIV) in hydraulic turbines components (especially in stay vanes) is a well-known phenomenon, it still remains challenging for operation and maintenance teams in several power plants around the world. Since the first publication of a similar problem in 1967, literature shows that at least 27 other turbines witnessed strong stay vane vibrations associated with vortex shedding. Recurrent stay vane cracks in a 250 MW Francis turbine in Brazil motivated an engineering study involving prototype measurements, structural and Computational Fluid Dynamics (CFD) analysis in order to determine a proper geometry modification that could eliminate the periodic vortex wake generated at the stay vanes trailing edge. First cracks appeared in 1978 just after the machine was put into operation. A study published in 1982 associated these cracks with dynamic excitations caused by the water flow at high flow conditions. New stay vane profiles were proposed and executed as well as improved welding recommendations. Cracks however, continued to appear requiring welding repairs roughly every two years. Although Voith Hydro was not the original equipment manufacturer for these units, the necessary information was available to study the issue and propose and execute new stay vane profiles. This paper details the approach taken for the study. First, indirect vibration measurements were used to determine vibration frequencies to help to characterize the affected mode shapes. These results were compared to finite element (FE) calculations. Strain gage measurements performed afterwards confirmed the conclusions of this analysis. Next, transient CFD calculations were run to reproduce the measured phenomenon and to serve as a basis for a new stay vane geometry. This modification was then implemented in the actual turbine stay vanes. A new set of indirect vibration measurements indicated the effectiveness of the proposed solution. Final confirmation

  4. Data-Mining Toolset Developed for Determining Turbine Engine Part Life Consumption (United States)

    Litt, Jonathan S.


    The current practice in aerospace turbine engine maintenance is to remove components defined as life-limited parts after a fixed time, on the basis of a predetermined number of flight cycles. Under this schedule-based maintenance practice, the worst-case usage scenario is used to determine the usable life of the component. As shown, this practice often requires removing a part before its useful life is fully consumed, thus leading to higher maintenance cost. To address this issue, the NASA Glenn Research Center, in a collaborative effort with Pratt & Whitney, has developed a generic modular toolset that uses data-mining technology to parameterize life usage models for maintenance purposes. The toolset enables a "condition-based" maintenance approach, where parts are removed on the basis of the cumulative history of the severity of operation they have experienced. The toolset uses data-mining technology to tune life-consumption models on the basis of operating and maintenance histories. The flight operating conditions, represented by measured variables within the engine, are correlated with repair records for the engines, generating a relationship between the operating condition of the part and its service life. As shown, with the condition-based maintenance approach, the lifelimited part is in service until its usable life is fully consumed. This approach will lower maintenance costs while maintaining the safety of the propulsion system. The toolset is a modular program that is easily customizable by users. First, appropriate parametric damage accumulation models, which will be functions of engine variables, must be defined. The tool then optimizes the models to match the historical data by computing an effective-cycle metric that reduces the unexplained variability in component life due to each damage mode by accounting for the variability in operational severity. The damage increment due to operating conditions experienced during each flight is used to compute

  5. On Different Maintenance Strategies for Casted Components of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ambühl, Simon; Sørensen, John Dalsgaard

    and transportation strategy. The case study shows that the maintenance expenses of casted components correspond to roughly 5% of the overall expected maintenance costs when using a corrective maintenance strategy. This amount can be decreased to roughly 2% when using a condition monitoring system and following......This report, which is a part of the REWIND project, focuses on maintenance expenses for casted components mounted on offshore wind turbines. The maintenance costs for casted components are extracted from a maintenance operation tool, which simulates maintenance operations at wind turbine farms....... This maintenance tool uses Crude Monte Carlo Simulations to estimate the expected maintenance costs. Corrective and preventive maintenance strategies with a constant inspection interval or a condition monitoring system are considered. Furthermore, transportation from shore to the wind turbines by boat...

  6. Case Studies of Fatigue Life Improvement Using Low Plasticity Burnishing in Gas Turbine Engine Applications (United States)

    Prevey, Paul S.; Shepard, Michael; Ravindranath, Ravi A.; Gabb, Timothy


    Surface enhancement technologies such as shot peening, laser shock peening (LSP), and low plasticity burnishing (LPB) can provide substantial fatigue life improvement. However, to be effective, the compressive residual stresses that increase fatigue strength must be retained in service. For successful integration into turbine design, the process must be affordable and compatible with the manufacturing environment. LPB provides thermally stable compression of comparable magnitude and even greater depth than other methods, and can be performed in conventional machine shop environments on CNC machine tools. LPB provides a means to extend the fatigue lives of both new and legacy aircraft engines and ground-based turbines. Improving fatigue performance by introducing deep stable layers of compressive residual stress avoids the generally cost prohibitive alternative of modifying either material or design. The X-ray diffraction based background studies of thermal and mechanical stability of surface enhancement techniques are briefly reviewed, demonstrating the importance of minimizing cold work. The LPB process, tooling, and control systems are described. An overview of current research programs conducted for engine OEMs and the military to apply LPB to a variety of engine and aging aircraft components are presented. Fatigue performance and residual stress data developed to date for several case studies are presented including: * The effect of LPB on the fatigue performance of the nickel based super alloy IN718, showing fatigue benefit of thermal stability at engine temperatures. * An order of magnitude improvement in damage tolerance of LPB processed Ti-6-4 fan blade leading edges. * Elimination of the fretting fatigue debit for Ti-6-4 with prior LPB. * Corrosion fatigue mitigation with LPB in Carpenter 450 steel. *Damage tolerance improvement in 17-4PH steel. Where appropriate, the performance of LPB is compared to conventional shot peening after exposure to engine

  7. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines (United States)

    DeLaat, John C.


    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  8. Strategies for Optimization and Automated Design of Gas Turbine Engines (Les strategies pour l’optimisation et la conception automatique de turbines a gaz) (United States)


    Sep 2010 Strategies for Optimization and Automated Design of Gas Turbine Engines (Les Stratégies pour l’optimisation et la conception automatique de...Engines (Les Stratégies pour l’optimisation et la conception automatique de turbines à gaz) The material in this publication was assembled to support

  9. Thermal barrier coatings for the space shuttle main engine turbine blades (United States)

    Bhat, B. N.; Gilmore, H. L.; Holmes, R. R.


    The Space Shuttle Main Engine (SSME) turbopump turbine blades experience extremely severe thermal shocks during start-up and shut-down. For instance, the high pressure fuel turbopump turbine which burns liquid hydrogen operates at approximately 1500 F, but is shut down fuel rich with turbine blades quenced in liquid hydrogen. This thermal shock is a major contributor to blade cracking. The same thermal shock cause the protective ZrO2 thermal barrier coatings to spall or flake off, leaving only the NiCrAlY bond coating which provides only a minimum thermal protection. The turbine blades are therefore life limited to about 3000 sec for want of a good thermal barrier. A suitable thermal barrier coating (TBC) is being developed for the SSME turbine blades. Various TBCs developed for the gas turbine engines were tested in a specially built turbine blade tester. This tester subjects the coated blades to thermal and pressure cycles similar to those during actual operation of the turbine. The coatings were applied using a plasma spraying techniques both under atmospheric conditions and in vacuum. Results are presented. In general vacuum plasma sprayed coatings performed much better than those sprayed under atmospheric conditions. A 50 to 50 blend of Cr2O3 and NiCrAlY, vacuum plasma sprayed on SSME turbopump turbine blades appear to provide significant improvements in coating durability and thermal protection.

  10. Composite hubs for low cost turbine engines. [stress analysis using NASTRAN (United States)

    Chamis, C. C.


    A detailed stress analysis is performed using NASTRAN to demonstrate theoretically the adequacy of composite hubs for low cost turbine engine applications. The results show that composite hubs are adequate for this application from the steady state stress viewpoint.

  11. Evaluation of lightweight material concepts for aircraft turbine engine rotor failure protection (United States)


    Results of the evaluation of lightweight materials for aircraft turbine engine rotor failure protection are presented in this report. The program consisted of two phases. Phase 1 was an evaluation of a group of composite materials which could possibl...

  12. A Physics-Based Starting Model for Gas Turbine Engines, Phase I (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to demonstrate the feasibility of producing an integrated starting model for gas turbine engines using a new physics-based...

  13. Cooling system with compressor bleed and ambient air for gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, Jan H.; Marra, John J.


    A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed air through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.

  14. Seal plate with concentrate annular segments for a gas turbine engine

    International Nuclear Information System (INIS)

    Harris, D.P.; Light, S.H.


    This patent describes a gas turbine engine. It comprises a radial outflow, rotary compressor; a radial inflow turbine wheel; means coupling the compressor and the turbine wheel in slightly spaced back to back relating so that the turbine wheel may drive the compressor; a housing surrounding the compressor and the turbine wheel; and a stationary seal mounted on the housing and extending into the space between the compressor and the turbine wheel, the seal including a main sealing and support section adjacent the compressor and a multiple piece diaphragm mounted to the main section, but generally spaced therefrom, the pieces of the diaphragm being movable with respect to each other and with respect to the main section, and including a radially inner ring and a radially outer ring, one of the rings including a lip which overlaps an edge of the other of the rings, the lip and the edge being in sliding, sealing engagement

  15. Investigation of Data Fusion Applied to Health Monitoring of Wind Turbine Drive train Components (United States)

    Dempsey, Paula J.; Sheng, Shuangwen


    The research described was performed on diagnostic tools used to detect damage to dynamic mechanical components in a wind turbine gearbox. Different monitoring technologies were evaluated by collecting vibration and oil debris data from tests performed on a "healthy" gearbox and a damaged gearbox in a dynamometer test stand located at the National Renewable Energy Laboratory. The damaged gearbox tested was removed from the field after experiencing component damage due to two losses of oil events and was retested under controlled conditions in the dynamometer test stand. Preliminary results indicate oil debris and vibration can be integrated to assess the health of the wind turbine gearbox.

  16. Hybrid staging of a Lysholm positive displacement engine with two Westinghouse two stage impulse Curtis turbines

    Energy Technology Data Exchange (ETDEWEB)

    Parker, D.A.


    The University of California at Berkeley has tested and modeled satisfactorly a hybrid staged Lysholm engine (positive displacement) with a two stage Curtis wheel turbine. The system operates in a stable manner over its operating range (0/1-3/1 water ratio, 120 psia input). Proposals are made for controlling interstage pressure with a partial admission turbine and volume expansion to control mass flow and pressure ratio for the Lysholm engine.

  17. Study of advanced radial outflow turbine for solar steam Rankine engines (United States)

    Martin, C.; Kolenc, T.


    The performance characteristics of various steam Rankine engine configurations for solar electric power generation were investigated. A radial outflow steam turbine was investigated to determine: (1) a method for predicting performance from experimental data; (2) the flexibility of a single design with regard to power output and pressure ratio; and (3) the effect of varying the number of turbine stages. All turbine designs were restricted to be compatible with commercially available gearboxes and generators. A study of several operating methods and control schemes for the steam Rankine engine shows that from an efficiency and control simplicity standpoint, the best approach is to hold turbine inlet temperature constant, vary turbine inlet pressure to match load, and allow condenser temperature to float maintaining constant heat rejection load.

  18. Energy efficient engine. Low pressure turbine test hardware detailed design report (United States)

    Cherry, D. G.; Gay, C. H.; Lenahan, D. T.


    The low pressure turbine for the energy efficient engine is a five-stage configuration with moderate aerodynamic loading incorporating advanced features of decambered airfoils and extended blade overlaps at platforms and shrouds. Mechanical integrity of 18,000 hours on flowpath components and 36,000 hours on all other components is achieved along with no aeromechanical instabilities within the steady-state operating range. Selection of a large number (156) of stage 4 blades, together with an increased stage 4 vane-to-blade gap, assists in achieving FAR 36 acoustic goals. Active clearance control (ACC) of gaps at blade tips and interstage seals is achieved by fan air cooling judiciously applied at responsive locations on the casing. This ACC system is a major improvement in preventing deterioration of the 0.0381 cm (0.015 in.) clearances required to meet the integrated-core/low-spool turbine efficiency goal of 91.1% and the light propulsion system efficiency goal of 91.7%.

  19. Performance Engineering Technology for Scientific Component Software

    Energy Technology Data Exchange (ETDEWEB)

    Malony, Allen D.


    Large-scale, complex scientific applications are beginning to benefit from the use of component software design methodology and technology for software development. Integral to the success of component-based applications is the ability to achieve high-performing code solutions through the use of performance engineering tools for both intra-component and inter-component analysis and optimization. Our work on this project aimed to develop performance engineering technology for scientific component software in association with the DOE CCTTSS SciDAC project (active during the contract period) and the broader Common Component Architecture (CCA) community. Our specific implementation objectives were to extend the TAU performance system and Program Database Toolkit (PDT) to support performance instrumentation, measurement, and analysis of CCA components and frameworks, and to develop performance measurement and monitoring infrastructure that could be integrated in CCA applications. These objectives have been met in the completion of all project milestones and in the transfer of the technology into the continuing CCA activities as part of the DOE TASCS SciDAC2 effort. In addition to these achievements, over the past three years, we have been an active member of the CCA Forum, attending all meetings and serving in several working groups, such as the CCA Toolkit working group, the CQoS working group, and the Tutorial working group. We have contributed significantly to CCA tutorials since SC'04, hosted two CCA meetings, participated in the annual ACTS workshops, and were co-authors on the recent CCA journal paper [24]. There are four main areas where our project has delivered results: component performance instrumentation and measurement, component performance modeling and optimization, performance database and data mining, and online performance monitoring. This final report outlines the achievements in these areas for the entire project period. The submitted progress

  20. Analytical Formulation for Sizing and Estimating the Dimensions and Weight of Wind Turbine Hub and Drivetrain Components

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Parsons, T. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, R. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, K. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Veers, P. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)


    This report summarizes the theory, verification, and validation of a new sizing tool for wind turbine drivetrain components, the Drivetrain Systems Engineering (DriveSE) tool. DriveSE calculates the dimensions and mass properties of the hub, main shaft, main bearing(s), gearbox, bedplate, transformer if up-tower, and yaw system. The level of fi¬ delity for each component varies depending on whether semiempirical parametric or physics-based models are used. The physics-based models have internal iteration schemes based on system constraints and design criteria. Every model is validated against available industry data or finite-element analysis. The verification and validation results show that the models reasonably capture primary drivers for the sizing and design of major drivetrain components.

  1. Recent trends in repair and refurbishing of steam turbine components

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    as weldability of the material, type of damage, availability of a suitable welding technique and welding consumable, possibility of ... (1) Repair of a large component is typically of an urgent and critical nature since the failure of the component may have a .... are shown in figure 7. This shows that over 50% of the incidents are ...

  2. Fatigue Reliability of Casted Wind Turbine Components Due to Defects

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard


    of component are considered and the surface and sub-surface defects categorized. Furthermore, a model to estimate the probability of failure by fatigue due to the defects is proposed. This model is used to estimate the failure location of component and it is compared to models of defect distributions...

  3. Recent trends in repair and refurbishing of steam turbine components

    Indian Academy of Sciences (India)

    The repair and refurbishing of steam generator components is discussed from the perspective of repair welding philosophy including applicable codes and regulations. Some case histories of repair welding of steam generator components are discussed with special emphasis on details of repair welding of cracked steam ...

  4. Considerations regarding a thermopower installation having a diesel engine with hydrogen combustion, and steam turbine

    International Nuclear Information System (INIS)

    Cardu, Mircea; Negrea, Vilgiliu Dan; Baica, Malvina


    In this paper the authors make a comparative analysis of thermopower installations operated with hydrogen and oxygen, installations appropriate to cover the daily peak loads in a power system. Comparing the type of installation having rotating motors and a gas turbine or steam turbine with an installation format of diesel engine and steam turbine, we argue the latter alternative as preferable. Here, we discuss in more detail the installation with diesel engine in which the oxygen and hydrogen obtained from water electrolysis are recombined. In order to utilize completely the steam energy resulting from this recombination after it is released from the diesel engine, this energy is used in a steam turbine with condensation. In this way the entire installation has an effective efficiency about 50% larger as compared with the former alternative cited above.

  5. Numerical analysis of flow interaction of turbine system in two-stage turbocharger of internal combustion engine (United States)

    Liu, Y. B.; Zhuge, W. L.; Zhang, Y. J.; Zhang, S. Y.


    To reach the goal of energy conservation and emission reduction, high intake pressure is needed to meet the demand of high power density and high EGR rate for internal combustion engine. Present power density of diesel engine has reached 90KW/L and intake pressure ratio needed is over 5. Two-stage turbocharging system is an effective way to realize high compression ratio. Because turbocharging system compression work derives from exhaust gas energy. Efficiency of exhaust gas energy influenced by design and matching of turbine system is important to performance of high supercharging engine. Conventional turbine system is assembled by single-stage turbocharger turbines and turbine matching is based on turbine MAP measured on test rig. Flow between turbine system is assumed uniform and value of outlet physical quantities of turbine are regarded as the same as ambient value. However, there are three-dimension flow field distortion and outlet physical quantities value change which will influence performance of turbine system as were demonstrated by some studies. For engine equipped with two-stage turbocharging system, optimization of turbine system design will increase efficiency of exhaust gas energy and thereby increase engine power density. However flow interaction of turbine system will change flow in turbine and influence turbine performance. To recognize the interaction characteristics between high pressure turbine and low pressure turbine, flow in turbine system is modeled and simulated numerically. The calculation results suggested that static pressure field at inlet to low pressure turbine increases back pressure of high pressure turbine, however efficiency of high pressure turbine changes little; distorted velocity field at outlet to high pressure turbine results in swirl at inlet to low pressure turbine. Clockwise swirl results in large negative angle of attack at inlet to rotor which causes flow loss in turbine impeller passages and decreases turbine

  6. Component design considerations for gas turbine HTGR waste-heat power plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; Vrable, D.L.


    Component design considerations are described for the ammonia waste-heat power conversion system of a large helium gas-turbine nuclear power plant under development by General Atomic Company. Initial component design work was done for a reference plant with a 3000-MW(t) High-Temperature Gas-Cooled Reactor (HTGR), and this is discussed. Advanced designs now being evaluated include higher core outlet temperature, higher peak system pressures, improved loop configurations, and twin 4000-MW(t) reactor units. Presented are the design considerations of the major components (turbine, condenser, heat input exchanger, and pump) for a supercritical ammonia Rankine waste heat power plant. The combined cycle (nuclear gas turbine and waste-heated plant) has a projected net plant efficiency of over 50 percent. While specifically directed towards a nuclear closed-cycle helium gas-turbine power plant (GT-HTGR), it is postulated that the bottoming waste-heat cycle component design considerations presented could apply to other low-grade-temperature power conversion systems such as geothermal plants

  7. Modern technical diagnostic system for the main components of powerful turbine generator

    International Nuclear Information System (INIS)

    Ezovit, G.P.; Uglyarenko, V.P.; Burlaka, S.I.; Goroz, N.I.; Orinin, S.E.; Komaritsa, V.N.; Zav'yalov, D.N.; Mazurenko, O.A.


    The modern diagnostic system to monitor the technical state of a powerful turbine generator is considered. This system permits the detection of defects in its main components and cooling system at the early stage of their development, prevention of damage and, as a consequence, emergency shutdown of nuclear power units

  8. Evaluation of material integrity on electricity power steam generator cycles (turbine casing) component

    International Nuclear Information System (INIS)

    Histori; Benedicta; Farokhi; S A, Soedardjo; Triyadi, Ari; Natsir, M


    The evaluation of material integrity on power steam generator cycles component was done. The test was carried out on casing turbine which is made from Inconel 617. The tested material was taken from t anjung Priok plant . The evaluation was done by metallography analysis using microscope with magnification of 400. From the result, it is shown that the material grains are equiaxed

  9. Vibration Monitoring of Gas Turbine Engines: Machine-Learning Approaches and Their Challenges

    Directory of Open Access Journals (Sweden)

    Ioannis Matthaiou


    Full Text Available In this study, condition monitoring strategies are examined for gas turbine engines using vibration data. The focus is on data-driven approaches, for this reason a novelty detection framework is considered for the development of reliable data-driven models that can describe the underlying relationships of the processes taking place during an engine’s operation. From a data analysis perspective, the high dimensionality of features extracted and the data complexity are two problems that need to be dealt with throughout analyses of this type. The latter refers to the fact that the healthy engine state data can be non-stationary. To address this, the implementation of the wavelet transform is examined to get a set of features from vibration signals that describe the non-stationary parts. The problem of high dimensionality of the features is addressed by “compressing” them using the kernel principal component analysis so that more meaningful, lower-dimensional features can be used to train the pattern recognition algorithms. For feature discrimination, a novelty detection scheme that is based on the one-class support vector machine (OCSVM algorithm is chosen for investigation. The main advantage, when compared to other pattern recognition algorithms, is that the learning problem is being cast as a quadratic program. The developed condition monitoring strategy can be applied for detecting excessive vibration levels that can lead to engine component failure. Here, we demonstrate its performance on vibration data from an experimental gas turbine engine operating on different conditions. Engine vibration data that are designated as belonging to the engine’s “normal” condition correspond to fuels and air-to-fuel ratio combinations, in which the engine experienced low levels of vibration. Results demonstrate that such novelty detection schemes can achieve a satisfactory validation accuracy through appropriate selection of two parameters of the

  10. Statistical analysis of manufacturing defects on fatigue life of wind turbine casted Component

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard; Mukherjee, Krishnendu


    and size of defects in the casted components and is therefore rather uncertain and needs to be described by stochastic models. Uncertainties related to such defects influence prediction of the fatigue strengths and are therefore important in modelling and assessment of the reliability of wind turbine......Wind turbine components experience heavily variable loads during its lifetime and fatigue failure is a main failure mode of casted components during their design working life. The fatigue life is highly dependent on the microstructure (grain size and graphite form and size), number, type, location...... components. The defect distribution is usually affected by the manufacturing process. In this paper, two methods of casting, sand casting and chill casting are considered. These are compared in statistical analyses of a large number of representative test samples using two basic stochastic models...

  11. Statistical analysis of manufacturing defects on fatigue life of wind turbine casted Component

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard; Mukherjee, Krishnendu


    Wind turbine components experience heavily variable loads during its lifetime and fatigue failure is a main failure mode of casted components during their design working life. The fatigue life is highly dependent on the microstructure (grain size and graphite form and size), number, type, location...... and size of defects in the casted components and is therefore rather uncertain and needs to be described by stochastic models. Uncertainties related to such defects influence prediction of the fatigue strengths and are therefore important in modelling and assessment of the reliability of wind turbine...... components. The defect distribution is usually affected by the manufacturing process. In this paper, two methods of casting, sand casting and chill casting are considered. These are compared in statistical analyses of a large number of representative test samples using two basic stochastic models...

  12. Statistical analysis of manufacturing defects on fatigue life of wind turbine casted Component

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard; Mukherjee, Krishnendu


    components. The defect distribution is usually affected by the manufacturing process. In this paper, two methods of casting, sand casting and chill casting are considered. These are compared in statistical analyses of a large number of representative test samples using two basic stochastic models......Wind turbine components experience heavily variable loads during its lifetime and fatigue failure is a main failure mode of casted components during their design working life. The fatigue life is highly dependent on the microstructure (grain size and graphite form and size), number, type, location...... and size of defects in the casted components and is therefore rather uncertain and needs to be described by stochastic models. Uncertainties related to such defects influence prediction of the fatigue strengths and are therefore important in modelling and assessment of the reliability of wind turbine...

  13. Review of the DOE/NASA wind turbine engineering information system (United States)

    Neustadter, H. E.; Spera, D. A.


    A statistical analysis of data obtained from the Technology and Engineering Information Systems was made. The systems analyzed consist of the following elements: (1) sensors which measure critical parameters (e.g., wind speed and direction, output power, blade loads and component vibrations); (2) remote multiplexing units (RMUs) on each wind turbine which frequency-modulate, multiplex and transmit sensor outputs; (3) on-site instrumentation to record, process and display the sensor output; and (4) statistical analysis of data. Two examples of the capabilities of these systems are presented. The first illustrates the standardized format for application of statistical analysis to each directly measured parameter. The second shows the use of a model to estimate the variability of the rotor thrust loading, which is a derived parameter. Previously announced in STAR as N82-23696

  14. On risk-based operation and maintenance of offshore wind turbine components

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard


    Operation and maintenance are significant contributors to the cost of energy for offshore wind turbines. Optimal planning could rationally be based on Bayesian pre-posterior decision theory, and all costs through the lifetime of the structures should be included. This paper contains a study...... of a generic case where the costs are evaluated for a single wind turbine with a single component. Costs due to inspections, repairs, and lost production are included in the model. The costs are compared for two distinct maintenance strategies, namely with and without inclusion of periodic imperfect...

  15. 14 CFR 135.383 - Large transport category airplanes: Turbine engine powered: En route limitations: Two engines... (United States)


    ... in the Airplane Flight Manual, allows the airplane to fly from the point where the two engines are... the Airplane Flight Manual, allows the airplane to fly from the point where the two engines are... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine...

  16. Gas turbine blades and disks. Materials and component behaviour

    International Nuclear Information System (INIS)


    This progress report summarizes the research results obtained by the special research programme 339 in the years 1988 and 1989. Emphasis is given to the following aspects and problems: Optimisation of structure, protective coatings, connection between structure parameters and mechanical materials behaviour, tribologic materials and component behaviour, impacts of overall loads, and of stress and deformation state in the inelastic regime under mechanical and thermal load, and impacts of the manufacturing process on component behaviour, quality assurance. Eleven of the fifteen papers of the report have been separately analysed for the ENERGY database, and thirteen for the DELURA database. (orig./MM) With 191 figs., 13 tabs [de

  17. Converging flow joint insert system at an intersection between adjacent transitions extending between a combustor and a turbine assembly in a gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Robert T.


    A transition duct system (100) for routing a gas flow from a combustor (102) to the first stage (104) of a turbine section (106) in a combustion turbine engine (108), wherein the transition duct system (100) includes one or more converging flow joint inserts (120) forming a trailing edge (122) at an intersection (124) between adjacent transition ducts (126, 128) is disclosed. The transition duct system (100) may include a transition duct (126, 128) having an internal passage (130) extending between an inlet (132, 184) to an outlet (134, 186) and may expel gases into the first stage turbine (104) with a tangential component. The converging flow joint insert (120) may be contained within a converging flow joint insert receiver (136) and disconnected from the transition duct bodies (126, 128) by which the converging flow joint insert (120) is positioned. Being disconnected eliminates stress formation within the converging flow joint insert (120), thereby enhancing the life of the insert. The converging flow joint insert (120) may be removable such that the insert (120) can be replaced once worn beyond design limits.

  18. Reliability of Wind Turbine Components-Solder Elements Fatigue Failure

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard


    The physics of failure for electrical components due to temperature loading is described. The main focus is on crack propagation in solder joints and damage accumulation models based on the Miner’s rule. Two models are proposed that describe the initial accumulated plastic strain depending...

  19. Recent trends in repair and refurbishing of steam turbine components

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    the component may have a devastating effect on industrial or financial activity, jeopardise human safety, and have serious ... replacement cost, prolonged schedule disruption and, therefore, considerable financial burden. (3) Repair is ... sometimes accounts for a disproportionately large portion of the repair budget. Study of.

  20. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Hesam Mirzaei Rafsanjani


    Full Text Available Fatigue failure is one of the main failure modes for wind turbine drivetrain components made of cast iron. The wind turbine drivetrain consists of a variety of heavily loaded components, like the main shaft, the main bearings, the gearbox and the generator. The failure of each component will lead to substantial economic losses such as cost of lost energy production and cost of repairs. During the design lifetime, the drivetrain components are exposed to variable loads from winds and waves and other sources of loads that are uncertain and have to be modeled as stochastic variables. The types of loads are different for offshore and onshore wind turbines. Moreover, uncertainties about the fatigue strength play an important role in modeling and assessment of the reliability of the components. In this paper, a generic stochastic model for fatigue failure of cast iron components based on fatigue test data and a limit state equation for fatigue failure based on the SN-curve approach and Miner’s rule is presented. The statistical analysis of the fatigue data is performed using the Maximum Likelihood Method which also gives an estimate of the statistical uncertainties. Finally, illustrative examples are presented with reliability analyses depending on various stochastic models and partial safety factors.

  1. Compact Combustor Integrated (CI) with Compressor and Turbine for Perspective Turbojet Engine (United States)

    Strokin, V. N.; Volkov, S. A.; Ljashenko, V. P.; Popov, V. I.; Startzev, A. N.; Nigmatullin, R. Z.; Shilova, T. V.; Belikov, U. V.


    For several years, CIAM has conducted comprehensive work on the development the combustor integrated (CI) with air swirling. This project involved an integrated development of three components: diffuser, combustion chamber and nozzle guide vanes of turbine to reduce their length and, respectively, the length of the engine and obtain high performance elements with low emissions of harmful substances. The new frontal device was proposed for CI combustor. The design optimization of this type combustor was conducted in the compartments and in a full-size combustion chamber. It was shown the possibility of obtaining high combustion efficiency and low NOx emissions at a short length on cruise condition. By a simplified model of the frontal device it was shown experimentally that the proposed device provided a lighting-up and flame spreading in a wide range of equivalence ratio ER (ER > 0.014) at idling. It was shown that short vane diffuser with moderate swirling ensured high parameters of the combustion chamber. The use of residual swirling of the combustion products at the exit of combustor allows reducing the size, or the number of nozzle guide vanes of the turbine. In General, the use of the swirling of the air stream gives a possibility of total length reduction for all three elements by about 20 – 25 %.

  2. Distributions of grain parameters on the surface of aircraft engine turbine blades

    Directory of Open Access Journals (Sweden)

    J. Chmiela


    Full Text Available In the quality assurance system for components cast using the lost wax method, the object of evaluation is the grain size on the surface of the casting. This paper describes a new method for evaluating the primary grain parameters on the surface of aircraft engine turbine blades. Effectiveness of the method has been tested on two macrostructures distinguished by a high degree of diversity in the grain size. The grounds for evaluating the grain parameters consist of geometric measurement of the turbine blade using a laser profilometer and of approximation of the measurement results using a polynomial of a proper degree. The so obtained analytical non-planar surface serves as a reference point for an assessment of the parameters of grains observed on the real blade surface of a variable curvature. The aspects subjected to evaluation included: the grain areas, shape and elongation coefficients of grains on a non-planar surface of the blade airfoil, using measurements taken on a perpendicular projection by means of a stereoscopic microscope and image analysis methods, and by making calculations using the Mathematica® package.

  3. Multiroller traction drive speed reducer: Evaluation for automotive gas turbine engine (United States)

    Rohn, D. A.; Anderson, N. E.; Loewenthal, S. H.


    Tests were conducted on a nominal 14:1 fixed-ratio Nasvytis multiroller traction drive retrofitted as the speed reducer in an automotive gas turbine engine. Power turbine speeds of 45,000 rpm and a drive output power of 102 kW (137 hp) were reached. The drive operated under both variable roller loading (proportional to torque) and fixed roller loading (automatic loading mechanism locked). The drive operated smoothly and efficiently as the engine speed reducer. Engine specific fuel consumption with the traction speed reducer was comparable to that with the original helical gearset.

  4. A Plan for Revolutionary Change in Gas Turbine Engine Control System Architecture (United States)

    Culley, Dennis E.


    The implementation of Distributed Engine Control technology on the gas turbine engine has been a vexing challenge for the controls community. A successful implementation requires the resolution of multiple technical issues in areas such as network communications, power distribution, and system integration, but especially in the area of high temperature electronics. Impeding the achievement has been the lack of a clearly articulated message about the importance of the distributed control technology to future turbine engine system goals and objectives. To resolve these issues and bring the technology to fruition has, and will continue to require, a broad coalition of resources from government, industry, and academia. This presentation will describe the broad challenges facing the next generation of advanced control systems and the plan which is being put into action to successfully implement the technology on the next generation of gas turbine engine systems.

  5. Apparatus and method for temperature mapping a turbine component in a high temperature combustion environment (United States)

    Baleine, Erwan; Sheldon, Danny M


    Method and system for calibrating a thermal radiance map of a turbine component in a combustion environment. At least one spot (18) of material is disposed on a surface of the component. An infrared (IR) imager (14) is arranged so that the spot is within a field of view of the imager to acquire imaging data of the spot. A processor (30) is configured to process the imaging data to generate a sequence of images as a temperature of the combustion environment is increased. A monitor (42, 44) may be coupled to the processor to monitor the sequence of images of to determine an occurrence of a physical change of the spot as the temperature is increased. A calibration module (46) may be configured to assign a first temperature value to the surface of the turbine component when the occurrence of the physical change of the spot is determined.

  6. Teaching Risk Analysis in an Aircraft Gas Turbine Engine Design Capstone Course (United States)


    fan blade flutter, fan rotor-to- stator rubbing which ignited titatium fires, and turbine rotor failures. Drewes2 argued that the “F100 entered...development costs, engine production costs, and scheduling (Byerley A. R., 2013) as well as the linkage between turbine inlet temperature, blade cooling...effectiveness, and maximum blade material temperature (Byerley A. R., 2015). This paper will provide a clearer explanation of the generic risk

  7. Turbulence descriptors for scaling fatigue loading spectra of wind turbine structural components

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, N D


    The challenge for the designer in developing a new wind turbine is to incorporate sufficient strength in its components to safely achieve a 20- or 30-year service life. To accomplish this, the designer must understand the load and stress distributions (in a statistical sense at least) that the turbine is likely to encounter during its operating life. Sources of loads found in the normal operating environment include start/stop cycles, emergency shutdowns, the turbulence environment associated with the specific site and turbine location, and extreme or ``rare`` events that can challenge the turbine short-term survivability. Extreme events can result from an operational problem (e.g., controller failure) or violent atmospheric phenomena (tornadic circulations, strong gust fronts). For the majority of the operating time, however, the character of the turbulent inflow is the dominant source of the alternating stress distributions experienced by the structural components. Methods of characterizing or scaling the severity of the loading spectra (or the rate of fatigue damage accumulation) must be applicable to a wide range of turbulent inflow environments -- from solitary isolation to the complex flows associated with multi-row wind farms. The metrics chosen must be related to the properties of the turbulent inflow and independent of the nature of local terrain features.

  8. Non-invasive temperature measurements by neutron diffraction in aero-engine components

    International Nuclear Information System (INIS)

    Holden, T.M.; Root, J.H.; Tennant, D.C.; Leggett, D.


    A requirement exists in the aeronautical industry for measuring temperature non-invasively in critical components, such as the turbine disc in an operating engine. Neutron diffraction, unique among nuclear techniques, offers the possibility of measuring both temperature and strain within an operating engine by virtue of the high penetration of neutrons through industrial materials. Static diffraction experiments on Waspaloy and Ti6Al4V showed, by comparison with thermocouples, that both the diffraction peak position and the peak intensity can measure the temperature to within ±6 K at 800 K

  9. Fatigue Reliability Analysis of Wind Turbine Cast Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard; Fæster, Søren


    facilities can affect the verification of properties by testing. Hence, it is important to have a tool to identify which foundry, cutting and/or test facility produces components which, based on the relevant uncertainties, have the largest expected fatigue life or, alternatively, have the largest reliability...... to be used for decision-making if additional cost considerations are added. In this paper, a statistical approach is presented based on statistical hypothesis testing and analysis of covariance (ANCOVA) which can be applied to compare different groups (manufacturers, suppliers, test facilities, etc......) for fatigue assessment are estimated based on the statistical analyses and by introduction of physical, model and statistical uncertainties used for the illustration of reliability assessment....

  10. Spectral Separation of the Turbofan Engine Coherent Combustion Noise Component (United States)

    Miles, Jeffrey Hilton


    The core noise components of a dual spool turbofan engine (Honeywell TECH977) were separated by the use of a coherence function. A source location technique based on adjusting the time delay between the combustor pressure sensor signal and the far-field microphone signal to maximize the coherence and remove as much variation of the phase angle with frequency as possible was used. While adjusting the time delay to maximize the coherence and minimize the cross spectrum phase angle variation with frequency, the discovery was made that for the 130 microphone a 90.027 ms time shift worked best for the frequency band from 0 to 200 Hz while a 86.975 ms time shift worked best for the frequency band from 200 to 400 Hz. Since the 0 to 200 Hz band signal took more time to travel the same distance, it is slower than the 200 to 400 Hz band signal. This suggests the 0 to 200 Hz coherent cross spectral density band is partly due to indirect combustion noise attributed to hot spots interacting with the turbine. The signal in the 200 to 400 Hz frequency band is attributed mostly to direct combustion noise.

  11. High-cycle notch sensitivity of alloy steel ASTM A743 CA6NM used in hydrogenator turbine components

    Directory of Open Access Journals (Sweden)

    José Alexander Araújo


    Full Text Available The presence of notches and other stress concentrations in turbine blades and other notch hydraulic components is a current problem in engineering. It causes a reduction of endurance limit of material. In that sense, specimens of the ASTM A743 CA6NM alloy steel using in several hydrogenator turbine components was tested. The specimens were tested under uniaxial fatigue loading with a load ratio equal to -1, and the considered stress concentration factors, Kt, values, calculated with respect to net area, were 1.55, 2.04 and 2.42. In order to determine the fatigue limit for such notch type, a reduction data method by Dixon and Mood, Staircase method was used. This approach is based on the assumed target distribution of the fatigue limit. For such geometry at least 8 specimens were tested. In addition, the Peterson and Neuber’s notch fatigue factor were compared through fatigue notch reduction factor, Kf, obtained from experimental data. According to results obtained it was possible to conclude that the tested material is less sensitive to notches than the prediction of the Peterson and Neuber’s empirical models.

  12. 75 FR 2159 - In the Matter of Certain Variable Speed Wind Turbines and Components Thereof; Termination of... (United States)


    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-641] In the Matter of Certain Variable Speed Wind Turbines and Components Thereof; Termination of Investigation With Final Determination of No..., and the sale within the United States after importation of certain variable speed wind turbines and...

  13. Design and test of a small two stage counter-rotating turbine for rocket engine application (United States)

    Huber, F. W.; Branstrom, B. R.; Finke, A. K.; Johnson, P. D.; Rowey, R. J.; Veres, J. P.


    The aerodynamic design and rig test evaluation of a small counter-rotating turbine system is described. The technology represented by this turbine is being developed for application in an advanced upper stage rocket engine turbopump. This engine will employ an oxygen/hydrogen expander cycle and achieve high performance through efficient combustion, high combustion pressure, and high area ratio exhaust nozzle expansion. Engine performance goals require that the turbopump drive turbines achieve high efficiency at low gas flow rates. The low flow rates result in very small airfoil diameter, height and chord. The high efficiency and small size requirements present a challenging turbine design problem. The unconventional approach employed to meet this challenge is described, along with the detailed design process and resulting airfoil configurations. The method and results of full scale aerodynamic performance evaluation testing of both one and two stage configurations, as well as operation without the secondary stage stator are presented. The overall results of this effort illustrate that advanced aerodynamic design tools and hardware fabrication techniques have provided improved capability to produce small high performance turbines for advanced rocket engines.

  14. Toward an engineering model for the aerodynamic forces acting on wind turbine blades in quasisteady standstill and blade installation situations

    DEFF Research Database (Denmark)

    Gaunaa, Mac; Heinz, Joachim Christian; Skrzypinski, Witold Robert


    The crossflow principle is one of the key elements used in engineering models for prediction of the aerodynamic loads on wind turbine blades in standstill or blade installation situations, where the flow direction relative to the wind turbine blade has a component in the direction of the blade span...... direction. In the present work, the performance of the crossflow principle is assessed on the DTU 10MW reference blade using extensive 3D CFD calculations. Analysis of the computational results shows that there is only a relatively narrow region in which the crossflow principle describes the aerodynamic...... for the key aerodynamic loads in crossflow situations. The general validity of this model for other blade shapes should be investigated in subsequent works....

  15. A Novel Data Hierarchical Fusion Method for Gas Turbine Engine Performance Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Feng Lu


    Full Text Available Gas path fault diagnosis involves the effective utilization of condition-based sensor signals along engine gas path to accurately identify engine performance failure. The rapid development of information processing technology has led to the use of multiple-source information fusion for fault diagnostics. Numerous efforts have been paid to develop data-based fusion methods, such as neural networks fusion, while little research has focused on fusion architecture or the fusion of different method kinds. In this paper, a data hierarchical fusion using improved weighted Dempster–Shaffer evidence theory (WDS is proposed, and the integration of data-based and model-based methods is presented for engine gas-path fault diagnosis. For the purpose of simplifying learning machine typology, a recursive reduced kernel based extreme learning machine (RR-KELM is developed to produce the fault probability, which is considered as the data-based evidence. Meanwhile, the model-based evidence is achieved using particle filter-fuzzy logic algorithm (PF-FL by engine health estimation and component fault location in feature level. The outputs of two evidences are integrated using WDS evidence theory in decision level to reach a final recognition decision of gas-path fault pattern. The characteristics and advantages of two evidences are analyzed and used as guidelines for data hierarchical fusion framework. Our goal is that the proposed methodology provides much better performance of gas-path fault diagnosis compared to solely relying on data-based or model-based method. The hierarchical fusion framework is evaluated in terms to fault diagnosis accuracy and robustness through a case study involving fault mode dataset of a turbofan engine that is generated by the general gas turbine simulation. These applications confirm the effectiveness and usefulness of the proposed approach.

  16. Turbine superalloy component defect repair with low-temperature curing resin (United States)

    Hunt, David W.; Allen, David B.


    Voids, cracks or other similar defects in substrates of thermal barrier coated superalloy components, such as turbine blades or vanes, are filled with resin, without need to remove substrate material surrounding the void by grinding or other processes. The resin is cured at a temperature under C., eliminating the need for post void-filling heat treatment. The void-filled substrate and resin are then coated with a thermal barrier coating.

  17. Reliability Assessment of Offshore Wind Turbines Considering Faults of Electrical / Mechanical Components

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard


    For offshore wind turbines, the cost contribution to Cost of Energy from inspections and Operation & Maintenance can be substantial, and can be expected to increase when wind farms are placed at deeper water depths, further from the coast and in more harsh environments. Estimates of the reliabili...... is considered and related to reliability estimation by taking into account faults e.g. due to failure of an electrical component or loss of grid....

  18. Turbine Engine Component Analysis: Cantilevered Composite Flat Plate Analysis (United States)


    from the binary OUTPUT2 file. The OUTPUT2 file is not generally created during COSMIC NASTRAN execution, 2 so special DMAP (Direct Matrix Abstraction...finite element analysis codes: ADINA, COSMIC NASTRAN , and MAGNA. Results are compared with theoretical values to verify the finite element codes and...11 4.1 ADINA MODELING .i...................... 11 4.2 COSMIC NASTRAN MODELING ................. 16 4.3 MAGNA MODELING

  19. Feasibility of a Simple Small Wind Turbine with Variable-Speed Regulation Made of Commercial Components

    Directory of Open Access Journals (Sweden)

    Jesús Peláez Vara


    Full Text Available The aim of this study was to propose and evaluate a very small wind turbine (VSWT that competes with commercial grid-connected VSWTs in terms of simplicity, robustness and price. Its main components are a squirrel-cage induction generator (SCIG driven by a frequency converter. The system has a direct-drive shaft, and may be constructed with commercial equipment. Simulation of the wind turbine effect is done with a motor. A control program regulates the variable-speed of rotation through three operational modes: (i to drive the turbine to its optimum operation point; (ii to limit its maximum rotational speed; and (iii to limit the maximum power it generates. Two tests were performed, in order to evaluate the dynamic response of this system under variable wind speeds. The tests demonstrate that the system operates at the optimum operational point of the turbine, and within the set limits of maximum rotational speed and maximum generated power. The drop in performance in relation to its nominal value is about 75%, when operating at 50% of the nominal power. In summary, this VSWT with its proposed control program is feasible and reliable for operating direct-shaft grid-connected VSWTs.

  20. Operation Evaluation Method for Marine Turbine Combustion Engines in Terms of Energetics

    Directory of Open Access Journals (Sweden)

    Dzida Marek


    Full Text Available An evaluation proposal (quantitative determination of any combustion turbine engine operation has been presented, wherein the impact energy occurs at a given time due to Energy conversion. The fact has been taken into account that in this type of internal combustion engines the energy conversion occurs first in the combustion chambers and in the spaces between the blade of the turbine engine. It was assumed that in the combustion chambers occurs a conversion of chemical energy contained in the fuel-air mixture to the internal energy of the produced exhaust gases. This form of energy conversion has been called heat. It was also assumed that in the spaces between the blades of the rotor turbine, a replacement occurs of part of the internal energy of the exhaust gas, which is their thermal energy into kinetic energy conversion of its rotation. This form of energy conversion has been called the work. Operation of the combustion engine has been thus interpreted as a transmission of power receivers in a predetermined time when there the processing and transfer in the form (means of work and heat occurs. Valuing the operation of this type of internal combustion engines, proposed by the authors of this article, is to determine their operation using physical size, which has a numerical value and a unit of measurement called joule-second [joule x second]. Operation of the combustion turbine engine resulting in the performance of the turbine rotor work has been presented, taking into account the fact that the impeller shaft is connected to the receiver, which may be a generator (in the case of one-shaft engine or a propeller of the ship (in the case of two or three shaft engine.

  1. Radiation pyrometer for gas turbine blades. [in LOX turbopump engine (United States)

    Rohy, D. A.; Compton, W. A.


    A turbine blade temperature measuring system for liquid oxygen turbopumps is reported. The system includes a three mode, two-input optical signal processor, interconnecting cable, and four sensor heads. Two of the heads are aperture type, while the other two are lens type. This system is applicable to a temperature range of 1400 to 2200 F.

  2. Simulation and testing of new control methods for achieving low emissions in gas turbine engines

    Energy Technology Data Exchange (ETDEWEB)

    Boyce, P.M.


    In the past few years, development of clean burning land-based industrial gas turbines have been the focus for many manufacturers. This effort lead to the development of the LM6000 dry low emission engine. As a part of the control system, a real time mathematical model of the engine was included. This model is used to control the air and fuel low paths to the engine`s new combustor. A real time simulator was needed to simulate the control system hardware and engine. A brief discussion and some basic concepts of the combustor, along with a full discussion on the development of the real time simulator, follows in this paper.

  3. Prospective gas turbine and combined-cycle units for power engineering (a Review) (United States)

    Ol'khovskii, G. G.


    The modern state of technology for making gas turbines around the world and heat-recovery combined-cycle units constructed on their basis are considered. The progress achieved in this field by Siemens, Mitsubishi, General Electric, and Alstom is analyzed, and the objectives these companies set forth for themselves for the near and more distant future are discussed. The 375-MW gas turbine unit with an efficiency of 40% produced by Siemens, which is presently the largest one, is subjected to a detailed analysis. The main specific features of this turbine are that the gas turbine unit's hot-path components have purely air cooling, due to which the installation has enhanced maneuverability. The single-shaft combined-cycle plant constructed on the basis of this turbine has a capacity of 570 MW and efficiency higher than 60%. Programs adopted by different companies for development of new-generation gas turbine units firing synthesis gas and fitted with low-emission combustion chambers and new cooling systems are considered. Concepts of rotor blades for new gas turbine units with improved thermal barrier coatings and composite blades different parts of which are made of materials selected in accordance with the conditions of their operation are discussed.

  4. Device to lower NOx in a gas turbine engine combustion system (United States)

    Laster, Walter R; Schilp, Reinhard; Wiebe, David J


    An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).

  5. Hybrid vehicle turbine engine technology support (HVTE-TS) project. 1995--1996 annual report

    Energy Technology Data Exchange (ETDEWEB)



    This report presents a summary of technical work accomplished on the Hybrid Vehicle Turbine Engine--Technology Support (HVTE-TS) Project during calendar years 1995 and 1996. Work was performed under an initial National Aeronautics and Space Administration (NASA) contract DEN3-336. As of September 1996 the contract administration was transferred to the US Department of Energy (DoE) Chicago Operations Office, and renumbered as DE-AC02-96EE50553. The purpose of the HVTE-TS program is to develop gas turbine engine technology in support of DoE and automotive industry programs exploring the use of gas turbine generator sets in hybrid-electric automotive propulsion systems. The program focus is directed to the development of four key technologies to be applied to advanced turbogenerators for hybrid vehicles: Structural ceramic materials and processes; Low emissions combustion systems; Regenerators and seals systems; and Insulation systems and processes. 60 figs., 9 tabs.

  6. A Component Mode Synthesis Algorithm for Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Nielsen, Søren R.K.


    A system reduction scheme related to a multibody formulation of wind turbine dynamics is devised. Each substructure is described in its own frame of reference, which is moving freely in the vicinity of the moving substructure, in principle without any constraints to the rigid body part of the mot......A system reduction scheme related to a multibody formulation of wind turbine dynamics is devised. Each substructure is described in its own frame of reference, which is moving freely in the vicinity of the moving substructure, in principle without any constraints to the rigid body part...... of the motion of the substructure. The system reduction is based on a component mode synthesis method, where the response of the internal degrees of freedom of the substructure is described as the quasi-static response induced by the boundary degrees of freedom via the constraint modes superimposed...

  7. Parametric (On-Design) Cycle Analysis for a Separate-Exhaust Turbofan Engine With Interstage Turbine Burner (United States)

    Liew, K. H.; Urip, E.; Yang, S. L.; Siow, Y. K.; Marek, C. J.


    Today s modern aircraft is based on air-breathing jet propulsion systems, which use moving fluids as substances to transform energy carried by the fluids into power. Throughout aero-vehicle evolution, improvements have been made to the engine efficiency and pollutants reduction. The major advantages associated with the addition of ITB are an increase in thermal efficiency and reduction in NOx emission. Lower temperature peak in the main combustor results in lower thermal NOx emission and lower amount of cooling air required. This study focuses on a parametric (on-design) cycle analysis of a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). The ITB considered in this paper is a relatively new concept in modern jet engine propulsion. The ITB serves as a secondary combustor and is located between the high- and the low-pressure turbine, i.e., the transition duct. The objective of this study is to use design parameters, such as flight Mach number, compressor pressure ratio, fan pressure ratio, fan bypass ratio, and high-pressure turbine inlet temperature to obtain engine performance parameters, such as specific thrust and thrust specific fuel consumption. Results of this study can provide guidance in identifying the performance characteristics of various engine components, which can then be used to develop, analyze, integrate, and optimize the system performance of turbofan engines with an ITB. Visual Basic program, Microsoft Excel macrocode, and Microsoft Excel neuron code are used to facilitate Microsoft Excel software to plot engine performance versus engine design parameters. This program computes and plots the data sequentially without forcing users to open other types of plotting programs. A user s manual on how to use the program is also included in this report. Furthermore, this stand-alone program is written in conjunction with an off-design program which is an extension of this study. The computed result of a selected design

  8. Multi-mode diagnosis of a gas turbine engine using an adaptive neuro-fuzzy system

    Directory of Open Access Journals (Sweden)

    Houman HANACHI


    Full Text Available Gas Turbine Engines (GTEs are vastly used for generation of mechanical power in a wide range of applications from airplane propulsion systems to stationary power plants. The gas-path components of a GTE are exposed to harsh operating and ambient conditions, leading to several degradation mechanisms. Because GTE components are mostly inaccessible for direct measurements and their degradation levels must be inferred from the measurements of accessible parameters, it is a challenge to acquire reliable information on the degradation conditions of the parts in different fault modes. In this work, a data-driven fault detection and degradation estimation scheme is developed for GTE diagnostics based on an Adaptive Neuro-Fuzzy Inference System (ANFIS. To verify the performance and accuracy of the developed diagnostic framework on GTE data, an ensemble of measurable gas path parameters has been generated by a high-fidelity GTE model under (a diverse ambient conditions and control settings, (b every possible combination of degradation symptoms, and (c a broad range of signal to noise ratios. The results prove the competency of the developed framework in fault diagnostics and reveal the sensitivity of diagnostic results to measurement noise for different degradation symptoms.

  9. 76 FR 76072 - Revisions to the Export Administration Regulations (EAR): Control of Gas Turbine Engines and... (United States)


    .... 111020646-1645-01] RIN 0694-AF41 Revisions to the Export Administration Regulations (EAR): Control of Gas... of the Administration's Export Control Reform Initiative under which various types of articles... would be used to control gas turbine engines that would remain on the USML. The Administration, however...

  10. A reverse engineering methodology for nickel alloy turbine blades with internal features

    DEFF Research Database (Denmark)

    Gameros, A.; De Chiffre, Leonardo; Siller, H.R.


    The scope of this work is to present a reverse engineering (RE) methodology for freeform surfaces, based on a case study of a turbine blade made of Inconel, including the reconstruction of its internal cooling system. The methodology uses an optical scanner and X-ray computed tomography (CT...

  11. Critical component wear in heavy duty engines

    CERN Document Server

    Lakshminarayanan, P A


    The critical parts of a heavy duty engine are theoretically designed for infinite life without mechanical fatigue failure. Yet the life of an engine is in reality determined by wear of the critical parts. Even if an engine is designed and built to have normal wear life, abnormal wear takes place either due to special working conditions or increased loading.  Understanding abnormal and normal wear enables the engineer to control the external conditions leading to premature wear, or to design the critical parts that have longer wear life and hence lower costs. The literature on wear phenomenon r

  12. Characterization of real gas properties for space shuttle main engine fuel turbine and performance calculations (United States)

    Harloff, G. J.


    Real thermodynamic and transport properties of hydrogen, steam, the SSME mixture, and air are developed. The SSME mixture properties are needed for the analysis of the space shuttle main engine fuel turbine. The mixture conditions for the gases, except air, are presented graphically over a temperature range from 800 to 1200 K, and a pressure range from 1 to 500 atm. Air properties are given over a temperature range of 320 to 500 K, which are within the bounds of the thermodynamics programs used, in order to provide mixture data which is more easily checked (than H2/H2O). The real gas property variation of the SSME mixture is quantified. Polynomial expressions, needed for future computer analysis, for viscosity, Prandtl number, and thermal conductivity are given for the H2/H2O SSME fuel turbine mixture at a pressure of 305 atm over a range of temperatures from 950 to 1140 K. These conditions are representative of the SSME turbine operation. Performance calculations are presented for the space shuttle main engine (SSME) fuel turbine. The calculations use the air equivalent concept. Progress towards obtaining the capability to evaluate the performance of the SSME fuel turbine, with the H2/H2O mixture, is described.

  13. Modal analysis by holographic interferometry of a turbine blade for aircraft engines (United States)

    Caponero, Michele A.; De Angelis, Alberto; Filetti, V. R.; Gammella, S.


    Within the planning stage devoted to realize an innovative turbine for an aircraft engine, an experimental prototype has been made. Several measurements have been carried out to experimentally verify the expected structural and dynamic features of such a prototype. Expected properties were worked out by finite elements method, using the well-known Nastran software package. Natural frequencies and vibration modes of the designed prototype were computed assuming the turbine being in both `dynamic condition' (rotating turbine at running speed and temperature), and in `static condition' (still turbine at room temperature). We present the experimental modal analysis carried out by time average holographic interferometry, being the prototype in `static condition;' results show the modal behavior of the prototype. Experimental and computed modal features are compared to evaluate the reliability of the finite elements model of the turbine used for computation by the Nastran package; reliability of the finite elements model must be checked to validate results computed assuming the turbine blade is in hostile environments, such as `dynamic condition,' which could hardly be tested by experimental measurements. A piezoelectric transducer was used to excite the turbine blade by sine variable pressure. To better estimate the natural vibration modes, two holographic interferograms have been made for each identified natural frequency, being the sensitivity vector directions of the two interferograms perpendicular to each other. The first ten lower natural frequencies and vibration modes of the blade have been analyzed; experimental and computed results are compared and discussed. Experimental and computed values of natural frequencies are in good agrement between each other. Several differences are present between experimental and computed modal patterns; a possible cause of such discrepancies is identified in wrong structural constraints imposed at nodes of the finite elements

  14. Virtual Turbine Engine Test Bench Using MGET Test Device (United States)

    Kho, Seonghee; Kong, Changduk; Ki, Jayoung


    Test device using virtual engine simulator can help reduce the number of engine tests through tests similar to the actual engine tests and repeat the test under the same condition, and thus reduce the engine maintenance and operating costs [1]. Also, as it is possible to easily implement extreme conditions in which it is hard to conduct actual tests, it can prevent engine damages that may happen during the actual engine test under such conditions. In this study, an upgraded MGET test device was developed that can conduct both real and virtual engine test by applying real-time engine model to the existing MGET test device that was developed and has been sold by the Company. This newly developed multi-purpose MGET test device is expected to be used for various educational and research purposes.

  15. Gasoline engine management systems and components

    CERN Document Server


    The call for environmentally compatible and economical vehicles necessitates immense efforts to develop innovative engine concepts. Technical concepts such as gasoline direct injection helped to save fuel up to 20 % and reduce CO2-emissions. Descriptions of the cylinder-charge control, fuel injection, ignition and catalytic emission-control systems provides comprehensive overview of today´s gasoline engines. This book also describes emission-control systems and explains the diagnostic systems. The publication provides information on engine-management-systems and emission-control regulations. Contents History of the automobile.- Basics of the gasoline engine.- Fuels.- Cylinder-charge control systems.- Gasoline injection systems over the years.- Fuel supply.- Manifold fuel injection.- Gasoline direct injection.- Operation of gasoline engines on natural gas.- Ignition systems over the years.- Inductive ignition systems.- Ignition coils.- Spark plugs.- Electronic control.- Sensors.- Electronic control unit.- Exh...

  16. Analytical Study of Component Based Software Engineering


    Iqbaldeep Kaur; Parvinder S. Sandhu; Hardeep Singh; Vandana Saini


    This paper is a survey of current component-based software technologies and the description of promotion and inhibition factors in CBSE. The features that software components inherit are also discussed. Quality Assurance issues in componentbased software are also catered to. The feat research on the quality model of component based system starts with the study of what the components are, CBSE, its development life cycle and the pro & cons of CBSE. Various attributes are s...


    Energy Technology Data Exchange (ETDEWEB)

    Lawrence P. Golan; Richard A. Wenglarz; William H. Day


    In 2002, the U S Department of Energy established a cooperative agreement for a program now designated as the University Turbine Systems (UTSR) Program. As stated in the cooperative agreement, the objective of the program is to support and facilitate development of advanced energy systems incorporating turbines through a university research environment. This document is the first annual, technical progress report for the UTSR Program. The Executive Summary describes activities for the year of the South Carolina Institute for Energy Studies (SCIES), which administers the UTSR Program. Included are descriptions of: Outline of program administrative activities; Award of the first 10 university research projects resulting from a year 2001 RFP; Year 2002 solicitation and proposal selection for awards in 2003; Three UTSR Workshops in Combustion, Aero/Heat Transfer, and Materials; SCIES participation in workshops and meetings to provide input on technical direction for the DOE HEET Program; Eight Industrial Internships awarded to higher level university students; Increased membership of Performing Member Universities to 105 institutions in 40 states; Summary of outreach activities; and a Summary table describing the ten newly awarded UTSR research projects. Attachment A gives more detail on SCIES activities by providing the monthly exceptions reports sent to the DOE during the year. Attachment B provides additional information on outreach activities for 2002. The remainder of this report describes in detail the technical approach, results, and conclusions to date for the UTSR university projects.

  18. More Intelligent Gas Turbine Engines (Des turbomoteurs plus intelligents) (United States)


    généralisé, aux diagnostics et aux pronostics évolués intégrés dans des commandes moteurs intelligentes ainsi que du contrôle distribué avec des capteurs et...des servomoteurs intelligents. Ce rapport met l’accent sur l’identification des besoins en capteurs et en servomoteurs, des technologies actuelles...sur les capteurs et les servomoteurs et des feuilles de route pour les technologies émergeantes du point de vue des performances des turbines à gaz

  19. The start-up of a gas turbine engine using compressed air tangentially fed onto the blades of the basic turbine (United States)

    Slobodyanyuk, L. K.; Dayneko, V. I.


    The use of compressed air was suggested to increase the reliability and motor lifetime of a gas turbine engine. Experiments were carried out and the results are shown in the form of the variation in circumferential force as a function of the entry angle of the working jet onto the turbine blade. The described start-up method is recommended for use with massive rotors.

  20. Aero Engine Component Fault Diagnosis Using Multi-Hidden-Layer Extreme Learning Machine with Optimized Structure

    Directory of Open Access Journals (Sweden)

    Shan Pang


    Full Text Available A new aero gas turbine engine gas path component fault diagnosis method based on multi-hidden-layer extreme learning machine with optimized structure (OM-ELM was proposed. OM-ELM employs quantum-behaved particle swarm optimization to automatically obtain the optimal network structure according to both the root mean square error on training data set and the norm of output weights. The proposed method is applied to handwritten recognition data set and a gas turbine engine diagnostic application and is compared with basic ELM, multi-hidden-layer ELM, and two state-of-the-art deep learning algorithms: deep belief network and the stacked denoising autoencoder. Results show that, with optimized network structure, OM-ELM obtains better test accuracy in both applications and is more robust to sensor noise. Meanwhile it controls the model complexity and needs far less hidden nodes than multi-hidden-layer ELM, thus saving computer memory and making it more efficient to implement. All these advantages make our method an effective and reliable tool for engine component fault diagnosis tool.

  1. Reliability assessment of Wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard


    Wind turbines can be considered as structures that are in between civil engineering structures and machines since they consist of structural components and many electrical and machine components together with a control system. Further, a wind turbine is not a one-of-a-kind structure...... but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...

  2. Qualification of engine-mounted components due to operational vibration

    International Nuclear Information System (INIS)

    Lee, B.J.; Bayat, A.


    The Emergency Diesel Generator (EDG) in a Nuclear Power Plant is considered to be an essential component of the plant for its safe operation. Failures of auxiliary components directly mounted on the EDG creates costly repairs, and compromises the engine's availability and reliability. Although IEEE-323 and Section III of the ASME code require addressing of safety-related components due to mechanically induced vibration, very few guidelines exist in the nuclear industry to show how this may be accounted for. Most engine vendors rely on the empirical experience data as the basis of their evaluation for vibration. Upgrade of engine controls, addition of monitoring components and other engine modifications require design and installation of new mechanical and electrical components to be mounted directly on the engine. This necessitates the evaluation of such components for engine-induced vibration which is considered to be one of the most severe design parameters. This paper presents a methodology to evaluate three categories of components; structural, mechanical, and electrical under engine vibration. The discussion for the characteristics and manipulation of engine vibration profile to be used for each component evaluation is also given. In addition, the suitability of analytical verses testing approaches is discussed for each category. An example application of the methodology is presented for a typical EDG which is currently undergoing major controls upgrade and monitoring modification

  3. Effect of Defects Distribution on Fatigue Life of Wind Turbine Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard


    The reliability of the component of a wind turbine is often highly dependent on defects introduced during the manufacturing process. In this paper a stochastic model is proposed for modeling these defects and the influence on the fatigue life is considered. Basically the defects assumed distributed...... by stochastic models. In this paper, the Poisson distribution for modeling of defects of component are considered and the surface and sub-surface defects categorized. Furthermore, a model to estimate the probability of failure by fatigue due to the defects is proposed. Moreover, the relation between defect...... by a Poisson process / field where the defects form clusters that consist of a parent defect and related defects around the parent defect. The fatigue life is dependent on the number, type, location and size of the defects in the component and is therefore quite uncertain and needs to be described...

  4. Powder Injection Molding of Ceria-Stabilized, Zirconia-Toughened Mullite Parts for UAV Engine Components (United States)

    Martin, Renee; Vick, Michael; Enneti, Ravi K.; Atre, Sundar V.


    Powder injection molding (PIM) of ceria-stabilized, zirconia-toughened mullite composites were investigated in the present article with the goal of obtaining performance enhancement in complex geometries for energy and transportation applications. A powder-polymer mixture (feedstock) was developed and characterized to determine its suitability for fabricating complex components using the PIM process. Test specimens were injection molded and subsequently debound and sintered. The sintered properties indicated suitable properties for engine component applications used in unmanned aerial vehicles (UAVs). The measured feedstock properties were used in computer simulations to assess the mold-filling behavior for a miniature turbine stator. The results from the measurements of rheological and thermal properties of the feedstock combined with the sintered properties of the ceria-stabilized, zirconia-toughened mullite strongly indicate the potential for enhancing the performance of complex geometries used in demanding operating conditions in UAV engines.

  5. Counter-Rotatable Fan Gas Turbine Engine with Axial Flow Positive Displacement Worm Gas Generator (United States)

    Giffin, Rollin George (Inventor); Murrow, Kurt David (Inventor); Fakunle, Oladapo (Inventor)


    A counter-rotatable fan turbine engine includes a counter-rotatable fan section, a worm gas generator, and a low pressure turbine to power the counter-rotatable fan section. The low pressure turbine maybe counter-rotatable or have a single direction of rotation in which case it powers the counter-rotatable fan section through a gearbox. The gas generator has inner and outer bodies having offset inner and outer axes extending through first, second, and third sections of a core assembly. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes and extending radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. A combustor section extends through at least a portion of the second section.

  6. Applications and Limitations of Infrared Thermography in Turbine Cooling Visualisation


    Gribanov, Ilya


    Fierce international competition for efficient power plants and vehiclepropulsion systems has fuelled evolution of gas turbines over the last eightdecades of production. Power output can be increased with Turbine EntryTemperature (TET), which can typically be 500K higher than the melting pointof turbine components. Safe engine operation in such extreme conditions ispartly ensured by coating turbine components with a film of coolant air. Anadditional 1% in coolant air flow can raise TET by 100...

  7. Helicopter Gas Turbine Engine Performance Analysis : A Multivariable Approach

    NARCIS (Netherlands)

    Arush, Ilan; Pavel, M.D.


    Helicopter performance relies heavily on the available output power of the engine(s) installed. A simplistic single-variable analysis approach is often used within the flight-testing community to reduce raw flight-test data in order to predict the available output power under different atmospheric

  8. NASA/GE Energy Efficient Engine low pressure turbine scaled test vehicle performance report (United States)

    Bridgeman, M. J.; Cherry, D. G.; Pedersen, J.


    The low pressure turbine for the NASA/General Electric Energy Efficient Engine is a highly loaded five-stage design featuring high outer wall slope, controlled vortex aerodynamics, low stage flow coefficient, and reduced clearances. An assessment of the performance of the LPT has been made based on a series of scaled air-turbine tests divided into two phases: Block 1 and Block 2. The transition duct and the first two stages of the turbine were evaluated during the Block 1 phase from March through August 1979. The full five-stage scale model, representing the final integrated core/low spool (ICLS) design and incorporating redesigns of stages 1 and 2 based on Block 1 data analysis, was tested as Block 2 in June through September 1981. Results from the scaled air-turbine tests, reviewed herein, indicate that the five-stage turbine designed for the ICLS application will attain an efficiency level of 91.5 percent at the Mach 0.8/10.67-km (35,000-ft), max-climb design point. This is relative to program goals of 91.1 percent for the ICLS and 91.7 percent for the flight propulsion system (FPS).

  9. Effects of chemical equilibrium on turbine engine performance for various fuels and combustor temperatures (United States)

    Tran, Donald H.; Snyder, Christopher A.


    A study was performed to quantify the differences in turbine engine performance with and without the chemical dissociation effects for various fuel types over a range of combustor temperatures. Both turbojet and turbofan engines were studied with hydrocarbon fuels and cryogenic, nonhydrocarbon fuels. Results of the study indicate that accuracy of engine performance decreases when nonhydrocarbon fuels are used, especially at high temperatures where chemical dissociation becomes more significant. For instance, the deviation in net thrust for liquid hydrogen fuel can become as high as 20 percent at 4160 R. This study reveals that computer central processing unit (CPU) time increases significantly when dissociation effects are included in the cycle analysis.

  10. Optimization of Turbine Engine Cycle Analysis with Analytic Derivatives (United States)

    Hearn, Tristan; Hendricks, Eric; Chin, Jeffrey; Gray, Justin; Moore, Kenneth T.


    A new engine cycle analysis tool, called Pycycle, was recently built using the OpenMDAO framework. This tool uses equilibrium chemistry based thermodynamics, and provides analytic derivatives. This allows for stable and efficient use of gradient-based optimization and sensitivity analysis methods on engine cycle models, without requiring the use of finite difference derivative approximation methods. To demonstrate this, a gradient-based design optimization was performed on a multi-point turbofan engine model. Results demonstrate very favorable performance compared to an optimization of an identical model using finite-difference approximated derivatives.

  11. Data-driven fault detection, isolation and estimation of aircraft gas turbine engine actuator and sensors (United States)

    Naderi, E.; Khorasani, K.


    In this work, a data-driven fault detection, isolation, and estimation (FDI&E) methodology is proposed and developed specifically for monitoring the aircraft gas turbine engine actuator and sensors. The proposed FDI&E filters are directly constructed by using only the available system I/O data at each operating point of the engine. The healthy gas turbine engine is stimulated by a sinusoidal input containing a limited number of frequencies. First, the associated system Markov parameters are estimated by using the FFT of the input and output signals to obtain the frequency response of the gas turbine engine. These data are then used for direct design and realization of the fault detection, isolation and estimation filters. Our proposed scheme therefore does not require any a priori knowledge of the system linear model or its number of poles and zeros at each operating point. We have investigated the effects of the size of the frequency response data on the performance of our proposed schemes. We have shown through comprehensive case studies simulations that desirable fault detection, isolation and estimation performance metrics defined in terms of the confusion matrix criterion can be achieved by having access to only the frequency response of the system at only a limited number of frequencies.

  12. Durable fiber optic sensor for gas temperature measurement in the hot section of turbine engines (United States)

    Tregay, George W.; Calabrese, Paul R.; Finney, Mark J.; Stukey, K. B.


    An optical sensor system extends gas temperature measurement capability in turbine engines beyond the present generation of thermocouple technology. The sensing element which consists of a thermally emissive insert embedded inside a sapphire lightguide is capable of operating above the melting point of nickel-based super alloys. The emissive insert generates an optical signal as a function of temperature. Continued development has led to an optically averaged system by combining the optical signals from four individual sensing elements at a single detector assembly. The size of the signal processor module has been reduced to overall dimensions of 2 X 4 X 0.7 inches. The durability of the optical probe design has been evaluated in an electric-utility operated gas turbine under the sponsorship of the Electric Power Research Institute. The temperature probe was installed between the first stage rotor and second stage nozzle on a General Electric MS7001B turbine. The combined length of the ceramic support tube and sensing element reached 1.5 inches into the hot gas stream. A total of over 2000 hours has been accumulated at probe operation temperatures near 1600 degree(s)F. An optically averaged sensor system was designed to replace the existing four thermocouple probes on the upper half of a GE F404 aircraft turbine engine. The system was ground tested for 250 hours as part of GE Aircraft Engines IR&D Optical Engine Program. Subsequently, two flight sensor systems were shipped for use on the FOCSI (Fiber Optic Control System Integration) Program. The optical harnesses, each with four optical probes, measure the exhaust gas temperature in a GE F404 engine.

  13. Powder Injection Molding of Ceramic Engine Components for Transportation (United States)

    Lenz, Juergen; Enneti, Ravi K.; Onbattuvelli, Valmikanathan; Kate, Kunal; Martin, Renee; Atre, Sundar


    Silicon nitride has been the favored material for manufacturing high-efficiency engine components for transportation due to its high temperature stability, good wear resistance, excellent corrosion resistance, thermal shock resistance, and low density. The use of silicon nitride in engine components greatly depends on the ability to fabricate near net-shape components economically. The absence of a material database for design and simulation has further restricted the engineering community in developing parts from silicon nitride. In this paper, the design and manufacturability of silicon nitride engine rotors for unmanned aerial vehicles by the injection molding process are discussed. The feedstock material property data obtained from experiments were used to simulate the flow of the material during injection molding. The areas susceptible to the formation of defects during the injection molding process of the engine component were identified from the simulations. A test sample was successfully injection molded using the feedstock and sintered to 99% density without formation of significant observable defects.

  14. Improved Barriers to Turbine Engine Fragments: Interim Report II

    National Research Council Canada - National Science Library

    Shockey, Donald


    ... the effects of uncontained engine bursts. SRI International is evaluating the ballistic effectiveness of fabric structures made from advanced polymers and developing a computational ability to design fragment barriers...

  15. Distributed Control Architecture for Gas Turbine Engine. Chapter 4 (United States)

    Culley, Dennis; Garg, Sanjay


    The transformation of engine control systems from centralized to distributed architecture is both necessary and enabling for future aeropropulsion applications. The continued growth of adaptive control applications and the trend to smaller, light weight cores is a counter influence on the weight and volume of control system hardware. A distributed engine control system using high temperature electronics and open systems communications will reverse the growing trend of control system weight ratio to total engine weight and also be a major factor in decreasing overall cost of ownership for aeropropulsion systems. The implementation of distributed engine control is not without significant challenges. There are the needs for high temperature electronics, development of simple, robust communications, and power supply for the on-board electronics.

  16. Investigation of the Effect of the Non-uniform Flow Distribution After Compressor of Gas Turbine Engine on Inlet Parameters of the Turbine (United States)

    Orlov, M. Yu; Lukachev, S. V.; Anisimov, V. M.


    The position of combustion chamber between compressor and turbine and combined action of these elements imply that the working processes of all these elements are interconnected. One of the main requirements of the combustion chamber is the formation of the desirable temperature field at the turbine inlet, which can realize necessary durability of nozzle assembly and blade wheel of the first stage of high-pressure turbine. The method of integrated simulation of combustion chamber and neighboring nodes (compressor and turbine) was developed. On the first stage of the study, this method was used to investigate the influence of non-uniformity of flow distribution, occurred after compressor blades on combustion chamber workflow. The goal of the study is to assess the impact of non-uniformity of flow distribution after the compressor on the parameters before the turbine. The calculation was carried out in a transient case for some operation mode of the engine. The simulation showed that the inclusion of compressor has an effect on combustion chamber workflow and allows us to determine temperature field at the turbine inlet and assesses its durability more accurately. In addition, the simulation with turbine showed the changes in flow velocity distribution and pressure in combustion chamber.

  17. Analysis of Thermal Radiation Effects on Temperatures in Turbine Engine Thermal Barrier Coatings (United States)

    Siegel, Robert; Spuckler, Charles M.


    Thermal barrier coatings are important, and in some instances a necessity, for high temperature applications such as combustor liners, and turbine vanes and rotating blades for current and advanced turbine engines. Some of the insulating materials used for coatings, such as zirconia that currently has widespread use, are partially transparent to thermal radiation. A translucent coating permits energy to be transported internally by radiation, thereby increasing the total energy transfer and acting like an increase in thermal conductivity. This degrades the insulating ability of the coating. Because of the strong dependence of radiant emission on temperature, internal radiative transfer effects are increased as temperatures are raised. Hence evaluating the significance of internal radiation is of importance as temperatures are increased to obtain higher efficiencies in advanced engines.

  18. Preliminary investigation of the control of a gas-turbine engine for a helicopter / Richard P. Krebs (United States)

    Krebs, Richard P


    An analog investigation of the power plant for a gas-turbine powered helicopter indicates that currently proposed turbine-propeller engine controls are satisfactory for helicopter application. Power increases from one-half to full rated at altitudes from sea level to 15,000 feet could be made in less than 4 seconds with either the rotor or propellers absorbing the engine power.

  19. Economic aspects of advanced coal-fired gas turbine locomotives (United States)

    Liddle, S. G.; Bonzo, B. B.; Houser, B. C.


    Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.

  20. Application of the aqueous coating suspension for the protection of Gas Turbine Engine parts from corrosion

    Directory of Open Access Journals (Sweden)

    E. G. Ivanov


    Full Text Available The article considers the physical nature of receiving diffusion coatings from aqueous suspensions of various alloys for various conditions and their further exploitation. Structure of coatings, advantages and features of the production of coatings from aqueous suspensions are shown. Based on the analysis of thermodynamic reactions in the systems of elements formulations of aqueous suspensions were developed and practical recommendations for their application to the parts of gas turbine engine were given.

  1. Transition in Gas Turbine Engine Control System Architecture: Modular, Distributed, Embedded (United States)


    er ace • Similar to the way EHSV interfaces are controlled today (ARP490) • Bolt/connector interfaces should be standardized St d d f ti lit l l i ti...AFRL-RZ-WP-TP-2009-2179 TRANSITION IN GAS TURBINE ENGINE CONTROL SYSTEM ARCHITECTURE: MODULAR, DISTRIBUTED, EMBEDDED (POSTPRINT) Bruce...with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS

  2. Analytical Modelling of the Effects of Different Gas Turbine Cooling Techniques on Engine Performance = (United States)

    Uysal, Selcuk Can

    In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).

  3. Utility gas turbine combustor viewing system: Volume 2, Engine operating envelope test: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Morey, W.W.


    This report summarizes the development and field testing of a combustor viewing probe (CVP) as a flame diagnostic monitor for utility gas turbine engines. The prototype system is capable of providing a visual record of combustor flame images, recording flame spectral data, analyzing image and spectral data, and diagnosing certain engine malfunctions. The system should provide useful diagnostic information to utility plant operators, and reduced maintenance costs. The field tests demonstrated the ability of the CVP to monitor combustor flame condition and to relate changes in the engine operation with variations in the flame signature. Engine light off, run up to full speed, the addition of load, and the effect of water injection for NO/sub x/ control could easily be identified on the video monitor. The viewing probe was also valuable in identifying hard startups and shutdowns, as well as transient effects that can seriously harm the engine.

  4. Phase of Photothermal Emission Analysis as a Diagnostic Tool for Thermal Barrier Coatings on Serviceable Engine Components (United States)

    Kakuda, Tyler

    Power generation and aircraft companies are continuously improving the efficiency of gas turbines to meet economic and environmental goals. The trend towards higher efficiency has been achieved in part by raising the operating temperature of engines. At elevated temperatures, engine components are subject to many forms of degradation including oxidation, creep deformation and thermal cycle fatigue. To minimize these harmful effects, ceramic thermal barrier coatings (TBCs) are routinely used to insulate metal components from excessive heat loads. Efforts to make realistic performance assessments of current and candidate coating materials has led to a diverse battery of creative measurement techniques. While it is unrealistic to envision a single measurement that would provide all conceivable information about the TBC, it is arguable that the capability for the single most important measurement is still lacking. A quantitative and nondestructive measurement of the thermal protection offered by a coating is not currently among the measurements one can employ on a serviceable engine part (or even many experimental specimens). In this contribution, phase of photothermal emission analysis (PopTea) is presented as a viable thermal property measurement for serviceable engine components. As it will be shown, PopTea has the versatility to make measurements on gas turbine parts in situ, with the goal of monitoring TBCs over the lifetime of the engine. The main challenges toward this goal are dealing with changes that occur to the TBC during service. Several of the main degradations seen on engine equipment include: aging, surface contamination and infiltration of foreign deposits. Measuring coatings under these conditions, is the impetus of this work. Furthermore, it is demonstrated that PopTea can be used on real engine equipment with measurements made on an actual turbine blade.

  5. Communication Needs Assessment for Distributed Turbine Engine Control (United States)

    Culley, Dennis E.; Behbahani, Alireza R.


    Control system architecture is a major contributor to future propulsion engine performance enhancement and life cycle cost reduction. The control system architecture can be a means to effect net weight reduction in future engine systems, provide a streamlined approach to system design and implementation, and enable new opportunities for performance optimization and increased awareness about system health. The transition from a centralized, point-to-point analog control topology to a modular, networked, distributed system is paramount to extracting these system improvements. However, distributed engine control systems are only possible through the successful design and implementation of a suitable communication system. In a networked system, understanding the data flow between control elements is a fundamental requirement for specifying the communication architecture which, itself, is dependent on the functional capability of electronics in the engine environment. This paper presents an assessment of the communication needs for distributed control using strawman designs and relates how system design decisions relate to overall goals as we progress from the baseline centralized architecture, through partially distributed and fully distributed control systems.

  6. Optimization of Component Based Software Engineering Model Using Neural Network


    Gaurav Kumar; Pradeep Kumar Bhatia


    The goal of Component Based Software Engineering (CBSE) is to deliver high quality, more reliable and more maintainable software systems in a shorter time and within limited budget by reusing and combining existing quality components. A high quality system can be achieved by using quality components, framework and integration process that plays a significant role. So, techniques and methods used for quality assurance and assessment of a component based system is different from those of the tr...

  7. Neutron tomography as a reverse engineering method applied to the IS-60 Rover gas turbine

    CSIR Research Space (South Africa)

    Roos, TH


    Full Text Available Probably the most common method of reverse engineering in mechanical engineering involves measuring the physical geometry of a component using a coordinate measuring machine (CMM). Neutron tomography, in contrast, is used primarily as a non...

  8. Propulsion Health Monitoring of a Turbine Engine Disk using Spin Test Data (United States)

    National Aeronautics and Space Administration — On line detection techniques to monitor the health of rotating engine components are becoming increasingly attractive options to aircraft engine companies in order...

  9. Thermal barrier coatings for thermal insulation and corrosion resistance in industrial gas turbine engines (United States)

    Vogan, J. W.; Hsu, L.; Stetson, A. R.


    Four thermal barrier coatings were subjected to a 500-hour gas turbine engine test. The coatings were two yttria stabilized zirconias, calcium ortho silicate and calcium meta titanate. The calcium silicate coating exhibited significant spalling. Yttria stabilized zirconia and calcium titanate coatings showed little degradation except in blade leading edge areas. Post-test examination showed variations in the coating due to manual application techniques. Improved process control is required if engineering quality coatings are to be developed. The results indicate that some leading edge loss of the coating can be expected near the tip.

  10. Design and optimization of the micro-engine turbine rotor manufacturing using the rapid prototyping technology (United States)

    Vdovin, R. A.; Smelov, V. G.


    This work describes the experience in manufacturing the turbine rotor for the micro-engine. It demonstrates the design principles for the complex investment casting process combining the use of the ProCast software and the rapid prototyping techniques. At the virtual modelling stage, in addition to optimized process parameters, the casting structure was improved to obtain the defect-free section. The real production stage allowed demonstrating the performance and fitness of rapid prototyping techniques for the manufacture of geometrically-complex engine-building parts.

  11. Application of feal intermetallic phase matrix based alloys in the turbine components of a turbocharger

    Directory of Open Access Journals (Sweden)

    J. Cebulski


    Full Text Available This paper presents a possible application of the state-of-the-art alloys based on the FeAl intermetallic phases as materials for the manufacture of heat-proof turbine components in an automobile turbocharger. The research was aimed at determining the resistance to corrosion of Fe40Al5CrTiB alloy in a gaseous environment containing 9 % O2 + 0,2 % HCl + 0,08 % SO2 + N2. First the kinetics of corrosion processes for the considered alloy were determined at the temperatures of 900 °C, 1 000 °C and 1 100 °C, which was followed by validation under operating conditions. To do so, the tests were carried out over a distance of 20 000 km. The last stage involved examination of the surfaces after the test drive. The obtained results are the basis for further research in this field.

  12. Ceramic Matrix Composite Turbine Disk for Rocket Engines (United States)

    Effinger, Mike; Genge, Gary; Kiser, Doug


    NASA has recently completed testing of a ceramic matrix composite (CMC), integrally bladed disk (blisk) for rocket engine turbopumps. The turbopump's main function is to bring propellants from the tank to the combustion chamber at optimal pressures, temperatures, and flow rates. Advantages realized by using CMC blisks are increases in safety by increasing temperature margins and decreasing costs by increasing turbopump performance. A multidisciplinary team, involving materials, design, structural analysis, nondestructive inspection government, academia, and industry experts, was formed to accomplish the 4.5 year effort. This article will review some of the background and accomplishments of the CMC Blisk Program relative to the benefits of this technology.

  13. Electrical Power Grid Delivery Dynamic Analysis: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    Energy Technology Data Exchange (ETDEWEB)

    Diana K. Grauer; Michael E. Reed


    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  14. Influence of Gasoline Components on Engine Efficiency and Emissions

    Directory of Open Access Journals (Sweden)

    Machado Guilherme B.


    Full Text Available For the next few decades, it is expected that fossil fuels and bio-fuels used in internal combustion engines will remain the primary source for vehicular propulsion. This justifies the intense worldwide research and development effort to comply with the challenges of increasing efficiency and reducing internal combustion engine emissions. The modeling of commercial fuels and engine combustion processes presents great challenges. There is also the need to better understand how different fuel components interact and influence engine combustion and performance parameters. In the present work, surrogate fuels were used to implement methodologies to evaluate the influence of fuel components on fuel properties and multiple engine combustion and performance parameters. Special attention is given to engine efficiency and emissions behavior and their correlations to fuel properties and others performance parameters of the engine. The potentials of each component and corresponding chemical group were identified for different engine designs. The results combine information and methodologies that can be used to develop fuels for different applications.

  15. Mechanical and materials engineering of modern structure and component design

    CERN Document Server

    Altenbach, Holm


    This book presents the latest findings on mechanical and materials engineering as applied to the design of modern engineering materials and components. The contributions cover the classical fields of mechanical, civil and materials engineering, as well as bioengineering and advanced materials processing and optimization. The materials and structures discussed can be categorized into modern steels, aluminium and titanium alloys, polymers/composite materials, biological and natural materials, material hybrids and modern nano-based materials. Analytical modelling, numerical simulation, state-of-the-art design tools and advanced experimental techniques are applied to characterize the materials’ performance and to design and optimize structures in different fields of engineering applications.

  16. Performance of small-scale aero-derivative industrial gas turbines derived from helicopter engines

    Directory of Open Access Journals (Sweden)

    Barinyima Nkoi


    Full Text Available This paper considers comparative assessment of simple and advanced cycle small-scale aero-derivative industrial gas turbines derived from helicopter engines. More particularly, investigation was made of technical performance of the small-scale aero-derivative engine cycles based on existing and projected cycles for applications in industrial power generation, combined heat and power concept, rotating equipment driving, and/or allied processes. The investigation was done by carrying out preliminary design and performance simulation of a simple cycle (baseline two-spool small-scale aero-derivative turboshaft engine model, and some advanced counterpart aero-derivative configurations. The advanced configurations consist of recuperated and intercooled/recuperated engine cycles of same nominal power rating of 1.567 MW. The baseline model was derived from the conversion of an existing helicopter engine model. In doing so, design point and off-design point performances of the engine models were established. In comparing their performances, it was observed that to a large extent, the advanced engine cycles showed superior performance in terms of thermal efficiency, and specific fuel consumption. In numerical terms, thermal efficiencies of recuperated engine cycle, and intercooled/recuperated engine cycles, over the simple cycle at DP increased by 13.5%, and 14.5% respectively, whereas specific fuel consumption of these cycles over simple cycle at DP decreased by 12.5%, and 13% respectively. This research relied on open access public literature for data.

  17. Tribological Limitations in Gas Turbine Engines: A Workshop to Identify the Challenges and Set Future Directions (United States)

    DellaCorte, Chris; Pinkus, Oscar


    The following report represents a compendium of selected speaker presentation materials and observations made by Prof O. Pinkus at the NASA/ASME/Industry sponsored workshop entitled "Tribological Limitations in Gas Turbine Engines" held on September 15-17, 1999 in Albany, New York. The impetus for the workshop came from the ASME's Research Committee on Tribology whose goal is to explore new tribological research topics which may become future research opportunities. Since this subject is of current interest to other industrial and government entities the conference received cosponsorship as noted above. The conference was well attended by government, industrial and academic participants. Topics discussed included current tribological issues in gas turbines as well as the potential impact (drawbacks and advantages) of future tribological technologies especially foil air bearings and magnetic beatings. It is hoped that this workshop report may serve as a starting point for continued discussions and activities in oil-free turbomachinery systems.

  18. An experimental evaluation of the performance deficit of an aircraft engine starter turbine (United States)

    Haas, J. E.; Roelke, R. J.; Hermann, P.


    An experimental investigation is presented to determine the aerodynamic performance deficit of a 13.5 - centimeter-tip-diameter aircraft engine starter turbine. The two-phased evaluation comprised both the stator and the stage performance, and the experimental design is described in detail. Data obtained from the investigation of three honeycomb shrouds clearly showed that the filled honeycomb reached a total efficiency of 0.868, 8.2 points higher than the open honeycomb shroud, at design equivalent conditions of speed and blade-jet speed ratio. It was concluded that the use of an open honeycomb shroud caused the large performance deficit for the starter turbine. Further research is suggested to ascertain stator inlet boundary layer measurements.

  19. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    C. W. Spicer


    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  20. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    T. F. Lyon

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  1. Gas Turbine Engine Control Design Using Fuzzy Logic and Neural Networks

    Directory of Open Access Journals (Sweden)

    M. Bazazzadeh


    Full Text Available This paper presents a successful approach in designing a Fuzzy Logic Controller (FLC for a specific Jet Engine. At first, a suitable mathematical model for the jet engine is presented by the aid of SIMULINK. Then by applying different reasonable fuel flow functions via the engine model, some important engine-transient operation parameters (such as thrust, compressor surge margin, turbine inlet temperature, etc. are obtained. These parameters provide a precious database, which train a neural network. At the second step, by designing and training a feedforward multilayer perceptron neural network according to this available database; a number of different reasonable fuel flow functions for various engine acceleration operations are determined. These functions are used to define the desired fuzzy fuel functions. Indeed, the neural networks are used as an effective method to define the optimum fuzzy fuel functions. At the next step, we propose a FLC by using the engine simulation model and the neural network results. The proposed control scheme is proved by computer simulation using the designed engine model. The simulation results of engine model with FLC illustrate that the proposed controller achieves the desired performance and stability.

  2. Effects of a Dual-Loop Exhaust Gas Recirculation System and Variable Nozzle Turbine Control on the Operating Parameters of an Automotive Diesel Engine

    Directory of Open Access Journals (Sweden)

    Giorgio Zamboni


    Full Text Available Reduction of NOX emissions and fuel consumption are the main topics in engine development, forcing the adoption of complex techniques and components, whose interactions have to be clearly understood for proper and reliable operations and management of the whole system. The investigation presented in this paper aimed at the development of integrated control strategies of turbocharging, high pressure (HP and low pressure (LP exhaust gas recirculation (EGR systems for better NOX emissions and fuel consumption, while analyzing their reciprocal influence and the resulting variations of engine quantities. The study was based on an extended experimental program in three part load engine operating conditions. In the paper a comparison of the behavior of the main engine sub-systems (intake and exhaust circuits, turbocharger turbine and compressor, HP and LP EGR loops in a wide range of operating modes is presented and discussed, considering open and closed loop approaches for variable nozzle turbine (VNT control, and showing how these affect engine performance and emissions. The potential of significant decrease in NOX emissions through the integration of HP and LP EGR was confirmed, while a proper VNT management allowed for improved fuel consumption level, if an open loop control scheme is followed. At higher engine speed and load, further actions have to be applied to compensate for observed soot emissions increase.

  3. Nonintrusive performance measurement of a gas turbine engine in real time (United States)

    DeSilva, Upul P.; Claussen, Heiko


    Performance of a gas turbine engine is monitored by computing a mass flow rate through the engine. Acoustic time-of-flight measurements are taken between acoustic transmitters and receivers in the flow path of the engine. The measurements are processed to determine average speeds of sound and gas flow velocities along those lines-of-sound. A volumetric flow rate in the flow path is computed using the gas flow velocities together with a representation of the flow path geometry. A gas density in the flow path is computed using the speeds of sound and a measured static pressure. The mass flow rate is calculated from the gas density and the volumetric flow rate.

  4. Remaining Useful Life Prediction of Gas Turbine Engine using Autoregressive Model

    Directory of Open Access Journals (Sweden)

    Ahsan Shazaib


    Full Text Available Gas turbine (GT engines are known for their high availability and reliability and are extensively used for power generation, marine and aero-applications. Maintenance of such complex machines should be done proactively to reduce cost and sustain high availability of the GT. The aim of this paper is to explore the use of autoregressive (AR models to predict remaining useful life (RUL of a GT engine. The Turbofan Engine data from NASA benchmark data repository is used as case study. The parametric investigation is performed to check on any effect of changing model parameter on modelling accuracy. Results shows that a single sensory data cannot accurately predict RUL of GT and further research need to be carried out by incorporating multi-sensory data. Furthermore, the predictions made using AR model seems to give highly pessimistic values for RUL of GT.

  5. Real Time Engineering Analysis Based on a Generative Component Implementation

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Klitgaard, Jens


    The present paper outlines the idea of a conceptual design tool with real time engineering analysis which can be used in the early conceptual design phase. The tool is based on a parametric approach using Generative Components with embedded structural analysis. Each of these components uses...... without jumping from aesthetics to structural digital design tools and back, but to work with both simultaneously and real time. The engineering level of knowledge is incorporated at a conceptual thinking level, i.e. qualitative information is used in stead of using quantitative information. An example...... with a static determinate roof structure modelled by beam components is given. The example outlines the idea of the tool for conceptual design in early phase of a multidisciplinary design process between architecture and structural engineering....

  6. Fault diagnosis for micro-gas turbine engine sensors via wavelet entropy. (United States)

    Yu, Bing; Liu, Dongdong; Zhang, Tianhong


    Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can't be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient.

  7. Experimental and Numerical Research of a Novel Combustion Chamber for Small Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Hybl R.


    Full Text Available New combustion chamber concept (based on burner JETIS-JET Induced Swirl for small gas turbine engine (up to 200kW is presented in this article. The combustion chamber concept is based on the flame stabilization by the generated swirl swirl generated by two opposite tangentially arranged jet tubes in the intermediate zone, this arrangement replaces air swirler, which is very complicated and expensive part in the scope of small gas turbines with annular combustion chamber. The mixing primary jets are oriented partially opposite to the main exhaust gasses flow, this enhances hot product recirculation and fuel-air mixing necessary for low NOx production and flame stability. To evaluate the designed concept a JETIS burner demonstrator (methane fuel was manufactured and atmospheric experimental measurements of CO, NOx for various fuel nozzles and jet tubes the configuration were done. Results of these experiments and comparison with CFD simulation are presented here. Practical application of the new chamber concept in small gas turbine liquid fuel combustor was evaluated (verified on 3 nozzles planar combustor sector test rig at atmospheric conditions results of the experiment and numerical simulation are also presented.

  8. Effect of technological heredity on the fatigue strength in the manufacture of gas turbine engine blades (United States)

    Smirnov, G. V.; Pronichev, N. D.; Nekhoroshev, M. V.


    In the study, the task of researching of the finishing-strengthening machining stage of gas turbine engine compressor blades manufactured of titanium and nickel-chromium alloys in order to extend their service life was solved. The application of electrochemical pulse machining as a technological heredity barrier was substantiated since this method allows a considerable decrease of the residual stress and surface layer work hardening. To ensure the extended service life of blades, the conditions for the subsequent finishing-strengthening machining were identified.

  9. Analysing the Possible Ways for Short-Term Forcing Gas Turbine Engines in Auxiliary Power Unit

    Directory of Open Access Journals (Sweden)

    N. I. Trotskii


    Full Text Available Using a gas turbine energy unit as an example, the article discusses possible ways for forcing the short-term gas turbine engines (GTE. The introduction explains the need for forcing the air transport and marine GTE in specific driving conditions and offers the main methods. Then it analyzes the three main short-term forcing methods according to GTE power, namely: precompressor water injection, a short-term rise in temperature after the combustion chamber, and feeding an additional compressed air into combustion chamber from the reserve cylinders.The analysis of the water injection method to force a GTE presents the main provisions and calculation results of the cycle, as a function of engine power on the amount of water injected into compressor inlet. It is shown that with water injection into compressor inlet in an amount of 1% of the total airflow there is a 17% power increase in the compressor. It also lists the main implementation problems of this method and makes a comparison with the results of other studies on the water injection into compressor.Next, the article concerns the GTE short-term forcing method through the pre-turbine short-term increase in the gas temperature. The article presents the calculation results of the cycle as a function of the power and the fuel-flow rate on the gas temperature at the turbine inlet. It is shown that with increasing temperature by 80 degrees the engine power increases by 11.2% and requires 11% more fuel. In the analysis of this method arises an issue of thermal barrier coating on the blade surface. The article discusses the most common types of coatings and their main shortcomings. It lists the main challenges and some ways of their solving when using this method to implement the short-term forcing.The last method under consideration is GTE short-term forcing by feeding the compressed air into the combustion chamber from the additional reserve cylinders. It should be noted that this method is

  10. Progress in advanced high temperature turbine materials, coatings, and technology (United States)

    Freche, J. C.; Ault, G. M.


    Advanced materials, coatings, and cooling technology is assessed in terms of improved aircraft turbine engine performance. High cycle operating temperatures, lighter structural components, and adequate resistance to the various environmental factors associated with aircraft gas turbine engines are among the factors considered. Emphasis is placed on progress in development of high temperature materials for coating protection against oxidation, hot corrosion and erosion, and in turbine cooling technology. Specific topics discussed include metal matrix composites, superalloys, directionally solidified eutectics, and ceramics.

  11. Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air (United States)

    Bland, Robert J [Oviedo, FL; Horazak, Dennis A [Orlando, FL


    A gas turbine engine is provided comprising an outer shell, a compressor assembly, at least one combustor assembly, a turbine assembly and duct structure. The outer shell includes a compressor section, a combustor section, an intermediate section and a turbine section. The intermediate section includes at least one first opening and at least one second opening. The compressor assembly is located in the compressor section to define with the compressor section a compressor apparatus to compress air. The at least one combustor assembly is coupled to the combustor section to define with the combustor section a combustor apparatus. The turbine assembly is located in the turbine section to define with the turbine section a turbine apparatus. The duct structure is coupled to the intermediate section to receive at least a portion of the compressed air from the compressor apparatus through the at least one first opening in the intermediate section, pass the compressed air to an apparatus for separating a portion of oxygen from the compressed air to produced vitiated compressed air and return the vitiated compressed air to the intermediate section via the at least one second opening in the intermediate section.

  12. Comparison of electron beam and laser beam powder bed fusion additive manufacturing process for high temperature turbine component materials

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N [ORNL; Kirka, Michael M [ORNL; Pint, Bruce A [ORNL; Ryan, Daniel [Solar Turbines, Inc.


    The evolving 3D printer technology is now at the point where some turbine components could be additive manufactured (AM) for both development and production purposes. However, this will require a significant evaluation program to qualify the process and components to meet current design and quality standards. The goal of the project was to begin characterization of the microstructure and mechanical properties of Nickel Alloy X (Ni-22Cr-18Fe-9Mo) test bars fabricated by powder bed fusion (PBF) AM processes that use either an electron beam (EB) or laser beam (LB) power source. The AM materials produced with the EB and LB processes displayed significant differences in microstructure and resultant mechanical properties. Accordingly, during the design analysis of AM turbine components, the specific mechanical behavior of the material produced with the selected AM process should be considered. Comparison of the mechanical properties of both the EB and LB materials to those of conventionally processed Nickel Alloy X materials indicates the subject AM materials are viable alternatives for manufacture of some turbine components.

  13. Quantification of aldehydes emissions from alternative and renewable aviation fuels using a gas turbine engine (United States)

    Li, Hu; Altaher, Mohamed A.; Wilson, Chris W.; Blakey, Simon; Chung, Winson; Rye, Lucas


    In this research three renewable aviation fuel blends including two HEFA (Hydrotreated Ester and Fatty Acid) blends and one FAE (Fatty Acids Ethyl Ester) blend with conventional Jet A-1 along with a GTL (Gas To Liquid) fuel have been tested for their aldehydes emissions on a small gas turbine engine. Three strong ozone formation precursors: formaldehyde, acetaldehyde and acrolein were measured in the exhaust at different operational modes and compared to neat Jet A-1. The aim is to assess the impact of renewable and alternative aviation fuels on aldehydes emissions from aircraft gas turbine engines so as to provide informed knowledge for the future deployment of new fuels in aviation. The results show that formaldehyde was a major aldehyde species emitted with a fraction of around 60% of total measured aldehydes emissions for all fuels. Acrolein was the second major emitted aldehyde species with a fraction of ˜30%. Acetaldehyde emissions were very low for all the fuels and below the detention limit of the instrument. The formaldehyde emissions at cold idle were up to two to threefold higher than that at full power. The fractions of formaldehyde were 6-10% and 20% of total hydrocarbon emissions in ppm at idle and full power respectively and doubled on a g kg-1-fuel basis.

  14. Skin deposition of nickel, cobalt, and chromium in production of gas turbines and space propulsion components. (United States)

    Julander, Anneli; Skare, Lizbet; Mulder, Marie; Grandér, Margaretha; Vahter, Marie; Lidén, Carola


    Skin exposure to nickel, cobalt, and chromium may cause sensitization and allergic contact dermatitis and it is known that many alloys and platings may release significant amounts of the metals upon contact with skin. Occupational exposure to these sensitizing metals has been studied in different settings with regards to airborne dust and different biological end points, but little is known about deposition on skin from airborne dust and direct contact with materials containing the metals. In this study, skin deposition was studied in 24 workers in an industry for development and manufacturing of gas turbines and space propulsion components. The workers were employed in three departments, representing different exposure scenarios: tools sharpening of hard metal items, production of space propulsion structures, and thermal application of different metal-containing powders. A novel acid wipe sampling technique was used to sample metals from specific skin surfaces on the hands and the forehead of the workers. Total amounts of nickel, cobalt, and chromium were measured by inductively coupled plasma mass spectrometry. The result showed that nickel, cobalt, and chromium could be detected on all skin surfaces sampled. The highest level of nickel was 15 microg cm(-2) h(-1), the highest for cobalt was 4.5 microg cm(-2) h(-1), and for chromium 0.6 microg cm(-2) h(-1). The three departments had different exposures regarding the metals. The highest levels of nickel on the skin of the workers were found in the thermal applications department, cobalt in the tools sharpening department, and chromium in the space propulsion components department. In conclusion, the workers' exposure to the metals was more likely to come from direct skin contact with items, rather than from airborne dust, based on the fact that the levels of metals were much higher on the fingers than on the back side of the hands and the forehead. The skin exposure levels of nickel and cobalt detected are judged

  15. Real Time Engineering Analysis Based on a Generative component Implementation

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Klitgaard, Jens


    The present paper outlines the idea of a conceptual design tool with real time engineering analysis which can be used in the early conceptual design phase. The tool is based on a parametric approach using Generative Components with embedded structural analysis. Each of these components uses...... the geometry, material properties and fixed point characteristics to calculate the dimensions and subsequent feasibility of any architectural design. The proposed conceptual design tool provides the possibility for the architect to work with both the aesthetic as well as the structural aspects of architecture...... with a static determinate roof structure modelled by beam components is given. The example outlines the idea of the tool for conceptual design in early phase of a multidisciplinary design process between architecture and structural engineering....

  16. A probability evaluation method of early deterioration condition for the critical components of wind turbine generator systems

    DEFF Research Database (Denmark)

    Hu, Y.; Li, H.; Liao, X


    This study determines the early deterioration condition of critical components for a wind turbine generator system (WTGS). Due to the uncertainty nature of the fluctuation and intermittence of wind, early deterioration condition evaluation poses a challenge to the traditional vibration...... method of early deterioration condition for critical components based only on temperature characteristic parameters. First, the dynamic threshold of deterioration degree function was proposed by analyzing the operational data between temperature and rotor speed. Second, a probability evaluation method...... of early deterioration condition was presented. Finally, two cases showed the validity of the proposed probability evaluation method in detecting early deterioration condition and in tracking their further deterioration for the critical components....

  17. Thermo-mechanical lifetime assessment of components for 700 °C steam turbine applications

    International Nuclear Information System (INIS)

    Ehrhardt, F.


    In order to increase thermal efficiency, steam turbine technology has been oriented to cover steam inlet temperatures above 700 °C and steam pressures exceeding 350 bar. These temperature levels require the use of nickel and cobalt based alloys. Nickel-based alloys were identified as being suitable for forgeable high-pressure steam turbine rotor materials, including welding procedures for joints between nickel-based alloys and alloyed ferritic steels. Expensive nickel-based alloys should be replaced with conventional heat-resistant steels in applications operating below ∼500-550°C. Since a welded rotor design is favoured, dissimilar metal weldments are required. The research work presented is aimed at the development of thermo-mechanical lifetime assessment methodologies for 700°C steam turbine components. The first main objective was the development of advanced creep-fatigue (CF) lifetime assessment methodologies for the evaluation of Alloy 617 steam turbine rotor features at maximum application temperatures. For the characterisation of the material behaviour under static loading conditions, creep rupture experiments for both medium temperatures and target application temperature have been conducted in order to investigate the influence of ageing treatment on Alloy 617. A creep deformation equation was developed on the basis of a modified Graham-Walles law. Continuous Low Cycle Fatigue (LCF) experiments have been performed. A plasticity model of Chaboche type has been developed. Cyclic/hold experiments have been conducted on Alloy 617. A modification on the creep law was introduced for the description of the material’s decreased creep resistance under combined CF loading. A very promising approach considering plastic and creep-dissipated energy was developed. The effectiveness of this energy exhaustion method was verified with the calculation of endurance curves for continuous cycling LCF and cyclic/hold conditions over a broad range of temperatures, strain

  18. A method for uncertainty quantification in the life prediction of gas turbine components

    Energy Technology Data Exchange (ETDEWEB)

    Lodeby, K.; Isaksson, O.; Jaervstraat, N. [Volvo Aero Corporation, Trolhaettan (Sweden)


    A failure in an aircraft jet engine can have severe consequences which cannot be accepted and high requirements are therefore raised on engine reliability. Consequently, assessment of the reliability of life predictions used in design and maintenance are important. To assess the validity of the predicted life a method to quantify the contribution to the total uncertainty in the life prediction from different uncertainty sources is developed. The method is a structured approach for uncertainty quantification that uses a generic description of the life prediction process. It is based on an approximate error propagation theory combined with a unified treatment of random and systematic errors. The result is an approximate statistical distribution for the predicted life. The method is applied on life predictions for three different jet engine components. The total uncertainty became of reasonable order of magnitude and a good qualitative picture of the distribution of the uncertainty contribution from the different sources was obtained. The relative importance of the uncertainty sources differs between the three components. It is also highly dependent on the methods and assumptions used in the life prediction. Advantages and disadvantages of this method is discussed. (orig.) 11 refs.

  19. Estimation of Efficiency of the Cooling Channel of the Nozzle Blade of Gas-Turbine Engines (United States)

    Vikulin, A. V.; Yaroslavtsev, N. L.; Zemlyanaya, V. A.


    The main direction of improvement of gas-turbine plants (GTP) and gas-turbine engines (GTE) is increasing the gas temperature at the turbine inlet. For the solution of this problem, promising systems of intensification of heat exchange in cooled turbine blades are developed. With this purpose, studies of the efficiency of the cooling channel of the nozzle blade in the basic modification and of the channel after constructive measures for improvement of the cooling system by the method of calorimetry in a liquid-metal thermostat were conducted. The combined system of heat-exchange intensification with the complicated scheme of branched channels is developed; it consists of a vortex matrix and three rows of inclined intermittent trip strips. The maximum value of hydraulic resistance ξ is observed at the first row of the trip strips, which is connected with the effect of dynamic impact of airflow on the channel walls, its turbulence, and rotation by 117° at the inlet to the channels formed by the trip strips. These factors explain the high value of hydraulic resistance equal to 3.7-3.4 for the first row of the trip strips. The obtained effect was also confirmed by the results of thermal tests, i.e., the unevenness of heat transfer on the back and on the trough of the blade is observed at the first row of the trip strips, which amounts 8-12%. This unevenness has a fading character; at the second row of the trip strips, it amounts to 3-7%, and it is almost absent at the third row. At the area of vortex matrix, the intensity of heat exchange on the blade back is higher as compared to the trough, which is explained by the different height of the matrix ribs on its opposite sides. The design changes in the nozzle blade of basic modification made it possible to increase the intensity of heat exchange by 20-50% in the area of the vortex matrix and by 15-30% on the section of inclined intermittent trip strips. As a result of research, new criteria dependences for the

  20. Modular Engine Noise Component Prediction System (MCP) Program Users' Guide (United States)

    Golub, Robert A. (Technical Monitor); Herkes, William H.; Reed, David H.


    This is a user's manual for Modular Engine Noise Component Prediction System (MCP). This computer code allows the user to predict turbofan engine noise estimates. The program is based on an empirical procedure that has evolved over many years at The Boeing Company. The data used to develop the procedure include both full-scale engine data and small-scale model data, and include testing done by Boeing, by the engine manufacturers, and by NASA. In order to generate a noise estimate, the user specifies the appropriate engine properties (including both geometry and performance parameters), the microphone locations, the atmospheric conditions, and certain data processing options. The version of the program described here allows the user to predict three components: inlet-radiated fan noise, aft-radiated fan noise, and jet noise. MCP predicts one-third octave band noise levels over the frequency range of 50 to 10,000 Hertz. It also calculates overall sound pressure levels and certain subjective noise metrics (e.g., perceived noise levels).

  1. Multiple fault detection and diagnosis in a gas turbine using nonlinear principal component analysis and structured residuals


    Rincon-Charris, Amilcar; Quevedo Casín, Joseba Jokin


    Multiple fault detection and diagnosis is a challenging problem because the number of candidates grows exponentially in the number of faults. In add ition, multiple faults in dynamic systems may be hard to detect, because they can mask or compensate each other’s effects. This paper presents the study of the detection and diagnosis of multiple faults in a SR-30 Gas Turbine using nonlinear principal component analys is as the detection method and structured residua...

  2. Additive Manufacturing of Aerospace Propulsion Components (United States)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert


    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  3. Gas fired advanced turbine system (United States)

    Lecren, R. T.; White, D. J.

    The basic concept thus derived from the Ericsson cycle is an intercooled, recuperated, and reheated gas turbine. Theoretical performance analyses, however, showed that reheat at high turbine rotor inlet temperatures (TRIT) did not provide significant efficiency gains and that the 50 percent efficiency goal could be met without reheat. Based upon these findings, the engine concept adopted as a starting point for the gas-fired advanced turbine system is an intercooled, recuperated (ICR) gas turbine. It was found that, at inlet temperatures greater than 2450 F, the thermal efficiency could be maintained above 50%, provided that the turbine cooling flows could be reduced to 7% of the main air flow or lower. This dual and conflicting requirement of increased temperatures and reduced cooling will probably force the abandonment of traditional air cooled turbine parts. Thus, the use of either ceramic materials or non-air cooling fluids has to be considered for the turbine nozzle guide vanes and turbine blades. The use of ceramic components for the proposed engine system is generally preferred because of the potential growth to higher temperatures that is available with such materials.

  4. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing, Part II: Additive Manufacturing and Characterization of Polymer Composites (United States)

    Chuang, Kathy C.; Grady, Joseph E.; Arnold, Steven M.; Draper, Robert D.; Shin, Eugene; Patterson, Clark; Santelle, Tom; Lao, Chao; Rhein, Morgan; Mehl, Jeremy


    This publication is the second part of the three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides-Ultem 9085 and experimental Ultem 1000 mixed with 10% chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25 to 31%. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties. A preliminary modeling was also initiated to predict the mechanical properties of FDM-printed Ultem 9085 coupons in relation to varied raster angles and void contents, using the GRC-developed MAC/GMC program.

  5. Mechanical Behaviour of Inconel 718 Thin-Walled Laser Welded Components for Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Enrico Lertora


    Full Text Available Nickel alloys are very important in many aerospace applications, especially to manufacture gas turbines and aero engine components, where high strength and temperature resistance are necessary. These kinds of alloys have to be welded with high energy density processes, in order to preserve their high mechanical properties. In this work, CO2 laser overlap joints between Inconel 718 sheets of limited thickness in the absence of postweld heat treatment were made. The main application of this kind of joint is the manufacturing of a helicopter engine component. In particular the aim was to obtain a specific cross section geometry, necessary to overcome the mechanical stresses found in these working conditions without failure. Static and dynamic tests were performed to assess the welds and the parent material fatigue life behaviour. Furthermore, the life trend was identified. This research pointed out that a full joint shape control is possible by choosing proper welding parameters and that the laser beam process allows the maintenance of high tensile strength and ductility of Inconel 718 but caused many liquation microcracks in the heat affected zone (HAZ. In spite of these microcracks, the fatigue behaviour of the overlap welds complies with the technical specifications required by the application.

  6. 14 CFR 121.193 - Airplanes: Turbine engine powered: En route limitations: Two engines inoperative. (United States)


    ... the Airplane Flight Manual, allows the airplane to fly from the point where the two engines are...-inoperative, en route, net flight path data in the Airplane Flight Manual, allows the airplane to fly from the... Airplane Flight Manual, allows the airplane to fly from the point where the two engines are assumed to fail...

  7. Green IT engineering components, networks and systems implementation

    CERN Document Server

    Kondratenko, Yuriy; Kacprzyk, Janusz


    This book presents modern approaches to improving the energy efficiency, safety and environmental performance of industrial processes and products, based on the application of advanced trends in Green Information Technologies (IT) Engineering to components, networks and complex systems (software, programmable and hardware components, communications, Cloud and IoT-based systems, as well as IT infrastructures). The book’s 16 chapters, prepared by authors from Greece, Malaysia, Russia, Slovakia, Ukraine and the United Kingdom, are grouped into four sections: (1) The Green Internet of Things, Cloud Computing and Data Mining, (2) Green Mobile and Embedded Control Systems, (3) Green Logic and FPGA Design, and (4) Green IT for Industry and Smart Grids. The book will motivate researchers and engineers from different IT domains to develop, implement and propagate green values in complex systems. Further, it will benefit all scientists and graduate students pursuing research in computer science with a focus on green ...

  8. Engineering issues for plasma facing components of ITER

    International Nuclear Information System (INIS)

    Kuroda, T.


    This paper is devoted to some critical aspects of the plasma facing components of the International Thermonuclear Experimental Reactor (ITER). The specific problems of plasma facing armour material, design features, divertor plates, etc. are emphasized. The high peak power loads present a difficult engineering problem. Carbon-based materials are capable of withstanding high heat loads without melting and have less effects as an impurity into the plasma. (author). 2 refs, 6 figs, 2 tabs

  9. Durability of zirconia thermal-barrier ceramic coatings on air-cooled turbine blades in cyclic jet engine operation (United States)

    Liebert, C. H.; Jacobs, R. E.; Stecura, S.; Morse, C. R.


    Thermal barrier ceramic coatings of stabilized zirconia over a bond coat of Ni Cr Al Y were tested for durability on air cooled turbine rotor blades in a research turbojet engine. Zirconia stabilized with either yttria, magnesia, or calcia was investigated. On the basis of durability and processing cost, the yttria stabilized zirconia was considered the best of the three coatings investigated.

  10. System definition and analysis gas-fired industrial advanced turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, G.M.


    The objective is to define and analyze an engine system based on the gas fuel Advanced Turbine from Task 3. Using the cycle results of Task 3, a technical effort was started for Task 6 which would establish the definition of the engine flowpath and the key engine component systems. The key engine systems are: gas turbine engine overall flowpath; booster (low pressure compressor); intercooler; high pressure compressor; combustor; high pressure turbine; low pressure turbine and materials; engine system packaging; and power plant configurations. The design objective is to use the GE90 engine as the platform for the GE Industrial Advanced Turbine System. This objective sets the bounds for the engine flowpath and component systems.

  11. Similarity Theory Based Radial Turbine Performance and Loss Mechanism Comparison between R245fa and Air for Heavy-Duty Diesel Engine Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Lei Zhang


    Full Text Available Organic Rankine Cycles using radial turbines as expanders are considered as one of the most efficient technologies to convert heavy-duty diesel engine waste heat into useful work. Turbine similarity design based on the existing air turbine profiles is time saving. Due to totally different thermodynamic properties between organic fluids and air, its influence on turbine performance and loss mechanisms need to be analyzed. This paper numerically simulated a radial turbine under similar conditions between R245fa and air, and compared the differences of the turbine performance and loss mechanisms. Larger specific heat ratio of air leads to air turbine operating at higher pressure ratios. As R245fa gas constant is only about one-fifth of air gas constant, reduced rotating speeds of R245fa turbine are only 0.4-fold of those of air turbine, and reduced mass flow rates are about twice of those of air turbine. When using R245fa as working fluid, the nozzle shock wave losses decrease but rotor suction surface separation vortex losses increase, and eventually leads that isentropic efficiencies of R245fa turbine in the commonly used velocity ratio range from 0.5 to 0.9 are 3%–4% lower than those of air turbine.

  12. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)


    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  13. Optical Methods For Automatic Rating Of Engine Test Components (United States)

    Pritchard, James R.; Moss, Brian C.


    In recent years, increasing commercial and legislative pressure on automotive engine manufacturers, including increased oil drain intervals, cleaner exhaust emissions and high specific power outputs, have led to increasing demands on lubricating oil performance. Lubricant performance is defined by bench engine tests run under closely controlled conditions. After test, engines are dismantled and the parts rated for wear and accumulation of deposit. This rating must be consistently carried out in laboratories throughout the world in order to ensure lubricant quality meeting the specified standards. To this end, rating technicians evaluate components, following closely defined procedures. This process is time consuming, inaccurate and subject to drift, requiring regular recalibration of raters by means of international rating workshops. This paper describes two instruments for automatic rating of engine parts. The first uses a laser to determine the degree of polishing of the engine cylinder bore, caused by the reciprocating action of piston. This instrument has been developed to prototype stage by the NDT Centre at Harwell under contract to Exxon Chemical, and is planned for production within the next twelve months. The second instrument uses red and green filtered light to determine the type, quality and position of deposit formed on the piston surfaces. The latter device has undergone feasibility study, but no prototype exists.

  14. Design of a microprocessor-based Control, Interface and Monitoring (CIM unit for turbine engine controls research (United States)

    Delaat, J. C.; Soeder, J. F.


    High speed minicomputers were used in the past to implement advanced digital control algorithms for turbine engines. These minicomputers are typically large and expensive. It is desirable for a number of reasons to use microprocessor-based systems for future controls research. They are relatively compact, inexpensive, and are representative of the hardware that would be used for actual engine-mounted controls. The Control, Interface, and Monitoring Unit (CIM) contains a microprocessor-based controls computer, necessary interface hardware and a system to monitor while it is running an engine. It is presently being used to evaluate an advanced turbofan engine control algorithm.

  15. The Thermochemical Degradation of Hot Section Materials for Gas Turbine Engines in Alternative-Fuel Combustion Environments (United States)

    Montalbano, Timothy

    Gas turbine engines remain an integral part of providing the world's propulsion and power generation needs. The continued use of gas turbines requires increased temperature operation to reach higher efficiencies and the implementation of alternative fuels for a lower net-carbon footprint. This necessitates evaluation of the material coatings used to shield the hot section components of gas turbines in these new extreme environments in order to understand how material degradation mechanisms change. Recently, the US Navy has sought to reduce its use of fossil fuels by implementing a blended hydroprocessed renewable diesel (HRD) derived from algae in its fleet. To evaluate the material degradation in this alternative environment, metal alloys are exposed in a simulated combustion environment using this blended fuel or the traditional diesel-like fuel. Evaluation of the metal alloys showed the development of thick, porous scales with a large depletion of aluminum for the blend fuel test. A mechanism linking an increased solubility of the scale to the blend fuel test environment will be discussed. For power generation applications, Integrated Gasification Combined Cycle (IGCC) power plants can provide electricity with 45% efficiency and full carbon capture by using a synthetic gas (syngas) derived from coal, biomass, or another carbon feedstock. However, the combustion of syngas is known to cause high water vapor content levels in the exhaust stream with unknown material consequences. To evaluate the effect of increased humidity, air-plasma sprayed (APS), yttria-stabilized zirconia (YSZ) is thermally aged in an environment with and without humidity. An enhanced destabilization of the parent phase by humid aging is revealed by x-ray diffraction (XRD) and Raman spectroscopy. Microstructural analysis by transmission electron microscopy (TEM) and scanning-TEM (STEM) indicate an enhanced coarsening of the domain structure of the YSZ in the humid environment. The enhanced

  16. Fuel nozzle assembly for use in turbine engines and methods of assembling same (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward


    A fuel nozzle for use with a turbine engine is described herein. The fuel nozzle includes a housing that is coupled to a combustor liner defining a combustion chamber. The housing includes an endwall that at least partially defines the combustion chamber. A plurality of mixing tubes extends through the housing for channeling fuel to the combustion chamber. Each mixing tube of the plurality of mixing tubes includes an inner surface that extends between an inlet portion and an outlet portion. The outlet portion is oriented adjacent the housing endwall. At least one of the plurality of mixing tubes includes a plurality of projections that extend outwardly from the outlet portion. Adjacent projections are spaced a circumferential distance apart such that a groove is defined between each pair of circumferentially-apart projections to facilitate enhanced mixing of fuel in the combustion chamber.

  17. Fuel injection assembly for use in turbine engines and method of assembling same (United States)

    Berry, Jonathan Dwight; Johnson, Thomas Edward; York, William David; Uhm, Jong Ho


    A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes an end cover, an endcap assembly, a fluid supply chamber, and a plurality of tube assemblies positioned at the endcap assembly. Each of the tube assemblies includes housing having a fuel plenum and a cooling fluid plenum. The cooling fluid plenum is positioned downstream from the fuel plenum and separated from the fuel plenum by an intermediate wall. The plurality of tube assemblies also include a plurality of tubes that extends through the housing. Each of the plurality of tubes is coupled in flow communication with the fluid supply chamber and a combustion chamber positioned downstream from the tube assembly. The plurality of tube assemblies further includes an aft plate at a downstream end of the cooling fluid plenum. The plate includes at least one aperture.

  18. Combustor assembly for use in a turbine engine and methods of assembling same (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward


    A fuel nozzle assembly for use with a turbine engine is described herein. The fuel nozzle assembly includes a plurality of fuel nozzles positioned within an air plenum defined by a casing. Each of the plurality of fuel nozzles is coupled to a combustion liner defining a combustion chamber. Each of the plurality of fuel nozzles includes a housing that includes an inner surface that defines a cooling fluid plenum and a fuel plenum therein, and a plurality of mixing tubes extending through the housing. Each of the mixing tubes includes an inner surface defining a flow channel extending between the air plenum and the combustion chamber. At least one mixing tube of the plurality of mixing tubes including at least one cooling fluid aperture for channeling a flow of cooling fluid from the cooling fluid plenum to the flow channel.

  19. Acoustic transducer in system for gas temperature measurement in gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    DeSilva, Upul P.; Claussen, Heiko


    An apparatus for controlling operation of a gas turbine engine including at least one acoustic transmitter/receiver device located on a flow path boundary structure. The acoustic transmitter/receiver device includes an elongated sound passage defined by a surface of revolution having opposing first and second ends and a central axis extending between the first and second ends, an acoustic sound source located at the first end, and an acoustic receiver located within the sound passage between the first and second ends. The boundary structure includes an opening extending from outside the boundary structure to the flow path, and the second end of the surface of revolution is affixed to the boundary structure at the opening for passage of acoustic signals between the sound passage and the flow path.

  20. Improved impact-resistant boron/aluminum composites for use as turbine engine fan blades (United States)

    Mcdanels, D. L.; Signorelli, R. A.


    Thin-sheet Charpy and Izod impact tests and standard full-size Charpy impact tests were conducted on unidirectional and angleply composites containing 4, 5.6 and 8 mil boron in 1100, 2024, 5052 and 6061 Al matrices. Impact failure modes of B/Al are proposed to describe the mechanisms involved and to provide insight for maximizing impact resistance. The impact strength of B/Al was significantly increased by proper selection of materials and processing. The use of more ductile matrices and larger diameter boron fibers gave the highest impact strengths by allowing matrix shear deformation and multiple fiber breakage. Pendulum impact test results of improved B/Al were higher than notched titanium and indicate sufficient foreign object damage protection to warrant consideration of B/Al for application to fan blades in aircraft gas turbine engines.

  1. Design of Offshore Wind Turbine Support Structures: Selected topics in the field of geotechnical engineering

    DEFF Research Database (Denmark)

    Bakmar, Christian LeBlanc

    Breaking the dependence on fossil fuels offers many opportunities for strengthened competitiveness, technological development and progress. Offshore wind power is a domestic, sustainable and largely untapped energy resource that provides an alternative to fossil fuels, reduces carbon emissions......, and decreases the economic and supply risks associated with reliance on imported fuels. Today, the modern offshore wind turbine offers competitive production prices for renewable energy and is therefore a key technology in achieving the energy and climate goals of the future. The overall aim of this Ph.......D. thesis was to enable low-cost and low-risk support structures to be designed in order to improve the economic feasibility of future offshore wind farms. The research work was divided in the following four selected research topics in the field of geotechnical engineering, relating to the monopile...

  2. The conversion of SO{sub 2} to SO{sub 3} in gas turbine engines

    Energy Technology Data Exchange (ETDEWEB)

    Miake-Lye, R.C.; Anderson, M.R.; Brown, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)


    The oxidation of fuel sulfur to S(6) (SO{sub 3}+H{sub 2}SO{sub 4}) in a supersonic (Concorde) and a subsonic (ATTAS) aircraft engine is estimated numerically. The results indicate between 2% and 10% of the fuel sulfur is emitted as S(6). It is also shown that conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, resulting in a higher oxidation efficiency as the sulfur mass loading is decreased. SO{sub 2} and SO{sub 3} are the primary sulfur oxidation products, with less than 1% of fuel sulfur converted to H{sub 2}SO{sub 4}. For the Concorde, H{sub 2}SO{sub 4} was primarily formed during the supersonic expansion through the divergent nozzle. (author) 20 refs.

  3. Air/fuel supply system for use in a gas turbine engine (United States)

    Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico


    A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

  4. Comparison of ORC Turbine and Stirling Engine to Produce Electricity from Gasified Poultry Waste

    Directory of Open Access Journals (Sweden)

    Franco Cotana


    Full Text Available The Biomass Research Centre, section of CIRIAF, has recently developed a biomass boiler (300 kW thermal powered, fed by the poultry manure collected in a nearby livestock. All the thermal requirements of the livestock will be covered by the heat produced by gas combustion in the gasifier boiler. Within the activities carried out by the research project ENERPOLL (Energy Valorization of Poultry Manure in a Thermal Power Plant, funded by the Italian Ministry of Agriculture and Forestry, this paper aims at studying an upgrade version of the existing thermal plant, investigating and analyzing the possible applications for electricity production recovering the exceeding thermal energy. A comparison of Organic Rankine Cycle turbines and Stirling engines, to produce electricity from gasified poultry waste, is proposed, evaluating technical and economic parameters, considering actual incentives on renewable produced electricity.

  5. Design & Evaluation of a Protection Algorithm for a Wind Turbine Generator based on the fault-generated Symmetrical Components

    DEFF Research Database (Denmark)

    Zheng, T. Y.; Cha, Seung-Tae; Lee, B. E.


    A protection relay for a wind turbine generator (WTG) based on the fault-generated symmetrical components is proposed in the paper. At stage 1, the relay uses the magnitude of the positive-sequence component in the fault current to distinguish faults on a parallel WTG, connected to the same feeder...... the relationships of the fault-generated symmetrical components. Then, the magnitude of the positive-sequence component in the fault current is used again to decide on either instantaneous or delayed operation. The operating performance of the relay is then verified using various fault scenarios modelled using...... EMTPRV. The scenarios involve changes in the position and type of fault, and the faulted phases. Results confirm that the relay can successfully distinguish between faults that require an instantaneous, delayed or non-operation response....

  6. Performance Prediction and Simulation of Gas Turbine Engine Operation for Aircraft, Marine, Vehicular, and Power Generation (United States)


    Single Shaft Gas Turbine . Constant TIT, B-159 Operation with Different Fuels and Water Injection Figure B.147 Schematic Representation of a Twin Spool ...Function of the Amount of Injected B-169 Steam for a Single Shaft Gas Turbine Figure B.155 Change of Compressor Pressure Ratio with Water Injection...Water Injection, for a Twin Shaft Gas Turbine B-171 Figure B.158 Range of Variation of Power Deviation for Existing Gas Turbines

  7. Selective Laser Melting of Hot Gas Turbine Components: Materials, Design and Manufacturing Aspects

    DEFF Research Database (Denmark)

    Goutianos, Stergios


    Selective Laser Melting (SLM) allows the design and manufacturing of novel parts and structures with improved performance e.g. by incorporating complex and more efficient cooling schemes in hot gas turbine parts. In contrast to conventional manufacturing of removing material, with SLM parts...

  8. Neural Network and Response Surface Methodology for Rocket Engine Component Optimization (United States)

    Vaidyanathan, Rajkumar; Papita, Nilay; Shyy, Wei; Tucker, P. Kevin; Griffin, Lisa W.; Haftka, Raphael; Fitz-Coy, Norman; McConnaughey, Helen (Technical Monitor)


    The goal of this work is to compare the performance of response surface methodology (RSM) and two types of neural networks (NN) to aid preliminary design of two rocket engine components. A data set of 45 training points and 20 test points obtained from a semi-empirical model based on three design variables is used for a shear coaxial injector element. Data for supersonic turbine design is based on six design variables, 76 training, data and 18 test data obtained from simplified aerodynamic analysis. Several RS and NN are first constructed using the training data. The test data are then employed to select the best RS or NN. Quadratic and cubic response surfaces. radial basis neural network (RBNN) and back-propagation neural network (BPNN) are compared. Two-layered RBNN are generated using two different training algorithms, namely solverbe and solverb. A two layered BPNN is generated with Tan-Sigmoid transfer function. Various issues related to the training of the neural networks are addressed including number of neurons, error goals, spread constants and the accuracy of different models in representing the design space. A search for the optimum design is carried out using a standard gradient-based optimization algorithm over the response surfaces represented by the polynomials and trained neural networks. Usually a cubic polynominal performs better than the quadratic polynomial but exceptions have been noticed. Among the NN choices, the RBNN designed using solverb yields more consistent performance for both engine components considered. The training of RBNN is easier as it requires linear regression. This coupled with the consistency in performance promise the possibility of it being used as an optimization strategy for engineering design problems.

  9. Component-Based Engineering of Knowledge-Enabled Systems: Research Vision and Strategy

    National Research Council Canada - National Science Library

    Goodburn, D


    ...'. The Software Systems Engineering (SSE) group of ITD is currently conducting research into new software engineering principles and practices, collectively referred to as component-based software...

  10. Combustion and regulations. Impacts of new regulations on medium-power thermal equipment (boilers, engines, turbines, dryers and furnaces); Combustion et reglementation. Incidences des nouvelles reglementations sur les equipements thermiques de moyenne puissance (chaudieres, moteurs, turbines, secheurs et fours)

    Energy Technology Data Exchange (ETDEWEB)



    This conference is composed of 20 papers on the influence of French and European new pollution regulations on medium size thermal equipment such as boilers, engines, turbines, dryers and furnaces. It is discussed what is going to change with new regulations, how they will apply to existing plants, what will be the impact on future equipment costs. The evolution of energy suppliers and equipment manufacturers facing these new regulations is also examined: fuel substitution, improvements in turbines and engines with water injection and special chambers, diesel engine control, lean mixtures and electronic control for gas engines... Means for reducing SOx, NOx and ash emission levels in boilers are also examined

  11. Exhaust gas emissions evaluation in the flight of a multirole fighter equipped with a F100-PW-229 turbine engine

    Directory of Open Access Journals (Sweden)

    Markowski Jarosław


    Full Text Available The issue of exhaust gas emission generated by turbine engines described in ICAO Annex 16 of the International Civil Aviation Convention includes a number of procedures and requirements. Their implementation is aimed at determining the value of the engine’s environmental parameters and comparing them to the values specified in the norms. The turbine engine exhaust gas emission test procedures are defined as stationary and the operating parameters values are set according to the LTO test. The engine load setting values refer to engine operating parameters that occur when the plane is in the vicinity of airports. Such a procedure is dedicated to civilian passenger and transport aircraft. The operating conditions of a multirole fighter aircraft vary considerably from passenger aircraft and the variability of their flight characteristics requires a special approach in assessing its environmental impact. This article attempts to evaluate the exhaust gas emissions generated by the turbine engine in a multirole fighter flight using the parameters recorded by the onboard flight recorder.

  12. A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, J.R.; Arnau, F.J.; Dolz, V.; Tiseira, A. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Cervello, C. [Conselleria de Cultura, Educacion y Deporte, Generalitat Valenciana (Spain)


    The paper presents a model of fixed and variable geometry turbines. The aim of this model is to provide an efficient boundary condition to model turbocharged internal combustion engines with zero- and one-dimensional gas dynamic codes. The model is based from its very conception on the measured characteristics of the turbine. Nevertheless, it is capable of extrapolating operating conditions that differ from those included in the turbine maps, since the engines usually work within these zones. The presented model has been implemented in a one-dimensional gas dynamic code and has been used to calculate unsteady operating conditions for several turbines. The results obtained have been compared with success against pressure-time histories measured upstream and downstream of the turbine during on-engine operation. (author)

  13. A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling

    International Nuclear Information System (INIS)

    Serrano, J.R.; Arnau, F.J.; Dolz, V.; Tiseira, A.; Cervello, C.


    The paper presents a model of fixed and variable geometry turbines. The aim of this model is to provide an efficient boundary condition to model turbocharged internal combustion engines with zero- and one-dimensional gas dynamic codes. The model is based from its very conception on the measured characteristics of the turbine. Nevertheless, it is capable of extrapolating operating conditions that differ from those included in the turbine maps, since the engines usually work within these zones. The presented model has been implemented in a one-dimensional gas dynamic code and has been used to calculate unsteady operating conditions for several turbines. The results obtained have been compared with success against pressure-time histories measured upstream and downstream of the turbine during on-engine operation

  14. Converging flow joint insert system at an intersection between adjacent transitions extending between a combustor and a turbine assembly in a gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, David J.; Carlson, Andrew; Stoker, Kyle C.


    A transition duct system for routing a gas flow in a combustion turbine engine is provided. The transition duct system includes one or more converging flow joint inserts forming a trailing edge at an intersection between adjacent transition ducts. The converging flow joint insert may be contained within a converging flow joint insert receiver and may be disconnected from the transition duct bodies by which the converging flow joint insert is positioned. Being disconnected eliminates stress formation within the converging flow joint insert, thereby enhancing the life of the insert. The converging flow joint insert may be removable such that the insert can be replaced once worn beyond design limits.

  15. Looking for diagnostics parameters of bearings of the gas turbine engine LM 2500 on the basis of mechanical contaminations in the lubricating oil

    Directory of Open Access Journals (Sweden)

    Waldemar MIRONIUK


    Full Text Available While operation a gas turbine engine more modest methods of research are brought into effect. But one of the basic methods to estimate the technical condition of gas turbine engines bearing is oil analysis. To estimate the technical condition of gas turbine engines bearing systems on the basis of oil research on, an x-ray method of radio-isotope fluorescence was used. This method has been also satisfactorily used in aircraft engine diagnosis.This paper presents the method of diagnosis bearings of marine gas turbines on the basis of studies of mechanical contamination in oil. Results of mechanical contamination research in oil vs time of engine work are presented. On the basis of experiments results the analytical function that makes calculating the future value of the process possible was chosen.

  16. Design for robustness of unique, multi-component engineering systems (United States)

    Shelton, Kenneth A.


    The purpose of this research is to advance the science of conceptual designing for robustness in unique, multi-component engineering systems. Robustness is herein defined as the ability of an engineering system to operate within a desired performance range even if the actual configuration has differences from specifications within specified tolerances. These differences are caused by three sources, namely manufacturing errors, system degradation (operational wear and tear), and parts availability. Unique, multi-component engineering systems are defined as systems produced in unique or very small production numbers. They typically have design and manufacturing costs on the order of billions of dollars, and have multiple, competing performance objectives. Design time for these systems must be minimized due to competition, high manpower costs, long manufacturing times, technology obsolescence, and limited available manpower expertise. Most importantly, design mistakes cannot be easily corrected after the systems are operational. For all these reasons, robustness of these systems is absolutely critical. This research examines the space satellite industry in particular. Although inherent robustness assurance is absolutely critical, it is difficult to achieve in practice. The current state of the art for robustness in the industry is to overdesign components and subsystems with redundancy and margin. The shortfall is that it is not known if the added margins were either necessary or sufficient given the risk management preferences of the designer or engineering system customer. To address this shortcoming, new assessment criteria to evaluate robustness in design concepts have been developed. The criteria are comprised of the "Value Distance", addressing manufacturing errors and system degradation, and "Component Distance", addressing parts availability. They are based on an evolutionary computation format that uses a string of alleles to describe the components in the

  17. Application of particle swarm optimization in gas turbine engine fuel controller gain tuning (United States)

    Montazeri-Gh, M.; Jafari, S.; Ilkhani, M. R.


    This article presents the application of particle swarm optimization (PSO) for gain tuning of the gas turbine engine (GTE) fuel controller. For this purpose, the structure of a fuel controller is firstly designed based on the GTE control requirements and constraints. The controller gains are then tuned by PSO where the tuning process is formulated as an engineering optimization problem. In this study, the response time during engine acceleration and deceleration as well as the engine fuel consumption are considered as the objective functions. A computer simulation is also developed to evaluate the objective values for a single spool GTE. The GTE model employed for the simulation is a Wiener model, the parameters of which are extracted from experimental tests. In addition, the effect of neighbour acceleration on PSO results is studied. The results show that the neighbour acceleration factor has a considerable effect on the convergence rate of the PSO process. The PSO results are also compared with the results obtained through a genetic algorithm (GA) to show the relative merits of PSO. Moreover, the PSO results are compared with the results obtained from the dynamic programming (DP) method in order to illustrate the ability of proposed method in finding the global optimal solution. Furthermore, the objective function is also defined in multi-objective manner and the multi-objective particle swarm optimization (MOPSO) is applied to find the Pareto-front for the problem. Finally, the results obtained from the simulation of the optimized controller confirm the effectiveness of the proposed approach to design an optimal fuel controller resulting in an improved GTE performance as well as protection against the physical limitations.

  18. Fuel property effects on USAF gas turbine engine combustors and afterburners (United States)

    Reeves, C. M.


    Since the early 1970s, the cost and availability of aircraft fuel have changed drastically. These problems prompted a program to evaluate the effects of broadened specification fuels on current and future aircraft engine combustors employed by the USAF. Phase 1 of this program was to test a set of fuels having a broad range of chemical and physical properties in a select group of gas turbine engine combustors currently in use by the USAF. The fuels ranged from JP4 to Diesel Fuel number two (DF2) with hydrogen content ranging from 14.5 percent down to 12 percent by weight, density ranging from 752 kg/sq m to 837 kg/sq m, and viscosity ranging from 0.830 sq mm/s to 3.245 sq mm/s. In addition, there was a broad range of aromatic content and physical properties attained by using Gulf Mineral Seal Oil, Xylene Bottoms, and 2040 Solvent as blending agents in JP4, JP5, JP8, and DF2. The objective of Phase 2 was to develop simple correlations and models of fuel effects on combustor performance and durability. The major variables of concern were fuel chemical and physical properties, combustor design factors, and combustor operating conditions.

  19. Three component laser anemometer measurements in an annular cascade of core turbine vanes with contoured end wall (United States)

    Goldman, Louis J.; Seasholtz, Richard G.


    The three mean velocity components were measured in a full-scale annular turbine stator cascade with contoured hub end wall using a newly developed laser anemometer system. The anemometer consists of a standard fringe configuration using fluorescent seed particles to measure the axial and tangential components. The radial component is measured with a scanning confocal Fabry-Perot interferometer. These two configurations are combined in a single optical system that can operate simultaneously in a backscatter mode through a single optical access port. Experimental measurements were obtained both within and downstream of the stator vane row and compared with calculations from a three-dimensional inviscid computer program. In addition, detailed calibration procedures are described that were used, prior to the experiment, to accurately determine the laser beam probe volume location relative to the cascade hardware.

  20. Stainless Steel Foil with Improved Creep-Resistance for Use in Primary Surface Recuperators for Gas Turbine Engines

    International Nuclear Information System (INIS)

    Browning, P.F.; Fitzpatrick, M.; Grubb, J.F.; Klug, R.C.; Maziasz, P.J.; Montague, J.P.; Painter, R.A.; Swindeman, R.W.


    Primary surface recuperators (PSRs) are compact heat-exchangers made from thin-foil type 347 austenitic stainless steel, which boost the efficiency of land-based gas turbine engines. Solar Turbines uses foil folded into a unique corrugated pattern to maximize the primary surface area for efficient heat transfer between hot exhaust gas on one side, and the compressor discharge air on the other side of the foil. Allegheny-Ludlum produces 0.003 - 0.0035 in. thick foil for a range of current turbine engines using PSRs that operate at up to 660 degrees C. Laboratory-scale processing modification experiments recently have demonstrated that dramatic improvements can be achieved in the creep resistance of such typical 347 stainless steel foils. The modified processing enables fine NbC carbide precipitates to develop during creep at 650-700 degrees C, which provides strength even with a fine grain size. Such improved creep-resistance is necessary for advanced turbine systems that will demand greater materials performance and reliability at higher operating conditions. The next challenges are to better understand the nature of the improved creep resistance in these 347 stainless steel foil, and to achieve similar improvements with scale-up to commercial foil production

  1. Stainless Steel Foil with Improved Creep-Resistance for Use in Primary Surface Recuperators for Gas Turbine Engines

    Energy Technology Data Exchange (ETDEWEB)

    Browning, P.F.; Fitzpatrick, M.; Grubb, J.F.; Klug, R.C.; Maziasz, P.J.; Montague, J.P.; Painter, R.A.; Swindeman, R.W.


    Primary surface recuperators (PSRs) are compact heat-exchangers made from thin-foil type 347 austenitic stainless steel, which boost the efficiency of land-based gas turbine engines. Solar Turbines uses foil folded into a unique corrugated pattern to maximize the primary surface area for efficient heat transfer between hot exhaust gas on one side, and the compressor discharge air on the other side of the foil. Allegheny-Ludlum produces 0.003 - 0.0035 in. thick foil for a range of current turbine engines using PSRs that operate at up to 660 degrees C. Laboratory-scale processing modification experiments recently have demonstrated that dramatic improvements can be achieved in the creep resistance of such typical 347 stainless steel foils. The modified processing enables fine NbC carbide precipitates to develop during creep at 650-700 degrees C, which provides strength even with a fine grain size. Such improved creep-resistance is necessary for advanced turbine systems that will demand greater materials performance and reliability at higher operating conditions. The next challenges are to better understand the nature of the improved creep resistance in these 347 stainless steel foil, and to achieve similar improvements with scale-up to commercial foil production.


    Energy Technology Data Exchange (ETDEWEB)

    Gregory Gaul


    , combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

  3. Final Technical Report on Investigation of Selective Non-Catalytic Processes for In-Situ Reduction of NOx and CO Emissions from Marine Gas Turbines and Diesel Engines

    National Research Council Canada - National Science Library

    Bowman, Craig


    .... These observations suggest the possibility of utilizing SNCR for reducing NO(x) emissions from marine gas turbines and Diesel engines by direct injection of a reductant species into the combustion chamber, possibly as a fuel...

  4. Development of a high-temperature durable catalyst for use in catalytic combustors for advanced automotive gas turbine engines (United States)

    Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.


    Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.

  5. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions (United States)


    only), which includes hot and cold dilution with an evaporator , and finally to instrumentation for particle number measurements . However, several...DC, CDP and plume BC was measure using a Laser Induced Incandescence (LII) instrument. Data for the BC LII mass measurements at the plume and...AFRL-RQ-WP-TR-2016-0131 DEMONSTRATION OF NOVEL SAMPLING TECHNIQUES FOR MEASUREMENT OF TURBINE ENGINE VOLATILE AND NON-VOLATILE PARTICULATE

  6. Materials for Advanced Ultra-supercritical (A-USC) Steam Turbines – A-USC Component Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Purgert, Robert [Energy Industries Of Ohio Inc., Independence, OH (United States); Phillips, Jeffrey [Energy Industries Of Ohio Inc., Independence, OH (United States); Hendrix, Howard [Energy Industries Of Ohio Inc., Independence, OH (United States); Shingledecker, John [Energy Industries Of Ohio Inc., Independence, OH (United States); Tanzosh, James [Energy Industries Of Ohio Inc., Independence, OH (United States)


    The work by the United States Department of Energy (U.S. DOE)/Ohio Coal Development Office (OCDO) advanced ultra-supercritical (A-USC) Steam Boiler and Turbine Materials Consortia from 2001 through September 2015 was primarily focused on lab scale and pilot scale materials testing. This testing included air- or steam-cooled “loops” that were inserted into existing utility boilers to gain exposure of these materials to realistic conditions of high temperature and corrosion due to the constituents in the coal. Successful research and development resulted in metallic alloy materials and fabrication processes suited for power generation applications with metal temperatures up to approximately 1472°F (800°C). These materials or alloys have shown, in extensive laboratory tests and shop fabrication studies, to have excellent applicability for high-efficiency low CO2 transformational power generation technologies previously mentioned. However, as valuable as these material loops have been for obtaining information, their scale is significantly below that required to minimize the risk associated with a power company building a multi-billion dollar A-USC power plant. To decrease the identified risk barriers to full-scale implementation of these advanced materials, the U.S. DOE/OCDO A-USC Steam Boiler and Turbine Materials Consortia identified the key areas of the technology that need to be tested at a larger scale. Based upon the recommendations and outcome of a Consortia-sponsored workshop with the U.S.’s leading utilities, a Component Test (ComTest) Program for A-USC was proposed. The A-USC ComTest program would define materials performance requirements, plan for overall advanced system integration, design critical component tests, fabricate components for testing from advanced materials, and carry out the tests. The AUSC Component Test was premised on the program occurring at multiple facilities, with the operating temperatures, pressure and/or size of

  7. Testing and analysis of the impact on engine cycle parameters and control system modifications using hydrogen or methane as fuel in an industrial gas turbine (United States)

    Funke, H. H.-W.; Keinz, J.; Börner, S.; Hendrick, P.; Elsing, R.


    The paper highlights the modification of the engine control software of the hydrogen (H2) converted gas turbine Auxiliary Power Unit (APU) GTCP 36-300 allowing safe and accurate methane (CH4) operation achieved without mechanical changes of the metering unit. The acceleration and deceleration characteristics of the engine controller from idle to maximum load are analyzed comparing H2 and CH4. Also, the paper presents the influence on the thermodynamic cycle of gas turbine resulting from the different fuels supported by a gas turbine cycle simulation of H2 and CH4 using the software GasTurb.

  8. Formal Model-Driven Engineering: Generating Data and Behavioural Components

    Directory of Open Access Journals (Sweden)

    Chen-Wei Wang


    Full Text Available Model-driven engineering is the automatic production of software artefacts from abstract models of structure and functionality. By targeting a specific class of system, it is possible to automate aspects of the development process, using model transformations and code generators that encode domain knowledge and implementation strategies. Using this approach, questions of correctness for a complex, software system may be answered through analysis of abstract models of lower complexity, under the assumption that the transformations and generators employed are themselves correct. This paper shows how formal techniques can be used to establish the correctness of model transformations used in the generation of software components from precise object models. The source language is based upon existing, formal techniques; the target language is the widely-used SQL notation for database programming. Correctness is established by giving comparable, relational semantics to both languages, and checking that the transformations are semantics-preserving.

  9. Boeing Tests Critical Components for Advanced Rocket Engine

    National Research Council Canada - National Science Library

    Mitchell, John


    .... Stennis Space Center (SSC) in Mississippi. This test, one of nine that have been planned, follows a related series of hot-fire tests in which a Rocketdyne-built pre-burner -- which provides oxygen-rich gasses to the oxidizer turbopump turbine...

  10. Pelton turbines

    CERN Document Server

    Zhang, Zhengji


    This book concerns the theoretical foundations of hydromechanics of Pelton turbines from the engineering viewpoint. For reference purposes, all relevant flow processes and hydraulic aspects in a Pelton turbine have been analyzed completely and systematically. The analyses especially include the quantification of all possible losses existing in the Pelton turbine and the indication of most available potential for further enhancing the system efficiency. As a guideline the book therefore supports further developments of Pelton turbines with regard to their hydraulic designs and optimizations. It is thus suitable for the development and design engineers as well as those working in the field of turbo machinery. Many laws described in the book can also be directly used to simplify aspects of computational fluid dynamics (CFD) or to develop new computational methods. The well-executed examples help better understand the related flow mechanics.

  11. Emissions and performance of catalysts for gas turbine catalytic combustors. [automobile engines (United States)

    Anderson, D. N.


    Three noble-metal monolithic catalysts were tested in a 12-cm-dia. combustion test rig to obtain emissions and performance data at conditions simulating the operation of a catalytic combustor for an automotive gas turbine engine. Tests with one of the catalysts at 800 K inlet mixture temperature, 3 x 10 to the 5th Pa pressure, and a reference velocity (catalyst bed inlet velocity) of 10 m/sec demonstrated greater than 99 percent combustion efficiency for reaction temperatures higher than 1300 K. With a reference velocity of 25 m/sec the reaction temperature required to achieve the same combustion-efficiency increased to 1380 K. The exit temperature pattern factors for all three catalysts were below 0.1 when adiabatic reaction temperatures were higher than 1400 K. The highest pressure drop was 4.5 percent at 25 m/sec reference velocity. Nitrogen oxides emissions were less than 0.1 g NO2/kg fuel for all test conditions.

  12. Characterization and comparative investigation of thermally insulating layers for the turbine and engine construction

    International Nuclear Information System (INIS)

    Steffens, H.D.; Fischer, U.


    The aim of the research project was to subject commercially produced thermal insulation layer systems, the use of which seems promising for engine and turbine construction, to standardized characterisation, testing and comparison. Suitable methods and procedures for this had to be developed, in order to be able to derive instructions for optimisation guidelines for the production of improved thermal insulation systems from the results of investigations. In the context of the research project, a computer-controlled thermal shock test rig was first developed, designed and built. This test rig was designed so that important test conditions, such as the heating and cooling speed could be varied reproducibly over wide ranges. Methods and procedures were worked out, which permit a comparative qualitative and quantitative characterisation of layers of thermal insulation. From metallographic investigations, the layer build-up, layer structure, porosity and crack morphology of the layers in the delivered state and after testing could be assessed and compared. X-ray fine structure investigations gave information on the type and quantity of the phases occurring in the ceramic layers. The results of thermal shock tests which were done at different temperature intervals depending on the substrate, could be correlated with the build-up of layers and supplied information on damage mechanisms and the course of failure. (orig.) With 57 figs., 16 tabs., 89 refs [de

  13. The atomization and burning of biofuels in the combustion chambers of gas turbine engines (United States)

    Maiorova, A. I.; Vasil’ev, A. Yu; Sviridenkov, A. A.; Chelebyan, O. G.


    The present work analyzes the effect of physical properties of liquid fuels with high viscosity (including biofuels) on the spray and burning characteristics. The study showed that the spray characteristics behind devices well atomized fuel oil, may significantly deteriorate when using biofuels, until the collapse of the fuel bubble. To avoid this phenomenon it is necessary to carry out the calculation of the fuel film form when designing the nozzles. As a result of this calculation boundary curves in the coordinates of the Reynolds number on fuel - the Laplace number are built, characterizing the transition from sheet breakup to spraying. It is shown that these curves are described by a power function with the same exponent for nozzles of various designs. The swirl of air surrounding the nozzle in the same direction, as the swirl of fuel film, can significantly improve the performance of atomization of highly viscous fuel. Moreover the value of the tangential air velocity has the determining influence on the film shape. For carrying out of hot tests in aviation combustor some embodiments of liquid fuels were proved and the most preferred one was chosen. Fire tests of combustion chamber compartment at conventional fuel has shown comprehensible characteristics, in particular wide side-altars of the stable combustion. The blended biofuel application makes worse combustion stability in comparison with kerosene. A number of measures was recommended to modernize the conventional combustors when using biofuels in gas turbine engines.

  14. Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 2: Materials and coatings (United States)

    Bhushan, B.; Ruscitto, D.; Gray, S.


    Material coatings for an air-lubricated, compliant journal bearing for an automotive gas turbine engine were exposed to service test temperatures of 540 C or 650 C for 300 hours, and to 10 temperature cycles from room temperatures to the service test temperatures. Selected coatings were then put on journal and partial-arc foils and tested in start-stop cycle tests at 14 kPa (2 psi) loading for 2000 cycles. Half of the test cycles were performed at a test chamber service temperature of 540 C (1000 F) or 650 C (1200 F); the other half were performed at room temperature. Based on test results, the following combinations and their service temperature limitations are recommended: HL-800 TM (CdO and graphite) on foil versus chrome carbide on journal up to 370 C (700 F); NASA PS 120 (Tribaloy 400, silver and CaF2 on journal versus uncoated foil up to 540 C (1000 F); and Kaman DES on journal and foil up to 640 C (1200 F). Kaman DES coating system was further tested successfully at 35 kPa (5 psi) loading for 2000 start-stop cycles.

  15. Inhomogeneity of the grain size of aircraft engine turbine polycrystalline blades

    Directory of Open Access Journals (Sweden)

    J. Chmiela


    Full Text Available The determination of the behaviour of inhomogeneous materials with a complex microstructure requires taking into account the inhomogeneity of the grain size, as it is the basis for the process of designing and modelling effective behaviours. Therefore, the functional description of the inhomogeneity is becoming an important issue. The paper presents an analytical approach to the grain size inhomogeneity, based on the derivative of a logarithmic-logistic function. The solution applied enabled an effective evaluation of the inhomogeneity of two macrostructures of aircraft engine turbine blades, characterized by a high degree of diversity in the grain size. For the investigated single-modal and bimodal grain size distributions on a perpendicular projection and for grains with a non-planar surface, we identified the parameters that describe the degree of inhomogeneity of the constituents of weight distributions and we also derived a formula describing the overall degree of inhomogeneity of bimodal distributions. The solution presented in the paper is of a general nature and it can be used to describe the degree of inhomogeneity of multi-modal distributions. All the calculations were performed using the Mathematica® package.

  16. Combustion engine diagnosis model-based condition monitoring of gasoline and diesel engines and their components

    CERN Document Server

    Isermann, Rolf


    This book offers first a short introduction to advanced supervision, fault detection and diagnosis methods. It then describes model-based methods of fault detection and diagnosis for the main components of gasoline and diesel engines, such as the intake system, fuel supply, fuel injection, combustion process, turbocharger, exhaust system and exhaust gas aftertreatment. Additionally, model-based fault diagnosis of electrical motors, electric, pneumatic and hydraulic actuators and fault-tolerant systems is treated. In general series production sensors are used. It includes abundant experimental results showing the detection and diagnosis quality of implemented faults. Written for automotive engineers in practice, it is also of interest to graduate students of mechanical and electrical engineering and computer science. The Content Introduction.- I SUPERVISION, FAULT DETECTION AND DIAGNOSIS METHODS.- Supervision, Fault-Detection and Fault-Diagnosis Methods - a short Introduction.- II DIAGNOSIS OF INTERNAL COMBUST...

  17. Thermal stress analysis of a graded zirconia/metal gas path seal system for aircraft gas turbine engines (United States)

    Taylor, C. M.


    A ceramic/metallic aircraft gas turbine outer gas path seal designed to enable improved engine performance is studied. Flexible numerical analysis schemes suitable for the determination of transient temperature profiles and thermal stress distributions in the seal are outlined. An estimation of the stresses to which a test seal is subjected during simulated engine deceleration from sea level takeoff to idle conditions is made. Experimental evidence has indicated that the surface layer of the seal is probably subjected to excessive tensile stresses during cyclic temperature loading. This assertion is supported by the analytical results presented. Brief consideration is given to means of mitigating this adverse stressing.

  18. Physical Metallurgy of Rene 65, a Next-Generation Cast and Wrought Nickel Superalloy for use in Aero Engine Components (United States)

    Wessman, Andrew Ezekiel

    is related to thermal history of the material, and the particle size distribution can be predicted using established models for precipitation in superalloys. • Rene 65 shows a predictable microstructural response to high temperature exposure, with gamma' coarsening that is predictable using the Lifshitz-Slyozov-Wagner theory. • Rene 65 tensile and creep capability are determined by the gamma' distribution, and the yield strength of the alloy can be predicted using a critical resolved shear stress approach. • This work has also provided a comprehensive overview of the structure of Rene 65 during various processing stages and following thermal exposures expected during use of the alloy in turbine engines. The processing-structure-property relationships for this advanced cast and wrought nickel based superalloy developed for use in turbine engine applications are described in detail, which will serve as a useful guide in the manufacture and use of components made from the alloy, and contribute to the overall body of knowledge in the field of metallurgy of nickel based superalloys.

  19. Turbine maintenance and modernization

    Energy Technology Data Exchange (ETDEWEB)

    Unga, E. [Teollisuuden Voima Oy, Olkiluoto (Finland)


    The disturbance-free operation of the turbine plant plays an important role in reaching good production results. In the turbine maintenance of the Olkiluoto nuclear power plant the lifetime and efficiency of turbine components and the lifetime costs are taken into account in determining the turbine maintenance and modernization/improvement program. The turbine maintenance program and improvement/modernization measures taken in the plant units are described in this presentation. (orig.)

  20. Dynamic Analysis of Electrical Power Grid Delivery: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    Energy Technology Data Exchange (ETDEWEB)

    Diana K. Grauer


    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  1. New Structural-Dynamics Module for Offshore Multimember Substructures within the Wind Turbine Computer-Aided Engineering Tool FAST: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Song, H.; Damiani, R.; Robertson, A.; Jonkman, J.


    FAST, developed by the National Renewable Energy Laboratory (NREL), is a computer-aided engineering (CAE) tool for aero-hydro-servo-elastic analysis of land-based and offshore wind turbines. This paper discusses recent upgrades made to FAST to enable loads simulations of offshore wind turbines with fixed-bottom, multimember support structures (e.g., jackets and tripods, which are commonly used in transitional-depth waters). The main theory and strategies for the implementation of the multimember substructure dynamics module (SubDyn) within the new FAST modularization framework are introduced. SubDyn relies on two main engineering schematizations: 1) a linear frame finite-element beam (LFEB) model and 2) a dynamics system reduction via Craig-Bampton's method. A jacket support structure and an offshore system consisting of a turbine atop a jacket substructure were simulated to test the SubDyn module and to preliminarily assess results against results from a commercial finite-element code.

  2. Propulsion health monitoring of a turbine engine disk using spin test data (United States)

    Abdul-Aziz, Ali; Woike, Mark; Oza, Nikunj; Matthews, Bryan; Baakilini, George


    On line detection techniques to monitor the health of rotating engine components are becoming increasingly attractive options to aircraft engine companies in order to increase safety of operation and lower maintenance costs. Health monitoring remains a challenging feature to easily implement, especially, in the presence of scattered loading conditions, crack size, component geometry and materials properties. The current trend, however, is to utilize noninvasive types of health monitoring or nondestructive techniques to detect hidden flaws and mini cracks before any catastrophic event occurs. These techniques go further to evaluate materials' discontinuities and other anomalies that have grown to the level of critical defects which can lead to failure. Generally, health monitoring is highly dependent on sensor systems that are capable of performing in various engine environmental conditions and able to transmit a signal upon a predetermined crack length, while acting in a neutral form upon the overall performance of the engine system. Efforts are under way at NASA Glenn Research Center through support of the Intelligent Vehicle Health Management Project (IVHM) to develop and implement such sensor technology for a wide variety of applications. These efforts are focused on developing high temperature, wireless, low cost and durable products. Therefore, in an effort to address the technical issues concerning health monitoring of a rotor disk, this paper considers data collected from an experimental study using high frequency capacitive sensor technology to capture blade tip clearance and tip timing measurements in a rotating engine-like-disk-to predict the disk faults and assess its structural integrity. The experimental results collected at a range of rotational speeds from tests conducted at the NASA Glenn Research Center's Rotordynamics Laboratory will be evaluated using multiple data-driven anomaly detection techniques to identify anomalies in the disk. This study

  3. Advanced turbine technology applications project (ATTAP): Hybrid vehicle turbine engine technology support (HVTE-TS): Annual report, 1993-1994

    Energy Technology Data Exchange (ETDEWEB)



    This is the sixth of a series of reports documenting work performed on the ATTAP/HVTETS. This is a combined report to cover work performed in both 1993 and 1994. Progress is reported on ceramic component design and characterization, powertrain development, component rig testing and performance and durability testing.

  4. Turbine seal assembly (United States)

    Little, David A.


    A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.

  5. Foundations for offshore wind turbines. (United States)

    Byrne, B W; Houlsby, G T


    An important engineering challenge of today, and a vital one for the future, is to develop and harvest alternative sources of energy. This is a firm priority in the UK, with the government setting a target of 10% of electricity from renewable sources by 2010. A component central to this commitment will be to harvest electrical power from the vast energy reserves offshore, through wind turbines or current or wave power generators. The most mature of these technologies is that of wind, as much technology transfer can be gained from onshore experience. Onshore wind farms, although supplying 'green energy', tend to provoke some objections on aesthetic grounds. These objections can be countered by locating the turbines offshore, where it will also be possible to install larger capacity turbines, thus maximizing the potential of each wind farm location. This paper explores some civil-engineering problems encountered for offshore wind turbines. A critical component is the connection of the structure to the ground, and in particular how the load applied to the structure is transferred safely to the surrounding soil. We review previous work on the design of offshore foundations, and then present some simple design calculations for sizing foundations and structures appropriate to the wind-turbine problem. We examine the deficiencies in the current design approaches, and the research currently under way to overcome these deficiencies. Designs must be improved so that these alternative energy sources can compete economically with traditional energy suppliers.

  6. Collaborative Technology Assessments Of Transient Field Processing And Additive Manufacturing Technologies As Applied To Gas Turbine Components

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, Gerard Michael [ORNL; Dehoff, Ryan R [ORNL; Szabo, Attila [General Electric (GE) Power and Water; Ucok, Ibrahim [General Electric (GE) Power and Water


    ORNL partnered with GE Power & Water to investigate the effect of thermomagnetic processing on the microstructure and mechanical properties of GE Power & Water newly developed wrought Ni-Fe-Cr alloys. Exploration of the effects of high magnetic field process during heat treatment of the alloys indicated conditions where applications of magnetic fields yields significant property improvements. The alloy aged using high magnetic field processing exhibited 3 HRC higher hardness compared to the conventionally-aged alloy. The alloy annealed at 1785 F using high magnetic field processing demonstrated an average creep life 2.5 times longer than that of the conventionally heat-treated alloy. Preliminary results show that high magnetic field processing can improve the mechanical properties of Ni-Fe-Cr alloys and potentially extend the life cycle of the gas turbine components such as nozzles leading to significant energy savings.

  7. Advanced Turbine Technology Applications Project (ATTAP) (United States)


    Reports technical effort by AlliedSignal Engines in sixth year of DOE/NASA funded project. Topics include: gas turbine engine design modifications of production APU to incorporate ceramic components; fabrication and processing of silicon nitride blades and nozzles; component and engine testing; and refinement and development of critical ceramics technologies, including: hot corrosion testing and environmental life predictive model; advanced NDE methods for internal flaws in ceramic components; and improved carbon pulverization modeling during impact. ATTAP project is oriented toward developing high-risk technology of ceramic structural component design and fabrication to carry forward to commercial production by 'bridging the gap' between structural ceramics in the laboratory and near-term commercial heat engine application. Current ATTAP project goal is to support accelerated commercialization of advanced, high-temperature engines for hybrid vehicles and other applications. Project objectives are to provide essential and substantial early field experience demonstrating ceramic component reliability and durability in modified, available, gas turbine engine applications; and to scale-up and improve manufacturing processes of ceramic turbine engine components and demonstrate application of these processes in the production environment.

  8. Tribological Limitations in Gas Turbine Engines: A Workshop to Identify the Challenges and Set Future Directions. Revised (United States)

    DellaCorte, Chris; Pinkus, Oscar


    The following report represents a compendium of selected speaker presentation materials and observations made by Prof. O. Pinkus at the NASA/ASME/Industry sponsored workshop entitled "Tribological Limitations in Gas Turbine Engines" held on September 15-17, 1999 in Albany, New York. The impetus for the workshop came from the ASME's Research Committee on tribology whose goal is to explore new tribological research topics which may become future research opportunities. Since this subject is of current interest to other industrial and government entities the conference received cosponsorship as noted above. The conference was well attended by government, industrial, and academic participants. Topics discussed included current tribological issues in gas turbines as well as the potential impact (drawbacks and advantages) of future tribological technologies especially foil air bearings and magnetic bearings. It is hoped that this workshop report may serve as a starting point for continued discussions and activities in oil-free turbomachinery systems.

  9. Analysis of the impact of the use of broad specification fuels on combustors for commercial aircraft gas turbine engines (United States)

    Szetela, E. J.; Lehmann, R. P.; Smith, A. L.


    An analytical study was conducted to assess the impact of the use of broad specification fuels with reduced hydrogen content on the design, performance, durability, emissions and operational characteristics of combustors for commercial aircraft gas turbine engines. The study was directed at defining necessary design revisions to combustors designed for use of Jet A when such are operated on ERBS (Experimental Referee Broad Specification Fuel) which has a nominal hydrogen content of 12.8 percent as opposed to 13.7 percent in current Jet A. The results indicate that improvements in combustor liner cooling, and/or materials, and methods of fuel atomization will be required if the hydrogen content of aircraft gas turbine fuel is decreased.

  10. Application of engineering models to predict wake deflection due to a tilted wind turbine

    DEFF Research Database (Denmark)

    Guntur, Srinivas; Troldborg, Niels; Gaunaa, Mac


    such a mechanism introduces control complications due to changing wind directions. Deflecting the wake in the vertical direction using tilt, on the other hand, overcomes this challenge. In this paper, the feasibility of steering wake is explored in a simple uniform inflow case. This is done by trying to model......It is a known fact that the power produced by wind turbines operating inside an array decreases due to the wake effects of the upstream turbines. It has been proposed previously to use the yaw mechanism as a potential means to steer the upstream wake away from downstream turbines, however...

  11. Development and matching of double entry turbines for the next generation of highly boosted gasoline engines; Entwicklung und Auslegung von zweiflutigen Turbinen fuer hochaufgeladene Ottomotoren der naechsten Generation

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, Tolga; Aymanns, Richard; Scharf, Johannes [FEV GmbH, Aachen (Germany); Lueckmann, Dominik; Hoepke, Bjoern [RWTH Aachen Univ. (Germany). VKA Lehrstuhl fuer Verbrennungskraftmaschinen; Scassa, Mauro [FEV Italia S.r.l., Rivoli (Italy); Schorn, Norbert; Kindl, Helmut [Ford Forschungszentrum Aachen GmbH, Aachen (Germany)


    Downsizing in combination with turbocharging represents the main technology trend for meeting climate relevant CO{sub 2} emission standards in gasoline engine applications. Extended levels of downsizing involve increasing degrees of pulse charging. Separation of cylinder blow downs, either with double entry turbines or valve train variability, is key for achieving enhanced rated power and low-end-torque targets in highly boosted four-cylinder engines. However, double entry turbines feature specific development challenges: The aerodynamic design via 3D CFD calculations presents a difficult task as well as the engine performance modeling and matching process in 1D gas exchange simulations. From a manufacturing standpoint, casting of the turbine housing is complex especially for small displacement applications below 1.6 l due to e.g. thermo-mechanical boundaries. This paper demonstrates how to design and model double entry turbine performance characteristics within 1D gas exchange simulations, requiring special measured and processed turbine data, which is experimentally assessed on a hot gas test bench using a double burner setup. It is shown how the collective of the described development strategies can be used in assessing the potential of different turbine design concepts. This allows the turbocharger to be designed exactly to specific engine requirements. (orig.)

  12. Surface Temperature Measurements from a Stator Vane Doublet in a Turbine Engine Afterburner Flame Using a YAG:Tm Thermographic Phosphor (United States)

    Eldridge, J. I.; Walker, D. G.; Gollub, S. L.; Jenkins, T. P.; Allison, S. W.


    Luminescence-based surface temperature measurements were obtained from a YAG:Tm-coated stator vane doublet exposed to the afterburner flame of a J85 test engine at University of Tennessee Space Institute (UTSI). The objective of the testing was to demonstrate that reliable surface temperatures based on luminescence decay of a thermographic phosphor producing short-wavelength emission could be obtained from the surface of an actual engine component in a high gas velocity, highly radiative afterburner flame environment. YAG:Tm was selected as the thermographic phosphor for its blue emission at 456 nm (1D23F4 transition) and UV emission at 365 nm (1D23H6 transition) because background thermal radiation is lower at these wavelengths, which are shorter than those of many previously used thermographic phosphors. Luminescence decay measurements were acquired using a probe designed to operate in the afterburner flame environment. The probe was mounted on the sidewall of a high-pressure turbine vane doublet from a Honeywell TECH7000 turbine engine coated with a standard electron-beam physical vapor deposited (EB-PVD) 200-m-thick TBC composed of yttria-stabilized zirconia (YSZ) onto which a 25-m-thick YAG:Tm thermographic phosphor layer was deposited by solution precursor plasma spray (SPPS). Spot temperature measurements were obtained by measuring luminescence decay times at different afterburner power settings and then converting decay time to temperature via calibration curves. Temperature measurements using the decays of the 456 and 365 nm emissions are compared. While successful afterburner environment measurements were obtained to about 1300C with the 456 nm emission, successful temperature measurements using the 365 nm emission were limited to about 1100C due to interference by autofluorescence of probe optics at short decay times.

  13. Baseline Gas Turbine Development Program. Fourteenth quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, F W; Wagner, C E


    Progress is reported for a Baseline Gas Turbine Development Program sponsored by the Heat Engine Systems Branch, Division of Transportation Energy Conservation (TEC) of the Energy Research and Development Administration (ERDA). Structurally, this program is made up of three parts: (1) documentation of the existing automotive gas turbine state-of-the-art; (2) conduction of an extensive component improvement program; and (3) utilization of the improvements in the design, and building of an Upgraded Engine capable of demonstrating program goals.

  14. Polycyclic aromatic hydrocarbon emissions from the combustion of alternative fuels in a gas turbine engine. (United States)

    Christie, Simon; Raper, David; Lee, David S; Williams, Paul I; Rye, Lucas; Blakey, Simon; Wilson, Chris W; Lobo, Prem; Hagen, Donald; Whitefield, Philip D


    We report on the particulate-bound polycyclic aromatic hydrocarbons (PAH) in the exhaust of a test-bed gas turbine engine when powered by Jet A-1 aviation fuel and a number of alternative fuels: Sasol fully synthetic jet fuel (FSJF), Shell gas-to-liquid (GTL) kerosene, and Jet A-1/GTL 50:50 blended kerosene. The concentration of PAH compounds in the exhaust emissions vary greatly between fuels. Combustion of FSJF produces the greatest total concentration of PAH compounds while combustion of GTL produces the least. However, when PAHs in the exhaust sample are measured in terms of the regulatory marker compound benzo[a]pyrene, then all of the alternative fuels emit a lower concentration of PAH in comparison to Jet A-1. Emissions from the combustion of Jet A-1/GTL blended kerosene were found to have a disproportionately low concentration of PAHs and appear to inherit a greater proportion of the GTL emission characteristics than would be expected from volume fraction alone. The data imply the presence of a nonlinear relation between fuel blend composition and the emission of PAH compounds. For each of the fuels, the speciation of PAH compounds present in the exhaust emissions were found to be remarkably similar (R(2) = 0.94-0.62), and the results do provide evidence to support the premise that PAH speciation is to some extent indicative of the emission source. In contrast, no correlation was found between the PAH species present in the fuel with those subsequently emitted in the exhaust. The results strongly suggests that local air quality measured in terms of the particulate-bound PAH burden could be significantly improved by the use of GTL kerosene either blended with or in place of Jet A-1 kerosene.

  15. Low Cost P/M Aluminum Syntactic Foam for Blade Containment in Turbine Engines, Phase I (United States)

    National Aeronautics and Space Administration — The proposed Phase I SBIR proposes a low density (0.75-1.2g/cc)syntactic aluminum foam energy absorber co-manufactured inside a composite fan case for turbine...

  16. Performance Problems with Group II Hydro-Cracked Turbine Oils in Corps of Engineers Hydropower Facilities

    National Research Council Canada - National Science Library

    Micetic, John


    ... I) for lubricating hydroelectric turbines and associated governor systems. Products now being supplied by the lubrication industry for the same purpose are based on hydro-cracked paraffinic oils (Group II...

  17. Influence on component behaviour by changing materials for a cast turbine-wheel (United States)

    Domes, Bernd

    The present paper shows the results of 20 cyclic cold spin tests with an integral cast turbine wheel, stage 1 of the auxiliary power unit T312. Three different types of wheels were tested: an old type wheel of conventionally cast material MAR-M-246 with a thick grain matrix and low ductility, a new shaped wheel resulting in a lower stress level having the more ductile and fine grain material MAR-M-247 LC FK HIP, and an old type wheel with the same material MAR-M-247 LC FK HIP. All wheels of the first and second version broke in a circumferential groove near the balancing ring where the highest principal stresses are located. The third wheel type, however, always cracked at the central bore where for both wheel types the maximum equivalent stress (von Mises) occurs. The reason is that the damage mechanism of the ductile material rather follows the von Mises stress criterion. But this was not the fact for the new wheel shape, because of a higher relation between the maximum principal stress and the highest von Mises stress compared with the old wheel shape.

  18. Variations on the Kalman filter for enhanced performance monitoring of gas turbine engines


    Borguet, Sébastien


    Since their advent in the 1940's, gas turbines have been used in a wide range of land, sea and air applications due to their high power density and reliability. In today's competitive market, gas turbine operators need to optimise the dispatch availability (it i.e., minimise operational issues such as aborted take-offs or in-flight shutdowns) as well as the direct operating costs of their assets. Besides improvements in the design and manufacture processes, proactive maintenance pract...

  19. Performance assessment of simple and modified cycle turboshaft gas turbines

    Directory of Open Access Journals (Sweden)

    Barinyima Nkoi


    Full Text Available This paper focuses on investigations encompassing comparative assessment of gas turbine cycle options. More specifically, investigation was carried out of technical performance of turboshaft engine cycles based on existing simple cycle (SC and its projected modified cycles for civil helicopter application. Technically, thermal efficiency, specific fuel consumption, and power output are of paramount importance to the overall performance of gas turbine engines. In course of carrying out this research, turbomatch software established at Cranfield University based on gas turbine theory was applied to conduct simulation of a simple cycle (baseline two-spool helicopter turboshaft engine model with free power turbine. Similarly, some modified gas turbine cycle configurations incorporating unconventional components, such as engine cycle with low pressure compressor (LPC zero-staged, recuperated engine cycle, and intercooled/recuperated (ICR engine cycle, were also simulated. In doing so, design point (DP and off-design point (OD performances of the engine models were established. The percentage changes in performance parameters of the modified cycle engines over the simple cycle were evaluated and it was found that to a large extent, the modified engine cycles with unconventional components exhibit better performances in terms of thermal efficiency and specific fuel consumption than the traditional simple cycle engine. This research made use of public domain open source references.

  20. Advanced Seal Development for Large Industrial Gas Turbines (United States)

    Chupp, Raymond E.


    Efforts are in progress to develop advanced sealing for large utility industrial gas turbine engines (combustion turbines). Such seals have been under developed for some time for aero gas turbines. It is desired to transition this technology to combustion turbines. Brush seals, film riding face and circumferential seals, and other dynamic and static sealing approaches are being incorporated into gas turbines for aero applications by several engine manufacturers. These seals replace labyrinth or other seals with significantly reduced leakage rates. For utility industrial gas turbines, leakage reduction with advanced sealing can be even greater with the enormous size of the components. Challenges to transitioning technology include: extremely long operating times between overhauls; infrequent but large radial and axial excursions; difficulty in coating larger components; and maintenance, installation, and durability requirements. Advanced sealing is part of the Advanced Turbine Systems (ATS) engine development being done under a cooperative agreement between Westinghouse and the US Department of Energy, Office of Fossil Energy. Seal development focuses on various types of seals in the 501ATS engine both at dynamic and static locations. Each development includes rig testing of candidate designs and subsequent engine validation testing of prototype seals. This presentation gives an update of the ongoing ATS sealing efforts with special emphasis on brush seals.

  1. Turbine and Structural Seals Team Facilities (United States)

    Federal Laboratory Consortium — Seals Team Facilities conceive, develop, and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. Current projects include...


    Energy Technology Data Exchange (ETDEWEB)

    Frank Macri


    Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

  3. Unsteady flowfield in an integrated rocket ramjet engine and combustion dynamics of a gas turbine swirl-stabilized injector (United States)

    Sung, Hong-Gye

    This research focuses on the time-accurate simulation and analysis of the unsteady flowfield in an integrated rocket-ramjet engine (IRR) and combustion dynamics of a swirl-stabilized gas turbine engine. The primary objectives are: (1) to establish a unified computational framework for studying unsteady flow and flame dynamics in ramjet propulsion systems and gas turbine combustion chambers, and (2) to investigate the parameters and mechanisms responsible for driving flow oscillations. The first part of the thesis deals with a complete axi-symmetric IRR engine. The domain of concern includes a supersonic inlet diffuser, a combustion chamber, and an exhaust nozzle. This study focused on the physical mechanism of the interaction between the oscillatory terminal shock in the inlet diffuser and the flame in the combustion chamber. In addition, the flow and ignition transitions from the booster to the sustainer phase were analyzed comprehensively. Even though the coupling between the inlet dynamics and the unsteady motions of flame shows that they are closely correlated, fortunately, those couplings are out of phase with a phase lag of 90 degrees, which compensates for the amplification of the pressure fluctuation in the inlet. The second part of the thesis treats the combustion dynamics of a lean-premixed gas turbine swirl injector. A three-dimensional computation method utilizing the message passing interface (MPI) Parallel architecture and large-eddy-simulation technique was applied. Vortex breakdown in the swirling flow is clearly visualized and explained on theoretical bases. The unsteady turbulent flame dynamics are carefully simulated so that the flow motion can be characterized in detail. It was observed that some fuel lumps escape from the primary combustion zone, and move downstream and consequently produce hot spots and large vortical structures in the azimuthal direction. The correlation between pressure oscillation and unsteady heat release is examined by

  4. High Specific Stiffness Shafts and Advanced Bearing Coatings for Gas Turbine Engines Final Report CRADA No. TC-1089-95

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, Troy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chin, Herbert [United Technologies Corporation, East Hartford, CT (United States)


    At the time of the CRADA, the largest in-service gas-turbine aircraft engines strove for increased thrust and power density to meet the requirements for take-off thrust, given the increase in take-off gross weight (TOGW) associated with longer range transport requirements. The trend in modem turbo shaft engines was toward turbine shafts with higher and higher length-to-diameter ratios, which reduced the shaft critical speed. Using co nventional shaft materials, this lead to shafts that needed to operate near or above sensitive shaft bending critical speeds, therefore requiring multiple bearings and/ or multiple squeeze-film dampers to control the dynamic response. Using new materials and d esign concepts this project demonstrated the use of new shaft materials which could provide increased shaft speed range above existing maximum engine speeds without encountering a critic al speed event and high vector deflections. This increased main shaft speed also resulted in decreased bearing life associated with lower heat dissipation and higher centrifugal forces. Thus, a limited effort was devoted to feasibility of higher performance bearing coatings to mitigate the speed effects.

  5. An Integrated Surface Engineering Technology Development for Improving Energy Efficiency of Engine Components

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Hsu; Liming Chang; Huan Zhan


    Frictional losses are inherent in most practical mechanical systems. The ability to control friction offers many opportunities to achieve energy conservation. Over the years, materials, lubricants, and surface modifications have been used to reduce friction in automotive and diesel engines. However, in recent years, progress in friction reduction technology has slowed because many of the inefficiencies have been eliminated. A new avenue for friction reduction is needed. Designing surfaces specifically for friction reduction with concomitant enhanced durability for various engine components has emerged recently as a viable opportunity due to advances in fabrication and surface finishing techniques. Recently, laser ablated dimples on surfaces have shown friction reduction properties and have been demonstrated successfully in conformal contacts such as seals where the speed is high and the load is low. The friction reduction mechanism in this regime appears to depend on the size, patterns, and density of dimples in the contact. This report describes modeling efforts in characterizing surface textures and understanding their mechanisms for enhanced lubrication under high contact pressure conditions. A literature survey is first presented on the development of descriptors for irregular surface features. This is followed by a study of the hydrodynamic effects of individual micro-wedge dimples using the analytical solution of the 1-D Reynolds equation and the determination of individual components of the total friction resistance. The results obtained provide a better understanding of the dimple orientation effects and the approach which may be used to further compare the friction reduction provided by different texture patterns.

  6. Autoignition Chemistry of Surrogate Fuel Components in an Engine Environment (United States)


    conditions. Relevance to Army Research on combustion in CI engines is an important need for Army ground transportation systems, including fundamental...government laboratories) on next generation fuels and engines at professional meetings, such as Combustion Institute Conferences, SAE International... engine chamber at condition of ER=0.72, CR=11.0, IT= 450K. Both the pressure and temperature shows the two stage ignition combustion of methyl

  7. Transition duct system with arcuate ceramic liner for delivering hot-temperature gases in a combustion turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, David J.


    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include an arcuate connecting segment (36). An arcuate ceramic liner (60) may be inwardly disposed onto a metal outer shell (38) along the arcuate connecting segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liner can be readily removed and replaced as needed.

  8. Three-component particle image velocimetry in a generic can-type gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, Bronwyn C


    Full Text Available Meyer 2 , T H Roos 1 , and G I Mahmood 2 1Aeronautics Competency, Defence, Peace, Safety and Security, Council for Scientific and Industrial Research, Pretoria, South Africa 2Department of Mechanical and Aeronautical Engineering..., University of Pretoria, Pretoria South Africa * Corresponding author: Aeronautics Competency, Defence, Peace, Safety and Security, Council for Scientific and Industrial Research, PO Box 395, Pretoria,0001, South Africa Email: bmeyers...

  9. The Gas turbine Engine-based Power Technology Plant Using Wood Waste Gasification Products

    Directory of Open Access Journals (Sweden)

    S. K. Danilova


    Full Text Available The paper outlines the problems of energy supply and waste utilization of the forest industries. As a solution, it proposes to use gasification to utilize wood leftovers, which is followed by electric power generation from combustion of producer gas. The plant was expected to have a power of 150 kW. The proposed power technology plant comprises a line for pre-treatment of wood chips, a gas generator (gasifier and a gas turbine unit.The paper justifies a need for preliminary preparation of wood waste, particularly chipping and drying. Various drying schemes have been analyzed. A line for pre-treatment of wood chips comprises a drum chipper, a receiving raw material wood container and a drum dryer using fume gases.A co-current gasifier is chosen because of the high content of tar in the original fuel. In the co-current gasifier, most of the tar, passing through the high temperature area, is burned. The paper offers high temperature dry cleaning of producer gas in the cyclone separator. Such a scheme of cleaning provides high efficiency of the plant and simplifies its design, but suspended particles still remain in the producer gas. When analyzing the schemes of power converters this is taken into account.A choice of the gas turbine as a power converter is justified. To reduce the erosion damage of the turbine blades there is a proposal to use an unconventional gas turbine scheme with air turbine and a combustion chamber located downstream of the turbine. In this plant the air rather than the combustion gas passes through the turbine. The air from turbine goes into the combustion chamber, the combustion gas passes through the air heater, where it transfers heat to the air. Such scheme allows reducing power costs for the fuel gas compression before the combustion chamber.Optimization of the gas turbine cycle is performed. The optimum compressor pressure ratio is 3,7. The plant efficiency for this pressure ratio is 25,7%. Calculation results of the

  10. AGT (Advanced Gas Turbine) technology project (United States)


    An overall summary documentation is provided for the Advanced Gas Turbine Technology Project conducted by the Allison Gas Turbine Division of General Motors. This advanced, high risk work was initiated in October 1979 under charter from the U.S. Congress to promote an engine for transportation that would provide an alternate to reciprocating spark ignition (SI) engines for the U.S. automotive industry and simultaneously establish the feasibility of advanced ceramic materials for hot section components to be used in an automotive gas turbine. As this program evolved, dictates of available funding, Government charter, and technical developments caused program emphases to focus on the development and demonstration of the ceramic turbine hot section and away from the development of engine and powertrain technologies and subsequent vehicular demonstrations. Program technical performance concluded in June 1987. The AGT 100 program successfully achieved project objectives with significant technology advances. Specific AGT 100 program achievements are: (1) Ceramic component feasibility for use in gas turbine engines has been demonstrated; (2) A new, 100 hp engine was designed, fabricated, and tested for 572 hour at operating temperatures to 2200 F, uncooled; (3) Statistical design methodology has been applied and correlated to experimental data acquired from over 5500 hour of rig and engine testing; (4) Ceramic component processing capability has progressed from a rudimentary level able to fabricate simple parts to a sophisticated level able to provide complex geometries such as rotors and scrolls; (5) Required improvements for monolithic and composite ceramic gas turbine components to meet automotive reliability, performance, and cost goals have been identified; (6) The combustor design demonstrated lower emissions than 1986 Federal Standards on methanol, JP-5, and diesel fuel. Thus, the potential for meeting emission standards and multifuel capability has been initiated

  11. Thermodynamic Modeling of a Solid Oxide Fuel Cell to Couple with an Existing Gas Turbine Engine Model (United States)

    Brinson, Thomas E.; Kopasakis, George


    The Controls and Dynamics Technology Branch at NASA Glenn Research Center are interested in combining a solid oxide fuel cell (SOFC) to operate in conjunction with a gas turbine engine. A detailed engine model currently exists in the Matlab/Simulink environment. The idea is to incorporate a SOFC model within the turbine engine simulation and observe the hybrid system's performance. The fuel cell will be heated to its appropriate operating condition by the engine s combustor. Once the fuel cell is operating at its steady-state temperature, the gas burner will back down slowly until the engine is fully operating on the hot gases exhausted from the SOFC. The SOFC code is based on a steady-state model developed by The U.S. Department of Energy (DOE). In its current form, the DOE SOFC model exists in Microsoft Excel and uses Visual Basics to create an I-V (current-voltage) profile. For the project's application, the main issue with this model is that the gas path flow and fuel flow temperatures are used as input parameters instead of outputs. The objective is to create a SOFC model based on the DOE model that inputs the fuel cells flow rates and outputs temperature of the flow streams; therefore, creating a temperature profile as a function of fuel flow rate. This will be done by applying the First Law of Thermodynamics for a flow system to the fuel cell. Validation of this model will be done in two procedures. First, for a given flow rate the exit stream temperature will be calculated and compared to DOE SOFC temperature as a point comparison. Next, an I-V curve and temperature curve will be generated where the I-V curve will be compared with the DOE SOFC I-V curve. Matching I-V curves will suggest validation of the temperature curve because voltage is a function of temperature. Once the temperature profile is created and validated, the model will then be placed into the turbine engine simulation for system analysis.

  12. Modification and testing of an engine and fuel control system for a hydrogen fuelled gas turbine (United States)

    Funke, H. H.-W.; Börner, S.; Hendrick, P.; Recker, E.


    The control of pollutant emissions has become more and more important by the development of new gas turbines. The use of hydrogen produced by renewable energy sources could be an alternative. Besides the reduction of NOx emissions emerged during the combustion process, another major question is how a hydrogen fuelled gas turbine including the metering unit can be controlled and operated. This paper presents a first insight in modifications on an Auxiliary Power Unit (APU) GTCP 36300 for using gaseous hydrogen as a gas turbine fuel. For safe operation with hydrogen, the metering of hydrogen has to be fast, precise, and secure. So, the quality of the metering unit's control loop has an important influence on this topic. The paper documents the empiric determination of the proportional integral derivative (PID) control parameters for the metering unit.

  13. History of Thermal Barrier Coatings for Gas Turbine Engines: Emphasizing NASA's Role from 1942 to 1990 (United States)

    Miller, Robert A.


    NASA has played a central role in the development of thermal barrier coatings (TBCs) for gas turbine applications. This report discusses the history of TBCs emphasizing the role NASA has played beginning with (1) frit coatings in the 1940s and 1950s; (2) thermally sprayed coatings for rocket application in the 1960s and early 1970s; (3) the beginnings of the modern era of turbine section coatings in the mid 1970s; and (4) failure mechanism and life prediction studies in the 1980s and 1990s. More recent efforts are also briefly discussed.

  14. Heat shield manifold system for a midframe case of a gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Clinton A.; Eng, Jesse; Schopf, Cheryl A.


    A heat shield manifold system for an inner casing between a compressor and turbine assembly is disclosed. The heat shield manifold system protects the outer case from high temperature compressor discharge air, thereby enabling the outer case extending between a compressor and a turbine assembly to be formed from less expensive materials than otherwise would be required. In addition, the heat shield manifold system may be configured such that compressor bleed air is passed from the compressor into the heat shield manifold system without passing through a conventional flange to flange joint that is susceptible to leakage.

  15. Proposal and Evaluation of a Gas Engine and Gas Turbine Hybrid Cogeneration System in which Cascaded Heat is Highly Utilized (United States)

    Pak, Pyong Sik

    A high efficiency cogeneration system (CGS) is proposed for utilizing high temperature exhaust gas (HTEG) from a gas engine (GE). In the proposed system, for making use of heat energy of HTEG, H2O turbine (HTb) is incorporated and steam produced by utilizing HTEG is used as working fluid of HTb. HTb exhaust gas is also utilized for increasing power output and for satisfying heat demand in the proposed system. Both of the thermodynamic characteristics of the proposed system and a gas engine CGS (GE-CGS) constructed by using the original GE are estimated. Energy saving characteristics and CO2 reduction effects of the proposed CGS and the GE-CGS are also investigated. It was estimated that the net generated power of the proposed CGS has been increasd 25.5% and net power generation efficiency 6.7%, compared with the the original GE-CGS. It was also shown that the proposed CGS could save 27.0% of energy comsumption and reduce 1137 t-CO2/y, 1.41 times larger than those of GE-CGS, when a case syudy was set and investigated. Improvements of performance by increasing turbine inlet temperature were also investigated.

  16. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine (United States)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David


    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  17. A methodology for the evaluation of the turbine jet engine fragment threat to generic air transportable containers

    International Nuclear Information System (INIS)

    Harding, D.C.; Pierce, J.D.


    Uncontained, high-energy gas turbine engine fragments are a potential threat to air-transportable containers carried aboard jet aircraft. The threat to a generic example container is evaluated by probability analyses and penetration testing to demonstrate the methodology to be used in the evaluation of a specific container/aircraft/engine combination. Fragment/container impact probability is the product of the uncontained fragment release rate and the geometric probability that a container is in the path of this fragment. The probability of a high-energy rotor burst fragment from four generic aircraft engines striking one of the containment vessels aboard a transport aircraft is approximately 1.2 x 10 -9 strikes/hour. Finite element penetration analyses and tests can be performed to identify specific fragments which have the potential to penetrate a generic or specific containment vessel. The relatively low probability of engine fragment/container impacts is primarily due to the low release rate of uncontained, hazardous jet engine fragments

  18. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing of Ceramic Composites. Part III; Additive Manufacturing and Characterization of Ceramic Composites (United States)

    Halbig, Michael C.; Grady, Joseph E.; Singh, Mrityunjay; Ramsey, Jack; Patterson, Clark; Santelle, Tom


    This publication is the third part of a three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce ceramic matrix composite materials and aircraft engine components by the binder jet process. Different SiC powders with median sizes ranging from 9.3 to 53.0 microns were investigated solely and in powder blends in order to maximize powder packing. Various infiltration approaches were investigated to include polycarbosilane (SMP-10), phenolic, and liquid silicon. Single infiltrations of SMP-10 and phenolic only slightly filled in the interior. When the SMP-10 was loaded with sub-micron sized SiC powders, the infiltrant gave a much better result of filling in the interior. Silicon carbide fibers were added to the powder bed to make ceramic matrix composite materials. Microscopy showed that the fibers were well distributed with no preferred orientation on the horizontal plane and fibers in the vertical plane were at angles as much as 45deg. Secondary infiltration steps were necessary to further densify the material. Two to three extra infiltration steps of SMP-10 increased the density by 0.20 to 0.55 g/cc. However, the highest densities achieved were 2.10 to 2.15 g/cc. Mechanical tests consisting of 4 point bend tests were conducted. Samples from the two CMC panels had higher strengths and strains to failure than the samples from the two nonfiber reinforced panels. The highest strengths were from Set N with 65 vol% fiber loading which had an average strength of 66 MPa. Analysis of the fracture surfaces did not reveal pullout of the reinforcing fibers. Blunt fiber failure suggested that there was not composite behavior. The binder jet additive manufacturing method was used to also demonstrate the fabrication of turbine engine vane components of two different designs and sizes. The

  19. Optical Sensing of Combustion Instabilities in Gas Turbines (United States)

    Markham, James R.; Marran, David F.; Scire, James J., Jr.


    In a continuing program of research and development, a system has been demonstrated that makes high-speed measurements of thermal infrared radiance from gas-turbine engine exhaust streams. When a gas-turbine engine is operated under conditions that minimize the emission of pollutants, there is a risk of crossing the boundary from stable to unstable combustion. Combustion instability can lead to engine damage and even catastrophic failure. Sensor systems of the type under development could provide valuable data during the development testing of gas-turbine engines or of engine components. A system of the type under development makes high-speed measurements of thermal infrared radiance from the engine exhaust stream. The sensors of this system can be mounted outside the engine, which eliminates the need for engine case penetrations typical with other engine dynamics monitors. This is an important advantage in that turbine-engine manufacturers consider such penetrations to be very undesirable. A prototype infrared sensor system has been built and demonstrated on a turbine engine. This system includes rugged and inexpensive near-infrared sensors and filters that select wavelengths of infrared radiation for high sensitivity. In experiments, low-frequency signatures were consistently observed in the detector outputs. Under some conditions, the signatures also included frequency components having one or two radiance cycles per engine revolution. Although it has yet to be verified, it is thought that the low-frequency signatures may be associated with bulk-mode combustion instabilities or flow instabilities in the compressor section of the engine, while the engine- revolution-related signatures may be indicative of mechanical problems in the engine. The system also demonstrated the ability to detect transient high-radiance events. These events indicate hot spots in the exhaust stream and were found to increase in frequency during engine acceleration.

  20. Fuel-Efficient Road Vehicle Non-Engine Components

    Energy Technology Data Exchange (ETDEWEB)



    The need to address global energy issues, i.e. energy security and climate change, is more urgent than ever. Road vehicles dominate global oil consumption and are one of the fastest growing energy end-uses. This paper studies policies and measures to improve on-road fuel efficiency of vehicles by focusing on energy efficiency of automobile components not generally considered in official fuel efficiency test, namely tyres, cooling technologies and lightings. In this paper, current policies and industry activities on these components are reviewed, fuel saving potential by the components analysed and possible policies to realise the potential recommended.


    Human Engineering Inst., Cleveland, OH.


  2. Preliminary study of Low-Cost Micro Gas Turbine (United States)

    Fikri, M.; Ridzuan, M.; Salleh, Hamidon


    The electricity consumption nowadays has increased due to the increasing development of portable electronic devices. The development of low cost micro gas turbine engine, which is designed for the purposes of new electrical generation Micro turbines are a relatively new distributed generation technology being used for stationary energy generation applications. They are a type of combustion turbine that produces both heat and electricity on a relatively small scaled.. This research are focusing of developing a low-cost micro gas turbine engine based on automotive turbocharger and to evaluation the performance of the developed micro gas turbine. The test rig engine basically was constructed using a Nissan 45V3 automotive turbocharger, containing compressor and turbine assemblies on a common shaft. The operating performance of developed micro gas turbine was analyzed experimentally with the increment of 5000 RPM on the compressor speed. The speed of the compressor was limited at 70000 RPM and only 1000 degree Celsius at maximum were allowed to operate the system in order to avoid any failure on the turbocharger bearing and the other components. Performance parameters such as inlet temperature, compressor temperature, exhaust gas temperature, and fuel and air flow rates were measured. The data was collected electronically by 74972A data acquisition and evaluated manually by calculation. From the independent test shows the result of the system, The speed of the LP turbine can be reached up to 35000 RPM and produced 18.5kw of mechanical power.

  3. Some failure analyses of South African Air Force aircraft engine and airframe components

    CSIR Research Space (South Africa)

    Benson, JM


    Full Text Available problems encountered during routine maintenance[ The following sections discuss some examples of these[ 1[ FAILURE INVESTIGATIONS 1[0[ Forei`n object dama`e to PT5!54AR _rst sta`e compressor turbine blades PT5!54AR engines have been _tted to several C36... of 0099>C and higher it has been reported that CoWO3 forms in the oxide layer and\\ as this melts in this temperature range\\ causes catastrophic destruction of any remaining protective oxide 2 [ 1[3[PT5A!003 carrier _rst sta`e reduction `ear failure A Casa...

  4. Development of a Dual-Fuel Gas Turbine Engine of Liquid and Low-Calorific Gas (United States)

    Koyama, Masamichi; Fujiwara, Hiroshi

    We developed a dual-fuel single can combustor for the Niigata Gas Turbine (NGT2BC), which was developed as a continuous-duty gas turbine capable of burning both kerosene and digester gas. The output of the NGT2BC is 920kW for continuous use with digester gas and 1375kW for emergency use with liquid fuel. Digester gas, obtained from sludge processing at sewage treatment plants, is a biomass energy resource whose use reduces CO2 emissions and take advantage of an otherwise wasted energy source. Design features for good combustion with digester gas include optimized the good matching of gas injection and swirl air and reduced reference velocity. The optimal combination of these parameters was determined through CFD analysis and atmospheric rig testing.

  5. Sensitivity Analysis of Wind Plant Performance to Key Turbine Design Parameters: A Systems Engineering Approach; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Ning, A.; King, R.; Graf, P.; Scott, G.; Veers, P.


    This paper introduces the development of a new software framework for research, design, and development of wind energy systems which is meant to 1) represent a full wind plant including all physical and nonphysical assets and associated costs up to the point of grid interconnection, 2) allow use of interchangeable models of varying fidelity for different aspects of the system, and 3) support system level multidisciplinary analyses and optimizations. This paper describes the design of the overall software capability and applies it to a global sensitivity analysis of wind turbine and plant performance and cost. The analysis was performed using three different model configurations involving different levels of fidelity, which illustrate how increasing fidelity can preserve important system interactions that build up to overall system performance and cost. Analyses were performed for a reference wind plant based on the National Renewable Energy Laboratory's 5-MW reference turbine at a mid-Atlantic offshore location within the United States.

  6. An Investigation into Performance Modelling of a Small Gas Turbine Engine (United States)


    Point EGT = Exhaust Gas Temperature HPC = High Pressure Compressor HPT = High Pressure Turbine RNI = Reynolds Number Index OL = Operating Line...0)ln(1 0)ln(1)ln(022.0 , RNI RNIRNI f RNIW       0)ln(1 0)ln(1)ln(011.0 , RNI RNIRNI f RNI  Where f is the scaling factor and RNI is

  7. Reverse engineering of obsolete components for realisation using additive manufacturing


    McAlister, Craig


    Additive manufacturing (AM), or 3D printing as it also known, is a technique used for the direct manufacture of parts, one which is becoming more accessible to not just engineers in industry, but also non-technical users with minimal technical knowledge or experience. The aim of the research was the investigation of the possibilities that AM presents for realising the manufacture of obsolete parts from older systems. Consideration of multiple AM techniques and their individual benefits and dr...

  8. Model-integrating software components engineering flexible software systems

    CERN Document Server

    Derakhshanmanesh, Mahdi


    In his study, Mahdi Derakhshanmanesh builds on the state of the art in modeling by proposing to integrate models into running software on the component-level without translating them to code. Such so-called model-integrating software exploits all advantages of models: models implicitly support a good separation of concerns, they are self-documenting and thus improve understandability and maintainability and in contrast to model-driven approaches there is no synchronization problem anymore between the models and the code generated from them. Using model-integrating components, software will be

  9. Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference

    Energy Technology Data Exchange (ETDEWEB)

    Geiling, D.W. [ed.


    The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

  10. Improved Life Prediction of Turbine Engine Components Using a Finite Element Based Software Called Zencrack (United States)


    2002. Ref. 9 Python web site, Ref. 10 Abaqus is a trademark of Hibbitt, Karlsson & Sorensen Inc., Pawtucket, Rhode Island...large 3-D crack growth. Zencrack was also interfaced to ANSYS in addition to enhanced interfaces to ABAQUS and MSC.MARC. Zencrack models crack fronts by... Abaqus Interface.............................................................................................. 9-1 9.1 Embedded elliptical crack

  11. Powder metallurgy approaches to high temperature components for gas turbine engines (United States)

    Probst, H. B.


    Research is reported for the tensile strength, ductility, and heat performance characterisitics of powder metallurgy (p/m) superalloys. Oxide dispersion strengthened alloys were also evaluated for their strength during thermal processing. The mechanical attributes evident in both p/m supperalloys and dispersion strengthened alloys are discussed in terms of research into their possible combination.

  12. Power metallurgy approaches to high temperature components for gas turbine engines (United States)

    Probst, H. B.


    Work conducted by NASA and NASA contractors on prealloyed superalloy powders and materials strengthened by oxide dispersion is reviewed. Fabrication, tensile strength, superplasticity, grain growth control, stress rupture life, and grain-size and dispersion-level effects are covered. Distinct strength advantages of powder metallurgy superalloys over conventional wrought alloys are noted.

  13. Replacement of Chromium Electroplating on Gas Turbine Engine Components Using Thermal Spray Coatings

    National Research Council Canada - National Science Library

    Sartwell, Bruce D; Legg, Keith O; Schell, Jerry; Bondaruk, Bob; Alford, Charles; Natishan, Paul; Lawrence, Steven; Shubert, Gary; Bretz, Philip; Kaltenhauser, Anne


    .... However, chrome plating utilizes hexavalent chromium, which is a highly toxic carcinogen, and increasingly, stringent environmental and worker-safety regulations are making chrome plating more expensive for the DoD...

  14. Engineering Design Handbook. Dielectric Embedding of Electrical or Electronic Components (United States)


    Hardness: after 50-h pressure Time Required Before cooker , 10-15 psi 40 Applying Second Coat, min after 30 days at 100°C 65°C 75 98%of RH 42 85°C 45...power supplies, amplifiers, transformers, ferrite cores, connectors, encapsulation of components and circuit boards; adhesive for solar cells, for

  15. Measuring compliance during aircraft (Component) redeliveries at KLM engineering & maintenance

    NARCIS (Netherlands)

    Burhani, Shahir; Verhagen, W.J.C.; Curran, Ricky


    Aircraft and aircraft components are redelivered to the next operator or owner during the phase-out process. During this process the operator is required by law and contract requirements to show compliance with maintenance procedures. At KLM E&M the phase-out documentation process is under

  16. Low-pressure-ratio regenerative exhaust-heated gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.


    A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

  17. Transition duct system with metal liners for delivering hot-temperature gases in a combustion turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, David J.


    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include a straight path segment (26) and an arcuate connecting segment (36). A respective straight metal liner (92) and an arcuate metal liner (94) may be each inwardly disposed onto a metal outer shell (38) along the straight path segment and the arcuate connecting segment (36) of the exit piece. Structural arrangements are provided to securely attach the respective liners in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liners can be readily removed and replaced as needed.

  18. Fuel nozzle assembly for use as structural support for a duct structure in a combustor of a gas turbine engine (United States)

    Wiebe, David J; Fox, Timothy A


    A fuel nozzle assembly for use in a combustor apparatus of a gas turbine engine. An outer housing of the fuel nozzle assembly includes an inner volume and provides a direct structural connection between a duct structure and a fuel manifold. The duct structure defines a flow passage for combustion gases flowing within the combustor apparatus. The fuel manifold defines a fuel supply channel therein in fluid communication with a source of fuel. A fuel injector of the fuel nozzle assembly is provided in the inner volume of the outer housing and defines a fuel passage therein. The fuel passage is in fluid communication with the fuel supply channel of the fuel manifold for distributing the fuel from the fuel supply channel into the flow passage of the duct structure.

  19. Improving of the working process of axial compressors of gas turbine engines by using an optimization method (United States)

    Marchukov, E.; Egorov, I.; Popov, G.; Baturin, O.; Goriachkin, E.; Novikova, Y.; Kolmakova, D.


    The article presents one optimization method for improving of the working process of an axial compressor of gas turbine engine. Developed method allows to perform search for the best geometry of compressor blades automatically by using optimization software IOSO and CFD software NUMECA Fine/Turbo. Optimization was performed by changing the form of the middle line in the three sections of each blade and shifts of three sections of the guide vanes in the circumferential and axial directions. The calculation of the compressor parameters was performed for work and stall point of its performance map on each optimization step. Study was carried out for seven-stage high-pressure compressor and three-stage low-pressure compressors. As a result of optimization, improvement of efficiency was achieved for all investigated compressors.

  20. Transition duct system with straight ceramic liner for delivering hot-temperature gases in a combustion turbine engine (United States)

    Wiebe, David J.


    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include a straight path segment (26) for receiving a gas flow from a respective combustor. A straight ceramic liner (40) may be inwardly disposed onto a metal outer shell (38) along the straight path segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liner can be readily removed and replaced as needed.

  1. DARWIN-HC: A Tool to Predict Hot Corrosion of Nickel-Based Turbine Disks, Phase I (United States)

    National Aeronautics and Space Administration — Hot Corrosion of turbine engine components has been studied for many years. The underlying mechan-isms of Type I Hot Corrosion and Type II Hot Corrosion are...

  2. DARWIN-HC: A Tool to Predict Hot Corrosion of Nickel-Based Turbine Disks, Phase II (United States)

    National Aeronautics and Space Administration — Hot Corrosion of turbine engine components has been studied for many years. The underlying mechan-isms of Type I Hot Corrosion and Type II Hot Corrosion are...

  3. A new approach involving a multi transducer ultrasonic system for cleaning turbine engines' oil filters under practical conditions. (United States)

    Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo; Chang, Soon Woong; Bui, Hong Ha


    The purpose of this paper is to provide a green technology that can clean turbine engine oil filters effectively in ships using ultrasound, with ultrasonic devices having a frequency of 25kHz and different powers of 300W and 600W, respectively. The effects of temperature, ultrasonic cleaning times, pressure losses through the oil filter, solvent washing, and ultrasonic power devices were investigated. In addition, the cleaning efficiency of three modes (hand washing, preliminary washing and ultrasonic washing) were compared to assess their relative effectiveness. Experimental results revealed that the necessary ultrasonic time varied significantly depending on which solvent was used for washing. For instance, the optimum ultrasonic cleaning time was 50-60min when the oil filter was cleaned in a solvent of kerosene oil (KO) and over 80min when in a solvent of diesel oil (DO) using the same ultrasonic generator device (25kHz, 600W) and experimental conditions. Furthermore, microscopic examination did not reveal any damage or breakdown on or within the structure of the filter after ultrasonic cleaning, even in the filter's surfaces at a constantly low frequency of 25kHz and power specific capacity (100W/gal). Overall, it may be concluded that ultrasound-assisted oil filter washing is effective, requiring a significantly shorter time than manual washing. This ultrasonic method also shows promise as a green technology for washing oil filters in turbine engines in general and Vietnamese navy ships in particular, because of its high cleaning efficiency, operational simplicity and savings. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Profiles of Automotive Suppliers Industries--Engineered Mechanical Components and Systems : Volume II, Appendices. (United States)


    The profile describes and analyzes that segment of the automotive supplier industry which provides engineered mechanical components/assemblies/systems to the prime auto manufacturers. It presents an overview of the role and structure of this industry...

  5. Profiles of Automotive Suppliers Industries--Engineered Mechanical Components and Systems : Volume I, Text. (United States)


    This profile describes and analyzes that segment of the automotive supplier industry which provides engineered mechanical components/assemblies/systems to the prime auto manufacturers. It presents an overview of the role and structure of this industr...

  6. Study on waste heat recovery from exhaust gas spark ignition (S.I. engine using steam turbine mechanism

    Directory of Open Access Journals (Sweden)

    Talib Kamarulhelmy


    Full Text Available The issue of global warming has pushed the effort of researchers not only to find alternative renewable energy, but also to improve the machine’s energy efficiency. This includes the utilization of waste energy into ‘useful energy’. For a vehicle using internal combustion engine (ICE, the waste energy produce by exhaust gas can be utilize to ‘useful energy’ up to 34%. The energy from the automotive exhaust can be harness by implementing heat pipe heat exchanger in the automotive system. In order to maximize the amount of waste energy that can be turned to ‘useful energy’, the used of appropriate fluid in the heat exchanger is important. In this study, the fluid used is water, thus converting the fluid into steam and thus drive the turbine that coupling with generator. The paper will explore the performance of a naturally aspirated spark ignition (S.I. engine equipped with waste heat recovery mechanism (WHRM that used water as the heat absorption medium. The experimental and simulation test suggest that the concept is thermodynamically feasible and could significantly enhance the system performance depending on the load applied to the engine.

  7. Impact of alternative fuels on emissions characteristics of a gas turbine engine - part 2: volatile and semivolatile particulate matter emissions. (United States)

    Williams, Paul I; Allan, James D; Lobo, Prem; Coe, Hugh; Christie, Simon; Wilson, Christopher; Hagen, Donald; Whitefield, Philip; Raper, David; Rye, Lucas


    The work characterizes the changes in volatile and semivolatile PM emissions from a gas turbine engine resulting from burning alternative fuels, specifically gas-to-liquid (GTL), coal-to-liquid (CTL), a blend of Jet A-1 and GTL, biodiesel, and diesel, to the standard Jet A-1. The data presented here, compares the mass spectral fingerprints of the different fuels as measured by the Aerodyne high resolution time-of-flight aerosol mass spectrometer. There were three sample points, two at the exhaust exit plane with dilution added at different locations and another probe located 10 m downstream. For emissions measured at the downstream probe when the engine was operating at high power, all fuels produced chemically similar organic PM, dominated by C(x)H(y) fragments, suggesting the presence of long chain alkanes. The second largest contribution came from C(x)H(y)O(z) fragments, possibly from carbonyls or alcohols. For the nondiesel fuels, the highest loadings of organic PM were from the downstream probe at high power. Conversely, the diesel based fuels produced more organic material at low power from one of the exit plane probes. Differences in the composition of the PM for certain fuels were observed as the engine power decreased to idle and the measurements were made closer to the exit plane.

  8. Wind Turbine Technologies

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela


    The wind turbine technology is a very complex technology involving multidisciplinary and broad technical disciplines such as aerodynamics, mechanics, structure dynamics, meteorology as well as electrical engineering addressing the generation, transmission, and integration of wind turbines...... into the power system. Wind turbine technology has matured over the years and become the most promising and reliable renewable energy technology today. It has moved very fast, since the early 1980s, from wind turbines of a few kilowatts to today’s multimegawatt-sized wind turbines [13]. Besides their size......, the design of wind turbines has changed from being convention driven to being optimized driven within the operating regime and market environment. Wind turbine designs have progressed from fixed speed, passive controlled and with drive trains with gearboxes, to become variable speed, active controlled...

  9. The Gas turbine Engine-based Power Technology Plant Using Wood Waste Gasification Products


    S. K. Danilova; R. Z. Tumashev


    The paper outlines the problems of energy supply and waste utilization of the forest industries. As a solution, it proposes to use gasification to utilize wood leftovers, which is followed by electric power generation from combustion of producer gas. The plant was expected to have a power of 150 kW. The proposed power technology plant comprises a line for pre-treatment of wood chips, a gas generator (gasifier) and a gas turbine unit.The paper justifies a need for preliminary preparation of wo...

  10. Advanced Turbine Blade Cooling Techniques, Phase I (United States)

    National Aeronautics and Space Administration — Gas turbine engine technology is constantly challenged to operate at higher combustor outlet temperatures. In a modern gas turbine engine, these temperatures can...

  11. Research and engineering application of coordinated instrumentation control and protection technology between reactor and steam turbine generator on nuclear power plant

    International Nuclear Information System (INIS)

    Sun Xingdong


    The coordinated instrumentation control and protection technology between reactor and steam turbine generator (TG) usually is very significant and complicated for a new construction of nuclear power plant, because it carries the safety, economy and availability of nuclear power plant. Based on successful practice of a nuclear power plant, the experience on interface design and hardware architecture of coordinated instrumentation control and protection technology between reactor and steam turbine generator was abstracted and researched. In this paper, the key points and engineering experience were introduced to give the helpful instructions for the new project. (author)


    Human Engineering Inst., Cleveland, OH.


  13. 40 CFR Appendix Vi to Part 86 - Vehicle and Engine Components (United States)


    ... exhaust valves. (2) Drive belts. (3) Manifold and cylinder head bolts. (4) Engine oil and filter. (5.... (2) Cooling system. a. Coolant. b. Thermostat. c. Filter. (3) Lubrication. a. Oil filter. b... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Vehicle and Engine Components VI...

  14. Thermo-Mechanical Fatigue of Compacted Graphite Iron in Diesel Engine Components

    NARCIS (Netherlands)

    Ghodrat, S.


    Cast iron components in combustion engines, such as cylinder blocks and heads of trucks, are exposed for long periods of time to elevated temperatures. Moreover, the engines are started and stopped frequently during their operational life, constituting a large number of heating and cooling cycles.

  15. Development of wear resistant ceramic coatings for diesel engine components

    Energy Technology Data Exchange (ETDEWEB)

    Haselkorn, M.H. (Caterpillar, Inc., Peoria, IL (United States))


    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at these more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.

  16. Status on the Component Models Developed in the Modelica Framework: High-Temperature Steam Electrolysis Plant & Gas Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Suk Kim, Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    This report has been prepared as part of an effort to design and build a modeling and simulation (M&S) framework to assess the economic viability of a nuclear-renewable hybrid energy system (N-R HES). In order to facilitate dynamic M&S of such an integrated system, research groups in multiple national laboratories have been developing various subsystems as dynamic physics-based components using the Modelica programming language. In fiscal year (FY) 2015, Idaho National Laboratory (INL) performed a dynamic analysis of two region-specific N-R HES configurations, including the gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) and brackish water reverse osmosis desalination plants as industrial processes. In FY 2016, INL has developed two additional subsystems in the Modelica framework: a high-temperature steam electrolysis (HTSE) plant and a gas turbine power plant (GTPP). HTSE has been proposed as a high priority industrial process to be integrated with a light water reactor (LWR) in an N-R HES. This integrated energy system would be capable of dynamically apportioning thermal and electrical energy (1) to provide responsive generation to the power grid and (2) to produce alternative industrial products (i.e., hydrogen and oxygen) without generating any greenhouse gases. A dynamic performance analysis of the LWR/HTSE integration case was carried out to evaluate the technical feasibility (load-following capability) and safety of such a system operating under highly variable conditions requiring flexible output. To support the dynamic analysis, the detailed dynamic model and control design of the HTSE process, which employs solid oxide electrolysis cells, have been developed to predict the process behavior over a large range of operating conditions. As first-generation N-R HES technology will be based on LWRs, which provide thermal energy at a relatively low temperature, complementary temperature-boosting technology was suggested for integration with the

  17. An effect of humid climate on micro structure and chemical component of natural composite (Boehmeria nivea-Albizia falcata) based wind turbine blade (United States)

    Sudarsono, S.; Purwanto; Sudarsono, Johny W.


    In this work, wind turbine blade NACA 4415 is fabricated from natural composite of Boehmeria nivea and Albizia falcate. The composite fabrication method used is hand lay up method. The aim of the work is to investigate an effect of humid climate of coastal area on micro structure and chemical composition of composite material of the blade. The wind turbine is tested at Pantai Baru, Bantul, Yogyakarta for 5.5 months. The micro structure scanning is performed with Scanning Electron Microscope (SEM) and material component is measured with Energy Dispersive X-ray spectrometer (EDS). The samples are tested before and after the use within 5.5 month at the location. The results show that composite material inexperienced interface degradation and insignificant change of micro structure. From EDS test, it is observed that Na filtration reduces C and increases O in composite material after 5.5 months.

  18. Strength and Reliability of Wood for the Components of Low-cost Wind Turbines: Computational and Experimental Analysis and Applications

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Freere, Peter; Sharma, Ranjan


    This paper reports the latest results of the comprehensive program of experimental and computational analysis of strength and reliability of wooden parts of low cost wind turbines. The possibilities of prediction of strength and reliability of different types of wood are studied in the series...... of experiments and computational investigations. Low cost testing machines have been designed, and employed for the systematic analysis of different sorts of Nepali wood, to be used for the wind turbine construction. At the same time, computational micromechanical models of deformation and strength of wood...

  19. Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, N. B. [Hi-Z Technology, Inc., San Diego, CA (United States); Bass, J. C. [Hi-Z Technology, Inc., San Diego, CA (United States); Ghamaty, S. [Hi-Z Technology, Inc., San Diego, CA (United States); Krommenhoek, D. [Hi-Z Technology, Inc., San Diego, CA (United States); Kushch, A. [Hi-Z Technology, Inc., San Diego, CA (United States); Snowden, D. [Hi-Z Technology, Inc., San Diego, CA (United States); Marchetti, S. [Hi-Z Technology, Inc., San Diego, CA (United States)


    Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCAR's test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of

  20. Evaluation of Electrostatic Probe Technique for Detection of Particles Emitted during Turbine Engine Distress (United States)


    out and published by the AFAPL and AFFDL project engineers. The authors would like to thank Mr. David Elkins and Mr. Paul Habil of AFAPL for engine...operation; 2. record baseline probe data (counts and noia levels); 3. introduce distress and verify particle emission (to the extent possible); record

  1. High energy white beam x-ray diffraction studies of residual strains in engineering components (United States)

    Zhang, S. Y.; Vorster, W.; Jun, T. S.; Song, X.; Golshan, M.; Laundy, D.; Walsh, M. J.; Korsunsky, A. M.


    In order to predict the durability of engineering components and improve performance, it is mandatory to understand residual stresses. The last decade has witnessed a significant increase of residual stress evaluation using diffraction of penetrating radiation, such as neutrons or high energy X-rays. They provide a powerful non-destructive method for determining the level of residual stresses in engineering components through precise characterisation of interplanar crystal lattice spacing. The unique non-destructive nature of these measurement techniques is particularly beneficial in the context of engineering design, since it allows the evaluation of a variety of structural and deformational parameters inside real components without material removal, or at worst with minimal interference. However, while most real engineering components have complex shape and are often large in size, leading to measurement and interpretation difficulties, since experimental facilities usually have limited space for mounting the sample, limited sample travel range, limited loading capacity of the sample positioning system, etc. Consequently, samples often have to be sectioned, requiring appropriate corrections on measured data; or facilities must be improved. Our research group has contributed to the development of engineering applications of high-energy X-ray diffraction methods for residual stress evaluation, both at synchrotron sources and in the lab setting, including multiple detector setup, large engineering component manipulation and measurement at the UK Synchrotron Radiation Source (SRS Daresbury), and in our lab at Oxford. A nickel base superalloy combustion casing and a large MIG welded Al alloy plate were successfully studied.

  2. PVD TBC experience on GE aircraft engines (United States)

    Maricocchi, Antonio; Bartz, Andi; Wortman, David


    The higher performance levels of modern gas turbine engines present significant challenges in the reliability of materials in the turbine. The increased engine temperatures required to achieve the higher performance levels reduce the strength of the materials used in the turbine sections of the engine. Various forms of thermal barrier coatings (TBC's) have been used for many years to increase the reliability of gas turbine engine components. Recent experience with the physical vapor deposition (PVD) process using ceramic material has demonstrated success in extending the service life of turbine blades and nozzles. Engine test results of turbine components with a 125 micron (0.005 in) PVD TBC have demonstrated component operating temperatures of 56-83 C (100-150 F) lower than non-PVD TBC components. Engine testing has also revealed the TBC is susceptible to high angle particle impact damage. Sand particles and other engine debris impact the TBC surface at the leading edge of airfoils and fracture the PVD columns. As the impacting continues, the TBC erodes away in local areas. Analysis of the eroded areas has shown a slight increase in temperature over a fully coated area, however a significant temperature reduction was realized over an airfoil without TBC.

  3. Component Test Facility (Comtest) Phase 1 Engineering For 760°C (1400°F) Advanced Ultrasupercritical (A-USC) Steam Generator Development

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, Paul [Babcock & Wilcox Power Generation Group, Inc., Barberton, OH (United States)


    The Babcock & Wilcox Company (B&W) performed a Pre-Front End Engineering Design (Pre-FEED) of an A-USC steam superheater for a proposed component test program achieving 760°C (1400°F) steam temperature. This would lead to follow-on work in a Phase 2 and Phase 3 that would involve detail design, manufacturing, construction and operation of the ComTest. Phase 1 results have provided the engineering data necessary for proceeding to the next phase of ComTest. The steam generator superheater would subsequently supply the steam to an A-USC prototype intermediate pressure steam turbine. The ComTest program is important in that it will place functioning A-USC components in operation and in coordinated boiler and turbine service. It is also important to introduce the power plant operation and maintenance personnel to the level of skills required and provide the first background experience with hands-on training. The project will provide a means to exercise the complete supply chain events required in order to practice and perfect the process for A-USC power plant design, supply, manufacture, construction, commissioning, operation and maintenance. Representative participants will then be able to transfer knowledge and recommendations to the industry. ComTest is conceived in the manner of using a separate standalone plant facility that will not jeopardize the host facility or suffer from conflicting requirements in the host plant’s mission that could sacrifice the nickel alloy components and not achieve the testing goals. ComTest will utilize smaller quantities of the expensive materials and reduce the risk in the first operational practice for A-USC technology in the United States. Components at suitable scale in ComTest provide more assurance before putting them into practice in the full size A-USC demonstration plant.

  4. Application of Probabilistic Methods to Assess Risk Due to Resonance in the Design of J-2X Rocket Engine Turbine Blades (United States)

    Brown, Andrew M.; DeHaye, Michael; DeLessio, Steven


    The LOX-Hydrogen J-2X Rocket Engine, which is proposed for use as an upper-stage engine for numerous earth-to-orbit and heavy lift launch vehicle architectures, is presently in the design phase and will move shortly to the initial development test phase. Analysis of the design has revealed numerous potential resonance issues with hardware in the turbomachinery turbine-side flow-path. The analysis of the fuel pump turbine blades requires particular care because resonant failure of the blades, which are rotating in excess of 30,000 revolutions/minutes (RPM), could be catastrophic for the engine and the entire launch vehicle. This paper describes a series of probabilistic analyses performed to assess the risk of failure of the turbine blades due to resonant vibration during past and present test series. Some significant results are that the probability of failure during a single complete engine hot-fire test is low (1%) because of the small likelihood of resonance, but that the probability increases to around 30% for a more focused turbomachinery-only test because all speeds will be ramped through and there is a greater likelihood of dwelling at more speeds. These risk calculations have been invaluable for use by program management in deciding if risk-reduction methods such as dampers are necessary immediately or if the test can be performed before the risk-reduction hardware is ready.


    Energy Technology Data Exchange (ETDEWEB)

    William H. Day


    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which

  6. Analysis of appraisal tool of system security engineering capability maturity based on component

    International Nuclear Information System (INIS)

    Liu Zhenghai; Yang Xiaohua; Zou Shuliang; Liu Yachun; Xiao Jiantian; Liu Zhiming


    Spent Fuel Reprocessing is a part of nuclear fuel cycle and is the inevitably choice of nuclear power sustainable development. Reprocessing needs to face with radiological, criticality, chemical hazards. Besides using the tradition appraisal methods based on the security goals, it is a beneficial supplement that using the appraisal method of system security engineering capability maturity model based on the process. Experts should check and approve large numbers of documents during the appraisal based on system security engineering capability maturity model, so it is necessary that developing a tool to assist the expert to complete the appraisal. The method of developing software based on component is highly effective, nimble and reliable. Component technology is analyzed, the methods of extraction model domain components and general components is introduced, and the appraisal system is developed based on component technology. (authors)

  7. Combustion generated noise in gas turbine combustors. [engine noise/noise reduction (United States)

    Strahle, W. C.; Shivashankara, B. N.


    Experiments were conducted to determine the noise power and spectra emitted from a gas turbine combustor can exhausting to the atmosphere. Limited hot wire measurements were made of the cold flow turbulence level and spectra within the can. The fuels used were JP-4, acetone and methyl alcohol burning with air at atmospheric pressure. The experimental results show that for a fixed fuel the noise output is dominated by the airflow rate and not the fuel/air ratio. The spectra are dominated by the spectra of the cold flow turbulence spectra which were invariant with airflow rate in the experiments. The effect of fuel type on the noise power output was primarily through the heat of combustion and not the reactivity. A theory of combustion noise based upon the flame radiating to open surroundings is able to reasonably explain the observed results. A thermoacoustic efficiency for noise radiation as high as .00003 was observed in this program for JP-4 fuel. Scaling rules are presented for installed configurations.

  8. Forced Response Prediction of Turbine Blades with Flexible Dampers: The Impact of Engineering Modelling Choices

    Directory of Open Access Journals (Sweden)

    Chiara Gastaldi


    Full Text Available This paper focuses on flexible friction dampers (or “strips” mounted on the underside of adjacent turbine blade platforms for sealing and damping purposes. A key parameter to ensure a robust and trustworthy design is the correct prediction of the maximum frequency shift induced by the strip damper coupling adjacent blades. While this topic has been extensively addressed on rigid friction dampers, both experimentally and numerically, no such investigation is available as far as flexible dampers are concerned. This paper builds on the authors’ prior experience with rigid dampers to investigate the peculiarities and challenges of a robust dynamic model of blade-strips systems. The starting point is a numerical tool implementing state-of-the-art techniques for the efficient solution of the nonlinear equations, e.g., multi-harmonic balance method with coupled static solution and state-of-the-art contact elements. The full step-by-step modelling process is here retraced and upgraded to take into account the damper flexibility: for each step, key modelling choices (e.g., mesh size, master nodes selection, contact parameters which may affect the predicted response are addressed. The outcome is a series of guidelines which will help the designer assign numerical predictions the proper level of trust and outline a much-needed experimental campaign.

  9. Review of modern low emissions combustion technologies for aero gas turbine engines (United States)

    Liu, Yize; Sun, Xiaoxiao; Sethi, Vishal; Nalianda, Devaiah; Li, Yi-Guang; Wang, Lu


    Pollutant emissions from aircraft in the vicinity of airports and at altitude are of great public concern due to their impact on environment and human health. The legislations aimed at limiting aircraft emissions have become more stringent over the past few decades. This has resulted in an urgent need to develop low emissions combustors in order to meet legislative requirements and reduce the impact of civil aviation on the environment. This article provides a comprehensive review of low emissions combustion technologies for modern aero gas turbines. The review considers current high Technologies Readiness Level (TRL) technologies including Rich-Burn Quick-quench Lean-burn (RQL), Double Annular Combustor (DAC), Twin Annular Premixing Swirler combustors (TAPS), Lean Direct Injection (LDI). It further reviews some of the advanced technologies at lower TRL. These include NASA multi-point LDI, Lean Premixed Prevaporised (LPP), Axially Staged Combustors (ASC) and Variable Geometry Combustors (VGC). The focus of the review is placed on working principles, a review of the key technologies (includes the key technology features, methods of realising the technology, associated technology advantages and design challenges, progress in development), technology application and emissions mitigation potential. The article concludes the technology review by providing a technology evaluation matrix based on a number of combustion performance criteria including altitude relight auto-ignition flashback, combustion stability, combustion efficiency, pressure loss, size and weight, liner life and exit temperature distribution.

  10. Status of Technological Advancements for Reducing Aircraft Gas Turbine Engine Pollutant Emissions (United States)

    Rudey, R. A.


    Combustor test rig results indicate that substantial reductions from current emission levels of carbon monoxide (CO), total unburned hydrocarbons (THC), oxides of nitrogen (NOx), and smoke are achievable by employing varying degrees of technological advancements in combustion systems. Minor to moderate modifications to existing conventional combustors produced significant reductions in CO and THC emissions at engine low power (idle/taxi) operating conditions but did not effectively reduce NOx at engine full power (takeoff) operating conditions. Staged combusiton techniques were needed to simultaneously reduce the levels of all the emissions over the entire engine operating range (from idle to takeoff). Emission levels that approached or were below the requirements of the 1979 EPA standards were achieved with the staged combustion systems and in some cases with the minor to moderate modifications to existing conventional combustion systems. Results from research programs indicate that an entire new generation of combustor technology with extremely low emission levels may be possible in the future.

  11. The Use of an Ultra-Compact Combustor as an Inter-Turbine Burner for Improved Engine Performance (United States)


    Alstom , formally known as ABB Power Generation, developed a line of SCgas turbines for the power generation industry [12]. The Alstom GT24 and GT26...consist of a primary combustor a turbine and a reheat combustor, with the aim of achieving high efficiency while delivering low emissions. Alstom has been...utilizing the SC concepts since the 1940’s using diffusion type combustors. In 1995 Alstom developed their modern line SC gas turbines shown in Figure

  12. Software Engineering of Component-Based Systems-of-Systems: A Reference Framework


    Loiret, Frédéric; Rouvoy, Romain; Seinturier, Lionel; Merle, Philippe


    CORE A.; International audience; Systems-of-Systems (SoS) are complex infrastructures, which are characterized by a wide diversity of technologies and requirements imposed by the domain(s) they target. In this context, the software engineering community has been focusing on assisting the developers by providing them domain-specific languages, component-based software engineering frameworks and tools to leverage on the design and the development of such systems. However, the adoption of such a...

  13. The development and testing of ceramic components in piston engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McEntire, B.J. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.; Willis, R.W.; Southam, R.E. [TRW, Inc., Cleveland, OH (United States)


    Within the past 10--15 years, ceramic hardware has been fabricated and tested in a number of piston engine applications including valves, piston pins, roller followers, tappet shims, and other wear components. It has been shown that, with proper design and installation, ceramics improve performance, fuel economy, and wear and corrosion resistance. These results have been obtained using rig and road tests on both stock and race engines. Selected summaries of these tests are presented in this review paper.

  14. The role of NDE in maintaining and extending the life cycle of engineering components

    International Nuclear Information System (INIS)

    Doctor, S.R.


    A successful life cycle of engineering components begins during the design to select the best materials for a given application, designing for economical maintenance, and accommodating NDE inspections. NDE in the nuclear industry is part of the defense in depth to insure structural integrity of components. High reliability NDE is needed to reliably detect and accurately characterize the failure modes that have occurred in nuclear components. The move toward risk-informed inservice inspection programs focusses the NDE on the most safety significant components. The use of performance demonstration testing is leading to improved inservice inspections through screening out ineffective procedure/equipment/personnel. (orig.)

  15. Safety considerations in the design and operation of large wind turbines (United States)

    Reilly, D. H.


    The engineering and safety techniques used to assure the reliable and safe operation of large wind turbine generators utilizing the Mod 2 Wind Turbine System Program as an example is described. The techniques involve a careful definition of the wind turbine's natural and operating environments, use of proven structural design criteria and analysis techniques, an evaluation of potential failure modes and hazards, and use of a fail safe and redundant component engineering philosophy. The role of an effective quality assurance program, tailored to specific hardware criticality, and the checkout and validation program developed to assure system integrity are described.

  16. Evaluation and silicon nitride internal combustion engine components. Final report, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Voldrich, W. [Allied-Signal Aerospace Co., Torrance, CA (United States). Garrett Ceramic Components Div.


    The feasibility of silicon nitride (Si{sub 3}N{sub 4}) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components` gas-pressure sinterable Si{sub 3}N{sub 4} (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si{sub 3}N{sub 4} components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

  17. R&D on Composition and Processing of Titanium Aluminide Alloys for Turbine Engines (United States)


    and is approved for publication. 4.2 / /;ARRY LIPS NORMA M. GEYER Projec Engineer Technical Area Manager Processing & High Temperature Materials...of as- forged Ti- 25A1-10Nb- 3V- iMo 24 alloy pancake forging. This was forged on iso - thermal dies at 1120C (20SOF) in one step from a cast ingot. 14

  18. Feasibility Study on CNC Multioperation Grinding of Jet Engine Components Using Force Sensing Adaptive Control. (United States)



  19. Effect of soot on oil properties and wear of engine components

    International Nuclear Information System (INIS)

    Green, D A; Lewis, R


    The objective of the work outlined in this paper was to increase the understanding of the wear mechanisms that occur within a soot contaminated contact zone, to help in future development of a predictive wear model to assist in the automotive engine valve train design process. The paper builds on previous work by the author, through testing of different lubricants and increased levels of soot contamination. Wear testing has been carried out using specimens operating under realistic engine conditions, using a reciprocating test-rig specifically designed for this application, where a steel disc is held in a heated bath of oil and a steel ball is attached to a reciprocating arm (replicating a sliding elephant's foot valve train contact). Detailed analysis of the test specimens has been performed using scanning electron microscopy to identify wear features relating to the proposed wear mechanisms. Analysis of worn engine components from durability engine tests has also been carried out for a comparison between specimen tests and engine testing. To assist the understanding of the wear test results obtained, the physical properties of contaminated lubricants were investigated, through viscosity, traction and friction measurements. The results have revealed how varying lubrication conditions change the wear rate of engine components and determine the wear mechanism that dominates in specific situations. Testing has also shown the positive effects of advanced engine lubricants to reduce the amount of wear produced with soot present

  20. Effect of soot on oil properties and wear of engine components (United States)

    Green, D. A.; Lewis, R.


    The objective of the work outlined in this paper was to increase the understanding of the wear mechanisms that occur within a soot contaminated contact zone, to help in future development of a predictive wear model to assist in the automotive engine valve train design process. The paper builds on previous work by the author, through testing of different lubricants and increased levels of soot contamination. Wear testing has been carried out using specimens operating under realistic engine conditions, using a reciprocating test-rig specifically designed for this application, where a steel disc is held in a heated bath of oil and a steel ball is attached to a reciprocating arm (replicating a sliding elephant's foot valve train contact). Detailed analysis of the test specimens has been performed using scanning electron microscopy to identify wear features relating to the proposed wear mechanisms. Analysis of worn engine components from durability engine tests has also been carried out for a comparison between specimen tests and engine testing. To assist the understanding of the wear test results obtained, the physical properties of contaminated lubricants were investigated, through viscosity, traction and friction measurements. The results have revealed how varying lubrication conditions change the wear rate of engine components and determine the wear mechanism that dominates in specific situations. Testing has also shown the positive effects of advanced engine lubricants to reduce the amount of wear produced with soot present.

  1. Recent developments in turbomachinery component materials and manufacturing challenges for aero engine applications (United States)

    Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.


    In the recent years the development of turbomachinery materials performance enhancement plays a vital role especially in aircraft air breathing engines like turbojet engine, turboprop engine, turboshaft engine and turbofan engines. Especially the transonic flow engines required highly sophisticated materials where it can sustain the entire thrust which can create by the engine. The main objective of this paper is to give an overview of the present cost-effective and technological capabilities process for turbomachinery component materials. Especially the main focus is given to study the Electro physical, Photonic additive removal process and Electro chemical process for turbomachinery parts manufacture. The aeronautical propulsion based technologies are reviewed thoroughly where in surface reliability, geometrical precession, and material removal and highly strengthened composite material deposition rates usually difficult to cut dedicated steels, Titanium and Nickel based alloys. In this paper the past aeronautical and propulsion mechanical based manufacturing technologies, current sophisticated technologies and also future challenging material processing techniques are covered. The paper also focuses on the brief description of turbomachinery components of shaping process and coating in aeromechanical applications.

  2. Engine cyclic durability by analysis and material testing (United States)

    Kaufman, A.; Halford, G. R.


    The problem of calculating turbine engine component durability is addressed. Nonlinear, finite-element structural analyses, cyclic constitutive behavior models, and an advanced creep-fatigue life prediction method called strainrange partitioning were assessed for their applicability to the solution of durability problems in hot-section components of gas turbine engines. Three different component or subcomponent geometries are examined: a stress concentration in a turbine disk; a louver lip of a half-scale combustor linear; and a squealer tip of a first-stage high-pressure turbine blade. Cyclic structural analyses were performed for all three problems. The computed strain-temperature histories at the critical locations of the combustor linear and turbine blade components were imposed on smooth specimens in uniaxial, strain-controlled, thermomechanical fatigue tests of evaluate the structural and life analysis methods.

  3. Resonant Vibrations Resulting from the Re-Engineering of a Constant-Speed 2-Bladed Turbine to a Variable-Speed 3-Bladed Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, P.; Wright, A. D.; Finersh, L. J.


    The CART3 (Controls Advanced Research Turbine, 3-bladed) at the National Wind Technology Center has recently been converted from a 2-bladed constant speed machine to a 3-bladed variable speed machine designed specically for controls research. The purpose of this conversion was to develop an advanced controls field-testing platform which has the more typical 3-bladed configuration. A result of this conversion was the emergence of several resonant vibrations, some of which initially prevented operation of the turbine until they could be explained and resolved. In this paper, the investigations into these vibrations are presented as 'lessons-learned'. Additionally, a frequency-domain technique called waterfall plotting is discussed and its usefulness in this research is illustrated.

  4. Combustion noise from gas turbine aircraft engines measurement of far-field levels (United States)

    Krejsa, Eugene A.


    Combustion noise can be a significant contributor to total aircraft noise. Measurement of combustion noise is made difficult by the fact that both jet noise and combustion noise exhibit broadband spectra and peak in the same frequency range. Since in-flight reduction of jet noise is greater than that of combustion noise, the latter can be a major contributor to the in-flight noise of an aircraft but will be less evident, and more difficult to measure, under static conditions. Several methods for measuring the far-field combustion noise of aircraft engines are discussed in this paper. These methods make it possible to measure combustion noise levels even in situations where other noise sources, such as jet noise, dominate. Measured far-field combustion noise levels for several turbofan engines are presented. These levels were obtained using a method referred to as three-signal coherence, requiring that fluctuating pressures be measured at two locations within the engine core in addition to the far-field noise measurement. Cross-spectra are used to separate the far-field combustion noise from far-field noise due to other sources. Spectra and directivities are presented. Comparisons with existing combustion noise predictions are made.

  5. 40 CFR 1068.255 - What are the provisions for exempting engines and fuel-system components for hardship for... (United States)


    ... commit to a plan to make up the lost environmental benefit. (i) If you produce uncertified engines under... engines and fuel-system components for hardship for equipment manufacturers and secondary engine...) AIR POLLUTION CONTROLS GENERAL COMPLIANCE PROVISIONS FOR ENGINE PROGRAMS Exemptions and Exclusions...

  6. Detection of gear cracks in a complex gearbox of wind turbines using supervised bounded component analysis of vibration signals collected from multi-channel sensors (United States)

    Li, Zhixiong; Yan, Xinping; Wang, Xuping; Peng, Zhongxiao


    In the complex gear transmission systems, in wind turbines a crack is one of the most common failure modes and can be fatal to the wind turbine power systems. A single sensor may suffer with issues relating to its installation position and direction, resulting in the collection of weak dynamic responses of the cracked gear. A multi-channel sensor system is hence applied in the signal acquisition and the blind source separation (BSS) technologies are employed to optimally process the information collected from multiple sensors. However, literature review finds that most of the BSS based fault detectors did not address the dependence/correlation between different moving components in the gear systems; particularly, the popular used independent component analysis (ICA) assumes mutual independence of different vibration sources. The fault detection performance may be significantly influenced by the dependence/correlation between vibration sources. In order to address this issue, this paper presents a new method based on the supervised order tracking bounded component analysis (SOTBCA) for gear crack detection in wind turbines. The bounded component analysis (BCA) is a state of art technology for dependent source separation and is applied limitedly to communication signals. To make it applicable for vibration analysis, in this work, the order tracking has been appropriately incorporated into the BCA framework to eliminate the noise and disturbance signal components. Then an autoregressive (AR) model built with prior knowledge about the crack fault is employed to supervise the reconstruction of the crack vibration source signature. The SOTBCA only outputs one source signal that has the closest distance with the AR model. Owing to the dependence tolerance ability of the BCA framework, interfering vibration sources that are dependent/correlated with the crack vibration source could be recognized by the SOTBCA, and hence, only useful fault information could be preserved in

  7. Creep life management system for a turbine engine and method of operating the same (United States)

    Tralshawala, Nilesh; Miller, Harold Edward; Badami, Vivek Venugopal; Vittal, Sameer; Sexton, Daniel White


    A creep life management system includes at least one sensor apparatus coupled to a first component. The at least one sensor apparatus is configured with a unique identifier. The creep life management system also includes at least one reader unit coupled to a second component. The at least one reader unit is configured to transmit an interrogation request signal to the at least one sensor apparatus and receive a measurement response signal transmitted from the at least one sensor apparatus. The creep life management system further includes at least one processor programmed to determine a real-time creep profile of the first component as a function of the measurement response signal transmitted from the at least one sensor apparatus.

  8. Modeling and simulation of combustion dynamics in lean-premixed swirl-stabilized gas-turbine engines (United States)

    Huang, Ying

    This research focuses on the modeling and simulation of combustion dynamics in lean-premixed gas-turbines engines. The primary objectives are: (1) to establish an efficient and accurate numerical framework for the treatment of unsteady flame dynamics; and (2) to investigate the parameters and mechanisms responsible for driving flow oscillations in a lean-premixed gas-turbine combustor. The energy transfer mechanisms among mean flow motions, periodic motions and background turbulent motions in turbulent reacting flow are first explored using a triple decomposition technique. Then a comprehensive numerical study of the combustion dynamics in a lean-premixed swirl-stabilized combustor is performed. The analysis treats the conservation equations in three dimensions and takes into account finite-rate chemical reactions and variable thermophysical properties. Turbulence closure is achieved using a large-eddy-simulation (LES) technique. The compressible-flow version of the Smagorinsky model is employed to describe subgrid-scale turbulent motions and their effect on large-scale structures. A level-set flamelet library approach is used to simulate premixed turbulent combustion. In this approach, the mean flame location is modeled using a level-set G-equation, where G is defined as a distance function. Thermophysical properties are obtained using a presumed probability density function (PDF) along with a laminar flamelet library. The governing equations and the associated boundary conditions are solved by means of a four-step Runge-Kutta scheme along with the implementation of the message passing interface (MPI) parallel computing architecture. The analysis allows for a detailed investigation into the interaction between turbulent flow motions and oscillatory combustion of a swirl-stabilized injector. Results show good agreement with an analytical solution and experimental data in terms of acoustic properties and flame evolution. A study of flame bifurcation from a stable

  9. RAGE Reusable Game Software Components and Their Integration into Serious Game Engines

    NARCIS (Netherlands)

    Van der Vegt, Wim; Nyamsuren, Enkhbold; Westera, Wim


    This paper presents and validates a methodology for integrating reusable software components in diverse game engines. While conforming to the RAGE com-ponent-based architecture described elsewhere, the paper explains how the interac-tions and data exchange processes between a reusable software

  10. Turbinate surgery (United States)

    Turbinectomy; Turbinoplasty; Turbinate reduction; Nasal airway surgery; Nasal obstruction - turbinate surgery ... There are several types of turbinate surgery: Turbinectomy: All or ... This can be done in several different ways, but sometimes a ...

  11. Tool for the Integrated Dynamic Numerical Propulsion System Simulation (NPSS)/Turbine Engine Closed-Loop Transient Analysis (TTECTrA) User's Guide (United States)

    Chin, Jeffrey C.; Csank, Jeffrey T.


    The Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA ver2) is a control design tool thatenables preliminary estimation of transient performance for models without requiring a full nonlinear controller to bedesigned. The program is compatible with subsonic engine models implemented in the MATLAB/Simulink (TheMathworks, Inc.) environment and Numerical Propulsion System Simulation (NPSS) framework. At a specified flightcondition, TTECTrA will design a closed-loop controller meeting user-defined requirements in a semi or fully automatedfashion. Multiple specifications may be provided, in which case TTECTrA will design one controller for each, producing acollection of controllers in a single run. Each resulting controller contains a setpoint map, a schedule of setpointcontroller gains, and limiters; all contributing to transient characteristics. The goal of the program is to providesteady-state engine designers with more immediate feedback on the transient engine performance earlier in the design cycle.

  12. Components of WWER engineering factors for peaking factors: status and trends

    International Nuclear Information System (INIS)

    Tsyganov, S.V.


    One of the topics for discussion at special working group 'Elaboration of the methodology for calculating the core design engineering factors' is the problem of engineering factor components. The list of components corresponds to the phenomena that are taken into account with the engineering factor. It is supposed the better understanding of the influenced phenomena is important stage for developing unified methodology. This paper presents some brief overview of components of the engineering factor for VVER core peaking factors as they are in the Kurchatov Institute methodology. The evolution of some components to less conservative values is observed. Author makes some assumptions as for the further progress in components assessment. The engineering factors providing observance of design limits at normal operation, should cover, with the set probability, the uncertainty, connected with process of core design. For definition of the value of factors it is necessary to define influence of these uncertainties on the investigated parameter of the reactor. Practice consists in defining all possible sources of uncertainties, to estimate influence of each of them, and on their basis to define total influence of all uncertainties. The important stage of a technique of factor calculation is a definition of the list influencing uncertainties. It is obvious that all characteristics of VVER core are known with some uncertainty-owing to manufacturing tolerances, the measurement errors, etc. However essential influence on the parameters connected with safety, render only a part from them. At list formation those characteristics get out only, whose influence is essential to the corresponding parameter. (Author)

  13. Onboard Nonlinear Engine Sensor and Component Fault Diagnosis and Isolation Scheme (United States)

    Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong


    A method detects and isolates in-flight sensor, actuator, and component faults for advanced propulsion systems. In sharp contrast to many conventional methods, which deal with either sensor fault or component fault, but not both, this method considers sensor fault, actuator fault, and component fault under one systemic and unified framework. The proposed solution consists of two main components: a bank of real-time, nonlinear adaptive fault diagnostic estimators for residual generation, and a residual evaluation module that includes adaptive thresholds and a Transferable Belief Model (TBM)-based residual evaluation scheme. By employing a nonlinear adaptive learning architecture, the developed approach is capable of directly dealing with nonlinear engine models and nonlinear faults without the need of linearization. Software modules have been developed and evaluated with the NASA C-MAPSS engine model. Several typical engine-fault modes, including a subset of sensor/actuator/components faults, were tested with a mild transient operation scenario. The simulation results demonstrated that the algorithm was able to successfully detect and isolate all simulated faults as long as the fault magnitudes were larger than the minimum detectable/isolable sizes, and no misdiagnosis occurred

  14. Engineering Bacteria to Catabolize the Carbonaceous Component of Sarin: Teaching E. coli to Eat Isopropanol

    DEFF Research Database (Denmark)

    Brown, Margaret E.; Mukhopadhyay, Aindrila; Keasling, Jay D.


    conversion with a key reaction performed by the acetone carboxylase complex (ACX). We engineered the heterologous expression of the ACX complex from Xanthobacter autotrophicus PY2 to match the naturally occurring subunit stoichiometry and purified the recombinant complex from E. coli for biochemical analysis....... Incorporating this ACX complex and enzymes from diverse organisms, we introduced an isopropanol degradation pathway in E. coli, optimized induction conditions, and decoupled enzyme expression to probe pathway bottlenecks. Our engineered E. coli consumed 65% of isopropanol compared to no-cell controls......We report an engineered strain of Escherichia coli that catabolizes the carbonaceous component of the extremely toxic chemical warfare agent sarin. Enzymatic decomposition of sarin generates isopropanol waste that, with this engineered strain, is then transformed into acetyl-CoA by enzymatic...

  15. Software Engineering Environment for Component-based Design of Embedded Software

    DEFF Research Database (Denmark)

    Guo, Yu


    as well as application models in a computer-aided software engineering environment. Furthermore, component models have been realized following carefully developed design patterns, which provide for an efficient and reusable implementation. The components have been ultimately implemented as prefabricated......, validation, and executable code generation for specific hardware platforms. Developing such an environment and the associated tools is a highly complex engineering task. Therefore, this thesis has investigated key design issues and analysed existing platforms supporting model-driven software development...... software technology, which is largely based on informal design methods and manual coding techniques. That is why it is necessary to develop new design methods and tools that will eventually help improve existing practices. These considerations have motivated the development of the framework -- Component...

  16. Baseline gas turbine development program. Eighteenth quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, F W; Wagner, C E [comps.


    Progress is reported for a program whose goals are to demonstrate an experimental upgraded gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, compact-size American automobile. Initial running of the upgraded engine took place on July 13, 1976. The engine proved to be mechanically sound, but was also 43% deficient in power. A continuing corrective development effort has to date reduced the power deficiency to 32%. Compressor efficiency was increased 2 points by changing to a 28-channel diffuser and tandem deswirl vanes; improved processing of seals has reduced regenerator leakage from about 5 to 2.5% of engine flow; a new compressor turbine nozzle has increased compressor turbine stage efficiency by about 1 point; and adjustments to burner mixing ports has reduced pressure drop from 2.8 to 2.1% of engine pressure. Key compressor turbine component improvements are scheduled for test during the next quarterly period. During the quarter, progress was also made on development of the Upgraded Vehicle control system; and instrumentation of the fourth program engine was completed by NASA. The engine will be used for development efforts at NASA LeRC.

  17. Application of FDI metrics to detection and isolation of sensor failures in turbine engines (United States)

    Weiss, J. L.; Willsky, A. S.; Pattipati, K. R.; Eterno, J. S.


    This paper develops a framework for the design of failure detection and isolation (FDI) algorithms. Rather than trying to apply 'optimal' techniques in a top-down manner, the system redundancies are evaluated with respect to their ability to provide reliable FDI information. Previous work of Pattipati et al. (1984) and Weiss et al. (1984) defined a useful context and several useful analytical results, which provide a basis for the FDI design methodology developed here. A general decision structure which can take advantage of redundancy evaluation is presented, and examples of typical design considerations are discussed. The operation of the decision structure is then demonstrated for a sensor FDI application involving the F-100 jet engine.

  18. Parametric Analysis of a Two-Shaft Aeroderivate Gas Turbine of 11.86 MW

    Directory of Open Access Journals (Sweden)

    R. Lugo-Leyte


    Full Text Available The aeroderivate gas turbines are widely used for power generation in the oil and gas industry. In offshore marine platforms, the aeroderivative gas turbines provide the energy required to drive mechanically compressors, pumps and electric generators. Therefore, the study of the performance of aeroderivate gas turbines based on a parametric analysis is relevant to carry out a diagnostic of the engine, which can lead to operational as well as predictive and/or corrective maintenance actions. This work presents a methodology based on the exergetic analysis to estimate the irrevesibilities and exergetic efficiencies of the main components of a two-shaft aeroderivate gas turbine. The studied engine is the Solar Turbine Mars 100, which is rated to provide 11.86 MW. In this engine, the air is compressed in an axial compressor achieving a pressure ratio of 17.7 relative to ambient conditions and a high pressure turbine inlet temperature of 1220 °C. Even if the thermal efficiency associated to the pressure ratio of 17.7 is 1% lower than the maximum thermal efficiency, the irreversibilities related to this pressure ratio decrease approximately 1 GW with respect to irreversibilities of the optimal pressure ratio for the thermal efficiency. In addition, this paper contributes to develop a mathematical model to estimate the high turbine inlet temperature as well as the pressure ratio of the low and high pressure turbines.

  19. Additive Manufacturing of Wind Turbine Molds

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Richardson, Bradley [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lloyd, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Love, Lonnie [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nolet, Stephen [TPI Composites, Scottsdale, AZ (United States); Hannan, James [TPI Composites, Scottsdale, AZ (United States)


    The objective of this project was to explore the utility of Big Area Additive Manufacturing (BAAM) for low cost manufacturing of wind turbine molds. Engineers at Oak Ridge National Laboratory (ORNL) and TPI Composites (TPI) collaborated to design and manufacture a printed mold that can be used for resin infusion of wind turbine components. Specific focus was on required material properties (operating temperatures and pressures, coefficient of thermal expansion (CTE), thermal conductivity), surface finish (accuracy and coatings) and system integration (integrated vacuum ports, and heating element). The project began with a simple proof of principle components, targeting surface coatings and material properties for printing a small section (approximately 4’ x 4’ x 2’) of a mold. Next, the second phase scaled up and integrated with the objective of capturing all of the necessary components (integrated heating to accelerate cure time, and vacuum, sealing) for resin infusion on a mold of significant size (8’ x 20’ x 6’).

  20. Confirmatory radiological survey of the BORAX-V turbine building Idaho National Engineering Laboratory, Idaho Falls, Idaho

    International Nuclear Information System (INIS)

    Stevens, G.H.; Coleman, R.L.; Jensen, M.K.; Pierce, G.A.; Egidi, P.V.; Mather, S.K.


    An independent assessment of the remediation of the BORAX-V (Boiling Water Reactor Experiment) turbine building at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho, was accomplished by the Oak Ridge National Laboratory Pollutant Assessments Group (ORNL/PAG). The purpose of the assessment was to confirm the site's compliance with applicable Department of Energy guidelines. The assessment included reviews of both the decontamination and decommissioning Plan and data provided from the pre- and post-remedial action surveys and an independent verification survey of the facility. The independent verification survey included determination of background exposure rates and soil concentrations, beta-gamma and gamma radiation scans, smears for detection of removable contamination, and direct measurements for alpha and beta-gamma radiation activity on the basement and mezzanine floors and the building's interior and exterior walls. Soil samples were taken, and beta-gamma and gamma radiation exposure rates were measured on areas adjacent to the building. Results of measurements on building surfaces at this facility were within established contamination guidelines except for elevated beta-gamma radiation levels located on three isolated areas of the basement floor. Following remediation of these areas, ORNL/PAG reviewed the remedial action contractor's report and agreed that remediation was effective in removing the source of the elevated direct radiation. Results of all independent soil analyses for 60 Co were below the detection limit. The highest 137 Cs analysis result was 4.6 pCi/g; this value is below the INEL site-specific guideline of 10 pCi/g

  1. Improving Turbine Performance with Ceramic Matrix Composites (United States)

    DiCarlo, James A.


    Under the new NASA Fundamental Aeronautics Program, efforts are on-going within the Supersonics Project aimed at the implementation of advanced SiC/SiC ceramic composites into hot section components of future gas turbine engines. Due to recent NASA advancements in SiC-based fibers and matrices, these composites are lighter and capable of much higher service temperatures than current metallic superalloys, which in turn will allow the engines to operate at higher efficiencies and reduced emissions. This presentation briefly reviews studies within Task 6.3.3 that are primarily aimed at developing physics-based concepts, tools, and process/property models for micro- and macro-structural design, fabrication, and lifing of SiC/SiC turbine components in general and airfoils in particular. Particular emphasis is currently being placed on understanding and modeling (1) creep effects on residual stress development within the component, (2) fiber architecture effects on key composite properties such as design strength, and (3) preform formation processes so that the optimum architectures can be implemented into complex-shaped components, such as turbine vanes and blades.


    Directory of Open Access Journals (Sweden)

    Yevhen V. Tymoshenko


    Full Text Available In the article it is investigated the problem of ICT-competence formation of the future computer profile engineers-teachers. It has been analyzed scientific papers that study development issues of information and communication competence of students in the field of ІCT. It is pointed out the need for further development of communication component and suggested to apply for this the B. Bloom's cognitive processes measurement system. Based on the competency approach and improved B. Bloom's pedagogical purposes taxonomy it has been developed a cognitive processes measuring system aiming to form ICT-competence communication component.


    Directory of Open Access Journals (Sweden)

    Yuliya Kozak


    Full Text Available The article analysis the system of professional training of future engineering teachers of computer type at the pedagogical universities, including graphical content preparation. It is established that the modernization of this system of training engineering teachers of computer profile is extremely important because of increasing demands for total graphics education, which in terms of mass communication, the need to compress a significant amount of information and opportunities provided by new information technologies, becomes so important as second literacy. The article reveals the essential characteristics of the concept of graphic competence as important component of the modernization of the education system, and an attempt to find promising ways of further work to effective solving of the issue of formation of graphic competence of engineering teachers of computer profile.


    Directory of Open Access Journals (Sweden)

    G. M. Kuharonak


    Full Text Available The objective of the paper is to develop a program, a methodology and execute vibration load tests of Common Rail fuel system components for a diesel engine. The paper contains an analysis of parameters that characterize vibration activity of research object and determine its applicability as a part of the specific mechanical system. A tests program has been developed that includes measurements of general peak values of vibration acceleration in the fuel system components, transformation of the obtained data while taking into account the fact that peak vibration acceleration values depend on crank-shaft rotation frequency and spectrum of vibration frequency, comparison of these dependences with the threshold limit values obtained in the process of component tests with the help of vibration shaker. The investigations have been carried out in one of the most stressed elements of the Common Rail fuel system that is a RDS 4.2-pressure sensor in a fuel accumulator manufactured by Robert Bosch GmbH and mounted on the MMZ D245.7E4-engines.According to the test methodology measurements have been performed on an engine test bench at all fullload engine curves. Vibration measurements have resulted in time history of the peak vibration acceleration values in three directions from every accelerometer and crank-shaft rotation frequency.It has been proposed to increase a diameter of mounting spacers of the fuel accumulator and install a damping clamp on high pressure tubes from a high pressure fuel pump to the fuel accumulator that permits to reduce a maximum peak vibration acceleration value on the pressure sensor in the fuel accumulator by 400 m/s2 and ensure its application in the given engine.

  5. Low-pressure-ratio regenerative exhaust-heated gas turbine. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.


    A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

  6. Use of an additive in biofuel to evaluate emissions, engine component wear and lubrication characteristics

    International Nuclear Information System (INIS)

    Kalam, M.A.; Majsuki, H.H.


    This paper presents the results of experiments carried out to evaluate the effect of adding an anticorrosion additive to blended biofuel and lubricating oil on emissions, engine component wear and lubrication characteristics. The blended biofuels consist of 7.5 and 15 per cent palm olein (PO) with ordinary diesel oil (OD). Pure OD was used for comparison purposes. Exhaust emission gases such as NO x , CO and hydrocarbons (HCs) were measured by an exhaust emission analyser for engine operation on 50 per cent throttle at speeds of 800-3600 r/min. To measure engine component wear and lubricating oil characteristics, the engine was operated at 50 per cent throttle at a speed of 2000 r/min for a period of 100 h with each of the fuel samples. The same lubricating oil, conventional SAE 40, was used in all the fuels. A multielement oil analyser (MOA) was used to measure the increase in wear of metals (Fe, Cu, Al, Pd) and the decrease in lubricating oil additives (Zn, Ca) in the lubricating oil used. An ISL automatic Houillon viscometer (ASTM D445) and potentiometric titration (ASTM D2896) were used to measure viscosity and total base number (TBN) respectively. The results show that the addition of anticorrosion additive with biofuel and lubricating oil improves the emission and engine wear characteristics; both the exhaust emission gases (NO x , CO and HCs) and the wear of metals (Fe, Cu, Al and Pd) decrease with the blended fuels in comparison with the base fuel OD. Detailed results, including engine brake power, are discussed. (Author)

  7. An investigation of enhanced capability thermal barrier coating systems for diesel engine components (United States)

    Holtzman, R. L.; Layne, J. L.; Schechter, B.


    Material systems and processes for the development of effective and durable thermal barriers for heavy duty diesel engines were investigated. Seven coating systems were evaluated for thermal conductivity, erosion resistance, corrosion/oxidation resistance, and thermal shock resistance. An advanced coating system based on plasma sprayed particle yttria stabilized zirconia (PS/HYSZ) was judged superior in these tests. The measured thermal conductivity of the selected coating was 0.893 W/m C at 371 C. The PS/HYSZ coating system was applied to the piston crown, fire deck and valves of a single cylinder low heat rejection diesel engine. The coated engine components were tested for 24 hr at power levels from 0.83 MPa to 1.17 MPa brake mean effective pressure. The component coatings survived the engine tests with a minimum of distress. The measured fire deck temperatures decreased 86 C (155 F) on the intake side and 42 C (75 F) on the exhaust side with the coating applied.

  8. Control Performance of General Electric Fuel and Torque Regulator Operating on T31-3 Turbine-Propeller Engine in Sea-Level Test Stand (United States)

    Oppenheimer, Frank L.; Lazar, James


    A .General Electric fuel and torque regulator was tested in conjunction with a T31-3 turbine-propeller engine in the sea-level static test stand at the NACA Lewis laboratory. The engine and control were operated over the entire speed range: 11,000 rpm, nominal flight idle, to 13,000 rpm, full power. Steady-state and transient data were recorded and are presented with a description of the four control loops being used in the system. Results of this investigation indicated that single-lever control operation was satisfactory under conditions of test. Transient data presented showed that turbine-outlet temperature did overshoot maximum operating value on acceleration but that the time duration of overshoot did not exceed approximately 1 second. This temperature limiting resulted from a control on fuel flow as a function of engine speed. Speed and torque first reached their desired values 0.4 second from the time of change in power-setting lever position. Maximum speed overshoot was 3 percent.

  9. Automation of a neutron diffractometer for analysis of residual stress inside complex engineering components

    International Nuclear Information System (INIS)

    Ganguly, S.; James, J.A.; Fitzpatrick, M.E.; Tanguy, A.


    Residual stress measurement using neutron diffraction is becoming an increasingly important tool in engineering stress analysis. To this effect, a new generation of dedicated engineering strain instruments are being built at neutron sources, offering considerable improvements in both counting time and spatial resolution. Alongside these improvements, measurements in complex geometry prototype components are increasingly in demand. As a result, there is a strong drive towards integrated sample positioning systems that allow for simplified setup and operating of experiments on components with complex geometries. The present study details work carried out at the ENGIN-X instrument at the UK's ISIS pulsed neutron source, on measurements in a prototype metal matrix composite (MMC) aircraft wheel, forged from a billet produced through a powder-metallurgy route. The measurement was designed to obtain the macrostress and misfit stresses developed in the matrix and in the reinforcement phase in the wheel during fabrication. The study also demonstrates the use of the SScanSS software for experimental design and implementation, which was developed to complement the advances in the instrumentation of new strain mapping diffractometers. SScanSS simplifies the precise spatial location of the measuring gauge volume inside such complex components. (orig.)

  10. Experimental study on engine gas-path component fault monitoring using exhaust gas electrostatic signal

    International Nuclear Information System (INIS)

    Sun, Jianzhong; Zuo, Hongfu; Liu, Pengpeng; Wen, Zhenhua


    This paper presents the recent development in engine gas-path components health monitoring using electrostatic sensors in combination with signal-processing techniques. Two ground-based engine electrostatic monitoring experiments are reported and the exhaust gas electrostatic monitoring signal-based fault-detection method is proposed. It is found that the water washing, oil leakage and combustor linear cracking result in an increase in the activity level of the electrostatic monitoring signal, which can be detected by the electrostatic monitoring system. For on-line health monitoring of the gas-path components, a baseline model-based fault-detection method is proposed and the multivariate state estimation technique is used to establish the baseline model for the electrostatic monitoring signal. The method is applied to a data set from a turbo-shaft engine electrostatic monitoring experiment. The results of the case study show that the system with the developed method is capable of detecting the gas-path component fault in an on-line fashion. (paper)

  11. A Co-modeling Method Based on Component Features for Mechatronic Devices in Aero-engines (United States)

    Wang, Bin; Zhao, Haocen; Ye, Zhifeng


    Data-fused and user-friendly design of aero-engine accessories is required because of their structural complexity and stringent reliability. This paper gives an overview of a typical aero-engine control system and the development process of key mechatronic devices used. Several essential aspects of modeling and simulation in the process are investigated. Considering the limitations of a single theoretic model, feature-based co-modeling methodology is suggested to satisfy the design requirements and compensate for diversity of component sub-models for these devices. As an example, a stepper motor controlled Fuel Metering Unit (FMU) is modeled in view of the component physical features using two different software tools. An interface is suggested to integrate the single discipline models into the synthesized one. Performance simulation of this device using the co-model and parameter optimization for its key components are discussed. Comparison between delivery testing and the simulation shows that the co-model for the FMU has a high accuracy and the absolute superiority over a single model. Together with its compatible interface with the engine mathematical model, the feature-based co-modeling methodology is proven to be an effective technical measure in the development process of the device.

  12. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard


    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  13. Large eddy simulation applications in gas turbines. (United States)

    Menzies, Kevin


    The gas turbine presents significant challenges to any computational fluid dynamics techniques. The combination of a wide range of flow phenomena with complex geometry is difficult to model in the context of Reynolds-averaged Navier-Stokes (RANS) solvers. We review the potential for large eddy simulation (LES) in modelling the flow in the different components of the gas turbine during a practical engineering design cycle. We show that while LES has demonstrated considerable promise for reliable prediction of many flows in the engine that are difficult for RANS it is not a panacea and considerable application challenges remain. However, for many flows, especially those dominated by shear layer mixing such as in combustion chambers and exhausts, LES has demonstrated a clear superiority over RANS for moderately complex geometries although at significantly higher cost which will remain an issue in making the calculations relevant within the design cycle.

  14. Durability Testing of Biomass Based Oxygenated Fuel Components in a Compression Ignition Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baumgardner, Marc E. [Gonzaga University; Lakshminarayanan, Arunachalam [Colorado State University; Olsen, Daniel B. [Colorado State University; Marchese, Anthony J. [Colorado State University


    Blending cellulosic biofuels with traditional petroleum-derived fuels results in transportation fuels with reduced carbon footprints. Many cellulosic fuels rely on processing methods that produce mixtures of oxygenates which must be upgraded before blending with traditional fuels. Complete oxygenate removal is energy-intensive and it is likely that such biofuel blends will necessarily contain some oxygen content to be economically viable. Previous work by our group indicated that diesel fuel blends with low levels (<4%-vol) of oxygenates resulted in minimal negative effects on short-term engine performance and emissions. However, little is known about the long-term effects of these compounds on engine durability issues such as the impact on fuel injection, in-cylinder carbon buildup, and engine oil degradation. In this study, four of the oxygenated components previously tested were blended at 4%-vol in diesel fuel and tested with a durability protocol devised for this work consisting of 200 hrs of testing in a stationary, single-cylinder, Yanmar diesel engine operating at constant load. Oil samples, injector spray patterns, and carbon buildup from the injector and cylinder surfaces were analyzed. It was found that, at the levels tested, these fuels had minimal impact on the overall engine operation, which is consistent with our previous findings.

  15. Microtextured Surfaces for Turbine Blade Impingement Cooling Project (United States)

    National Aeronautics and Space Administration — Gas turbine engine technology is constantly challenged to operate at higher combustor outlet temperatures. In a modern gas turbine engine, these temperatures can...

  16. Advanced coal-fueled industrial cogeneration gas turbine system

    Energy Technology Data Exchange (ETDEWEB)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.


    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  17. Recoding of Information as a Component of Cognitive Training Technologies in the Course "Engineering Graphics"

    Directory of Open Access Journals (Sweden)

    I. N. Lunina


    Full Text Available The efficiency to understand scientific and technical information is a relevant problem for a modern type of students. It is particularly acute for the freshmen learning the course of engineering graphics, which is one of the basic disciplines in engineering education.This problem, generally, arises from the information blow-up and cognitive students’ deficiency. The students need to perceive, understand, take in, and apply a huge amount of information to acquire obligatory professional competencies. The cognitive deficiency is because of the poor school knowledge in geometry and graphics, underdeveloped spatial and logical thinking, lack of skills to work with educational and reference books, clip thinking.The modern engineering graphics teaches a technology for the visual presentation of information, graphical illustration, and interpretation of scientific and technical texts. The text is considered to be a completed piece of information that is described in any way – verbal, graphical, symbolic. Graphical language is a professionally oriented language of engineers.One of the components of cognitive learning technologies aimed at understanding the meaning of the studied texts is the development the skills for recoding some information, because a criterion of understanding the meaning of the text is the independent student’s ability to represent the verbal texts in the form of drawings, blueprints, charts, diagrams, tables, formulae, and numeric entries.The article explores some examples of transcoding texts used in the course of engineering graphics (in lectures, seminars, homework, tests. It is emphasized that integrated presentation (verbal + graphical + symbolic that creates the cohesion of the verbal and figurative components of thinking allows students to gain the most thorough understanding the meaning of educational information. This enables students to minimize their cognitive deficiency, elevate scientific mind, and promote

  18. Raman analysis of DLC coated engine components with complex shape: Understanding wear mechanisms

    International Nuclear Information System (INIS)

    Jaoul, C.; Jarry, O.; Tristant, P.; Merle-Mejean, T.; Colas, M.; Dublanche-Tixier, C.; Jacquet, J.-M.


    Hydrogenated amorphous carbon (a-C:H) films were deposited on flat samples and engine components using an industrial scale reactor. Characterization of the coating allowed validating its application on engine parts due to high hardness (32 GPa) and high level of adhesion achieved using sublayers. The original approach of this work concerned the use of Raman analysis not only on flat samples after tribometer tests but also directly on coated engine parts with complex shape (like cam/follower system), in order to understand wear mechanisms occurring in motorsport engines. As wear could lead to a coating thickness decrease, a particular attention was paid on the Raman signal of the sublayers. Among the different values extracted from Raman spectrum to characterize structural organization, the value of G peak intensity appeared as a criterion of validity of analyses because it is directly linked to the remaining thickness of the a-C:H layer. For flat samples tested on ball-on-disc tribometer, structure of a-C:H film observed by Raman spectroscopy in the wear track remained stable in depth. Then, a-C:H coated engine components were studied before and after working in real conditions. Two different wear mechanisms were identified. The first one did not show any structural modification of the bulk a-C:H layer. In the second one, the high initial roughness of samples (R t = 1.15 μm) lead to coating delaminations after sliding. Massive graphitization which decreases drastically mechanical properties of the coatings was observed by Raman analyses on the contact area. The increase of the temperature on rough edges of the scratches could explain this graphitization.

  19. Sustainable Energy Solutions Task 2.0: Wind Turbine Reliability and Maintainability Enhancement through System-wide Structure Health Monitoring and Modifications to Rotating Components

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, Janet M. [Wichita State Univ., Wichita, KS (United States)


    An evaluation of nondestructive structural health monitoring methods was completed with over 132 documents, 37 specifically about wind turbines, summarized into a technology matrix. This matrix lists the technology, what can be monitored with this technology, and gives a short summary of the key aspects of the technology and its application. Passive and active acoustic emission equipment from Physical Acoustics Corp. and Acellent Technologies have been evaluated and selected for use in experimental state loading and fatigue tests of composite wind turbine blade materials. Acoustic Emission (AE) and Active Ultrasonic Testing (AUT), were applied to composite coupons with both simulated and actual damage. The results found that, while composites are more complicated in nature, compared to metallic structures, an artificial neural network analysis could still be used to determine damage. For the AE system, the failure mode could be determined (i.e. fiber breakage, delamination, etc.). The Acellent system has been evaluated to work well with composite materials. A test-rig for reliability testing of the rotating components was constructed. The research on the types of bearings used in the wind turbines indicated that in most of the designs, the main bearings utilized to support the shaft are cylindrical roller bearings. The accelerated degradation testing of a population of bearings was performed. Vibration and acoustic emission data was collected and analyzed in order to identify a representative degradation signal for each bearing to identify the initiation of the degradation process in the bearings. Afterwards, the RMS of the vibration signal from degradation initiation up to the end of the useful life of the bearing was selected to predict the remaining useful life of the bearing. This step included fitting Autoregressive Moving Average (ARMA) models to the degradation signals and approximating the probability distribution function (PDF) of remaining useful life

  20. Reliability analysis of component of affination centrifugal 1 machine by using reliability engineering (United States)

    Sembiring, N.; Ginting, E.; Darnello, T.


    Problems that appear in a company that produces refined sugar, the production floor has not reached the level of critical machine availability because it often suffered damage (breakdown). This results in a sudden loss of production time and production opportunities. This problem can be solved by Reliability Engineering method where the statistical approach to historical damage data is performed to see the pattern of the distribution. The method can provide a value of reliability, rate of damage, and availability level, of an machine during the maintenance time interval schedule. The result of distribution test to time inter-damage data (MTTF) flexible hose component is lognormal distribution while component of teflon cone lifthing is weibull distribution. While from distribution test to mean time of improvement (MTTR) flexible hose component is exponential distribution while component of teflon cone lifthing is weibull distribution. The actual results of the flexible hose component on the replacement schedule per 720 hours obtained reliability of 0.2451 and availability 0.9960. While on the critical components of teflon cone lifthing actual on the replacement schedule per 1944 hours obtained reliability of 0.4083 and availability 0.9927.

  1. Advanced turbine study. [airfoil coling in rocket turbines (United States)


    Experiments to determine the available increase in turbine horsepower achieved by increasing turbine inlet temperature over a range of 1800 to 2600 R, while applying current gas turbine airfoil cling technology are discussed. Four cases of rocket turbine operating conditions were investigated. Two of the cases used O2/H2 propellant, one with a fuel flowrate of 160 pps, the other 80 pps. Two cases used O2/CH4 propellant, each having different fuel flowrates, pressure ratios, and inlet pressures. Film cooling was found to be the required scheme for these rocket turbine applications because of the high heat flux environments. Conventional convective or impingement cooling, used in jet engines, is inadequate in a rocket turbine environment because of the resulting high temperature gradients in the airfoil wall, causing high strains and low cyclic life. The hydrogen-rich turbine environment experienced a loss, or no gain, in delivered horsepower as turbine inlet temperature was increased at constant airfoil life. The effects of film cooling with regard to reduced flow available for turbine work, dilution of mainstream gas temperature and cooling reentry losses, offset the relatively low specific work capability of hydrogen when increasing turbine inlet temperature over the 1800 to 2600 R range. However, the methane-rich environment experienced an increase in delivered horsepower as turbine inlet temperature was increased at constant airfoil life. The results of a materials survey and heat transfer and durability analysis are discussed.

  2. Numerical Evaluation ofThe Performance ofA Compression Ignition Cng Engine For Heavy DutyTrucksWithAn Optimum Speed PowerTurbine

    Directory of Open Access Journals (Sweden)

    Alberto A. Boretti


    Full Text Available The turbocharged direct injection lean burn Diesel engine is the most efficient engine now in production for transport applications. CNG is an alternative fuel with a better carbon to hydrogen ratio therefore permitting reduced carbon dioxide emissions. It is injected in gaseous form for a much cleaner combustion almost cancelling some of the emissions of the Diesel and it permits a much better energy security within Australia. The paper discusses the best options currently available to convert Diesel engine platforms to CNG, with particular emphasis to the use of these CNG engines within Australia where the refuelling network is scarce. This option is determined in the dual fuel operation with a double injector design that couples a second CNG injector to the Diesel injector. This configuration permits the operation Diesel only or Diesel pilot and CNG main depending on the availability of refuelling stations where the vehicle operates. Results of engine performance simulations are performed for a straight six cylinder 13 litres truck engine with a novel power turbine connected to the crankshaft through a constant variable transmission that may be by-passed when non helpful to increase the fuel economy of the vehicle or when damaging the performances of the after treatment system.

  3. Alternative Liquid Fuel Effects on Cooled Silicon Nitride Marine Gas Turbine Airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Holowczak, J.


    With prior support from the Office of Naval Research, DARPA, and U.S. Department of Energy, United Technologies is developing and engine environment testing what we believe to be the first internally cooled silicon nitride ceramic turbine vane in the United States. The vanes are being developed for the FT8, an aeroderivative stationary/marine gas turbine. The current effort resulted in further manufacturing and development and prototyping by two U.S. based gas turbine grade silicon nitride component manufacturers, preliminary development of both alumina, and YTRIA based environmental barrier coatings (EBC's) and testing or ceramic vanes with an EBC coating.

  4. Comparison of different gas turbine cycles and advanced exergy analysis of the most effective

    International Nuclear Information System (INIS)

    Fallah, M.; Siyahi, H.; Ghiasi, R. Akbarpour; Mahmoudi, S.M.S.; Yari, M.; Rosen, M.A.


    Four gas turbine systems are compared: simple gas turbine (SGT), gas turbine with evaporative inlet air cooler (EVGT), steam injection gas turbine (STIG) and steam injection gas turbine with evaporative inlet air cooler (ESTIG). These comparisons are done on the basis of conventional exergy analysis and the results show that the ESTIG cycle is the most advantageous for the designer. After determining the ESTIG optimum conditions from maximum net work and maximum second law efficiency perspectives using conventional exergy analysis, advanced exergy analysis is performed for this system at its optimum conditions to provide detailed information about the improvement potential of the system components. The analysis is carried out on the basis of the engineering method and the thermodynamic cycle method is used to validate the endogenous exergy destruction rates of the system components. The results show that the optimization priority order for the system components is different when determined with advanced exergy analysis compared to conventional exergy analysis. - Highlights: • Four gas turbine systems are compared on the basis of conventional exergy analysis. • Evaporative cooled steam injection gas turbine (ESTIG) cycle is found to be the best option. • Optimum conditions of the ESTIG cycle is determined from conventional exergy analysis. • Advanced exergy analysis is carried out for this optimum conditions. • The priority of components and their interactions for performance enhancement is presented.

  5. Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Downs, James [Florida Turbine Technologies Inc., Jupiter, FL (United States)


    In this Advanced Turbine Program-funded Phase III project, Florida Turbine Technologies, Inc. (FTT) has developed and tested, at a pre-commercial prototypescale, spar-shell turbine airfoils in a commercial gas turbine. The airfoil development is based upon FTT’s research and development to date in Phases I and II of Small Business Innovative Research (SBIR) grants. During this program, FTT has partnered with an Original Equipment Manufacturer (OEM), Siemens Energy, to produce sparshell turbine components for the first pre-commercial prototype test in an F-Class industrial gas turbine engine and has successfully completed validation testing. This project will further the commercialization of this new technology in F-frame and other highly cooled turbine airfoil applications. FTT, in cooperation with Siemens, intends to offer the spar-shell vane as a first-tier supplier for retrofit applications and new large frame industrial gas turbines. The market for the spar-shell vane for these machines is huge. According to Forecast International, 3,211 new gas turbines units (in the >50MW capacity size range) will be ordered in ten years from 2007 to 2016. FTT intends to enter the market in a low rate initial production. After one year of successful extended use, FTT will quickly ramp up production and sales, with a target to capture 1% of the market within the first year and 10% within 5 years (2020).

  6. 75 FR 6636 - Foreign-Trade Zone 77-Memphis, TN Application for Subzone Cummins, Inc. (Engine Components... (United States)


    ...-origin internal combustion engine (diesel and CNG) parts and components for the U.S. market and export...-origin parts and components that would be admitted to the proposed subzone for distribution include... harnesses, lights, fuel injection components, turbochargers, and block heaters (duty rate range: free--9.9...

  7. Investigation of the part-load performance of two 1.12 MW regenerative marine gas turbines (United States)

    Korakianitis, T.; Beier, K. J.


    Regenerative and intercooled-regenerative gas turbine engines with low pressure ratio have significant efficiency advantages over traditional aero-derivative engines of higher pressure ratios, and can compete with modern diesel engines for marine propulsion. Their performance is extremely sensitive to thermodynamic-cycle parameter choices and the type of components. The performances of two 1.12 MW (1500 hp) regenerative gas turbines are predicted with computer simulations. One engine has a single-shaft configuration, and the other has a gas-generator/power-turbine combination. The latter arrangement is essential for wide off-design operating regime. The performance of each engine driving fixed-pitch and controllable-pitch propellers, or an AC electric bus (for electric-motor-driven propellers) is investigated. For commercial applications the controllable-pitch propeller may have efficiency advantages (depending on engine type and shaft arrangements). For military applications the electric drive provides better operational flexibility.

  8. Turbine Engine Testing. (United States)


    coax lus i (sust Pur oviun. 2.2. Caract6r istique essentielle des essa is roacteur 1 l’aviuno(_ Les essa is A 1 avionnage sont caraclerimen par 1...centrifugation. La centrale eat munie d’un Echangeur huils / eau. Lea pompes sont doubldes pour des raisons de sdcuritd et en cas de panne Electrique le...lea mesures effectudes sur les parties tournantes, essentiellement des contraintes Bur lea aubages. Des sondes mobiles de pression ou de tempdrature t

  9. Engineering Bacteria to Catabolize the Carbonaceous Component of Sarin: Teaching E. coli to Eat Isopropanol

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Margaret E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Mukhopadhyay, Aindrila [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Keasling, Jay D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States); Technical Univ. of Denmark, Horsholm (Denmark)


    In this paper, we report an engineered strain of Escherichia coli that catabolizes the carbonaceous component of the extremely toxic chemical warfare agent sarin. Enzymatic decomposition of sarin generates isopropanol waste that, with this engineered strain, is then transformed into acetyl-CoA by enzymatic conversion with a key reaction performed by the acetone carboxylase complex (ACX). We engineered the heterologous expression of the ACX complex from Xanthobacter autotrophicus PY2 to match the naturally occurring subunit stoichiometry and purified the recombinant complex from E. coli for biochemical analysis. Incorporating this ACX complex and enzymes from diverse organisms, we introduced an isopropanol degradation pathway in E. coli, optimized induction conditions, and decoupled enzyme expression to probe pathway bottlenecks. Our engineered E. coli consumed 65% of isopropanol compared to no-cell controls and was able to grow on isopropanol as a sole carbon source. Finally, in the process, reconstitution of this large ACX complex (370 kDa) in a system naïve to its structural and mechanistic requirements allowed us to study this otherwise cryptic enzyme in more detail than would have been possible in the less genetically tractable native Xanthobacter system.

  10. Surface engineering glass-metal coatings designed for induction heating of ceramic components

    International Nuclear Information System (INIS)

    Khan, Amir Azam; Labbe, Jean Claude


    The term Surface Engineering is of relatively recent origin and use, however, the use of coatings and treatments to render surfaces of materials more suitable for certain application or environment is not new. With the advent of Vacuum Technology, Surface Engineering has gained a whole new impetus, whereby expensive materials with adequate mechanical, chemical and thermal properties are being coated or treated on their surfaces in order to achieve what is called as Surface Engineered materials. The present paper presents an overview of recent achievements in Surface Engineering and gives a detailed view of a specific application where glass-metal composite coatings were deposited on ceramic components in order to render them sensitive to induction heating. Sintered glaze coatings containing silver particles in appropriate concentration can be used for the induction heating of porcelain. Mixtures of glass ceramic powders with silver are used to prepare self-transfer patterns, which are deposited over porcelain. Several configurations of these coatings, which are aesthetic to start with, are employed and heating patterns are recorded. The microstructure of these coatings is discussed in relation to the heating ability by a classical household induction system. The results show that this technique is practical and commercially viable

  11. Surface engineering glass-metal coatings designed for induction heating of ceramic components

    International Nuclear Information System (INIS)

    Khan, A. A.; Labbe, J. C.


    The term Surface Engineering is of relatively recent origin and use, however, the use of coatings and treatments to render surfaces of materials more suitable for certain application or environment is not new. With the advent of Vacuum Technology, Surface Engineering has gained a whole new impetus, whereby expensive materials with adequate mechanical, chemical and thermal properties are being coated or treated on their surfaces in order to achieve what is called as Surface Engineered materials. The present paper presents an overview of recent achievements in Surface Engineering and gives a detailed view of a specific application where glass-metal composite coatings were deposited on ceramic components in order to render them sensitive to induction heating. Sintered glaze coatings containing silver particles in appropriate concentration can be used for the induction heating of porcelain. Mixtures of glass ceramic powders with silver are used to prepare self-transfer patterns, which are deposited over porcelain. Several configurations of these coatings, which are aesthetic to start with, are employed and heating patterns are recorded. The microstructure of these coatings is discussed in relation to the heating ability by a classical household induction system. The results show that this technique is practical and commercially viable. (author)

  12. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Joesph Fadok


    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the

  13. Reliability prediction of engineering systems with competing failure modes due to component degradation

    International Nuclear Information System (INIS)

    Son, Young Kap


    Reliability of an engineering system depends on two reliability metrics: the mechanical reliability, considering component failures, that a functional system topology is maintained and the performance reliability of adequate system performance in each functional configuration. Component degradation explains not only the component aging processes leading to failure in function, but also system performance change over time. Multiple competing failure modes for systems with degrading components in terms of system functionality and system performance are considered in this paper with the assumption that system functionality is not independent of system performance. To reduce errors in system reliability prediction, this paper tries to extend system performance reliability prediction methods in open literature through combining system mechanical reliability from component reliabilities and system performance reliability. The extended reliability prediction method provides a useful way to compare designs as well as to determine effective maintenance policy for efficient reliability growth. Application of the method to an electro-mechanical system, as an illustrative example, is explained in detail, and the prediction results are discussed. Both mechanical reliability and performance reliability are compared to total system reliability in terms of reliability prediction errors

  14. Professional Trajectory of Engineers in the Maquiladora Electronics Industry: The Case of Sanyo Video Components

    Directory of Open Access Journals (Sweden)

    María Ruth Vargas Leyva


    Full Text Available This is a study of the career trajectories of engineers in the company Sanyo Video Components. Three stages in the development of the professional career are recognized: initial career stage, mid-career and late stage career. Results indicate that the career’s trajectory is internally determined by the area of career development and job hierarchy. In external mobility, there are limitations of individual and family type; those of an individual type are age and area of career development; those of a family type are civil state, spouse’s occupation and the presence and number of children. The results of other studies are confirmed in relation to the engineers’ practical training in the business, based on the initial career stage, the step from the technical dimension to the administrative, and the decrease in promotion potential which comes with age, as well as the professional conversion process of engineers who have various types of professional training.

  15. Experimental results showing the internal three-component velocity field and outlet temperature contours for a model gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC


    Full Text Available A three-component flow field inside a can-type, forward flow experimental combustor was measured under non-reacting conditions. The combustor was run at atmospheric conditions with the air flow supplied from a fan and the outlet was straight...

  16. Building community partnerships to implement the new Science and Engineering component of the NGSS (United States)

    Burke, M. P.; Linn, F.


    Partnerships between science professionals in the community and professional educators can help facilitate the adoption of the Next Generation Science Standards (NGSS). Classroom teachers have been trained in content areas but may be less familiar with the new required Science and Engineering component of the NGSS. This presentation will offer a successful model for building classroom and community partnerships and highlight the particulars of a collaborative lesson taught to Rapid City High School students. Local environmental issues provided a framework for learning activities that encompassed several Crosscutting Concepts and Science and Engineering Practices for a lesson focused on Life Science Ecosystems: Interactions, Energy, and Dynamics. Specifically, students studied local water quality impairments, collected and measured stream samples, and analyzed their data. A visiting hydrologist supplied additional water quality data from ongoing studies to extend the students' datasets both temporally and spatially, helping students to identify patterns and draw conclusions based on their findings. Context was provided through discussions of how science professionals collect and analyze data and communicate results to the public, using an example of a recent bacterial contamination of a local stream. Working with Rapid City High School students added additional challenges due to their high truancy and poverty rates. Creating a relevant classroom experience was especially critical for engaging these at-risk youth and demonstrating that science is a viable career path for them. Connecting science in the community with the problem-solving nature of engineering is a critical component of NGSS, and this presentation will elucidate strategies to help prospective partners maneuver through the challenges that we've encountered. We recognize that the successful implementation of the NGSS is a challenge that requires the support of the scientific community. This partnership

  17. Ceramic gas turbine shroud (United States)

    Shi, Jun; Green, Kevin E.


    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  18. Overview of zirconia with respect to gas turbine applications (United States)

    Cawley, J. D.


    Phase relationships and the mechanical properties of zirconia are examined as well as the thermal conductivity, deformation, diffusion, and chemical reactivity of this refractory material. Observations from the literature particular to plasma-sprayed material and implications for gas turbine engine applications are discussed. The literature review indicates that Mg-PSZ (partially stabilized zirconia) and Ca-PSZ are unsuitable for advanced gas turbine applications; a thorough characterization of the microstructure of plasma-sprayed zirconia is needed. Transformation-toughened zirconia may be suitable for use in monolithic components.

  19. Virtual modelling of components of a production system as the tool of lean engineering (United States)

    Monica, Z.


    Between the most effective techniques of manufacturing management is considered the Lean Engineering. The term “lean engineering” was created by Japanese manufacturers. The high efficiency of this method resulted in a meaningful growth in concern in the philosophy of Lean among European companies, and consequently the use of its European markets. Lean philosophy is an approach to manufacturing to minimize the use of all resources, including time. These are resources that are used in the company for a variety of activities. This implies, first identify and then eliminate activities which does not generate added value in the field of design, manufacturing, supply chain management, and customer relations. The producers of these principles not only employ teams multi-professional employees at all levels of the organization, but also use a more automated machines to produce large quantities of products with a high degree of diversity. Lean Engineering is to use a number of principles and practical guidelines that allow you to reduce costs by eliminating absolute extravagance, and also simplification of all manufacturing processes and maintenance. Nowadays it could be applied the powerful engineering programs to realize the concept of Lean Engineering. They could be described using the term CAD/CAM/CAE. They consist of completely different packages for both the design of elements, as well process design. Their common feature is generally considered with their application area. They are used for computer programs assisting the design, development and manufacturing phases of a manufacturing process. The idea of the presented work is to use the Siemens NX software for aiding the process of Lean Engineering system creating. The investigated system is a robotized workcell. In the NX system are created the components of the designed workcell such as machine tools, as industrial robot, as conveyors and buffers. The system let to functionally link these components to

  20. Marine gas turbine; Hakuyo gas turbine suishin plant

    Energy Technology Data Exchange (ETDEWEB)

    Gomi, I.; Shikina, T.; Chiba, M. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)


    Aero-derivative gas turbines have been used widely worldwide in warship propulsion engines. On the other hand, their application is expanding to high-speed commercial ships, in which their advantage of being small in size and light in weight is most effectively utilized. In particular, the gas turbine LM6000 having high output in excess of 40 MW and high reliability realizes low operation cost in large high-speed ships. In addition, expanded gas turbine utilization may be expected in marine propulsion engines if fuel consumption of the gas turbine is improved, where the recuperated cycle use is one of the directions. IHI is continuing research and development of a heat exchanger which holds the key to the practical application of the recuperated cycle gas turbine, and a power turbine with variable nozzles which will further expand the advantage of the recuperated cycle use. The former turbine is a plate fin type with inner fins arranged off-set. The latter turbine controls air flow rate in the gas turbine by varying nozzle angle to match the output, and maintains the heat exchanger inlet temperature at a high level constantly. 3 refs., 7 figs., 2 tabs.