WorldWideScience

Sample records for turbine cogeneration plant

  1. Optimization of a gas turbine cogeneration plant

    International Nuclear Information System (INIS)

    Wallin, J.; Wessman, M.

    1991-11-01

    This work describes an analytical method of optimizing a cogeneration with a gas turbine as prime mover. The method is based on an analytical function. The function describes the total costs of the heat production, described by the heat load duration curve. The total costs consist of the prime costs and fixed costs of the gas turbine and the other heating plants. The parameters of interest at optimization are the heat efficiency produced by the gas turbine and the utilization time of the gas turbine. With todays prices for electricity, fuel and heating as well as maintenance- personnel and investment costs, extremely good conditions are needed to make the gas turbine profitable. Either a raise of the price for the electricity with about 33% is needed or that the ratio of electricity and fuel increases to approx 2.5. High investment subsidies for the gas turbines could make a gas turbine profitable, even with todays electricity- and fuel prices. Besides being a good help when projecting cogeneration plants with a gas turbine as prime mover, the method gives a possibility to optimize the annual operating time for a certain gas turbine when changing the operating conditions. 6 refs

  2. Gas turbine cogeneration plant for textile dyeing plant in Italy

    International Nuclear Information System (INIS)

    Tonetti, P.E.

    1991-01-01

    This paper reports the information (i.e., notes on specific plant component weaknesses and defects, e.g., exchanger tube fouling, improper positioning of temperature probes, incorrect choice of flow valves, etc., and relative remedial actions) gained during a one year cogeneration plant debugging campaign at the Colorama textile dyeing plant in Italy. The cogeneration plant consists of a Solar Saturn MK III gas turbine (1,080 kw at terminals, 500 degrees C exhaust gas temperature); a double (steam and hot water) circuit waste heat boiler contemporaneously producing, with 100 degrees C supply water, 4 tonnes/h steam at 5 bars and 9 cubic meters/h of 20 to 80 degrees C hot water; and a 1,470 kVA generator operating at 3 kV connected by a 3kV/15kV transformer to the national grid. The plant is protected against fire by independent halon fire protection systems, one for the gas turbine plant, the other, for the control room. A modem connects the plant control and monitoring system with the firm which supplied the equipment. The plant operator cites an urgent national requirement for trained cogeneration equipment technical consultants and designers in order to better promote the use of innovative cogeneration technology by Italian industry

  3. Cogeneration steam turbine plant for district heating of Berovo (Macedonia)

    International Nuclear Information System (INIS)

    Armenski, Slave; Dimitrov, Konstantin

    2000-01-01

    A plant for combined heat and electric power production, for central heating of the town Berovo (Macedonia) is proposed. The common reason to use a co-generation unit is the energy efficiency and a significant reduction of environmental pollution. A coal dust fraction from B rik' - Berovo coal mine is the main energy resource for cogeneration steam turbine plant. The heat consumption of town Berovo is analyzed and determined. Based on the energy consumption of a whole power plant, e. i. the plant for combined and simultaneous production of power is proposed. All necessary facilities of cogeneration plant is examined and determined. For proposed cogeneration steam turbine power plant for combined heat and electric production it is determined: heat and electric capacity of the plant, annually heat and electrical quantity production and annually coal consumption, the total investment of the plant, the price of both heat and electric energy as well as the pay back period. (Authors)

  4. Optimal integration of linear Fresnel reflector with gas turbine cogeneration power plant

    International Nuclear Information System (INIS)

    Dabwan, Yousef N.; Mokheimer, Esmail M.A.

    2017-01-01

    Highlights: • A LFR integrated solar gas turbine cogeneration plant (ISGCPP) has been simulated. • The optimally integrated LFR with gas turbine cogeneration plant can achieve an annual solar share of 23%. • Optimal integration of LFR with gas turbine cogeneration system can reduce CO 2 emission by 18%. • Compared to a fully-solar-powered LFR plant, the optimal ISGCPP reduces the LEC by 83%. • ISGCPP reduces the LEC by 50% compared to plants integrated with carbon capture technology. - Abstract: Solar energy is an abundant resource in many countries in the Sunbelt, especially in the middle east, countries, where recent expansion in the utilization of natural gas for electricity generation has created a significant base for introducing integrated solar‐natural gas power plants (ISGPP) as an optimal solution for electricity generation in these countries. ISGPP reduces the need for thermal energy storage in traditional concentrated solar thermal plants and results in dispatchable power on demand at lower cost than stand-alone concentrated thermal power and much cheaper than photovoltaic plants. Moreover, integrating concentrated solar power (CSP) with conventional fossil fuel based thermal power plants is quite suitable for large-scale central electric power generation plants and it can be implemented in the design of new installed plants or during retrofitting of existing plants. The main objective of the present work is to investigate the possible modifications of an existing gas turbine cogeneration plant, which has a gas turbine of 150 MWe electricity generation capacity and produces steam at a rate of 81.4 at 394 °C and 45.88 bars for an industrial process, via integrating it with concentrated solar power system. In this regard, many simulations have been carried out using Thermoflow software to explore the thermo-economic performance of the gas turbine cogeneration plant integrated with LFR concentrated solar power field. Different electricity

  5. Analysis of combustion turbine inlet air cooling systems applied to an operating cogeneration power plant

    International Nuclear Information System (INIS)

    Chacartegui, R.; Jimenez-Espadafor, F.; Sanchez, D.; Sanchez, T.

    2008-01-01

    In this work, combustion turbine inlet air cooling (CTIAC) systems are analyzed from an economic outlook, their effects on the global performance parameters and the economic results of the power plant. The study has been carried out on a combined cogeneration system, composed of a General Electric PG 6541 gas turbine and a heat recovery steam generator. The work has been divided into three parts. First, a revision of the present CTIAC technologies is shown, their effects on power plant performance and evaluation of the associated investment and maintenance costs. In a second phase of the work, the cogeneration plant was modelled with the objective of evaluating the power increase and the effects on the generated steam and the thermal oil. The cogeneration power plant model was developed, departing from the recorded operational data of the plant in 2005 and the gas turbine model offered by General Electric, to take into consideration that, in 2000, the gas turbine had been remodelled and the original performance curves should be corrected. The final objective of this model was to express the power plant main variables as a function of the gas turbine intake temperature, pressure and relative humidity. Finally, this model was applied to analyze the economic interest of different intake cooling systems, in different operative ranges and with different cooling capacities

  6. Coal fired air turbine cogeneration

    Science.gov (United States)

    Foster-Pegg, R. W.

    Fuel options and generator configurations for installation of cogenerator equipment are reviewed, noting that the use of oil or gas may be precluded by cost or legislation within the lifetime of any cogeneration equipment yet to be installed. A coal fueled air turbine cogenerator plant is described, which uses external combustion in a limestone bed at atmospheric pressure and in which air tubes are sunk to gain heat for a gas turbine. The limestone in the 26 MW unit absorbs sulfur from the coal, and can be replaced by other sorbents depending on types of coal available and stringency of local environmental regulations. Low temperature combustion reduces NOx formation and release of alkali salts and corrosion. The air heat is exhausted through a heat recovery boiler to produce process steam, then can be refed into the combustion chamber to satisfy preheat requirements. All parts of the cogenerator are designed to withstand full combustion temperature (1500 F) in the event of air flow stoppage. Costs are compared with those of a coal fired boiler and purchased power, and it is shown that the increased capital requirements for cogenerator apparatus will yield a 2.8 year payback. Detailed flow charts, diagrams and costs schedules are included.

  7. HTGR-GT closed-cycle gas turbine: a plant concept with inherent cogeneration (power plus heat production) capability

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1980-04-01

    The high-grade sensible heat rejection characteristic of the high-temperature gas-cooled reactor-gas turbine (HTGR-GT) plant is ideally suited to cogeneration. Cogeneration in this nuclear closed-cycle plant could include (1) bottoming Rankine cycle, (2) hot water or process steam production, (3) desalination, and (4) urban and industrial district heating. This paper discusses the HTGR-GT plant thermodynamic cycles, design features, and potential applications for the cogeneration operation modes. This paper concludes that the HTGR-GT plant, which can potentially approach a 50% overall efficiency in a combined cycle mode, can significantly aid national energy goals, particularly resource conservation

  8. Gas turbine modular helium reactor in cogeneration

    International Nuclear Information System (INIS)

    Leon de los Santos, G.

    2009-10-01

    This work carries out the thermal evaluation from the conversion of nuclear energy to electric power and process heat, through to implement an outline gas turbine modular helium reactor in cogeneration. Modeling and simulating with software Thermo flex of Thermo flow the performance parameters, based on a nuclear power plant constituted by an helium cooled reactor and helium gas turbine with three compression stages, two of inter cooling and one regeneration stage; more four heat recovery process, generating two pressure levels of overheat vapor, a pressure level of saturated vapor and one of hot water, with energetic characteristics to be able to give supply to a very wide gamma of industrial processes. Obtaining a relationship heat electricity of 0.52 and efficiency of net cogeneration of 54.28%, 70.2 MW net electric, 36.6 MW net thermal with 35% of condensed return to 30 C; for a supplied power by reactor of 196.7 MW; and with conditions in advanced gas turbine of 850 C and 7.06 Mpa, assembly in a shaft, inter cooling and heat recovery in cogeneration. (Author)

  9. Thermoeconomic analysis of Biomass Integrated Gasification Gas Turbine Combined Cycle (BIG GT CC) cogeneration plant

    Energy Technology Data Exchange (ETDEWEB)

    Arrieta, Felipe Raul Ponce; Lora, Electo Silva [Escola Federal de Engenharia de Itajuba, MG (Brazil). Nucleo de Estudos de Sistemas Termicos]. E-mails: aponce@iem.efei.br; electo@iem.efei.br; Perez, Silvia Azucena Nebra de [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mail: sanebra@fem. unicamp.br

    2000-07-01

    Using thermoeconomics as a tool to identify the location and magnitude of the real thermodynamic losses (energy waste, or exergy destruction and exergy losses) it is possible to assess the production costs of each product (electric power and heat) and the exergetic and exergoeconomic cost of each flow in a cogeneration plant to assist in decision-marketing procedures concerning to plant design, investment, operation and allocations of research funds. Thermo economic analysis of Biomass Integrated Gasification Gas Turbine Combined Cycle (BIG GT CC) cogeneration plant for its applications in sugar cane mills brings the following results: the global exergetic efficiency is low; the highest irreversibilities occur in the following equipment, by order: scrubber (38%), gas turbine (16%), dryer (12%), gasifier and HRSG (6%); due to the adopted cost distribution methodology, the unit exergetic cost of the heat (4,11) is lower than electricity (4,71); the lower market price of biomass is one of the most sensible parameter in the possible implementation of BIG-GT technology in sugar cane industry; the production costs are 31 US$/MWh and 32 US$/MWh for electricity and heat, respectively. The electricity cost is, after all, competitive with the actual market price. The electricity and heat costs are lower or almost equal than other values reported for actual Rankine cycle cogeneration plants. (author)

  10. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    International Nuclear Information System (INIS)

    Nordin, Adzuieen; Amin, M; Majid, A

    2013-01-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO 2 to the environment. This study analyzes the amount of CO 2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO 2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants

  11. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    Science.gov (United States)

    Nordin, Adzuieen; Amin, M.; Majid, A.

    2013-12-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO2 to the environment. This study analyzes the amount of CO2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants.

  12. Cogeneration plant noise: Environmental impacts and abatement

    International Nuclear Information System (INIS)

    De Renzio, M.; Ciocca, B.

    1991-01-01

    In Italy, ever increasing attention to environmental problems has led to legislation requiring cogeneration plant owners to perform environmental impact assessments in order to determine plant conformity with pollution laws. This paper, based on an in-depth analysis of physics fundamentals relevant to the nature and effects of noise, examines the principal sources of noise in industrial cogeneration plants and the intensity and range of the effects of this noise on the local environment. A review is then made of the different methods of noise pollution abatement (e.g., heat and corrosion resistant silencers for gas turbines, varying types and thicknesses of acoustic insulation placed in specific locations) that can be effectively applied to cogeneration plant equipment and housing

  13. The Optimal Operation Criteria for a Gas Turbine Cogeneration System

    Directory of Open Access Journals (Sweden)

    Atsushi Akisawa

    2009-04-01

    Full Text Available The study demonstrated the optimal operation criteria of a gas turbine cogeneration system based on the analytical solution of a linear programming model. The optimal operation criteria gave the combination of equipment to supply electricity and steam with the minimum energy cost using the energy prices and the performance of equipment. By the comparison with a detailed optimization result of an existing cogeneration plant, it was shown that the optimal operation criteria successfully provided a direction for the system operation under the condition where the electric power output of the gas turbine was less than the capacity

  14. ASPEN simulation of cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Ligang Zheng [CANMET Energy Technology Center, Natural Resources Canada, Nepean, ONT (Canada); Furimsky, E. [IMAG Group, Ottawa, ONT (Canada)

    2003-07-01

    A detailed flow sheet of the combined cycle cogeneration plant fuelled by natural gas was prepared. The model for simulation of this plant was developed using the ASPEN PLUS software. The results generated using this model were compared with the operating data of the commercial plant generating about 43.6 MW of electricity by gas turbine and 28.6 MW of electricity by steam turbine. The electricity is supplied to the grid, whereas the low pressure steam is utilised locally for heating purposes. The key data generated using the ASPEN model are in good agreement with the operating data. (author)

  15. ASPEN simulation of cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Ligang E-mail: lzheng@nrcan.gc.ca; Furimsky, Edward

    2003-07-01

    A detailed flow sheet of the combined cycle cogeneration plant fuelled by natural gas was prepared. The model for simulation of this plant was developed using the ASPEN PLUS software. The results generated using this model were compared with the operating data of the commercial plant generating about 43.6 MW of electricity by gas turbine and 28.6 MW of electricity by steam turbine. The electricity is supplied to the grid, whereas the low pressure steam is utilised locally for heating purposes. The key data generated using the ASPEN model are in good agreement with the operating data.

  16. ASPEN simulation of cogeneration plants

    International Nuclear Information System (INIS)

    Zheng Ligang; Furimsky, Edward

    2003-01-01

    A detailed flow sheet of the combined cycle cogeneration plant fuelled by natural gas was prepared. The model for simulation of this plant was developed using the ASPEN PLUS software. The results generated using this model were compared with the operating data of the commercial plant generating about 43.6 MW of electricity by gas turbine and 28.6 MW of electricity by steam turbine. The electricity is supplied to the grid, whereas the low pressure steam is utilised locally for heating purposes. The key data generated using the ASPEN model are in good agreement with the operating data

  17. Aeroderivative gas turbines for cogeneration

    International Nuclear Information System (INIS)

    Horner, M.W.; Thames, J.M.

    1988-01-01

    Aircraft jet engine derivative gas turbines have gained acceptance for cogeneration applications through impressive advances in technology and especially in maintainability and reliability. The best advantages of heavy industrial turbines and of reliable commercial airline jet engines have been successfully joined to meet the requirements for industrial cogeneration service. The next generation is under development and offers improved thermal efficiencies, alternate fuel capabilities, low environmental emissions, flexibility of operation and improved competitive system economics. This paper summarizes the current aero-derivative engine features and advantages with various systems, and discusses advanced features under consideration at this time

  18. Analysis of gas turbine cogeneration plants in Italy; Indagine sulla funzionalita` degli impianti di cogenerazione conturbina a gas operanti in Italia

    Energy Technology Data Exchange (ETDEWEB)

    Romani, Rino; Vignati, Sigfrido [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Energia

    1997-10-01

    The purpose of this study is to improve, by random analysis, the current knowledge about functional and running data of gas turbine cogeneration plants in Italy. The analysis consider simple and combined cycle gas turbines plant with electric power less 30.000 k W per unit and involves a sample of 44 units according to a randomized model consisting of 112 gas turbines. The collected data show different plant selection criteria, energy performances, reliability and availability values as well as maintenance costs. These data support some general suggestions and recommendations for a better selection and utilization of these plants.

  19. A wood-waste fuelled indirectly-fired gas turbine cogeneration plant for sawmill application. Preliminay engineering and financial evaluation. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    The overall objective of this project is to develop a cost-effective wood waste-fired power generation and lumber drying system for Canadian sawmill applications. The system proposed and evaluated in this project is a wood waste-fuelled, indirectly-fired gas turbine cogeneration plant. Research, design and development of the system has been planned to take place in a number of phases. The first phase consists of a preliminary engineering design and financial evaluation of the system and is the subject of this report. This analysis focuses on British Columbia since it is the largest potential market for the sawmill cogeneration system. In order to provide design parameters for the cogeneration system, operational characteristics were compiled for a typical sawmill in the interior of British Columbia. A number of alternative design concepts were reviewed before arriving at the indirect-fired turbine concept selected for development in this project. The general concept involves the use of an open Brayton-cycle gas turbine as the prime mover to generate electrical power, while process heat for the dry-kiln is obtained by waste heat recovery from the turbine exhaust gas. The proposed system has many advantages over a conventional steam based cogeneration system and economic analysis indicates that the system generates very attractive financial returns over a variety of conditions. 7 refs., 8 figs., 8 tabs.

  20. Cogeneration plant environmental impacts, Menaggio, Italy. February 21-22, 1991

    International Nuclear Information System (INIS)

    Piancastelli, E.

    1991-01-01

    Separate abstracts were prepared for 28 papers given at the FIRE (Italian Federation for the Rational use of Energy), February, 1991, convention on cogeneration plant environmental impacts. The topics included: Italian and international normatives giving guidelines on methods to evaluate dual-purpose power plant environmental impacts; gas turbine CO, NOx and suspended particulates emission limits; noise pollution limits and abatement measures; ENEL (Italian National Electricity Board) rate structure for auto-producing industries ceding power to the national grid; international research programs on cogeneration; the use of renewable energy sources for cogeneration systems; the function and role of energy managers; and commercialization of compact cogeneration plants for industry

  1. Thermoeconomic analysis of a power/water cogeneration plant

    International Nuclear Information System (INIS)

    Hamed, Osman A.; Al-Washmi, Hamed A.; Al-Otaibi, Holayil A.

    2006-01-01

    Cogeneration plants for simultaneous production of water and electricity are widely used in the Arabian Gulf region. They have proven to be more thermodynamically efficient and economically feasible than single purpose power generation and water production plants. Yet, there is no standard or universally applied methodology for determining unit cost of electric power generation and desalinated water production by dual purpose plants. A comprehensive literature survey to critically assess and evaluate different methods for cost application in power/water cogeneration plants is reported in this paper. Based on this analysis, an in-depth thermoeconomic study is carried out on a selected power/water cogeneration plant that employs a regenerative Rankine cycle. The system incorporates a boiler, back pressure turbine (supplying steam to two MSF distillers), a deaerator and two feed water heaters. The turbine generation is rated at 118 MW, while MSF distiller is rated at 7.7 MIGD at a top brine temperature of 105 deg. C. An appropriate costing procedure based on the available energy accounting method which divides benefits of the cogeneration configuration equitably between electricity generation and water production is used to determine the unit costs of electricity and water. Capital charges of common equipment such as the boiler, deaerator and feed water heaters as well as boiler fuel costs are distributed between power generated and desalinated water according to available energy consumption of the major subsystems. A detailed sensitivity analysis was performed to examine the impact of the variation of fuel cost, load and availability factors in addition to capital recovery factor on electricity and water production costs

  2. A wood-waste fuelled, indirectly-fired gas turbine cogeneration plant for sawmill application. Phase 1. Preliminary engineering design and financial evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    Most sawmills generate more than enough wood waste to be potentially self-sufficient in both dry-kiln heat and electricity requirements. It is not generally economically viable to use conventional steam/electricty cogeneration systems at the sawmill scale of operation. As a result, Canadian sawmills are still large consumers of purchased fuels and electricity. The overall objective of this project was to develop a cost-effective wood waste-fired power generation and lumber drying system for sawmill applications. The system proposed and evaluated in this project is a wood waste-fuelled, indirectly-fired gas turbine cogeneration plant. Research, design, and development of the system has been planned to take place in a number of phases. Phase 1 consists of a preliminary engineering design and financial evaluation of the system, the subjects of this report. The results indicate that the proposed indirectly-fired gas turbine cogeneration system is both technically and financially feasible under a variety of conditions. 8 figs., 8 tabs.

  3. EXERGETIC ANALYSIS OF A COGENERATION POWER PLANT

    Directory of Open Access Journals (Sweden)

    Osvaldo Manuel Nuñez Bosch

    2016-07-01

    Full Text Available Cogeneration power plants connected to industrial processes have a direct impact on the overall efficiency of the plant and therefore on the economic results. Any modification to the thermal outline of these plants must first include an exergetic analysis to compare the benefits it can bring the new proposal. This research is performed to a cogeneration plant in operation with an installed electrical capacity of 24 MW and process heat demand of 190 MW, it shows a study made from the Second Law of Thermodynamics. Exergetic evaluation of each component of the plant was applied and similarly modified cogeneration scheme was evaluated. The results illustrate that the exergy losses and irreversibilities are completely different from one subsystem to another. In general, the total exergy destruction represented 70,7% from the primary fuel exergy. Steam generator was the subsystem with the highest irreversibility of the plant with 54%. It was demonstrated that the increase of the steam parameters lead to reduce exergy destruction and exergy efficiency elevation. The suppression of the reduction system and the adding of an extraction-condensing steam turbine produce the same effect and contribute to drop off the electrical consumption from the grid.

  4. Cogeneration

    International Nuclear Information System (INIS)

    Derbentli, Taner

    2006-01-01

    Cogeneration is the combined production of power and heat. Cogeneration aims to utilize the waste heat of power plants. The waste heat may be utilized for process heating, district heating, drying and cooling. In this way the primary energy is utilized more efficiently. Furthermore due to use of lesser amounts of fuel, emissions and carbon dioxide production is reduced. This is important from the viewpoint of controlling global warming. Cogeneration is used worldwide in industry and in conjunction with district heating.The prime movers used for this purpose are gas turbines, Diesel or natural gas engines and steam power plants. There are several parameters used for characterizing cogeneration. First of all capacity shows the power produced by the cogeneration plant. Most of the cogeneration plants used in industry have capacities between 3 and 20 MW. However there are plants having capacities as large as 200 MW and capacities smaller than 1 MW. The latter are known as micro cogeneration plants. Power to heat ratio is another parameter characterizing cogeneration. It gives the ratio of power produced to heat produced in a cogeneration plant. For gas turbine plants this is around 0.6, for gas engines it is about 1. For steam power plants, power to heat ratio is smaller than 0.4. The total efficiency or fuel utilization efficiency is defined as the total useful output of the plant as power and heat to energy input as fuel. The higher this value, the better is the cogeneration application. In a well designed plant this value may be as high as eighty to ninety percent. Cogeneration started as self power production in Turkey to provide continuous and top quality electric power to industrial plants in the 1990s. Now approximately 20 % of the power production capacity of Turkey is provided by the cogeneration plants. Turkey imports most of its primary energy demand, therefore it is important to increase the use of cogeneration to reduce the demand. There are studies which

  5. Evaluation of a Cogeneration Plant with Integrated Fuel Factory; Integrerad braenslefabrik med kraftvaermeanlaeggning - en utvaerdering

    Energy Technology Data Exchange (ETDEWEB)

    Atterhem, Lars

    2002-12-01

    A feasibility study was carried out in 1993 by Skellefteaa Kraft AB, to analyse the technical and economical possibilities to build a new baseload district heating production plant. The conclusion from the study was that, as a first step, a new cogeneration plant, based on a circulating fluidised bed boiler, should be built. The commissioning of the cogeneration plant took place in autumn 1996. The plant was prepared for a future integration with a biofuel drying process for pellets production. During spring 1996 an investment decision was taken and the fuel factory was erected in may 1997. Vaermeforsk Service AB has financed this research project and the Swedish state energy program (Fabel) has contributed with 33,7 Million SEK to the financing of the recovery electric power generation part of the fuel factory. The aim with this research project has been to evaluate and compare the integrated cogeneration plant fuel factory concept with a conventional co-generation plant, specially when it comes to increased power generation. The fuel factory comprises of fuel feeding system, fuel dryer, steam converter from fuel moisture to low pressure process steam, low pressure condensing turbine, cooling water system, fuel pellets production and storage with ship loading plant in the harbour of Skellefteaa. The steam to the fuel factory is extracted from the cogeneration turbine at a pressure level between 12-26 bar and the extraction flow has then already generated power in the cogeneration turbine. Power is also generated in the low pressure condensing turbine of the fuel factory. The low pressure steam is generated with fuel moisture in the steam converter. During the first years of operation there has been both conventional commissioning problems but also technical problems related to the new process concept. The last are for example corrosion and erosion problems, fouling problems of heat exchangers, capacity and leakage problems. The performance goals of the fuel

  6. Cogeneration steam turbines from Siemens: New solutions

    Science.gov (United States)

    Kasilov, V. F.; Kholodkov, S. V.

    2017-03-01

    The Enhanced Platform system intended for the design and manufacture of Siemens AG turbines is presented. It combines organizational and production measures allowing the production of various types of steam-turbine units with a power of up to 250 MWel from standard components. The Enhanced Platform designs feature higher efficiency, improved reliability, better flexibility, longer overhaul intervals, and lower production costs. The design features of SST-700 and SST-900 steam turbines are outlined. The SST-700 turbine is used in backpressure steam-turbine units (STU) or as a high-pressure cylinder in a two-cylinder condensing turbine with steam reheat. The design of an SST-700 single-cylinder turbine with a casing without horizontal split featuring better flexibility of the turbine unit is presented. An SST-900 turbine can be used as a combined IP and LP cylinder (IPLPC) in steam-turbine or combined-cycle power units with steam reheat. The arrangements of a turbine unit based on a combination of SST-700 and SST-900 turbines or SST-500 and SST-800 turbines are presented. Examples of this combination include, respectively, PGU-410 combinedcycle units (CCU) with a condensing turbine and PGU-420 CCUs with a cogeneration turbine. The main equipment items of a PGU-410 CCU comprise an SGT5-4000F gas-turbine unit (GTU) and STU consisting of SST-700 and SST-900RH steam turbines. The steam-turbine section of a PGU-420 cogeneration power unit has a single-shaft turbine unit with two SST-800 turbines and one SST-500 turbine giving a power output of N el. STU = 150 MW under condensing conditions.

  7. Mini gas turbines. Study related to energy efficient cogeneration applications for new cogeneration markets. Appendix; Mini gasturbiner. Udredning vedr. energieffektive kraftvarmeapplikationer til nye kraftvarmemarkeder. Appendix

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, J.B.; Weel Hansen, M.; Astrupgaard, N.P.

    2000-12-01

    The aim of the project is to investigate, design and increase the energy efficiency in new cogeneration/cooling systems, which are based on new developed mini gas turbines. Hereby cogeneration can primarily based on natural gas and bio-fuels be spread to new market segments. The appendix presents further details related to gas turbine as burner; cogeneration with recuperation gas turbine; gas turbine for cogeneration/absorption refrigerator; the economic and operational basis used in the study. (EHS)

  8. Preliminary study of nuclear power cogeneration system using gas turbine process

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Inaba, Yoshitomo; Hishida, Makoto; Ogawa, Masuro; Ogata, Kann; Yamada, Seiya.

    1995-12-01

    The Nuclear power generation plant (NPGP) releases smaller amount of carbon dioxide than the fossil power plant for the generation of the unit electrical power. Thus, the NPGP is expected to contribute resolving the ecological problems. It is important to investigate the nuclear power cogeneration system using gas turbine process from the view point that it is better to produce electricity in high thermal efficiency from the high temperature energy. We carried out, in the current preliminary study, the survey and selection of the candidate cycles, then conducted the evaluation of cycle efficiency, the selection of R and D items to be solved for the decision of the optimum cycle. Following this, we evaluated nuclear heat application for intermediate and low temperature level released from gas turbine process and overall efficiency of cogeneration system. As a result, it was clarified that overall efficiency of the direct regenerative cycle was the highest in low temperature region below 200degC, and that of the direct regenerative inter cooling cycle was the highest in middle and high temperature region. (author)

  9. Preliminary study of nuclear power cogeneration system using gas turbine process

    Energy Technology Data Exchange (ETDEWEB)

    Fumizawa, Motoo; Inaba, Yoshitomo; Hishida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ogawa, Masuro; Ogata, Kann; Yamada, Seiya

    1995-12-01

    The Nuclear power generation plant (NPGP) releases smaller amount of carbon dioxide than the fossil power plant for the generation of the unit electrical power. Thus, the NPGP is expected to contribute resolving the ecological problems. It is important to investigate the nuclear power cogeneration system using gas turbine process from the view point that it is better to produce electricity in high thermal efficiency from the high temperature energy. We carried out, in the current preliminary study, the survey and selection of the candidate cycles, then conducted the evaluation of cycle efficiency, the selection of R and D items to be solved for the decision of the optimum cycle. Following this, we evaluated nuclear heat application for intermediate and low temperature level released from gas turbine process and overall efficiency of cogeneration system. As a result, it was clarified that overall efficiency of the direct regenerative cycle was the highest in low temperature region below 200degC, and that of the direct regenerative inter cooling cycle was the highest in middle and high temperature region. (author).

  10. Numerical simulation of a cogeneration plant with micro gas turbine using computational tool EES; Simulacao numerica de uma planta de cogeracao com microturbina a gas natural utilizando ferramenta computacional EES

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Guilherme L.B. de; Oliveira, Andrezza C.C.T.; Dutra, Jose C.C. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2008-07-01

    Today, the cogeneration of energy has been widely disseminated and presents itself as a very viable alternative for energy savings, reducing CO2 emissions by conducting reuse energy. This study aims to develop a software for simulation, analysis and optimization of a cogeneration system that uses a natural gas turbine as a primary source. The data contained in the software were similar to existing data in a micro-cogeneration plant installed at UFPE and the results showed up in the standard presented by actual plant. We conclude that the software serves as a tool to pre-analysis of the plant of choice for cogeneration equipment to be installed as: pumps, heat exchangers, chillers, cooling towers. (author)

  11. Cogen-absorption plants for refrigeration purposes and turbine air inlet cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langreck, Juergen [Colibri bv (Netherlands)

    2000-04-01

    Most cogeneration systems produce power and heat but with absorption refrigeration plants (ARP) the products are power and 'cold'. An ARP driven by heat from a turbine exhaust can provide the cooling for the inlet air with very low consumption of electricity, consequently there is a significant increase in power output from the cogeneration unit. Two different ARP systems are currently available but the author describes only the ammonia-water system, which can achieve temperatures down to -60 degrees C. The article discusses the principle behind ARP, the capital cost and returns on investment, how the cogeneration plant is linked to the ARP, ARP for turbine inlet air cooling, and the potential applications of cogeneration-ARP.

  12. Cogeneration from Poultry Industry Wastes -- Part I: Indirectly Fired Gas Turbine Application

    DEFF Research Database (Denmark)

    Peretto, A.; Bianchi, M.; Cherubini, F.

    2003-01-01

    The availability of wet biomass as waste from a agriculture and farms and the need to meet the environmental standards force to investigate all options in order to dispose this waste. The possible treatments usually strongly depend on the biomass characteristics, namely water content, density....... Different plant configurations have been considered in order to make use of the oil and of the meat and bone meal, which are the by-products of the chicken cooking process. In particular, the process plant can be integrated with an energy supply plant which can consist of a Indirectly Fired Gas Turbine....../production and of return of the investments (Part II). Keywords: biomass, cogeneration, Gas Turbine, IFGT...

  13. Cogeneration techniques; Les techniques de cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    This dossier about cogeneration techniques comprises 12 parts dealing successively with: the advantages of cogeneration (examples of installations, electrical and thermal efficiency); the combustion turbine (principle, performances, types); the alternative internal combustion engines (principle, types, rotation speed, comparative performances); the different configurations of cogeneration installations based on alternative engines and based on steam turbines (coal, heavy fuel and natural gas-fueled turbines); the environmental constraints of combustion turbines (pollutants, techniques of reduction of pollutant emissions); the environmental constraints of alternative internal combustion engines (gas and diesel engines); cogeneration and energy saving; the techniques of reduction of pollutant emissions (pollutants, unburnt hydrocarbons, primary and secondary (catalytic) techniques, post-combustion); the most-advanced configurations of cogeneration installations for enhanced performances (counter-pressure turbines, massive steam injection cycles, turbo-chargers); comparison between the performances of the different cogeneration techniques; the tri-generation technique (compression and absorption cycles). (J.S.)

  14. Techno-economic evaluation of commercial cogeneration plants for small and medium size companies in the Italian industrial and service sector

    International Nuclear Information System (INIS)

    Armanasco, Fabio; Colombo, Luigi Pietro Maria; Lucchini, Andrea; Rossetti, Andrea

    2012-01-01

    The liberalization of the electricity market and the concern for energy efficiency have resulted in a surge of interest in cogeneration and distributed power generation. In this regard, companies are encouraged to evaluate the opportunity to build their own cogeneration plant. In Italy, the majority of such companies belong to the industrial or service sector; it is small or medium in size and the electric power ranges between 1 ÷ 10 MW. Commercially available gas turbines are the less expensive option for cogeneration. Particular attention has been given to the possibility of combining an organic Rankine cycle (ORC) with gas turbine, to improve the conversion efficiency. Companies have to account for both technical and economical aspects to assess viability of cogeneration. A techno-economic analysis was performed to identify, in the Italian energy market, which users can take advantage of a cogeneration plant aimed to cover at least part of their energy demand. Since electricity and thermal needs change considerably in the same sector, single product categories have been considered in the analysis. Our work shows that in the industrial sector, independent of the product category, cogeneration is a viable option form a techno-economic perspective. - Highlights: ► The best technologies for 1 ÷ 10 MW distributed generation plant are gas turbine and ORC. ► A variety of commercial cogeneration plants is available to meet user needs. ► Cogeneration is a technical and economical advantage for industrial sector companies.

  15. Gas turbine modular helium reactor in cogeneration; Turbina de gas reactor modular con helio en cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Leon de los Santos, G. [UNAM, Facultad de Ingenieria, Division de Ingenieria Electrica, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico, D. F. (Mexico)], e-mail: tesgleon@gmail.com

    2009-10-15

    This work carries out the thermal evaluation from the conversion of nuclear energy to electric power and process heat, through to implement an outline gas turbine modular helium reactor in cogeneration. Modeling and simulating with software Thermo flex of Thermo flow the performance parameters, based on a nuclear power plant constituted by an helium cooled reactor and helium gas turbine with three compression stages, two of inter cooling and one regeneration stage; more four heat recovery process, generating two pressure levels of overheat vapor, a pressure level of saturated vapor and one of hot water, with energetic characteristics to be able to give supply to a very wide gamma of industrial processes. Obtaining a relationship heat electricity of 0.52 and efficiency of net cogeneration of 54.28%, 70.2 MW net electric, 36.6 MW net thermal with 35% of condensed return to 30 C; for a supplied power by reactor of 196.7 MW; and with conditions in advanced gas turbine of 850 C and 7.06 Mpa, assembly in a shaft, inter cooling and heat recovery in cogeneration. (Author)

  16. Techno-Economic Assessment of Redundancy Systems for a Cogeneration Plant

    Directory of Open Access Journals (Sweden)

    Majid Mohd Amin Abd

    2014-07-01

    Full Text Available The use of distributed power generation has advantage as well as disadvantage. One of the disadvantages is that the plant requires a dependable redundancy system to provide back up of power during failure of its power generation equipment. This paper presents a study on techno-economic assessment of redundancy systems for a cogeneration plant. Three redundancy systems were investigated; using public utility, generator set and gas turbine as back up during failures. Results from the analysis indicate that using public utility provides technical as well as economic advantages in comparison to using generator set or turbine as back up. However, the economic advantage of the public utility depends on the frequency of failures the plant will experience as well on the maximum demand charge. From the break even analysis of the understudied plant, if the number of failures exceeds 3 failures per year for the case of maximum demand charge of RM56.80, it is more economical to install a generator set as redundancy. The study will be useful for the co-generator operators to evaluate the feasibility of redundancy systems.

  17. Feasibility study of a biomass-fired cogeneration plant Groningen, Netherlands

    International Nuclear Information System (INIS)

    Rijk, P.J.; Van Loo, S.; Webb, R.

    1996-06-01

    The feasibility of the title plant is determined for district heating and electricity supply of more than 1,000 houses in Groningen, Netherlands. Also attention is paid to the feasibility of such installations in a planned area of the city. Prices and supply of several biomass resources are dealt with: prunings of parks, public and private gardens, clean wood wastes, wood wastes from forests, wood from newly planted forests, specific energy crops (willows in high densities and short cycles). Prices are calculated, including transport to the gate of the premises where the cogeneration installations is situated. For the conversion attention is paid to both the feasibility of the use of a conventional cogeneration installation (by means of a steam turbine) and the use of a new conversion technique: combined cycle of a gasification installation and a cogeneration installation. 5 figs., 5 ills., 22 tabs., 1 appendix, 33 refs

  18. Biomass-gasifier steam-injected gas turbine cogeneration for the cane sugar industry

    International Nuclear Information System (INIS)

    Larson, E.D.; Williams, R.H.; Ogden, J.M.; Hylton, M.G.

    1991-01-01

    Steam injection for power and efficiency augmentation in aeroderivative gas turbines has been commercially established for natural gas-fired cogeneration since 1980. Steam-injected gas turbines fired with coal and biomass are being developed. A performance and economic assessment of biomass integrated-gasifier steam-injected gas turbine (BIG/STIG) cogeneration systems is carried out here. A detailed economic case study is presented for the second largest sugar factory in Jamaica, with cane residues as the fuel. BIG/STIG cogeneration units would be attractive investments for sugar producers, who could sell large quantities of excess electricity to the utility, or for the utility, as a low-cost generating option. Worldwide, the cane sugar industry could support some 50,000 MW of BIG/STIG electric generation capacity. The relatively modest development effort required to commercialize the BIG/STIG technology is discussed in a companion paper prepared for this conference

  19. Duct burners in heat recovery system for cogeneration and captive power plants

    International Nuclear Information System (INIS)

    Majumdar, J.

    1992-01-01

    Our oil explorations both onshore and offshore have thrown open bright prospects of cogeneration by using natural gas in gas turbine power plants with heat recovery units. Both for co-gen and combined cycle systems, supplementary firing of GT exhaust gas is normally required. Hence, duct burners have significant role for effective contribution towards of efficacy of heat recovery system for gas turbine exhaust gas. This article details on various aspects of duct burners in heat recovery systems. (author)

  20. Cogeneration applications of biomass gasifier/gas turbine technologies in the cane sugar and alcohol industries

    International Nuclear Information System (INIS)

    Ogden, J.M.; Williams, R.H.; Fulmer, M.E.

    1994-01-01

    Biomass integrated gasifier/gas turbine (BIG/GT) technologies for cogeneration or stand-alone power applications hold forth the promise of being able to produce electricity at lower cost in many instances than most alternatives, including large central-station, coal-fired, steam-electric power plants with fuel gas desulphurization, nuclear power plants, and hydroelectricity power plants. BIG/GT technologies offer environmental benefits as well, including the potential for zero net carbon dioxide emissions, if the biomass feedstock is grown renewably. (author). 77 refs., 9 figs., 16 tabs

  1. Economic evaluation of externally fired gas turbine cycles for small-scale biomass cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Anheden, Marie [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2001-01-01

    In this conceptual study, externally fired gas turbine (EFGT) cycles in combination with a biomass-fueled, atmospheric circulating fluidized bed (CFB) furnace are investigated for small scale heat and power production ({approx} 8 MW fuel input). Three cycle configurations are considered: closed cycle, with nitrogen, helium, and a helium/carbon dioxide mixture as working fluids; open cycle operating in parallel to the CFB system; and open cycle with a series connection to the CFB system. Intercooling, postcooling, and recuperation are employed with the goal of maximizing efficiency. Aside from a thermodynamic performance analysis, the study includes an economic analysis of both the closed and open externally fired gas turbine configurations, and comparisons are made with existing and emerging alternatives for small-scale biomass cogeneration. Simulation results show that thermodynamic performance varies slightly between the different configurations and working fluids, with electrical efficiencies of 31-38% (LHV) and total efficiency of 85-106% (LHV). The economic evaluation shows that the turbomachinery and the CFB furnace dominate the total plant cost, with each contributing about 1/3 of the total installed equipment cost. The specific capital cost for installation in Sweden in 1998 currency is calculated as 26-31 kSEK/kW{sub e} which is equivalent to 3 200-3 900 USD/kW{sub e} or 2 700-3 300 EUR/kW{sub e} .The cost of electricity, COE, is estimated to 590-670 SEK/MWh{sub e} (equivalent to 73-84 USD/MWh{sub e} or 62-71 EUR/MWh{sub e}) for 4 000 full load hours per year in a cogeneration application. Comparing the economic results for the externally fired gas turbine cycles in a slightly larger scale (40-50 MW{sub f}) to the economics of conventional biomass fired steam turbine cycles shows that the cost of electricity for the two plant configurations are roughly the same with a COE of 300-350 SEK/MWh{sub e}. It is believed that the economic performance of the EFGT

  2. Exergy analysis of a cogeneration power plant

    International Nuclear Information System (INIS)

    Núñez Bosch, Osvaldo Manuel

    2015-01-01

    In the following study exergetic evaluation of a cogeneration power plant in operation with installed electrical capacity of 24 MW and process heat demand of 190 MW it is performed. The main objective of the research was to determine the influence of the increase in power generation capacity, raising the superheated steam parameters and the number of regenerative heaters on the second law efficiency and irreversibilities in the different components of the plant. To study the power plant was divided into subsystems: steam generator blowdown expander, main steam pipe, steam turbine regenerative heaters, reduction system, deaerator and pumps. The study results show that exergy losses and irreversibilities differ widely from one subsystem to another. In general, the total irreversibility accounted for 70.7% of primary fuel availability. The steam generator subsystem had the highest contribution to the irreversibility of the plant by 54%. It was determined that the increased steam parameters helps reduce the irreversibility and increase the exergetic efficiency of installation. The suppression of the reduction and incorporation of extraction-condensing turbine produce the same effect and helps to reduce power consumption from the national grid. Based on the results recommendations for improving plant efficiency are made. (full text)

  3. Efficient production of electricity and water in cogeneration systems. [Desalination plant

    Energy Technology Data Exchange (ETDEWEB)

    Tadros, S.K.

    1981-11-01

    This paper discusses two topping cycle steam turbine cogeneration systems. The water desalination plant selected is the multistage flash evaporator cycle which uses brine recirculation and high temperature additives for scale protection and 233F maximum brine temperature. The paper mentions briefly the impact of future fuel prices on design and factors which would further improve thermal efficiency. The fuel chargeable to power is determined. 6 refs.

  4. Cogeneration system simulation/optimization

    International Nuclear Information System (INIS)

    Puppa, B.A.; Chandrashekar, M.

    1992-01-01

    Companies are increasingly turning to computer software programs to improve and streamline the analysis o cogeneration systems. This paper introduces a computer program which originated with research at the University of Waterloo. The program can simulate and optimize any type of layout of cogeneration plant. An application of the program to a cogeneration feasibility study for a university campus is described. The Steam and Power Plant Optimization System (SAPPOS) is a PC software package which allows users to model any type of steam/power plant on a component-by-component basis. Individual energy/steam balances can be done quickly to model any scenario. A typical days per month cogeneration simulation can also be carried out to provide a detailed monthly cash flow and energy forecast. This paper reports that SAPPOS can be used for scoping, feasibility, and preliminary design work, along with financial studies, gas contract studies, and optimizing the operation of completed plants. In the feasibility study presented, SAPPOS is used to evaluate both diesel engine and gas turbine combined cycle options

  5. Combined cogeneration equipment containing gas turbine using low sulphur heavy stock as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Goro; Ishiki, Katsuhiko

    1988-03-10

    This paper describes the combined cogeneration in Chemical and Plastics Co. Madras (India) which uses low sulphur heavy stock (LSHS) as a fuel. By the combined cogeneration of gas turbine and boiler steam turbine power generation, the exhaust from the steam turbine is supplied to the factory as a process steam. This equipment has a capacity of 4835 kW in overall generation power and 23.5 tons/hrs. in steam evaporation. The gas turbine system is equipped with an axial-flow, 11 step compressor, an axial flow, 4 step turbine, and a single-can back flow combustor fixed to the intermediate casing. The temperature of the exhaust from the gas turbine is 542/sup 0/C. Low quality LSHS when burned exerts no influence on the service life of the turbine blades. The boiler is a horizontal bent pipe, forced circulation type, and the steam turbine is a back pressure control type. The fuel is treated with a horizontal, two drum, electrostatic separator to which a demulsifier is supplied, to be separated into oil and water. As to the vanadium salts contained in the fuels, a chemical liquid containing MgO as a major ingredient is added to the fuel prior to the combustion. Thereby, the melting temperature of the vanadium oxide is enhanced, which serves for prevention of the melting and adhesion of the vanadium oxide to the gas turbine. LSHS is a residual oil produced by the ordinary pressure distillation of India-produced crude oil, has a sulphur content of 1.75%, and is solid at room temperature. Attention should be paid to clogging of the pipings. The overall efficiency is 80%. The combined cogeneration can be coordinated with load variations of 10 - 20%. (12 figs, 1 tab)

  6. Modeling of a Cogeneration System with a Micro Gas Turbine Operating at Partial Load Conditions

    Directory of Open Access Journals (Sweden)

    José Carlos Dutra

    2017-06-01

    Full Text Available The integration of absorption chillers in micro-cogeneration systems based on micro-gas turbines can be useful as an appropriate strategy to increase the total system energy efficiency. Since it is an area intensive in technology, it is necessary to develop and use models of simulation, which can predict the behavior of the whole system and of each component individually, at different operating conditions. This work is part of a research project in high efficiency cogeneration systems, whose purpose at this stage is to model a micro-cogeneration system, which is composed of a micro gas turbine, Capstone C30, a compact cross flow finned tube heat exchanger and an absorption chiller. The entire model is composed of specifically interconnected models, developed and validated for each component. The simulation of the microturbine used a thermodynamic analytic model, which contains a procedure used to obtain the micro turbine characteristic performance curves, which is closed with the thermodynamic Brayton cycle model. In the cogeneration system discussed in this paper, the compact heat exchanger was used to heat thermal oil, which drives an absorption chiller. It was designed, characterized and installed in a cogeneration system installed at the Centre d'Innovació Tecnològica en Revalorització Energètica i Refrigeració, Universtat Rovira i Virgili. Its design led to the heat exchanger model, which was coupled with the micro turbine model. Presented in this work is a comparison between the data from the model and the experiments, demonstrating good agreement between both results.

  7. HTGR-steam cycle/cogeneration plant economic potential

    International Nuclear Information System (INIS)

    1981-05-01

    The cogeneration of heat and electricity provides the potential for improved fuel utilization and corresponding reductions in energy costs. In the evaluation of the cogeneration plant product costs, it is advantageous to develop joint-product cost curves for alternative cogeneration plant models. The advantages and incentives for cogeneration are then presented in a form most useful to evaluate the various energy options. The HTGR-Steam Cycle/Cogeneration (SC/C) system is envisioned to have strong cogeneration potential due to its high-quality steam capability, its perceived nuclear siting advantages, and its projected cost advantages relative to coal. The economic information presented is based upon capital costs developed during 1980 and the economic assumptions identified herein

  8. Cogeneration at FIAT AVIO (Italy)

    International Nuclear Information System (INIS)

    Cantoni, A.

    1991-01-01

    Brief notes are provided on the FIAT (Italy) - Foster Wheeler joint venture to equip about 20 FIAT manufacturing plants with 50 MW(e) combined cycle cogeneration plants which will make use of a gas turbine whose design is based on that of the successful General Electric aeronautic LM 6000 engine. The paper also discusses solutions, e.g., wet and dry methods, being considered for nitrogen ox des control, and cites the need in Italy for the optimization of Government licensing procedures for small and medium sized manufacturing firms opting for on-site power generation through cogeneration plants

  9. A technical analysis for cogeneration systems with potential applications in twelve California industrial plants. [energy saving heat-electricity utility systems

    Science.gov (United States)

    Moretti, V. C.; Davis, H. S.; Slonski, M. L.

    1978-01-01

    In a study sponsored by the State of California Energy Resources Conservation and Development Commission, 12 industrial plants in five utility districts were surveyed to assess the potential applications of the cogeneration of heat and electricity in California industry. Thermodynamic calculations were made for each plant in determining the energy required to meet the existing electrical and steam demands. The present systems were then compared to conceptual cogeneration systems specified for each plant. Overall energy savings were determined for the cogeneration applications. Steam and gas turbine topping cycle systems were considered as well as bottoming cycle systems. Types of industries studied were: pulp and paper, timber, cement, petroleum refining, enhanced oil recovery, foods processing, steel and glass

  10. Performance and economic enhancement of cogeneration gas turbines through compressor inlet air cooling

    Science.gov (United States)

    Delucia, M.; Bronconi, R.; Carnevale, E.

    1994-04-01

    Gas turbine air cooling systems serve to raise performance to peak power levels during the hot months when high atmospheric temperatures cause reductions in net power output. This work describes the technical and economic advantages of providing a compressor inlet air cooling system to increase the gas turbine's power rating and reduce its heat rate. The pros and cons of state-of-the-art cooling technologies, i.e., absorption and compression refrigeration, with and without thermal energy storage, were examined in order to select the most suitable cooling solution. Heavy-duty gas turbine cogeneration systems with and without absorption units were modeled, as well as various industrial sectors, i.e., paper and pulp, pharmaceuticals, food processing, textiles, tanning, and building materials. The ambient temperature variations were modeled so the effects of climate could be accounted for in the simulation. The results validated the advantages of gas turbine cogeneration with absorption air cooling as compared to other systems without air cooling.

  11. Performance investigation of a cogeneration plant with the efficient and compact heat recovery system

    KAUST Repository

    Myat, Aung

    2011-10-03

    This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification. The proposed plant comprises a Capstone C30 micro-turbine which generates 24 kW of electricity, a compact and efficient waste heat recovery system and a host of waste heat activated devices namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The numerical analysis for the host of waste heat recovery system and thermally activated devices using FORTRAN power station linked to powerful IMSL library is performed to investigate the performance of the overall system. A set of experiments, both part load and full load, of micro-turbine is conducted to examine the electricity generation and the exhaust gas temperature. It is observed that energy utilization factor (EUF) could achieve as high as 70% while Fuel Energy Saving Ratio (FESR) is found to be 28%.

  12. System analysis for HTTR-GT/H2 plant. Safety analysis of HTTR for coupling helium gas turbine and H2 plant

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Yan, Xing L.; Ohashi, Hirofumi

    2017-08-01

    High Temperature Gas-cooled Reactor (HTGR) is expected to extend the use of nuclear heat to a wider spectrum of industrial applications because of the high temperature heat supply capability and inherently safe characteristics. Japan Atomic Energy Agency initiated a nuclear cogeneration demonstration project with helium gas turbine power generation and thermochemical hydrogen production utilizing the High Temperature engineering Test Reactor (HTTR), the first HTGR in Japan. This study carries out safety evaluation for the HTTR gas turbine hydrogen cogeneration test plant (HTTR-GT/H 2 plant). The evaluation was conducted for the events newly identified corresponding to the coupling of helium gas turbine and hydrogen production plant to the HTTR. The results showed that loss of load event does not have impact on temperature of fuel and reactor coolant pressure boundary. In addition, reactor coolant pressure does not exceed the evaluation criteria. Furthermore, it was shown that reactor operation can be maintained against temperature transients induced by abnormal events in hydrogen production plant. (author)

  13. Technical feasibility and economics of retrofitting an existing nuclear power plant to cogeneration for hot water district heating

    International Nuclear Information System (INIS)

    Kolb, J.O.; Bauman, H.F.; Jones, P.D.

    1984-04-01

    This report gives the results of a study of the hypothetical conversion of the Prairie Island Nuclear Plant of the Northern States Power Company to cogeneration operation to supply a future hot water district heating system load in the Twin Cities of Minneapolis-St. Paul. The conceptual design of the nuclear turbine retrofitted for cogeneration and of a hot water transmission system has been performed, and the capital investment and annual owning and operating costs have been estimated for thermal energy capacities of 600 and 1200 MW(t). Unit costs of thermal energy (in mid-1982 dollars/million Btu) have been estimated for cogenerated hot water at the plant gate and also for the most economic transmission system from Prairie Island to the Twin Cities. The economic results from the analysis of the Prairie Island plant and transmission route have been generalized for other transmission distances in other locations

  14. Procedure for cogeneration plant evaluation in Italy

    International Nuclear Information System (INIS)

    Bollettini, U.; Savelli, D.

    1992-01-01

    This paper develops a step-by-step approach to the evaluation of cogeneration plants for on-site power generation. The aim is to allow prospective cogeneration plant owners to build energy/cost efficient plants and to be able to make a proper assessment of eligible financial assistance which may be obtained through the provisions of energy conservation normatives and laws set up by the Italian National Energy Plan. The approach has three principal phases - the verification of the availability of the required human resources able to perform the plant evaluation (engineering, legal and business consultants), an energy/viability audit of any existing energy plant considered for retrofitting and, finally, the identification of the best technical/economic cogeneration alternative. The programmed set of evaluation tasks includes the determination of optimal contracts with ENEL (the Italian National Electricity Board), especially for the case of excess power to be ceded to the national grid, and the making of comparisons with reference cogeneration systems whose relative design/cost data are stored in existing computerized data bases

  15. Cogeneration plants in Italy: Licensing aspects

    International Nuclear Information System (INIS)

    Buscaglione, A.

    1991-01-01

    This paper focusses on administrative/bureaucratic problems relative to the licensing of cogeneration plants in Italy. The current stumbling block appears to lie in organizational difficulties relative to the coordination of various Government authorized safety committees responsible for the drafting up of suitable legislation governing cogeneration plant fire safety aspects. The author cites the possible environmental benefits in terms of air pollution abatement that could have been had with the timely start-up of a new 7 MW plant (in Lombardia) still awaiting its go-ahead authorization

  16. Technical overview of cogeneration: the hardware, the industries, the potential development

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    Because the by-product heat from a power-conversion process is captured for productive use in a cogeneration system, instead of exhausted to the environment as it is in a conventional power plant, cogeneration represents an important energy-conservation technique. By cogenerating, an industrial plant can save the fuel that would have been needed to produce the amount of heat captured. Recognizing the significant energy-savings potential offered by cogeneration, DOE has undertaken a major R, D, and D program to investigate and promote cogeneration in industry. Resource Planning Associates, Inc. (RPA), has been working to accomplish four of the program's objectives: (1) survey current, near state-of-the-art, and future cogeneration equipment, and identify any gaps or deficiencies; (2) characterize the energy requirements of the manufacturing sectors of five of the country's most energy-intensive industries - chemical, petroleum refining, paper and pulp, textiles, and food; (3) identify principal targets for, and barriers to, the increased market development of cogeneration systems; and (4) estimate the potential maximum and the probable energy savings that could be achieved in the five selected industries through cogeneration. In investigating cogeneration hardware, three specific technologies - steam turbines, gas turbines, and diesel engines - were emphasized. It is estimated that the widespread application of cogeneration technology in the five industries studied could result in a maximum potential savings of 2.4 million barrels of oil equivalent per day (or a maximum incremental capacity of 140,000 MWe) by 1985.

  17. AMBIENT CONDITIONS EFFECTS ON PERFORMANCE OF GAS TURBINE COGENERATION POWER PLANTS

    OpenAIRE

    Necmi Ozdemir*

    2016-01-01

    In this study, the performances of a simple and an air preheated cogeneration cycles in ambient conditions are compared with each other. A computer program written by the author in FORTRAN codes is used for the calculation of the enthalpy and entropy values of the streams, Exergy analysis is done and compared for the simple and the air preheated cogeneration cycles for different ambient conditions. The two cogeneration cycles are evaluated in terms of heat powers and electric, electrical to h...

  18. Optimal planning of gas turbine cogeneration system based on linear programming. Paper no. IGEC-1-ID09

    International Nuclear Information System (INIS)

    Oh, S.-D.; Kwak, H.-Y.

    2005-01-01

    An optimal planning for gas turbine cogeneration system has been studied. The planning problem considered in this study is to determine the optimal configuration of the system equipments and optimal operational policy of the system when the annual energy demands of electric power, heat and cooling are given a priori. The main benefit of the optimal planning is to minimize operational costs and to save energy by efficient energy utilization. A mixed-integer linear programming and the branch and bound algorithm have been adopted to obtain the optimal solution. Both the optimal configuration of the system equipments and the optimal operation policy has been obtained based on annual cost method. The planning method employed here may be applied to the planning problem of the cogeneration plant to any specific building or hotel. (author)

  19. The choice of equipment mix and parameters for HTGR-based nuclear cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Malevski, A L; Stoliarevski, A Ya; Vladimirov, V T; Larin, E A; Lesnykh, V V; Naumov, Yu V; Fedotov, I L

    1990-07-01

    Improvement of heat and electricity supply systems based on cogeneration is one of the high-priority problems in energy development of the USSR. Fossil fuel consumption for heat supply exceeds now its use for electricity production and amounts to about 30% of the total demands. District heating provides about 80 million t.c.e. of energy resources conserved annually and meets about 50% of heat consumption of the country, including about 30% due to cogeneration. The share of natural gas and liquid fuel in the fuel consumption for district heating is about 70%. The analysis of heat consumption dynamics in individual regions and industrial-urban agglomerations shows the necessity of constructing cogeneration plants with the total capacity of about 60 million kW till the year 2000. However, their construction causes some serious problems. The most important of them are provision of environmentally clean fuels for cogeneration plants and provision of clear air. The limited reserves of oil and natural gas and the growing expenditures on their production require more intensive introduction of nuclear energy in the national energy balance. Possible use of nuclear energy based on light-water reactors for substitution of deficient hydrocarbon fuels is limited by the physical, technical and economic factors and requirements of safety. Further development of nuclear energy in the USSR can be realized on a new technological base with construction of domestic reactors of increased and ultimate safety. The most promising reactors under design are high-temperature gas-cooled reactors (HTGR) of low and medium capacity with the intrinsic property of safety. HTGR of low (about 200-250 MW(th) in a steel vessel), medium (about 500 MW(th) in a steel-concrete vessel) and high (about 1000-2500 MW(th) in a prestressed concrete vessel) are now designed and studied in the country. At outlet helium temperature of 920-1020 K it is possible to create steam turbine installations producing both

  20. The choice of equipment mix and parameters for HTGR-based nuclear cogeneration plants

    International Nuclear Information System (INIS)

    Malevski, A.L.; Stoliarevski, A.Ya.; Vladimirov, V.T.; Larin, E.A.; Lesnykh, V.V.; Naumov, Yu.V.; Fedotov, I.L.

    1990-01-01

    Improvement of heat and electricity supply systems based on cogeneration is one of the high-priority problems in energy development of the USSR. Fossil fuel consumption for heat supply exceeds now its use for electricity production and amounts to about 30% of the total demands. District heating provides about 80 million t.c.e. of energy resources conserved annually and meets about 50% of heat consumption of the country, including about 30% due to cogeneration. The share of natural gas and liquid fuel in the fuel consumption for district heating is about 70%. The analysis of heat consumption dynamics in individual regions and industrial-urban agglomerations shows the necessity of constructing cogeneration plants with the total capacity of about 60 million kW till the year 2000. However, their construction causes some serious problems. The most important of them are provision of environmentally clean fuels for cogeneration plants and provision of clear air. The limited reserves of oil and natural gas and the growing expenditures on their production require more intensive introduction of nuclear energy in the national energy balance. Possible use of nuclear energy based on light-water reactors for substitution of deficient hydrocarbon fuels is limited by the physical, technical and economic factors and requirements of safety. Further development of nuclear energy in the USSR can be realized on a new technological base with construction of domestic reactors of increased and ultimate safety. The most promising reactors under design are high-temperature gas-cooled reactors (HTGR) of low and medium capacity with the intrinsic property of safety. HTGR of low (about 200-250 MW(th) in a steel vessel), medium (about 500 MW(th) in a steel-concrete vessel) and high (about 1000-2500 MW(th) in a prestressed concrete vessel) are now designed and studied in the country. At outlet helium temperature of 920-1020 K it is possible to create steam turbine installations producing both

  1. The T-100-12.8 family of cogeneration steam turbines: Yesterday, today, and tomorrow

    Science.gov (United States)

    Valamin, A. E.; Kultyshev, A. Yu.; Shibaev, T. L.; Sakhnin, Yu. A.; Stepanov, M. Yu.

    2013-08-01

    The T-100-12.8 turbine and its versions, a type of cogeneration steam turbines that is among best known, unique, and most widely used ones in Russia and abroad, are considered. A list of turbine design versions and quantities in which they were produced, their technical and economic indicators, design features, schematic solutions used in different design versions, and a list of solutions available in a comprehensive portfolio offered for modernizing type T-100-12.8 turbines are presented. Information about amounts in which turbines of the last version are supplied currently and supposed to be supplied soon is given.

  2. Cogeneration through small and medium sized gas turbines in Italy: Marketing survey

    International Nuclear Information System (INIS)

    Bianchi, A.; Schieppati, P.

    1992-01-01

    In Italy, the use of cogeneration systems by private industrial concerns has greatly increased in the early 90's. The successful technological development of highly efficient low and medium sized gas turbines and the successful application of cogenerated power to a number of industrial processes, favourable legislation and financial incentives on the part of the Italian Government, especially interested in promoting energy conservation and the use of natural gas as an alternative to petroleum, as well as, fast payback periods for such investments are amongst the major regions for the growing demand for this type of power system alternative in Italy

  3. Biomass based optimal cogeneration system for paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Ashok, S.; Jayaraj, S. [National Inst. of Technology, Calicut (India)

    2008-07-01

    A mathematical model of a biomass supported steam turbine cogeneration system was presented. The multi-time interval non-linear model used genetic algorithms to determine optimal operating costs. The cogeneration system consisted of steam boilers; steam headers at different pressure levels; steam turbines operating at different capacities; and other auxiliary devices. System components were modelled separately to determine constraints and costs. Total costs were obtained by summing up costs corresponding to all equipment. Cost functions were fuel cost; grid electricity cost; grid electricity export revenues; start-up costs; and shut-down costs. The non-linear optimization model was formulated by considering equal intervals of 1-hour intervals. A case study of a typical paper industry plant system was considered using coal, black liquor, and groundnut shells. Results of the study showed that the use of groundnut shells as a fuel resulted in a savings of 11.1 per cent of the total monthly operating costs while delivering 48.6 MWh daily to the electricity grid after meeting the plant's total energy requirements. It was concluded that the model can be used to optimize cogeneration systems in paper plants. 14 refs., 3 tabs., 3 figs.

  4. Wood-waste fuelled indirectly-fired gas turbine cogeneration plant for sawmill applications. Phase 2. Site-specific preliminary engineering and financial analysis

    Energy Technology Data Exchange (ETDEWEB)

    1988-03-01

    The use of conventional steam/electricity cogeneration systems is not generally economical at the sawmill scale of operation. This paper describes an evaluation of a wood-waste fueled and, indirectly, gas fired turbine cogeneration plant aimed at developing a cost-effective wood-waste fired power generation and dry kiln heating system for sawmill applications. A preliminary engineering design and financial analysis of the system was prepared for a demonstration site in British Columbia. A number of alternative system configurations were identified and preliminary engineering designs prepared for each. In the first option , wood wastes combusted in a wet cell hot gas generator powered a 600 kW turbine, and produced 7,000 kW for the drying kilns. The second option provided the same electrical and heat output but used a down-fired suspension burner unit fuelled by clean, dried sawdust, together with an integral air heater heat exchanger. The third option represented a commercial-scale configuration with an electrical output of 1,800 kW, and sufficient heat output for the dry kilns. A financial analyis based on a computerized feasibility model was carried out on the last two options. Low electricity rates in British Columbia combined with the small scale of a demonstration project provide an inadequate rate of return at the site without substantial outside support. At a commercial scale of operation and with the higher electricity prices that exist outside of British Columbia the financial analysis indicates that the incremental investment in the electric generation portion of the system provides very attractive rates of return for the 3 options. 11 figs., 10 tabs.

  5. AFB/open cycle gas turbine conceptual design study

    Science.gov (United States)

    Dickinson, T. W.; Tashjian, R.

    1983-09-01

    Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.

  6. HTTR demonstration program for nuclear cogeneration of hydrogen and electricity

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Sumita, Junya; Terada, Atsuhiko; Ohashi, Hirofumi; Yan, Xing L.; Nishihara, Tetsuo; Tachibana, Yukio; Inagaki, Yoshiyuki

    2015-01-01

    Japan Atomic Energy Agency initiated a High Temperature Engineering Test Reactor (HTTR) demonstration program in accordance with recommendations of a task force established by Ministry of Education, Culture, Sports, Science and Technology according to the Strategic Energy Plan as of April 2014. The demonstration program is designed to complete helium gas turbine and hydrogen production system technologies aiming at commercial plant deployment in 2030s. The program begins with coupling a helium gas turbine in the secondary loop of the HTTR and expands by adding the H 2 plant to a tertiary loop to enable hydrogen cogeneration. Safety standards for coupling the helium gas turbine and H 2 plant to the nuclear reactor will be established through safety review in licensing. A system design and its control method are planned to be validated with a series of test operations using the HTTR-GT/H 2 plant. This paper explains the outline of HTTR demonstration program with a plant concept of the heat application system directed at establishing an HTGR cogeneration system with 950°C reactor outlet temperature for production of power and hydrogen as recommended by the task force. Commercial deployment strategy including a development plan for the helium gas turbine is also presented. (author)

  7. Exergy analysis of a circulating fluidized bed boiler cogeneration power plant

    International Nuclear Information System (INIS)

    Gürtürk, Mert; Oztop, Hakan F.

    2016-01-01

    Highlights: • Analysis of energy and exergy for a cogeneration power plant have been performed. • This plant has circulating fluidized bed boiler. • Energy and exergy efficiencies of the boiler are obtained as 84.65% and 29.43%, respectively. • Exergy efficiency of the plant was calculated as 20%. - Abstract: In this study, energy and exergy analysis of a cogeneration power plant have been performed. The steam which is produced by the cogeneration power plant is used for salt production and most important part of the cogeneration power plant is the circulation fluidized bed boiler. Energy and exergy efficiency of the circulation fluidized bed boiler were found as 84.65% and 29.43%, respectively. Exergy destruction of the circulation fluidized bed boiler was calculated as 21789.39 kW and 85.89% of exergy destruction in the plant. The automation system of the cogeneration power plant is insufficient. Exergy efficiency of the plant was calculated as 20%. Also, some design parameters increasing energy losses were determined.

  8. GE will finance 614-MW cogeneration plant

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The General Electric Power Funding Corporation, a unit of GE Capital, will provide up to $870 million in construction and permanent financing, and letters of credit to Cogen Technologies of Houston, Texas. The agreement will fund the construction of a 614-megawatt (MW), combined-cycle cogeneration plant to be built in Linden, New Jersey, and for the purchase of gas properties. The plant will be owned by Cogen Technologies. The financing is one of the largest packages ever for a cogeneration plant, GE said

  9. Methodology study: Co-generation feasibility at sawmills

    International Nuclear Information System (INIS)

    Host, J.

    1991-01-01

    This report discussed the various factors that should be studied and evaluated before establishing a cogeneration plant. The results of three case studies and a survey of energy needs in smaller and medium size sawmills are also presented. In general, cogeneration is feasible for supplying electric energy required for processing logs using fuelbark and other residues from the manufacturing process. A rebuilt turbine-generator unit is an initial cost saving alternative that is advantageous throughout the life of the operation

  10. Thermodynamic effects when utilizing waste heat from condensation in cases of a reduced vacuum in steam turbine plants of thermal power stations, to provide heat at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vasiljevic, N.; Savic, B.; Stojakovic, M.

    1986-01-01

    There is an interesting variant of cogeneration in the steam turbine system of a thermal power plant, i.e. the utilisation of the waste heat of condensation with a reduced vacuum without reconstruction of the thermal power plant. The thermodynamic effect in cogeneration was calculated in consideration of the dynamics of heat consumption. This cogeneration process has the advantage of saving primary energy without reconstruction of the thermal power plant.

  11. Performance evaluation of cogeneration power plants

    International Nuclear Information System (INIS)

    Bacone, M.

    2001-01-01

    The free market has changed the criteria for measuring the cogeneration plant performances. Further at the technical-economic parameters, are considered other connected at the profits of the power plant [it

  12. Biogas cooperation for cogeneration plants; Biogaskooperation fuer Blockheizkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Deeg, Thomas [Stadtwerke Schwaebisch Hall GmbH, Schwaebisch Hall (Germany)

    2011-03-15

    Since autumn 2010, via a 7 kilometre long biogas conduit an agricultural biogas plant supplies a cogeneration plant in the residential area Teurershof in Schwaebisch Hall. This enables a conversion of biogas with the highest possible efficiency in thermal energy and electricity. This is due to the attachment of the cogeneration plant in Teurershof to the district heating grid of the city Schwaebisch Hall so that the developing thermal energy completely can be used.

  13. Comparative exergoeconomic analysis of prime movers of cogeneration plants; Avaliacao exergoeconomica comparativa de acionadores primarios de plantas de cogeracao

    Energy Technology Data Exchange (ETDEWEB)

    Donatelli, Joao L.M. [Espirito Santo Univ., Vitoria, ES (Brazil). Dept. de Engenharia Mecanica]. E-mail: donatelli@lttc.com.ufrj.br; Vieira, Leonardo S.R. [Centro de Pesquisas de Energia Eletrica, Rio de Janeiro, RJ (Brazil). Area de Conhecimento de Materiais e Mecanica]. E-mail: lsrv@cepel.br; Cruz, Manuel E.C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica]. E-mail: manuel@serv.com.ufrj.br

    2000-07-01

    In this paper we apply exergoeconomic principles to perform a comparative analysis of the use of internal combustion engines or gas turbines as prime movers of cogeneration plants. A preliminary comparison of these movers can be obtained by analysing them individually, considering the complete utilization of the generated products rated on a common exergetic basis. However, when these movers are integrated in a cogeneration plant, it is necessary to perform a global system analysis, which will consider the coupling between generation capacity and demand, under the design conditions. The design of a cogeneration plant should, ideally, consider all the aspects that affect its performance. In this paper we take into account several aspects which are not normally collectively considered in similar analyses encountered in the literature. Specifically, the comparative procedure considers the electrical tariff on an hourly basis, the electrical and thermal load profiles, the influence of the environmental conditions on the performance of the prime movers, sizing and operation mode options to meet plant loads, part-load efficiency, different criteria for cost partitioning, and, finally, the effect of size on plant cost. Once the operating conditions of the cogeneration plant are defined, the procedure attributes costs to all the fluxes, allowing for the identification of the ranges of capacity where each mover is economically advantageous. We apply the procedure to the energetic supply analysis of a typical process of Brazilian shopping centers. (author)

  14. Thermal-economic analysis of cogeneration systems

    International Nuclear Information System (INIS)

    Walter, A.C.S.; Bajay, S.V.

    1992-01-01

    Approximately 80 countries produce sugar, and fortuitously alcohol, from sugar cane. In all these countries the cogeneration technology of steam turbines is utilized, although almost always inefficient. The greater potential of cogeneration in Brazil is in sugar and alcohol sector, because of the use of sugar cane bagasse as combustible. This work applies the techniques of simulation and economic analysis to different configuration of plants, to determine power generation and associated costs of each alternative. The application of the same procedure at operating condition of several configurations in transient system permits the determination of production profile of exceeding during one day. (C.M.)

  15. Exergoeconomic analysis of small-scale biomass steam cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Sotomonte, Cesar Adolfo; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba, MG (Brazil)], e-mails: c.rodriguez32@unifei.edu.br, electo@unifei.edu.br; Venturini, Osvaldo Jose; Escobar, Jose Carlos [Universidad Federal de Itajuba, MG (Brazil)], e-mail: osvaldo@unifei.edu.br

    2010-07-01

    The principal objective of this work is to develop a calculation process, based on the second law of thermodynamics, for evaluating the thermoeconomic potential of a small steam cogeneration plant using waste from pulp processing and/or sawmills as fuel. Four different configurations are presented and assessed. The exergetic efficiency of the cycles that use condensing turbines is found to be around 11%, which has almost 3 percent higher efficiency than cycles with back pressure turbines. The thermoeconomic equations used in this paper estimated the production costs varying the fuel price. The main results show that present cost of technologies in a small-scale steam cycle cogeneration do not justify the implementation of more efficient systems for biomass prices less than 100 R$/t. (author)

  16. A preliminary examination of the economics of cogeneration with fusion plants

    International Nuclear Information System (INIS)

    Hazelrigg, G.A.; Coleman, D.E.

    1983-01-01

    Cogeneration, the process of using reject heat from electric energy generation plants, offers substantial savings in energy consumption and thus is likely to see increased implementation, especially in the form of district heating, over the next few decades. The use of fusion plants for cogeneration offers added advantages of potentially low marginal costs and reduced siting restrictions compared to nuclear and coal plants, and freedom from use of limited fossil fuels. Fusion can thus provide increased economic incentive to the implementation of cogeneration systems. Conversely, cogeneration improves the economics of fusion and thus provides both added incentive for its development and reduced economic requirements on commercial fusion technologies

  17. Economic viability study of micro-cogeneration plants at residential scale; Estudo de viabilidade economica de plantas de micro-cogeracao em escala residencial

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, Jose Carlos Charamba; Ramalho e Soares, Ravi [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Michalewicz, Jacek Stanislaw [Centro Federal de Educacao Tecnologica de Pernambuco (CEFET-PE), Recife, RN (Brazil)

    2008-07-01

    This paper presents the results of a technical and economical feasibility study for the use of micro cogeneration systems in residential scale, using natural gas as an energy source. It was considered two micro-cogeneration systems to meet demand of some types of fictitious establishment of commercial and residential plants, each with its advantages and disadvantages. The first system has as a main driving machine a micro turbine with a nominal capacity of 30 kw, the second one uses a gas motor-generator, with nominal capacity of 35 kw. (author)

  18. Nuclear Co-generation: The Analysis of Technical Capabilities and Cost Estimates

    Directory of Open Access Journals (Sweden)

    Andrzej Reński

    2016-09-01

    Full Text Available This paper presents a concept of the parallel connection of a nuclear power plant fitted to provide heat for district heating application, with the CHP and heat plants existing in the supply region, in this case with the heating systems of Wejherowo and Gdynia. Presented variant proposes to add heat to a nuclear power plant’s total output by supplying heat exchangers with the steam from bleeders of low pressure (LP turbine stage and from the crossover pipe between its high pressure (HP and intermediate pressure (IP stages. A detailed diagram of the EPR nuclear turbine system adapted to supply district heat is also presented. Also determined are the formulas for: electric power output of a nuclear CHP plant; electric power generated strictly in cogeneration, and the decrease in the electric power and energy resulting from the operation in cogeneration mode. Finally, the profitability (competitiveness criteria for a nuclear power plant adapted to supply district heat in a selected heat supply region were proposed.

  19. Energy and cost saving results for advanced technology systems from the Cogeneration Technology Alternatives Study (CTAS)

    Science.gov (United States)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    An overview of the organization and methodology of the Cogeneration Technology Alternatives Study is presented. The objectives of the study were to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the future and to assess the advantages of advanced technology systems compared to those systems commercially available today. Advanced systems studied include steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics. Steam turbines, open cycle gas turbines, combined cycles, and diesel engines were also analyzed in versions typical of today's commercially available technology to provide a base against which to measure the advanced systems. Cogeneration applications in the major energy consuming manufacturing industries were considered. Results of the study in terms of plant level energy savings, annual energy cost savings and economic attractiveness are presented for the various energy conversion systems considered.

  20. Natural gas cogeneration plants: considerations on energy efficiency

    International Nuclear Information System (INIS)

    Arcuri, P.; Florio, G.; Fragiacomo, P.

    1996-01-01

    Cogeneration is one of the most interesting solution to be adopted in order to achieve the goals of the Domestic Energy Plan. Besides the high primary energy savings, remarkable environmental benefits can be obtained. In the article, an energy analysis is carried out on the major cogeneration technologies depending on the parameters which define a generic user tipology. The energy indexes of a cogeneration plant are the shown in charts from which useful information on the achievable performances can be obtained

  1. Current experience with central-station nuclear cogeneration plants

    International Nuclear Information System (INIS)

    1981-10-01

    In considering the potential of the HTGR for nuclear cogeneration, a logical element for investigation is the recent history of nuclear cogeneration experience. Little is found in recent literature; however, the twin nuclear cogeneration plant at Midland is nearing completion and this milestone will no doubt be the basis for a number of reports on the unique cogeneration facility and operating experiences with it. Less well known in the US is the Bruce Nuclear Power Development in Ontario, Canada. Originally designed to cogenerate steam for heavy water production, the Bruce facility is the focus of a major initiative to create an energy park on the shores of Lake Huron. To obtain an improved understanding of the status and implications of current nuclear cogeneration experience, GCRA representatives visited the Ontario Hydro offices in Toronto and subsequently toured the Midland site near Midland, Michigan. The primary purpose of this report is to summarize the results of those visits and to develop a series of conclusions regarding the implications for HTGR cogeneration concepts

  2. Energetic and exergetic analysis of cogeneration power combined cycle and ME-TVC-MED water desalination plant: Part-1 operation and performance

    International Nuclear Information System (INIS)

    Almutairi, Abdulrahman; Pilidis, Pericles; Al-Mutawa, Nawaf; Al-Weshahi, Mohammed

    2016-01-01

    Highlights: • Develop a comprehensive model for a very advanced cogeneration plant using real data. • Evaluate ME-TVC-MED unit using the latest thermodynamic properties of seawater. • Evaluate the desalination unit contribution to the overall efficiency. • Evaluate the stage exergetic efficiency in the ME-TVC-MED unit. • Numerous possibilities have been suggested to improve the proposed system. - Abstract: A comprehensive model of cogeneration plant for electrical power and water desalination has been developed based on energetic and exergetic analyses using real operational data. The power side is a combined cycle power plant (CCPP), while the desalination side is a multi-effect thermal vapour compression plant coupled with a conventional multi-effect plant (ME-TVC-MED). IPSEpro software was utilized to model the process, which shows good agreement with the manufacturer's data and published research. The thermodynamic properties of saline water were obtained from the latest published data in the literature. The performance of the cogeneration plant was examined for different ambient temperatures, pressure ratios, loads, feed water temperatures, number of effects and entrainment ratios. The results show that gas turbine engines produce the highest level of useful work in the system at around 34% of the total fuel input. At the same time, they constitute a major source of irreversibility, which accounts for 84% of the total exergy destruction in the plant, while the lowest source of irreversibility is in the steam turbine of 3.3% due to the type of working fluid and reheating system. In the ME-TVC-MED desalination unit, the highest source of irreversibilities occurs in the effects and in the thermo-compressor. The first two effects in the ME-TVC parallel section were responsible for about 40.6% of the total effect exergy destruction, which constitutes the highest value among all the effects. Operating the system at full load while reducing ambient

  3. Strategy for optimal operation of a biomass-fired cogeneration power plant

    International Nuclear Information System (INIS)

    Prasertsan, S.; Krukanont, P.; Nigamsritragul, P.; Kirirat, P.

    2001-01-01

    Biomass-fired cogeneration not only is an environmentally friendly energy production, but also possesses high energy conversion efficiency. Generally, the wood product industry requires both heat and electricity. Combined heat and power generation (cogeneration) using wood residue has a three-fold benefit: waste minimization, reduction of an energy-related production cost and additional income from selling the excess electricity to the utility. In reality, the process heat demand fluctuates according to the production activities in the factory. The fluctuation of process heat demand affects the cogeneration efficiency and the electricity output and, consequently, the financial return, since the prices of heat and electricity are different. A study by computer simulation to establish a guideline for optimum operation of a process heat fluctuating cogeneration power plant is presented. The power plant was designed for a sawmill and an adjacent plywood factory using wood wastes from these two processes. The maximum boiler thermal load is 81.9 MW while the electricity output is in the range 19-24 MW and the process heat 10-30 MW. Two modes of operation were studied, namely the full (boiler) load and the partial (boiler) load. In the full load operation, the power plant is operated at a maximum boiler thermal load, while the extracted steam is varied to meet the steam demand of the wood-drying kilns and the plywood production. The partial load operation was designed for the partially fuelled boiler to provide sufficient steam for the process and to generate electricity at a desired capacity ranging from the firmed contract of 19 MW to the turbine maximum capacity of 24 MW. It was found that the steam for process heat has an allowable extracting range, which is limited by the low pressure feed water heater. The optimum operation for both full and partial load occurs at the lower limit of the extracting steam. A guideline for optimum operation at various combinations of

  4. Load averaging system for co-generation plant; Jikayo hatsuden setsubi ni okeru fuka heijunka system

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Y. [Fuji Electric Co. Ltd., Tokyo (Japan)

    1995-07-30

    MAZDA Motor Corp. planed the construction of a 20.5MW co-generation plant in 1991 for responding to an increase in power demand due to expansion of the Hofu factory. On introduction of this co-generation plant, it was decided that the basic system would adopt the following. (1) A circulating fluidized bed boiler which can be operated by burning multiple kinds of fuels with minimum environmental pollution. (2) A heat accumulation system which can be operated through reception of a constant power from electric power company despite a sudden and wide range change in power demand. (3) A circulating-water exchange heat recovery system which recovers exhaust heat of the turbine plant as the hot water to be utilized for heating and air-conditioning of the factory mainly in winter. Power demand in MAZDA`s Hofu factory changes 15% per minute within a maximum range from 20MW to 8MW. This change is difficult to be followed even by an oil burning boiler excellent in load follow-up. The circulating Fluidized bed boiler employed this time is lower in the follow-up performance than the oil boiler. For the newly schemed plant, however, load averaging system named a heat accumulation system capable of responding fully to the above change has been developed. This co-generation plant satisfied the official inspection before commercial operation according the Ministerial Ordinance in 1993. Since then, with regard to the rapid load following, which was one of the initial targets, operation is now performed steadily. This paper introduces an outline of the system and operation conditions. 10 refs.

  5. Combined cycles and cogeneration with natural gas and alternative fuels

    International Nuclear Information System (INIS)

    Gusso, R.

    1992-01-01

    Since 1985 there has been a sharp increase world-wide in the sales of gas turbines. The main reasons for this are: the improved designs allowing better gas turbine and, thus, combined cycle efficiencies; the good fuel use indices in the the case of cogeneration; the versatility of the gas turbines even with poly-fuel plants; greatly limited exhaust emissions; and lower manufacturing costs and delivery times with respect to conventional plants. This paper after a brief discussion on the evolution in gas turbine applications in the world and in Italy, assesses their use and environmental impacts with fuels other than natural gas. The paper then reviews Italian efforts to develop power plants incorporating combined cycles and the gasification of coal, residual, and other low calorific value fuels

  6. GTHTR300 cost reduction through design upgrade and cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Xing L., E-mail: yan.xing@jaea.go.jp; Sato, Hiroyuki; Kamiji, Yu; Imai, Yoshiyuki; Terada, Atsuhiko; Tachibana, Yukio; Kunitomi, Kazuhiko

    2016-09-15

    Japan Atomic Energy Agency began design and development of the Gas Turbine High Temperature Reactor of 300MWe nominal output (GTHTR300) in 2001. The reactor baseline design completed three years later was based on 850 °C core outlet temperature and a direct cycle gas turbine balance of plant. It attained 45.6% net power generation efficiency and 3.5 US¢/kW h cost of electricity. The cost was estimated 20% lower than LWR. The latest design upgrade has incorporated several major technological advances made in the past ten years to both reactor and balance of plant. As described in this paper, these advances have enabled raising the design basis reactor core outlet temperature to 950 °C and increasing power generating efficiency by nearly 5% point. Further implementation of seawater desalination cogeneration is made through employing a newly-proposed multi-stage flash process. Through efficient waste heat recovery of the reactor gas turbine power conversion cycle, a large cost credit is obtained against the conventionally produced water prices. Together, the design upgrade and the cogeneration are shown to reduce the GTHTR300 cost of electricity to under 2.7 US¢/kW h.

  7. GTHTR300 cost reduction through design upgrade and cogeneration

    International Nuclear Information System (INIS)

    Yan, Xing L.; Sato, Hiroyuki; Kamiji, Yu; Imai, Yoshiyuki; Terada, Atsuhiko; Tachibana, Yukio; Kunitomi, Kazuhiko

    2014-01-01

    Japan Atomic Energy Agency began design and development of the Gas Turbine High Temperature Reactor of 300MWe nominal output (GTHTR300) in 2001. The reactor baseline design completed three years later was based on 850°C core outlet temperature and a direct cycle gas turbine balance of plant. It attained 45.6% net power generation efficiency and 3.5US¢/KWh cost of electricity. The cost was estimated 20% lower than LWR. The latest design upgrade has incorporated several major technological advances made in the past ten years to both reactor and balance of plant. As described in this paper, these advances have enabled raising the design basis reactor core outlet temperature to 950°C and increasing power generating efficiency by nearly 5% point. Further implementation of seawater desalination cogeneration is made through employing a newly-proposed multi-stage flash process. Through efficient waste heat recovery of the reactor gas turbine power conversion cycle, a large cost credit is obtained against the conventionally produced water prices. Together, the design upgrade and the cogeneration are shown to reduce the GTHTR300 cost of electricity to under 2.7 US¢/KWh. (author)

  8. Design features of Beijing Shijingshan 3 x 200 MW cogeneration plant

    International Nuclear Information System (INIS)

    Li, T.X.; Ou, Y.Z.

    1991-01-01

    This paper describes the design feature of Beijing Shijingshan 3 x 200 MW Cogeneration Plant. The design optimized the scheme and system of 200 MW units for heating. The cogeneration plant has achieved comprehensive economic benefit in energy saving and environmental pollution reduction

  9. Construction of a power plant with prototype DLN combustion turbines

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, M.L. [CSW Energy, Dallas, TX (United States); Drummond, L.J. [Zurn NEPCO, Redmond, WA (United States)

    1996-12-31

    Design and construction of a power plant is always a difficult process and this is especially true when the main keystone, the combustion turbine engine, is being modified by the manufacturer resulting in numerous changes in the design interfaces. The development of the design and construction of the Orange Cogeneration Facility has been in parallel with major modification of the LM6000 to DLE technology (a Dry Low NO{sub x} combustion system). The Dry Low NO{sub x} Combustion System for a combustion turbine offered a means to reduce water usage, lower Zero Liquid Discharge System operating costs and reduce emissions to meet Florida Department of Environmental Protection requirements. This development was successfully accomplished by Owner, EPC contractor and Combustion Turbine Manufacturer by maintaining flexibility in the design and construction while the design interfaces and performance of the combustion turbines were being finalized.

  10. Co-generation on steam industrial systems with disks turbines; Co-geracao em sistemas industriais de vapor com turbinas de discos

    Energy Technology Data Exchange (ETDEWEB)

    Lezsovits, Ferenc [Universidad de Tecnologia y Economia de Budapest (Hungary)

    2010-03-15

    The disk turbine, also called Tesla turbine, being of simple construction and low cost, can be used as steam pressure reduction on industrial systems, generating simultaneously electric power, becoming the co-generation even at lower levels. Can be used for various operational parameters and mass flux ratios.This paper analyses the advantages and disadvantages of the turbines under various operation conditions.

  11. Cogeneration based on gasified biomass - a comparison of concepts

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Fredrik

    1999-01-01

    In this report, integration of drying and gasification of biomass into cogeneration power plants, comprising gas turbines, is investigated. The thermodynamic cycles considered are the combined cycle and the humid air turbine cycle. These are combined with either pressurised or near atmospheric gasification, and steam or exhaust gas dryer, in a number of combinations. An effort is made to facilitate a comparison of the different concepts by using, and presenting, similar assumptions and input data for all studied systems. The resulting systems are modelled using the software package ASPEN PLUS{sup TM}, and for each system both the electrical efficiency and the fuel utilisation are calculated. The investigation of integrated gasification combined cycles (IGCC), reveals that systems with pressurised gasification have a potential for electrical efficiencies approaching 45% (LHV). That is 4 - 5 percentage points higher than the corresponding systems with near atmospheric gasification. The type of dryer in the system mainly influences the fuel utilisation, with an advantage of approximately 8 percentage points (LHV) for the steam dryer. The resulting values of fuel utilisation for the IGCC systems are in the range of 78 - 94% (LHV). The results for the integrated gasification humid air turbine systems (IGHAT) indicate that electrical efficiencies close to the IGCC are achievable, provided combustion of the fuel gas in highly humidified air is feasible. Reaching a high fuel utilisation is more difficult for this concept, unless the temperature levels in the district heating network are low. For comparison a conventional cogeneration plant, based on a CFB boiler and a steam turbine (Rankine cycle), is also modelled in ASPEN PLUS{sup TM}. The IGCC and IGHAT show electrical efficiencies in the range of 37 - 45% (LHV), compared with a calculated value of 31% (LHV) for the Rankine cycle cogeneration plant. Apart from the electrical efficiency, also a high value of fuel

  12. Cogeneration technology alternatives study. Volume 1: Summary report

    Science.gov (United States)

    1980-01-01

    Data and information in the area of advanced energy conversion systems for industrial congeneration applications in the 1985-2000 time period was studied. Six current and thirty-one advanced energy conversion systems were defined and combined with appropriate balance-of-plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a framework for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. Various cogeneration strategies were analyzed and both topping and bottoming (using industrial by-product heat) applications were included. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Typically fuel energy savings of 10 to 25 percent were predicted compared to traditional on-site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Overall, fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual cost savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal-derived fuels, or coal with advanced fluid bed combustion or on-site gasification systems.

  13. Micro cogeneration in residential scale; Bancada de sistema de cogeracao de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, Jose Carlos Charamba; Primo, Ana Rosa Mendes; Magnani, Fabio Santana; Henriquez, Jorge R. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Moura, Newton Reis de; Campos, Michel Fabianski [PETROBRAS, Rio de Janeiro, RJ (Brazil); Zimmerle, Sergio Ricardo T.S. [Companhia Pernambucana de Gas (COPERGAS), Recife, PE (Brazil)

    2004-07-01

    Cogeneration is very important to spread the use of natural gas in Brazil. Most of the existing cogeneration plants are of considerable size, as used in industries or commercial centers. Places with low demand on electrical or thermal energy (e.g. small industries, blocs of houses, etc.) could also benefit of cogeneration, but there is no available data about micro-cogeneration in Brazil. In order to verify the technical and economical viability of small size systems of cogeneration, FINEP/PETROBRAS/COPERGAS financed a project of micro-cogeneration at the Federal University of Pernambuco (UFPE), involving experiments on a micro turbine and a generator group, both with 30 kW power. The laboratory is also composed by two heat exchangers to regenerate the heat from the micro-turbine and generator group, a single effect absorption chiller, with 10 TR capacity, two thermal storage tanks (for hot and cold water) and a compression split of 5 TR. Data to build performance curves of the equipment will be stored and analyzed, in order to build their performance curves, allowing the overall cogeneration efficiency to be found. Most probable situations of thermal and electric power demands will be simulated. The aim of the simulations is to achieve the optimal situation for micro-cogeneration, which will offer the best efficiency, the lowest cost for buying the equipment and the lowest operational cost. A software was also developed, which optimizes micro-cogeneration systems. (author)

  14. Cogeneration plants: SNAM (Italy) initiatives and incentives

    International Nuclear Information System (INIS)

    Pipparelli, M.

    1991-01-01

    First, an overall picture is presented of the extension of the use of cogeneration by the Italian brick industry. The particular suitability and usefulness of this form of energy to the brick industry are pointed out. Then a look is given at the legal and financial incentives which have been built into the National Energy Plan to encourage on-site production by Italian industries. Finally, a review is made of initiatives made by SNAM (the Italian National Methane Distribution Society) to develop a favourable tariff structure for on-site power producers using methane as their energy source, as well as, of the Society's efforts to set up a cogeneration equipment consulting service which would provide advice on cogeneration plant design, operation and maintenance

  15. Thermal expansion measurement of turbine and main steam piping by using strain gages in power plants

    International Nuclear Information System (INIS)

    Na, Sang Soo; Chung, Jae Won; Bong, Suk Kun; Jun, Dong Ki; Kim, Yun Suk

    2000-01-01

    One of the domestic co-generation plants have undergone excessive vibration problems of turbine attributed to external force for years. The root cause of turbine vibration may be shaft alignment problem which sometimes is changed by thermal expansion and external force, even if turbine technicians perfectly performed it. To evaluate the alignment condition from plant start-up to full load, a strain measurement of turbine and main steam piping subjected to thermal loading is monitored by using strain gages. The strain gages are bonded on both bearing housing adjusting bolts and pipe stoppers which installed in the x-direction of left-side main steam piping near the turbine inlet in order to monitor closely the effect of turbine under thermal deformation of turbine casing and main steam piping during plant full load. Also in situ load of constant support hangers in main steam piping system is measured by strain gages and its results are used to rebalance the hanger rod load. Consequently, the experimental stress analysis by using strain gages turns out to be very useful tool to diagnose the trouble and failures of not only to stationary components but to rotating machinery in power plants

  16. Small Nuclear Co-generation Plants Based on Shipbuilding Technology

    International Nuclear Information System (INIS)

    Vasyukov, V. I.; Veshnyakov, K. B.; Goryunov, E. V.; Zalugin, V. I.; Panov, Yu. K.; Polunichev, V. I.

    2002-01-01

    The development of nuclear cogeneration plants and power desalination complexes of relatively small power, using proven shipbuilding technology, becomes more and more attractive for solving the power supply problems of remote districts of the Extreme North and the Far East with small and medium power grids and for removing the shortage of fresh water in different world regions. The idea of transportation of the power unit with high degree of readiness to the place of its location with minimum construction and mounting activities at the site is very attractive. Compactness typical of RP based on shipbuilding technology allows to develop floating or ground-based plants at minimum use of water area and territory. Small construction scope at the site under conditions of minimum anthropogenic loads and high ecological indices are important arguments in favor of floating nuclear cogeneration plant based on ship power units against the alternative fossil sources. At present, the activities on floating nuclear cogeneration plant design, which is developed on the basis of floating power unit with two KLT-40S reactor plant, which is a modified option of standard KLT-40-type ship plant for icebreaker fleet in Russia are the most advanced. To date, a detailed design of reactor plant has been developed and approved, design activities on floating power unit are in the stage of completion, the site for its location has been selected and licensing by GAN, Russia, is in progress. Besides OKBM has developed some designs of nuclear cogeneration plants of different power on the basis of integral reactor plants, using the experience of transport and stationary power plants designing. Nuclear cogeneration plant investment analysis showed acceptable social and economical efficiency of the design that creates conditions for commercial construction of floating power units with KLT-40S reactor plan. At the same time the reduction of the design recovering terms, increase of budget income and

  17. The effective use of gas turbines and combined cycle technology in heat and electrical energy production

    International Nuclear Information System (INIS)

    Boehm, B.; Stark, E.

    1999-01-01

    The modernization of the energy industry in many countries is a real challenge for both, the policy makers as well as for the power industry. Especially, the efficient satisfaction of the heat and electrical demand of big cities will remain an interesting task for supply companies and hence for today engineers and economists, because the availability of natural gas from Russia and from other deposits owning countries for the decades to come, cogeneration by using modern gas turbines and combined cycle technologies is a key and corner stone of supply, not the least for its very low emission and small environmental loading. It is the intention of this paper, to demonstrate under resource to: 1) the high potential of natural gas-based cogeneration; 2) the high efficiency of gas turbines and combined cycle plants; 3) their flexibility to cover different demands; 4) the operational experience with gas turbines and combined cycle cogeneration plants; 5) the very good environmental behavior of gas turbines. Actually, the highest utilization of primary energy resources is afforded with natural gas and described technology. Future gradual rise of gas prices can bring about a shift from the present main application in high efficiency load plants to mid range load operation of cogeneration plants. (Author)

  18. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  19. Electric power plants in cogeneration: a promising potential even in France

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Implantation of cogeneration power plants has increased in France since two years but stays below other countries such as northern Europe. Technical, economical, legal and financial aspects of cogeneration have been debated during the ''Euroforum'' seminar (June 14-16, 1995). The european association Cogen Europe, created in 1993 with the financial support of the SAVE european program, has analysed the barriers that restrain cogeneration development and their solutions. Advantages of cogeneration are undeniable at any scale (from small engines to huge industrial systems) if efficiency of energy used reaches 85%. Opinions of representatives from different industries implied in cogeneration technology are reported. (J.S.). 1 photo

  20. Mini/micro cogeneration, basis for installation. Dimensioning, accounting and potential. Project report 1; Mini/mikrokraftvarme, forudsaetninger for installation. Dimensionering, afregningsforhold og potentiale. Projektrapport 1

    Energy Technology Data Exchange (ETDEWEB)

    Wit, J. de; Iskov, H.

    2005-11-15

    Cogeneration is quite spread in Denmark. Approx. 50 % of the power supply and 80 % of the district heating supply come from cogeneration. Combined heat and power is produced on both centralized (large) plants and decentralized plants. Decentralized combined heat and power plants (typically based on natural gas) use gas motors or gas turbines for power and heat production. Cogeneration of heat and power saves primary fuels and a directly derived effect from cogeneration is CO{sub 2} emission reduction. If fuels with higher specific CO{sub 2} emission than natural gas (e.g. coal, oil) are substituted, additional CO{sub 2} reduction can be reached. (BA)

  1. District heating/cogeneration application studies for the Minneapolis-St Paul area. Executive summary; overall feasibility and economic viability for a district heating/new cogeneration system in Minneapolis-St. Paul

    Energy Technology Data Exchange (ETDEWEB)

    Margen, P.; Larsson, K.; Cronholm, L.A.; Marklund, J.E.

    1979-08-01

    A study was undertaken to determine the feasibility of introducing a large-scale, hot-water, district-heating system for the Minneapolis-St. Paul area. The analysis was based on modern European hot-water district-heating concepts in which cogeneration power plants supply the base-load thermal energy. Heat would be supplied from converted turbines of existing coal-fired power plants in Minneapolis and St. Paul. Toward the end of the 20-year development period, one or two new cogeneration units would be required. Thus, the district-heating system could use low-grade heat from either coal-fired or nuclear cogeneration power stations to replace the space-heating fuels currently used - natural gas and distillate oil. The following conclusions can be drawn: the concept is technically feasible, it has great value for fuel conservation, and with appropriate financing the system is economically viable.

  2. Entropy generation minimization: A practical approach for performance evaluation of temperature cascaded co-generation plants

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Youngdeuk; Saha, Bidyut Baran; Ng, K. C.

    2012-01-01

    We present a practical tool that employs entropy generation minimization (EGM) approach for an in-depth performance evaluation of a co-generation plant with a temperature-cascaded concept. Co-generation plant produces useful effect production sequentially, i.e., (i) electricity from the micro-turbines, (ii) low pressure steam at 250 °C or about 8-10 bars, (iii) cooling capacity of 4 refrigeration tones (Rtons) and (iv) dehumidification of outdoor air for air conditioned space. The main objective is to configure the most efficient configuration of producing power and heat. We employed entropy generation minimization (EGM) which reflects to minimize the dissipative losses and maximize the cycle efficiency of the individual thermally activated systems. The minimization of dissipative losses or EGM is performed in two steps namely, (i) adjusting heat source temperatures for the heat-fired cycles and (ii) the use of Genetic Algorithm (GA), to seek out the sensitivity of heat transfer areas, flow rates of working fluids, inlet temperatures of heat sources and coolant, etc., over the anticipated range of operation to achieve maximum efficiency. With EGM equipped with GA, we verified that the local minimization of entropy generation individually at each of the heat-activated processes would lead to the maximum efficiency of the system. © 2012.

  3. Entropy generation minimization: A practical approach for performance evaluation of temperature cascaded co-generation plants

    KAUST Repository

    Myat, Aung

    2012-10-01

    We present a practical tool that employs entropy generation minimization (EGM) approach for an in-depth performance evaluation of a co-generation plant with a temperature-cascaded concept. Co-generation plant produces useful effect production sequentially, i.e., (i) electricity from the micro-turbines, (ii) low pressure steam at 250 °C or about 8-10 bars, (iii) cooling capacity of 4 refrigeration tones (Rtons) and (iv) dehumidification of outdoor air for air conditioned space. The main objective is to configure the most efficient configuration of producing power and heat. We employed entropy generation minimization (EGM) which reflects to minimize the dissipative losses and maximize the cycle efficiency of the individual thermally activated systems. The minimization of dissipative losses or EGM is performed in two steps namely, (i) adjusting heat source temperatures for the heat-fired cycles and (ii) the use of Genetic Algorithm (GA), to seek out the sensitivity of heat transfer areas, flow rates of working fluids, inlet temperatures of heat sources and coolant, etc., over the anticipated range of operation to achieve maximum efficiency. With EGM equipped with GA, we verified that the local minimization of entropy generation individually at each of the heat-activated processes would lead to the maximum efficiency of the system. © 2012.

  4. FY 2000 report on the basic survey to promote Joint Implementation, etc. Project for the modernization of the Tashkent cogeneration plant; 2000 nendo kyodo jisshi nado suishin kiso chosa hokokusho. Tashkent netsuheikyu hatsudensho kindaika keikaku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    An investigational study was carried out of the project for energy conservation and greenhouse effect gas emission reduction by introducing the newest and most powerful gas turbine cogeneration facilities to the Tashkent cogeneration plant in Uzbekistan. At the Tashkent cogeneration plant, each of the facilities is being superannuated, which leads to lowering of operational reliability and increase in cost of repairs. In the project, studied was the introduction of the newest and most powerful gas turbine cogeneration facilities with heat output of 100 Gcal/h equivalent to that of one can of the existing hot water boiler and with generated output of 80MW. As a result of the study, obtained were the energy conservation amount of 83.9 ktoe/y and the greenhouse effect gas reduction amount of 179.7 kt-CO2/y. The initial investment amount was 10.003 billion yen. Expenses vs. effects were 8.39 toe/y-million yen in energy conservation amount and 18.0 t-CO2/y-million yen in greenhouse effect gas reduction amount. In the study of profitability, the internal earning rate was 9.24% after tax, the return yield of capital was 41.26%, and the period of ROI was 16.9 years. (NEDO)

  5. Experimental results and thermodynamic analysis of a natural gas small scale cogeneration plant for power and refrigeration purposes

    International Nuclear Information System (INIS)

    Bazzo, Edson; Nacif de Carvalho, Alvaro; Matelli, José Alexandre

    2013-01-01

    In this work, experimental results are reported for a small scale cogeneration plant for power and refrigeration purposes. The plant includes a natural gas microturbine and an ammonia/water absorption chiller fired by steam. The system was tested under different turbine loads, steam pressures and chiller outlet temperatures. An evaluation based on the 1st and 2nd Laws of Thermodynamics was also performed. For the ambient temperature around 24 °C and microturbine at full load, the plant is able to provide 19 kW of saturated steam at 5.3 bar (161 °C), corresponding to 9.2 kW of refrigeration at −5 °C (COP = 0.44). From a 2nd law point-of-view, it was found that there is an optimal chiller outlet temperature that maximizes the chiller exergetic efficiency. As expected, the microturbine presented the highest irreversibilities, followed by the absorption chiller and the HRSG. In order to reduce the plant exergy destruction, it is recommended a new design for the HRSG and a new insulation for the exhaust pipe. -- Highlights: • A small scale cogeneration plant for power and refrigeration is proposed and analyzed. • The plant is based on a microturbine and a modified absorption chiller. • The plant is analysed based on 1st and 2nd laws of thermodynamics. • Experimental results are found for different power and refrigeration conditions. • The plant proved to be technically feasible

  6. Cogeneration and local authorities; Cogeneration et collectivites territoriales

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This conference is composed of 15 communications concerning cogeneration systems and applications in local communities. The main themes are: the regulation context and administrative procedures for cogeneration projects in France; legal aspects, risk covering, financing and sellback conditions for cogeneration systems; examples of cogeneration and tri-generation (with refrigeration energy) in different cities, airport, hospitals, campus, combined with the upgrading of district heating systems or municipal waste incineration plants. Impacts on energy savings and air pollution are also discussed

  7. Optimal energy exchange of an industrial cogeneration in a day-ahead electricity market

    International Nuclear Information System (INIS)

    Yusta, J.M.; De Oliveira-De Jesus, P.M.; Khodr, H.M.

    2008-01-01

    This paper addresses an optimal strategy for the daily energy exchange of a 22-MW combined-cycle cogeneration plant of an industrial factory operating in a liberalized electricity market. The optimization problem is formulated as a Mixed-Integer Linear Programming Problem (MILP) that maximizes the profit from energy exchange of the cogeneration, and is subject to the technical constraints and the industrial demand profile. The integer variables are associated with export or import of electricity whereas the real variables relate to the power output of gas and steam turbines, and to the electricity purchased from or sold to the market. The proposal is applied to a real cogeneration plant in Spain where the detailed cost function of the process is obtained. The problem is solved using a large-scale commercial package and the results are discussed and compared with different predefined scheduling strategies. (author)

  8. Thermoeconomic and exegetic analysis of a cogeneration proposal by using natural gas in breweries; Analise termoeconomica e exergetica de uma proposta de cogeracao usando gas natural em cervejarias

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, Antonio Garrido; Martins, Gilberto [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara do Oeste, SP (Brazil). Faculdade de Engenharia Mecanica e de Producao]. E-mail: agallego@unimep.br; gmartins@unimep.br; Nebra, Silvia Azucena [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica]. E-mail: sanebra@fem.unicamp.br

    2000-07-01

    In this work the thermo economic method is used for analysis of the cost distribution in a cogeneration power plant proposed for a brewery in the Campinas - state of Sao Paulo, Brazil. The thermal process energy demands were considered for beer production in 1997. The proposed cogeneration system consists of two gas turbines with recovering boiler and ammonium compression cooling system. The present power generation configuration and the cogeneration proposed performance were simulated in a monthly basis, considering the month steam and refrigeration requests. The gas turbines were simulated considering the nominal load and the energy surplus sold to the concessionaire.

  9. Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant

    International Nuclear Information System (INIS)

    Burin, Eduardo Konrad; Vogel, Tobias; Multhaupt, Sven; Thelen, Andre; Oeljeklaus, Gerd; Görner, Klaus; Bazzo, Edson

    2016-01-01

    This work evaluated the integration of Concentrated Solar Power (CSP) with a sugarcane bagasse cogeneration plant located in Campo Grande (Brazil). The plant is equipped with two 170 t/h capacity steam generators that provide steam at 67 bar/525 °C. Superheated steam is expanded in a backpressure and in a condensing-extraction turbine. The evaluated hybridization layouts were: (layout 1) solar feedwater pre-heating; (layout 2) saturated steam generation with solar energy and post superheating in biomass steam generators and (layout 3) superheated steam generation in parallel with biomass boilers. Linear Fresnel and parabolic trough were implemented in layouts 1 and 2, while solar tower in layout 3. The exportation of electricity to the grid was increased between 1.3% (layout 1/linear Fresnel) and 19.8% (layout 3) in comparison with base case. The levelized cost of additional electricity was accounted between 220 US$/MWh (layout 3) and 628 US$/MWh (layout 1/linear Fresnel). The key factor related to layout 3 was the improvement of solar field capacity factor due to the solar-only operation of this approach. These aspects demonstrate that the combination of solar and bagasse resources might be the key to turn CSP economically feasible in Brazil. - Highlights: • The integration of CSP and a sugarcane bagasse cogeneration plant was here evaluated. • Additional hours of operation during off-season were achieved due to hybridization. • The part load performance of plant was predicted as solar thermal load was increased. • The electricity exportation to the grid could be increased between 1.3 and 19.8%. • The LCOE of additional electricity produced was ranged between 220 and 628 US$/MWh.

  10. Advanced gas turbine cycles a brief review of power generation thermodynamics

    CERN Document Server

    Horlock, JH

    2003-01-01

    Primarily this book describes the thermodynamics of gas turbine cycles. The search for high gas turbine efficiency has produced many variations on the simple ""open circuit"" plant, involving the use of heat exchangers, reheating and intercooling, water and steam injection, cogeneration and combined cycle plants. These are described fully in the text. A review of recent proposals for a number of novel gas turbine cycles is also included. In the past few years work has been directed towards developing gas turbines which produce less carbon dioxide, or plants from which the CO2 can be d

  11. Natural gas cogeneration in the residential sector; La cogeneration au gaz naturel en residentiel

    Energy Technology Data Exchange (ETDEWEB)

    Lancelot, C.; Gaudin, S. [Gaz de France, GDF, Dir. de la Recherche, 75 - Paris (France)

    2000-07-01

    The natural gas cogeneration offer is now available and operational in the industrial sector. It is based on technologies of piston engines and gas turbines. Currently, this offer is sufficiently diversified, so much from the point of view of the range of powers available (from 1 MW to more than 40 MW electric) that number of manufacturers. In order to widen the cogeneration market in France to the markets of the commercial and residential sectors, Gaz De France has undertaken a technical economic study to validate the potential of those markets. This study led to work on the assembly of a french die to cogeneration packages of low power (less than 1 MW electric). This step has emerged at the beginning of 1999 with the launching of a commercial offer of cogeneration packages. In margin to this work Gaz De France Research division also initiated a study in order to evaluate the offer of micro cogeneration, products delivering an electric output lower than 10 kW. (authors)

  12. Evaluation of high temperature gas reactor for demanding cogeneration load follow

    International Nuclear Information System (INIS)

    Yan, Xing L.; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Hino, Ryutaro

    2012-01-01

    Modular nuclear reactor systems are being developed around the world for new missions among which is cogeneration for industries and remote areas. Like existing fossil energy counterpart in these markets, a nuclear plant would need to demonstrate the feasibility of load follow including (1) the reliability to generate power and heat simultaneously and alone and (2) the flexibility to vary cogeneration rates concurrent to demand changes. This article reports the results of JAEA's evaluation on the high temperature gas reactor (HTGR) to perform these duties. The evaluation results in a plant design based on the materials and design codes developed with JAEA's operating test reactor and from additional equipment validation programs. The 600 MWt-HTGR plant generates electricity efficiently by gas turbine and 900degC heat by a topping heater. The heater couples via a heat transport loop to industrial facility that consumes the high temperature heat to yield heat product such as hydrogen fuel, steel, or chemical. Original control methods are proposed to automate transition between the load duties. Equipment challenges are addressed for severe operation conditions. Performance limits of cogeneration load following are quantified from the plant system simulation to a range of bounding events including a loss of either load and a rapid peaking of electricity. (author)

  13. Cogeneration for Brazil

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Almost all the electric power in Brazil comes from large-scale hydroelectric plants: only about 3% comes from cogeneration. But, now that the barriers which discouraged cogeneration are being removed, there will be more and more investment in cogeneration and distributed generation. The circumstances which have brought about these changes are described. It is expected that cogeneration will be responsible for producing 10-15% of Brazil's electricity by 2010 and the demand for cogeneration will reach 11-17 GW. It is concluded that Brazil represents one of the world's most attractive market for cogeneration and distributed generation

  14. Performance investigation of a cogeneration plant with the efficient and compact heat recovery system

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Young-Deuk; Choon, Ng Kim

    2011-01-01

    This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity, (ii) steam, (iii) cooling

  15. Gaz de France and cogeneration: a story which goes on; Gaz de France et la cogeneration: une histoire qui se poursuit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-15

    This document presents the principle of natural gas cogeneration (gas turbine and gas engine) and gives a general overview of the cogeneration market in France since 1991 and up to 2001 (development factors, results). The perspectives and opportunities of cogeneration are analyzed with respect to the development of new technologies like fuel cells (principle, advantages and future) and to the future energy markets. Follows a compilation and an analysis of French regulation texts about cogeneration systems, their connection to the power grid, and the tariffs of electricity re-purchase by Electricite de France (EdF). (J.S.)

  16. A new dynamism for the cogeneration of 2000 - from the medium to the mini-cogeneration; Une nouvelle dynamique pour la cogeneration en l'an 2000 - de la moyenne vers le mini-cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    In the framework of the Eco-Industries 2000 meeting, the ATEE organized a colloquium on the medium and mini-cogeneration market. This book presents the fourteen papers proposed at this colloquium bringing information on the cogeneration technology for the medium and mini-systems. The state of the art concerning the turbines and examples of dual systems (heating and warm water) are provided. Some economical aspects are also presented with the international and national market, the contracts management with EDF and the investments. (A.L.B.)

  17. Smart intermittency-friendly cogeneration: Techno-economic performance of innovative double storage concept for integrating compression heat pumps in distributed cogeneration

    DEFF Research Database (Denmark)

    Blarke, Morten

    2011-01-01

    cogeneration plants rather than central power plants are giving way for wind power in the electricity mix. Could intermittent renewables be a threat to the system-wide energy, economic and environmental benefits that distributed cogeneration have to offer? This paper investigates how existing cogeneration...... plants may adapt their plant design and operational strategy to improve the co-existence between cogeneration and intermittent renewables. A novel intermittency-friendly and super-efficient concept in cogeneration is presented that involves integrating a high-pressure compression heat pump using heat...

  18. Energy and cost savings results for advanced technology systems from the Cogeneration Technology Alternatives Study /CTAS/

    Science.gov (United States)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    The Cogeneration Technology Alternatives Study (CTAS), a program undertaken to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the 1985-2000 time period, is described, and preliminary results are presented. Two cogeneration options are included in the analysis: a topping application, in which fuel is input to the energy conversion system which generates electricity and waste heat from the conversion system is used to provide heat to the process, and a bottoming application, in which fuel is burned to provide high temperature process heat and waste heat from the process is used as thermal input to the energy conversion system which generates energy. Steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics are examined. Expected plant level energy savings, annual energy cost savings, and other results of the economic analysis are given, and the sensitivity of these results to the assumptions concerning fuel prices, price of purchased electricity and the potential effects of regional energy use characteristics is discussed.

  19. The HTScroll project - Innovative cogeneration system with a high-temperature turbine; Projet HTScroll. Nouveau systeme de cogeneration a turbine spirale haute temperature - Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Kane, M.; Cretegny, D.; Maquet, J. [ENEFTECH Innovation SA, Swiss Federal Institute of Technology EPFL, Laboratoire d' Energetique Industrielle LENI, EPFL Science Park PSE, Lausanne (Switzerland); Favrat, D. [Swiss Federal Institute of Technology EPFL, Lausanne (Switzerland)

    2009-10-15

    This final report for the Swiss Federal Office of Energy (SFOE) proposes an alternative for micro-cogeneration based on a scroll expander to produce electricity from relatively low-temperature heat sources (less than 250 {sup o}C), thus allowing the use of renewable energy resources such as biomass, solar thermal and geothermal energy. The authors note that such a system could produce cost-effective 'green' electricity as well as heat (near 60 {sup o}C) for space heating and domestic hot-water preparation. The design and validation of a new concept for a double-stage scroll expander ('HT-Scroll') operating at high and low pressures and high temperatures is discussed. Design, modelling and construction of a 5 kW unit have been carried out. The organic fluid Rankine Cycle concept is described, the modelling of the turbine, its construction and tests carried out are discussed. Problems encountered and future work are noted.

  20. Cogeneration in Australia. Situation and prospects

    International Nuclear Information System (INIS)

    1997-01-01

    This Research Paper is mainly concerned with the status and prospects for cogeneration in Australia. An introductory chapter reviews the fundamentals of cogeneration, covering both technical and institutional aspects. A range of technologies are employed in cogeneration: these technologies and their efficiency and environmental impact effects are discussed in Chapter 2. The economics of cogeneration are a major factor in the profitability of current and potential plants. Potential factors affecting cogeneration economics are discussed .The status of cogeneration in Australia is reviewed for each State and Territory, and includes a number of case studies of existing plants. Government (federal, state, territory) policies that have a significant impact on the attractiveness of cogeneration are reviewed. Finally, the future prospects for cogeneration in Australia, drawing on the preceding chapters and a review of estimated potentials for cogeneration in Australia are presented

  1. Analysis of cogeneration in the present energy framework

    International Nuclear Information System (INIS)

    Conde Lazaro, E.; Ramos Millan, A.; Reina Peral, P.

    2006-01-01

    In this paper, a general vision of cogeneration penetration in the European Union is shown; after this, a case study is included, evaluating as a function of two factors (electricity and emission allowance prices) the suitability of installing, for an industry with a determined thermal demand, two different options. The first one is a gas turbine cogeneration plant generating steam through a heat recovery steam generator (HRSG). The second one consists of installing a natural gas boiler for steam production covering the electricity demand from the grid. The CO 2 emissions from both options are compared regarding different kinds of generation mixes from the electricity grid in the case of using the industrial boiler; taking into account the advantages of using biomass in relation to emissions, a last comparison has been carried out considering a biomass boiler instead of the natural gas boiler. (author)

  2. Modelling the dynamics of the cogeneration power plant gas-air duct

    Directory of Open Access Journals (Sweden)

    Аnatoliy N. Bundyuk

    2014-12-01

    Full Text Available Introducing into wide practice the cogeneration power plants (or CHP is one of promising directions of the Ukrainian small-scale power engineering development. Thermal and electric energy generation using the same fuel kind can increase the overall plant efficiency. That makes it appropriate to use CHPs at compact residential areas, isolated industrial enterprises constituting one complex with staff housing area, at sports complexes, etc. The gas-air duct of the cogeneration power plant has been considered as an object of the diesel-generator shaft velocity control. The developed GAD mathematical model, served to analyze the CHP dynamic characteristics as acceleration curves obtained under different external disturbances in the MathWorks MATLAB environment. According to the electric power generation technology requirements a convenient transition process type has been selected, with subsequent identification of the diesel-generator shaft rotation speed control law.

  3. Modern fluidized bed combustion in Ostrava-Karvina cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Mazac, V. [Energoprojekt Praha, Ostrava (Czechoslovakia); Novacek, A. [Moravskoslezske teplamy, Ostrava (Czechoslovakia); Volny, J. [Templamy Karvina (Czechoslovakia)

    1995-12-01

    The contemporary situation of our environment claims the sensitive approach to solving effective conversion of energy. Limited supplies of noble fuels and their prices evoke the need to use new combustion technologies of accessible fuels in given region without negative ecological influences. Energoproject participates in the preparation of the two projects in Ostrava-Karvin{acute a} black coal field in Czech Republic. The most effective usage of fuel energy is the combined of electricity and heat. If this physical principle is supported by a pressurized fluidized bed combustion (PFBC) one obtains a high electricity/heat ratio integrated steam-gas cycle on the basis of solid fuel. Cogeneration plant Toebovice is the dominant source (600 MW{sub th}) of Ostrava district heating system (1100 MW{sub th}). The high utilization of the installed output and utilization of the clean, compact and efficient of the PFBC technology is the principal but not the single reason for the selection of the Toebovice power plant as the first cogeneration plant for installation of the PFBC in Czech Republic. The boiler will burn black coal from the neighboring coal basin.

  4. Firing with wood chips in heating and cogeneration plants

    International Nuclear Information System (INIS)

    Kofman, P.D.

    1992-01-01

    The document was produced for use as detailed teaching material aimed at spreading information on the use of wood chips as fuel for heating and cogeneration plants. It includes information and articles on wood fuels generally, combustion values, chopping machines, suppliers, occupational health hazards connected with the handling of wood chips, measuring amounts, the selection of types, prices, ash, environmental aspects and information on the establishment of a wood-chip fired district heating plant. (AB)

  5. Elimination of feedwater heaters in steam turbines: Prospects for substantial energy savings

    International Nuclear Information System (INIS)

    Lorenzoni, G.

    1992-01-01

    This paper re-proposes the theory that thermal regeneration (RT) in steam turbine plants decreases thermodynamic efficiency. This theory is supported by the criterion of maximization of variation of exergy in the steam generator (CMVEG) and by an mathematical argumentation based on the first law of thermodynamics. Consequences of great importance are deduced: plant operating costs reductions and a new possibility for cogeneration, that indicates exceptional advantages for the whole power industry, since steam turbine plants are responsible for the greater part of global electric power production

  6. Experience with managing, operating and maintaining gas turbine powerplants

    International Nuclear Information System (INIS)

    Wadman, B.

    1994-01-01

    Stewart ampersand Stevenson, a major supplier of gas turbine powered cogeneration systems to worldwide markets, established plant management, operations and maintenance capabilities in 1985 in order to provide complete service capability to the customer. As of the fall of 1993, twenty-two individual cogeneration facilities are now being operated and maintained by this company with a total capacity of 1100+ MW. More than 300 plant management and operating personnel are employed in this operation. To date, activities have been concentrated in North and South America. Negotiations are in process in a number of other areas including the Pacific Rim, China, and several Middle East countries. 7 figs

  7. Comparative economic evaluation of environmental impact of different cogeneration technologies

    International Nuclear Information System (INIS)

    Patrascu, Roxana; Athanasovici, Victor; Raducanu, Cristian; Minciuc, Eduard; Bitir-Istrate, Ioan

    2004-01-01

    Cogeneration is one of the most powerful technologies for reduction of environmental pollution along with renewable energies. At the Kyoto Conference cogeneration has been identified as being the most important measure for reducing emissions of greenhouse effect gases. It has also been mentioned that cogeneration has a potential of reducing pollution with about 180 million tones per year. In order to promote new cogeneration technologies and evaluate the existing ones it is necessary to know and to be able to quantify in economical terms the environmental issues. When comparing different cogeneration technologies: steam turbine (TA), gas turbine (TG), internal combustion engine (MT), in order to choose the best one, the final decision implies an economic factor, which is even more important if it includes the environmental issues. The environmental impact of different cogeneration technologies is quantified using different criteria: depletion of non-renewable natural resources, eutrofisation, greenhouse effect, acidification etc. Environmental analysis using these criteria can be made using the 'impact with impact' methodology or the global one. The results of such an analysis cannot be quantified economically directly. Therefore there is a need of internalisation of ecological effects within the costs of produced energy: electricity and heat. In the energy production sector the externalizations represent the indirect effects on the environment. They can be materialised within different types of environmental impact: - Different buildings of mines, power plants etc; - Fuel losses during transportation and processing; - Effect of emissions in the air, water and soil. Introduction of the environmental impact costs in the energy price is called internalisation and it can be made using the direct and indirect methods. The paper discusses aspects regarding the emissions of cogeneration systems, the eco-taxes - method of 'internalisation' of environmental

  8. Concept of turbines for ultrasupercritical, supercritical, and subcritical steam conditions

    Science.gov (United States)

    Mikhailov, V. E.; Khomenok, L. A.; Pichugin, I. I.; Kovalev, I. A.; Bozhko, V. V.; Vladimirskii, O. A.; Zaitsev, I. V.; Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G.

    2017-11-01

    The article describes the design features of condensing turbines for ultrasupercritical initial steam conditions (USSC) and large-capacity cogeneration turbines for super- and subcritical steam conditions having increased steam extractions for district heating purposes. For improving the efficiency and reliability indicators of USSC turbines, it is proposed to use forced cooling of the head high-temperature thermally stressed parts of the high- and intermediate-pressure rotors, reaction-type blades of the high-pressure cylinder (HPC) and at least the first stages of the intermediate-pressure cylinder (IPC), the double-wall HPC casing with narrow flanges of its horizontal joints, a rigid HPC rotor, an extended system of regenerative steam extractions without using extractions from the HPC flow path, and the low-pressure cylinder's inner casing moving in accordance with the IPC thermal expansions. For cogeneration turbines, it is proposed to shift the upper district heating extraction (or its significant part) to the feedwater pump turbine, which will make it possible to improve the turbine plant efficiency and arrange both district heating extractions in the IPC. In addition, in the case of using a disengaging coupling or precision conical bolts in the coupling, this solution will make it possible to disconnect the LPC in shifting the turbine to operate in the cogeneration mode. The article points out the need to intensify turbine development efforts with the use of modern methods for improving their efficiency and reliability involving, in particular, the use of relatively short 3D blades, last stages fitted with longer rotor blades, evaporation techniques for removing moisture in the last-stage diaphragm, and LPC rotor blades with radial grooves on their leading edges.

  9. Tax issues in structuring effective cogeneration vehicles

    International Nuclear Information System (INIS)

    Yukich, J.M.

    1999-01-01

    A general overview of the Canadian income tax laws under which cogeneration plants will operate was presented. Highlights of some of the more important tax issues associated with cogeneration operations were included. This includes some of the specific rules dealing with the availability of the Manufacturing and Processing tax, credit, capital cost allowance, the Specified Energy Property rules and the tax treatment of Canadian Renewable and Conservation Expenses including the ability of a company to transfer such expenses to shareholders. Since it is expected that future cogeneration plants will have more than one owner, this paper reviewed the various legal structures through which multiple owners can own and run their cogeneration operations. Tax considerations related to the scale of a cogeneration plant were also reviewed

  10. Thermodynamic performance evaluation of combustion gas turbine cogeneration system with reheat

    International Nuclear Information System (INIS)

    Khaliq, A.; Kaushik, S.C.

    2004-01-01

    This communication presents thermodynamic methodology for the performance evaluation of combustion gas turbine cogeneration system with reheat. The energetic and exergetic efficiencies have been defined. The effects of process steam pressure and pinch point temperature used in the design of heat recovery steam generator, and reheat on energetic and exergetic efficiencies have been investigated. From the results obtained in graphs it is observed that the power to heat ratio increases with an increase in pinch point, but the first-law efficiency and second-law efficiency decreases with an increase in pinch point. The power to heat ratio and second-law efficiency increases significantly with increase in process steam pressure, but the first-law efficiency decreases with the same. Results also show that inclusion of reheat, provide significant improvement in electrical power output, process heat production, fuel-utilization (energetic) efficiency and second-law (exergetic) efficiency. This methodology may be quite useful in the selection and comparison of combined energy production systems from thermodynamic performance point of view

  11. Simulation of gas turbines operating in off-design condition

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Arnaldo [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mail: walter@fem.unicamp.br

    2000-07-01

    In many countries thermal power plants based on gas turbines have been the main option for new investment into the electric system due to their relatively high efficiency and low capital cost. Cogeneration systems based on gas turbines have also been an important option for the electric industry. Feasibility studies of power plants based on gas turbine should consider the effect of atmospheric conditions and part-load operation on the machine performance. Doing this, an off-design procedure is required. A G T off-design simulation procedure is described in this paper. Ruston R M was used to validate the simulation procedure that, general sense, presents deviations lower than 2.5% in comparison to manufacturer's data. (author)

  12. Public health impact assessment of a proposed cogeneration plant in the Quebec city metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Lajoie, P.; Bolduc, D.; Gauvin, D.; Guerrier, P.; Gauthier, R. [Quebec Public Health Center, Ste-Foy (Canada); Laflamme, P. [Laval Univ. (Canada). Dept. of Preventive Medicine

    1995-12-31

    In 1994, public hearings were held in Quebec city concerning a 120 megawatt (MW) gas cogeneration project that was to be coupled with an already existing pulp and paper mill in the downtown area. Cogeneration plants are often described as highly beneficial from the point of view of local environment. It is well known that the burning of natural gas emits far less sulfur dioxide (SO{sub 2}) and particulate matters (PM) than the combustion of oil or coal. The proposed plant would use high pressure vapour from a nearby incinerator plant and natural gas to produce low pressure vapor for the paper mill industry as well as electricity. The cogeneration plant would allow the paper mill to stop burning heavy oil. By using natural gas instead of heavy oil, the new cogeneration-paper mill complex (CPC) is expected to reinforce the recent trend and willingness towards improving downtown air quality. On the other hand, the CPC would emit more CO{sub 2}, due to the production of additional electricity. According to the Rio de Janeiro Agreement ratified in 1988, Canada is committed to stabilize its greenhouse gas emissions by the year 2000. Nevertheless, the cogeneration file is a new option considered by the Quebec Provincial Governement in its last energy triennal plan. However, it must be specified that the Province of Quebec contributes to less than 15 % of the total Canadian CO{sub 2} production although it represents more than 25 % of its population. Furthermore the maximum production of electricity by this file has been set to 250 MW. It is a very small fraction of the total production of electricity in Quebec, which is 200 TW

  13. Public health impact assessment of a proposed cogeneration plant in the Quebec city metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Lajoie, P; Bolduc, D; Gauvin, D; Guerrier, P; Gauthier, R [Quebec Public Health Center, Ste-Foy (Canada); Laflamme, P [Laval Univ. (Canada). Dept. of Preventive Medicine

    1996-12-31

    In 1994, public hearings were held in Quebec city concerning a 120 megawatt (MW) gas cogeneration project that was to be coupled with an already existing pulp and paper mill in the downtown area. Cogeneration plants are often described as highly beneficial from the point of view of local environment. It is well known that the burning of natural gas emits far less sulfur dioxide (SO{sub 2}) and particulate matters (PM) than the combustion of oil or coal. The proposed plant would use high pressure vapour from a nearby incinerator plant and natural gas to produce low pressure vapor for the paper mill industry as well as electricity. The cogeneration plant would allow the paper mill to stop burning heavy oil. By using natural gas instead of heavy oil, the new cogeneration-paper mill complex (CPC) is expected to reinforce the recent trend and willingness towards improving downtown air quality. On the other hand, the CPC would emit more CO{sub 2}, due to the production of additional electricity. According to the Rio de Janeiro Agreement ratified in 1988, Canada is committed to stabilize its greenhouse gas emissions by the year 2000. Nevertheless, the cogeneration file is a new option considered by the Quebec Provincial Governement in its last energy triennal plan. However, it must be specified that the Province of Quebec contributes to less than 15 % of the total Canadian CO{sub 2} production although it represents more than 25 % of its population. Furthermore the maximum production of electricity by this file has been set to 250 MW. It is a very small fraction of the total production of electricity in Quebec, which is 200 TW

  14. Cogeneration for small SAGD projects

    Energy Technology Data Exchange (ETDEWEB)

    Albion, Stuart [AMEC BDR Limited (United Kingdom)

    2011-07-01

    As many SAGD projects are being developed in remote locations, the supply of a steady source of power to them becomes an important question. Connecting these remote facilities to a grid can often be difficult and costly. This presentation, by AMEC BDR Limited, promotes the use of cogeneration in small SAGD projects. Cogeneration is the generation of two forms of energy from one fuel source. In this particular case, the energy forms would be electricity and heat. In many SAGD projects, a gas turbine system is used to generate the electricity, while a heat recovery system is utilized to generate steam. The use of cogeneration systems in SAGD projects, as opposed to using separate heat and electricity systems, has the potential to significantly reduce the amount of energy lost, the amount of emissions and power costs, in addition to ensuring that there is a reliable supply of steam and electricity.

  15. Feasibility of a medium-size central cogenerated energy facility, energy management memorandum

    Science.gov (United States)

    Porter, R. W.

    1982-09-01

    The thermal-economic feasibility was studied of a medium-size central cogenerated energy facility designed to serve five varied industries. Generation options included one dual-fuel diesel and one gas turbine, both with waste heat boilers, and five fired boilers. Fuels included natural gas, and for the fired-boiler cases, also low-sulphur coal and municipal refuse. The fired-boiler cogeneration systems employed back-pressure steam turbines. For coal and refuse, the option of steam only without cogeneration was also assessed. The refuse-fired cases utilized modular incinerators. The options provided for a wide range of steam and electrical capacities. Deficient steam was assumed generated independently in existing equipment. Excess electrical power over that which could be displaced was assumed sold to Commonwealth Edison Company under PURPA (Public Utility Regulator Policies Act). The facility was assumed operated by a mutually owned corporation formed by the cogenerated power users. The economic analysis was predicted on currently applicable energy-investment tax credits and accelerated depreciation for a January 1985 startup date. Based on 100% equity financing, the results indicated that the best alternative was the modular-incinerator cogeneration system.

  16. Extra cogeneration step seen boosting output 20%

    Energy Technology Data Exchange (ETDEWEB)

    Burton, P.

    1984-10-08

    Cogenerators can now buy a prototype 6.5 MW, pre-packaged cogeneration system that incorporates an added step to its cycle to reduce fuel use by 21%. Larger, custom-designed systems will be on the market in 1985. Fayette Manufacturing Co. will offer the Kalina Cycle system at a discount price of $8.2 million (1200/kW) until the systems are competitive with conventional units. The system varies from conventional cogeneration systems by adding a distillation step, which permits the use of two fluids for the turbine steam and operates at a higher thermodynamic efficiency, with boiling occuring at high temperature and low pressure. Although theoretically correct, DOE will withhold judgment on the system's efficiency until the first installation is operating.

  17. Natural gas cogeneration plants: considerations on energy efficiency; Valutazioni energetiche di impianti cogenerativi alimentati a metano

    Energy Technology Data Exchange (ETDEWEB)

    Arcuri, P.; Florio, G.; Fragiacomo, P. [Calabria Univ., Arcavacata di Rende (Italy). Dip. di Meccanica

    1996-05-01

    Cogeneration is one of the most interesting solution to be adopted in order to achieve the goals of the Domestic Energy Plan. Besides the high primary energy savings, remarkable environmental benefits can be obtained. In the article, an energy analysis is carried out on the major cogeneration technologies depending on the parameters which define a generic user typology. The energy indexes of a cogeneration plant are the shown in charts from which useful information on the achievable performances can be obtained.

  18. Bio based cogeneration plants in Sweden; Biobaserte kraftvarmeverk i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Cogeneration plants using bio fuel need a certificate in the Swedish electricity certificate system. Since the initiation of the system in 2003 the plants have taken advantage of the possibility of switching from fossil, to bio fuel. However, there is a potential for additional bio power production, provided that there is a market for the produced heating. The certificate system may contribute to an acceleration of investments in new capacities, and the facilitation of increased bio power production.

  19. Inauguration of Cogen Plant ensures self-sustainability for Toronto Airport

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    Details of a new cogeneration plant for Pearson International Airport were presented. The plant was installed to ensure that the airport will be self-sufficient with its own uninterrupted power supply, and will also provide steam for the airport's heating and cooling. The plant generated its first power onto the grid in August 2005. The 18,000 sq. foot cogeneration facility cost an estimated $140 million to build and is capable of supplying the airport with 117 MW of power. Power for the plant comes from 2 natural gas turbines, with an additional 33 MW generated by exhaust from the gas turbines passing through once-through steam generators producing steam for a third steam-driven generator. The remaining excess heat from the plant is used to heat and cool the airport buildings through a central utilities distribution system. Natural gas fueled cogeneration plants are considered to be clean energy, and it is anticipated that the plant will lessen the environmental impacts of the airport. Currently, the airport's peak electrical demand is approximately 38 MW of electricity, which is expected to peak at 65 to 70 MW in 2015. The surplus electricity produced at the cogeneration plant will be sold back into Ontario's power grid via the Clean Energy Supply contract. It was concluded that in addition to its environmental benefits, the plant will help to enhance electricity supply in the Greater Toronto Area (GTA)

  20. Homogeneous groups of plants, development scenarios, and basic configurations on the cogeneration systems optimization from the alcohol sector

    International Nuclear Information System (INIS)

    Silva Walter, A.C. da; Bajay, S.V.; Carrillo, J.L.L.

    1990-01-01

    The evaluation of introducing or diffusing new technologies at a macro economic level using micro economic information can be carried out through the careful selection of a small number of homogeneous groups of plants from the point of view of the main technical parameters being considered. In this paper this concept is applied to the study of cogeneration in sugar and alcohol producing plants. The statistical techniques of Cluster Analysis, regressions and mean value testing are used. Basic cogeneration plant designs are proposed for alternatives development scenarios for this industrial branch. These scenarios are based upon differing assumptions about the expansion of alcohol market, use of surplus sugar cane bagasse as saleable commodity, as a fuel or raw material, and price expectations for the sale of surplus power from the cogeneration plants to the local grid. (author)

  1. Studies on Steam Absorption Chillers Performance at a Cogeneration Plant

    Directory of Open Access Journals (Sweden)

    Abd Majid Mohd Amin

    2014-07-01

    Full Text Available Absorption chillers at cogeneration plants generate chilled water using steam supplied by heat recovery steam generators. The chillers can be of either single-effect or double effect configuration and the coefficient of performance (COP depends on the selection made. The COP varies from 0.7 to 1.2 depending on the types of chillers. Single effect chillers normally have COP in the range of 0.68 to 0.79. Double effect chillers COP are higher and can reach 1.2. However due to factors such as inappropriate operations and maintenance practices, COP could drop over a period of time. In this work the performances of double effect steam absorption chillers at a cogeneration plant were studied. The study revealed that during the period of eleven years of operation the COP of the chillers deteriorated from 1.25 to 0.6. Regression models on the operation data indicated that the state of deterioration was projected to persist. Hence, it would be recommended that the chillers be considered for replacement since they had already undergone a series of costly repairs.

  2. Tetra-combined cogeneration system. Exergy and thermoeconomic evaluation; Sistema tetra combinado de cogeracao. Avaliacao exergetica e termoeconomica

    Energy Technology Data Exchange (ETDEWEB)

    Arriola, Domingo Wilson Garagatti [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: wgarriol@usp.br; Oliveira Junior, Silvio de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)]. E-mail: olivsilj@ipt.br

    2000-07-01

    The description and the exergy and thermo economic evaluation of a new cogeneration system, called tetra-combined cogeneration system, that generates electricity and chilled water (for air conditioning purposes) and eventually steam is presented. This system is composed of a gas turbine, a heat recovery steam generator, a condensation/extraction steam turbine and a hybrid absorption/steam ejection chiller.The exergy and thermo economic performance (exergy based costs of electricity, steam and chilled water production) of this system is compared with the performances of conventional cogeneration systems, pointing out the advantages and disadvantages of this new system. (author)

  3. Co-generation at CERN Beneficial or not?

    CERN Document Server

    Wilhelmsson, M

    1998-01-01

    A co-generation plant for the combined production of electricity and heat has recently been installed on the CERN Meyrin site. This plant consists of: a gas turbine generator set (GT-set), a heat recovery boiler for the connection to the CERN primary heating network, as well as various components for the integration on site. A feasibility study was carried out and based on the argument that the combined use of natural gas -available anyhow for heating purposes- gives an attractively high total efficiency, which will, in a period of time, pay off the investment. This report will explain and update the calculation model, thereby confirming the benefits of the project. The results from the commissioning tests will be taken into account, as well as the benefits to be realized under the condition that the plant can operate undisturbed by technical setbacks which, incidentally, has not been entirely avoided during the first year of test-run and operation.

  4. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Demick, L.E.

    2011-01-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  5. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  6. Evolution of near term PBMR steam and cogeneration applications - HTR2008-58219

    International Nuclear Information System (INIS)

    Kuhr, R. W.; Hannink, R.; Paul, K.; Kriel, W.; Greyvenstein, R.; Young, R.

    2008-01-01

    US and international applications for large onsite cogeneration (steam and power) systems are emerging as a near term market for the PBMR. The South African PBMR demonstration project applies a high temperature (900 deg. C) Brayton cycle for high efficiency power generation. In addition, a number of new applications are being investigated using an intermediate temperature range (700-750 deg. C) with a simplified heat supply system design. This intermediate helium delivery temperature supports conventional steam Rankine cycle designs at higher efficiencies than obtained from water type reactor systems. These designs can be adapted for cogeneration of steam, similar to the design of gas turbine cogeneration plants that supply steam and power at many industrial sites. This temperature range allows use of conventional or readily qualifiable materials and equipment, avoiding some cost premiums associated with more difficult operating conditions. As gas prices and CO 2 values increase, the potential value of a small nuclear reactor with advanced safety characteristics increases dramatically. Because of its smaller scale, the 400-500 MWt PBMR offers the economic advantages of onsite thermal integration (steam, hot water and desalination co-production) and of providing onsite power at cost versus at retail industrial rates avoiding transmission and distribution costs. Advanced safety characteristics of the PBMR support the location of plants adjacent to steam users, district energy systems, desalination plants, and other large commercial and industrial facilities. Additional benefits include price stability, long term security of energy supply and substantial CO 2 reductions. Target markets include existing sites using gas fired boilers and cogeneration units, new projects such as refinery and petrochemical expansions, and coal-to-liquids projects where steam and power represent major burdens on fuel use and CO 2 emissions. Lead times associated with the nuclear licensing

  7. Stepping on the gas for district heating in Germany. Gas and steam turbines for cogeneration; Gas geben fuer Fernwaerme in Deutschland. Gas- und Dampfturbinen fuer die KWK

    Energy Technology Data Exchange (ETDEWEB)

    Bohtz, Christian [Alstom Power, Baden (Switzerland). Marketing and Product Management Gas Business

    2011-07-15

    Measured by its intensive efforts to lower CO{sub 2} emissions Germany is one of the leading countries in the EU. One contribution to this end is to be had from cogeneration. As a provider of cogeneration plants Alstom is working to improve the fuel efficiency as well as the overall efficiency and flexibility of its products. The author explains the technology of gas-fired cogeneration plants and gives three examples of their use.

  8. Evaluation of different hedging strategies for commodity price risks of industrial cogeneration plants

    International Nuclear Information System (INIS)

    Palzer, Andreas; Westner, Günther; Madlener, Reinhard

    2013-01-01

    In this paper, we design and evaluate eight different strategies for hedging commodity price risks of industrial cogeneration plants. Price developments are parameterized based on EEX data from 2008 to 2011. The probability distributions derived are used to determine the value-at-risk (VaR) of the individual strategies, which are in a final step combined in a mean-variance portfolio analysis for determining the most efficient hedging strategy. We find that the strategy adopted can have a marked influence on the remaining price risk. Quarter futures are found to be particularly well suited for reducing market price risk. In contrast, spot trading of CO 2 certificates is found to be preferable compared to forward market trading. Finally, portfolio optimization shows that a mix of various hedging strategies can further improve the profitability of a heat-based cogeneration plant. - Highlights: • Evaluation of commodity price risk hedging strategies for industrial cogeneration. • Value-at-risk analysis of eight different hedging strategies. • Mean-variance portfolio analysis for determining the optimal hedging strategy mix. • A mix of hedging strategies further improves profitability of heat-based CHP

  9. Steam turbines for nuclear power plants

    International Nuclear Information System (INIS)

    Kosyak, Yu.F.

    1978-01-01

    Considered are the peculiarities of the design and operation of steam turbines, condensers and supplementary equipment of steam turbines for nuclear power plants; described are the processes of steam flow in humid-steam turbines, calculation and selection principles of main parameters of heat lines. Designs of the turbines installed at the Charkov turbine plant are described in detail as well as of those developed by leading foreign turbobuilding firms

  10. Cogeneration Power Plants: a Proposed Methodology for Unitary Production Cost

    International Nuclear Information System (INIS)

    Metalli, E.

    2009-01-01

    A new methodology to evaluate unitary energetic production costs in the cogeneration power plants is proposed. This methodology exploits the energy conversion factors fixed by Italian Regulatory Authority for Electricity and Gas. So it allows to settle such unitary costs univocally for a given plant, without assigning them a priori subjective values when there are two or more energy productions at the same time. Moreover the proposed methodology always ensures positive values for these costs, complying with the total generation cost balance equation. [it

  11. Tetra-combined cogeneration system. Exergy and thermo economic evaluation; Sistema tetra combinado de cogeracao. Avaliacao exergetica e termoeconomica

    Energy Technology Data Exchange (ETDEWEB)

    Arriola, Domingo Wilson Garagatti [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: wgarriol@usp.br; Oliveira Junior, Silvio de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)]. E-mail: olivsilj@ipt.br

    2000-07-01

    This paper presents the description and the exergy and thermo economic evaluation of a new cogeneration system, called tetra-combined cogeneration system, that generates electricity and chilled water (for air conditioning purposes) and eventually steam. This system is composed of a gas turbine, a heat recovery steam generator, a condensation/extraction steam turbine and a hybrid absorption/steam ejection chiller. The exergy and thermo economic performance (exergy based costs of electricity, steam and chilled water production) of this system is compared with the performances of conventional cogeneration systems, pointing out the advantages and disadvantages of this new system. (author)

  12. Cogeneration from poultry industry wastes: Indirectly fired gas turbine application

    International Nuclear Information System (INIS)

    Bianchi, M.; Cherubini, F.; De Pascale, A.; Peretto, A.; Elmegaard, B.

    2006-01-01

    The availability of wet biomass as waste from a lot of industrial processes, from agriculture and farms and the need to meet the environmental standards force to investigate all options in order to dispose this waste. The possible treatments usually strongly depend on biomass characteristics, namely water content, density, organic content, heating value, etc. In particular, some of these wastes can be burnt in special plants, using them as energy supply for different processes. The study carried out with this paper is concerned with the promising utilization of the organic wastes from an existing poultry industry as fuel. Different plant configurations have been considered in order to make use of the oil and of the meat and bone meal, which are the by-products of the chicken cooking process. In particular, the process plant can be integrated with an energy supply plant, which can consist of an indirectly fired gas turbine. Moreover, a steam turbine plant or a simplified system for the supply of the only technological steam are investigated and compared. Thermodynamic and economic analysis have been carried out for the examined configurations in order to outline the basic differences in terms of energy savings/production and of return of the investments

  13. A study on utilization improvement of cogeneration potential in a complex industrial steam and power plant

    International Nuclear Information System (INIS)

    Mierka, O.; Variny, M.

    2012-01-01

    Efficient cogeneration is widely acknowledged as one of measures reducing primary energy use and emissions of greenhouse gases and other pollutants. This contribution bears on analyses of complex industrial power plants, incorporating the concept of exergetic and exergoecomic balances-a concept that has been rarely utilized in Slovakia up to day. Emphasis is laid on synergic use of marginal and exergoecomic analysis, thus assessing the economics of various complex cogeneration units' operational modes. The whole study, together with resulting recommendations for cogeneration efficiency improvement of the given unit is an excerpt of corresponding author's doctoral thesis. (Authors)

  14. A study on utilization improvement of cogeneration potential in a complex industrial steam and power plant

    International Nuclear Information System (INIS)

    Mierka, O.; Variny, M.

    2012-01-01

    Efficient cogeneration is widely acknowledged as one of measures reducing primary energy use and emissions of greenhouse gases and other pollutants. This contribution bears on analyses of complex industrial power plants, incorporating the concept of exergetic and exergoeconomic balances-a concept that has been rarely utilized in Slovakia up to day. Emphasis is laid on synergic use of marginal and exergoeconomic analysis, thus assessing the economics of various complex cogeneration units' operational modes. The whole study, together with resulting recommendations for cogeneration efficiency improvement of the given unit is an excerpt of corresponding author's doctoral thesis. (Authors)

  15. Feasibility study on revamping work for a cogeneration power plant at Cherkassy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective of saving energy and reducing greenhouse gas emission, investigations and discussions were given on modification of Cherkassyoblenegro Combined Heat and Power Station in the Republic of Ukraine. The project calls for shutdown of the first block and the heat supplying auxiliary boilers being the oldest facilities in the existing station, and utilization of the second block for emergency use. The new facilities will consist of natural gas burning gas turbine combined cycle cogeneration facilities of 200-MW class including two gas turbines, one steam turbine, two each of waste heat recovery boilers, ducts and stacks. As a result of the discussions, if the project execution period is set for 20 years, the energy saving effect would be 144,215 tons of crude oil equivalent annually, and the greenhouse gas emission reducing effect would be 431,421 t-CO2 annually. The total fund amount required for the project is estimated to be 185,700,000 dollars. With regard to the profitability, the internal profit rate for the total fund after tax would be 8.3%, and the principal and interest repayment multiplying factor for single year would be greater than 1.9, whereas the profitability can be anticipated if the financing is available under generous conditions. (NEDO)

  16. Forty years of experience on closed-cycle gas turbines

    International Nuclear Information System (INIS)

    Keller, C.

    1978-01-01

    Forty years of experience on closed-cycle gas turbines (CCGT) is emphasized to substantiate the claim that this prime-mover technology is well established. European fossil-fired plants with air as the working fluid have been individually operated over 100,000 hours, have demonstrated very high availability and reliability, and have been economically successful. Following the initial success of the small air closed cycle gas turbine plants, the next step was the exploitation of helium as the working fluid for plants above 50 MWe. The first fossil fired combined power and heat plant at Oberhausen, using a helium turbine, plays an important role for future nuclear systems and this is briefly discussed. The combining of an HTGR and an advanced proven power conversion system (CCGT) represents the most interesting and challenging project. The key to acceptance of the CCGT in the near term is the introduction of a small nuclear cogeneration plant (100 to 300 MWe) that utilizes the waste heat, demonstrating a very high fuel utilization efficiency: aspects of such a plant are outlined. (author)

  17. Alternatives to electrical cogeneration: The direct application of steam engines

    International Nuclear Information System (INIS)

    Phillips, W.C.

    1993-01-01

    Although small to medium sized industrial facilities are aware of electrical cogeneration, often they are too small for it to be economically justifiable. The direct application of steam turbine power to equipment formerly powered by electric motors, can allow them to use steam capacity to reduce electrical demand and consumption, bypassing cogeneration. Cogeneration converts the heat energy of steam into circular mechanical motion and then converts the circular mechanical motion into electricity. Each conversion entails a loss of energy due to friction and other conversion losses. A substantial amount of the generated electricity is then converted back into circular motion with electric motors, again incurring energy losses. Directly applying the mechanical motion of turbines eliminates both the motion-to-electricity (generator) and the electricity-to-motion (motor) conversion losses. Excess steam capacity during the summer is not unusual for facilities that use steam to provide winter heating. Similarly, most of these facilities experience a large electrical demand peak during the cooling season due to the electricity needed to operate centrifugal chillers. Steam capacity via a turbine to power the chillers can allow the boilers to operate at a higher loading while reducing electrical consumption and demand precisely those periods when demand reduction is most needed. In facilities where the steam generating capacity is sufficient, air compressors provide an appropriate year-round application for turbine power. This paper is the result of an on-going project by the Energy Division, State of North Carolina, Department of Economic and Community Development, in conjunction with the University of North Carolina at Charlotte. The objective of this project is to educate the operating engineers and managers of small to medium sized manufacturing facilities on the technical application and economic justification of steam turbine power

  18. Demystifying the use of cogeneration in mine cooling applications

    Energy Technology Data Exchange (ETDEWEB)

    Del Castillo, D.O. [Hatch, Johannesburg (South Africa)

    2010-07-01

    A study was conducted in 2009 to determine the feasibility of having cogeneration in South African mines using diesel generators for large cooling installations. The study included a cost comparison between a conventional mechanical vapour-compression system and the proposed cogeneration system under different fuel prices and electric power cost scenarios. Both capital and operating costs were considered and the use of gas turbines was also examined. The cogeneration system consisted of four 3.75 MW diesel generators. The exhaust gases and the water from the jacket-coolers were used to drive 4 single-effect LiBr-water absorption refrigeration machines having a cooling capacity of 3.75 MW(R). The study showed that in most cases, cogeneration would not be economically feasible if specifically installed to produce cooling. Cogeneration would only be economically viable if both the power costs were to increase significantly and fuel prices were to drop considerably. The environmental issues associated with the exhaust gases were not addressed in this study. 3 refs., 4 tabs., 4 figs.

  19. Cogeneration in the former Soviet Union

    International Nuclear Information System (INIS)

    Horak, W.C.

    1997-01-01

    The former Soviet Union made a major commitment to Cogeneration. The scale and nature of this commitment created a system conceptually different from Cogeneration in the west. The differences were both in scale, in political commitment, and in socio economic impact. This paper addresses some of the largest scale Cogeneration programs, the technology, and the residual impact of these programs. The integration of the Cogeneration and nuclear programs is a key focus of the paper. Soviet designed nuclear power plants were designed to produce both electricity and heat for residential and industrial uses. Energy systems used to implement this design approach are discussed. The significant dependence on these units for heat created an urgent need for continued operation during the winter. Electricity and heat are also produced in nuclear weapons production facilities, as well as power plants. The Soviets also had designed, and initiated construction of a number of nuclear power plants open-quotes ATETsclose quotes optimized for production of heat as well as electricity. These were canceled

  20. Production of Bioethanol from Agricultural Wastes Using Residual Thermal Energy of a Cogeneration Plant in the Distillation Phase

    Directory of Open Access Journals (Sweden)

    Raffaela Cutzu

    2017-05-01

    Full Text Available Alcoholic fermentations were performed, adapting the technology to exploit the residual thermal energy (hot water at 83–85 °C of a cogeneration plant and to valorize agricultural wastes. Substrates were apple, kiwifruit, and peaches wastes; and corn threshing residue (CTR. Saccharomyces bayanus was chosen as starter yeast. The fruits, fresh or blanched, were mashed; CTR was gelatinized and liquefied by adding Liquozyme® SC DS (Novozymes, Dittingen, Switzerland; saccharification simultaneous to fermentation was carried out using the enzyme Spirizyme® Ultra (Novozymes, Dittingen, Switzerland. Lab-scale static fermentations were carried out at 28 °C and 35 °C, using raw fruits, blanched fruits and CTR, monitoring the ethanol production. The highest ethanol production was reached with CTR (10.22% (v/v and among fruits with apple (8.71% (v/v. Distillations at low temperatures and under vacuum, to exploit warm water from a cogeneration plant, were tested. Vacuum simple batch distillation by rotary evaporation at lab scale at 80 °C (heating bath and 200 mbar or 400 mbar allowed to recover 93.35% (v/v and 89.59% (v/v of ethanol, respectively. These results support a fermentation process coupled to a cogeneration plant, fed with apple wastes and with CTR when apple wastes are not available, where hot water from cogeneration plant is used in blanching and distillation phases. The scale up in a pilot plant was also carried out.

  1. The performance of a temperature cascaded cogeneration system producing steam, cooling and dehumidification

    KAUST Repository

    Myat, Aung

    2013-02-01

    This paper discusses the performance of a temperature-cascaded cogeneration plant (TCCP), equipped with an efficient waste heat recovery system. The TCCP, also called a cogeneration system, produces four types of useful energy-namely, (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification-by utilizing single fuel source. The TCCP comprises a Capstone C-30 micro-turbine that generates nominal capacity of 26 kW of electricity, a compact and efficient waste heat recovery system and a host of waste-heat-activated devices, namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The performance analysis was conducted under different operation conditions such as different exhaust gas temperatures. It was observed that energy utilization factor could be as high as 70% while fuel energy saving ratio was found to be 28%. © 2013 Desalination Publications.

  2. Equipment sizing in a coal-fired municipal heating plant modernisation project with support for renewable energy and cogeneration technologies

    International Nuclear Information System (INIS)

    Kalina, Jacek

    2014-01-01

    Highlights: • Sizing of biomass fired cogeneration block is performed for existing heating plant. • Mathematical model for cogeneration block optimisation is presented. • Impact of financial support mechanisms on optimal solution is discussed. • Influence of short term variations of prices and support intensity is presented. • Different design parameters are suggested by economic and technical quality indices. - Abstract: The paper presents results of design parameters optimisation of a wood chips fired steam boiler based heat and power block in a sample project of coal fired municipal heating plant modernisation. The project assumes the conversion of the heating plant into a dual fuel heat and power plant. The problem that is presented is selection of cogeneration block structure and thermodynamic parameters taking into account financial support mechanisms for cogeneration and renewable energy technologies. There are examined energy conversion and financial performances of the project. The results show that without the financial support the project is not profitable although it generates savings of primary energy of fossil fuels. If an administrative incentives are applied the optimal technical solution is different than suggested by energy conversion efficiency or fossil fuel savings. Financial calculations were performed for Polish marked conditions in the years 2011 and 2014 showing the impact of relatively short term variations of prices and support intensity on optimal plant design parameters

  3. Life cycle inventories for bioenergy and fossil-fuel fired cogeneration plants

    International Nuclear Information System (INIS)

    Braennstroem-Norberg, B.M.; Dethlefsen, U.

    1998-06-01

    Life-cycle inventories for heat production from forest fuel, Salix, coal and oil are presented. Data from the Oerebro cogeneration plant are used for the bioenergy and coal cycles, whereas the oil-fired cycle is based on a fictive plant producing 53 MW electricity and 106 MW heat, also located in the town of Oerebro. This life cycle analysis only covers the inventory stage. A complete life cycle analysis also includes an environmental impact assessment. The methods for assessing environmental impact are still being developed and thus this phase has been omitted here. The intention is, instead, to provide an overall perspective of where in the chain the greatest environmental load for each fuel can be found. Production and energy conversion of fuel requires energy, which is often obtained from fossil fuel. This input energy corresponds to about 11% of the extracted amount of energy for oil, 9% for coal, 6% for Salix, whereas it is about 4% for forest fuel. Utilization of fossil fuel in the coal cycle amounts to production of electricity using coal condensation intended for train transports within Poland. In a life cycle perspective, biofuels show 20-30 times lower emissions of greenhouse gases in comparison with fossil fuels. The chains for biofuels also give considerably lower SO 2 emissions than the chains for coal and oil. The coal chain shows about 50% higher NO x emission than the other fuels. Finally, the study illustrates that emission of particles are similar for all sources of energy. The biofuel cycle is assessed to be generally applicable to plants of similar type and size and with similar transport distances. The oil cycle is probably applicable to small-scale cogeneration plants. However, at present there are no cogeneration plants in Sweden that are solely fired with oil. In the case of the coal cycle, deep mining and a relatively long transport distance within Poland have been assumed. If the coal mining had been from open-cast mines, and if the

  4. Utilizing primary energy savings and exergy destruction to compare centralized thermal plants and cogeneration/trigeneration systems

    International Nuclear Information System (INIS)

    Espirito Santo, Denilson Boschiero do; Gallo, Waldyr Luiz Ribeiro

    2017-01-01

    Rising energy conversion processes efficiencies reduces CO_2 emissions and global warming implications. Decentralized electricity production through cogeneration/trigeneration systems can save primary energy if it operates with high efficiency. High efficiency is obtained when the system produces electricity and a substantial amount of the energy rejected by the prime mover is used to meet site thermal demands. Environmental concerns and international agreements are directing governments of different countries to incentive high efficiency solutions. Centralized thermal plants and cogeneration/trigeneration efficiency are compared through efficiency indicators using the first law of thermodynamics and the second law of thermodynamics. This paper proposes the use of the primary energy savings analysis and the exergy destruction analysis to compare decentralized power production through cogeneration/trigeneration systems and centralized thermal plants. The analysis concluded that both methods achieve the same results if the thermal efficiency indicator is used to compare the methods. The analysis also revealed that trigeneration systems with the same energy input are comparable with quite different thermal efficiency centralized thermal plants. Case 1 is comparable to a 53% thermal efficiency power plant and case 2 is comparable to a 77% thermal efficiency power plant. - Highlights: • Trigeneration and thermal plants are compared using PES and exergy destruction. • The thermal efficiency indicator is used to compare both methods. • The same equivalent thermal efficiency is achieved by both methods. • Same energy input trigeneration is similar to different thermal efficiency plants. • Evaluated trigeneration are comparable to a 53–77% thermal efficiency power plant.

  5. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Energy conversion system characteristics

    Science.gov (United States)

    1980-01-01

    Six current and thirty-six advanced energy conversion systems were defined and combined with appropriate balance of plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a frame work for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Fuel energy savings of 10 to 25 percent were predicted compared to traditional on site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal derived fuels, or coal with advanced fluid bed combustion or on site gasifications. Data and information for both current and advanced energy conversion technology are presented. Schematic and physical descriptions, performance data, equipment cost estimates, and predicted emissions are included. Technical developments which are needed to achieve commercialization in the 1985-2000 period are identified.

  6. Micro-turbines

    International Nuclear Information System (INIS)

    Tashevski, Done

    2003-01-01

    In this paper a principle of micro-turbines operation, type of micro-turbines and their characteristics is presented. It is shown their usage in cogeneration and three generation application with the characteristics, the influence of more factors on micro-turbines operation as well as the possibility for application in Macedonia. The paper is result of the author's participation in the training program 'Micro-turbine technology' in Florida, USA. The characteristics of different types micro-turbines by several world producers are shown, with accent on US micro-turbines producers (Capstone, Elliott). By using the gathered Author's knowledge, contacts and the previous knowledge, conclusions and recommendations for implementation of micro-turbines in Macedonia are given. (Author)

  7. An object-oriented computational model for combined cycle cogeneration analysis; Um modelo computacional para analise de ciclos combinados para projetos de sistemas de cogeracao

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alexandre M. da; Balestieri, Jose A.P.; Magalhaes Filho, Paulo [UNESP, Guaratingueta, SP (Brazil). Escola de Engenharia. Dept. de Energia]. E-mails: amarcial@uol.com.br; perella@feg.unesp.br; pfilho@feg.unesp.br

    2000-07-01

    This paper presents the use of computational resources in a simulation procedure to predict the performance of combined cycle cogeneration systems in which energetic analysis is used in the modeling. Thermal demand of a consuming process are used as the main entrance data and, associated to the performance characteristics of each component of the system, it is evaluated the influence of some parameters of the system such as thermal efficiency and global efficiency. The computational language is Visual Basic for Applications associated to an electronic sheet. Two combined cycle cogeneration schemes are pre-defined: one is composed of a gas turbine, heat recovery steam generator and a back pressure steam turbine with one extraction, in which both are connected to the different pressure level process plant; the other scheme has a difference a two extraction-condensing steam turbine instead of the back pressure one. Some illustrative graphics are generated for allowing comparison of the appraised systems. The strategy of the system simulation is obtained by carefully linking the information of various components according to the flow diagrams. (author)

  8. Turbines for nuclear power plants. 2.ed.

    International Nuclear Information System (INIS)

    Troyanovskij, B.M.

    1978-01-01

    In the second edition of the book considered are practically all the main problems of calculation and operation of turbines and turbine installations of nuclear power plants. As compared to the first edition, essentially addes is the reproduction of the problem on combined generation of heat and electric energy. Also represented is detailed material on methods of preliminary evaluation of turbine effectiveness. Considered are peculiarities of turbine operation on wet steam and the basis of their thermal calculation. Much attention is payed to the problem of wet stream current in the turbine elements and wetness effect on their characteristics. Problems of wetness separation and moving blade erosion as well as other turbine elements are extracted in a special section. Given are structural schemes of different methods of innerchannel and periphery wet removal as well as experimental materials on their effectiveness. Given are descriptions and critical analysis of a great number of typical constructions of nuclear power plant steam turbines, produced by native plants as well as by the main foreign firms. Considered also are constructions of outside separators and steam superheaters. Separately given is the problem of rotation frequency choise of nuclear power plant wet steam turbines. Represented are materials on turbine installation tests, considered are the problems of turbine starting and manoeuvrability, analyzed are their typical jailures and damages. One of the sections of the book is devoted to gas turbine installations of nuclear power plants. Different material on this theme scattered before in various sources is summarized in the book

  9. Engineering design and exergy analyses for combustion gas turbine based power generation system

    International Nuclear Information System (INIS)

    Sue, D.-C.; Chuang, C.-C.

    2004-01-01

    This paper presents the engineering design and theoretical exergetic analyses of the plant for combustion gas turbine based power generation systems. Exergy analysis is performed based on the first and second laws of thermodynamics for power generation systems. The results show the exergy analyses for a steam cycle system predict the plant efficiency more precisely. The plant efficiency for partial load operation is lower than full load operation. Increasing the pinch points will decrease the combined cycle plant efficiency. The engineering design is based on inlet air-cooling and natural gas preheating for increasing the net power output and efficiency. To evaluate the energy utilization, one combined cycle unit and one cogeneration system, consisting of gas turbine generators, heat recovery steam generators, one steam turbine generator with steam extracted for process have been analyzed. The analytical results are used for engineering design and component selection

  10. Thermodynamic study of residual heat from a high temperature nuclear reactor to analyze its viability in cogeneration processes

    International Nuclear Information System (INIS)

    Santillan R, A.; Valle H, J.; Escalante, J. A.

    2015-09-01

    In this paper the thermodynamic study of a nuclear power plant of high temperature at gas turbine (GTHTR300) is presented for estimating the exploitable waste heat in a process of desalination of seawater. One of the most studied and viable sustainable energy for the production of electricity, without the emission of greenhouse gases, is the nuclear energy. The fourth generation nuclear power plants have greater advantages than those currently installed plants; these advantages have to do with security, increased efficiencies and feasibility to be coupled to electrical cogeneration processes. In this paper the thermodynamic study of a nuclear power plant type GTHTR300 is realized, which is selected by greater efficiencies and have optimal conditions for use in electrical cogeneration processes due to high operating temperatures, which are between 700 and 950 degrees Celsius. The aim of the study is to determine the heat losses and the work done at each stage of the system, determining where they are the greatest losses and analyzing in that processes can be taken advantage. Based on the study was appointed that most of the energy losses are in form of heat in the coolers and usually this is emitted into the atmosphere without being used. From the results a process of desalination of seawater as electrical cogeneration process is proposed. This paper contains a brief description of the operation of the nuclear power plant, focusing on operation conditions and thermodynamic characteristics for the implementation of electrical cogeneration process, a thermodynamic analysis based on mass and energy balance was developed. The results allow quantifying the losses of thermal energy and determining the optimal section for coupling of the reactor with the desalination process, seeking to have a great overall efficiency. (Author)

  11. Improving the performances of gas turbines operated on natural gas in combined cycle power plants with application of mathematical models

    International Nuclear Information System (INIS)

    Dimkovski, Sasho

    2014-01-01

    The greater energy demand by today society sets a number of new challenges in the energy sector. The climate extremes impose new modes of operation of the power plants, with high flexibility in production. Combined cycle co generative power plants are the latest trend in the energy sector. Their high prevalence is due to the great efficiency and the good environmental characteristics. The main work horse in these cogeneration plants is the gas turbine, which power production and efficiency strongly depends on the external climate conditions. In warmer periods when there is increased demand for electricity, the power production from the gas turbines significantly declines. Because of the high electricity demand from the grid and reduced power production from the gas turbines at the same time, the need for application of appropriate technology for preserving the performances and power of the gas turbines arises. This master thesis explores different methods to improve the power in gas turbines by cooling the air on the compressor inlet, analyzing their applicability and effectiveness in order to choose the optimal method for power augmentation for the climatic conditions in the city Skopje. The master thesis gives detailed analysis of the weather in Skopje and the time frame in which the chosen method is applicable. At the end in the master thesis, the economic feasibility of the given method for power augmentation is clearly calculated, using a model of a power plant and calculating the resulting amount of gained energy, the amount of the initial investment, the cost for maintenance and operation of the equipment. By these calculations the period for initial return of investment is obtained. As an added benefit the positive environmental impacts of the applied technology for inlet air cooling is analyzed. (author)

  12. Feasibility study for Tashkent Heat and Power Plant Modernizing Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    An investigational study was carried out of the project for energy conservation and greenhouse effect gas emission reduction by introducing the newest and most powerful gas turbine cogeneration facilities to the Tashkent cogeneration plant in Uzbekistan. At the Tashkent cogeneration plant, each of the facilities is being superannuated, which leads to lowering of operational reliability and increase in cost of repairs. In the project, studied was the introduction of the newest and most powerful gas turbine cogeneration facilities with heat output of 100 Gcal/h equivalent to that of one can of the existing hot water boiler and with generated output of 80MW. As a result of the study, obtained were the energy conservation amount of 83.9 ktoe/y and the greenhouse effect gas reduction amount of 179.7 kt-CO2/y. The initial investment amount was 10.003 billion yen. Expenses vs. effects were 8.39 toe/y-million yen in energy conservation amount and 18.0 t-CO2/y-million yen in greenhouse effect gas reduction amount. In the study of profitability, the internal earning rate was 9.24% after tax, the return yield of capital was 41.26%, and the period of ROI was 16.9 years. (NEDO)

  13. Feasibility study on the St. Petersburg City heat and electric cogeneration plant No.2, etc. scrap and build project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing greenhouse effect gas emissions in line with the Joint Implementation, a survey was made of the scrap and build project for the superannuated Central Heat Power Station in St. Petersburg City. The survey team visited the relevant sites twice during 1999. The team drafted an improvement plan afterwards and presented it to the Russian counterpart, LENENEGRO. Based on the discussions with LENENEGRO, it was determined that the proposed combined cycle cogeneration plant would contain three 67MW-class gas turbines, three heat recovery steam generators and one back pressure turbine to achieve the generation capacity of approximately 200MW and heat supply capacity of 200G cal/hr. The total investment required for this project is about 140 million dollars. The term of the construction work is estimated at 36 months. It is estimated that the implementation of the project will reduce 1,481,979 tons of CO2 per year, or a total of 40,013,434 tons in 27 years after the commencement of operation. In addition, the terminal power generation efficiency will be improved from the current 18.68% to 41%, which leads to an annual fuel saving of 546,301 tons of crude oil or its equivalent. (NEDO)

  14. Cogeneration, micro turbines and fuel cells: perspectives for distributed generation in Brazil; Cogeracao, microturbinas e celulas a combustivel: perspectivas para geracao distribuida no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Marco Antonio Haikal [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    Brazil has a large potential to install distributed generation systems, using natural gas or renewable like solar, wind or biomass energy. Regarding urban centers, natural gas fired cogeneration and other distributed energy technologies find economical applications. Cogeneration is defined as the generation of two kinds of useful energy from a single energy source. Usually, electrical energy and thermal energy as steam or hot water are produced. By using the absorption refrigeration cycle, chilled water can also be produced to be used in air conditioned systems, often called tri generation, a good alternative to industries, commercial buildings, shopping centers, hospitals, schools and universities. Micro turbines find utilization whenever natural gas is available, but not electricity, like gas compression installations, unmanned platforms or remote production fields. Fuel cells are used in systems requiring high levels of reliability or wherever the non availability cost is high. This paper describe technical and economical data related to PETROBRAS Research Center (CENPES) 3,200 kW electric energy and 1,000 RT chilled water cogeneration system, 200 kW fuel cell and 30 kW and 60 kW microturbines. (author)

  15. Plant concept of heat utilization of high temperature gas-cooled reactors. Co-generation and coal-gasification

    International Nuclear Information System (INIS)

    Tonogouchi, M.; Maeda, S.; Ide, A.

    1996-01-01

    In Japan, JAERI is now constructing the High temperature Engineering Test Reactor (HTTR) and the new era is coming for the development and utilization of HTR. Recognizing that the heat utilization of HTR would mitigate problems of environment and resources and contribute the effective use and steady supply of the energy, FAPIG organized a working group named 'HTR-HUC' to study the heat utilization of HTR in the field other than electric power generation. We chose three kinds of plants to study, 1) a co-generation plant in which the existing power units supplying steam and electricity can be replaced by a nuclear plant, 2) Coal gasification plant which can accelerate the clean use of coal and contribute stable supply of the energy and preservation of the environment in the world and 3) Hydrogen production plant which can help to break off the use of the new energy carrier HYDROGEN and will release people from the dependence of fossil energy. In this paper the former two plants, Co-generation chemical plant and Coal-gasification plant are focussed on. The main features, process flow and safety assessment of these plants are discussed. (J.P.N.)

  16. Residential cogeneration systems: review of the current technology

    International Nuclear Information System (INIS)

    Onovwiona, H.I.; Ugursal, V.I.

    2006-01-01

    There is a growing potential for the use of micro-cogeneration systems in the residential sector because they have the ability to produce both useful thermal energy and electricity from a single source of fuel such as oil or natural gas. In cogeneration systems, the efficiency of energy conversion increases to over 80% as compared to an average of 30-35% for conventional fossil fuel fired electricity generation systems. This increase in energy efficiency can result in lower costs and reduction in greenhouse gas emissions when compared to the conventional methods of generating heat and electricity separately. Cogeneration systems and equipment suitable for residential and small-scale commercial applications like hospitals, hotels or institutional buildings are available, and many new systems are under development. These products are used or aimed for meeting the electrical and thermal demands of a building for space and domestic hot water heating, and potentially, absorption cooling. The aim of this paper is to provide an up-to-date review of the various cogeneration technologies suitable for residential applications. The paper considers the various technologies available and under development for residential, i.e. single-family ( e ) and multi-family (10-30kW t ) applications, with focus on single-family applications. Technologies suitable for residential cogeneration systems include reciprocating internal combustion engine, micro-turbine, fuel cell, and reciprocating external combustion Stirling engine based cogeneration systems. The paper discusses the state of development and the performance, environmental benefits, and costs of these technologies. (author)

  17. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Industrial processes

    Science.gov (United States)

    Palmer, W. B.; Gerlaugh, H. E.; Priestley, R. R.

    1980-01-01

    Cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers is examined in terms of cost savings. The use of various advanced energy conversion systems are examined and compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the target energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. Data and narrative descriptions of the industrial processes are given.

  18. Technology of turbine plant operating with wet steam

    International Nuclear Information System (INIS)

    1989-01-01

    The technology of turbine plant operating with wet steam is a subject of continuing interest and importance, notably in view of the widespread use of wet steam cycles in nuclear power plants and the recent developments of advanced low pressure blading for both conventional and wet steam turbines. The nature of water formation in expanding steam has an important influence on the efficiency of turbine blading and on the integrity and safe operating life of blading and associated turbine and plant components. The subjects covered in this book include research, flow analysis and measurement, development and design of turbines and ancillary plant, selection of materials of construction, manufacturing methods and operating experience. (author)

  19. High-temperature gas-cooled reactor steam cycle/cogeneration application study update

    International Nuclear Information System (INIS)

    1981-09-01

    Since publication of a report on the application of a High Temperature Gas-Cooled Reactor Steam Cycle/Cogeneration (HTGR-SC/C) plant in December of 1980, progress has continued on application related activities. In particular, a reference plant and an application identification effort has been performed, a variable cogeneration cycle balance-of-plant design was developed and an updated economic analysis was prepared. A reference HTGR-SC/C plant size of 2240 MW(t) was selected, primarily on the basis of 2240 MW(t) being in the mid-range of anticipated application needs and the availability of the design data from the 2240 MW(t) Steam Cycle/Electric generation plant design. A variable cogeneration cycle plant design was developed having the capability of operating at a range of process steam loads between the reference design load (full cogeneration) and the no process steam load condition

  20. The performance investigation of a temperature cascaded cogeneration system equipped with adsorption desalination unit

    KAUST Repository

    Myat, Aung

    2013-02-01

    This paper presents the performance investigation of a temperature cascaded cogeneration plant, shortly in TCCP, equipped with an efficient waste heat recovery system. The TCCP or cogeneration system produces four types of useful energy namely (i) electricity, (ii) steam, (iii) cooling, and (iv) dehumidification and distilled water by utilizing single energy source. The TCCP comprises a Capstone C30 micro-turbine that generates nominal capacity of 26 kW of electricity, a compact and efficient waste heat recovery system and a host of waste heatactivated devices namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption desalination system, and (iv) a multi-bed desiccant dehumidifier. The analysis is performed under different operation conditions such as heat source temperatures, flow rates of heat transfer fluids and chilled water inlet temperatures. The only single heat source for TCCP is obtained from exhaust gas of micro-turbine and it is channeled to a series of waste heat recovery heat exchangers to steam and hot water at different temperatures. Hot water produced by such a compact heat exchangers is the driving heat source to produce steam of 15 kg/h, cooling of 2 Rton, dehumidification of 2 Rton, and distilled water of 0.7 m3/day. A set of experiments, both part load and full load, of micro-turbine is conducted to examine the electricity generation and the exhaust gas temperature. It is observed that energy utilization factor could achieve as high as 70% while fuel energy saving ratio is found to be 28%. © 2013 Desalination Publications. All rights reserved.

  1. The performance investigation of a temperature cascaded cogeneration system equipped with adsorption desalination unit

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Youngdeuk; Ng, K. C.

    2013-01-01

    This paper presents the performance investigation of a temperature cascaded cogeneration plant, shortly in TCCP, equipped with an efficient waste heat recovery system. The TCCP or cogeneration system produces four types of useful energy namely (i) electricity, (ii) steam, (iii) cooling, and (iv) dehumidification and distilled water by utilizing single energy source. The TCCP comprises a Capstone C30 micro-turbine that generates nominal capacity of 26 kW of electricity, a compact and efficient waste heat recovery system and a host of waste heatactivated devices namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption desalination system, and (iv) a multi-bed desiccant dehumidifier. The analysis is performed under different operation conditions such as heat source temperatures, flow rates of heat transfer fluids and chilled water inlet temperatures. The only single heat source for TCCP is obtained from exhaust gas of micro-turbine and it is channeled to a series of waste heat recovery heat exchangers to steam and hot water at different temperatures. Hot water produced by such a compact heat exchangers is the driving heat source to produce steam of 15 kg/h, cooling of 2 Rton, dehumidification of 2 Rton, and distilled water of 0.7 m3/day. A set of experiments, both part load and full load, of micro-turbine is conducted to examine the electricity generation and the exhaust gas temperature. It is observed that energy utilization factor could achieve as high as 70% while fuel energy saving ratio is found to be 28%. © 2013 Desalination Publications. All rights reserved.

  2. Efficiency and environmental compatibility of premium cogeneration plants operated by fermentation gas; Effizienz und Umweltvertraeglichkeit biogasbetriebener Blockheizkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Aschmann, V.; Kissel, R.; Gronauer, A.

    2007-07-15

    Due to the climatic protection as well as shortage and raising the price of fossil fuels, a supply of a sustainable and future power supply is necessary. Therefore, the importance of the production of electricity and heat by means of premium cogeneration plants operated by fermentation gas increases. In the comparison to the conventional power production from fossil fuels, the utilization of fermentation gas reduces the release of climatic relevant gases. A compromise between high achievement and low emission with the burn of fermentation gas in premium cogeneration plants has to be established. It is the subject of the investigation of the contribution under consideration, to what extent this is feasible in practice.

  3. Cogeneration in air separation cryogenic plants; Cogeracao em plantas criogenicas de separacao de ar

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, Walter N.; Orlando, Alcir F. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica]. E-mails: wnovellob@openlink.com.br; afo@mec-puc-rio.br

    2000-07-01

    A thermal and economic study, carried on by using the first and second law of thermodynamics concepts demonstrated the economic feasibility of the cogeneration system, and proposed modifications to be done in the studied cryogenic plant, a typical T-240 NA MPL3 plant. The thermodynamic analysis showed that the second law efficiency of the processes could be improved, together with a 12% electric energy consumption reduction. Four cogeneration schemes were analyzed with both the first and second laws of thermodynamics and, then, the economic analysis was performed. Rankine, Brayton, Otto and Combined gas-steam basic cycles were used in this analysis.The combined gas-steam cycle was shown to be more economically feasible than others. Thermal and electric loads were well balanced, resulting in a higher second law efficiency. Although the initial investment for the modification was higher, the savings resulted to be higher, turning into a higher rate of return of the investment. (author)

  4. Optimization of Gas Turbine Cogeneration Systemfor Various Heat Exchanger Configurations Optimisation des systèmes de turbine à combustion en cogénération pour différentes configurations des échangeurs de chaleur

    Directory of Open Access Journals (Sweden)

    Costea M.

    2011-11-01

    Full Text Available The present paper investigates and compares the performance of three configurations of Gas Turbine systems allowing cogeneration of heat and electricity, on the basis of an irreversible regenerative Brayton-Joule cycle. The proposed model is developed for two different cycle constraints, namely, an imposed heat transfer rate released by the fuel combustion, or an imposed maximum cycle temperature. The model also includes the irreversibility due to the friction in the compressor and turbine, and due to the heat losses in the combustion chamber and heat exchangers. Energy efficiency for the system without and with cogeneration, and the exergetic efficiency are used in order to emphasize the cogeneration advantages, but also to help the designer to choose the best configuration of the Gas Turbine system that suits to his needs. Experimental data from a real operating microturbine were used to validate the model. The power output and the energy and exergetic efficiencies are optimized with respect to a set of operating parameters. The optimum values of the Gas Turbine engine parameters corresponding to maximum power output and respectively to maximum thermodynamic efficiency are discussed. The results show same optimal values of the compression ratio corresponding to almost all maximum performances for an imposed heat transfer rate released by the fuel combustion, excepting the maximum exergetic efficiency that requires higher optimal values of the compression ratio than the maximum exergy rate one. A performance comparison of the three configurations is done and future perspectives of the work are proposed. Cet article explore et compare les performances des trois configurations de systèmes de turbine à combustion permettant la production combinée de chaleur et d’électricité, sur la base du cycle irréversible régénératif de Brayton-Joule. Le modèle proposé est développé pour deux contraintes différentes sur le cycle, notamment le

  5. Implementation of a cogeneration plant for a food processing facility. A case study

    International Nuclear Information System (INIS)

    Bianco, Vincenzo; De Rosa, Mattia; Scarpa, Federico; Tagliafico, Luca A.

    2016-01-01

    Highlights: • CHP utilization is demonstrated to allow a reduction of primary energy consumption. • The consideration of various investment indexes leads to the determination of different optimal powers. • The choice of a specific investment index to evaluate a CHP is linked to the strategy of the company. - Abstract: The present work presents an investigation regarding the feasibility analysis of a cogeneration plant for a food processing facility with the aim to decrease the cost of energy supply. The monthly electricity and heat consumption profiles are analyzed, in order to understand the consumption profiles, as well as the costs of the current furniture of electricity and gas. Then, a detailed thermodynamic model of the cogeneration cycle is implemented and the investment costs are linked to the thermodynamic variables by means of cost functions. The optimal electricity power of the co-generator is determined with reference to various investment indexes. The analysis highlights that the optimal dimension varies according to the chosen indicator, therefore it is not possible to establish it univocally, but it depends on the financial/economic strategy of the company through the considered investment index.

  6. Large nuclear steam turbine plants

    International Nuclear Information System (INIS)

    Urushidani, Haruo; Moriya, Shin-ichi; Tsuji, Kunio; Fujita, Isao; Ebata, Sakae; Nagai, Yoji.

    1986-01-01

    The technical development of the large capacity steam turbines for ABWR plants was partially completed, and that in progress is expected to be completed soon. In this report, the outline of those new technologies is described. As the technologies for increasing the capacity and heightening the efficiency, 52 in long blades and moisture separating heaters are explained. Besides, in the large bore butterfly valves developed for making the layout compact, the effect of thermal efficiency rise due to the reduction of pressure loss can be expected. As the new technology on the system side, the simplification of the turbine system and the effect of heightening the thermal efficiency by high pressure and low pressure drain pumping-up method based on the recent improvement of feed water quality are discussed. As for nuclear steam turbines, the actual records of performance of 1100 MW class, the largest output at present, have been obtained, and as a next large capacity machine, the development of a steam turbine of 1300 MWe class for an ABWR plant is in progress. It can be expected that by the introduction of those new technologies, the plants having high economical efficiency are realized. (Kako, I.)

  7. Low speed turbines for nuclear power plants

    International Nuclear Information System (INIS)

    Ugol'nikov, V.V.; Kosyak, Yu.F.; Virchenko, M.A.

    1975-01-01

    Work of the Kharkov turbine plant on planning and manufacture for nuclear power plants of low-speed (1500 rpm) turbines with a power of 500-1000 MW is described. The selection of a construction diagram for the turbine assembly, determined basically by the presence or absence of parts of average pressure, is considered. Special construction features of the condenser and turbine are described. Turbine K-500, with a rate of 1500 rpm, was calculated for operation in a two-loop nuclear power plant with saturated steam with intermediate separation and two-stage steam regeneration. On the base of this turbine, three models of 1000-MW turbines were developed. The first model has a cylinder of average pressure (TsSD) and a lateral condenser. The second has no TsSD but a low location of the condensers. The third has no TsSD and the condensers are located laterally. Calculations of the heat efficiency of the three types of turbines showed that several advantages are offered by the model with a TsSD. Better aerodynamic properties of the exhaust nozzles and condensers with lateral location allows decreasing the specific heat consumption to 0.5-1% or, at the same power, a 10-20% decrease in cooling water consumption

  8. Project financing consequences on cogeneration: industrial plant and municipal utility co-operation in Sweden

    International Nuclear Information System (INIS)

    Sundberg, Gunnel; Sjoedin, J.Joergen

    2003-01-01

    The liberalisation of the European electricity market influences investment decisions in combined heat and power plants. Energy companies modify their business strategies and their criteria for investments in power generation capacity. In this paper, the gains from a co-operation between a paper mill and municipal utility are studied. We find that a widened system boundary, including both the industrial plant and the district heating company, increases cost-effectiveness by 7-11%, compared to a situation with two separately optimised systems. Furthermore, optimal investments are strongly influenced by the actors' different required returns. With a relatively low required rate of return on energy investments, typical for a municipally owned utility, the most profitable investment is a wood chips-fuelled cogeneration plant. With a higher rate of return on capital, typical for a competitive industry, the optimal investment is mainly a heat-only steam boiler. Finally, some general influences on required rate of return caused by electricity market deregulation are observed. Whilst tending to increase companies' required returns, deregulation may, besides extending the outlet for locally generated electricity, also obstruct long-term high-cost investments such as cogeneration based on conventional technology

  9. Process heat cogeneration using a high temperature reactor

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Ramirez, Ramon; Valle, Edmundo del; Castillo, Rogelio

    2014-01-01

    Highlights: • HTR feasibility for process heat cogeneration is assessed. • A cogeneration coupling for HTR is proposed and process heat cost is evaluated. • A CCGT process heat cogeneration set up is also assessed. • Technical comparison between both sources of cogeneration is performed. • Economical competitiveness of the HTR for process heat cogeneration is analyzed. - Abstract: High temperature nuclear reactors offer the possibility to generate process heat that could be used in the oil industry, particularly in refineries for gasoline production. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product and if the cost of this subproduct will be competitive with other alternatives. The current study assesses the likeliness of generating process heat from Pebble Bed Modular Reactor to be used for a refinery showing different plant balances and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor where the cycle configuration to transport the heat of the reactor to the process plant plays an important role in the cycle efficiency and in the plant economics. The results of this study show that the PBMR would be most competitive when capital discount rates are low (5%), carbon prices are high (>30 US$/ton), and competing natural gas prices are at least 8 US$/mmBTU

  10. Process heat cogeneration using a high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Gustavo, E-mail: gustavoalonso3@gmail.com [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico); Instituto Politécnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Ramirez, Ramon [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico); Valle, Edmundo del [Instituto Politécnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Castillo, Rogelio [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico)

    2014-12-15

    Highlights: • HTR feasibility for process heat cogeneration is assessed. • A cogeneration coupling for HTR is proposed and process heat cost is evaluated. • A CCGT process heat cogeneration set up is also assessed. • Technical comparison between both sources of cogeneration is performed. • Economical competitiveness of the HTR for process heat cogeneration is analyzed. - Abstract: High temperature nuclear reactors offer the possibility to generate process heat that could be used in the oil industry, particularly in refineries for gasoline production. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product and if the cost of this subproduct will be competitive with other alternatives. The current study assesses the likeliness of generating process heat from Pebble Bed Modular Reactor to be used for a refinery showing different plant balances and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor where the cycle configuration to transport the heat of the reactor to the process plant plays an important role in the cycle efficiency and in the plant economics. The results of this study show that the PBMR would be most competitive when capital discount rates are low (5%), carbon prices are high (>30 US$/ton), and competing natural gas prices are at least 8 US$/mmBTU.

  11. North Plant co-generation project for South Davis County Sewer Improvement District

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L.S. [Aqua Environmental Services, Inc., Bountiful, UT (United States)

    1993-12-31

    In the summer of 1988, the South Davis County Sewer Improvement District (SDCSID) learned of a grant/loan program being administered by the Utah State Department of Energy(DOE) for projects that demonstrate new and innovative ways of conserving energy or utilizing renewable energy sources. The SDCSID applied for and received from the DOE both a grant and a no-interest loan to finance half of the cost of a co-generation project at the North Wastewater Treatment Plant. This co-generation project utilizes methane gas, a by-product of the anaerobic digestion process, to generate both electricity and heat that is used at the plant. The SDCSID calculated that at the current anaerobic gas production rate, a 140 KW engine generator could be run almost 24 hours a day. Approximately 75% of the current electrical needs at the North Plant are supplied by the 140 KW engine generator. Also, all of the heat necessary to raise the temperature of the incoming sludge to 95{degrees}F, and to heat four large buildings is supplied from the heat recovery system of the engine. The system utilizes an induction type generator to supply electricity, which is somewhat simpler to design and less expensive to install than a synchronous type system. An induction system utilizes the Electrical Utility`s incoming power to excite the generator to correct the phase so that is can be used by the loads in the plant. In addition, the SDCSID installed a second identical engine generator as a back-up and to peak shave. Plant effluent is used to cool the engines instead of air-cooling through radiators.

  12. Thermodynamic analysis of SCW NPP cycles with thermo-chemical co-generation of hydrogen

    International Nuclear Information System (INIS)

    Naidin, N.; Mokry, S.; Monichan, R.; Chophla, K.; Pioro, I.; Naterer, G.; Gabriel, K.

    2009-01-01

    Research activities are currently conducted worldwide to develop Generation IV nuclear reactor concepts with the objective of improving thermal efficiency and increasing economic competitiveness of Generation IV Nuclear Power Plants (NPPs) compared to modern thermal power plants. The Super-Critical Water-cooled Reactor (SCWR) concept is one of the six Generation IV options chosen for further investigation and development in several countries including Canada and Russia. Water-cooled reactors operating at subcritical pressures (10 - 16 MPa) have provided a significant amount of electricity production for the past 50 years. However, the thermal efficiency of the current NPPs is not very high (30 - 35%). As such, more competitive designs, with higher thermal efficiencies, which will be close to that of modern thermal power plants (45 - 50%), need to be developed and implemented. Super-Critical Water (SCW) NPPs will have much higher operating parameters compared to current NPPs (i.e., steam pressures of about 25 MPa and steam outlet temperatures up to 625 o C). Furthermore, SCWRs operating at higher temperatures can facilitate an economical co-generation of hydrogen through thermochemical cycles (particularly, the copper-chlorine cycle) or direct high-temperature electrolysis. The two SCW NPP cycles proposed by this paper are based on direct, regenerative, no-reheat and single-reheat configurations. As such, the main parameters and performance in terms of thermal efficiency of the SCW NPP concepts mentioned above are being analyzed. The cycles are generally comprised of: an SCWR, a SC turbine, one deaerator, ten feedwater heaters, and pumps. The SC turbine of the no-reheat cycle consists of one High-Pressure (HP) cylinder and two Low-Pressure (LP) cylinders. Alternatively, the SC turbine for the single-reheat cycle is comprised of one High-Pressure (HP) cylinder, one Intermediate-Pressure (IP) cylinder and two Low-Pressure (LP) cylinders. Since the single-reheat option

  13. The cogeneration and small power production manual. 3rd edition

    International Nuclear Information System (INIS)

    Spiewak, S.A.

    1990-01-01

    This book is divided into six sections covering regulations, environmental issues, engineering, contract, financing, and taxes. The edition adds a comprehensive 80-page chapter outlining how to prepare for electric power shortages, including details on rate structure, tariff negotiation, contract-based rates, partial requirement service, supplementary, backup, and interruptible rates, and retail sale of electric power. The engineering section covers optimum cogeneration system design, operational considerations, and energy efficiency. Combustion turbines, diesel engines, gas engines, rotary engines, steam turbines, and electric generators are covered in detail

  14. Cogeneration: One way to use biomass efficiently

    International Nuclear Information System (INIS)

    Gustavsson, L.; Johansson, B.

    1993-01-01

    Cogeneration in district heating systems is the most energy-efficient way to convert biomass into heat and electricity with current or nearly commercial technologies. Methanol produced from biomass and used in vehicles instead of petrol or diesel could reduce carbon dioxide emissions nearly as much per unit of biomass as if the biomass were used to replace natural gas for cogeneration, but at some higher cost per unit of carbon dioxide reduction. The most energy-efficient way to use biomass for cogeneration appears to be combined cycle technology, and the world's first demonstration plant is now being built. Potentially, this technology can be used for electricity production in Swedish district heating systems to provide nearly 20% of current Swedish electricity production, while simultaneously reducing carbon dioxide emissions from the district heating systems by some 55%. The heat costs from cogeneration with biomass are higher than the heat costs from fossil fuel plants at current fuel prices. Biomass can only compete with fossil fuel if other advantages, for example a lower environmental impact are considered. (au) (35 refs.)

  15. Cogeneration feasibility: Otis Elevator Company and Polychrome Corporation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    The purpose of this study was to assess the feasibility of cogeneration at Otis Elevator Company and Polychrome Corporation located in Westchester County, New York. Each plant and its associated thermal and electrical load is reviewed. Three basic cycles for the cogeneration are investigated: power only, power generation with waste heat recovery, and combined cycle. Each case was assessed economically, beginning with a screening method to suggest those configurations most likely to be implemented and continuing through an assessment of the regulatory environment for cogeneration and an analysis of rate structures for buy back power, displaced power, and supplementing service. It is concluded that: for a plant designed to supply the combined loads of the two corporations, interconnection costs coupled to the coincidence of load result in unfavorable economics; for separate cogeneration plants, owned and operated by each individual corporation, energy consumption patterns and the current regulatory environment, in particular the existing and proposed cogeneration system rate structures, do not permit viable economics for the proposed plants; but if the proposed cycle were owned and operated by a new entity (neither Otis/Polychrome nor the utility), an economic scheme with marginal financial benefits can be developed and may be worthy of further study. (LEW)

  16. Cogeneration feasibility study in the Gulf States Utilities service area

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Sites in the Gulf States Utilities service are considered for cogeneration feasibility studies. The sources of steam considered for the Orange, Texas and Geismar, Lake Charles, and North Baton Rouge, Louisiana sites include oil, coal, HTGR steamers, consolidated nuclear steam system, atmospheric fluidized-bed coal combustion, and coal gasification. Concepts concerning cogeneration fuel systems were categorized by technical applicability as: current technology (pulverized coal-fired boilers and fuel oil-fired boilers), advanced technology under development (HTGR steamers and the CNSS), and advanced technology for future development (atmospheric fluidized-bed boilers and coal gasification). In addition to providing data on cogeneration plant generally useful in the US, the study determined the technical and economic feasibility of steam and electric power cogeneration using coal and nuclear fuels for localized industrial complexes. Details on site selection, plant descriptions, cost estimates, economic analysis, and plant schedule and implementation. (MCW)

  17. Cogeneration Systems; Sistemas de Cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez M, Manuel F; Huante P, Liborio; Romo M, Cesar A [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2006-07-01

    The present article deals on relevant aspects on the subject of cogeneration within the Mexican territorial limits. In the first place it is presented the role of Mexico in terms of its cogeneration potential, the type of service that has obtained from this predominant modality of cogeneration for self-supplying, the most propitious sectors to develop it, its legislations on the matter, the projects made for the implementation of cogeneration plants, as well as the existing cogeneration schemes for its respective optimization proposals. Without leaving out the analysis on the different types of evaluation on the efficiency of cogeneration systems and the aspects to consider for the election of a generation cycle. [Spanish] El presente articulo trata sobre aspectos relevantes en materia de cogeneracion dentro de los limites territoriales de la nacion mexicana. Se muestra en primer lugar el papel de Mexico en terminos de su potencial de cogeneracion, el tipo de servicio que ha obtenido de esta predominantemente (modalidad de cogeneracion para autoabastecimiento), los sectores mas propicios para desarrollarla, sus legislaciones al respecto, los proyectos realizados para la implementacion de plantas de cogeneracion, asi como los esquemas de cogeneracion existentes con sus respectivas propuestas de optimizacion. Sin dejar de lado el analisis sobre los distintos tipos de evaluacion de la eficiencia de sistemas de cogeneracion y los aspectos a considerar para la eleccion de un ciclo de generacion.

  18. Exergetic and thermoeconomic analyses of power plants

    International Nuclear Information System (INIS)

    Kwak, H.-Y.; Kim, D.-J.; Jeon, J.-S.

    2003-01-01

    Exergetic and thermoeconomic analyses were performed for a 500-MW combined cycle plant. In these analyses, mass and energy conservation laws were applied to each component of the system. Quantitative balances of the exergy and exergetic cost for each component, and for the whole system was carefully considered. The exergoeconomic model, which represented the productive structure of the system considered, was used to visualize the cost formation process and the productive interaction between components. The computer program developed in this study can determine the production costs of power plants, such as gas- and steam-turbines plants and gas-turbine cogeneration plants. The program can be also be used to study plant characteristics, namely, thermodynamic performance and sensitivity to changes in process and/or component design variables

  19. Industrial cogeneration optimization program. Final report, September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Jerry; McWhinney, Jr., Robert T.

    1980-01-01

    This study program is part of the DOE Integrated Industry Cogeneration Program to optimize, evaluate, and demonstrate cogeneration systems, with direct participation of the industries most affected. One objective is to characterize five major energy-intensive industries with respect to their energy-use profiles. The industries are: petroleum refining and related industries, textile mill products, paper and allied products, chemicals and allied products, and food and kindred products. Another objective is to select optimum cogeneration systems for site-specific reference case plants in terms of maximum energy savings subject to given return on investment hurdle rates. Analyses were made that define the range of optimal cogeneration systems for each reference-case plant considering technology applicability, economic factors, and energy savings by type of fuel. This study also provides guidance to other parts of the program through information developed with regard to component development requirements, institutional and regulatory barriers, as well as fuel use and environmental considerations. (MCW)

  20. How efficient work biomass cogeneration plants? A survey of plant operators; Wie effizient arbeiten Biomasseheiz(kraft)werke? Befragung von Anlagenbetreibern

    Energy Technology Data Exchange (ETDEWEB)

    Meiller, Martin; Jakuttis, Michael [Fraunhofer-Institut fuer Umwelt-, Sicherheits- und Energietechnik UMSICHT, Sulzbach-Rosenberg (Germany); Binder, Samir [Fraunhofer-Institut fuer Umwelt-, Sicherheits- und Energietechnik UMSICHT, Sulzbach-Rosenberg (Germany); Bayerischer Forschungsverbund Foreta, Sulzbach-Rosenberg (Germany)

    2013-03-01

    The use of biomass has increased very much in recent years. Due to the intensive use, the price of biomass fuels such as wood chips has increased substantially. This development bothers mainly biomass cogeneration plants. Many operators suffered considerable financial losses or even had to file for bankruptcy. The topic of efficiency is one of the central and critical success factors for the long-term viability of biomass-fired plants. (orig.)

  1. Cogeneration. Energy efficiency - Micro-cogeneration; La Cogeneration. Efficacite Energetique - Micro-cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Boudellal, M.

    2010-07-01

    Depletion of natural resources and of non-renewable energy sources, pollution, greenhouse effect, increasing energy needs: energy efficiency is a major topic implying a better use of the available primary energies. In front of these challenges, cogeneration - i.e. the joint production of electricity and heat, and, at a local or individual scale, micro-cogeneration - can appear as interesting alternatives. This book presents in a detailed manner: the present day and future energy stakes; the different types of micro-cogeneration units (internal combustion engines, Stirling engine, fuel cell..), and the available models or the models at the design stage; the different usable fuels (natural gas, wood, biogas..); the optimization rules of a facility; the costs and amortizations; and some examples of facilities. (J.S.)

  2. The co-generation file

    International Nuclear Information System (INIS)

    Signoret, Stephane; Petitot, Pauline; Mary, Olivier; Sredojevic, Alexandre

    2017-01-01

    Whereas co-generation has many benefits (increase of energy efficiency, decrease of greenhouse gas emissions, job creation, integration of renewable energies, local and efficient production of heat and electricity, and so on), as explained in a first article, it has not enough public support in France any longer, notably for installations of more than 1 MW. However, as shown in some examples (a power and heat plant in Aulnay-sous-Bois, a factory in Graulhet), some co-generation installations have been able to take some benefit from the situation in 2015. Besides, some technological development are addressed: new burners to comply with regulations regarding NO_x and CO emissions, new engines able to operate with various gases such as hydrogen or gas produced by biomass gasification. A last article presents a co-generation boiler installed in a medical care home near Roye in the Somme district

  3. Cogeneration with gas turbine associated to the absorption refrigeration system: a computer program for exergy economics analysis; Cogeracao com turbina a gas associada ao sistema de refrigeracao por absorcao: um programa computacional para analise exergoeconomica

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Julio Santana [UNESP, Guaratingueta, SP (Brazil). Faculdade de Engenharia. Dept. de Matematica] E-mail: santana@feg.unesp.br; Silveira, Jose Luz; Balestieri, Jose Antonio Perrella [UNESP, Guaratingueta, SP (Brazil). Faculdade de Engenharia. Dept. de Energia

    2000-07-01

    This paper presents the development of a computer program for exergy and economic analysis of cogeneration systems applying gas turbine associated to the absorption refrigeration system. The computer program selects gas turbine systems viewing the operation under thermal parity through a data base composed by gas turbines commercially available in the market, under the ISO (International Standard Organization). The computer program corrects the system performance parameters selected for the installation local conditions. The exergy and economic analysis are made based on the lowest exergy manufacturing cost where the best system is considered. A case study of the computer program application is presented.

  4. Modelling the adoption of industrial cogeneration in Japan using manufacturing plant survey data

    International Nuclear Information System (INIS)

    Bonilla, David; Akisawa, Atsushi; Kashiwagi, Takao

    2003-01-01

    Electric power deregulation in Japan opens opportunity for further penetration of on-site generation (cogeneration) otherwise known as distributed generation. In the paper the authors present a survey on Japanese industrial plants to fill existing gaps for the assessment of modern cogeneration (combined heat and power, CHP). The objective of the paper is to empirically examine CHP systems based on cross-sectional binary models; second to review diffusion trends of CHP by system vintage during the 1980-2000 period in the manufacturing sector. The econometric results point that the probabilities of embracing this technology increase, in declining importance, with on-site power consumption, and steam demand, operational hours as well as with payback period, purchased power. For example the survey shows that the CHP is used for the purpose of exporting power rather than meeting the plant's own consumption. Some of our results are in line with those of Dismukes and Kleit (Resource Energy Econ. 21 (1999) 153) as well with Rose and Macdonald (Energy J. 12(12) (1991) 47). We also find that a unit increase in satisfaction with CHP will lead to a 54% in CHP capacity. We find significant evidence on the cost effectiveness of CHP under conservative assumptions. Regarding the influence of satisfaction and performance indicators for the several plants, the survey threw some unexpected evidence on the nature of CHP

  5. Environmental licensing issues for cogeneration plants

    International Nuclear Information System (INIS)

    Lipka, G.S.; Bibbo, R.V.

    1990-01-01

    The siting and licensing of cogeneration and independent power production (IPP) facilities is a complex process involving a number of interrelated engineering, economic, and environmental impact considerations. Important considerations for the siting and licensing of such facilities include air quality control and air quality impacts, water supply and wastewater disposal, and applicable noise criteria and noise impact considerations. Air quality control and air quality impact considerations for power generation facilities are commonly reviewed in the public forum, and most project developers are generally aware of the key air quality licensing issues. These issues include Best Available Control Technology (BACT) demonstration requirements, and air quality modeling requirements. BACT is a case-by-case determination, which causes uncertainty, in that developers have difficulty in projecting the cost of required control systems. Continuing developments in control technology may cause this problem to continue in the 1990's. Air quality modeling can be a problem in hilly terrain or within or near an urban environment, which could delay or preclude permitting of a new cogeneration or IPP facility in such locations. This paper discusses several environmental issues which are less frequently addressed than air quality issues, namely water/wastewater and noise. The design features of typical cogeneration and IPP facilities that affect water supply requirements, wastewater volumes, and noise emissions are discussed. Then, the site selection and impact review process are examined to identify typical constraints and trade-offs that can develop relative to water, wastewater, and noise issues. Trends in permit review requirements for water, wastewater, and noise are examined. Finally, innovative approaches that can be used to resolve potential development constraints for water, wastewater, and noise issues are discussed

  6. Integration of Biorefineries and Nuclear Cogeneration Power Plants - A Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Sherrell R [ORNL; Flanagan, George F [ORNL; Borole, Abhijeet P [ORNL

    2009-03-01

    Biomass-based ethanol and nuclear power are two viable elements in the path to U.S. energy independence. Numerous studies suggest nuclear power could provide a practical carbon-free heat source alternative for the production of biomass-based ethanol. In order for this coupling to occur, it is necessary to examine the interfacial requirements of both nuclear power plants and bioethanol refineries. This report describes the proposed characteristics of a small cogeneration nuclear power plant, a biochemical process-based cellulosic bioethanol refinery, and a thermochemical process-based cellulosic biorefinery. Systemic and interfacial issues relating to the co-location of either type of bioethanol facility with a nuclear power plant are presented and discussed. Results indicate future co-location efforts will require a new optimized energy strategy focused on overcoming the interfacial challenges identified in the report.

  7. Integration of Biorefineries and Nuclear Cogeneration Power Plants - A Preliminary Analysis

    International Nuclear Information System (INIS)

    Greene, Sherrell R.; Flanagan, George F.; Borole, Abhijeet P.

    2009-01-01

    Biomass-based ethanol and nuclear power are two viable elements in the path to U.S. energy independence. Numerous studies suggest nuclear power could provide a practical carbon-free heat source alternative for the production of biomass-based ethanol. In order for this coupling to occur, it is necessary to examine the interfacial requirements of both nuclear power plants and bioethanol refineries. This report describes the proposed characteristics of a small cogeneration nuclear power plant, a biochemical process-based cellulosic bioethanol refinery, and a thermochemical process-based cellulosic biorefinery. Systemic and interfacial issues relating to the co-location of either type of bioethanol facility with a nuclear power plant are presented and discussed. Results indicate future co-location efforts will require a new optimized energy strategy focused on overcoming the interfacial challenges identified in the report.

  8. Feasibility of the operation CFE`s conventional power plants for industrial cogeneration; Factibilidad de operar las centrales termoelectricas convencionales de la CFE para cogeneracion industrial

    Energy Technology Data Exchange (ETDEWEB)

    Buendia Dominguez, Eduardo H.; Acosta Torres, Rosa Aracely [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    An analysis is made on how cogeneration could help to maximize the power plant performance since thanks to cogeneration this type of power plants could utilize a part of the waste energy to be supplied to other processes. Also mention is made of the utilization of computer programs to help the design and the realization of functioning tests of this type of power plants. An economic evaluation is presented on the feasibility of operating this type of power plants as cogeneration units and it is concluded that the operation of fossil power plants in the cogeneration mode is not affected by the site where the power plant is located [Espanol] Se analiza como la cogeneracion podria ayudar a maximizar el rendimiento de las centrales termoelectricas ya que gracias a la cogeneracion este tipo de centrales podrian utilizar una parte de la energia desechada para suministrarla a otros procesos. Tambien se menciona la utilizacion de programas de computo para auxiliar en el diseno o realizacion de pruebas de funcionamiento sobre este tipo de plantas. Se presenta una evaluacion economica sobre la factibilidad de operar este tipo de plantas como unidades de cogeneracion y se concluye en que la operacion de centrales termoelectricas en modo de cogeneracion no se ve afectado por el sitio donde se encuentra la central

  9. Feasibility of the operation CFE`s conventional power plants for industrial cogeneration; Factibilidad de operar las centrales termoelectricas convencionales de la CFE para cogeneracion industrial

    Energy Technology Data Exchange (ETDEWEB)

    Buendia Dominguez, Eduardo H; Acosta Torres, Rosa Aracely [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    An analysis is made on how cogeneration could help to maximize the power plant performance since thanks to cogeneration this type of power plants could utilize a part of the waste energy to be supplied to other processes. Also mention is made of the utilization of computer programs to help the design and the realization of functioning tests of this type of power plants. An economic evaluation is presented on the feasibility of operating this type of power plants as cogeneration units and it is concluded that the operation of fossil power plants in the cogeneration mode is not affected by the site where the power plant is located [Espanol] Se analiza como la cogeneracion podria ayudar a maximizar el rendimiento de las centrales termoelectricas ya que gracias a la cogeneracion este tipo de centrales podrian utilizar una parte de la energia desechada para suministrarla a otros procesos. Tambien se menciona la utilizacion de programas de computo para auxiliar en el diseno o realizacion de pruebas de funcionamiento sobre este tipo de plantas. Se presenta una evaluacion economica sobre la factibilidad de operar este tipo de plantas como unidades de cogeneracion y se concluye en que la operacion de centrales termoelectricas en modo de cogeneracion no se ve afectado por el sitio donde se encuentra la central

  10. First and second law analysis of diesel engine powered cogeneration systems

    International Nuclear Information System (INIS)

    Abusoglu, Aysegul; Kanoglu, Mehmet

    2008-01-01

    In this article, the thermodynamic analysis of the existing diesel engine cogeneration system is performed. All necessary data are obtained from the actual diesel engine cogeneration plant located at Gaziantep, Turkey. The exergy analysis is aimed to evaluate the exergy destruction in each component as well as the exergetic efficiencies. The thermodynamic performance of a 25.32 MW electricity and 8.1 tons/h steam capacity diesel engine cogeneration system at full load conditions is analyzed. The thermal efficiency of the overall plant is found to be 44.2% and the exergetic efficiency is 40.7%. The exergy balance equations developed in this paper may also be utilized in the exergoeconomic analysis to estimate the production costs depending on various input costs in a diesel cogeneration system

  11. Comparative analysis of cogeneration power plants optimization based on stochastic method using superstructure and process simulator

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Leonardo Rodrigues de [Instituto Federal do Espirito Santo, Vitoria, ES (Brazil)], E-mail: leoaraujo@ifes.edu.br; Donatelli, Joao Luiz Marcon [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil)], E-mail: joaoluiz@npd.ufes.br; Silva, Edmar Alino da Cruz [Instituto Tecnologico de Aeronautica (ITA/CTA), Sao Jose dos Campos, SP (Brazil); Azevedo, Joao Luiz F. [Instituto de Aeronautica e Espaco (CTA/IAE/ALA), Sao Jose dos Campos, SP (Brazil)

    2010-07-01

    Thermal systems are essential in facilities such as thermoelectric plants, cogeneration plants, refrigeration systems and air conditioning, among others, in which much of the energy consumed by humanity is processed. In a world with finite natural sources of fuels and growing energy demand, issues related with thermal system design, such as cost estimative, design complexity, environmental protection and optimization are becoming increasingly important. Therefore the need to understand the mechanisms that degrade energy, improve energy sources use, reduce environmental impacts and also reduce project, operation and maintenance costs. In recent years, a consistent development of procedures and techniques for computational design of thermal systems has occurred. In this context, the fundamental objective of this study is a performance comparative analysis of structural and parametric optimization of a cogeneration system using stochastic methods: genetic algorithm and simulated annealing. This research work uses a superstructure, modelled in a process simulator, IPSEpro of SimTech, in which the appropriate design case studied options are included. Accordingly, the cogeneration system optimal configuration is determined as a consequence of the optimization process, restricted within the configuration options included in the superstructure. The optimization routines are written in MsExcel Visual Basic, in order to work perfectly coupled to the simulator process. At the end of the optimization process, the system optimal configuration, given the characteristics of each specific problem, should be defined. (author)

  12. Improving bioethanol production from sugarcane: evaluation of distillation, thermal integration and cogeneration systems

    International Nuclear Information System (INIS)

    Dias, Marina O.S.; Modesto, Marcelo; Ensinas, Adriano V.; Nebra, Silvia A.; Filho, Rubens Maciel; Rossell, Carlos E.V.

    2011-01-01

    Demand for bioethanol has grown considerably over the last years. Even though Brazil has been producing ethanol from sugarcane on a large scale for decades, this industry is characterized by low energy efficiency, using a large fraction of the bagasse produced as fuel in the cogeneration system to supply the process energy requirements. The possibility of selling surplus electricity to the grid or using surplus bagasse as raw material of other processes has motivated investments on more efficient cogeneration systems and process thermal integration. In this work simulations of an autonomous distillery were carried out, along with utilities demand optimization using Pinch Analysis concepts. Different cogeneration systems were analyzed: a traditional Rankine Cycle, with steam of high temperature and pressure (80 bar, 510 o C) and back pressure and condensing steam turbines configuration, and a BIGCC (Biomass Integrated Gasification Combined Cycle), comprised by a gas turbine set operating with biomass gas produced in a gasifier that uses sugarcane bagasse as raw material. Thermoeconomic analyses determining exergy-based costs of electricity and ethanol for both cases were carried out. The main objective is to show the impact that these process improvements can produce in industrial systems, compared to the current situation.

  13. Ceramic stationary gas turbine development. Final report, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    This report summarizes work performed by Solar Turbines Inc. and its subcontractors during the period September 25, 1992 through April 30, 1993. The objective of the work is to improve the performance of stationary gas turbines in cogeneration through implementation of selected ceramic components.

  14. EVALUATION OF ENERGY COGENERATION FROM SUGAR CANE BAGASSE

    Directory of Open Access Journals (Sweden)

    Hanserth Abreu Elizundia

    2016-01-01

    Full Text Available In this paper were simulated and evaluated five alternatives of cogeneration scheme that promote a higher production of thermal and electrical energies as well as its right management. The first three alternatives are directed to increasing the boiler pressure and a change of steam turbines which are the extraction-condensation type, and then the fourth alternative proposed a boiler change to implement a bubbling fluidized bed and finally in the fifth alternative a scheme of biomass gasification is analyzed. All scheme were analyzed energetic and exergetically. The five cogeneration alternatives were simulated in ASPEN PLUS; they showed that the largest surplus bagasse and electricity are obtained with the scheme of a biomass gasification and the worst results in these parameters were obtained in the alternative that function in low pressure and temperature parameters

  15. Analysis of energy cogeneration incentive politics to a sodium-chlorine Brazilian chemical plant energy cogeneration; Analise de politicas de incentivo a cogeracao de energia numa planta quimica brasileira de soda-cloro

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, J.B.V.; Borschiver, S. [Universidade Federal do Rio de Janeiro (CT/UFRJ), RJ (Brazil). Centro de Tecnologia], E-mail: suzana@eq.ufrj.br; Szklo, A.S. [Universidade Federal do Rio de Janeiro (PPE/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Planejamento Energetico], E-mail: szklo@ppe.ufrj.br; Andrade, M.H.S. [Braskem S.A., Rio de Janeiro, RJ (Brazil)], E-mail: marcio.andrade@braskem.com.br

    2010-07-01

    This paper evaluates, from a pont of view of investor and through the use of a simulator, the impact of incentive politics to the cogeneration, from the sugar cane bagasse, at a plant for production of sodium-chlorine.

  16. Can Dutch co-generation survive threats of the liberalisation of the energy markets

    International Nuclear Information System (INIS)

    Battjes, J.J.; Rijkers, F.A.M.

    2000-07-01

    The paper presents an analysis of the effects of liberalisation of the Dutch energy markets on the future development of combined heat and power generation (co-generation) in the Netherlands. First, it reviews the historical growth in co-generation in the Netherlands and the supportive policy measures that have contributed to this growth. Second, the liberalisation process of the Dutch electricity market and the Dutch gas market is described. Subsequently, we discuss the impacts of these new market structures on co-generation by using two scenarios for the Dutch energy markets. Our assessment of the impacts is mainly focused on the cost-effectiveness of co-generation projects. We determine the key aspects that influence the cost-effectiveness of a co-generation project and analyse some of the calculations for different small-scale and large-scale co-generation projects. Based on the results, we conclude that investments in new co-generation plants are unlikely in the short term and the existing plants can barely produce with a positive cash flow. As many parties have an interest in reducing the negative effects of a liberalised energy market on co-generation, approaches are sought to improve the cost-effectiveness of co-generation in the Netherlands. We describe several optional supportive measures for co-generation mainly resulting from the determination of the barriers for co-generation. Moreover, Dutch authorities have already responded to these barriers by preparing policy measures such as investment subsidies and exemption from the energy tax. 2 refs

  17. Optimum gas turbine cycle for combined cycle power plant

    International Nuclear Information System (INIS)

    Polyzakis, A.L.; Koroneos, C.; Xydis, G.

    2008-01-01

    The gas turbine based power plant is characterized by its relatively low capital cost compared with the steam power plant. It has environmental advantages and short construction lead time. However, conventional industrial engines have lower efficiencies, especially at part load. One of the technologies adopted nowadays for efficiency improvement is the 'combined cycle'. The combined cycle technology is now well established and offers superior efficiency to any of the competing gas turbine based systems that are likely to be available in the medium term for large scale power generation applications. This paper has as objective the optimization of a combined cycle power plant describing and comparing four different gas turbine cycles: simple cycle, intercooled cycle, reheated cycle and intercooled and reheated cycle. The proposed combined cycle plant would produce 300 MW of power (200 MW from the gas turbine and 100 MW from the steam turbine). The results showed that the reheated gas turbine is the most desirable overall, mainly because of its high turbine exhaust gas temperature and resulting high thermal efficiency of the bottoming steam cycle. The optimal gas turbine (GT) cycle will lead to a more efficient combined cycle power plant (CCPP), and this will result in great savings. The initial approach adopted is to investigate independently the four theoretically possible configurations of the gas plant. On the basis of combining these with a single pressure Rankine cycle, the optimum gas scheme is found. Once the gas turbine is selected, the next step is to investigate the impact of the steam cycle design and parameters on the overall performance of the plant, in order to choose the combined cycle offering the best fit with the objectives of the work as depicted above. Each alterative cycle was studied, aiming to find the best option from the standpoint of overall efficiency, installation and operational costs, maintainability and reliability for a combined power

  18. Cogeneration offers promise - politics permitting

    Energy Technology Data Exchange (ETDEWEB)

    Koprowski, Gene

    1996-12-01

    India`s Prime Minister H D Deve Gowda and the environmental activist Maneka Gandhi clashed recently over a US1.06 billion cogeneration power plant. Gandhi accused Gowda of moving too fast in giving the plant environmental clearance two days after assuming office. The argument, which delayed the start of a new thermal power plant by US-based Cogenetrix, illustrates the hazards of building such projects in Asia. (author)

  19. Incentives for cogeneration in Italy: Logic and implementation

    International Nuclear Information System (INIS)

    Tomassetti, G.

    1992-01-01

    Within the framework of legal and financial incentives made possible through Italian legislation on cogeneration plants for on-site power generation, this paper reviews the planning criteria that went into the formulation of the incentives and the response obtained from small, medium and large industrial firms. The discussion takes into account the following aspects: the optimal timing of retrofits, national energy conservation and environmental policy objectives, energy surcharges, benefits to consumers as compared with those for energy producers, benefits from incentives as a function of cogeneration plant size, and the technical complexity of application requirements for prospective applicants

  20. Steam process cogeneration using nuclear energy

    International Nuclear Information System (INIS)

    Alonso, G.; Ramirez, R.

    2010-10-01

    Use of energy in a sustainable manner is to make processes more efficient. Oil industry requires of electricity and steam for refinery and petrochemical processes, nuclear energy can be a clean energy alternative. Cogeneration is an option to be assessed by Mexico to provide additional value to electricity generation. Mexico is a country with oil resources that requires process heat for gasoline production among other things. With the concern about the climate change and sustain ability policies it is adequate to use cogeneration as a way to optimize energy resources. Currently there is a national program that considers cogeneration for several Mexican refineries, and the first choices are combined cycle plants and thermo power plants using residual oil. This is long term program. The pebble bed modular reactor (PBMR) is a next generation reactors that works with very high temperatures that can be used to produce steam process along with electricity, in this work two different couplings are assessed for the PBMR reactor to produce steam process, the two couplings are compared for using in the Mexican refineries and some conclusions are given. (Author)

  1. Analysis of gas turbine systems for sustainable energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Anheden, Marie

    2000-02-01

    Increased energy demands and fear of global warming due to the emission of greenhouse gases call for development of new efficient power generation systems with low or no carbon dioxide (CO{sub 2}) emissions. In this thesis, two different gas turbine power generation systems, which are designed with these issues in mind, are theoretically investigated and analyzed. In the first gas turbine system, the fuel is combusted using a metal oxide as an oxidant instead of oxygen in the air. This process is known as Chemical Looping Combustion (CLC). CLC is claimed to decrease combustion exergy destruction and increase the power generation efficiency. Another advantage is the possibility to separate CO{sub 2} without a costly and energy demanding gas separation process. The system analysis presented includes computer-based simulations of CLC gas turbine systems with different metal oxides as oxygen carriers and different fuels. An exergy analysis comparing the exergy destruction of the gas turbine system with CLC and conventional combustion is also presented. The results show that it is theoretically possible to increase the power generation efficiency of a simple gas turbine system by introducing CLC. A combined gas/steam turbine cycle system with CLC is, however, estimated to reach a similar efficiency as the conventional combined cycle system. If the benefit of easy and energy-efficient CO{sub 2} separation is accounted for, a CLC combined cycle system has a potential to be favorable compared to a combined cycle system with CO{sub 2} separation. In the second investigation, a solid, CO{sub 2}-neutral biomass fuel is used in a small-scale externally fired gas turbine system for cogeneration of power and district heating. Both open and closed gas turbines with different working fluids are simulated and analyzed regarding thermodynamic performance, equipment size, and economics. The results show that it is possible to reach high power generation efficiency and total (power

  2. Production costs: U.S. gas turbine ampersand combined-cycle power plants

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This fourth edition of UDI's gas turbine O ampersand M cost report gives 1991 operation and maintenance expenses for over 450 US gas turbine power plants. Modeled on UDI's popular series of O ampersand M cost reports for US steam-electric plants, this report shows operator and plant name, plant year-in-service, installed capacity, 1991 net generation, total fuel expenses, total non-fuel O ampersand M expenses, total production costs, and current plant capitalization. Coverage includes over 90 percent of the utility-owned gas/combustion turbine and combined-cycle plants installed in the country

  3. Risks of turbine generators at WWER-440 nuclear power plants

    International Nuclear Information System (INIS)

    Virolainen, T.; Marttila, J.; Aulamo, H.

    1998-01-01

    Many serious fires and incidents have occurred in the turbine halls of nuclear power plants, resulting in serious damage and long shutdown outages. Some of these incidents have endangered the safe shutdown of the plants because of the location of lack of vital fire protection safety systems. A detailed analysis is necessary for all those plants that have equipment important for safe shutdown located in the turbine hall or its vicinity without strict fire separation by fire rated barriers. A reduction in the fire frequencies of the turbine hall is an additional way of improving safety. This is possible by improving all aspects of turbine generator operation. (author)

  4. Research report for fiscal 1998. Basic research for promoting joint implementation, etc. (fuel change plan for No. 1 and No. 9 Irkutsk Heat and Power Co-Generation Plants, Irkutsk, Russia); 1998 nendo chosa hokokusho. Roshia renpo Irkuktsk shu dai 1 go oyobi dai 9 go Irkutsk netsu heikyu hatsudensho nenryo tenkan keikaku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A research is conducted to find out if efficiency will increase and greenhouse gas will decrease when fuel is changed from coal to gas at the above-named plants, and the economics of the plan is reviewed. The No. 1 plant comprises 18 coal-fired boilers with a total design capacity of 2985 tons/hour, and 8 steam turbine generators rated at 185MW, constructed in the 1940s. The No. 9 plant was constructed in the 1960s and 1970s. Four different modifications programs are drafted to study the fuel change plan. As the result, it is found that the addition of natural gas burning facilities to the existing heat and power co-generation plants and the modification of the existing boiler-related facilities will be low in earning rate and reliability, though excellent in budget size and cost efficiency; and that to dismantle the existing plants and to newly construct heat and power plants operating on gas turbines will bring about a higher earning rate, fuel cost reduction effect, and reliability, though such will cost more. (NEDO)

  5. Co-generation potentials of municipal solid waste landfills in Serbia

    Directory of Open Access Journals (Sweden)

    Bošković Goran B.

    2016-01-01

    Full Text Available Waste management in the Republic of Serbia is based on landfilling. As a result of such year-long practice, a huge number of municipal waste landfills has been created where landfill gas has been generated. Landfill gas, which is essentially methane (50-55% and carbon dioxide (40-45% (both GHGs, has a great environmental impact which can be reduced by using landfill gas in cogeneration plants to produce energy. The aim of this paper is to determine economic and environmental benefits from such energy production. For that purpose, the database of cogeneration potentials (CP of 51 landfills in the Republic of Serbia (RS was created. Amount of landfill gas generated at each municipal landfill was calculated by applying a first order decay equation which requires the data about solid waste production and composition and about some landfill characteristics. For all landfills, which have over 100,000 m3 each, a techno-economic analysis about building a CHP plant was conducted. The results have shown, that the total investment in 14 CHP plants with payback period of less than 7 years amounts € 11,721,288. The total nominal power of these plants is 7 MW of electrical power and 7.9 MW of thermal power, and an average payback period is about 61 months. In addition, using landfill biogas as energy source in proposed plants would reduce methane emission for 161,000 tons of CO2 equivalent per year. [Projekat Ministarstva nauke Republike Srbije, br. III 42013: Research of cogeneration potential of municipal and industrial energy power plant in Republic of Serbia and opportunities for rehabilitation of existing and construction of new cogeneration plants

  6. INCOGEN pre-feasibility study. Nuclear cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Van Heek, A.I.; De Haas, J.B.M.; Hogenbirk, A.; Klippel, H.T.; Kuijper, J.C.; Schram, R. [Netherlands Energy Research Foundation ECN, Petten (Netherlands); Hoogenboom, J.E.; Valko, J. [Interfaculty Reactor Institute IRI, Delft (Netherlands); Kanij, J.B.W.; Eendebak, B.T.; De Groot, P.C.; De Kler, R.C.F.; Stempniewicz, M.M. [KEMA, Arnhem (Netherlands); Van Dijk, A.B.; Bredman, B.; Van Essen, D.; Holtz, E.; Op `t Veld, R.; Tjemmes, J.G. [Stork Nucon, Amsterdam (Netherlands); Crommelin, G.A.K.; Crommelin-de Jonge, M.T. [eds.] [ROMAWA, Voorschoten (Netherlands)

    1997-09-01

    The Netherlands Programme to Intensify Nuclear Competence (PINK, abbreviated in Dutch) supported the technical and economical evaluation of a direct cycle High Temperature Reactor (HTR) installation for combined heat and power generation. This helium cooled, graphite moderated HTR based on the German HTR-M, is named INCOGEN (Inherently safe Nuclear COGENeration). The INCOGEN reference is a 40 MW HTR design by the US company Longmark Power International (LPI). The energy conversion system comprises a single-shaft helium turbine-compressor (2.3-1.0 MPa) directly coupled with a 16.5 MW generator, a recuperator and low-temperature (150C to 40C) heat exchangers (23 MW). Spherical fuel elements (60 mm diameter) will be added little by little, which keeps the core only marginally critical. Void core volume can accommodate added fuel for several years until defuelling. Analyses of failure scenarios (loss of coolant accident or LOCA, loss of flow accident or LOFA, anticipated transient without scram or ATWS) show no excess of maximum acceptable fuel temperature of 1600C. Scoping analyses indicate no severe graphite fires. Transient analyses of the turbine-compressor system indicate adequate control flexibility. Optimization and endurance testing of the helium turbine-compressor is recommended.

  7. Steam turbine chemistry in light water reactor plants

    International Nuclear Information System (INIS)

    Svoboda, Robert; Haertel, Klaus

    2008-01-01

    Steam turbines in boiling water reactor (BWR) and pressurized water reactor (PWR) power plants of various manufacturers have been affected by corrosion fatigue and stress corrosion cracking. Steam chemistry has not been a prime focus for related research because the water in nuclear steam generating systems is considered to be of high purity. Steam turbine chemistry however addresses more the problems encountered in fossil fired power plants on all volatile treatment, where corrosive environments can be formed in zones where wet steam is re-evaporated and dries out, or in the phase transition zone, where superheated steam starts to condense in the low-pressure (LP) turbine. In BWR plants the situation is aggravated by the fact that no alkalizing agents are used in the cycle, thus making any anionic impurity immediately acidic. This is illustrated by case studies of pitting corrosion of a 12 % Cr steel gland seal and of flow-oriented corrosion attack on LP turbine blades in the phase transition zone. In PWR plants, volatile alkalizing agents are used that provide some buffering of acidic impurities, but they also produce anionic decomposition products. (orig.)

  8. Economic study on compressed energy storage cogeneration system in urban areas

    International Nuclear Information System (INIS)

    Uchiyama, Youji

    1991-01-01

    Due to the concentration of functions into cities and the spread of room cooling facilities, the energy demand in cities increased rapidly especially in summer season. The improvement of load factor of electric power has become an important subject for electric power companies, and as the technology for positively improving it, there is electric power storage. As for compressed air energy storage (CAES) system, its introduction, has been investigated as the electric power storage technology for the future in electric power business, but since it is also gas turbine technology, it becomes a cogeneration system. If the waste heat of gas turbines and compressors can be utilized effectively, not only the load factor of electric power is improved, but also it contributes to the improvement of overall energy efficiency and the improvement of environmental problems. This research is to study on the feasibility of compressed air energy storage centering around its economical efficiency when it is installed in customer side as the cogeneration system in cities. The features of CAES, the tendency of the development in Japan and foreign countries, the introduction of CAES in new town districts and the economy are described. (K.I.)

  9. CDM potential of bagasse cogeneration in India

    International Nuclear Information System (INIS)

    Purohit, Pallav; Michaelowa, Axel

    2007-01-01

    So far, the cumulative capacity of renewable energy systems such as bagasse cogeneration in India is far below their theoretical potential despite government subsidy programmes. One of the major barriers is the high investment cost of these systems. The Clean Development Mechanism (CDM) provides industrialized countries with an incentive to invest in emission reduction projects in developing countries to achieve a reduction in CO 2 emissions at lowest cost that also promotes sustainable development in the host country. Bagasse cogeneration projects could be of interest under the CDM because they directly displace greenhouse gas emissions while contributing to sustainable rural development. This study assesses the maximum theoretical as well as the realistically achievable CDM potential of bagasse cogeneration in India. Our estimates indicate that there is a vast theoretical potential of CO 2 mitigation by the use of bagasse for power generation through cogeneration process in India. The preliminary results indicate that the annual gross potential availability of bagasse in India is more than 67 million tonnes (MT). The potential of electricity generation through bagasse cogeneration in India is estimated to be around 34 TWh i.e. about 5575 MW in terms of the plant capacity. The annual CER potential of bagasse cogeneration in India could theoretically reach 28 MT. Under more realistic assumptions about diffusion of bagasse cogeneration based on past experiences with the government-run programmes, annual CER volumes by 2012 could reach 20-26 million. The projections based on the past diffusion trend indicate that in India, even with highly favorable assumptions, the dissemination of bagasse cogeneration for power generation is not likely to reach its maximum estimated potential in another 20 years. CDM could help to achieve the maximum utilization potential more rapidly as compared to the current diffusion trend if supportive policies are introduced

  10. Cogeneration cycles applied to desalination in the Arab World: state of the art

    International Nuclear Information System (INIS)

    Yassin, Jamal Saleh

    2006-01-01

    This paper presents a review of cogeneration cycles applied to water desalination in most of the Arab countries. The scarcity of fresh water resources in many countries around the world, and in particular Gulf countries and north African countries such as Libya and Tunisia forced the local authorities to establish many desalination plants to compensate the water shortage. Some plants are conventional for desalination processes only and others are with cogeneration cycle. The high performance of cogeneration cycles encouraged establishing combined power and desalination plants. The present study is intended to provide an overview of cogeneration cycles in conjunction with desalination technologies under the two main resources of energy, fossils and renewables. Thermal technologies, which utilize fossil resource constitute the mainstay of large-scale desalination in the Arab countries and enjoy a relatively important position worldwide. While the technologies which utilize renewable resources such as solar are getting more attention year by year and still under research and almost for small units.(Author)

  11. Cogeneration and the regulatory framework of energy law; Kraft-Waerme-Kopplung und der energiewirtschaftliche Ordnungsrahmen

    Energy Technology Data Exchange (ETDEWEB)

    Cornehl, Angelika Bettina

    2009-06-15

    The present publication shows that the existing regulatory framework poses numerous impediments to cogeneration plants. This holds especially for industrial operators, but also for municipalities. It has prevented cogeneration from developing its full potential both as an element of competition and as a relief for the environment. Unlike industrial cogeneration plants, those serving the public energy supply at least enjoy the privilege of regional monopoly rights. In today's liberalised electricity market, however, this can be a burden for existing municipal plants which were installed under territorial protection and in many cases have incurred high cost levels and become inflexible and lacking in entrepreneurial spirit as a result. On account of its tendency to promote optimal resource input and efficiency, competition promises positive impulses for the use of cogeneration in small-scale heat grids, where high fuel efficiency matters more. A reform of the competition regime in the power economy would eliminate numerous impediments, particularly for industrial cogeneration operators. Good hopes for the future of cogeneration in a liberalised electricity and gas market are also nurtured by cooperative supply concepts and, within the large domain of services, opportunities held out by special contracting offers.

  12. FY 2000 report on the basic survey to promote Joint Implementation, etc. Survey of gas-fired cogeneration in Samarkand City; 2000 nendo kyodo jisshii nado suishin kiso chosa hokokusho. Samarkand shi gas daki cogeneration chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In the existing heat supply plant in Samarkand City in Uzbekistan, feasibility study was conducted of the project aimed at energy conservation and reduction in greenhouse effect gas emission by introducing the repair/cogeneration system of the regional pipes superannuated. In the project, the following were planned: introduction of two units of 6MW class gas turbine cogeneration, introduction of boiler which can realize 90% of the thermal efficiency, replacement of the existing regional pipes with pre-insulated pipes with less water leak/heat loss, etc. As a result of the study, the energy conservation amount was 21,006 toe, and the amount of greenhouse effect gas reduction was 64,998 t-CO2/y. As to the effects vs. expenses, the energy conservation was 2.80 toe/million yen, and the greenhouse effect gas reduction was 8.66 t-CO2-y/million yen. The initial investment amount was 7.51 billion yen, the business profit was 468 million yen/y, and the internal earning rate was 1.133%. It was judged that great profitability was not expected for the project, but the profit was returnable on investment. (NEDO)

  13. Evaluating Interventions in the U.S. Electricity System: Assessments of Energy Efficiency, Renewable Energy, and Small-Scale Cogeneration

    Science.gov (United States)

    Siler-Evans, Kyle

    There is growing interest in reducing the environmental and human-health impacts resulting from electricity generation. Renewable energy, energy efficiency, and energy conservation are all commonly suggested solutions. Such interventions may provide health and environmental benefits by displacing emissions from conventional power plants. However, the generation mix varies considerably from region to region and emissions vary by the type and age of a generator. Thus, the benefits of an intervention will depend on the specific generators that are displaced, which vary depending on the timing and location of the intervention. Marginal emissions factors (MEFs) give a consistent measure of the avoided emissions per megawatt-hour of displaced electricity, which can be used to evaluate the change in emissions resulting from a variety of interventions. This thesis presents the first systematic calculation of MEFs for the U.S. electricity system. Using regressions of hourly generation and emissions data from 2006 through 2011, I estimate regional MEFs for CO2, NO x, and SO2, as well as the share of marginal generation from coal-, gas-, and oil-fired generators. This work highlights significant regional differences in the emissions benefits of displacing a unit of electricity: compared to the West, displacing one megawatt-hour of electricity in the Midwest is expected to avoid roughly 70% more CO2, 12 times more SO 2, and 3 times more NOx emissions. I go on to explore regional variations in the performance of wind turbines and solar panels, where performance is measured relative to three objectives: energy production, avoided CO2 emissions, and avoided health and environmental damages from criteria pollutants. For 22 regions of the United States, I use regressions of historic emissions and generation data to estimate marginal impact factors, a measure of the avoided health and environmental damages per megawatt-hour of displaced electricity. Marginal impact factors are used

  14. Assessment of an atmospheric fluidized-bed coal-combustion gas-turbine cogeneration system for industrial application

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R. L.; Holcomb, R. S.; Tallackson, J. R.

    1979-10-01

    This study was initiated to provide information on the future potential industrial market for a cogeneration system consisting of a fluidized-bed coal combustor coupled to a gas-turbine (Brayton cycle) power system that uses air as the working fluid. In assessing the potential applications for the system, the process heat energy consumption by industry is identified, with special detail included on the six most energy-intensive industries. The potential impact on the nation's oil and natural gas consumption that would result from wide-spread utilization of coal for process heat is also estimated. The fraction of industrial process heat that the system could feasibly satisfy from a thermodynamic viewpoint is estimated, and the performance (potential fuel efficiency and heat/power ratio) of the atmospheric fluidized-bed gas-turbine system is calculated. Also treated are several specific case studies of industries in which the system could be incorporated. Major parameters are specified, and flow sheets are derived for systems that would satisfy the heat and power requirements of the process or industry. The overall fuel utilization efficiency, thermal power rating, and potential number of installations are specified for these case studies. The findings of the study indicate that there is a sizable potential market for the system, with over 1000 possible installations disclosed after reviewing only 8 specific industries from 6 major Standard Industrial Classification (SIC) groups. The potential displacement of oil and gas by coal in process heating is shown to be about 1.60 m/sup 3//sec (870,000 bbl/d) of oil and 4590 m/sup 3//sec (14.0 billion ft/sup 3//d) of natural gas for all industries combined. Continued development of the fluidized-bed coal combustor and power system is recommended so that this potential may be at least partially realized.

  15. Comparison of performances of full-speed turbine and half-speed turbine for nuclear power plants

    International Nuclear Information System (INIS)

    Wang Hu; Zhang Weihong; Zhang Qiang; Li Shaohua

    2010-01-01

    The steam turbines of nuclear power plants can be divided into the full-speed turbine and half-speed turbine. Different speed leads to differences in many aspects. Therefore, the rational speed is the key point in the selection of steam turbines. This paper contrasts the economy between the half-speed turbine and full-speed turbine, by calculating the relative internal efficiency of half-speed and full-speed steam turbines with the typical level of 1000 megawatt. At the same time, this paper also calculate the relative speed of high speed water drops in the last stage blade of half-speed turbine and full-speed turbine, to contrast the water erosion between the half-speed turbine and full-speed turbine. The results show that the relative internal efficiency of half-speed turbine is higher than that of the full-speed turbine, and that the security especially the ability of preventing water erosion of half-speed turbine is better than that of the full-speed turbine. (authors)

  16. Biomass cogeneration: A business assessment

    Science.gov (United States)

    Skelton, J. C.

    1981-11-01

    The biomass cogeneration was reviewed. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  17. The performance of a temperature cascaded cogeneration system producing steam, cooling and dehumidification

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Youngdeuk; Ng, K. C.

    2013-01-01

    This paper discusses the performance of a temperature-cascaded cogeneration plant (TCCP), equipped with an efficient waste heat recovery system. The TCCP, also called a cogeneration system, produces four types of useful energy-namely, (i

  18. Performance assessment of non-self-regulating controllers in a cogeneration power plant

    International Nuclear Information System (INIS)

    Howard, Rachelle; Cooper, Douglas J.

    2009-01-01

    This work details a novel method for assessing the performance of a PI (proportional-integral) feedback controller when the process displays non-self-regulating dynamic behavior. By applying an intuitive process control-based pattern recognition method to the autocorrelation function of the process measurement signal, the controller's disturbance rejection performance can automatically be categorized. Stochastic data collected over days or weeks is analyzed to compute an index descriptive of current controller performance. If the control response has drifted from a user-defined target value, the analysis further provides a guide for tuning adjustments to restore desired performance. Significant aspects of this approach are that no plant disruption or process knowledge is required for evaluation. Classic examples of non-self-regulating behavior include certain liquid level control loops and pressure control loops which are prevalent in cogeneration power plants. In this work, we detail how the performance assessment method was used to improve performance of such controllers in the University of Connecticut's power plant.

  19. optimal selection of hydraulic turbines for small hydro electric power

    African Journals Online (AJOL)

    eobe

    Keywords: optimal selection, SHP turbine, flow duration curve, energy efficiency, annual capacity factor. 1. INTRODUCTION ... depleted, with adverse environmental impacts downstream ..... Technologies, Financing Cogeneration and Small -.

  20. Micro gas turbines: An advanced technology for cogeneration in small- and medium-sized companies; Mikro-Gasturbinen: Eine neue Technologie zur Kraft-Waerme-Kopplung in kleinen und mittleren Unternehmen?

    Energy Technology Data Exchange (ETDEWEB)

    Bouvy, C.; Kuperjans, I. [Lehrstuhl fuer Technische Thermodynamik, RWTH Aachen (Germany)

    2004-07-01

    Micro gas turbines are a new technology for cogeneration with capacities of less than 300 kW{sub el}. Owing to the high heat level of up to 650 degrees centigrade, this is a promising technology for small and medium-sized industrial organisations who need process heat and have a low electric base load power consumption. A potential is viewed especially in process steam production and in direct drying. However, as the economic efficiency depends on the process boundary conditions, the project comprised the development of calculation tables to support the decision finding process. (orig.)

  1. Review of the cost estimate and schedule for the 2240-MWt high-temperature gas-cooled reactor steam-cycle/cogeneration lead plant

    International Nuclear Information System (INIS)

    1983-09-01

    This report documents Bechtel's review of the cost estimate and schedule for the 2240 MWt High Temperature Gas-Cooled Reactor Steam Cycle/Cogeneration (HTGR-SC/C) Lead Plant. The overall objective of the review is to verify that the 1982 update of the cost estimate and schedule for the Lead Plant are reasonable and consistent with current power plant experience

  2. Component design considerations for gas turbine HTGR waste-heat power plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; Vrable, D.L.

    1976-01-01

    Component design considerations are described for the ammonia waste-heat power conversion system of a large helium gas-turbine nuclear power plant under development by General Atomic Company. Initial component design work was done for a reference plant with a 3000-MW(t) High-Temperature Gas-Cooled Reactor (HTGR), and this is discussed. Advanced designs now being evaluated include higher core outlet temperature, higher peak system pressures, improved loop configurations, and twin 4000-MW(t) reactor units. Presented are the design considerations of the major components (turbine, condenser, heat input exchanger, and pump) for a supercritical ammonia Rankine waste heat power plant. The combined cycle (nuclear gas turbine and waste-heated plant) has a projected net plant efficiency of over 50 percent. While specifically directed towards a nuclear closed-cycle helium gas-turbine power plant (GT-HTGR), it is postulated that the bottoming waste-heat cycle component design considerations presented could apply to other low-grade-temperature power conversion systems such as geothermal plants

  3. FY1999 annual report on the research and development on practical industrial cogeneration technology; 1999 nendo sangyoyo cogeneration jitsuyo gijutsu kaihatsu kenkyu seika

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The basic plan aims to quicken the practical application of the industrial HBGT (hybrid gas turbine) cogeneration technology and thereby to realize high-efficiency energy utilization for reduction in CO2 emission. For this purpose, a medium-scale HBGT, expected to be high in efficiency and low in polluting, and its components are subjected to assessment tests and endurance tests to prove that there are reliability and soundness in HBGT. Ceramic members are developed which are high in strength at elevated temperatures and in resistance to oxidation, and are subjected to assessment so that they will be further improved in reliability and durability. An HBGT is designed, fabricated, and operated. The engine system is tested for performance, and the performance is improved. It is put to a long-term operation, which is to confirm the presence of soundness and reliability in HBGT as an industrial cogeneration system. Industrial fields in which HBGT will be useful are selected and surveys are conducted to find out how it will function in such selected fields. Problems which HBGT will encounter upon practical application are extracted, and measures for solving them are clarified. Such an HBGT will have a shaft output of approximately 8,000kW, engine thermal efficiency of not less than 34%, and a turbine inlet temperature of approximately 1,250 degrees C. (NEDO)

  4. The cogeneration potential of the sugar industry in Vietnam

    International Nuclear Information System (INIS)

    Bhattacharyya, S.C.; Thang, D.N.Q.

    2004-01-01

    Vietnam produces about 15 million tons of sugarcane per year and about five mt of bagasse. There is the potential for cogeneration using bagasse, which can also help overcome power shortages in the country. This paper analyses the potential for cogeneration from the sugar industry in Vietnam under three different scenarios and finds that between 100 and 300 megawatts of power-generating capacity could be supported by the bagasse generated from sugar mills, depending on the technology considered for sugar mills and cogeneration and the possibility of renovation of the existing mills. The paper also assesses the expense of cogeneration and finds it to be a cost-effective option for all types of sugar mill. It is found that the cost savings from cogeneration would more than offset the cost of introducing cogeneration in sugar mills with inefficient cane processing technologies. Sugar mills with modern technologies would have a significant amount of excess power and most of these plants would break-even if they sold excess power at around 4.5 cents per kilowatt hour. The break-even cost and the average production cost are sensitive to the investment cost assumptions. The paper thus suggests that cogeneration from the sugar industry is an attractive option for investors in existing mills or new sugar mills alike. (Author)

  5. Termoacu Cogeneration: gas, power and oil; Cogeracao Termoacu: gas, energia e oleo

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Geraldo Jose; Gomes, Cicero Sena Moreira [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    This paper describes the evolution of a project that involves cogeneration of power and steam for continuous injection in oil wells in the fields of Alto do Rodrigues and Estreito, in Rio Grande do Norte, Brazil. The project combines a PETROBRAS intention for recovering heavy oil in that area with partners intention of generating power to connect in a critical point of the Brazilian Electric System. PETROBRAS studies began in the nineties, when oil wells in that area became old end showed the necessity of some oil recovery technology. In 1999, PETROBRAS and Guaraniana made a partnership for implementation of Termoacu Combined Cycle, that would begin operation as a cogeneration plant for thirteen years, and as combined cycle from that point. The profile of steam injection has been adapted to a new one to comply with the powe r capacity of the Plant, and will operate eight years as a cogeneration plant , four years as a combined cycle with cogeneration and after twelve years as a complete combined cycle with 500 MW of capacity. The project integrates a gas pipeline, a Thermal Power Plant, a Transmission Line to connect to the grid and a Steam Pipeline for steam injection at Estreito and Alto do Rodrigues fields. (author)

  6. Cogeneration in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Cotard, E. [International Cogeneration Alliance (United States)

    2000-10-01

    The short article discusses pollution abatement and the potential role of cogeneration in Taiwan. A diagram shows the contributions of various energy sources (coal, oil etc.) from 1979-1999 and the growth of cogeneration between 1979 and 1999. The lack of natural gas or diesel does not help the cause of cogeneration in Taiwan, nor does the structure of the local electricity market. Nevertheless, if the proposed new LNG facilities are built in the North, then the opportunities for cogeneration will be very good.

  7. Modeling of Turbine Cycles Using a Neuro-Fuzzy Based Approach to Predict Turbine-Generator Output for Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Yea-Kuang Chan

    2012-01-01

    Full Text Available Due to the very complex sets of component systems, interrelated thermodynamic processes and seasonal change in operating conditions, it is relatively difficult to find an accurate model for turbine cycle of nuclear power plants (NPPs. This paper deals with the modeling of turbine cycles to predict turbine-generator output using an adaptive neuro-fuzzy inference system (ANFIS for Unit 1 of the Kuosheng NPP in Taiwan. Plant operation data obtained from Kuosheng NPP between 2006 and 2011 were verified using a linear regression model with a 95% confidence interval. The key parameters of turbine cycle, including turbine throttle pressure, condenser backpressure, feedwater flow rate and final feedwater temperature are selected as inputs for the ANFIS based turbine cycle model. In addition, a thermodynamic turbine cycle model was developed using the commercial software PEPSE® to compare the performance of the ANFIS based turbine cycle model. The results show that the proposed ANFIS based turbine cycle model is capable of accurately estimating turbine-generator output and providing more reliable results than the PEPSE® based turbine cycle models. Moreover, test results show that the ANFIS performed better than the artificial neural network (ANN, which has also being tried to model the turbine cycle. The effectiveness of the proposed neuro-fuzzy based turbine cycle model was demonstrated using the actual operating data of Kuosheng NPP. Furthermore, the results also provide an alternative approach to evaluate the thermal performance of nuclear power plants.

  8. INCOGEN: Nuclear cogeneration in the Netherlands

    International Nuclear Information System (INIS)

    Heek, A.I. van

    1997-01-01

    A small heat and power cogeneration plant with a pebble bed high temperature reactor (HTR) is discussed. Cogeneration could be a new market for nuclear power and the HTR could be very suitable. The 40 MWth INCOGEN system is presented. Philosophy, layout, characteristics and performance are described. The lower power level, advanced component technologies and inherent safety features are used to obtain a maximally simplified system. Static and dynamic cycle analyses of the energy conversion system are discussed, as well as the behaviour of the reactor cavity cooling system. Although the cost study has not been finished yet, cost reduction trends are indicated. (author)

  9. Economic potential of natural gas-fired cogeneration in Brazil: two case studies

    Energy Technology Data Exchange (ETDEWEB)

    Szklo, Alexandre Salem; Soares, Jeferson Borghetti; Tolmasquim, Mauricio Tiomno [Rio de Janeiro Federal Univ., Energy Planning Program (COPPE), Rio de Janeiro (Brazil); Cidade Univ., Ilha do Fundao, Rio de Janeiro (Brazil)

    2000-11-01

    Recent restructuring of Brazil's power sector, allied to the expected larger share of natural gas in the nation's grid and the cost reductions of gas-fired power generation technologies, has introduced a set of situations apparently favorable to the expansion of natural gas-fired cogeneration. However, electricity self-generation applications are restricted to specific cases in Brazil. In order to deal with this issue, the COGEN model was developed to assess the economic potential of cogeneration ventures from the standpoint of the investor and guide incentive public policies. This model has been applied to two cases in Brazil -- a chemical plant and a shopping mall -- showing that the highest economic potential for gas-fired cogeneration in Brazil is found in industrial plants faced with high values of loss of load. In the commercial sector, measures reshaping the load curve of enterprises -- such as cold storage --- might be much more interesting than fired cogeneration. (Author)

  10. Cogeneration: Key feasibility analysis parameters

    International Nuclear Information System (INIS)

    Coslovi, S.; Zulian, A.

    1992-01-01

    This paper first reviews the essential requirements, in terms of scope, objectives and methods, of technical/economic feasibility analyses applied to cogeneration systems proposed for industrial plants in Italy. Attention is given to the influence on overall feasibility of the following factors: electric power and fuel costs, equipment coefficients of performance, operating schedules, maintenance costs, Italian Government taxes and financial and legal incentives. Through an examination of several feasibility studies that were done on cogeneration proposals relative to different industrial sectors, a sensitivity analysis is performed on the effects of varying the weights of different cost benefit analysis parameters. With the use of statistical analyses, standard deviations are then determined for key analysis parameters, and guidelines are suggested for analysis simplifications

  11. Evolution of Italian environmental normative on cogeneration and application of Law 10/91

    International Nuclear Information System (INIS)

    Piancastelli, E.

    1992-01-01

    From the Proceedings of the FIRE (Italian Federation for the Rational use of Energy), December 12 - 13, 1991, meeting, separate abstracts were prepared for 2 papers. The main topics were: the planning criteria that went into the formulation of the incentives made possible through Italian legislation on cogeneration plants for on-site power generation and the response obtained from small, medium and large industrial firms; the evaluation of cogeneration plants for on-site power generation to allow prospective cogeneration plant owners to build energy/cost efficient plants and to be able to make a proper assessment of eligible financial assistance which may be obtained through the provisions of energy conservation/environmental protection normatives and laws set up by the Italian National Energy Plan; and the determination of optimal contracts with ENEL (the Italian National Electricity Board), especially for the case of excess power to be ceded to the national grid

  12. Modeling and Experimental Study of a Small Scale Olive Pomace Gasifier for Cogeneration: Energy and Profitability Analysis

    Directory of Open Access Journals (Sweden)

    Domenico Borello

    2017-11-01

    Full Text Available A thermodynamic model of a combined heat and power (CHP plant, fed by syngas produced by dry olive pomace gasification is here presented. An experimental study is carried out to inform the proposed model. The plant is designed to produce electric power (200 kWel and hot-water by using a cogenerative micro gas turbine (micro GT. Before being released, exhausts are used to dry the biomass from 50% to 17% wb. The ChemCad software is used to model the gasification process, and input data to inform the model are taken from experimental tests. The micro GT and cogeneration sections are modeled assuming data from existing commercial plants. The paper analyzes the whole conversion process from wet biomass to heat and power production, reporting energy balances and costs analysis. The investment profitability is assessed in light of the Italian regulations, which include feed-in-tariffs for biomass based electricity generation.

  13. The actions of European cities about the use of new technologies of small size cogeneration; Les actions de villes europeennes sur l'utilisation des nouvelles technologies de petite cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Schilken, P

    2001-07-01

    After numerous experiences in the domain of big and medium-size cogeneration, some European municipalities, in particular in Germany, are developing small-size cogeneration units. The aim of this study is, first, to examine the policies and experiences of municipalities and municipal energy companies in terms of technology utilization and the way they have integrated these new technologies in existing installations. Secondly, its aim is to provide some information about the technical and organizational aspects, in particular about the difficulties encountered and the results obtained. In the domain of small cogeneration, various technologies enter in competition: combustion engines, combustion turbines, Stirling engine and fuel cells, which have reached different stages of technical and commercial development. All these technologies are described in case-forms. The ten examples described in these forms (Aachen (DE), Armagh (UK), Arnhem (NL), Basel (CH), Bielefeld (DE), Berlin (DE), Chelles (FR), Frankfurt (DE), Land Hessen (DE), and Ludwigshafen (DE)), indicate that today, only the facilities equipped with gas engines are economically competitive with respect to other means of electricity and heat generation. (J.S.)

  14. Modernization of turbines in fossil and nuclear power plants

    International Nuclear Information System (INIS)

    Harig, T.; Oeynhausen, H.

    2004-01-01

    Steam turbine power plants have a big share in power generation world-wide. In view of their age structure, they offer the biggest potential for increasing power plant performance, availability and environmental protection. Modernisation and replacement of key components by improved components will reduce fuel consumption and improve power plant performance by higher capacity, higher power, shorter start-up and shutdown times, and reduced standstill times. Modern steam turbine bladings will result in further improvements without additional fuel consumption. (orig.)

  15. CDM incidence in the economical feasibility of cogeneration in Argentine; Incidencia del MDL en la factibilidad economica de sistemas de cogeneracion industrial en Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Sosa, Maria Isabel; Fushimi, Alberto [Universidad Nacional de La Plata (UNLP), La Plata, BA (Argentina). Fac. de Ingenieria. Area Departamental Mecanica], e-mail: misosa@volta.ing.unlp.edu.ar, e-mail: afushimi@volta.ing.unlp.edu.ar

    2006-07-01

    In this paper, the contribution to the financial and economic feasibility of cogeneration systems with gas turbine and exhaust gas heat recovery boiler is discussed in function of the financial credit for reduction of greenhouse gases emissions (GH Gs) by using the Clean Development Mechanism (CDM). It has to be kept in mind the restrictions of these systems to be capital intensive projects subject to the effects of the economy of scale. Other factors to take into account are the constancy of the heat demand, the rates of sale of electricity and steam surpluses, the regulatory laws, the ignorance of the cogeneration technologies on the part of the investor, among others. The profitability of the investment for implementation of a cogeneration system can be elevated in large facilities with gas turbines and heat recovery boiler (T G + HRSG). Results discussed in previous papers are pointed out and new conclusions are enunciated. (author)

  16. Feasibility study on rehabilitation of MEPE gas turbine power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Myanmar generates majority of the whole electric power by using thermal power plants consisting of single gas turbines, and gas and steam composite turbines. However, because of chronic power shortage and fund unavailability, the major gas turbines are being operated in quite inadequate environment. As a result, reduction in power generation efficiency has become manifest due to aged deterioration, increasing the quantity of CO2 emission. The present project is, in order to link it to the 'Clean Development Mechanism' being carried out with developing countries, and placing Tharkayta Power Plant as the object, intended to comprehensively discuss a rehabilitation program to renew the existing gas turbines with advanced ones, in relation with feasibility of the project implementation including the effect of CO2 emission reduction, profitability, and proliferation effects. A prospect was acquired that, by replacing the gas turbines alone with 25-MW class gas turbines, the plant output will increase to 97.2 MW (78.5 MW in the existing facilities) and the plant efficiency to 43.3% (36.5% in the existing facilities). The energy saving effect during a period of 40 years would be 708,000 (toe) as heat consumption converted to crude oil, and the CO2 emission reducing effect would be 2,160,000 (t-CO2), respectively. (NEDO)

  17. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant

    International Nuclear Information System (INIS)

    Chan, Yea-Kuang; Tsai, Yu-Ching

    2017-01-01

    The objective of this study is to develop a turbine cycle model using the multiple regression approach to estimate the turbine-generator output for the Chinshan Nuclear Power Plant (NPP). The plant operating data was verified using a linear regression model with a corresponding 95% confidence interval for the operating data. In this study, the key parameters were selected as inputs for the multiple regression based turbine cycle model. The proposed model was used to estimate the turbine-generator output. The effectiveness of the proposed turbine cycle model was demonstrated by using plant operating data obtained from the Chinshan NPP Unit 2. The results show that this multiple regression based turbine cycle model can be used to accurately estimate the turbine-generator output. In addition, this study also provides an alternative approach with simple and easy features to evaluate the thermal performance for nuclear power plants.

  18. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Yea-Kuang; Tsai, Yu-Ching [Institute of Nuclear Energy Research, Taoyuan City, Taiwan (China). Nuclear Engineering Division

    2017-03-15

    The objective of this study is to develop a turbine cycle model using the multiple regression approach to estimate the turbine-generator output for the Chinshan Nuclear Power Plant (NPP). The plant operating data was verified using a linear regression model with a corresponding 95% confidence interval for the operating data. In this study, the key parameters were selected as inputs for the multiple regression based turbine cycle model. The proposed model was used to estimate the turbine-generator output. The effectiveness of the proposed turbine cycle model was demonstrated by using plant operating data obtained from the Chinshan NPP Unit 2. The results show that this multiple regression based turbine cycle model can be used to accurately estimate the turbine-generator output. In addition, this study also provides an alternative approach with simple and easy features to evaluate the thermal performance for nuclear power plants.

  19. Methods of increasing thermal efficiency of steam and gas turbine plants

    Science.gov (United States)

    Vasserman, A. A.; Shutenko, M. A.

    2017-11-01

    Three new methods of increasing efficiency of turbine power plants are described. Increasing average temperature of heat supply in steam turbine plant by mixing steam after overheaters with products of combustion of natural gas in the oxygen. Development of this idea consists in maintaining steam temperature on the major part of expansion in the turbine at level, close to initial temperature. Increasing efficiency of gas turbine plant by way of regenerative heating of the air by gas after its expansion in high pressure turbine and before expansion in the low pressure turbine. Due to this temperature of air, entering combustion chamber, is increased and average temperature of heat supply is consequently increased. At the same time average temperature of heat removal is decreased. Increasing efficiency of combined cycle power plant by avoiding of heat transfer from gas to wet steam and transferring heat from gas to water and superheated steam only. Steam will be generated by multi stage throttling of the water from supercritical pressure and temperature close to critical, to the pressure slightly higher than condensation pressure. Throttling of the water and separation of the wet steam on saturated water and steam does not require complicated technical devices.

  20. Development of small ceramic gas turbines for cogeneration

    International Nuclear Information System (INIS)

    1998-01-01

    Details of the project at NEDO to develop 300 kW ceramic gas turbines with a thermal efficiency of ≥42% at a turbine inlet temperature (TIT) of 1,350 o C. The project is part of the 'New Sunshine Projects' promoted by Japan's Agency of Industrial Science and Technology and the Ministry of International Trade and Industry. So far, a thermal efficiency of 37% at a TIT of 1,280 o C has been achieved by a basic ceramic gas turbine (CGT). Work to develop pilot CGTs to achieve the final target is being carried out alongside research and development of ceramic parts and improved performance of ceramic components for CGTs. One group of engine and ceramic manufacturers is developing a single shaft regenerative cycle CGT (CGT 301) and a second group a double shaft type (CGT 302). The heat-resistant ceramic parts, nitrogen oxide emissions and performance of these two prototypes are outlined and the properties of the ceramic materials used are indicated. Market estimates and economics are noted

  1. Thermal performance of gas turbine power plant based on exergy analysis

    International Nuclear Information System (INIS)

    Ibrahim, Thamir K.; Basrawi, Firdaus; Awad, Omar I.; Abdullah, Ahmed N.; Najafi, G.; Mamat, Rizlman; Hagos, F.Y.

    2017-01-01

    Highlights: • Modelling theoretical framework for the energy and exergy analysis of the Gas turbine. • Investigated the effects of ambient temperature on the energy and exergy performance. • The maximum exergy loss occurs in the gas turbine components. - Abstract: This study is about energy and exergy analysis of gas turbine power plant. Energy analysis is more quantitatively while exergy analysis is about the same but with the addition of qualitatively. The lack quality of the thermodynamic process in the system leads to waste of potential energy, also known as exergy destruction which affects the efficiency of the power plant. By using the first and second law of thermodynamics, the model for the gas turbine power plant is built. Each component in the thermal system which is an air compressor, combustion chamber and gas turbine play roles in affecting the efficiency of the gas turbine power plant. The exergy flow rate for the compressor (AC), the combustion chamber (CC) and the gas turbine (GT) inlet and outlet are calculated based on the physical exergy and chemical exergy. The exergy destruction calculation based on the difference between the exergy flow in and exergy flow out of the component. The combustion chamber has the highest exergy destruction. The air compressor has 94.9% and 92% of exergy and energy efficiency respectively. The combustion chamber has 67.5% and 61.8% of exergy and energy efficiency respectively while gas turbine has 92% and 82% of exergy and energy efficiency respectively. For the overall efficiency, the plant has 32.4% and 34.3% exergy and energy efficiency respectively. To enhance the efficiency, the intake air temperature should be reduced, modify the combustion chamber to have the better air-fuel ratio and increase the capability of the gas turbine to receive high inlet temperature.

  2. FY 1998 annual report. Research and development on ceramic gas turbine (300kW class)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Research and development have been made on a small ceramic gas turbine which is high in efficiency, low in pollutant emission, capable of corresponding to different fuels, and can be utilized in cogeneration and/or movable electric power generation systems. Fundamental researches in developing and researching heat resistant ceramic parts have been carried out on a method for fabricating turbine nozzles using heat resistant silicon nitride, improvement in accuracy in fabricating combustors using the heat resistant silicon nitride, and casting of turbine blades made from sialon. In developing the devices, researches were made on reliability of bond between a ceramic blade and a metallic disk, air-fuel ratio in a combustor, distribution of fuel concentrations, fuel injection methods, reduction of loss in a diffuser in a compressor, and matching of the diffuser with an impeller. In addition, research and development were performed on a single shaft ceramic gas turbine for cogeneration and a double shaft ceramic gas turbine. Researches were executed on reliability of ceramic materials. (NEDO)

  3. Cogeneration: A new opportunity for energy production market

    International Nuclear Information System (INIS)

    Minghetti, E.

    1997-03-01

    Cogeneration or Combined Heat and Power (CHP) is an advantageous technique based on the simultaneous utilisation of electricity and heat produced. For this purpose existing energetic technologies are used. Cogeneration is based on the thermodynamics principle that producing electricity by combustion process means, at the same time, producing waste heat that can be useful utilised. Three main advantages can be lay out in a cogeneration plant: 1. High efficiency (the global efficiency is often around 80-90%). 2. Economic profit (pay back time is usually not longer than 2-4 years). 3. Low pollutant emissions (as a consequence of the high efficiency less fuel is burned for generating the same quantity of electricity). In this report are analysed various aspects of cogeneration (technical and economical) and the conditions influencing is development. Some figures on the european and national situation are also given. Finally are presented the research and development activities carried out by Italian National Agency for new Technology Energy and the Environment Energy Department to improve the efficiency and the competitiveness of this technology

  4. Maintenance management of gas turbine power plant systems ...

    African Journals Online (AJOL)

    Given the abundant availability of gas and the significant installed capacity of the electricity from Gas Turbine Power Systems; effective maintenance of Gas Turbine Power Plants in Nigeria could be the panacea for achieving regular power generation and supply. The study identified environmental impact on the machines, ...

  5. The actions of European cities about the use of new technologies of small size cogeneration; Les actions de villes europeennes sur l'utilisation des nouvelles technologies de petite cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Schilken, P.

    2001-07-01

    After numerous experiences in the domain of big and medium-size cogeneration, some European municipalities, in particular in Germany, are developing small-size cogeneration units. The aim of this study is, first, to examine the policies and experiences of municipalities and municipal energy companies in terms of technology utilization and the way they have integrated these new technologies in existing installations. Secondly, its aim is to provide some information about the technical and organizational aspects, in particular about the difficulties encountered and the results obtained. In the domain of small cogeneration, various technologies enter in competition: combustion engines, combustion turbines, Stirling engine and fuel cells, which have reached different stages of technical and commercial development. All these technologies are described in case-forms. The ten examples described in these forms (Aachen (DE), Armagh (UK), Arnhem (NL), Basel (CH), Bielefeld (DE), Berlin (DE), Chelles (FR), Frankfurt (DE), Land Hessen (DE), and Ludwigshafen (DE)), indicate that today, only the facilities equipped with gas engines are economically competitive with respect to other means of electricity and heat generation. (J.S.)

  6. Experiences from the Swedish programme - heavy water and natural uranium in the Aagesta cogeneration plant

    International Nuclear Information System (INIS)

    Oestman, Alvar

    2002-11-01

    A short review of the Swedish programme for nuclear power in the 50's and the 60's is given, and in particular a description of the operating experiences of the Aagesta nuclear cogeneration plant, producing district heating for the south Stockholm area (12 MW el and 68 MW heat ). The original Swedish nuclear programme was built on heavy water and natural uranium and had the objective to construct small nuclear plants in the vicinity of some 10 large cities in south and middle Sweden. Aagesta was the only full-scale plant to be built according to this programme, as Sweden adopted the light-water reactor policy and eventually constructed 12 large reactors at four sites. The report is based on the experiences of the author from his work at the Aagesta plant in the sixties. In an appendix, the experiences from Vattenfall (the Swedish electric utility which took over the operating responsibility for the Aagesta plant), of the plant operation is reviewed

  7. Mathematical exergoeconomic optimization of a complex cogeneration plant aided by a professional process simulator

    International Nuclear Information System (INIS)

    Vieira, Leonardo S.; Donatelli, Joao L.; Cruz, Manuel E.

    2006-01-01

    In this work we present the development and implementation of an integrated approach for mathematical exergoeconomic optimization of complex thermal systems. By exploiting the computational power of a professional process simulator, the proposed integrated approach permits the optimization routine to ignore the variables associated with the thermodynamic balance equations and thus deal only with the decision variables. To demonstrate the capabilities of the integrated approach, it is here applied to a complex cogeneration system, which includes all the major components of a typical thermal plant, and requires more than 800 variables for its simulation

  8. Application and design of an economizer for waste heat recovery in a cogeneration plant

    Directory of Open Access Journals (Sweden)

    Martić Igor I.

    2016-01-01

    Full Text Available Energy increase cost has required its more effective use. However, many industrial heating processes generate waste energy. Use of waste-heat recovery systems decreases energy consumption. This paper presents case study of waste heat recovering of the exhaust flue gas in a 1415 kWe cogeneration plant. This waste heat can be recovered by installing an economizer to heat the condensed and fresh water in thermal degasification unit and reduce steam use for maintaining the temperature of 105˚C for oxygen removal. Design methodology of economizer is presented.

  9. Introduction to cogeneration; Introducao a cogeracao

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Luiz Augusto Horta; Martins, Andre Luiz Silva [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1997-07-01

    This work presents a general view of cogeneration. The paper approaches the development of cogeneration, technological aspects, the cogeneration in Brazil, economical aspects, performance of cogeneration systems, viability, costs, cogeneration potentials and technological trends.

  10. HTGR gas turbine power plant preliminary design

    International Nuclear Information System (INIS)

    Koutz, S.L.; Krase, J.M.; Meyer, L.

    1973-01-01

    The preliminary reference design of the HTGR gas turbine power plant is presented. Economic and practical problems and incentives related to the development and introduction of this type of power plant are evaluated. The plant features and major components are described, and a discussion of its performance, economics, development, safety, control, and maintenance is presented. 4 references

  11. Reactor type choice and characteristics for a small nuclear heat and electricity co-generation plant

    International Nuclear Information System (INIS)

    Liu Kukui; Li Manchang; Tang Chuanbao

    1997-01-01

    In China heat supply consumes more than 70 percent of the primary energy resource, which makes for heavy traffic and transportation and produces a lot of polluting materials such as NO x , SO x and CO 2 because of use of the fossil fuel. The utilization of nuclear power into the heat and electricity co-generation plant contributes to the global environmental protection. The basic concept of the nuclear system is an integral type reactor with three circuits. The primary circuit equipment is enclosed in and linked up directly with reactor vessel. The third circuit produces steam for heat and electricity supply. This paper presents basic requirements, reactor type choice, design characteristics, economy for a nuclear co-generation plant and its future application. The choice of the main parameters and the main technological process is the key problem of the nuclear plant design. To make this paper clearer, take for example a double-reactor plant of 450 x 2MW thermal power. There are two sorts of main technological processes. One is a water-water-steam process. Another is water-steam-steam process. Compared the two sorts, the design which adopted the water-water-steam technological process has much more advantage. The system is simplified, the operation reliability is increased, the primary pressure reduces a lot, the temperature difference between the secondary and the third circuits becomes larger, so the size and capacity of the main components will be smaller, the scale and the cost of the building will be cut down. In this design, the secondary circuit pressure is the highest among that of the three circuits. So the primary circuit radioactivity can not leak into the third circuit in case of accidents. (author)

  12. Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration

    International Nuclear Information System (INIS)

    Darcovich, K.; Henquin, E.R.; Kenney, B.; Davidson, I.J.; Saldanha, N.; Beausoleil-Morrison, I.

    2013-01-01

    Highlights: • Characterized two novel high capacity electrode materials for Li-ion batteries. • A numerical discharge model was run to characterize Li-ion cell behavior. • Engineering model of Li-ion battery pack developed from cell fundamentals. • ESP-r model integrated micro-cogeneration and high capacity Li-ion storage. • Higher capacity batteries shown to improve micro-cogeneration systems. - Abstract: Combined heat and power on a residential scale, also known as micro-cogeneration, is currently gaining traction as an energy savings practice. The configuration of micro-cogeneration systems is highly variable, as local climate, energy supply, energy market and the feasibility of including renewable type components such as wind turbines or photovoltaic panels are all factors. Large-scale lithium ion batteries for electrical storage in this context can provide cost savings, operational flexibility, and reduced stress on the distribution grid as well as a degree of contingency for installations relying upon unsteady renewables. Concurrently, significant advances in component materials used to make lithium ion cells offer performance improvements in terms of power output, energy capacity, robustness and longevity, thereby enhancing their prospective utility in residential micro-cogeneration installations. The present study evaluates annual residential energy use for a typical Canadian home connected to the electrical grid, equipped with a micro-cogeneration system consisting of a Stirling engine for supplying heat and power, coupled with a nominal 2 kW/6 kW h lithium ion battery. Two novel battery cathode chemistries, one a new Li–NCA material, the other a high voltage Ni-doped lithium manganate, are compared in the residential micro-cogeneration context with a system equipped with the presently conventional LiMn 2 O 4 spinel-type battery

  13. An economic analysis of small-scale cogeneration using forest biomass and sawmill residuals in northern Ontario

    International Nuclear Information System (INIS)

    Beke, N.L.

    1994-01-01

    The economic feasibility of using biomass for cogeneration in northern Ontario was investigated and the institutional factors that may affect establishment and operation of cogeneration facilities were determined. Two fuel sources for a cogeneration plant were evaluated: forest materials and sawmill residuals. To establish and operate a cogeneration plant, the policies of the Ontario Ministry of Natural Resources and Ontario Hydro needed to be analyzed. Some of the benefits of using sawmill residuals for cogeneration were identified and an inventory of sawmill residuals was compiled. The welfare effects of three pricing schemes for non-utility generated electricity are described using a neoclassical welfare model. This model is further extended to include the effects of subsidizing public utilities and using biomass to generate electricity. A competitive market for electricity generation and relating pricing structure was also examined. The results of the capital budget for the cogeneration facility indicated that by using sawmill residuals and chipped forest biomass as fuel for cogeneration, internal rates of return would be 22.7% and 8.7% and net present values would be $8,659,870 and $1,867,822, respectively. This implied that using sawmill residuals for cogeneration fuel would be both profitable and would help to reduce possible harmful effects that current dumping practices may have on the surrounding ecosystem. 84 refs., 17 figs., 14 tabs

  14. Feasibility study of wood-fired cogeneration at a Wood Products Industrial Park, Belington, WV. Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Vasenda, S.K.; Hassler, C.C.

    1992-06-01

    Customarily, electricity is generated in a utility power plant while thermal energy is generated in a heating/cooling plant; the electricity produced at the power plant is transmitted to the heating/cooling plant to power equipments. These two separate systems waste vast amounts of heat and result in individual efficiencies of about 35%. Cogeneration is the sequential production of power (electrical or mechanical) and thermal energy (process steam, hot/chilled water) from a single power source; the reject heat of one process issued as input into the subsequent process. Cogeneration increases the efficiency of these stand-alone systems by producing these two products sequentially at one location using a small additional amount of fuel, rendering the system efficiency greater than 70%. This report discusses cogeneration technologies as applied to wood fuel fired system.

  15. Achievement report for fiscal 1989. Research and development of ceramic gas turbine (Regenerative single-shaft axial-flow turbine for cogeneration); 1989 nendo ceramic gas turbine no kenkyu kaihatsu seika hokokusho. Cogeneration yo saisei ichijikushiki jikuryu turbine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-05-01

    With an objective to research and develop a 300-kW class regenerative single-shaft axial-flow turbine having inlet temperature of 1,350 degrees C and thermal efficiency of 42% or higher, activities were performed in the following three fields: 1) heat resistant ceramic members, 2) elementary technologies, and 3) studies on design, prototype fabrication, and operation. In Item 1, a mass production technology was discussed on stator blades and heat transfer pipes for a heat exchanger as the component manufacturing technology, and injection molding conditions were studied and mechanical strength measurement was performed on rotor blades of a separate type axial-flow turbine. In addition, a molding condition producing no cracks was discovered in an integrated type axial-flow turbine whose embedded section has a tapered shape, and the mass production technology was discussed. With regard to the bonding technology, preliminary discussions were given on bonding agents under a prerequisite that a bonding agent shall be used. In Item 2, detailed discussions were launched on the turbine, combustor, heat exchanger, and compressor, including shape decision on the turbine, for example, by using aerodynamic analysis, In Item 3, the basic design was performed following the conceptual design, and a metallic turbine was designed. (NEDO)

  16. Devising an energy saving technology for a biogas plant as a part of the cogeneration system

    OpenAIRE

    Чайковська, Євгенія Євстафіївна

    2015-01-01

    The paper suggests an operation technology for a biogas plant that allows setting a heating medium temperature at the inlet to the heat exchanger built in a digester and measuring the heating medium temperature at the outlet. An integrated system for assessing the varied temperature of digestion (that is based on mathematical and logical modeling within the cogeneration system) secures a continuous gas outlet, a timely unloading of fermented mash and loading of a fresh matter. For this purpos...

  17. Turbines, generators and associated plant incorporating modern power system practice

    CERN Document Server

    Littler, DJ

    1992-01-01

    The introduction of new 500 MW and 660 MW turbine generator plant in nuclear, coal- and oil-fired power stations has been partly responsible for the increase in generating capacity of the CEGB over the last 30 years. This volume provides a detailed account of experience gained in the development, design, manufacture, operation and testing of large turbine-generators in the last 20 years. With the advance in analytical and computational techniques, the application of this experience to future design and operation of large turbine-generator plant will be of great value to engineers in the indust

  18. Helium turbomachinery operating experience from gas turbine power plants and test facilities

    International Nuclear Information System (INIS)

    McDonald, Colin F.

    2012-01-01

    The closed-cycle gas turbine, pioneered and deployed in Europe, is not well known in the USA. Since nuclear power plant studies currently being conducted in several countries involve the coupling of a high temperature gas-cooled nuclear reactor with a helium closed-cycle gas turbine power conversion system, the experience gained from operated helium turbomachinery is the focus of this paper. A study done as early as 1945 foresaw the use of a helium closed-cycle gas turbine coupled with a high temperature gas-cooled nuclear reactor, and some two decades later this was investigated but not implemented because of lack of technology readiness. However, the first practical use of helium as a gas turbine working fluid was recognized for cryogenic processes, and the first two small fossil-fired helium gas turbines to operate were in the USA for air liquefaction and nitrogen production facilities. In the 1970's a larger helium gas turbine plant and helium test facilities were built and operated in Germany to establish technology bases for a projected future high efficiency large nuclear gas turbine power plant concept. This review paper covers the experience gained, and the lessons learned from the operation of helium gas turbine plants and related test facilities, and puts these into perspective since over three decades have passed since they were deployed. An understanding of the many unexpected events encountered, and how the problems, some of them serious, were resolved is important to avoid them being replicated in future helium turbomachines. The valuable lessons learned in the past, in many cases the hard way, particularly from the operation in Germany of the Oberhausen II 50 MWe helium gas turbine plant, and the technical know-how gained from the formidable HHV helium turbine test facility, are viewed as being germane in the context of current helium turbomachine design work being done for future high efficiency nuclear gas turbine plant concepts. - Highlights:

  19. Aggregated wind power plant models consisting of IEC wind turbine models

    DEFF Research Database (Denmark)

    Altin, Müfit; Göksu, Ömer; Hansen, Anca Daniela

    2015-01-01

    The common practice regarding the modelling of large generation components has been to make use of models representing the performance of the individual components with a required level of accuracy and details. Owing to the rapid increase of wind power plants comprising large number of wind...... turbines, parameters and models to represent each individual wind turbine in detail makes it necessary to develop aggregated wind power plant models considering the simulation time for power system stability studies. In this paper, aggregated wind power plant models consisting of the IEC 61400-27 variable...... speed wind turbine models (type 3 and type 4) with a power plant controller is presented. The performance of the detailed benchmark wind power plant model and the aggregated model are compared by means of simulations for the specified test cases. Consequently, the results are summarized and discussed...

  20. Global environment and cogeneration

    International Nuclear Information System (INIS)

    Miyahara, Atsushi

    1992-01-01

    The environment problems on global scale have been highlighted in addition to the local problems due to the rapid increase of population, the increase of energy demand and so on. The global environment summit was held in Brazil. Now, global environment problems are the problems for mankind, and their importance seems to increase toward 21st century. In such circumstances, cogeneration can reduce carbon dioxide emission in addition to energy conservation, therefore, attention has been paid as the countermeasure for global environment. The background of global environment problems is explained. As to the effectiveness of cogeneration for global environment, the suitability of city gas to environment, energy conservation, the reduction of carbon dioxide and nitrogen oxides emission are discussed. As for the state of spread of cogeneration, as of March, 1992, those of 2250 MW in terms of power generation capacity have been installed in Japan. It is forecast that cogeneration will increase hereafter. As the future systems of cogeneration, city and industry energy center conception, industrial repowering, multiple house cogeneration and fuel cells are described. (K.I.)

  1. Genetic optimization of steam multi-turbines system

    International Nuclear Information System (INIS)

    Olszewski, Pawel

    2014-01-01

    Optimization analysis of partially loaded cogeneration, multiple-stages steam turbines system was numerically investigated by using own-developed code (C++). The system can be controlled by following variables: fresh steam temperature, pressure, and flow rates through all stages in steam turbines. Five various strategies, four thermodynamics and one economical, which quantify system operation, were defined and discussed as an optimization functions. Mathematical model of steam turbines calculates steam properties according to the formulation proposed by the International Association for the Properties of Water and Steam. Genetic algorithm GENOCOP was implemented as a solving engine for non–linear problem with handling constrains. Using formulated methodology, example solution for partially loaded system, composed of five steam turbines (30 input variables) with different characteristics, was obtained for five strategies. The genetic algorithm found multiple solutions (various input parameters sets) giving similar overall results. In real application it allows for appropriate scheduling of machine operation that would affect equable time load of every system compounds. Also based on these results three strategies where chosen as the most complex: the first thermodynamic law energy and exergy efficiency maximization and total equivalent energy minimization. These strategies can be successfully used in optimization of real cogeneration applications. - Highlights: • Genetic optimization model for a set of five various steam turbines was presented. • Four various thermodynamic optimization strategies were proposed and discussed. • Operational parameters (steam pressure, temperature, flow) influence was examined. • Genetic algorithm generated optimal solutions giving the best estimators values. • It has been found that similar energy effect can be obtained for various inputs

  2. Optimal design of modular cogeneration plants for hospital facilities and robustness evaluation of the results

    International Nuclear Information System (INIS)

    Gimelli, A.; Muccillo, M.; Sannino, R.

    2017-01-01

    Highlights: • A specific methodology has been set up based on genetic optimization algorithm. • Results highlight a tradeoff between primary energy savings (TPES) and simple payback (SPB). • Optimized plant configurations show TPES exceeding 18% and SPB of approximately three years. • The study aims to identify the most stable plant solutions through the robust design optimization. • The research shows how a deterministic definition of the decision variables could lead to an overestimation of the results. - Abstract: The widespread adoption of combined heat and power generation is widely recognized as a strategic goal to achieve significant primary energy savings and lower carbon dioxide emissions. In this context, the purpose of this research is to evaluate the potential of cogeneration based on reciprocating gas engines for some Italian hospital buildings. Comparative analyses have been conducted based on the load profiles of two specific hospital facilities and through the study of the cogeneration system-user interaction. To this end, a specific methodology has been set up by coupling a specifically developed calculation algorithm to a genetic optimization algorithm, and a multi-objective approach has been adopted. The results from the optimization problem highlight a clear trade-off between total primary energy savings (TPES) and simple payback period (SPB). Optimized plant configurations and management strategies show TPES exceeding 18% for the reference hospital facilities and multi–gas engine solutions along with a minimum SPB of approximately three years, thereby justifying the European regulation promoting cogeneration. However, designing a CHP plant for a specific energetic, legislative or market scenario does not guarantee good performance when these scenarios change. For this reason, the proposed methodology has been enhanced in order to focus on some innovative aspects. In particular, this study proposes an uncommon and effective approach

  3. Availability of thermal power plants 1980-1989

    International Nuclear Information System (INIS)

    Nitsch, D.; Schmitz, H.

    1990-01-01

    The evaluation submitted here is the 19th annual evaluation since 1970. It covers the period from 1980 to 1989 and contains availability data of 324 power stations (domestic and international) with roundabout 94000 MW and 3800 plant years. Data relate to fossil-fuelled cogeneration plants, combined cycle plants (gas-steam combined process), nuclear power stations and gas turbines. The fossil-fuelled blocks are broken down by size, time of operation, fuel, type of combustion (dry, melt) and type mono-, duoblocks, subcritical and supercritical systems, nuclear power stations are organised by type of reactor heavy-water/pressurized water reactor and type of operation. Combined cycle power plants are listed separately due to their different technical concept. Gas turbines are sub-divided by type of operation (time). Apart from availability and utilisation values of gas turbines there are data on reliability and the number of successful and unsuccessful starts. In general the values are first given for all plants of one particular type and then for the German plants in particular. Performance values are gross values measured at generator and like the number of plants they are end-of-the-year figures. In order to increase the usefulness of the VGB-availability studies various items in the recording and evaluation were improved and extended as of 1987. (orig./HS) [de

  4. Thermodynamic study of residual heat from a high temperature nuclear reactor to analyze its viability in cogeneration processes; Estudio termodinamico del calor residual de un reactor nuclear de alta temperatura para analizar su viabilidad en procesos de cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Santillan R, A.; Valle H, J.; Escalante, J. A., E-mail: santillanaura@gmail.com [Universidad Politecnica Metropolitana de Hidalgo, Boulevard acceso a Tolcayuca 1009, Ex-Hacienda San Javier, 43860 Tolcayuca, Hidalgo (Mexico)

    2015-09-15

    In this paper the thermodynamic study of a nuclear power plant of high temperature at gas turbine (GTHTR300) is presented for estimating the exploitable waste heat in a process of desalination of seawater. One of the most studied and viable sustainable energy for the production of electricity, without the emission of greenhouse gases, is the nuclear energy. The fourth generation nuclear power plants have greater advantages than those currently installed plants; these advantages have to do with security, increased efficiencies and feasibility to be coupled to electrical cogeneration processes. In this paper the thermodynamic study of a nuclear power plant type GTHTR300 is realized, which is selected by greater efficiencies and have optimal conditions for use in electrical cogeneration processes due to high operating temperatures, which are between 700 and 950 degrees Celsius. The aim of the study is to determine the heat losses and the work done at each stage of the system, determining where they are the greatest losses and analyzing in that processes can be taken advantage. Based on the study was appointed that most of the energy losses are in form of heat in the coolers and usually this is emitted into the atmosphere without being used. From the results a process of desalination of seawater as electrical cogeneration process is proposed. This paper contains a brief description of the operation of the nuclear power plant, focusing on operation conditions and thermodynamic characteristics for the implementation of electrical cogeneration process, a thermodynamic analysis based on mass and energy balance was developed. The results allow quantifying the losses of thermal energy and determining the optimal section for coupling of the reactor with the desalination process, seeking to have a great overall efficiency. (Author)

  5. Challenges encountered during an accelerated cogeneration plant construction and commissioning schedule

    International Nuclear Information System (INIS)

    Good, R.L.; Cox, T.P.; Vallejo, J.M.

    1988-01-01

    A decision was made in 1986 to proceed with a 110 magawatt grassroots cogeneration plant to supply the steam and electrical requirements of a large, integrated petrochemical manufacturing facility. Though some preliminary engineering had been done and long delivery equipment purchase orders had been let in the summer of 1986, detailed engineering did not commence until late October and construction until mid-December, 1986. Federal income tax consideration required that the project be in service prior to the end of 1987. This eleven month construction, commissioning, and start up schedule was achieved with 100 per cent operation occurring on December 22, 1987. Numerous challenges were met by the lean Project Team during this accelerated schedule. This paper discusses the development of: Project Team Staffing, Operator and Maintenance Staffing and Training, Commissioning Schedules and Staffing, solutions to Significant Technical Problems

  6. An integral reactor design concept for a nuclear co-generation plant

    International Nuclear Information System (INIS)

    Lee, D.J.; Kim, J.I.; Kim, K.K.; Chang, M.H.; Moon, K.S.

    1997-01-01

    An integral reactor concept for nuclear cogeneration plant is being developed at KAERI as an attempt to expand the peaceful utilization of well established commercial nuclear technology, and related industrial infrastructure such as desalination technology in Korea. Advanced technologies such as intrinsic and passive safety features are implemented in establishing the design concepts to enhance the safety and performance. Research and development including laboratory-scale tests are concurrently underway to evaluate the characteristics of various passive safety concepts and provide the proper technical data for the conceptual design. This paper describes the preliminary safety and design concepts of the advanced integral reactor. Salient features of the design are hexagonal core geometry, once-through helical steam generator, self-pressurizer, and seismic resistant fine control CEDMS, passive residual heat removal system, steam injector driven passive containment cooling system. (author)

  7. PORST: a computer code to analyze the performance of retrofitted steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.; Hwang, I.T.

    1980-09-01

    The computer code PORST was developed to analyze the performance of a retrofitted steam turbine that is converted from a single generating to a cogenerating unit for purposes of district heating. Two retrofit schemes are considered: one converts a condensing turbine to a backpressure unit; the other allows the crossover extraction of steam between turbine cylinders. The code can analyze the performance of a turbine operating at: (1) valve-wide-open condition before retrofit, (2) partial load before retrofit, (3) valve-wide-open after retrofit, and (4) partial load after retrofit.

  8. An estimation of cogeneration potential by using refinery residuals in Mexico

    International Nuclear Information System (INIS)

    Marin-Sanchez, J.E.; Rodriguez-Toral, M.A.

    2007-01-01

    Electric power generation in Mexico is mainly based on fossil fuels, specifically heavy fuel oil, although the use of natural gas combined cycles (NGCC) is becoming increasingly important. This is the main destination that has promoted growing imports of natural gas, currently accounting for about 20% of the total national annual consumption. Available crude oil is becoming heavier; thus refineries should be able to process it, and to handle greater quantities of refinery residuals. If all refinery residuals are used in cogeneration plants serving petroleum refineries, the high heat/power ratio of refinery needs, leads to the availability of appreciable quantities of electricity that can be exported to the public utility. Thus, in a global perspective, Mexican imports of natural gas may be reduced by cogeneration using refinery residuals. This is not the authors' idea; in fact, PEMEX, the national oil company, has been entitled by the Mexican congress to sell its power leftovers to The Federal Electricity Commission (CFE) in order to use cogeneration in the way described for the years to come. A systematic way of determining the cogeneration potential by using refinery residuals from Mexican refineries is presented here, taking into account residual quantities and composition, from a national perspective, considering expected scenarios for Maya crude content going to local refineries in the years to come. Among different available technologies for cogeneration using refinery residuals, it is believed that the integrated gasification combined cycle (IGCC) would be the best option. Thus, considering IGCC plants supplying heat and power to refineries where it is projected to have refinery residuals for cogeneration, the expected electric power that can be sent to the public utility is quantified, along with the natural gas imports mitigation that may be attained. This in turn would contribute to a necessary fuel diversification policy balancing energy, economy and

  9. The California cogeneration success story

    International Nuclear Information System (INIS)

    Neiggemann, M.F.

    1992-01-01

    This chapter describes the involvement of Southern California Gas Company(SoCalGas) in the promotion and demonstration of the benefits of cogeneration in California. The topics covered in this chapter are market strategy, cogeneration program objectives, cogeneration program, incentive cofunding, special gas rate, special service priority, special gas pressure and main options, advertising, promotional brochures and handbooks, technical support, program accomplishments, cogeneration outlook, and reasons for success of the program

  10. Impact of new generation technologies on IPP

    International Nuclear Information System (INIS)

    Bhan, S.K.

    1999-01-01

    The deregulation of electricity markets in North America have made it possible for independent power producers to generate electricity. This presentation focused on the different factors that should be considered when developing cogeneration projects, including their inherent environmental benefits. Cogeneration is the combined production of thermal energy and electricity. The main requirement for cogeneration is that there should be a market for both electricity as well as thermal energy. This means that any large institutions where steam or hot water is used for heating can qualify for cogeneration of electricity. The development of cogeneration projects has been encouraged by recent advances in technology in gas turbines, micro-turbines, coal-fired generation and fuel cells. Future technologies will include improved circulating fluidized bed boilers, low NO x burners, and selective catalytic reactors. The newest technologies claim to achieve simple cycle efficiency approaching 40 per cent. In the combined cycle, efficiencies of 60 per cent can be achieved, while 80 per cent efficiency can be achieved in cogeneration. This paper described various cogeneration options including: (1) gas turbines with unfired heat recovery steam generators (HRSG), (2) gas turbines with fired HRSG, (3) combined cycle plants, and (4) reciprocating engines. The efficiency of cogeneration makes it a viable option for reducing greenhouse gases (GHGs). 5 tabs

  11. How new power generation technologies will affect the development of independent power

    International Nuclear Information System (INIS)

    Bhan, S.K.

    1999-01-01

    The deregulation of electricity markets in North America have made it possible for independent power producers to generate electricity. This presentation focused on the different factors that should be considered when developing cogeneration projects, including their inherent environmental benefits. Cogeneration is the combined production of thermal energy and electricity. The main requirement for cogeneration is that there should be a market for both electricity as well as thermal energy. This means that any large institutions where steam or hot water is used for heating can qualify for cogeneration of electricity. The development of cogeneration projects has been encouraged by recent advances in technology in gas turbines, micro-turbines, coal-fired generation and fuel cells. Future technologies will include improved circulating fluidized bed boilers, low NO x burners, and selective catalytic reactors. The newest technologies claim to achieve simple cycle efficiency approaching 40 per cent. In the combined cycle, efficiencies of 60 per cent can be achieved, while 80 per cent efficiency can be achieved in cogeneration. This paper described various cogeneration options including: (1) gas turbines with unfired heat recovery steam generators (HRSG), (2) gas turbines with fired HRSG, (3) combined cycle plants, and (4) reciprocating engines. The efficiency of cogeneration makes it a viable option for reducing greenhouse gases (GHGs). 5 tabs

  12. Global Value Chain and Manufacturing Analysis on Geothermal Power Plant Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Sertac [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Augustine, Chad R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mann, Margaret K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    The global geothermal electricity market has significantly grown over the last decade and is expected to reach a total installed capacity of 18.4 GWe in 2021 (GEA, 2016). Currently, geothermal project developers customize the size of the power plant to fit the resource being developed. In particular, the turbine is designed and sized to optimize efficiency and resource utilization for electricity production; most often, other power plant components are then chosen to complement the turbine design. These custom turbine designs demand one-off manufacturing processes, which result in higher manufacturing setup costs, longer lead-times, and higher capital costs overall in comparison to larger-volume line manufacturing processes. In contrast, turbines produced in standard increments, manufactured in larger volumes, could result in lower costs per turbine. This study focuses on analysis of the global supply chain and manufacturing costs for Organic Rankine Cycle (ORC) turboexpanders and steam turbines used in geothermal power plants. In this study, we developed a manufacturing cost model to identify requirements for equipment, facilities, raw materials, and labor. We analyzed three different cases 1) 1 MWe geothermal ORC turboexpander 2) 5 MWe ORC turboexpander and 3) 20 MWe geothermal steam turbine, and calculated the cost of manufacturing the major components, such as the impellers/blades, shaft/rotor, nozzles, inlet guide lanes, disks, and casings. Then we used discounted cash flow (DCF) analysis to calculate the minimum sustainable price (MSP). MSP is the minimum price that a company must sell its product for in order to pay back the capital and operating expenses during the plant lifetime (CEMAC, 2017). The results showed that MSP could highly vary between 893 dollar/kW and 30 dollar/kW based on turbine size, standardization and volume of manufacturing. The analysis also showed that the economy of scale applies both to the size of the turbine and the number

  13. The condition monitoring system of turbine system components for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, Shigetoshi

    2013-01-01

    The thermal and nuclear power plants have been imposed a stable supply of electricity. To certainly achieve this, we built the plant condition monitoring system based on the heat and mass balance calculation. If there are some performance changes on the turbine system components of their power plants, the heat and mass balance of the turbine system will change. This system has ability to detect the abnormal signs of their components by finding the changes of the heat and mass balance. Moreover we note that this system is built for steam turbine cycle operating with saturated steam conditions. (author)

  14. Combined heat and power plants with parallel tandem steam turbines; Smaaskalig kraftvaerme med parallellkopplade tandemturbiner

    Energy Technology Data Exchange (ETDEWEB)

    Steinwall, Pontus; Norstroem, Urban; Pettersson, Camilla; Oesterlin, Erik

    2004-12-01

    We investigate the technical and economical conditions for a concept with parallel coupled tandem turbines in small scale combined heat and power plants fired with bio-fuel and waste. Performance and heat production costs at varying electricity prices for the concept with two smaller tandem coupled steam turbines has been compared to the traditional concept with one single multi-staged turbine. Three different types of plants have been investigated: - Bio fuelled CHP plant with thermal capacity of 15 MW{sub th}; - Waste fired CHP plant with thermal capacity of 20 MW{sub th}; - Bio fuelled CHP plant with thermal capacity of 25 MW{sub th}. The simple steam turbines (Curtis turbines) used in the tandem arrangement has an isentropic efficiency of about 49 to 53% compared to the multi-staged steam turbines with isentropic efficiency in the range of 59% to 81%. The lower isentropic efficiency for the single staged turbines is to some extent compensated at partial load when one of the two turbines can be shut down leading to better operational conditions for the one still in operation. For concepts with saturated steam at partial load below 50% the tandem arrangements presents higher electricity efficiency than the conventional single turbine alternative. The difference in annual production of electricity is therefore less than the difference in isentropic efficiency for the two concepts. Production of electricity is between 2% and 42% lower for the tandem arrangements in this study. Investment costs for the turbine island has been calculated for the two turbine concepts and when the costs for turbines, generator, power transmission, condensing system, piping system, buildings, assembling, commissioning and engineering has been added the sum is about the same for the two concepts. For the bio-fuelled plant with thermal capacity of 15 MW{sub th} the turbine island amount to about 10-12 MSEK and about 13-15 MSEK for the waste fired plant with a thermal capacity of 20 MW

  15. Modernization of the turbine control technique and the turbine hydraulics aimed to improved maneuverability in the load range, system safety and plant availability, plant transparency for diagnosis and long-term performance

    International Nuclear Information System (INIS)

    Baran, Detlef

    2012-01-01

    In the contribution H.Mauell GmbH presents modernization projects for the nuclear power plants Tihange-3 and Doel-4. The project volume included control technique and the turbine hydraulics for the steam turbo generating set including turbine auxiliary devices and two turbine feeding pumps. The modernizations were successfully completed in 2010 and 2011, respectively. The nuclear power plants are trouble-free operated.

  16. Least cost analysis of Belarus electricity generation system with focus on nuclear option

    International Nuclear Information System (INIS)

    Mikhalevich, A.; Yakushau, A.

    2004-01-01

    A basic feature of the Belarus electricity system is that about 50% of the installed power capacity is used to produce heat for the central heating supply system. The Republic has one of the most developed districts heating system in Europe. The installation started in 1930, and developed very fast after 1945. Co-generation of electricity and thermal energy in central power plants has played a fundamental role in the local economy. Presently, Belarus electricity generation system includes: Total installed capacities of condensing turbines 3665 MW; Total installed capacities of co-generation turbines 3889 MW. It is expected that in 2020 in accordance with electricity demand forecast peak load demand will be equaled approximately 9500 MW. Taking into account that operation time of 60 % existent co-generation turbine and 70 % of condensing turbine can be extended up to 2020 during the period 2005 - 2020 it is necessity to install about 1500 MW of new co-generation units and about 2000 MW of condensing turbines. To select the least cost scenario for electricity generation system expansion improved computer code WASP-IV for Windows had been used. As far code WASP-IV do not allow finding out optimal solution for electricity generation system with high share of co-generation directly the methodology of application of this program for this case had been developed. Methodology is based on utilization of code WASP-IV for simulation condensing turbines and module BALANCE for modeling co-generation part of the system. The scenarios for the electricity system expansion plan included only conventional technologies. Presently, the works connected with the preparedness for NPP construction in the Republic including site survey for NPP are being carried out. The first stage of siting process according to the IAEA classification has been completed. It was based on a set of criteria answered to A Safety Guide of the IAEA Site Survey for Nuclear Power Plants and requirements to be

  17. Feasibility study for retrofitting biogas cogeneration systems to district heating in South Korea.

    Science.gov (United States)

    Chung, Mo; Park, Hwa-Choon

    2015-08-01

    A feasibility study was performed to assess the technical and economic merits of retrofitting biogas-based cogeneration systems to district heating networks. Three district heating plants were selected as candidates for accommodating heat recovery from nearby waste treatment stations, where a massive amount of biogas can be produced on a regular basis. The scenario involves constructing cogeneration systems in each waste treatment station and producing electricity and heat. The amounts of biogas production for each station are estimated based on the monthly treatment capacities surveyed over the most recent years. Heat produced by the cogeneration system is first consumed on site by the waste treatment system to keep the operating temperature at a proper level. If surplus heat is available, it will be transported to the nearest district heating plant. The year-round operation of the cogeneration system was simulated to estimate the electricity and heat production. We considered cost associated with the installation of the cogeneration system and piping as initial investments. Profits from selling electricity and recovering heat are counted as income, while costs associated with buying biogas are expenses. Simple payback periods of 2-10 years were projected under the current economic conditions of South Korea. We found that most of the proposed scenarios can contribute to both energy savings and environmental protection. © The Author(s) 2015.

  18. Optimal operation of cogeneration units. State of art and perspective

    International Nuclear Information System (INIS)

    Polimeni, S.

    2001-01-01

    Optimal operation of cogeneration plants and of power plant fueling waste products is a complex challenge as they have to fulfill, beyond the contractual obligation of electric power supply, the constraints of supplying the required thermal energy to the user (for cogeneration units) or to burn completely the by-products of the industrial complex where they are integrated. Electrical power market evolution is pushing such units to a more and more volatile operation caused by uncertain selling price levels. This work intends to pinpoint the state of art in the optimization of these units outlining the important differences among the different size and cycles. The effect of the market liberalization on the automation systems and the optimization algorithms will be discussed [it

  19. Completion of high-efficiency BWR turbine plant 'Hamaoka unit No. 4'

    International Nuclear Information System (INIS)

    Tsuji, Kunio; Hamaura, Norikazu; Shibashita, Naoaki; Kazama, Seiichi

    1995-01-01

    Accompanying the increase of capacity of nuclear power plants in Japan, the plants having heightened economical efficiency, which are supported by the improvement of thermal efficiency and the reduction of dose, are demanded. Hitachi Ltd. has completed No. 4 turbine unit of 1137 MW output in Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., which is the largest capacity machine in Japanese BWR plants. In this unit, the moisture separator heater, the steam turbine with high efficiency, and the hollow thread film condensate filter which treats the total flow rate of condensate are used as the reheating type BWR plant for the first time in Japan, and the plan of heightened economy and operation was adopted. It was confirmed by the trial for about 10 months that the planned performance was sufficiently satisfied, and the commercial operation was started in September, 1993. The features of the 1137 MW turbine unit are explained. The turbine is of tandem six-flow exhaust condensation type. Diffuser type low pressure turbine exhaust chambers, butterfly type combination intermediate valve are adopted. The stages with the blades having moisture-separating grooves were corrected. The reliability of the shaft system was improved. The adoption of the moisture separator heater and the application of the hollow thread film type condensate filter are explained. (K.I.)

  20. Integrating a SOFC Plant with a Steam Turbine Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Scappin, Fabio

    2009-01-01

    A Solid Oxide Fuel Cell (SOFC) is integrated with a Steam Turbine (ST) cycle. Different hybrid configurations are studied. The fuel for the plants is assumed to be natural gas (NG). Since the NG cannot be sent to the anode side of the SOFC directly, a desulfurization reactor is used to remove...

  1. Heat exchangers for automotive gas turbine power plants

    International Nuclear Information System (INIS)

    Penny, R.N.

    1974-01-01

    Automotive gas turbine power plants are now in the final stages of development for quantity manufacture. A crucial factor in this development is the regenerative heat exchanger. The relative merits of the rotary regenerative and static recuperative heat exchanger are compared. Thermal efficiency and initial cost are two vital issues involved in the design of small gas turbines for the commercial establishment of gas turbine vehicles. The selection of a material for the rotaty regenerator is essentially related to resolving the two vital issues of future small gas turbines and is, therefore, analysed. The account of the pioneering work involved in engineering the glass ceramic and other non-metal regenerators includes a complete failure analysis based on running experience with over 200 ceramic regenerators. The problems of sealing, supporting and manufacturing the ceramic regenerator are discussed and future practical designs are outlined. Heat exchange theory applied to small gas turbines is also reviewed

  2. Dynamic Models for Wind Turbines and Wind Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.; Santoso, S.

    2011-10-01

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  3. Hydraulic optimization of 'S' characteristics of the pump-turbine for Xianju pumped storage plant

    International Nuclear Information System (INIS)

    Liu, W C; Zheng, J S; Cheng, J; Shi, Q H

    2012-01-01

    The pump-turbine with a rated power capacity of 375MW each at Xianju pumped storage plant is the most powerful one under construction in China. In order to avoid the instability near no-load conditions, the hydraulic design of the pump-turbine has been optimized to improving the 'S' characteristic in the development of the model pump-turbine. This paper presents the cause of 'S' characteristic of a pump-turbine by CFD simulation of the internal flow. Based on the CFD analysis, the hydraulic design optimization of the pump-turbine was carried out to eliminate the 'S' characteristics of the machine at Xianju pumped storage plant and a big step for removing the 'S' characteristic of a pump-turbine has been obtained. The model test results demonstrate that the pump-turbine designed for Xianju pumped storage plant can smoothly operate near no-load conditions without an addition of misaligned guide vanes.

  4. Nuclear hydrogen - cogeneration and the transitional pathway to sustainable development

    International Nuclear Information System (INIS)

    Gurbin, G.M.; Talbot, K.H.

    1994-01-01

    The development of the next phase of the Bruce Energy Centre, in cooperation with Ontario Hydro, will see the introduction of a series of integrated energy processes whose end products will have environmental value added. Cogenerated nuclear steam and electricity were selected on the basis of economics, sustainability and carbon emissions. The introduction of hydrogen to combine with CO 2 from alcohol fermentation provided synthetic methanol as a feedstock to refine into ether for the rapidly expanding gasoline fuel additive market, large volumes of O 2 will enhance combustion processes and improve closed-looping of the systems. In the implementation of the commercial development, the first stage will require simultaneous electrolysis, methanol synthesis and additional fermentation capacity. Electricity and steam pricing will be key to viability and an 80-MV 'backup' fossil-fuelled, back pressure turbine cogeneration facility could be introduced in a compatible matter. Successful demonstration of transitional and integrating elements necessary to achieve sustainable development can serve as a model for electric utilities throughout the world. 11 ref., 1 tab., 4 figs

  5. Development of web based performance analysis program for nuclear power plant turbine cycle

    International Nuclear Information System (INIS)

    Park, Hoon; Yu, Seung Kyu; Kim, Seong Kun; Ji, Moon Hak; Choi, Kwang Hee; Hong, Seong Ryeol

    2002-01-01

    Performance improvement of turbine cycle affects economic operation of nuclear power plant. We developed performance analysis system for nuclear power plant turbine cycle. The system is based on PTC (Performance Test Code), that is estimation standard of nuclear power plant performance. The system is developed using Java Web-Start and JSP(Java Server Page)

  6. Evaluation of potential for cogeneration of electricity and process heat in North Carolina. Final report, June 1, 1978-May 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The objective of this study was to enable North Carolina to more efficiently utilize available energy than would be possible without additional cogeneration. Effective use of cogeneration can ease the requirement for utility capital and power plant sites and, by reducing fuel usage, can lead to less environmental damage. The study used the National Emissions Data System data bank and the North Carolina Boiler Registry to identify potential candidates for cogeneration and to then ascertain the magnitude of the potential in existing, new, and expanded facilities as a function of cogeneration impediment elimination. The survey uncovered 372 MW of operable cogeneration capacity in North Carolina in 15 plants. An estimate of the potential for expansion of cogeneration by firms presently operating in North Carolina amounted to 130 MW. This estimate was based on current conditions of fuel costs, electricity rates, standby charges, and investment tax credit. Much information is provided concerning industry and utilities in North Carolina, fuel usage by industry, and barriers to cogeneration. Recommendations are summarized.

  7. Cogeneration opportunities in the maritime provinces

    International Nuclear Information System (INIS)

    MacPherson, S.W.

    1999-01-01

    With the arrival of natural gas in New Brunswick in November 1999, the province will be faced with new power generation development opportunities in four different categories of power projects. These include industrial self generation (including cogeneration), merchant power plants, power projects to replace aging facilities, and power projects to help meet future environmental needs. New Brunswick's competitive advantage in harnessing the power generation development opportunities lies in the fact that it is close to major electricity markets in Quebec and New England. It also has many available generation sites. The province's many pulp and paper plants with large process steam needs are also ideal candidates for cogeneration. Some of the major competitive advantages of natural gas over coal are its lower operation and maintenance costs, it is thermally more efficient, produces lower emissions to the environment and prices are competitive. One of the suggestions in New Brunswick Power's new restructuring proposal is to unbundle electricity service in the province into generation and transmission and distribution services. Three gas-fired projects have already been proposed for the province. The 284 MW Bayside Power Project at the Courtenay Bay Generating Station is the most advanced

  8. Evaluation of turbine systems for compressed air energy storage plants. Final report for FY 1976

    Energy Technology Data Exchange (ETDEWEB)

    Kartsounes, G.T.

    1976-10-01

    Compressed air energy storage plants for electric utility peak-shaving applications comprise four subsystems: a turbine system, compressor system, an underground air storage reservoir, and a motor/generator. Proposed plant designs use turbines that are derived from available gas and steam turbines with proven reliability. The study examines proposed turbine systems and presents an evaluation of possible systems that may reduce capital cost and/or improve performance. Six new turbine systems are identified for further economic evaluation.

  9. Reviving manufacturing with a federal cogeneration policy

    International Nuclear Information System (INIS)

    Brown, Marilyn A.; Cox, Matt; Baer, Paul

    2013-01-01

    Improving the energy economics of manufacturing is essential to revitalizing the industrial base of advanced economies. This paper evaluates ex-ante a federal policy option aimed at promoting industrial cogeneration—the production of heat and electricity in a single energy-efficient process. Detailed analysis using the National Energy Modeling System (NEMS) and spreadsheet calculations suggest that industrial cogeneration could meet 18% of U.S. electricity requirements by 2035, compared with its current 8.9% market share. Substituting less efficient utility-scale power plants with cogeneration systems would produce numerous economic and environmental benefits, but would also create an assortment of losers and winners. Multiple perspectives to benefit/cost analysis are therefore valuable. Our results indicate that the federal cogeneration policy would be highly favorable to manufacturers and the public sector, cutting energy bills, generating billions of dollars in electricity sales, making producers more competitive, and reducing pollution. Most traditional utilities, on the other hand, would lose revenues unless their rate recovery procedures are adjusted to prevent the loss of profits due to customer owned generation and the erosion of utility sales. From a public policy perspective, deadweight losses would be introduced by market-distorting federal incentives (ranging annually from $30 to $150 million), but these losses are much smaller than the estimated net social benefits of the federal cogeneration policy. - Highlights: ► Industrial cogeneration could meet 18% of US electricity demand by 2035, vs. 8.9% today. ► The policy would be highly favorable to manufacturers and the public. ► Traditional electric utilities would likely lose revenues. ► Deadweight loss would be introduced by tax incentives. ► The policy’s net social benefits would be much larger.

  10. Benefit Analysis of Emergency Standby System Promoted to Cogeneration System

    Directory of Open Access Journals (Sweden)

    Shyi-Wen Wang

    2016-07-01

    Full Text Available Benefit analysis of emergency standby system combined with absorption chiller promoted to cogeneration system is introduced. Economic evaluations of such upgraded projects play a major part in the decisions made by investors. Time-of-use rate structure, fuel cost and system constraints are taken into account in the evaluation. Therefore, the problem is formulated as a mixed-integer programming problem. Using two-stage methodology and modified mixed-integer programming technique, a novel algorithm is developed and introduced here to solve the nonlinear optimization problem. The net present value (NPV method is used to evaluate the annual benefits and years of payback for the cogeneration system. The results indicate that upgrading standby generators to cogeneration systems is profitable and should be encouraged, especially for those utilities with insufficient spinning reserves, and moreover, for those having difficulty constructing new power plants.

  11. Exergetical analysis of combustion, heat transfers, thermodynamical cycles and their applications

    International Nuclear Information System (INIS)

    Buchet, E.

    1983-11-01

    Exergetic analysis allowed to show up and evaluate irreversibilities in combustion, vapor exchanges and thermodynamic cycles, and also to justify processes often used to improve yields of thermal and energetic plants, and among them some more and more complex in cogeneration plants. This analysic method has been applied to thermal or nuclear steam power plant, to gas turbines and to cogeneration [fr

  12. External financing of projects on cogeneration

    International Nuclear Information System (INIS)

    Contreras Olmedo, D.

    1993-01-01

    The Spanish Institute for Energy Saving and Diversification (IDAE), provides technical advisement and economical support to those industries requiring an improvement in the energy efficiency of their production chain. This paper focusses on administrative procedures to get external financing as one way to undertake the construction of cogeneration plants. Relationships among user, promoter and financier should be developed according to the outlined procedures. (Author)

  13. NWTC Researchers Field-Test Advanced Control Turbine Systems to Increase Performance, Decrease Structural Loading of Wind Turbines and Plants

    Energy Technology Data Exchange (ETDEWEB)

    2015-08-01

    Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) are studying component controls, including new advanced actuators and sensors, for both conventional turbines as well as wind plants. This research will help develop innovative control strategies that reduce aerodynamic structural loads and improve performance. Structural loads can cause damage that increase maintenance costs and shorten the life of a turbine or wind plant.

  14. DDACE cogeneration systems : 10 case studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    DDACE Power Systems are experts in green energy power generation and provide solutions that deal with waste and industrial by-products. The company develops practical energy solutions that address environmental and financial concerns facing both industrial and municipal customers. The following 10 case studies are examples of the installations that DDACE Power Systems have completed in recent years: (1) a combined heat and emergency power installation on the roof of a 19 storey apartment building on Bloor Street in Toronto, Ontario. The cogeneration package provides electricity and heat to the entire building, replacing an old diesel generator, (2) a combined heat and emergency power installation at the Villa Colombo extended care facility in Vaughan, Ontario. The cogeneration system provides heat and power to the building, as well as emergency power, (3) emergency standby power with demand response capabilities at Sobeys Distribution Warehouse in Vaughan, Ontario. The primary purpose of the 2.4 MW low emission, natural gas fuelled emergency standby generator is to provide emergency power to the building in the event of a grid failure, (4) a dual fuel combined heat and power installation at the Queensway Carleton Hospital in Ottawa, Ontario that provides electricity, hot water and steam to all areas of the hospital, (5) a tri-generation installation at the Ontario Police College in Aylmer, Ontario which provides power and heat to the building as well as emergency power in the event of a grid failure. An absorption chiller provides cooling in the summer and an exhaust emission control system reduces NOx emissions, (6) a biomass gasification installation at Nexterra Energy in Kamloops, British Columbia. The 239 kW generator is fueled by synthesis gas, (7) biogas utilization at Fepro Farms in Cobden, Ontario for treatment of the facility's waste products. The biogas plant uses cow manure, as well as fats, oil and grease from restaurants to produce electricity and

  15. Improved Governing of Kaplan Turbine Hydropower Plants Operating Island Grids

    OpenAIRE

    Gustafsson, Martin

    2013-01-01

    To reduce the consequences of a major fault in the electric power grid, functioning parts of the grid can be divided into smaller grid islands. The grid islands are operated isolated from the power network, which places new demands on a faster frequency regulation. This thesis investigates a Kaplan turbine hydropower plant operating an island grid. The Kaplan turbine has two control signals, the wicket gate and the turbine blade positions, controlling the mechanical power. The inputs are comb...

  16. Global Value Chain and Manufacturing Analysis on Geothermal Power Plant Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Sertac [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Augustine, Chad R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mann, Margaret K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-03

    The global geothermal electricity market has significantly grown over the last decade and is expected to reach a total installed capacity of 18.4 GWe in 2021 (GEA, 2016). Currently, geothermal project developers customize the size of the power plant to fit the resource being developed. In particular, the turbine is designed and sized to optimize efficiency and resource utilization for electricity production; most often, other power plant components are then chosen to complement the turbine design. These custom turbine designs demand one-off manufacturing processes, which result in higher manufacturing setup costs, longer lead-times, and higher capital costs overall in comparison to larger-volume line manufacturing processes. In contrast, turbines produced in standard increments, manufactured in larger volumes, could result in lower costs per turbine. This study focuses on analysis of the global supply chain and manufacturing costs for Organic Rankine Cycle (ORC) turboexpanders and steam turbines used in geothermal power plants. In this study, we developed a manufacturing cost model to identify requirements for equipment, facilities, raw materials, and labor. We analyzed three different cases 1) 1 MWe geothermal ORC turboexpander 2) 5 MWe ORC turboexpander and 3) 20 MWe geothermal steam turbine, and calculated the cost of manufacturing the major components, such as the impellers/blades, shaft/rotor, nozzles, inlet guide lanes, disks, and casings. Then we used discounted cash flow (DCF) analysis to calculate the minimum sustainable price (MSP). MSP is the minimum price that a company must sell its product for in order to pay back the capital and operating expenses during the plant lifetime (CEMAC, 2017). The results showed that MSP could highly vary between 893 dollar/kW and 30 dollar/kW based on turbine size, standardization and volume of manufacturing. The analysis also showed that the economy of scale applies both to the size of the turbine and the number

  17. The performance of residential micro-cogeneration coupled with thermal and electrical storage

    Science.gov (United States)

    Kopf, John

    Over 80% of residential secondary energy consumption in Canada and Ontario is used for space and water heating. The peak electricity demands resulting from residential energy consumption increase the reliance on fossil-fuel generation stations. Distributed energy resources can help to decrease the reliance on central generation stations. Presently, distributed energy resources such as solar photovoltaic, wind and bio-mass generation are subsidized in Ontario. Micro-cogeneration is an emerging technology that can be implemented as a distributed energy resource within residential or commercial buildings. Micro-cogeneration has the potential to reduce a building's energy consumption by simultaneously generating thermal and electrical power on-site. The coupling of a micro-cogeneration device with electrical storage can improve the system's ability to reduce peak electricity demands. The performance potential of micro-cogeneration devices has yet to be fully realized. This research addresses the performance of a residential micro-cogeneration device and it's ability to meet peak occupant electrical loads when coupled with electrical storage. An integrated building energy model was developed of a residential micro-cogeneration system: the house, the micro-cogeneration device, all balance of plant and space heating components, a thermal storage device, an electrical storage device, as well as the occupant electrical and hot water demands. This model simulated the performance of a micro-cogeneration device coupled to an electrical storage system within a Canadian household. A customized controller was created in ESP-r to examine the impact of various system control strategies. The economic performance of the system was assessed from the perspective of a local energy distribution company and an end-user under hypothetical electricity export purchase price scenarios. It was found that with certain control strategies the micro-cogeneration system was able to improve the

  18. Exhaust of plant oil fuelled cogeneration unit drives a two-stage refrigerating absorber; Abgas aus Pflanzenoel-BHKW treibt zweistufige Absorptionskaeltemaschine an

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, W.

    2008-05-15

    Skating rinks are expensive to operate. In view of exploding energy prices, energetic optimisation is economically favourable even in more recent buildings. In the Hacker-Pschorr-Arena building at Bad Toelz, which was commissioned in 2004, the space HVAC system was modernized. A plant oil fuelled cogeneration unit and an exhaust-driven two-stage refrigerating absorber were installed. (orig.)

  19. Practical design considerations for nuclear cogeneration installations

    International Nuclear Information System (INIS)

    Koupal, J.R.

    1987-01-01

    Dual-purpose nuclear plants, cogeneration electricity and steam, offer significant economic benefits over comparable electricity generating stations. The design of such a nuclear facility requires the resolution of unique technical challenges. This paper reports on experience gained in the detailed design of such a dual-purpose facility with the steam supplied to a chemical plant for process heating. The following topics are discussed: Siting, Radioactivity of Export Steam, Optimization for Load Combinations, Steam Supply Reliability, Steam Transportation, Water Chemistry, Cost Allocation. (author)

  20. A biofuel-based cogeneration plant in a natural gas expansion system: An energetic and economic assessment

    International Nuclear Information System (INIS)

    Badami, Marco; Modica, Stefano; Portoraro, Armando

    2017-01-01

    Highlights: • A Natural Gas Turbo Expander system with a rapeseed oil fueled CHP is studied. • The experimental data of the plant are considered in the analyses. • The energetic index of performance shows the attractiveness of the plant. • Incentives and fuel price volatility effects on economic profitability are analysed. - Abstract: The paper deals with an analysis of the energetic and economic performance of a City Gas Station (CGS) plant, made up of a rapeseed oil cogenerator coupled to a turbo-expansion system for the reduction of natural gas pressure, which is currently in operation in Italy. Although this kind of systems concept is well known, the plant can be considered unusual because the heat needed to pre-heat the gas before its expansion is obtained from a renewable source. The aim of the paper is to analyse the energetic efficiency of the plant and its economic viability, which is affected to a great extent by subsidizing energy policies and by the volatility of vegetable oil prices. All the evaluations have been based on a real set of experimental data.

  1. Heating unit of Berovo by co-generation (Macedonia)

    International Nuclear Information System (INIS)

    Armenski, Slave; Dimitrov, Konstantin; Tashevski, Done

    1999-01-01

    A plant for combined heat and electric power production, for central heating of the town Berovo (Macedonia) is proposed. The common reason to use a co-generation unit is the energy efficiency and a significant reduction of environmental pollution. The heat consumption of town Berovo is analyzed and determined. Based on the energy consumption of a whole power plant, e. i. the plant for combined and simultaneous production of power is proposed. The quantity of annually heat and electrical production and annually coal consumption are estimated. (Author)

  2. Thermal design and technical economical and environmental analyses of a hydrogen fired multi-objective cogeneration system

    International Nuclear Information System (INIS)

    Durmaz, A; Yilmazoglu, M. Z.; Pasoglu, A.

    2007-01-01

    Approximately 85% of rapidly increasing world energy demand is supplied by fossil fuels. Extreme usage of fossil fuels causes serious global warming and environmental problems in form of air, soil and water pollutions. The period, in which fossil fuel reserves are decreasing, energy costs are increasing rapidly and new energy sources and technologies do not exist on the horizon, can be called as the expensive and critical energy period. Hydrogen becomes a matter of primary importance as a candidate energy source and carrier in the critical energy period and beyond to solve the energy and environmental problems radically. In this respect, the main obstacle for the use of hydrogen is the high cost of hydrogen production, which is expected to be decreased in the feature. The aim of this study is to examine how hydrogen energy will be able to be integrated with the existing energy substructure with technical and economical dimensions. In this sense, a multi objective hydrogen fired gas turbine cogeneration system is designed and optimized. Technical and economical analyses depending on the load conditions and different hydrogen production cost are carried out. It is possible that the co-generated heat is to be marketed for residence and industrial plants in the surrounding at or under market prices. The produced electricity however can only be sold to the public grid at a high unit support price which is only obtainable in case of the development of new energy technologies. This price should however be kept within the nowadays supportable energy price range. The main mechanism to be used during the design stage of the system to achieve this goal is to decrease the amortization and operational costs which lead to decrease investment and fuel costs and to increase the system load factor and co-generated heat revenues

  3. Experiences Applying Cogeneration Policies in Europe

    International Nuclear Information System (INIS)

    Marin Nortes, M.

    1997-01-01

    This paper starts by giving overview of the development of cogeneration in the European Union. The percentage of electricity produced by cogeneration is about 10%. The difference among the countries are however very big, ranging from 40% in Denmark to 2% in France. This is because the development of cogeneration in a country depends on a number of different factors. Political and regulatory factors are of a major importance. This paper tries to show this and to examinate a number of cogeneration policies in some countries in Europe. In each case, the reasons why or why not cogeneration has been successful will be analysed. (author)

  4. The wet compression technology for gas turbine power plants: Thermodynamic model

    International Nuclear Information System (INIS)

    Bracco, Stefano; Pierfederici, Alessandro; Trucco, Angela

    2007-01-01

    This paper examines from a thermodynamic point of view the effects of wet compression on gas turbine power plants, particularly analysing the influence of ambient conditions on the plant performance. The results of the mathematical model, implemented in 'Matlab' software, have been compared with the simulation results presented in literature and in particular the values of the 'evaporative rate', proposed in Araimo et al. [L. Araimo, A. Torelli, Thermodynamic analysis of the wet compression process in heavy duty gas turbine compressors, in: Proceedings of the 59th ATI Annual Congress, Genova, 2004, pp. 1249-1263; L. Araimo, A. Torelli, Wet compression technology applied to heavy duty gas turbines - GT power augmentation and efficiency upgrade, in: Proceedings of the 59th ATI Annual Congress, Genova, 2004, pp. 1265-1277] by 'Gas Turbines Department' of Ansaldo Energia S.p.A., have been taken into account to validate the model. The simulator permits to investigate the effects of the fogging and wet compression techniques and estimate the power and efficiency gain of heavy duty gas turbines operating in hot and arid conditions

  5. Cogeneration Technology Alternatives Study (CTAS). Volume 6: Computer data. Part 1: Coal-fired nocogeneration process boiler, section A

    Science.gov (United States)

    Knightly, W. F.

    1980-01-01

    Various advanced energy conversion systems (ECS) are compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidates which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented for coal fired process boilers. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented.

  6. Exergetic analysis of cogeneration plants through integration of internal combustion engine and process simulators

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Leonardo de Oliveira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)], E-mail: leonardo.carvalho@petrobras.com.br; Leiroz, Albino Kalab; Cruz, Manuel Ernani [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Mecanica], Emails: leiroz@mecanica.ufrj.br, manuel@mecanica.ufrj.br

    2010-07-01

    Internal combustion engines (ICEs) have been used in industry and power generation much before they were massively employed for transportation. Their high reliability, excellent power-to-weight ratio, and thermal efficiency have made them a competitive choice as main energy converters in small to medium sized power plants. Process simulators can model ICE powered energy plants with limited depth, due to the highly simplified ICE models used. Usually a better understanding of the global effects of different engine parameters is desirable, since the combustion process within the ICE is typically the main cause of exergy destruction in systems which utilize them. Dedicated commercial ICE simulators have reached such a degree of maturity, that they can adequately model a wide spectrum of phenomena that occur in ICEs. However, ICE simulators are unable to incorporate the remaining of power plant equipment and processes in their models. This paper presents and exploits the integration of an internal combustion engine simulator with a process simulator, so as to evaluate the construction of a fully coupled simulation platform to analyze the performance of ICE-based power plants. A simulation model of an actual cogeneration plant is used as a vehicle for application of the proposed computational methodology. The results show that by manipulating the engine mapping parameters, the overall efficiency of the plant can be improved. (author)

  7. Cogeneration: A marketing opportunity for pipelines

    International Nuclear Information System (INIS)

    Ulrich, J.S.

    1992-01-01

    This chapter describes the marketing of dual-purpose power plants by pipeline companies as a long term marketing strategy for natural gas. The author uses case studies to help evaluate a company's attitude toward development of a market for cogeneration facilities. The chapter focuses on strategies for developing markets in the industrial sector and identifying customer groups that are likely to respond in like manner to a marketing strategy

  8. Heat extraction from turbines of Czechoslovak nuclear power plants for district heating

    International Nuclear Information System (INIS)

    Drahy, J.

    1985-01-01

    Two design are described of SKODA extraction turbines for Czechoslovak nuclear power plants with WWER-440 and WWER-1000 reactors. 220 MW steam turbines were originally designed as pure condensation turbines with uncontrolled steam extraction. Optimal ways are now being sought for their use for heating hot water for district heating. For district heating of the town of Trnava, the nuclear power plant at Jaslovske Bohunice will provide a two-step heating of water from 70 to 120 degC with a heat supply of 60 MW th from one turbine unit. The ratio of obtained heat power to lost electric power is 5.08. Investigations showed the possibility of extracting 85 MW th of heat from uncontrolled steam extraction, this at three-step water heating from 60 to 145 degC, the ratio of gained and lost power being 7.14. Information is presented on the SKODA 220 MW turbine with steam extraction for heat supply purposes and on the 1000 MW turbine with 893 MW th heat extraction. The specifications of both types are given. (Pu)

  9. Cogeneration in the sugarcane industry - medium plants; A cogeracao no setor sucroalcooleiro - usinas de medio porte

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, Maria Cristina [Companhia Energetica de Sao Paulo (CESP), SP (Brazil)]. E-mail: epg@cesp.com.br; Ramos, Dorel Soares [Sao Paulo Univ., SP (Brazil). Escola Politecnica]. E-mail: dorelram@pea.usp.br

    2000-07-01

    This work aims at to analyze the re powering of medium sized sugar and alcohol plants located in the Southeast area of Sao Paulo State. Through a study case considering a standard unit that processes ten thousand tons of sugarcane per day, simulations were made using a mathematical model denominated Modelo de Despacho Hidrotermico, which supports the decision process for the expansion of electric energy offers. As a result of these simulations, it was possible to get the standard dispatch profile for such cogeneration plants, expressed by a medium capacity factor of 89%, demonstrating, therefore, the significant participation that these units can have in the energy context. Furthermore, a brief discussion about the energy price and capital return time is introduced, emphasizing the attractiveness of this kind of enterprise. (author)

  10. Turbine-generators for 400 mw coal-fired power plants

    International Nuclear Information System (INIS)

    Engelke, W.; Bergmann, D.; Boer, J.; Termuehlen, H.

    1991-01-01

    This paper reports that presently, standard coal-fired power plant concepts including flue gas desulfurization (FGD) and DENO x systems are in the design stage to be built on relatively short delivery schedules. The rating in the 400 MW range has generally been selected, because such small power plant units with short delivery times cause a minimum financial burden during planning, delivery and installation. They also follow more closely the growth of electric energy demand at specific locations. However economical considerations could lead to larger unit ratings, since the planning and building process of higher capacity plants is not significantly different but specific plant costs are certainly smaller with increased unit size. Historically large tandem-compound steam turbine-generators have been built and have proven reliable operation with ratings in excess of 800 MW. Already in the late 1950's main steam pressures and temperatures as high as 4,500 psig and 1,200 degrees F respectively were successfully used for smaller steam turbines

  11. Development of biomass gasification systems for gas turbine power generation

    International Nuclear Information System (INIS)

    Larson, E.D.; Svenningsson, P.

    1991-01-01

    Gas turbines are of interest for biomass applications because, unlike steam turbines, they have relatively high efficiencies and low unit capital costs in the small sizes appropriate for biomass installations. Gasification is a simple and efficient way to make biomass usable in gas turbines. The authors evaluate here the technical requirements for gas turbine power generation with biomass gas and the status of pressurized biomass gasification and hot gas cleanup systems. They also discuss the economics of gasifier-gas turbine cycles and make some comparisons with competing technologies. Their analysis indicates that biomass gasifiers fueling advanced gas turbines are promising for cost-competitive cogeneration and central station power generation. Gasifier-gas turbine systems are not available commercially, but could probably be developed in 3 to 5 years. Extensive past work related to coal gasification and pressurized combustion of solid fuels for gas turbines would be relevant in this effort, as would work on pressurized biomass gasification for methanol synthesis

  12. Long-term optimization of cogeneration systems in a competitive market environment

    International Nuclear Information System (INIS)

    Thorin, E.; Brand, H.; Weber, C.

    2005-01-01

    A tool for long-term optimization of cogeneration systems is developed that is based on mixed integer linear-programming and Lagrangian relaxation. We use a general approach without heuristics to solve the optimization problem of the unit commitment problem and load dispatch. The possibility to buy and sell electric power at a spot market is considered as well as the possibility to provide secondary reserve. The tool has been tested on a demonstration system based on an existing combined heat-and-power (CHP) system with extraction-condensing steam turbines, gas turbines, and boilers for heat production and district-heating networks. The key feature of the model for obtaining solutions within reasonable times is a suitable division of the whole optimization period into overlapping sub-periods. Using Lagrangian relaxation, the tool can be applied to large CHP systems. For the demonstration model, almost optimal solutions were found. (author)

  13. SOLHYCO Project: cogeneration system with concentrated solar energy and biofuels; Projeto SOLHYCO: sistema de cogeracao de energia solar concentrada e biocombustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Celso Eduardo Lins de; Rabi, Jose Antonio; Carrer, Celso da Costa; Cavinatto, Betina; Tomasella, Peterson Ricardo [Universidade de Sao Paulo (FZEA-USP), SP (Brazil). Fac. de Zootecnia e Engenharia de Alimentos

    2008-07-01

    Dispatchable renewable power generation is usually associated with expensive storages or additional back-up systems. Solar-hybrid systems can combine solar energy with an additional fuel and thus reliably provide electric power. If renewable fuels (e.g., biofuels) are employed, power generation becomes 100% sustainable at zero net emissions. Systems based on gas turbines are suited for cogeneration or combined cycles, making them very efficient and cost effective. These cycles require high temperatures and pressures, thus the solar energy has to be concentrated by a heliostat field onto the top of a tower and transferred by a solar receiver into the gas turbine cycle. At smaller power levels, cogeneration of heat and power is an attractive option by making use of the high exhaust temperature of the gas turbine, thus getting an additional benefit. The aim of this proposal is an significant extension of the objectives of the recently started SOLHYCO project by means A profound knowledge for market introduction will be gained by the assessment of the Brazilian market concerning solar resources, biofuels, electricity markets, heat markets and social needs. A detailed design study for a first demonstration unit will deliver all necessary economical, social and environmental data and accordingly 3 case studies have been defined. (author)

  14. Cogeneration markets in Ontario

    International Nuclear Information System (INIS)

    Poredos, S.

    1993-01-01

    Cogeneration offers a key strategy which supports global competitiveness for Ontario businesses, encourages energy efficiency and environmental protection, and offers natural gas utilities and producers stable long-term incremental markets. By supporting cogeneration projects, electric utilities will benefit from increased flexibility. Natural gas is the fuel of choice for cogeneration, which can in most cases be easily integrated into existing operations. In Ontario, electric demand grew along with the gross domestic product until 1990, but has decreased with the recent economic recession. The provincial utility Ontario Hydro is resizing itself to stabilize total rate increases of 30% over the last three years and supporting reduction of its high debt load. Rate increases are supposed to be limited but this may be difficult to achieve without further cost-cutting measures. Cogeneration opportunities exist with many institutional and industrial customers who are trying to remain globally competitive by cutting operating costs. In general, cogeneration can save 20% or more of total annual energy costs. Due to excess capacity, Ontario Hydro is not willing to purchase electric power, thus only electric load displacement projects are valid at this time. This will reduce overall savings due to economies of scale. In southwestern Ontario, Union Gas Ltd. has been successful in developing 40 MW of electric displacement projects, providing a total load of 5 billion ft 3 of natural gas (50% of which is incremental). Over 3,000 MW of technical cogeneration potential is estimated to exist in the Union Gas franchise area

  15. Impact of inlet fogging and fuels on power and efficiency of gas turbine plants

    Directory of Open Access Journals (Sweden)

    Basha Mehaboob

    2013-01-01

    Full Text Available A computational study to assess the performance of different gas turbine power plant configurations is presented in this paper. The work includes the effect of humidity, ambient inlet air temperature and types of fuels on gas turbine plant configurations with and without fogger unit. Investigation also covers economic analysis and effect of fuels on emissions. GT frames of various sizes/ratings are being used in gas turbine power plants in Saudi Arabia. 20 MWe GE 5271RA, 40 MWe GE-6561B and 70 MWe GE-6101FA frames are selected for the present study. Fogger units with maximum mass flow rate of 2 kg/s are considered for the present analysis. Reverse Osmosis unit of capacity 4 kg/s supplies required water to the fogger units. GT PRO software has been used for carrying out the analysis including; net plant output and net efficiency, break even electricity price and break even fuel LHV price etc., for a given location of Saudi Arabia. The relative humidity and temperature have been varied from 30 to 45 % and from 80 to 100° F, respectively. Fuels considered in the study are natural gas, diesel and heavy bunker oil. Simulated gas turbine plant output from GT PRO has been validated against an existing gas turbine plant output. It has been observed that the simulated plant output is less than the existing gas turbine plant output by 5%. Results show that variation of humidity does not affect the gas turbine performance appreciably for all types of fuels. For a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to increase by 5 and 2 %, respectively for all fuels, for GT only situation. However, for GT with Fogger scenario, for a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to further increase by 3.2 and 1.2 %, respectively for all fuels. For all GT frames with fogger, the net plant output and efficiency are relatively higher as compared to GT only case for all

  16. Availability performance of fossil-fired and nuclear power plants around the world

    International Nuclear Information System (INIS)

    Glorian, D.; Aye, L.; Lefeuvre, P.; Bouget, Y.H.

    1996-01-01

    For future thermal electricity, the electricity producer facing needs for extension or renewal of his own generating capacity can choose among a large number of proven technologies. These technologies can be nuclear or conventional (fossil-fired): steam turbines, cogeneration or gas turbines. The economic competitiveness of these different types of installations over their entire lifetime is calculated on the basis of various cost assumptions and/or scenarios, taking into account capital investment, fuel, operating and maintenance costs.. Equally important are such factors as construction duration, discount rate, service lifetime, usage mode (base load, intermediate load or peak load). In addition, costs and hypotheses in relation to the environment should be taken into account, including the cost of dismantling nuclear power plants. Hypotheses concerning the service delivered to the grid, that is to say the expected availability of the plant, is one of the main factors governing the quality of service provided. This paper deals particularly with experience feedback in the area of availability factors for nuclear and conventional power plants (steam turbines) of over 100 MW around the world. The assumptions for future (i.e. new) plants are compared against experience feedback. In the second part, assumptions for new plants are presented. (authors)

  17. Boehringer Ingelheim Promeco contemplates the benefits of cogeneration in its new plant; Boehringer Ingelheim Promeco contempla beneficios de la cogeneracion para su nueva planta

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Esparza, R. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Khouri Solis, A. [Boehringer Ingelheim Promeco, Mexico, D. F. (Mexico)

    1997-12-31

    This paper presents the results of the feasibility study performed in BOEHRINGER INGELHEIM PROMECO to determine the benefits that a cogeneration system could render in satisfying the energy demand of its plant currently being expanded. The results showed that in accordance with the operation mode of the already expanded plant, the highest benefits could be obtained of a cogeneration system with a capacity of 1,600 Kw that would partially satisfy the thermal and electrical demands of BOEHRINGER INGELHEIM PROMECO. [Espanol] El presente articulo presenta los resultados de factibilidad que se realizo en Boehringer Ingelheim Promeco para determinar los beneficios que podria rendir un sistema de cogeneracion al satisfacer las demandas energeticas de su planta actualmente en ampliacion. Los resultados mostraron que de acuerdo al modo de operacion de la planta ya ampliada, los beneficios mas altos se obtendrian de un sistema de cogeneracion con capacidad de 1,600 kW que satisfaria parcialmente las demandas termicas y electricas de Boehringer Ingelheim Promeco.

  18. Boehringer Ingelheim Promeco contemplates the benefits of cogeneration in its new plant; Boehringer Ingelheim Promeco contempla beneficios de la cogeneracion para su nueva planta

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Esparza, R [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Khouri Solis, A [Boehringer Ingelheim Promeco, Mexico, D. F. (Mexico)

    1998-12-31

    This paper presents the results of the feasibility study performed in BOEHRINGER INGELHEIM PROMECO to determine the benefits that a cogeneration system could render in satisfying the energy demand of its plant currently being expanded. The results showed that in accordance with the operation mode of the already expanded plant, the highest benefits could be obtained of a cogeneration system with a capacity of 1,600 Kw that would partially satisfy the thermal and electrical demands of BOEHRINGER INGELHEIM PROMECO. [Espanol] El presente articulo presenta los resultados de factibilidad que se realizo en Boehringer Ingelheim Promeco para determinar los beneficios que podria rendir un sistema de cogeneracion al satisfacer las demandas energeticas de su planta actualmente en ampliacion. Los resultados mostraron que de acuerdo al modo de operacion de la planta ya ampliada, los beneficios mas altos se obtendrian de un sistema de cogeneracion con capacidad de 1,600 kW que satisfaria parcialmente las demandas termicas y electricas de Boehringer Ingelheim Promeco.

  19. Modernization of turbines in nuclear power plants

    International Nuclear Information System (INIS)

    Harig, T.

    2005-01-01

    An ongoing goal in the power generation industry is to maximize the output of currently installed assets. This is most important at nuclear power plants due to the large capital investments that went into these plants and their base loaded service demands. Recent trends in the United States show a majority of nuclear plants are either obtaining, or are in the process of obtaining NRC approvals for operating license extensions and power uprates. This trend is evident in other countries as well. For example, all Swedish nuclear power plants are currently working on projects to extend their service life and maximize capacity through thermal uprate and turbine-generator upgrade with newest technology. The replacement of key components with improved ones is a means of optimizing the service life and availability of power plants. Economic advantages result from increased efficiency, higher output, shorter startup and shutdown times as well as reduced outage times and service costs. The rapid advances over recent years in the development of calculation programs enables adaptation of the latest blading technology to the special requirements imposed by steam turbine upgrading. This results in significant potential for generating additional output with the implementation of new technology, even without increased thermal power. In contrast to maintenance and investment in pure replacement or repair of a component with the primary goal of maintaining operability and reliability, the additional output gained by upgrading enables a return on investment to be reaped. (orig.)

  20. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    Waste Processors Management Inc. (WMPI), along with its subcontractors entered into a cooperative agreement with the USDOE to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US that produces ultra clean Fischer-Tropsch transportation fuels with either power or steam as the major co-product. The EECP will emphasize on reclaiming and gasifying low-cost coal waste and/or its mixture as the primary feedstocks. The project consists of three phases. Phase I objectives include conceptual development, technical assessment, feasibility design and economic evaluation of a Greenfield commercial co-production plant and a site specific demonstration EECP to be located adjacent to the existing WMPI Gilberton Power Station. There is very little foreseen design differences between the Greenfield commercial coproduction plant versus the EECP plant other than: The greenfield commercial plant will be a stand alone FT/power co-production plant, potentially larger in capacity to take full advantage of economy of scale, and to be located in either western Pennsylvania, West Virginia or Ohio, using bituminous coal waste (gob) and Pennsylvania No.8 coal or other comparable coal as the feedstock; The EECP plant, on the other hand, will be a nominal 5000 bpd plant, fully integrated into the Gilbertson Power Company's Cogeneration Plant to take advantage of the existing infrastructure to reduce cost and minimize project risk. The Gilberton EECP plant will be designed to use eastern Pennsylvania anthracite coal waste and/or its mixture as feedstock

  1. Multi-Level Risk Assessment of a Power Plant Gas Turbine Applying ...

    African Journals Online (AJOL)

    Multi-Level Risk Assessment of a Power Plant Gas Turbine Applying the Criticality Index Model. ... Journal of the Nigerian Association of Mathematical Physics ... This study has carefully shown and expressed a step by step computation of the severity level of the Turbine component parts, using the Criticality Index model.

  2. Micro-size cogeneration plants and virtual power plants. New energy landscapes; Mikro-KWK und virtuelle Kraftwerke. Neue Energielandschaften

    Energy Technology Data Exchange (ETDEWEB)

    Roon, Serafin von [Forschungsstelle fuer Energiewirtschaft e.V., Muenchen (Germany)

    2009-07-01

    Combined heat and power generation is an established technology. With micro-size cogeneration units, the technology is now available to private single or multiple dwellings and for decentral power supply of residential blocks. With the right political boundary conditions and integrated into virtual power stations, this is an option for enhanced use of renewable energy sources and for decentral, flexible and climate-friendly heat and power generation in buildings. Economic efficiency analyses by experts, high utilisation rates, innovative developments of the manufacturers and a positive public image are all in favour of a great future for micro-size cogeneration units. (orig.)

  3. Achievement report for fiscal 1998. Research and development of ceramic gas turbine (Regenerative single-shaft ceramic gas turbine for cogeneration); 1998 nendo ceramic gas turbine no kenkyu kaihatsu seika hokokusho. Cogeneration yo saiseishiki ichijiku ceramic gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    Efforts are exerted to develop a 300kW-class ceramic gas turbine with a turbine inlet temperature of 1350 degrees C and thermal efficiency of 42% or higher. The soundness in strength of the ceramic rotor blades and their fastening structure is confirmed. Rotor blade cushion thickness is found to decrease in start-and-stop repetitions in the initial period, but not thereafter. The exhaust diffuser and exhaust path shape are studied and improved for an increase in output, which improves turbine efficiency by 1.7%. Under the operating conditions of 1350 degrees C and full load, NOx emissions and combustion efficiency prove to be 5.6ppm and 99.9%. Even in the case using a large-diameter liner with its combustion efficiency under light load improved, the ultimate target value is achieved. Studies are further conducted on centrifugal stage loss reduction towards the ultimate goal set for the compressor. The diffuser shape is improved and the shroud clearance is reduced, and insulation efficiency of 81.1% is attained at the designing stage. In a test run of a pilot ceramic gas turbine in which temperature finally arrives at 1350 degrees C, engine thermal efficiency of 35% and shaft output of 282kW are achieved. (NEDO)

  4. Web-based turbine cycle performance analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Heo, Gyun Young; Lee, Sung Jin; Chang, Soon Heung; Choi, Seong Soo

    2000-01-01

    As an approach to improve the economical efficiency of operating nuclear power plants, a thermal performance analysis tool for steam turbine cycle has been developed. For the validation and the prediction of the signals used in thermal performance analysis, a few statistical signal processing techniques are integrated. The developed tool provides predicted performance calculation capability that is steady-state wet steam turbine cycle simulation, and measurement performance calculation capability which determines component- and cycle-level performance indexes. Web-based interface with all performance analysis is implemented, so even remote users can achieve performance analysis. Comparing to ASME PTC6 (Performance Test Code 6), the focusing point of the developed tool is historical performance analysis rather than single accurate performance test. The proposed signal processing techniques are validated using actual plant signals, and turbine cycle models are tested by benchmarking with a commercial thermal analysis tool

  5. The cogeneration in France

    International Nuclear Information System (INIS)

    2006-01-01

    Since the years 90 many measures have been decided by the government in favor of the cogeneration, to implement a juridical, fiscal, technical and economical framework. After a presentation of the three main channels and the advantages of the cogeneration, the author presents these measures. (A.L.B.)

  6. Recent run-time experience and investigation of impurities in turbines circuit of Helium plant of SST-1

    International Nuclear Information System (INIS)

    Panchal, P.; Panchal, R.; Patel, R.

    2013-01-01

    One of the key sub-systems of Steady State superconducting Tokamak (SST-1) is cryogenic 1.3 kW at 4.5 K Helium refrigerator/liquefier system. The helium plant consists of 3 nos. of screw compressors, oil removal system, purifier and cold-box with 3 turbo expanders (turbines) and helium cold circulator. During the recent SST-1 plasma campaigns, we observed high pressure drop of the order of 3 bar between the wheel outlet of turbine A and the wheel inlet of turbine - B. This was significant higher values of pressures drop across turbines, which reduced the speed of turbine A and B and in turn reduced the overall plant capacity. The helium circuits in the plant have 10-micron filter at the mouth of turbine - B. Initially, major suspects of such high blockage are assumed to be air-impurity, dust particles or collapse of filter. Several breaks in plant operation have been taken to warm up the turbines circuits up to 90 K to remove condensation of air-impurities at filter. Still this exercise did not solve blockage of filter in turbine circuits. A detailed investigation exercise with air/water regeneration and rinsing of cold box as well as purification of helium gas in buffer tanks are carried out to remove air impurities from cold-box. A trial run of cold box was executed in liquefier mode with turbines up to cryogenic temperatures and solved blockage in turbine circuits. The paper describes run-time experience of helium plant with helium impurity in turbine circuits, methods to remove impurity, demonstration of turbine performance and lessons learnt during this operation. (author)

  7. Proposal of a combined heat and power plant hybridized with regeneration organic Rankine cycle: Energy-Exergy evaluation

    International Nuclear Information System (INIS)

    Anvari, Simin; Jafarmadar, Samad; Khalilarya, Shahram

    2016-01-01

    Highlights: • A new thermodynamic cogeneration system is proposed. • Energy and exergy analysis of the considered cycle were performed. • An enhancement of 2.6% in exergy efficiency compared to that of baseline cycle. - Abstract: Among Rankine cycles (simple, reheat and regeneration), regeneration organic Rankine cycle demonstrates higher efficiencies compared to other cases. Consequently, in the present work a regeneration organic Rankine cycle has been utilized to recuperate gas turbine’s heat using heat recovery steam generator. At first, this cogeneration system was subjected to energy and exergy analysis and the obtained results were compared with that of investigated cogeneration found in literature (a cogeneration system in which a reheat organic Rankine cycle for heat recuperation of gas turbine cycle was used with the aid of heat recovery steam generator). Results indicated that the first and second thermodynamic efficiencies in present cycle utilizing regeneration cycle instead of reheat cycle has increased 2.62% and 2.6%, respectively. In addition, the effect of thermodynamic parameters such as combustion chamber’s inlet temperature, gas turbine inlet temperature, evaporator and condenser temperature on the energetic and exergetic efficiencies of gas turbine-heat recovery steam generator cycle and gas turbine-heat recovery steam generator cycle with regeneration organic Rankine cycle was surveyed. Besides, parametric analysis shows that as gas turbine and combustion chamber inlet temperatures increase, energetic and exergetic efficiencies tend to increase. Moreover, once condenser and evaporator temperature raise, a slight decrement in energetic and exergetic efficiency is expected.

  8. A mathematical model for the dynamic simulation of low size cogeneration gas turbines within smart microgrids

    International Nuclear Information System (INIS)

    Bracco, Stefano; Delfino, Federico

    2017-01-01

    Microturbines represent a suitable technology to be adopted in smart microgrids since they are characterized by affordable capital and maintenance costs, high reliability and flexibility, and low environmental impact; moreover, they can be fed by fossil fuels or biofuels. They can operate in cogeneration and trigeneration mode, thus permitting to attain high global efficiency values of the energy conversion system from primary energy to electrical and thermal energy; from the electrical point of view, microturbines can operate connected to the distribution grid but also in islanded mode, thus enabling their use in remote areas without electrification. The paper describes the mathematical model that has been developed to simulate in off-design and transient conditions the operation of a 65 kW_e_l cogeneration microturbine installed within a smart microgrid. The dynamic simulation model is characterized by a flexible architecture that permits to simulate other different size single-shaft microturbines. The paper reports the main equations of the model, focusing on the architecture of the simulator and the microturbine control system; furthermore the most significant results derived from the validation phase are reported too, referring to the microturbine installed in the Smart Polygeneration Microgrid of the Savona Campus at the University of Genoa in Italy. - Highlights: • Dynamic simulation model of a cogeneration microturbine. • Off-design and transient performances of the microturbine. • Simulator validated on the Smart Polygeneration Microgrid at the Savona Campus.

  9. Energetic and exergetic analysis of a steam turbine power plant in an existing phosphoric acid factory

    International Nuclear Information System (INIS)

    Hafdhi, Fathia; Khir, Tahar; Ben Yahyia, Ali; Ben Brahim, Ammar

    2015-01-01

    Highlights: • The operating mode of the factory and the power supply streams are presented. • Energetic Analysis of steam turbine power plant of an existing phosphoric acid factory. • Exergetic Analysis of each component of steam turbine power plant and the different heat recovery system. • Energy, exergy efficiency and irreversibility rates for the main components are determined. • The effect of the operating parameters on the plant performance are analyzed. - Abstract: An energetic and exergetic analysis is conducted on a Steam Turbine Power Plant of an existing Phosphoric Acid Factory. The heat recovery systems used in the different parts of the plant are also considered in the study. Mass, energy and exergy balances are established on the main compounds of the plant. A numerical code is established using EES software to perform the calculations required for the thermal and exergy plant analysis considering real variation ranges of the main operating parameters such as pressure, temperature and mass flow rate. The effects of theses parameters on the system performances are investigated. The main sources of irreversibility are the melters, followed by the heat exchangers, the steam turbine generator and the pumps. The maximum energy efficiency is obtained for the blower followed by the heat exchangers, the deaerator and the steam turbine generator. The exergy efficiency obtained for the heat exchanger, the steam turbine generator, the deaerator and the blower are 88%, 74%, 72% and 66% respectively. The effects of High Pressure steam temperature and pressure on the steam turbine generator energy and exergy efficiencies are investigated.

  10. Operating experiences on the co-generation system (CGS) as an uninterruptible power source (UPS) for the super-sized accelerator facility, RIBF of RIKEN

    International Nuclear Information System (INIS)

    Fujinawa, Tadashi; Yano, Yasushige

    2011-01-01

    The RI Beam Factory (RIBF) of RIKEN Nishina Center for Accelerator-Based Science, which succeeded in extracting first beam on December 28th 2006 as scheduled, is currently conducting nuclear physics experiments. The RIBF has six accelerators, one of which is the world's biggest and most powerful superconducting ring cyclotron (SRC). The accelerators require not only a huge amount of electricity but also a reliable power supply for the He-cryogenic system, vacuum system and superconducting magnet systems. For this purpose, the co-generation system (CGS) was introduced. A gas turbine generates 6.5 MW of power from liquid natural gas (LNG) and supplies it to the systems mentioned above as an uninterruptible power source (UPS). By utilizing gas heat exhaust from the gas turbine, the CGS will also supply cooled water to the cooling system of the RIBF accelerators as well as to the air-conditioning system for the bending. The CGS plant was completed on the 1st floor of the RIBF accelerator building and it began operating in April 2003. This paper covers the merits and demerits. (author)

  11. A Comparison of Prediction Methods for Design of Pump as Turbine for Small Hydro Plant: Implemented Plant

    Science.gov (United States)

    Naeimi, Hossein; Nayebi Shahabi, Mina; Mohammadi, Sohrab

    2017-08-01

    In developing countries, small and micro hydropower plants are very effective source for electricity generation with energy pay-back time (EPBT) less than other conventional electricity generation systems. Using pump as turbine (PAT) is an attractive, significant and cost-effective alternative. Pump manufacturers do not normally provide the characteristic curves of their pumps working as turbines. Therefore, choosing an appropriate Pump to work as a turbine is essential in implementing the small-hydro plants. In this paper, in order to find the best fitting method to choose a PAT, the results of a small-hydro plant implemented on the by-pass of a Pressure Reducing Valve (PRV) in Urmia city in Iran are presented. Some of the prediction methods of Best Efficiency Point of PATs are derived. Then, the results of implemented project have been compared to the prediction methods results and the deviation of from measured data were considered and discussed and the best method that predicts the specifications of PAT more accurately determined. Finally, the energy pay-back time for the plant is calculated.

  12. A Geothermal Energy Supported Gas-steam Cogeneration Unit as a Possible Replacement for the Old Part of a Municipal CHP Plant (TEKO

    Directory of Open Access Journals (Sweden)

    L. Böszörményi

    2001-01-01

    Full Text Available The need for more intensive utilization of local renewable energy sources is indisputable. Under the current economic circumstances their competitiveness in comparison with fossil fuels is rather low, if we do not take into account environmental considerations. Integrating geothermal sources into combined heat and power production in a municipal CHP plant would be an excellent solution to this problem. This concept could lead to an innovative type of power plant - a gas-steam cycle based, geothermal energy supported cogeneration unit.

  13. Selection of axial hydraulic turbines for low-head microhydropower plants

    Science.gov (United States)

    Šoukal, J.; Pochylý, F.; Varchola, M.; Parygin, A. G.; Volkov, A. V.; Khovanov, G. P.; Naumov, A. V.

    2015-12-01

    The creation of highly efficient hydroturbines for low-head microhydropower plants is considered. The use of uncontrolled (propeller) hydroturbines is a promising means of minimizing costs and the time for their recoupment. As an example, experimental results from Brno University of Technology are presented. The model axial hydraulic turbine produced by Czech specialists performs well. The rotor diameter of this turbine is 194 mm. In the design of the working rotor, ANSYS Fluent software is employed. Means of improving the efficiency of microhydropower plants by optimal selection of the turbine parameters in the early stages of design are outlined. The energy efficiency of the hydroturbine designed for use in a microhydropower plant may be assessed on the basis of the coefficient of energy utilization, which is a function of the total losses in all the pipeline elements and losses in the channel including the hydroturbine rotor. The limit on the coefficient of energy utilization in the pressure pipeline is the hydraulic analog of the Betz-Joukowsky limit, which is widely used in the design of wind generators. The proposed approach is experimentally verified at Moscow Power Engineering Institute. A model axial hydraulic turbine with four different rotors is designed for the research. The diameter of all four rotors is the same: 80 mm. The pipeline takes the form of a siphon. Working rotor R2, designed with parameter optimization, is characterized by the highest coefficient of energy utilization of the pressure pipeline and maximum efficiency. That confirms that the proposed approach is a promising means of maximizing the overall energy efficiency of the microhydropower plant.

  14. The turbine oil fire in the nuclear power plant, Muehleberg

    International Nuclear Information System (INIS)

    Lutz, H.R.

    1972-01-01

    At 21.15 hours on the evening of the 28th July 1971, a turbine oil fire broke out in the Nuclear Power Plant Muehleberg of the Bernische Kraftwerke AG, resulting in damage amounting to around 20 million Swiss Francs and a delay of some ten months in putting the plant into operation. The plant is equipped with a General Electric boiling water reactor and two BBC saturated steam turbines. Up to the time of the fire, both turbo-sets had already been run singly up to their full capacity of 160 MWe and the initial trials with both sets working parallel were shortly due to be carried out. Following the outbreak of fire, the causes of which are described in the contributions of the authors Hagn, L. and H. Huppmann and Christian, H. and H. Grupp, fire fighting action was immediately taken, in line with the emergency measures laid down in the operating regulations. With the assistance of the Berne City Fire Brigade, the blaze in the roof of the turbine hall was first extinguished and the spreading cable conflagration then fought, using foam and water. (orig.) [de

  15. IEA Wind Task 37: Systems Modeling Framework and Ontology for Wind Turbines and Plants

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zahle, Frederik [Technical University of Denmark; Merz, Karl [SINTEF Energy Research; McWilliam, Mike [Technical University of Denmark; Bortolotti, Pietro [Technical University Munich

    2017-08-14

    This presentation will provide an overview of progress to date in the development of a system modeling framework and ontology for wind turbines and plants as part of the larger IEA Wind Task 37 on wind energy systems engineering. The goals of the effort are to create a set of guidelines for a common conceptual architecture for wind turbines and plants so that practitioners can more easily share descriptions of wind turbines and plants across multiple parties and reduce the effort for translating descriptions between models; integrate different models together and collaborate on model development; and translate models among different levels of fidelity in the system.

  16. Analysis of power and cooling cogeneration using ammonia-water mixture

    International Nuclear Information System (INIS)

    Padilla, Ricardo Vasquez; Demirkaya, Goekmen; Goswami, D. Yogi; Stefanakos, Elias; Rahman, Muhammad M.

    2010-01-01

    Development of innovative thermodynamic cycles is important for the efficient utilization of low-temperature heat sources such as solar, geothermal and waste heat sources. This paper presents a parametric analysis of a combined power/cooling cycle, which combines the Rankine and absorption refrigeration cycles, uses ammonia-water mixture as the working fluid and produces power and cooling simultaneously. This cycle, also known as the Goswami Cycle, can be used as a bottoming cycle using waste heat from a conventional power cycle or as an independent cycle using solar or geothermal energy. A thermodynamic study of power and cooling cogeneration is presented. The performance of the cycle for a range of boiler pressures, ammonia concentrations and isentropic turbine efficiencies are studied to find out the sensitivities of net work, amount of cooling and effective efficiencies. The roles of rectifier and superheater on the cycle performance are investigated. The cycle heat source temperature is varied between 90-170 o C and the maximum effective first law and exergy efficiencies for an absorber temperature of 30 o C are calculated as 20% and 72%, respectively. The turbine exit quality of the cycle for different boiler exit scenarios shows that turbine exit quality decreases when the absorber temperature decreases.

  17. FBC utilization prospects in decentralized cogeneration units in Caucasus region countries

    Directory of Open Access Journals (Sweden)

    Skodras George

    2003-01-01

    Full Text Available Great differences are encountered among Caucasus region countries with respect to energy resources reserves and economic conditions. Thermal power plants consist of obsolete and inefficient units, while the Soviet-type large heating systems in the area collapsed after 1992 and their reconstruction is considered uneconomic. Renovation needs of the power and heat sector, and the potential of Fluidised Bed Combustion implementations in decentralized cogeneration units were investigated, since operating oil and gas power plants exhibit high fuel consumption, low efficiency and poor environmental performance. Results showed significant prospects of Fluidised Bed Combustion utilization in decentralized cogeneration units in the Caucausus region heat and power sector. Their introduction constitutes an economically attractive way to cover power and heat demands and promotes utilization of domestic energy resources in all of three countries, provided that financial difficulties could be confronted.

  18. Research and development of ceramic gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazuo [National Aerospace Laboratory, Chofu-shi, Tokyo (Japan)

    1993-12-31

    The CO{sub 2} caused by the consumption of hydrocarbon fuel is one of the main gases which affect the global climate. In order to reduce the formation of CO{sub 2}, it is necessary to conserve energy as effectively as possible. Therefore the heat energy provided by the fuel should be utilized in multi-cascades. The energy at the high temperature should be used for the generation of electric power and the energy at low temperature could be used for making the steam and the hot water. The gas turbine is preferable for this purpose. The heat energy of exhaust gas can be reused more easily. The two systems are proposed by using the gas turbine as the high temperature stage. One is the cogeneration system and the other is the combined cycle. The former generates electric power by the gas turbine and make steam or hot water in the exhaust gas. The latter employs the gas turbine as the high temperature cycle and the steam turbine as the low temperature cycle.

  19. Renovation and rehabilitation of Didi Digomi District Heat Supply Plant (No.48) in Tbilisi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    An investigational study was conducted on the project for energy conservation and reduction in greenhouse effect gas emission at the existing district heating plant in Tbilisi City, Georgia. In the project, the following are conducted for the district heating plants in the Didi-Digomi section and Saburtalo section: renewal/higher efficiency of boiler equipment, adoption of cogeneration using gas turbine, improvement of hot water pipeline and improvement of equipment at heat users. As a result of the study, one plan for cogeneration of 2 units x 6MW class in each section was good in terms of economical efficiency and expenses vs. effects, and the other plan for cogeneration of 17 units (8 units and 9 units) x 6MW class was good in terms of the generated output and regional needs. The amount of energy conservation to be made by the former plan totaled 22,678 toe/y in both sections. The amount of greenhouse effect gas reduction is 70,170 t-CO2/y. The internal earning rate is 1.707% in the Didi-Digomi section and 2.249% in the Saburtalo section. The project profit is lower than the initial investment cost, and therefore, it is necessary to consider the profit from the CO2 emission right. (NEDO)

  20. Thermionic cogeneration burner design

    Science.gov (United States)

    Miskolczy, G.; Goodale, D.; Moffat, A. L.; Morgan, D. T.

    Since thermionic converters receive heat at very high temperatures (approximately 1800 K) and reject heat at moderately high temperatures (approximately 800 K), they are useful for cogeneration applications involving high temperature processes. The electric power from thermionic converters is produced as a high amperage, low-voltage direct current. An ideal cogeneration application would be to utilize the reject heat at the collector temperature and the electricity without power conditioning. A cogeneration application in the edible oil industry fulfills both of these requirements since both direct heat and hydrogen gas are required in the hydrogenation of the oils. In this application, the low-voltage direct current would be used in a hydrogen electrolyzer.

  1. CO{sub 2} mitigation costs of large-scale bioenergy technologies in competitive electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, L [Mid-Sweden University, Ostersund (Sweden). Dept. of Natural and Environmental Sciences, Ecotechnology; Madlener, R [Swiss Federal Institute of Technology, Zurich (Switzerland). CEPE

    2003-11-01

    In this study, we compare and contrast the impact of recent technological developments in large biomass-fired and natural-gas-fired cogeneration and condensing plants in terms of CO{sub 2} mitigation costs and under the conditions of a competitive electricity market. The CO{sub 2} mitigation cost indicates the minimum economic incentive required (e.g. in the form of a carbon tax) to equal the cost of a less carbon extensive system with the cost of a reference system. The results show that CO{sub 2} mitigation costs are lower for biomass systems than for natural gas systems with decarbonization. However, in liberalized energy markets and given the sociopolitical will to implement carbon extensive energy systems, market-based policy measures are still required to make biomass and decarbonization options competitive and thus help them to penetrate the market. This cost of cogeneration plants, however, depends on the evaluation method used. If we account for the limitation of heat sinks by expanding the reference entity to include both heat and power, as is typically recommended in life-cycle analysis, then the biomass-based gasification combined cycle (BIG/CC) technology turns out to be less expensive and to exhibit lower CO{sub 2} mitigation costs than biomass-fired steam turbine plants. However, a heat credit granted to cogeneration systems that is based on avoided cost of separate heat production, puts the steam turbine technology despite its lower system efficiency at an advantage. In contrast, when a crediting method based on avoided electricity production in natural gas fired condensing plants is employed, the BIG/CC technology turns out to be more cost competitive than the steam turbine technology for carbon tax levels beyond about $150/t C. Furthermore, steam turbine plants are able to compete with natural gas fired cogeneration plants at carbon tax levels higher than about $90/tC. (author)

  2. Wind Power Plant Control Optimisation with Incorporation of Wind Turbines and STATCOMs

    DEFF Research Database (Denmark)

    Petersen, Lennart; Kryezi, Fitim; Iov, Florin

    2015-01-01

    This paper addresses a detailed design and tuning of a wind power plant slope voltage control with reactive power contribution of wind turbines and STATCOMS. First, small-signal models of a single wind turbine and the whole wind power plant are developed, being appropriate for voltage control...... assessment. An exemplary wind power plant located in the United Kingdom and the corresponding grid code requirements are used as a base case. The final design and tuning process of the voltage controller results in a guidance, proposed for this particular control architecture. It provides qualitative...... outcomes regarding the impact of system delays, grid conditions and various operating conditions of the wind power plant, with and without incorporation of STATCOMS....

  3. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  4. Dynamic performance of a combined gas turbine and air bottoming cycle plant for off-shore applications

    DEFF Research Database (Denmark)

    Benato, Alberto; Pierobon, Leonardo; Haglind, Fredrik

    2014-01-01

    and a combined gas turbine coupled with an air bottoming cycle plant. The case study is the Draugen off-shore oil and gas platform, located in the North Sea, Norway. The normal electricity demand is 19 MW, currently covered by two gas turbines generating each 50% of the power demand, while the third turbine......When the Norwegian government introduced the CO2 tax for hydrocarbon fuels, the challenge became to improve the performance of off-shore power systems. An oil and gas platform typically operates on an island (stand-alone system) and the power demand is covered by two or more gas turbines. In order...... to improve the plant performance, a bottoming cycle unit can be added to the gas turbine topping module, thus constituting a combined cycle plant. This paper aims at developing and testing the numerical model simulating the part-load and dynamic behavior of a novel power system, composed of two gas turbines...

  5. Hydraulic turbines uses for rural electric generation

    International Nuclear Information System (INIS)

    Genta, J.; Nunes, V.

    1994-01-01

    The micro turbines use for electric generation either in autonomous systems or in connection to the national net is presented like an alternative whose viability has been studied in the Agreement taken place between the UTE Administracion Nacional de Usinas y transmisiones Electricas y la Facultad de Ingenieria. The Agreement S tudy for the Installation of Micro turbines that initially considered areas far from the national electric net it extended then to near areas to the same one to analyze the cogeneration alternative. They were considered smaller and bigger powers than 1 MW and up to 5MW. For the whole study range a methodology is described of calculate primary, starting from a minimum of field information that allows a first estimate of viability of a certain place and the selection of the turbine type, for a later detailed study

  6. Using in-house expertise in negotiating power sales contracts for industrial cogeneration plants

    International Nuclear Information System (INIS)

    Yott, R.A.

    1992-01-01

    Energy has always been a strategic component of Air Products and Chemicals production costs. In fact, Air Products is among the top consumers of electricity and natural gas in the U.S. Consequently, Air Products has developed a multifaceted Corporate Energy Department. The advent of PURPA in 1978 and the success enjoyed by Air Products in selling industrial gases over the fence to industrial customers as a integral part of their manufacturing system led Air Products into the industrial cogeneration business. This paper briefly summarizes Air Products entry into the industrial cogeneration market and the role that Air Products Energy Department has played in making this new business focus a success. It highlights how Air Products has been able to transfer its in-house expertise in purchasing power to the marketing, bidding, contract negotiation and avoided cost forecasting functions so critical in the successful development of industrial cogeneration opportunities. At Air Products we believe our long association with the utility industry first as a cost-conscious customer and more recently as an electric energy supplier has enhanced our competitive position. The same success story could be repeated at your company if you know what to look for and are not afraid to expand the horizons and responsibilities of your energy department

  7. The merit of cogeneration: Measuring and rewarding performance

    International Nuclear Information System (INIS)

    Verbruggen, Aviel

    2008-01-01

    Cogeneration or combined heat and power (CHP) is a thermal power generation cycle with the merit of recovering part or all of the heat that is fatally discarded by such cycles. This merit of higher efficiency is subject of rewarding by public authorities. When the EU enacts CHP promotion in a Directive (1997-2004), crucial measurement and qualification issues remain unsolved. CEN (coordinator of the European Bureaus of Standards) contributes in clarifying the measurement of CHP activities, but shortfalls remain, while CEN bypasses the debate on qualifying CHP performance. This article offers appropriate methods for measuring CHP activities based on design characteristics of the plants. The co-generated electric output is a necessary and sufficient indicator of CHP merit and performance. Regulators can extend this indicator, but should avoid the perverse effects of biased external benchmarking as the EU Directive entails

  8. Ways to Improve Russian Coal-Fired Power Plants

    International Nuclear Information System (INIS)

    Tumanovskii, A. G.; Olkhovsky, G. G.

    2015-01-01

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed

  9. Ways to Improve Russian Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Tumanovskii, A. G., E-mail: vti@vti.ru; Olkhovsky, G. G. [JSC “All-Russia Thermal Engineering Institute,” (Russian Federation)

    2015-07-15

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed.

  10. Co-generation: Increasing energy efficiency in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Lekić Alija

    2007-01-01

    Full Text Available The main sources for power generation in Bosnia and Herzegovina are domestic coals, mainly lignite and brown coals, which are relatively characterized with a high content of sulphur (3-5% and incombustibles (˜30%. From the 70’s, use of this type of fuels was not allowed in the city of Sarajevo due to very unfavorable emissions to the atmosphere, during the heating period, and since then Sarajevo has been supplied with natural gas. All the heating installations in the city were reconstructed and adapted. The district heating system Toplane Sarajevo is supplied with electrical energy from the Public electrical distribution network (Elektrodistribucija Sarajevo at low voltage (0.4 kV. The boiler-house Dobrinja III-2 (KDIII-2, from the district heating system of Sarajevo Suburb Dobrinja, which was not in use after the war 1992-1995, had a lot of advantages for the reconstruction into the co-generation plant. The Government of Canton Sarajevo financially supported this proposal. An analysis of co-generations for the district heating system and a selection of most appropriate co-generation systems were made. In the proposed conceptual design, the co-generation KDIII-2 was located in the existing boiler-house KDIII-2, connected with the heating system in Dobrinja. The operating costs of production of electricity and heat were evaluated in the study and compared with the costs of conventional energy supply to the district heating system. This analysis resulted in economic indicators, which showed that this investment was economically viable, and it also determined the payback period of the investment. In this paper results of the mentioned study and an overview of co-generation in Bosnia and Herzegovina are presented.

  11. Analysis of an electricity–cooling cogeneration system based on RC–ARS combined cycle aboard ship

    International Nuclear Information System (INIS)

    Liang, Youcai; Shu, Gequn; Tian, Hua; Liang, Xingyu; Wei, Haiqiao; Liu, Lina

    2013-01-01

    Highlights: • A novel electricity–cooling cogeneration system was used to recover waste heat aboard ships. • Performance of such RC–ARS system was investigated theoretically. • Optimal exergy output can be obtained when the vaporization pressure of RC is 300 kPa. • The exergy efficiency of cogeneration system is 5–12% higher than that of basic Rankine cycle only. - Abstract: In this paper, an electricity–cooling cogeneration system based on Rankine–absorption refrigeration combined cycle is proposed to recover the waste heat of the engine coolant and exhaust gas to generate electricity and cooling onboard ships. Water is selected as the working fluid of the Rankine cycle (RC), and a binary solution of ammonia–water is used as the working fluid of the absorption refrigeration cycle. The working fluid of RC is preheated by the engine coolant and then evaporated and superheated by the exhaust gas. The absorption cycle is powered by the heat of steam at the turbine outlet. Electricity output, cooling capacity, total exergy output, primary energy ratio (PER) and exergy efficiency are chosen as the objective functions. Results show that the amount of additional cooling output is up to 18 MW. Exergy output reaches the maximum 4.65 MW at the vaporization pressure of 300 kPa. The study reveals that the electricity–cooling cogeneration system has improved the exergy efficiency significantly: 5–12% increase compared with the basic Rankine cycle only. Primary energy ratio (PER) decreases as the vaporization pressure increases, varying from 0.47 to 0.40

  12. Nuclear closed-cycle gas turbine (HTGR-GT): dry cooled commercial power plant studies

    International Nuclear Information System (INIS)

    McDonald, C.F.; Boland, C.R.

    1979-11-01

    Combining the modern and proven power conversion system of the closed-cycle gas turbine (CCGT) with an advanced high-temperature gas-cooled reactor (HTGR) results in a power plant well suited to projected utility needs into the 21st century. The gas turbine HTGR (HTGR-GT) power plant benefits are consistent with national energy goals, and the high power conversion efficiency potential satisfies increasingly important resource conservation demands. Established technology bases for the HTGR-GT are outlined, together with the extensive design and development program necessary to commercialize the nuclear CCGT plant for utility service in the 1990s. This paper outlines the most recent design studies by General Atomic for a dry-cooled commercial plant of 800 to 1200 MW(e) power, based on both non-intercooled and intercooled cycles, and discusses various primary system aspects. Details are given of the reactor turbine system (RTS) and on integrating the major power conversion components in the prestressed concrete reactor vessel

  13. Electricity transport regimes: their impact on cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cotard, Erwan [COGEN, Europe (Belgium)

    2000-12-01

    In many cases the main product of cogeneration is heat and the surplus electricity is sold to the grid. However, the economics of cogeneration can be influenced by transport networks (transmission and distribution): the structure of network pricing is relatively new. In a recent note from COGEN Europe it was recommended that cogenerators who use only the local distribution system should not pay for the transmission system and that tariffs should be structured in sufficient detail for the advantages of decentralisation to be realised. The article is presented under the sub-headings of (i) why is this important? (the omission of the transmission element reduces the overall price of cogeneration); (ii) the advantages of decentralised cogeneration; (iv) the theory - the different systems (the European Directive on electricity market liberalization); (v) the options for transport fees; (vi) current regimes in some EU states (vii) the case of transborder transport; impact of each system on cogeneration; recommendations to policymakers; (viii) the Netherlands and (ix) the UK.

  14. Performance investigation of a novel water–power cogeneration plant (WPCP) based on humidification dehumidification (HDH) method

    International Nuclear Information System (INIS)

    He, W.F.; Han, D.; Xu, L.N.; Yue, C.; Pu, W.H.

    2016-01-01

    Highlights: • A novel water–power cogeneration plant (WPCP) is proposed. • Energy analysis of the proposed WPCP is achieved. • Comparison of the WPCP performance at different pressures is fulfilled. • Performance correlation between the HDH desalination and ORC power subsystems is revealed. - Abstract: Humidification dehumidification (HDH) technology was well applied to produce freshwater in the desalination system. However, besides the demand of freshwater, power is also required simultaneously in most situations. In the paper, a novel water–power cogeneration plant (WPCP) based on the HDH desalination system coupled with the organic Rankine cycle (ORC) is proposed. Energy analysis for the proposed combined system at different appointed operation parameters is achieved, and the corresponding performance correlation between the HDH desalination and ORC power system are revealed. It is verified that the production of freshwater and electricity can be gained synchronously in the suggested novel platform, and the performance of the whole system is really sensitive to the operation parameters of the HDH desalination system. It is found that after the regulation of the operation pressure, p, and the seawater temperature at the outlet of the seawater heater, T sw,2 , for the HDH desalination from p = 0.1 MPa, T sw,2 = 353.15 K to p = 0.3 MPa, T sw,2 = 383.15 K, a maximum elevation, 25.46 kg h −1 for the freshwater production, 4.17 kW for the electricity and 2% for the extended gained output ratio (EGOR) is obtained. Furthermore, owing to the asynchronism between the specific production and the final energy utilization efficiency, the balance should be optimized among the demand of the freshwater and power and the efficiency of the novel WPCP.

  15. District heating development, air quality improvement, and cogeneration in Krakow, Poland

    International Nuclear Information System (INIS)

    Manczyk, H.; Leach, M.D.

    1992-01-01

    Krakow, Poland, is served by a district heating system that includes coal-fired electrical and heating plants and distribution networks and by approximately 200,000 residential coal furnaces. Cogeneration facilities were added in the mid-1970s to supply up to 40% of the regional peak electrical demand and to optimize energy extraction from the low-heating-value coal mined in the region. Several difficulties prevent the district from realizing the potential efficiencies of its technology: the poor condition of the distribution network, the lack of consumption control and metering devices, inadequate plant maintenance, and the lack of economic incentives for operator productivity and energy conservation by users. Environmental concerns have caused the local government and international agencies to plan major improvements to the system. This paper discusses the development of the district heating system, coal use in Poland, cogeneration facilities, environmental concerns and pollution control plans, and improvement strategies

  16. Electric utility system benefits of factory packaged GE LM Modular Generator sets

    Energy Technology Data Exchange (ETDEWEB)

    West, G.

    1994-12-31

    Electric utility system benefits of factory packaged GE LM modular generator sets are outlined. The following topics are discussed: GE LM gas turbine history, operating experience, maintenance, gas turbine spare engines, modular gas turbine generator sets, typical LM2500 cogeneration plant and STIG cycle plant, factory packaging concept, gas turbine/generator package, performance, comparison, competitive capital cost, phased construction, comparison of revenue requirements, capacity evaluation, heat rate evaluation, fuel evaluation, startup, and dispatch flexibility without maintenance penalty.

  17. Modeling and optimization of a utility system containing multiple extractions steam turbines

    International Nuclear Information System (INIS)

    Luo, Xianglong; Zhang, Bingjian; Chen, Ying; Mo, Songping

    2011-01-01

    Complex turbines with multiple controlled and/or uncontrolled extractions are popularly used in the processing industry and cogeneration plants to provide steam of different levels, electric power, and driving power. To characterize thermodynamic behavior under varying conditions, nonlinear mathematical models are developed based on energy balance, thermodynamic principles, and semi-empirical equations. First, the complex turbine is decomposed into several simple turbines from the controlled extraction stages and modeled in series. THM (The turbine hardware model) developing concept is applied to predict the isentropic efficiency of the decomposed simple turbines. Stodola's formulation is also used to simulate the uncontrolled extraction steam parameters. The thermodynamic properties of steam and water are regressed through linearization or piece-wise linearization. Second, comparison between the simulated results using the proposed model and the data in the working condition diagram provided by the manufacturer is conducted over a wide range of operations. The simulation results yield small deviation from the data in the working condition diagram where the maximum modeling error is 0.87% among the compared seven operation conditions. Last, the optimization model of a utility system containing multiple extraction turbines is established and a detailed case is analyzed. Compared with the conventional operation strategy, a maximum of 5.47% of the total operation cost is saved using the proposed optimization model. -- Highlights: → We develop a complete simulation model for steam turbine with multiple extractions. → We test the simulation model using the performance data of commercial turbines. → The simulation error of electric power generation is no more than 0.87%. → We establish a utility system operational optimization model. → The optimal industrial operation scheme featured with 5.47% of cost saving.

  18. Analysis of Axial Turbine Pico-Hydro Electrical Power Plant in North Sulawesi Indonesia

    Science.gov (United States)

    Sangari, F. J.; Rompas, P. T. D.

    2018-02-01

    This study presents analysis of pico-hydro electrical power plant in North Sulawesi, Indonesia. The objective of this study is to get a design of axial turbine pico-hydro electrical power plant. The method used the study of literature, survey the construction site of the power plant and the characteristics of the location being a place of study, analysis of hydropower ability and analyzing costs of power plant. The result showed that the design of axial turbine pico-hydro installation is connected to a generator to produce electrical energy maximum can be used for household needs in villages. This analyze will be propose to local government of Minahasa, North Sulawesi, Indonesia.

  19. Controlling systems of cogeneration blocks

    International Nuclear Information System (INIS)

    Suriansky, J.; Suriansky, J. Ml.; Puskajler, J.

    2007-01-01

    In this article the main parts of cogeneration unit control system are described. Article is aimed on electric power measurement with electricity protection as with temperature system regulation. In conclusion of the article, the control algorithm with perspective of cogeneration solve is indicated. (authors)

  20. Operation and Performance of a Biphase Turbine Power Plant at the Cerro Prieto Geothermal Field (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Hays, Lance G. [Douglas Energy Company, Placentia, CA (United States)

    2000-09-01

    A full scale, wellhead Biphase turbine was manufactured and installed with the balance of plant at Well 103 of the Cerro Prieto geothermal resource in Baja, California. The Biphase turbine was first synchronized with the electrical grid of Comision Federal de Electricidad on August 20, 1997. The Biphase power plant was operated from that time until May 23, 2000, a period of 2 years and 9 months. A total of 77,549 kWh were delivered to the grid. The power plant was subsequently placed in a standby condition pending replacement of the rotor with a newly designed, higher power rotor and replacement of the bearings and seals. The maximum measured power output of the Biphase turbine, 808 kWe at 640 psig wellhead pressure, agreed closely with the predicted output, 840 kWe. When combined with the backpressure steam turbine the total output power from that flow would be increased by 40% above the power derived only from the flow by the present flash steam plant. The design relations used to predict performance and design the turbine were verified by these tests. The performance and durability of the Biphase turbine support the conclusion of the Economics and Application Report previously published, (Appendix A). The newly designed rotor (the Dual Pressure Rotor) was analyzed for the above power condition. The Dual Pressure Rotor would increase the power output to 2064 kWe by incorporating two pressure letdown stages in the Biphase rotor, eliminating the requirement for a backpressure steam turbine. The power plant availability was low due to deposition of solids from the well on the Biphase rotor and balance of plant problems. A great deal of plant down time resulted from the requirement to develop methods to handle the solids and from testing the apparatus in the Biphase turbine. Finally an online, washing method using the high pressure two-phase flow was developed which completely eliminated the solids problem. The availability of the Biphase turbine itself was 100

  1. Exergeoconomic analysis and optimization of a novel cogeneration system producing power and refrigeration

    International Nuclear Information System (INIS)

    Akbari Kordlar, M.; Mahmoudi, S.M.S.

    2017-01-01

    Highlights: • A novel combined cooling and power cogeneration system is proposed. • Thermodynamic and exergoeconomic analyses are performed. • Optimizations are performed considering thermodynamics and economics. • An increase in turbine inlet pressure is in favor of the system performance. • Five parameters influence the total product unit cost. - Abstract: A novel combined cooling and power cogeneration system driven by geothermal hot water is proposed. The system, which is a combination of an organic Rankine cycle and an absorption refrigeration cycle, is analyzed and optimized from the viewpoints of thermodynamics and economics. The working fluid in organic Rankine cycle is ammonia and in the refrigeration cycle is an ammonia-water solution. Parametric studies are performed to identify decision parameters prior to optimization. In optimizing the system performance three design cases i.e. designs for maximum first law efficiency (case1), maximum second law efficiency (case2) and minimum total product unit cost (case3) are considered. The results show that the total products unit cost in case3 is around 20.4% and 24.3% lower than the corresponding value in case1 and 2, respectively. The lower product unit cost in case3 is accompanied with an expense of 10.21% and 4.5% reduction in the first and second law efficiencies, compared to case1 and 2, respectively. The results also indicate that concerning the costs associated with capital and exergy destruction costs of components, the priority of components for modifications are the turbine, condenser and absorber. The last component in this order are the two pumps in the system.

  2. Operational safety of turbine-generators at Loviisa nuclear power plant; Turbiini-generaattoreiden kaeyttoeturvallisuus Loviisan ydinvoimalaitoksella

    Energy Technology Data Exchange (ETDEWEB)

    Virolainen, T.

    1997-06-01

    The goal of the study is to assess the operational safety of the turbine-generators at the Loviisa NPP. The lay-out, operation, control, monitoring and testing of turbine-generators have been studied. Taking these findings into consideration and by using operational data of Loviisa and other power plants, the most significant safety issues of the turbine-generator system have been identified. The frequencies for initiating events and possible consequences have been determined based on plant operational experience and related literature. (58 refs.).

  3. Integration of A Solid Oxide Fuel Cell into A 10 MW Gas Turbine Power Plant

    Directory of Open Access Journals (Sweden)

    Denver F. Cheddie

    2010-04-01

    Full Text Available Power generation using gas turbine power plants operating on the Brayton cycle suffers from low efficiencies. In this work, a solid oxide fuel cell (SOFC is proposed for integration into a 10 MW gas turbine power plant, operating at 30% efficiency. The SOFC system utilizes four heat exchangers for heat recovery from both the turbine outlet and the fuel cell outlet to ensure a sufficiently high SOFC temperature. The power output of the hybrid plant is 37 MW at 66.2% efficiency. A thermo-economic model predicts a payback period of less than four years, based on future projected SOFC cost estimates.

  4. Proceedings of the 7th cogeneration and independent power congress, natural gas purchasing '92, HVAC controls and energy conservation '92, 1992 indoor air quality congress

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This book is covered under the following topics: Cogeneration and IPP Market Developments; Natural Gas Marketing and Deliverability Strategies; Identifying the Sources of IAQ Problems; User-Owner Cogeneration Systems; Strategies for International Power Development; Strategic Fuel Purchasing; Cogeneration and utility Power Plant Compliance Issues; New HVAC Design Trends; IAQ Practical solutions: Case Studies

  5. Probabilistic analysis of turbine missile damage to nuclear power plant structures

    International Nuclear Information System (INIS)

    Twisdale, L.A.; Dunn, W.L.; Frank, R.A.

    1983-01-01

    This paper summarizes the results of the EPRI project that focused on the development of the overall probabilistic methodology to assess the risks of turbine missile induced damage to nuclear power plant structures and components. The project was structured to use the results of other EPRI projects that provided information on turbine failure and missile generation frequencies, models to predict the characteristics and exit conditions of the missiles, and experimental data for use in updating empirical impact formulas for reinforced concrete barriers. The research effort included: (1) adaptation and implementation of the missile generation probability and turbine casing impact models developed in Ref. [2]; (2) development of a methodology for the prediction of the motion of the postulated missile fragments that perforate the turbine casing; (3) development of a model using the experimental impact data to predict the effects of fragment impact on nuclear power plant barriers and components; (4) construction of a probabilistic damage assessment methodology using Monte Carlo simulation methodology; and (5) implementation of the methodology into an independent computer program (TURMIS), demonstration of its application to an example case study problem, and assessment of prediction sensitivity. (orig./RW)

  6. Cogeneration development and market potential in China

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F.; Levine, M.D.; Naeb, J. [Lawrence Berkeley Lab., CA (United States); Xin, D. [State Planning Commission of China, Beijing, BJ (China). Energy Research Inst.

    1996-05-01

    China`s energy production is largely dependent on coal. China currently ranks third in global CO{sub 2} emissions, and rapid economic expansion is expected to raise emission levels even further in the coming decades. Cogeneration provides a cost-effective way of both utilizing limited energy resources and minimizing the environmental impacts from use of fossil fuels. However, in the last 10 years state investments for cogeneration projects in China have dropped by a factor of 4. This has prompted this study. Along with this in-depth analysis of China`s cogeneration policies and investment allocation is the speculation that advanced US technology and capital can assist in the continued growth of the cogeneration industry. This study provides the most current information available on cogeneration development and market potential in China.

  7. A small capacity co generative gas-turbine plant in factory AD 'Komuna' - Skopje (Macedonia)

    International Nuclear Information System (INIS)

    Dimitrov, Konstantin; Armenski, Slave; Tashevski, Done

    2000-01-01

    The factory AD 'Komuna' -Skopje (Macedonia), has two steam block boilers, type ST 800 for steam production for process and space heating. The factory satisfies the electricity needs from the national grid. By the use of natural gas like fuel it is possible to produce electrical energy in its own co generative gas turbine plant. In this article, a co generative plant with small-scale gas turbine for electricity production is analyzed . The gas from gas turbine have been introduce in the steam block boiler. Also, a natural gas consumption, the electricity production, total investment and payback period of investment are determined. (Authors)

  8. Thermoelectric power plant selection using natural gas and sugar cane bagasse; Selecao de centrais termoeletricas utilizando gas natural e bagaco de cana

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Caio de Paula [UNIFei - Faculdade de Engenharia Industrial, Sao Bernardo do Campo, SP (Brazil). Dept. de Engenharia Mecanica]. E-mail: cleite@edu.fei.br; Tribess, Arlindo [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: atribess@usp.br

    2003-07-01

    The electric power consumption in Brazil is growing about 4.2% a year, according to ELETROBRAS Decenal Plan in 1999. The capacity of installed electrical power is approximately 50000 MW, of the which 75% are in the Southern, South eastern and Middle western regions of the country. The growth rate indicates the need of an increase of the installed capacity of 2100 MW a year to avoid the risk of the lack of energy. On the other hand, the hydraulic potential sources of the region are practically exhausted and the government budget is low for this kind of investment. Therefore the solution would be the construction of new thermoelectric plants, with the possibility using natural gas and cane bagasse. The present work consists of the evaluation of the best option considering criterion of minimum cost for kWh of energy produced for the thermo electrical plants selection. Thermo economic analysis was made evaluating the production costs of steam and electricity in exergetic basis. The results show that the power cycles and cogeneration plants that use natural gas and cane bagasse are much more economical than the ones that just use natural gas, with 48% reduction of steam cost, 40% reduction of electricity cost generated b the steam turbine in the power cycle and 37% reduction of electricity cost generated by the steam turbine in the cogeneration plant, for cane bagasse price at 4 US$ /t and natural gas price at 140 US$/t. (author)

  9. Optimized Application of MSR and Steam Turbine Retrofits in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, Robert; McCoach, John [ALSTOM Power, Willans Works, Newbold Road, Rugby, Warwickshire CV21 2NH (United Kingdom); Gagelin, Jean-Philippe [ALSTOM Power Heat Exchange, 19-21 avenue Morane-Saulnier, BP 65, 78143 Velizy Cedex (France)

    2004-07-01

    The benefit to a nuclear power plant from a steam turbine retrofit has often been clearly demonstrated in recent years but, for light water nuclear plants, the Moisture Separator Reheaters (MSRs) are also of prime importance. This paper describes how refurbishment of these crucial components can only provide full potential performance benefit when made in conjunction with a steam turbine retrofit (although in practice these activities are frequently separated). Examples are given to show how combined application is best handled within a single organization to ensure optimized integration into the thermal cycle. (authors)

  10. Optimized Application of MSR and Steam Turbine Retrofits in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Crossland, Robert; McCoach, John; Gagelin, Jean-Philippe

    2004-01-01

    The benefit to a nuclear power plant from a steam turbine retrofit has often been clearly demonstrated in recent years but, for light water nuclear plants, the Moisture Separator Reheaters (MSRs) are also of prime importance. This paper describes how refurbishment of these crucial components can only provide full potential performance benefit when made in conjunction with a steam turbine retrofit (although in practice these activities are frequently separated). Examples are given to show how combined application is best handled within a single organization to ensure optimized integration into the thermal cycle. (authors)

  11. Turbine maintenance and modernization

    Energy Technology Data Exchange (ETDEWEB)

    Unga, E [Teollisuuden Voima Oy, Olkiluoto (Finland)

    1999-12-31

    The disturbance-free operation of the turbine plant plays an important role in reaching good production results. In the turbine maintenance of the Olkiluoto nuclear power plant the lifetime and efficiency of turbine components and the lifetime costs are taken into account in determining the turbine maintenance and modernization/improvement program. The turbine maintenance program and improvement/modernization measures taken in the plant units are described in this presentation. (orig.)

  12. Turbine maintenance and modernization

    Energy Technology Data Exchange (ETDEWEB)

    Unga, E. [Teollisuuden Voima Oy, Olkiluoto (Finland)

    1998-12-31

    The disturbance-free operation of the turbine plant plays an important role in reaching good production results. In the turbine maintenance of the Olkiluoto nuclear power plant the lifetime and efficiency of turbine components and the lifetime costs are taken into account in determining the turbine maintenance and modernization/improvement program. The turbine maintenance program and improvement/modernization measures taken in the plant units are described in this presentation. (orig.)

  13. Performance evaluation and economic analysis of a gas turbine power plant in Nigeria

    International Nuclear Information System (INIS)

    Oyedepo, S.O.; Fagbenle, R.O.; Adefila, S.S.; Adavbiele, S.A.

    2014-01-01

    Highlights: • We evaluate performance and economic analysis of a gas turbine power plant in Nigeria. • We examine the shortfall of energy generated and compared with the standard value. • Generation loss resulted in revenue loss of the plant. • Improvement in general housekeeping of the plant will improve performance indices. - Abstract: In this study, performance evaluation and economic analysis (in terms of power outage cost due to system downtime) of a gas turbine power plant in Nigeria have been carried out for the period 2001–2010. The thermal power station consists of nine gas turbine units with total capacity of 301 MW (9 × 31.5 MW). The study reveals that 64.3% of the installed capacity was available in the period. The percentage of shortfall of energy generated in the period ranged from 4.18% to 14.53% as against the acceptable value of 5–10%. The load factor of the plant is between 20.8% and 78.2% as against international best practice of 80%. The average availability of the plant for the period was about 64% as against industry best practice of 95%, while the average use factor was about 92%. The capacity factor of the plant ranged from 20.8% to 78.23% while the utilization factor ranged from 85.47% to 95.82%. For the ten years under review, there was energy generation loss of about 35.7% of expected energy generation of 26.411 TW h with consequent plant performance of 64.3%. The study further reveals that the 35.7% of generation loss resulted in revenue loss of about M$251 (approximately b▪40). The simple performance indicator developed to evaluate the performance indices and outage cost for the station can also be applicable to other power stations in Nigeria and elsewhere. Measures to improve the performance indices of the plant have been suggested such as training of operation and maintenance (O and M) personnel regularly, improvement in O and M practices, proper spare parts inventory and improvement in general housekeeping of the

  14. Large-site air-storage gas-turbine plants in electricity networks

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, H C

    1980-08-01

    The article gives a detailed description of the construction and the operation of the 290 MW air-storage gas-turbine power station at the town of Huntorf. The cavities of a 300,000 cbm storage capacity needed for accomodating compressed air have been solution-mined in a salt dome at a depth of c. 700 m. The air-mass-flow-controlled gas turbine consists of a 6-stage HP part and a 5-stage LP part with a combustion chamber each. The turbine is used to cover peak loads, whereas slack periods are covered by the generator which drives to air compressors connected in series to refill the underground compressed-air stores. Since December 1978, the plant has been in operation. As a gas turbine, it has attained a high level of start frequency, indeed, with its 400 starts within the first 5 months. Energy cost of this power station range within the optimum (between half and full load) at about 70% of the energy cost required by a conventionally natural-gas-fired turbine.

  15. Technologies for small scale wood-fueled combined heat and power systems

    Energy Technology Data Exchange (ETDEWEB)

    Houmann Jakobsen, H.; Houmoeller, S.; Thaaning Pedersen, L.

    1998-01-01

    The aim of this study is to describe and compare different technologies for small cogeneration systems (up to 2-3 MW{sub e}), based on wood as fuel. For decentralized cogeneration, i.e. for recovering energy from saw mill wood wastes or heat supply for small villages, it is vital to know the advantages and disadvantages of the different technologies. Also, for the decision-makers it is of importance to know the price levels of the different technologies. A typical obstacle for small wood cogeneration systems is the installation costs. The specific price (per kW) is usually higher than for larger plants or plants using fossil fuels. For a saw mill choosing between cogeneration and simple heat production, however, the larger installation costs are counter weighed by the sale of electricity, while the fuel consumption is the same. Whether it is profitable or not to invest in cogeneration is often hard to decide. For many years small wood cogeneration systems have been too expensive, leading to the construction of only heat producing systems due to too high price levels of small steam turbines. In recent years a great deal of effort has been put into research and developing of new technologies to replace this traditional steam turbine. Among these are: Steam engines; Stirling engines; Indirectly fired gas turbines; Pressurized down draft combustion. Along with the small scale traditional steam turbines, these technologies will be evaluated in this study. When some or all these technologies are fully developed and commercial, a strong means of reducing the strain on the environment and the greenhouse effect will be available, as the total efficiency is high (up to 90%) and wood is an energy source in balance with nature. (au) EFP-95. 19 refs.

  16. Intraday trade is the answer for cogeneration

    International Nuclear Information System (INIS)

    Lomme, J.J.

    2006-01-01

    It is possible for operators of small cogeneration plants to sell electricity on the day-ahead market of the Amsterdam Power Exchange (APX) or through the unbalance market of the Dutch power transmission operator TenneT. However, it is difficult for them to take part in the market. The solution could be a so-called intraday-market, in which electricity trade can be a continuous process, but the question is who will start such a market [nl

  17. Cogeneration

    International Nuclear Information System (INIS)

    Lock, R.H.J.H.

    1990-01-01

    Cogeneration has dominated generation capacity expansion in the 1980s in many regions in a way that was never envisaged in the 1970s. The author of this paper suspects it will continue to play a major role in the 1990s in providing new power supply, though perhaps as a smaller part of a larger and more diverse market to meet new capacity needs than we have seen in the 1980s. When Congress enacted Section 210 of PURPA in 1978, its central goal was to create, through a series of regulatory protections primarily designed to neutralize the monopsony power of the purchasing utility, a quasi-market for cogeneration and certain other small power technologies. This would provide a truer test of their value in the power supply mix than had traditional regulation. However, Congress envisaged these sources as only a small, though potentially efficient, adjunct to traditional utility capacity additions

  18. Dynamic Simulation and Exergo-Economic Optimization of a Hybrid Solar–Geothermal Cogeneration Plant

    Directory of Open Access Journals (Sweden)

    Francesco Calise

    2015-04-01

    Full Text Available This paper presents a dynamic simulation model and a parametric analysis of a solar-geothermal hybrid cogeneration plant based on an Organic Rankine Cycle (ORC powered by a medium-enthalpy geothermal resource and a Parabolic Trough Collector solar field. The fluid temperature supplying heat to the ORC varies continuously as a function of the solar irradiation, affecting both the electrical and thermal energies produced by the system. Thus, a dynamic simulation was performed. The ORC model, developed in Engineering Equation Solver, is based on zero-dimensional energy and mass balances and includes specific algorithms to evaluate the off-design system performance. The overall simulation model of the solar-geothermal cogenerative plant was implemented in the TRNSYS environment. Here, the ORC model is imported, whereas the models of the other components of the system are developed on the basis of literature data. Results are analyzed on different time bases presenting energetic, economic and exergetic performance data. Finally, a rigorous optimization has been performed to determine the set of system design/control parameters minimizing simple payback period and exergy destruction rate. The system is profitable when a significant amount of the heat produced is consumed. The highest irreversibilities are due to the solar field and to the heat exchangers.

  19. System analysis of CO_2 sequestration from biomass cogeneration plants (Bio-CHP-CCS). Technology, economic efficiency, sustainability

    International Nuclear Information System (INIS)

    Hartmann, Claus

    2014-10-01

    In the present work a system analysis is carried out to determine the extent to which a combination of the three areas of energetic biomass use, combined heat and power (CHP) and CO_2 sequestration (CCS - Carbon Capture and Storage) is fundamentally possible and meaningful. The term ''CO_2 sequestration'' refers to the process chain from CO_2 capture, CO_2 transport and CO_2 storage. While the use of biomass in combined heat and power plants is a common practice, CO_2 sequestration (based on fossil fuels) is at the research and development stage. A combination of CCS with biomass has so far been little studied, a combination with combined heat and power plants has not been investigated at all. The two technologies for the energetic use of biomass and cogeneration represent fixed variables in the energy system of the future in the planning of the German federal government. According to the lead scenario of the Federal Ministry of the Environment, electricity generation from biomass is to be almost doubled from 2008 to 2020. At the same time, the heat generated in cogeneration is to be trebled [cf. Nitsch and Wenzel, 2009, p. 10]. At the same time, the CCS technology is to be used in half of all German coal-fired power plants until 2030 [cf. Krassuki et al., 2009, p. 17]. The combination of biomass and CCS also represents an option which is conceivable for the German federal policy [cf. Bundestag, 2008b, p. 4]. In addition, the CCS technology will provide very good export opportunities for the German economy in the future [cf. Federal Government, 2010, p. 20]. The combination of biomass combined heat and power plants with CCS offers the interesting opportunity to actively remove CO_2 from the atmosphere as a future climate protection instrument by means of CO_2 neutrality. Therefore, in the energy concept of the German federal government called for a storage project for industrial or biogenic CO_2 emissions to be established until 2020, as well as the use of CO_2 as

  20. Ceramics technology for advanced industrial gas turbines

    International Nuclear Information System (INIS)

    Anson, D.; Sheppard, W.J.; DeCorso, M.; Parks, W.J. Jr.

    1991-01-01

    Recent developments in the fabrication of high strength ceramic materials and in their application to automotive and aerospace gas turbine engines may lead also to significant improvements in the performance of industrial gas turbines. This paper presents a brief review of the improvements projected in a study initiated by the U.S. Department of Energy. The future costs of power generated by small gas turbines (up to 25 MW) are predicted, as well as the potential for fuel savings. Gas turbines in this size range are used extensively for gas compression and for cogeneration, as well as in a variety of more diverse applications. This paper includes results of analyses of the ways in which changes in gas turbine cost and performance are likely to affect market penetration. These results lead to predictions of future savings in U.S. fuel consumption in the industrial sector that would result. The paper also presents a brief overview of the scope of a suggested R and D program, with an appropriate schedule, which would provide a technical basis for achieving the projected results. Important parts of this program would cover ceramic design and fabrication technology, engine development and demonstration, and combustion technology

  1. Optimal placement of combined heat and power scheme (cogeneration): application to an ethylbenzene plant

    International Nuclear Information System (INIS)

    Zainuddin Abd Manan; Lim Fang Yee

    2001-01-01

    Combined heat and power (CHP) scheme, also known as cogeneration is widely accepted as a highly efficient energy saving measure, particularly in medium to large scale chemical process plants. To date, CHP application is well established in the developed countries. The advantage of a CHP scheme for a chemical plant is two-fold: (i) drastically cut down on the electricity bill from on-site power generation (ii) to save the fuel bills through recovery of the quality waste heat from power generation for process heating. In order to be effective, a CHP scheme must be placed at the right temperature level in the context of the overall process. Failure to do so might render a CHP venture worthless. This paper discusses the procedure for an effective implementation of a CHP scheme. An ethylbenzene process is used as a case study. A key visualization tool known as the grand composite curves is used to provide an overall picture of the process heat source and heat sink profiles. The grand composite curve, which is generated based on the first principles of Pinch Analysis enables the CHP scheme to be optimally placed within the overall process scenario. (Author)

  2. Dual turbine power plant and method of operating such plant, especially one having an HTGR steam supply

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegtnes, K.O.

    1977-01-01

    A power plant including dual steam turbine-generators connected to pass superheat and reheat steam from a steam generator which derives heat from the coolant gas of a high temperature gas-cooled nuclear reactor is described. Associated with each turbine is a bypass line to conduct superheat steam in parallel with a high pressure turbine portion, and a bypass line to conduct superheat steam in parallel with a lower pressure turbine portion. Auxiliary steam turbines pass a portion of the steam flow to the reheater of the steam generator and drive gas blowers which circulate the coolant gas through the reactor and the steam source. Apparatus and method are disclosed for loading or unloading a turbine-generator while the other produces a steady power output. During such loading or unloading, the steam flows through the turbine portions are coordinated with the steam flows through the bypass lines for protection of the steam generator, and the pressure of reheated steam is regulated for improved performance of the gas blowers. 33 claims, 5 figures

  3. Gas turbine installations in nuclear power plants in Sweden

    International Nuclear Information System (INIS)

    Sevestedt, Lars

    1986-01-01

    At each of the four nuclear power stations in Sweden (Ringhals, Forsmark, Oskarshamn, Barsebaeck) gas turbine generating sets have been installed. These units are normally used for peak load operation dictated of grid and System requirements but they are also connected to supply the electrical auxiliary load of the nuclear plant as reserve power sources. The gas turbines have automatic start capability under certain abnormal conditions (such as reactor trips, low frequency grid etc) but they can also be started manually from several different locations. Starting time is approximately 2- 3 minutes from start up to full load. (author)

  4. Gas turbine installations in nuclear power plants in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Sevestedt, Lars [Electrical Equipment and Gas Turbines, Swedish State Power Board, Ringhals Nuclear Power Plant, S-430 22 Vaeroebacka (Sweden)

    1986-02-15

    At each of the four nuclear power stations in Sweden (Ringhals, Forsmark, Oskarshamn, Barsebaeck) gas turbine generating sets have been installed. These units are normally used for peak load operation dictated of grid and System requirements but they are also connected to supply the electrical auxiliary load of the nuclear plant as reserve power sources. The gas turbines have automatic start capability under certain abnormal conditions (such as reactor trips, low frequency grid etc) but they can also be started manually from several different locations. Starting time is approximately 2- 3 minutes from start up to full load. (author)

  5. Deflector plants turbine aeration

    International Nuclear Information System (INIS)

    Miller, D.E.; Sheppard, A.R.; Widener, D.W.

    1991-01-01

    Water quality requirements have become a focal point in recent re-licensing of hydroelectric projects. The Federal Energy Regulatory Commission has significantly increased the relevance of license conditions to insure that turbine discharges meet state or other specific criteria for dissolved oxygen (D.O.). Due to naturally occurring depletion of D.O. at increased depths in large reservoirs, water withdrawn from this strata may result in unacceptably low levels of D.O. Different researchers have evaluated various methods of improving D.O. content in hydro turbine discharges, including; diffusers, weirs, oxygen injection, and variations of turbine venting. The authors describe an approach called deflector plate turbine aeration. This computer based, engineered approach allows systems to be evaluated, designed, and installed with predictable performance and costs. Many experts in this field now agree that, to the extent practical, turbine venting offers the most dependable, maintenance free, and cost effective solution to the low D.O. problem. The approach presented in this paper has resulted in proven results

  6. Dual-cycle power plant with internal and external heating of a gas turbine circuit

    International Nuclear Information System (INIS)

    Strach, L.

    1976-01-01

    The present proposal, after a preceding invention by the same inventor, aims at making possible the increased use of gas turbines in nuclear and coal-fired power plants. This is to be achieved by bringing the temperature of the combustion easily from a maximum of 900 0 C, as may be supplied, e.g., by the cooling media of nuclear reactors, up to the 1,700 to 2,000 0 C required as inlet temperature for gas turbines, with the aid of a fossil-fired recuperator. In fossil and nuclear power plants, gas turbines will more and more substitute steam turbines which affect the environment because of their high waste-heat losses. In coal power plants, only that part of the coal will be gasified whose resulting gas causes internal combustion within the furnace, while the remaining part of the coal is used for external combustion in a tabular heater. In a nuclear power plant, undisturbed maximum generation of electric power is to be achieved, even at reactor outages and shutdown periods for refuelling and maintenance, by almost inertia-free increase of the fossil fuel supply to the furnace (provided an extension of the latter for the capacity of heating the combustion air from room temperature till 1,700 to 2,000 0 C). The hazard of ruptures in the primary heat exchanging system is very low, because it is operated with a relative pressure of nearly zero between reactor coolant and gas turbine circuit. (RW) [de

  7. Steam generation unit in a simple version of biomass based small cogeneration unit

    Directory of Open Access Journals (Sweden)

    Sornek Krzysztof

    2014-01-01

    Full Text Available The organic Rankine cycle (ORC is a very promising process for the conversion of low or medium temperature heat to electricity in small and micro scale biomass powered systems. Classic ORC is analogous to Clausius–Rankine cycle in a steam power plant, but instead of water it uses low boiling, organic working fluids. Seeking energy and economical optimization of biomass-based ORC systems, we have proposed some modifications e.g. in low boiling fluid circuit construction. Due to the fact that the operation of a micro steam turbine is rather inefficient from the technical and economic point of view, a specially modified air compressor can be used as a steam piston engine. Such engine should be designed to work at low pressure of the working medium. Studies regarding the first version of the prototype installation were focused on the confirmation of applicability of a straw boiler in the prototype ORC power system. The results of the previous studies and the studies described in the paper (on the new cogeneration unit confirmed the high potential of the developed solution. Of course, many further studies have to be carried out.

  8. Dynamics and control modeling of the closed-cycle gas turbine (GT-HTGR) power plant

    International Nuclear Information System (INIS)

    Bardia, A.

    1980-02-01

    The simulation if presented for the 800-MW(e) two-loop GT-HTGR plant design with the REALY2 transient analysis computer code, and the modeling of control strategies called for by the inherently unique operational requirements of a multiple loop GT-HTGR is described. Plant control of the GT-HTGR is constrained by the nature of its power conversion loops (PCLs) in which the core cooling flow and the turbine flow are directly related and thus changes in flow affect core cooling as well as turbine power. Additionally, the high thermal inertia of the reactor core precludes rapid changes in the temperature of the turbine inlet flow

  9. Fuel from waste solvents; Thermal disposal of spent, non-halogenated solvents in cogeneration plants. Kraftstoff aus Loesemittelabfaellen; Thermische Verwertung von verbrauchten, nicht halogenierten Loesemitteln in Blockheizkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, E

    1993-10-01

    Organic solvents are used in many sectors. When their specific properties are exhausted, they must be disposed of. One way to dispose of solvents would be to use them as a fuel. Such fuel can be used in cogeneration plants, which deliver power and heat with a high degree of efficiency. (orig./BBR)

  10. Aging of turbine drives for safety-related pumps in nuclear power plants

    International Nuclear Information System (INIS)

    Cox, D.F.

    1995-06-01

    This study was performed to examine the relationship between time-dependent degradation and current industry practices in the areas of maintenance, surveillance, and operation of steam turbine drives for safety-related pumps. These pumps are located in the Auxiliary Feedwater (AFW) system for pressurized-water reactor plants and in the Reactor Core Isolation Cooling and High-Pressure Coolant Injection systems for boiling-water reactor plants. This research has been conducted by examination of failure data in the Nuclear Plant Reliability Data System, review of Licensee Event Reports, discussion of problems with operating plant personnel, and personal observation. The reported failure data were reviewed to determine the cause of the event and the method of discovery. Based on the research results, attempts have been made to determine the predictability of failures and possible preventive measures that may be implemented. Findings in a recent study of AFW systems indicate that the turbine drive is the single largest contributor to AFW system degradation. However, examination of the data shows that the turbine itself is a reliable piece of equipment with a good service record. Most of the problems documented are the result of problems with the turbine controls and the mechanical overspeed trip mechanism; these apparently stem from three major causes which are discussed in the text. Recent improvements in maintenance practices and procedures, combined with a stabilization of the design, have led to improved performance resulting in a reliable safety-related component. However, these improvements have not been universally implemented

  11. Exergy analysis of a gas turbine power plant | Oko | Journal of ...

    African Journals Online (AJOL)

    Exergy analysis of a 100MW gas turbine power plant that works on the. Brayton cycle is presented. The average increase in the thermodynamic degradation of the plant over the period of six (6) years at three different levels of load was assessed. The exergy analysis of the plant was done on two sets of data: one from the ...

  12. Aseismic design of turbine houses of nuclear power plants

    International Nuclear Information System (INIS)

    Danisch, R.; Labes, M.

    1975-01-01

    The turbine house does not belong to the safety-related parts of equipment of a nuclear power plant. A special protection against earthquakes is not demanded by the authorities as long as it is proven that safety-related parts of equipment will not be restricted in their function by a collaps of the turbine house. The degree of an aseismic design is largely up to the customer, who has to weigh the risk of costs and availability against the additional costs, that are necessary for the earthquake calculation and for constructive hardening. In comparison to the high-tuned turbine foundations as they are in use in the USA today, low-tuned turbine foundations as a result of helical-spring-support, which are constructed by the KWU exclusively, pose special problems with the aseismic design. This is discussed in the present report. The spring-supported mass constitutes about a quarter of the building-mass. For mechanical reasons the spring elements are chosen in such a way, that the turbine foundation has a natural frequency of approximately 3 Hz. Thus it remains within the same frequency range as the turbine house and within that very range which is particularly amplificated by an earthquake. It is therefore likely that resonance effects as well as oscillation annulment effects may occur. The standardized calculation methods for conventional buildings without safety function such as DIN 4149 (Germany) or SIA 162 (Switzerland) do not cover the oscillation conduct of such a complicate structure. One receives informations about possible relative displacements between the building and the turbine foundation (hammering-effect) and about the stresses on the turbine and other components only by dynamic calculation methods such as the time-history or the response-spectrum method

  13. Thermodynamic Analysis of a Ship Power Plant Operating with Waste Heat Recovery through Combined Heat and Power Production

    Directory of Open Access Journals (Sweden)

    Mirko Grljušić

    2014-11-01

    Full Text Available The goal of this research is to study a cogeneration plant for combined heat & power (CHP production that utilises the low-temperature waste energy in the power plant of a Suezmax-size oil tanker for all heating and electricity requirements during navigation. After considering various configurations, a standard propulsion engine operating at maximum efficiency and a CHP Plant with R245fa fluid using a supercritical organic Rankine cycle (ORC is selected. All the ship heat requirements can be covered by energy of organic fluid after expansion in the turbine, except feeder-booster heating. Hence, an additional quantity of working fluid may be heated using an after Heat Recovery Steam Generator (HRSG directed to the feeder-booster module. An analysis of the obtained results shows that the steam turbine plant does not yield significant fuel savings. However, a CHP plant with R245fa fluid using supercritical ORC meets all of the demands for electrical energy and heat while burning only a small amount of additional fuel in HRSG at the main engine off-design operation.

  14. Improving the Efficiency of a Nucler Power Plant Using a Thermoelectric Cogeneration System

    Directory of Open Access Journals (Sweden)

    Rauf Terzi

    2018-02-01

    Full Text Available The efficiencies of nuclear power plants are rather poor having the ratio %30 by using the conventional energy/exergy tools. According to that information, large amount of energy is wasted during condensation and thrown out to the environment. Thermoelectric generator (TEG system has a potential to be used as a heat exchanging technology to produce power with a relatively low efficiency (about 5% and it can transform the temperature difference into electricity and generate clean electrical energy. In the present study, we offer a novel system to recover the waste heat from a VVER-1000 nuclear power plant. The heat transfer of the TEG is analyzed numerically with respect to the various temperature ranges and constant mass flow rate of the exhaust steam entering the system. In the analyses, different hot temperature ranges (35ºC, 45ºC and 55ºC and a constant cold temperature (i.e. 18ºC are used for a HZ-20 thermoelectric module and it has been proven that the designed TEG can produce the maximum output power of 76,956 MW for a temperature difference ∆T=37 and the conversion efficiency of 3,854% sits. The TEG is designed for the condenser of a 1000 MW nuclear power plant. It's shown that about 2,0% increasing in the power plant efficiency is expected by using the selected thermoelectric generator in the condensation cycle. Article History: Received: July 15th 2017; Received:  October 17th 2017; Accepted: February 13rd 2018; Available online How to Cite This Article: Terzi, R. and Kurt, E. (2018, Improving the efficiency of a nuclear power plant using a thermoelectric cogeneration system, Int. Journal of Renewable Energy Development, 7(1, 77-84. https://doi.org/10.14710/ijred.7.1.77-84

  15. Thermal performance test for steam turbine of nuclear power plants

    International Nuclear Information System (INIS)

    Bu Yubing; Xu Zongfu; Wang Shiyong

    2014-01-01

    Through study of steam turbine thermal performance test of CPR1000 nuclear power plant, we solve the enthalpy calculation problems of the steam turbine in wet steam zone using heat balance method which can help to figure out the real overall heat balance diagram for the first time, and we develop a useful software for thermal heat balance calculation. Ling'ao phase II as an example, this paper includes test instrument layout, system isolation, risk control, data acquisition, wetness measurement, heat balance calculation, etc. (authors)

  16. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification, SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the US Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP designs emphasize on recovery and gasification of low-cost coal waste (culm) from coal clean operations and will assess blends of the culm and coal or petroleum coke as feedstocks. The project is being carried out in three phases. Phase I involves definition of concept and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II consists of an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III involves updating the original EECP design, based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 BPD coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania

  17. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-12-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification, SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the US Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP designs emphasize on recovery and gasification of low-cost coal waste (culm) from coal clean operations and will assess blends of the culm and coal or petroleum coke as feedstocks. The project is being carried out in three phases. Phase I involves definition of concept and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II consists of an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III involves updating the original EECP design, based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 BPD coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania.

  18. Power Plants, Steam and Gas Turbines WebQuest

    Science.gov (United States)

    Ulloa, Carlos; Rey, Guillermo D.; Sánchez, Ángel; Cancela, Ángeles

    2012-01-01

    A WebQuest is an Internet-based and inquiry-oriented learning activity. The aim of this work is to outline the creation of a WebQuest entitled "Power Generation Plants: Steam and Gas Turbines." This is one of the topics covered in the course "Thermodynamics and Heat Transfer," which is offered in the second year of Mechanical…

  19. Cogeneration technologies, optimisation and implementation

    CERN Document Server

    Frangopoulos, Christos A

    2017-01-01

    Cogeneration refers to the use of a power station to deliver two or more useful forms of energy, for example, to generate electricity and heat at the same time. This book provides an integrated treatment of cogeneration, including a tour of the available technologies and their features, and how these systems can be analysed and optimised.

  20. The alarming future for cogeneration

    International Nuclear Information System (INIS)

    Koevoet, H.

    2000-01-01

    Low prices and uncertainty in pricing of energy, higher costs for investment and expensive fuels are the most important reasons why the growth of cogeneration capacity in the Netherlands stagnates. The liberalization of the energy market appears to be the malefactor. A brief overview is given of the ECN (Netherlands Energy Research Foundation) report 'Toekomst warmtekrachtkoppeling' (Future of cogeneration)

  1. Waste-to-Energy Cogeneration Project, Centennial Park

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Clay; Mandon, Jim; DeGiulio, Thomas; Baker, Ryan

    2014-04-29

    The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utility bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.

  2. Analysis of possible energy efficiency increasing of the cogeneration process in EL-TO Zagreb

    International Nuclear Information System (INIS)

    Stanisa, B.; Krivak, B.

    1996-01-01

    In the erection planing of new generation capacity, besides the profitability, there is need to taken in account the rational consumption of primary energy, and the environmental protection. The main rules could have cogenerations of the heat and power. In power plant EL-TO Zagreb there are analysed generating capacity of the cogeneration process. There is considered reconstruction and revitalisation's of existing generating units, and erections of new one, all in the purpose to meet the growing heat demand. The district heating system is considered from the point as opportunity in energy saving capacity in the cogeneration of heat and power. For the amount of the energy saved there is need for less primary energy to be consumed, and this in finally means that for the some energy demands it has the some effect as the natural energy resources are expanded. (author)

  3. Feasibility improvement project for the gas turbine power plant in Iran

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Investigations and discussions have been given on measures to improve energy conservation and efficiency at a power plant of Kish Water and Power Company (KWPC) in Iran. The site has high ambient temperature throughout a year, making the gas turbine power plant capable of generating power only at about 70% of the rated output, with the power generation efficiency decreasing. The project has analyzed the current situation at the plant, and evaluated different means that appear effective in improving the efficiency, including the gas turbine absorbed air cooling system, the steam injection system, and the combined cycle. As a result of the discussions, it was revealed that energy saving effect can be obtained at 145 TJ with the gas turbine absorbed air cooling system, 224 TJ with the steam injection system, and 1017 TJ with the combined cycle. The annual reduction of greenhouse gas emission due to the above energy conservation would be about 11 thousand tons, 16.5 thousand tons, and 75 thousand tons, respectively. However, the investment payback period would be about 2.45 years, 8.31 years, and 14.21 years, respectively. Therefore, the profitability does not appear very attractive because of low fuel unit cost. (NEDO)

  4. A Comparative Study of CFD Models of a Real Wind Turbine in Solar Chimney Power Plants

    Directory of Open Access Journals (Sweden)

    Ehsan Gholamalizadeh

    2017-10-01

    Full Text Available A solar chimney power plant consists of four main parts, a solar collector, a chimney, an energy storage layer, and a wind turbine. So far, several investigations on the performance of the solar chimney power plant have been conducted. Among them, different approaches have been applied to model the turbine inside the system. In particular, a real wind turbine coupled to the system was simulated using computational fluid dynamics (CFD in three investigations. Gholamalizadeh et al. simulated a wind turbine with the same blade profile as the Manzanares SCPP’s turbine (FX W-151-A blade profile, while a CLARK Y blade profile was modelled by Guo et al. and Ming et al. In this study, simulations of the Manzanares prototype were carried out using the CFD model developed by Gholamalizadeh et al. Then, results obtained by modelling different turbine blade profiles at different turbine rotational speeds were compared. The results showed that a turbine with the CLARK Y blade profile significantly overestimates the value of the pressure drop across the Manzanares prototype turbine as compared to the FX W-151-A blade profile. In addition, modelling of both blade profiles led to very similar trends in changes in turbine efficiency and power output with respect to rotational speed.

  5. Cogeneration: a win-win option for Cadbury Nigeria

    International Nuclear Information System (INIS)

    Dayo, Felix; Bogunjoko, S.B.; Sobanwa, A.C.

    2001-01-01

    Like most developing countries, Nigeria is looking to cogeneration as a sustainable and reliable means of overcoming its present unreliable supply of energy. The article focuses on the efforts of the food company Cadbury Nigeria which uses cogeneration for all its steam and power requirements within its own factory. The Company recently decided to upgrade further by switching from liquid fossil fuels to natural gas. Diagrams show the existing system as well as the systems for cogeneration with natural gas. Some of the obstacles to be overcome to improve the viability of cogeneration in developing countries are listed. It is hoped that the outcome of the COP6 meeting to be held in April 2001 will offer encouragement for cogeneration

  6. Cogeneration: a win-win option for Cadbury Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Dayo, Felix [Triple ' E' Systems Associates Ltd. (Nigeria); Bogunjoko, S.B.; Sobanwa, A.C. [Cadbury Nigeria plc. (Nigeria)

    2001-02-01

    Like most developing countries, Nigeria is looking to cogeneration as a sustainable and reliable means of overcoming its present unreliable supply of energy. The article focuses on the efforts of the food company Cadbury Nigeria which uses cogeneration for all its steam and power requirements within its own factory. The Company recently decided to upgrade further by switching from liquid fossil fuels to natural gas. Diagrams show the existing system as well as the systems for cogeneration with natural gas. Some of the obstacles to be overcome to improve the viability of cogeneration in developing countries are listed. It is hoped that the outcome of the COP6 meeting to be held in April 2001 will offer encouragement for cogeneration.

  7. Efficiency Assessment of Support Mechanisms for Wood-Fired Cogeneration Development in Estonia

    Science.gov (United States)

    Volkova, Anna; Siirde, Andres

    2010-01-01

    There are various support mechanisms for wood-fired cogeneration plants, which include both support for cogeneration development and stimulation for increasing consumption of renewable energy sources. The efficiency of these mechanisms is analysed in the paper. Overview of cogeneration development in Estonia is given with the focus on wood-fired cogeneration. Legislation acts and amendments, related to cogeneration support schemes, were described. For evaluating the efficiency of support mechanisms an indicator - fuel cost factor was defined. This indicator includes the costs related to the chosen fuel influence on the final electricity generation costs without any support mechanisms. The wood fuel cost factors were compared with the fuel cost factors for peat and oil shale. For calculating the fuel cost factors, various data sources were used. The fuel prices data were based on the average cost of fuels in Estonia for the period from 2000 till 2008. The data about operating and maintenance costs, related to the fuel type in the case of comparing wood fuel and oil shale fuel were taken from the CHP Balti and Eesti reports. The data about operating and maintenance costs used for peat and wood fuel comparison were taken from the Tallinn Elektrijaam reports. As a result, the diagrams were built for comparing wood and its competitive fuels. The decision boundary lines were constructed on the diagram for the situation, when no support was provided for wood fuels and for the situations, when various support mechanisms were provided during the last 12 years.

  8. Trace coupled with PARCS benchmark against Leibstadt plant data during the turbine trip test

    Energy Technology Data Exchange (ETDEWEB)

    Sekhri, Abdelkrim; Baumann, Peter, E-mail: abdelkrim.sekhri@kkl.ch, E-mail: peter.Baumann@kkl.ch [KernkraftwerkLeibstadt AG, Leibstadt (Switzerland); Hidalga, Patricio; Morera, Daniel; Miro, Rafael; Barrachina, Teresa; Verdu, Gumersindo, E-mail: pathigar@etsii.upv.es, E-mail: dmorera@isirym.upv.es, E-mail: rmiro@isirym.upv.es, E-mail: tbarrachina@isirym.upv.es, E-mail: gverdu@isirym.upv.es [Universitat Politecnica de Valencia (ISIRYM/UPV), Valencia, (Spain). Institute for Industrial, Radiophysical and Environmental Safety

    2013-07-01

    In order to enhance the modeling of Nuclear Power Plant Leibstadt (KKL), the coupling of 3D neutron kinetics PARCS code with TRACE has been developed. To test its performance a complex transient of Turbine Trip has been simulated comparing the results with the existing plant data of Turbine Trip test. For this transient also Cross Sections have been generated and used by PARCS. The thermal-hydraulic TRACE model is retrieved from the already existing model. For the benchmarking the Turbine Trip transient has been simulated according to the test resulting in the closure of the turbine control valve (TCV) and the following opening of the bypass valve (TBV). This transient caused a pressure shock wave towards the Reactor Pressure Vessel (RPV) which provoked the decreasing of the void level and the consequent slight power excursion. The power control capacity of the system showed a good response with the procedure of a Selected Rod Insertion (SRI) and the recirculation loops performance which resulted in the proper thermal power reduction comparable to APRM data recorder from the plant. The comparison with plant data shows good agreement in general and assesses the performance of the coupled model. Due to this, it can be concluded that the coupling of PARCS and TRACE codes in addition with the Cross Section used works successfully for simulating the behavior of the reactor core during complex plant transients. Nevertheless the TRACE model shall be improved and the core neutronics corresponding to the test shall be used in the future to allow quantitative comparison between TRACE and plant recorded data. (author)

  9. Numerical and in-situ investigations of water hammer effects in Drava river Kaplan turbine hydropower plants

    International Nuclear Information System (INIS)

    Bergant, A; Gregorc, B; Gale, J

    2012-01-01

    This paper deals with critical flow regimes that may induce unacceptable water hammer in Kaplan turbine hydropower plants. Water hammer analysis should be performed for normal, emergency and catastrophic operating conditions. Hydropower plants with Kaplan turbines are usually comprised of relatively short inlet and outlet conduits. The rigid water hammer theory can be used for this case. For hydropower plants with long penstocks the elastic water hammer should be used. Some Kaplan turbine units are installed in systems with long open channels. In this case, water level oscillations in the channels should be carefully investigated. Computational results are compared with results of measurements in recently rehabilitated seven Drava river hydroelectric power plants in Slovenia. Water hammer in the six power plants is controlled by appropriate adjustment of the wicket gates and runner blades closing/opening manoeuvres. Due to very long inflow and outflow open channels in Zlatolicje HPP a special vaned pressure regulating device attenuates extreme pressures in Kaplan turbine flow-passage system and controls unsteady flow in both open channels. Comparisons of results include normal operating regimes. The agreement between computed and measured results is reasonable.

  10. Numerical and in-situ investigations of water hammer effects in Drava river Kaplan turbine hydropower plants

    Science.gov (United States)

    Bergant, A.; Gregorc, B.; Gale, J.

    2012-11-01

    This paper deals with critical flow regimes that may induce unacceptable water hammer in Kaplan turbine hydropower plants. Water hammer analysis should be performed for normal, emergency and catastrophic operating conditions. Hydropower plants with Kaplan turbines are usually comprised of relatively short inlet and outlet conduits. The rigid water hammer theory can be used for this case. For hydropower plants with long penstocks the elastic water hammer should be used. Some Kaplan turbine units are installed in systems with long open channels. In this case, water level oscillations in the channels should be carefully investigated. Computational results are compared with results of measurements in recently rehabilitated seven Drava river hydroelectric power plants in Slovenia. Water hammer in the six power plants is controlled by appropriate adjustment of the wicket gates and runner blades closing/opening manoeuvres. Due to very long inflow and outflow open channels in Zlatoličje HPP a special vaned pressure regulating device attenuates extreme pressures in Kaplan turbine flow-passage system and controls unsteady flow in both open channels. Comparisons of results include normal operating regimes. The agreement between computed and measured results is reasonable.

  11. Thermo-economic assessment of externally fired micro-gas turbine fired by natural gas and biomass: Applications in Italy

    International Nuclear Information System (INIS)

    Pantaleo, A.M.; Camporeale, S.M.; Shah, N.

    2013-01-01

    Highlights: • A thermo-economic analysis of natural gas/biomass fired microturbine is proposed. • Energy efficiency, capex, opex and electricity revenues trade-offs are assessed. • The optimal biomass energy input is 70% of total CHP consumption. • Industrial/tertiary heat demand and baseload/heat driven operation is assessed. • The main barriers of small scale CHP systems in Italy are overviewed. - Abstract: This paper proposes a thermo-economic assessment of small scale (100 kWe) combined heat and power (CHP) plants fired by natural gas and solid biomass. The focus is on dual fuel gas turbine cycle, where compressed air is heated in a high temperature heat exchanger (HTHE) using the hot gases produced in a biomass furnace, before entering the gas combustion chamber. The hot air expands in the turbine and then feeds the internal pre-heater recuperator, Various biomass/natural gas energy input ratios are modeled, ranging from 100% natural gas to 100% biomass. The research assesses the trade-offs between: (i) lower energy conversion efficiency and higher investment cost of high biomass input rate and (ii) higher primary energy savings and revenues from bio-electricity feed-in tariff in case of high biomass input rate. The influence of fuel mix and biomass furnace temperature on energy conversion efficiencies, primary energy savings and profitability of investments is assessed. The scenarios of industrial vs. tertiary heat demand and baseload vs. heat driven plant operation are also compared. On the basis of the incentives available in Italy for biomass electricity and for high efficiency cogeneration (HEC), the maximum investment profitability is achieved for 70% input biomass percentage. The main barriers of these embedded cogeneration systems in Italy are also discussed

  12. Algebraic approach for the diagnosis of turbine cycles in nuclear power plants

    International Nuclear Information System (INIS)

    Heo, Gyunyoung; Chang, Soon Heung

    2005-01-01

    According to plant operating staff's practical needs, authors proposed a diagnosis model to identify the performance degradation of steam turbine cycles in nuclear power plants (NPPs). The essential idea of this study is how to identify the intrinsically degraded component which causes electric loss. Authors found that there were not so many turbine cycle diagnosis applications in NPPs currently because of technical, financial, or social characteristics of the plant. So a great part of the diagnosis has been dependent on operating staff's experience and knowledge. However as economic competition becomes severe, the efficiency staffs is asking for reliable and practical advisory tools. For the solution of these shortcomings, authors proposed a simple and intuitive diagnosis concept based on the superposition rule of degradation phenomena, which can be derived by simple algebra and correlation analysis. Though the superposition rule is not so significant statistically, almost all of the performance indices under normal operation are fairly compatible with this model. Authors developed a prototype model of quantitative root-cause diagnosis and validated the background theory using the simulated data. The turbine cycle advisory system using this model was applied to Gori NPP units 3 and 4

  13. Cogeneration of electric power in the sugar and alcohol sectors: registration of the power plants in Sao Paulo, Brazil; Cogeracao de energia eletrica no setor sucroalcooleiro: cadastro das usinas em Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Gustavo Goncalves [Federacao das Industrias do Estado de Sao Paulo (FIESP), Sao Paulo, SP (Brazil); Moreira, Helemilton Rios; Silva, Edison da [Agencia Reguladora de Saneamento e Energia do Estado de Sao Paulo (ARSESP), SP (Brazil)

    2008-07-01

    One of the major difficult for the planning of co-generation industry of electricity from the sugar cane bagasse is the determination of their true potential. This question comes up, especially in the lack of information about the sugar and ethanol facilities, therefore for the study of potential, we can not just focus on the issue of the cane grinding, but also in technology, the configuration of the power plant and its capacity to export energy. This paper presents a proposal to minimize this difficulty, detailing a solution dedicated to the development of a database for the registration and monitoring of these plants, part of a series of actions regarding in the Understanding Protocol for the promotion of co-generation of bagasse, signed between FIESP and the Government of the State of Sao Paulo. (author)

  14. Economic feasibility of heat supply from nuclear power plants in the United States

    International Nuclear Information System (INIS)

    Roe, K.K.; Oliker, I.

    1987-01-01

    Nuclear energy is regarded as competitive for urban district heating applications. Hot water heat transoport systems of up to 50 miles are feasible for heat loads over 1500 MWt, and heat load density of over 130 MWt/mi 2 is most suitable for nuclear applications. An incremental approach and a nuclear plant design provision for future heat extraction are recommended. Nuclear district heating technology status is discussed, particularly turbine design. Results of a study for retrofitting a major existing nuclear power plant to cogeneration operation are presented. The study indicates that for transmission distances up to 20 miles it is economical to generate and transport between 600 and 1200 MWt of district heat (author)

  15. FY 2000 report on the basic survey to promote Joint Implementation, etc. Survey for improvement of the district heating plant (No. 48) in the Didi-Digomi section; 2000 nendo kyodo jisshi nado suishin kiso chosa hokokusho. Didi-Digomi chiku chiiki danbo plant (No.48) kaizen chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    An investigational study was conducted on the project for energy conservation and reduction in greenhouse effect gas emission at the existing district heating plant in Tbilisi City, Georgia. In the project, the following are conducted for the district heating plants in the Didi-Digomi section and Saburtalo section: renewal/higher efficiency of boiler equipment, adoption of cogeneration using gas turbine, improvement of hot water pipeline and improvement of equipment at heat users. As a result of the study, one plan for cogeneration of 2 units x 6MW class in each section was good in terms of economical efficiency and expenses vs. effects, and the other plan for cogeneration of 17 units (8 units and 9 units) x 6MW class was good in terms of the generated output and regional needs. The amount of energy conservation to be made by the former plan totaled 22,678 toe/y in both sections. The amount of greenhouse effect gas reduction is 70,170 t-CO2/y. The internal earning rate is 1.707% in the Didi-Digomi section and 2.249% in the Saburtalo section. The project profit is lower than the initial investment cost, and therefore, it is necessary to consider the profit from the CO2 emission right. (NEDO)

  16. Robust control of speed and temperature in a power plant gas turbine.

    Science.gov (United States)

    Najimi, Ebrahim; Ramezani, Mohammad Hossein

    2012-03-01

    In this paper, an H(∞) robust controller has been designed for an identified model of MONTAZER GHAEM power plant gas turbine (GE9001E). In design phase, a linear model (ARX model) which is obtained using real data has been applied. Since the turbine has been used in a combined cycle power plant, its speed and also the exhaust gas temperature should be adjusted simultaneously by controlling fuel signals and compressor inlet guide vane (IGV) position. Considering the limitations on the system inputs, the aim of the control is to maintain the turbine speed and the exhaust gas temperature within desired interval under uncertainties and load demand disturbances. Simulation results of applying the proposed robust controller on the nonlinear model of the system (NARX model), fairly fulfilled the predefined aims. Simulations also show the improvement in the performance compared to MPC and PID controllers for the same conditions. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Thermal-economic optimisation of a CHP gas turbine system by applying a fit-problem genetic algorithm

    Science.gov (United States)

    Ferreira, Ana C. M.; Teixeira, Senhorinha F. C. F.; Silva, Rui G.; Silva, Ângela M.

    2018-04-01

    Cogeneration allows the optimal use of the primary energy sources and significant reductions in carbon emissions. Its use has great potential for applications in the residential sector. This study aims to develop a methodology for thermal-economic optimisation of small-scale micro-gas turbine for cogeneration purposes, able to fulfil domestic energy needs with a thermal power out of 125 kW. A constrained non-linear optimisation model was built. The objective function is the maximisation of the annual worth from the combined heat and power, representing the balance between the annual incomes and the expenditures subject to physical and economic constraints. A genetic algorithm coded in the java programming language was developed. An optimal micro-gas turbine able to produce 103.5 kW of electrical power with a positive annual profit (i.e. 11,925 €/year) was disclosed. The investment can be recovered in 4 years and 9 months, which is less than half of system lifetime expectancy.

  18. State Support for Promotion of Electrical Energy Produced in High Efficiency Cogeneration in Romania

    Directory of Open Access Journals (Sweden)

    Mushatescu V.

    2016-12-01

    Full Text Available Romania accumulated a useful experience in supporting high efficient cogeneration through a bonus type scheme. Spreading this experience to other countries that can choose a similar support scheme could lead to important savings and better results in developing this efficient tool. This state aid is operational, targeted to new investments stimulation for cogeneration technologies and replacement or existing plants rehabilitation. Present paper focuses on the results of support scheme after five years of its application: increase of number of producers who benefit of this aid, raising of general efficiency of high efficient cogeneration, important savings of primary energy and CO2 emissions avoided. On the other hand, use of this scheme showed a number of problems (to which this paper proposes adequate solutions on institutional/administrative, investition, technical, economical-financial and social frameworks that influences beneficiaries and/or financiers of state aid.

  19. Proceedings of the Advanced Turbine Systems Annual Program Review meeting. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Goal of the 8-year program is to develop cleaner, more efficient, and less expensive gas turbine systems for utility and industrial electric power generation, cogeneration, and mechanical drive units. The conference is held annually for energy executives, engineers, scientists, and other interested parties industry, academia, and Government. Advanced turbine systems topics discussed during five technical sessions included policy and strategic issues, program element overviews and technical reviews, related activities, university/industry consortium interactions, and supportive projects. Twenty-one papers presented during the technical sessions are contained in this volume; they are processed separately for the data base.

  20. Power Plants, Steam and Gas Turbines WebQuest

    Directory of Open Access Journals (Sweden)

    Carlos Ulloa

    2012-10-01

    Full Text Available A WebQuest is an Internet-based and inquiry-oriented learning activity. The aim of this work is to outline the creation of a WebQuest entitled “Power Generation Plants: Steam and Gas Turbines.” This is one of the topics covered in the course “Thermodynamics and Heat Transfer,” which is offered in the second year of Mechanical Engineering at the Defense University Center at the Naval Academy in Vigo, Spain. While participating in the activity, students will be divided into groups of no more than 10 for seminars. The groups will create PowerPoint presentations that include all of the analyzed aspects. The topics to be discussed during the workshop on power plant turbines are the: (1 principles of operation; (2 processes involved; (3 advantages and disadvantages; (4 efficiency; (5 combined cycle; and (6 transversal competences, such as teamwork, oral and written presentations, and analysis and synthesis of information. This paper presents the use of Google Sites as a guide to the WebQuest so that students can access all information online, including instructions, summaries, resources, and information on qualifications.

  1. Novel, cost-effective configurations of combined power plants for small-scale cogeneration from biomass: Feasibility study and performance optimization

    International Nuclear Information System (INIS)

    Amirante, Riccardo; Tamburrano, Paolo

    2015-01-01

    Highlights: • A cheap small combined cycle for cogeneration from biomass is proposed. • An optimization procedure is utilized to explore its potential. • Two configurations employing two different heat exchangers are considered. • The maximum electrical efficiency is 25%, the maximum overall efficiency is 70%. • The operation in load following mode is effective for both configurations. - Abstract: The aim of this paper is to demonstrate that, thanks to recent advances in designing micro steam expanders and gas to gas heat exchangers, the use of small combined cycles for simultaneous generation of heat and power from the external combustion of solid biomass and low quality biofuels is feasible. In particular, a novel typology of combined cycle that has the potential both to be cost-effective and to achieve a high level of efficiency is presented. In the small combined cycle proposed, a commercially available micro-steam turbine is utilized as the steam expander of the bottoming cycle, while the conventional microturbine of the topping cycle is replaced by a cheaper automotive turbocharger. The feasibility, reliability and availability of the required mechanical and thermal components are thoroughly investigated. In order to explore the potential of such a novel typology of power plant, an optimization procedure, based on a genetic algorithm combined with a computing code, is utilized to analyze the trade-off between the maximization of the electrical efficiency and the maximization of the thermal efficiency. Two design optimizations are performed: the first one makes use of the innovative “Immersed Particle Heat Exchanger”, whilst a nickel alloy heat exchanger is used in the other one. After selecting the optimum combination of the design parameters, the operation in load following mode is also assessed for both configurations

  2. Externally fired gas turbine cycles with high temperature heat exchangers utilising Fe-based ODS alloy tubing

    International Nuclear Information System (INIS)

    Olsson, F.; Svensson, S.-A.; Duncan, R.

    2001-01-01

    This work is part of the BRITE / EuRAM Project 'Development of Torsional Grain Structures to Improve Biaxial Creep Performance of Fe-based ODS Alloy Tubing for Biomass Power Plant'. The main goal of this project is to heat exchanger tubes working at 1100 o C and above. The paper deals with design implications of a biomass power plant, using an indirectly fired gas turbine with a high temperature heat exchanger containing Fe-based ODS alloy tubing. In the current heat exchanger design, ODS alloy tubing is used in a radiant section, using a bayonet type tube arrangement. This enables the use of straight sections of ODS tubing and reduces the amount of material required. In order to assess the potential of the power plant system, thermodynamic calculations have been conducted. Both co-generation and condensing applications are studied and results so far indicate that the electrical efficiency is high, compared to values reached by conventional steam cycle power plants of the same size (approx. 5 MW e ). (author)

  3. Feasibility study on rehabilitation of KESC gas turbine power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    As to power generation facilities of Karachi Electric Power Supply Corporation in Karachi (KESC), the Islamic Republic of Pakistan, feasibility study on the rehabilitation was conducted in consideration of the CDM (clean development mechanism) project. In Pakistan, 13 gas turbine power plants started operation at the same time as the time when the power plant studied this time started operation, and therefore it is predicted that they also have the same troubles caused by the aged deterioration. As the rehabilitation project, two cases were proposed: In Case 1, gas turbine and generator are both exchanged, and in Case 2, gas turbine is only exchanged, and generator is reused after repair. The work term is approximately 9 months in both cases. The initial investment is $84 million in Case 1 and $78 million in Case 2. The energy conservation effect per cost is 107 t/y/million yen and 101 t/y/million yen, respectively. Further, the amount of greenhouse effect gas reduction per cost is 330 t-CO2/y/million yen and 313 t-CO2/y/million yen, respectively. The effect of profits can be obtained after the depreciation period since the fuel price is reduced approximately 0.5%. (NEDO)

  4. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  5. Steam turbines for the future

    International Nuclear Information System (INIS)

    Trassl, W.

    1988-01-01

    Approximately 75% of the electrical energy produced in the world is generated in power plants with steam turbines (fossil and nuclear). Although gas turbines are increasingly applied in combined cycle power plants, not much will change in this matter in the future. As far as the steam parameters and the maximum unit output are concerned, a certain consolidation was noted during the past decades. The standard of development and mathematical penetration of the various steam turbine components is very high today and is applied in the entire field: For saturated steam turbines in nuclear power plants and for steam turbines without reheat, with reheat and with double reheat in fossil-fired power plants and for steam turbines with and without reheat in combined cycle power plants. (orig.) [de

  6. Sustainability assessment of cogeneration sector development in Croatia

    International Nuclear Information System (INIS)

    Liposcak, Marko; Afgan, Naim H.; Duic, Neven; Graca Carvalho, Maria da

    2006-01-01

    The effective and rational energy generation and supply is one of the main presumptions of sustainable development. Combined heat and power production, or co-generation, has clear environmental advantages by increasing energy efficiency and decreasing carbon emissions. However, higher investment cost and more complicated design and maintenance sometimes-present disadvantages from the economical viability point of view. As in the case of most of economies in transition in Central and Eastern Europe, Croatia has a strong but not very efficient co-generation sector, delivering 12% of the final energy consumption. District heating systems in the country's capital Zagreb and in city of Osijek represent the large share of the overall co-generation capacity. Besides district heating, co-generation in industry sector is also relatively well developed. The paper presents an attempt to assess the sustainability of Croatian co-generation sector future development. The sustainability assessment requires multi-criteria assessment of specific scenarios to be taken into consideration. In this respect three scenarios of Croatian co-generation sector future development are taken into consideration and for each of them environmental, social and economic sustainability indicators are defined and calculated. The assessment of complex relationships between environmental, social and economic aspects of the system is based on the multi-criteria decision-making procedure. The sustainability assessment is based on the General Sustainability Index rating for different cases reflecting different criteria and their priority. The method of sustainability assessment is applied to the Croatian co-generation sector contributing to the evaluation of different strategies and definition of a foundation for policy related to the sustainable future cogeneration sector development

  7. Theoretical Investigation For The Effect of Fuel Quality on Gas Turbine Power Plants

    Science.gov (United States)

    AbdulRazzak khudair, Omar; Alwan Abass, Khetam; Saadi Abed, Noor; Hussain Ali, Khalid; AbdulAziz, Saad; Chlaib Shaboot, Ali

    2018-05-01

    Gas turbine engine power generation is declined dramatically because of the reduction in thermodynamic parameters as a work of turbine, compressor ratio, compressor work, and air mass flow rate and fuel consumption. There are two main objectives of this work, the first is related with the effect of fuel kinds and their quality on the operation of fuel flow divider and its performance specifically gear pump displacement and fuel flow rate to the combustion chambers of gas power plant. AL-DORA gas turbine power plant 35MW was chosen to predict these effects on its performance MATLAB Software program is used to perform thermodynamic calculations. Fuel distribution stage before the process of combustion and as a result of the kind and its quality, chemical reaction will occur between the fuel and the parts of the gear system of each pump of the flow divider, which causes the erosion of the internal pump wall and the teeth of the gear system, thus hampering the pump operation in terms of fuel discharge. The discharge of fuel form the eight external gates of flow divider is decreased and varied when going to the combustion chambers, so that, flow divider does not give reliable mass flow rate due to absence of accurate pressure in each of eight exit pipes. The second objective deals with the stage of fuel combustion process inside the combustion chamber. A comparative study based upon performance parameters, such as specific fuel consumption for gas and gasoil and power generation. Fuel poor quality causes incomplete combustion and increased its consumption, so that combustion products are interacted with the surface of the turbine blades, causing the erosion and create surface roughness of the blade and disruption of gas flow. As a result of this situation, turbulence flow of these gases will increase causing the separation of gas boundary layers over the suction surface of the blade. Therefore the amount of extracted gas will decrease causing retreat work done by

  8. Implementation of gas district cooling and cogeneration systems in Malaysia; Mise en oeuvre de systemes de gas district cooling et de cogeneration en Malaisie

    Energy Technology Data Exchange (ETDEWEB)

    Haron, S. [Gas District Cooling, M, Sdn Bhd (Malaysia)

    2000-07-01

    With its energy demand in the early 1990's growing at a high rate due to the country's strong economic growth, Malaysia studied various options to improve the efficiency of its energy use. Since its natural gas reserves are almost four times that of its crude oil reserves, efforts were therefore centered on seeking ways to boost the use of natural gas to mitigate the growing domestic energy need. PETRONAS, the national oil company, subsequently studied and chose the District Cooling System using natural gas as the primary source of fuel. The Kuala Lumpur City Center development, which houses the PETRONAS Twin Towers, was subsequently chosen as the first project to use the Gas District Cooling (GDC) System. To acquire the technology and implement this project, PETRONAS created a new subsidiary, Gas District Cooling (Malaysia) Sendirian Berhad (GDC(M)). In the process of improving the plant's efficiency, GDC(M) discovered that the GDC system's efficiency and project economics would be significantly enhanced if its is coupled to a Cogeneration system. Having proven the success of the GDC/Cogeneration system, GDC(M) embarked on a campaign to aggressively promote and seek new opportunities to implement the system, both in Malaysia-and abroad. Apart from enhancing efficiency of energy use, and providing better project economics, the GDC/Cogeneration system also is environment friendly. Today, the GDC/Cogeneration systems is the system of choice for several important developments in Malaysia, which also includes the country's prestigious projects such as the Kuala Lumpur International Airport and the New Federal Government Administrative Center in Putrajaya. (author)

  9. Development of cogeneration in Spain and financing methods

    International Nuclear Information System (INIS)

    Garcia, G.R.

    1994-01-01

    From 1980 there is in force in Spain a proper legal framework that could be considered a sound support to further cogeneration development. Despite this cogeneration law, a very few schemes were built. In 1986 IDAE, a state company attached to the Spanish Ministry of Industry and Energy, began a Cogeneration Programme focussed to a higher cogeneration utilisation. This programme has three main foundations: Technology dissemination; Technical support; Investment financing. As a result of these activities more than 1000 MW additional power schemes have been ordered all over the country and, as a consequence, cogenerated electricity will be multiplied by three in respect with the previous situation. A 20% of this new capacity has been developed directly by IDAE, that has invested approximately 90 million US Dollar through third party financing technics. The National Energy Plan 1991-2000 established the energy policy actuations in Spain for the present decade, giving importance to cogeneration development. This paper explains the way this development has been achieved, outlining IDAE's engagement to finance combined heat and power schemes through its comprehensive way of performing third party financing systems. (au)

  10. EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    John W. Rich

    2001-03-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement with the USDOE, National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co--product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases: Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report is WMPI's third quarterly technical progress report. It covers the period performance from October 1, 2001 through December 31, 2001.

  11. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-01-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

  12. Probability and containment of turbine missiles

    International Nuclear Information System (INIS)

    Yeh, G.C.K.

    1976-01-01

    With the trend toward ever larger power generating plants with large high-speed turbines, an important plant design consideration is the potential for and consequences of mechanical failure of turbine rotors. Such rotor failure could result in high-velocity disc fragments (turbine missiles) perforating the turbine casing and jeopardizing vital plant systems. The designer must first estimate the probability of any turbine missile damaging any safety-related plant component for his turbine and his plant arrangement. If the probability is not low enough to be acceptable to the regulatory agency, he must design a shield to contain the postulated turbine missiles. Alternatively, the shield could be designed to retard (to reduce the velocity of) the missiles such that they would not damage any vital plant system. In this paper, some of the presently available references that can be used to evaluate the probability, containment and retardation of turbine missiles are reviewed; various alternative methods are compared; and subjects for future research are recommended. (Auth.)

  13. Feasibility study for new ecolabels according to ISO 14024 (type I) within the product group: small cogeneration plants; Machbarkeitsstudie fuer neue Umweltzeichen in Anlehnung an ISO 14024 (Type I) fuer die Produktgruppe: Kleine Blockheizkraftwerk-Module

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, E.; Hirschl, B.; Kaliske, J. [Institut fuer Oekologische Wirtschaftsforschung (IOEW) gGmbH, Berlin (Germany); Reese, I.; Grimpe, T. [Hamburg Gas Consult (HGC) GmbH (Germany)

    2000-11-02

    This study is a feasibility study according to ISO 14024. It deals with the question whether an ecolabel is suitable for small cogeneration plants and how concrete criteria for an ecolabel on cogeneration plants could be specified. The study began with a comprehensive market analysis in order to identify possible plants for which an ecolabel would make sense. In the main part of the study, the environmental relevance of the chosen plants was analysed. For this analysis, plant manufacturers were interviewed and a comparison between cogeneration plants and heating plants was carried out. On the basis of this analysis, it was possible to derive a number of criteria which were presented and discussed in an expert talk by various company representatives and experts in this field. As a result of the expert talk and the investigation process as a whole, the introduction of an ecolabel for small cogeneration plants can be recommended. The proposed certification principles comprise requirements regarding the compliance with directives, efficient energy use (electrical and overall efficiency factor under partial load and nominal load, mentioning the plant's supplementary energy consumption), emission values for CO, NO{sub x}, dust and organic substances, sound emissions, the offer of maintenance contracts, plant take back obligations, as well as requirements with regard to the operating instructions. The transcription of the label is proposed as 'Ecolabel. because energy-efficient'. Besides cogeneration plants based on engines, the study also focused on small stationary fuel cells. They are currently in the development phase and are tested within the scope of several field studies. Compared to conventional heating plants and cogeneration plants powered by engines, this new technology promises clear ecological advantages and constitutes a future alternative to engine powered equivalents. Faced by the current state of development and the limited quality of the

  14. Optimisation of environmental gas cleaning routes for solid wastes cogeneration systems. Part II - Analysis of waste incineration combined gas/steam cycle

    International Nuclear Information System (INIS)

    Holanda, Marcelo R.; Perrella Balestieri, Jose A.

    2008-01-01

    In the first paper of this paper (Part I), conditions were presented for the gas cleaning technological route for environomic optimisation of a cogeneration system based in a thermal cycle with municipal solid waste incineration. In this second part, an environomic analysis is presented of a cogeneration system comprising a combined cycle composed of a gas cycle burning natural gas with a heat recovery steam generator with no supplementary burning and a steam cycle burning municipal solid wastes (MSW) to which will be added a pure back pressure steam turbine (another one) of pure condensation. This analysis aims to select, concerning some scenarios, the best atmospheric pollutant emission control routes (rc) according to the investment cost minimisation, operation and social damage criteria. In this study, a comparison is also performed with the results obtained in the Case Study presented in Part I

  15. Performance review: PBMR closed cycle gas turbine power plant

    International Nuclear Information System (INIS)

    Pradeep Kumar, K.N.; Tourlidakis, A.; Pilidis, P.

    2001-01-01

    Helium is considered as one of the ideal working fluid for closed cycle using nuclear heat source due to its low neutron absorption as well as high thermodynamic properties. The commercial viability of the Helium turbo machinery depends on operational success. The past attempts failed due to poor performances manifested in the form of drop in efficiency, inability to reach maximum load, slow response to the transients etc. Radical changes in the basic design were suggested in some instances as possible solutions. A better understanding of the operational performance is necessary for the detailed design of the plant and the control systems. This paper describes the theory behind the off design and transient modelling of a closed cycle gas turbine plant. A computer simulation model has been created specifically for this cycle. The model has been tested for various turbine entry temperatures along the steady state and its replications at various locations were observed. The paper also looks at the various control methods available for a closed cycle and some of the options were simulated. (author)

  16. Tax issues in structuring effective cogeneration vehicles

    International Nuclear Information System (INIS)

    Ebel, S.R.

    1999-01-01

    An overview of the Canadian income tax laws that apply to cogeneration projects was presented. Certain tax considerations could be taken into account in deciding upon ownership and financing structures for cogeneration projects, particularly those that qualify for class 43.1 capital cost allowance treatment. The tax treatment of project revenues and expenses were described. The paper also reviewed the 1999 federal budget proposals regarding the manufacturing and processing tax credit, the capital cost allowance system applicable to cogeneration assets and the treatment of the Canadian renewable conservation expense

  17. Summary of Investigations of the Use of Modified Turbine Inlet Conditions in a Binary Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mines, Gregory Lee

    2000-09-01

    Investigators at the Idaho National Engineering and Environmental Laboratory (INEEL) are developing technologies that will enhance the feasibility of generating electrical power from a hydrothermal resource. One of the concepts investigated is the use of modified inlet conditions in geothermal binary power plant turbines to increase the power generation. An inlet condition of interest allows the expanding vapor to enter the two-phase region, a mode of operation typically avoided because of concern that condensate would form and damage the turbine, degrading performance. INEEL investigators postulated that initially a supersaturated vapor would be supported, and that no turbine damage would occur. This paper summarizes the investigation of these expansions that began with testing of their condensation behavior, and culminated with the incorporation of these expansions into the operation of several commercial binary plant turbines.

  18. Energy conservation through the implementation of cogeneration and grid interconnection

    International Nuclear Information System (INIS)

    Dashash, M. A.

    2007-01-01

    With increasing awareness of energy conservation and environmental protection, the Arab World is moving to further improve energy conversion efficiency. The equivalent of over 2.7 MM bbl is being daily burnt to fuel the thermal power plants that represent 92% of the total Arab power generation. This adds up to close to one billion barrels annually. At a conservative 30$ per barrel, this represents a daily cost of over $81 Million. This paper will introduce two strategies with the ultimate objective to cut-off up to half of the current fuel consumption. Firstly, Cogeneration Technology is able to improve thermal efficiency from the current average of less than 25% to up to 80%. Just 1% improvement in power plant thermal efficiency represents 3 million $/day in fuel cost savings. In addition, a well-designed and operated cogeneration plant will: - Reduce unfriendly emissions by burning less fuel as a result of higher thermal efficiency, - Increase the decentralization of electrical generation, - Improve the reliability of electricity supply. As an example, the Kingdom of Saudi Arabia's experience of implementing cogeneration will be presented, in particular within its hydrocarbon facilities and desalination plants. This will include the existing facilities and the planned and on-going projects. Secondly, by interconnecting the power networks of all the adjacent Arab countries, the following benefits could be reached: - Reduce generation reserves and enhance the system reliability, - Improve the economic efficiency of the electricity power systems, - Provide power exchange and strengthen the supply reliability, - Adopt technological development and use the best modern technologies. At least two factors plead for this direction. On one hand, the four-hour time zone difference from Eastern to Western Arab World makes it easy to exchange power. On the other hand, this will help to reduce the reserve capacity and save on corresponding Capital investment, fuel, and O and M

  19. FY 1993 Research and development of advanced ceramic gas turbines. Researches on social adaptability; 1993 nendo senshingata ceramic gas turbine no kenkyu kaihatsu seika hokokusho. Shakai tekigosei kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-01

    The ceramic gas turbines (CGT's) for, e.g., cogeneration and portable power generation systems are studied and evaluated for their environmental preservation, energy saving and economic characteristics. Types of utilization and market sizes are also studied for, e.g., portable power generation systems. The items studied include current status of cogeneration systems in USA, and recognition of cogeneration systems in Japan. The study results lead to the conclusions that the biaxial CGT for portable power generation systems is a promising substitute for diesel engines as the power source in the future, and 300kW class CGT's will have the markets of 170,000 units and potentially 450,000 units, because of their expected wide applicability. The studies on their economic, energy-saving and environmental load reduction effects indicate that one unit brings the economic effects totaling 616,000 yen, due to reduced fuel consumption and NOx abatement. They could reduce NOx emissions by 8,090 t/y for automobiles and 6,570 t/y for the others, when they fill the potential markets. (NEDO)

  20. Proceedings of the Advanced Turbine Systems annual program review meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Goals of the 8-year program are to develop cleaner, more efficient, and less expensive gas turbine systems for utility and industrial electric power generation, cogeneration, and mechanical drive units. During this Nov. 9-11, 1994, meeting, presentations on energy policy issues were delivered by representatives of regulatory, industry, and research institutions; program overviews and technical reviews were given by contractors; and ongoing and proposed future projects sponsored by university and industry were presented and displayed at the poster session. Panel discussions on distributed power and Advanced Gas Systems Research education provided a forum for interactive dialog and exchange of ideas. Exhibitors included US DOE, Solar Turbines, Westinghouse, Allison Engine Co., and GE.

  1. Effect of turbine materials on power generation efficiency from free water vortex hydro power plant

    International Nuclear Information System (INIS)

    Sritram, P; Treedet, W; Suntivarakorn, R

    2015-01-01

    The objective of this research was to study the effect of turbine materials on power generation efficiency from the water free vortex hydro power plant made of steel and aluminium. These turbines consisted of five blades and were twisted with angles along the height of water. These blades were the maximum width of 45 cm. and height of 32 cm. These turbines were made and experimented for the water free vortex hydro power plant in the laboratory with the water flow rate of 0.68, 1.33, 1.61, 2.31, 2.96 and 3.63 m 3 /min and an electrical load of 20, 40, 60, 80 and 100 W respectively. The experimental results were calculated to find out the torque, electric power, and electricity production efficiency. From the experiment, the results showed that the maximum power generation efficiency of steel and aluminium turbine were 33.56% and 34.79% respectively. From the result at the maximum water flow rate of 3.63 m 3 /min, it was found that the torque value and electricity production efficiency of aluminium turbine was higher than that of steel turbine at the average of 8.4% and 8.14%, respectively. This result showed that light weight of water turbine can increase the torque and power generation efficiency. (paper)

  2. Thermodynamic performance analysis of a novel electricity-heating cogeneration system (EHCS) based on absorption heat pump applied in the coal-fired power plant

    International Nuclear Information System (INIS)

    Zhang, Hongsheng; Li, Zhenlin; Zhao, Hongbin

    2015-01-01

    Highlights: • Presented a novel waste heat recovery method for Combined Heat and Power system. • Established models of the integrated system based on energy and exergy analysis. • Adopted both design and actual data ensuring the reliability of analysis results. - Abstract: A novel electricity-heating cogeneration system (EHCS) which is equipped with an absorption heat pump (AHP) system to recover waste heat from exhaust steam of the steam turbines in coal-fired thermal power plants is proposed to reduce heating energy consumption and improve the utilization of the fossil fuels in existing CHP (Combined Heat and Power) systems. According to the first and second thermodynamic law, the changes of the performance evaluation indicators are analyzed, and exergy analyses for key components of the system are carried out as well as changes of exergy indexes focusing on 135 MW direct air cooling units before and after modification. Compared with the conventional heating system, the output power increases by about 3.58 MW, gross coal consumption rate and total exergy loss respectively reduces by 11.50 g/kW h and 4.649 MW, while the total thermal and exergy efficiency increases by 1.26% and 1.45% in the EHCS when the heating load is 99,918 kJ at 75% THA condition. Meanwhile, the decrement of total exergy loss and increment of total exergy efficiency increase with the increasing of the heating load. The scheme cannot only bring great economic benefits but also save fossil resources, which has a promising market application potential.

  3. Exchange of availability/performance data on base-load gas turbine and combined cycle plant

    Energy Technology Data Exchange (ETDEWEB)

    Jesuthasan, D.K.; Kaupang, B.M. (Tenaga Nasional Berhad (Malaysia))

    1992-09-01

    This paper describes the recommendations developed to facilitate the international exchange of availability performance data on base-load gas turbines and combined cycle plant. Standardized formats for the collection of plant availability statistics, recognizing the inherent characteristics of gas turbines in simple and combined cycle plants are presented. The formats also allow for a logical expansion of the data collection detail as that becomes desirable. To assist developing countries in particular, the approach includes basic formats for data collection needed for international reporting. In addition, the participating utilities will have a meaningful database for internal use. As experience is gained with this data colletion system, it is expected that additional detail may be accommodated to enable further in-depth performance analysis on the plant and on the utility level. 2 refs., 2 tabs., 11 apps.

  4. Enhanced efficiency steam turbine blading - for cleaner coal plant

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, A.; Bell, D.; Cao, C.; Fowler, R.; Oliver, P.; Greenough, C.; Timmis, P. [ALSTOM Power, Rugby (United Kingdom)

    2005-03-01

    The aim of this project was to increase the efficiency of the short height stages typically found in high pressure steam turbine cylinders. For coal fired power plant, this will directly lead to a reduction in the amount of fuel required to produce electrical power, resulting in lower power station emissions. The continual drive towards higher cycle efficiencies demands increased inlet steam temperatures and pressures, which necessarily leads to shorter blade heights. Further advances in blading for short height stages are required in order to maximise the benefit. To achieve this, an optimisation of existing 3 dimensional designs was carried out and a new 3 dimensional fixed blade for use in the early stages of the high pressure turbine was developed. 28 figs., 5 tabs.

  5. Ambient temperature effects on gas turbine power plant: A case study in Iran

    International Nuclear Information System (INIS)

    Gorji, M.; Fouladi, F.

    2007-01-01

    Actual thermal efficiency, electric-power output, fuel-air ratio and specific fuel consumption (SFC) vary according to the ambient conditions. The amount of these variations greatly affects those parameters as well as the plant incomes. In this paper the effect of ambient temperature as a seasonal variation on a gas power plant has been numerically studied. For this purpose, the gas turbine model and different climate seasonal variations of Ray in Iran are considered in this study. For the model, by using average monthly temperature data of the region, the different effective parameters were compared to those in standard design conditions. The results show that ambient temperature increase will decrease thermal efficiency, electric-power out put and fuel-air ratio of the gas turbine plant whereas increases the specific fuel consumption

  6. Wind Turbine and Wind Power Plant Modelling Aspects for Power System Stability Studies

    DEFF Research Database (Denmark)

    Altin, Müfit; Hansen, Anca Daniela; Göksu, Ömer

    2014-01-01

    Large amount of wind power installations introduce modeling challenges for power system operators at both the planning and operational stages of power systems. Depending on the scope of the study, the modeling details of the wind turbine or the wind power plant are required to be different. A wind...... turbine model which is developed for the short-term voltage stability studies can be inaccurate and sufficient for the frequency stability studies. Accordingly, a complete and detailed wind power plant model for every kind of study is not feasible in terms of the computational time and also...... and wind power plants are reviewed for power system stability studies. Important remarks of the models are presented by means of simulations to emphasize the impact of these modelling details on the power system....

  7. Proceedings of the Advanced Turbine Systems Annual Program Review meeting. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Goal of the 8-year program are to develop cleaner, more efficient, and less expensive gas turbine systems for utility and industrial electric power generation, cogeneration, and mechanical drive units. The conference is held annually for energy executives, engineers, scientists, and other interested parties in industry, academia, and Government. This volume contains 28 poster presentations and appendices; the poster papers are processed separately for the data base.

  8. Performance analysis and optimization of power plants with gas turbines

    Science.gov (United States)

    Besharati-Givi, Maryam

    The gas turbine is one of the most important applications for power generation. The purpose of this research is performance analysis and optimization of power plants by using different design systems at different operation conditions. In this research, accurate efficiency calculation and finding optimum values of efficiency for design of chiller inlet cooling and blade cooled gas turbine are investigated. This research shows how it is possible to find the optimum design for different operation conditions, like ambient temperature, relative humidity, turbine inlet temperature, and compressor pressure ratio. The simulated designs include the chiller, with varied COP and fogging cooling for a compressor. In addition, the overall thermal efficiency is improved by adding some design systems like reheat and regenerative heating. The other goal of this research focuses on the blade-cooled gas turbine for higher turbine inlet temperature, and consequently, higher efficiency. New film cooling equations, along with changing film cooling effectiveness for optimum cooling air requirement at the first-stage blades, and an internal and trailing edge cooling for the second stage, are innovated for optimal efficiency calculation. This research sets the groundwork for using the optimum value of efficiency calculation, while using inlet cooling and blade cooling designs. In the final step, the designed systems in the gas cycles are combined with a steam cycle for performance improvement.

  9. Simulations research of the global predictive control with self-adaptive in the gas turbine of the nuclear power plant

    International Nuclear Information System (INIS)

    Su Jie; Xia Guoqing; Zhang Wei

    2007-01-01

    For further improving the dynamic control capabilities of the gas turbine of the nuclear power plant, this paper puts forward to apply the algorithm of global predictive control with self-adaptive in the rotate speed control of the gas turbine, including control structure and the design of controller in the base of expounding the math model of the gas turbine of the nuclear power plant. the simulation results show that the respond of the change of the gas turbine speed under the control algorithm of global predictive control with self-adaptive is ten second faster than that under the PID control algorithm, and the output value of the gas turbine speed under the PID control algorithm is 1%-2% higher than that under the control slgorithm of global predictive control with self-adaptive. It shows that the algorithm of global predictive control with self-adaptive can better control the output of the speed of the gas turbine of the nuclear power plant and get the better control effect. (authors)

  10. Some research and development on power plants with helium gas turbine units

    International Nuclear Information System (INIS)

    Kaplan, M.P.

    1983-01-01

    Research and development projects pursued at the S. M. Kirov Kharkov Turbine Factory Production Association for Nuclear Turbomachinery Manufacturing have probed into prospective use of helium as the working medium in nuclear power facilities. The projects under study are compared mainly in terms of heat efficiency. Solutions are also being sought for problems centering around high efficiency in helium turbocompressors combined with shortening of axial dimensions. Different types of power plants are being compared with attention given to features of the flow passages of turbocompressors. The projects were developed for helium temperatures and pressures downstream of the reactor 950 0 C and 4.8 MPa, and thermal reactor output 2250 MW(th). The reactor is assumed to be served by two turbine plants in the turbocompressor designs

  11. Power plant perspectives for sugarcane mills

    International Nuclear Information System (INIS)

    Bocci, E.; Di Carlo, A.; Marcelo, D.

    2009-01-01

    Biomass, integral to life, is one of the main energy sources that modern technologies could widely develop, overcoming inefficient and pollutant uses. The sugarcane bagasse is one of the more abundant biomass. Moreover, the fluctuating sugar and energy prices force the sugarcane companies to implement improved power plants. Thanks to a multiyear collaboration between University of Rome and University of Piura and Chiclayo, this paper investigates, starting from the real data of an old sugarcane plant, the energy efficiency of the plant. Furthermore, it explores possible improvements as higher temperature and pressure Rankine cycles and innovative configurations based on gasifier plus hot gas conditioning and gas turbine or molten carbonate fuel cells. Even if the process of sugar extraction from sugarcane and the relative Rankine cycles power plants are well documented in literature, this paper shows that innovative power plant configurations can increase the bagasse-based cogeneration potential. Sugarcane companies can become electricity producers, having convenience in the use of sugarcane leaves and trash (when it is feasible). The worldwide implementation of advanced power plants, answering to a market competition, will improve significantly the renewable electricity produced, reducing CO 2 emissions, and increasing economic and social benefits.

  12. Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo; Iora, Paolo; Ghoniem, Ahmed F.

    2014-01-01

    A general method for the allocation of resources and products in multi-resource/multi-product facilities is developed with particular reference to the important two-resource/two-product case of hybrid fossil and solar/heat and power cogeneration. For a realistic case study, we show how the method allows to assess what fractions of the power and heat should be considered as produced from the solar resource and hence identified as renewable. In the present scenario where the hybridization of fossil power plants by solar-integration is gaining increasing attention, such assessment is of great importance in the fair and balanced development of local energy policies based on granting incentives to renewables resources. The paper extends to the case of two-resource/two-product hybrid cogeneration, as well as to general multi-resource/multi-generation, three of the allocation methods already available for single-resource/two-product cogeneration and for two-resource/single-product hybrid facilities, namely, the ExRR (Exergy-based Reversible-Reference) method, the SRSPR (Single Resource Separate Production Reference) method, and the STALPR (Self-Tuned-Average-Local-Productions-Reference) method. For the case study considered we show that, unless the SRSPR reference efficiencies are constantly updated, the differences between the STALPR and SRSPR methods become important as hybrid and cogeneration plants take up large shares of the local energy production portfolio. - Highlights: • How much of the heat and power in hybrid solar-fossil cogeneration are renewable? • We define and compare three allocation methods for hybrid cogeneration. • Classical and exergy allocation are based on prescribed reference efficiencies. • Adaptive allocation is based on the actual average efficiencies in the local area. • Differences among methods grow as hybrid CHP (heat and power cogeneration) gains large market fractions

  13. Combined heat and power (cogeneration) plant based on renewable energy sources and electrochemical hydrogen systems

    Science.gov (United States)

    Grigor'ev, S. A.; Grigor'ev, A. S.; Kuleshov, N. V.; Fateev, V. N.; Kuleshov, V. N.

    2015-02-01

    The layout of a combined heat and power (cogeneration) plant based on renewable energy sources (RESs) and hydrogen electrochemical systems for the accumulation of energy via the direct and inverse conversion of the electrical energy from RESs into the chemical energy of hydrogen with the storage of the latter is described. Some efficient technical solutions on the use of electrochemical hydrogen systems in power engineering for the storage of energy with a cyclic energy conversion efficiency of more than 40% are proposed. It is shown that the storage of energy in the form of hydrogen is environmentally safe and considerably surpasses traditional accumulator batteries by its capacitance characteristics, being especially topical in the prolonged absence of energy supply from RESs, e.g., under the conditions of polar night and breathless weather. To provide the required heat consumption of an object during the peak period, it is proposed to burn some hydrogen in a boiler house.

  14. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 6: Closed-cycle gas turbine systems. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Fentress, W. K.; Stahl, W. F.

    1976-01-01

    Both recuperated and bottomed closed cycle gas turbine systems in electric power plants were studied. All systems used a pressurizing gas turbine coupled with a pressurized furnace to heat the helium for the closed cycle gas turbine. Steam and organic vapors are used as Rankine bottoming fluids. Although plant efficiencies of over 40% are calculated for some plants, the resultant cost of electricity was found to be 8.75 mills/MJ (31.5 mills/kWh). These plants do not appear practical for coal or oil fired plants.

  15. Fossil fuel savings, carbon emission reduction and economic attractiveness of medium-scale integrated biomass gasification combined cycle cogeneration plants

    Directory of Open Access Journals (Sweden)

    Kalina Jacek

    2012-01-01

    Full Text Available The paper theoretically investigates the system made up of fluidized bed gasifier, SGT-100 gas turbine and bottoming steam cycle. Different configurations of the combined cycle plant are examined. A comparison is made between systems with producer gas (PG and natural gas (NG fired turbine. Supplementary firing of the PG in a heat recovery steam generator is also taken into account. The performance of the gas turbine is investigated using in-house built Engineering Equation Solver model. Steam cycle is modeled using GateCycleTM simulation software. The results are compared in terms of electric energy generation efficiency, CO2 emission and fossil fuel energy savings. Finally there is performed an economic analysis of a sample project. The results show relatively good performance in the both alternative configurations at different rates of supplementary firing. Furthermore, positive values of economic indices were obtained. [Acknowledgements. This work was carried out within the frame of research project no. N N513 004036, titled: Analysis and optimization of distributed energy conversion plants integrated with gasification of biomass. The project is financed by the Polish Ministry of Science.

  16. Experimental energetic analysis of gas natural-powered fuel cell cogeneration plant; Analise energetica experimental de uma planta de co-geracao com celulas a combustivel e gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, Jose G.M.; Lopes, Francisco C.; Silva Junior, Fernando R.; Soares, Guilherme F.W.; Serra, Eduardo T. [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Power systems based on fuel cells have been considered for residential and commercial applications in energy Distributed Generation (DG) market as these systems can minimize their acquisition, installation and operation high costs. In this work we present an experimental analysis of a power generation system formed by a 5 kW proton exchange membrane fuel cell unit and a natural gas reformer (fuel processor) for hydrogen production, of the CEPEL's Fuel Cell Laboratory. It was determined the electrical performance of the cogeneration system in function of the design and operational power plant parameters. Additionally, it was verified the influence of the activation conditions of the fuel cell electrocatalytic system on the system performance. It also appeared that the use of hydrogen produced from the natural gas catalytic reforming provided the system operation in excellent electrothermal stability conditions resulting in increase of the energy conversion efficiency and of the economy of the cogeneration power plant. The maximum electrical efficiency achieved was around 38% and in all power range unit operated with average potential per single fuel cell higher than 0.60 V. (author)

  17. The main features of control and operation of steam turbines at nuclear power plants

    International Nuclear Information System (INIS)

    Czinkoczky, B.

    1981-01-01

    The output and speed control of steam turbines at nuclear power plants as well as the combination of both controls are reviewed and evaluated. At the same time the tasks of unit control at nuclear power plants, the control of steady main steam pressure and medium pressure of primary circuit, further the connection of reactor and turbine controls and the self-controlling properties of pressurized water reactor are dealt with. Hydraulic and electro-hydraulic speed control, the connection of cach-up dampers and speed control and the application of electro-hydraulic signal converters are discussed. The accomplishment of protection is also described. (author)

  18. How best management practices affect emissions in gas turbine power plants - an important factor to consider when strengthening emission standards.

    Science.gov (United States)

    Zeng, Jinghai; Xing, Min; Hou, Min; England, Glenn C; Yan, Jing

    2018-04-27

    The Beijing Municipal Environmental Protection Bureau (EPB) is considering strengthening the Emission Standard of Air Pollutants for Stationary Gas Turbines, originally published in 2011 (DB11/847-2011), with a focus on reducing nitrogen oxides (NOx) emissions. A feasibility study was conducted to evaluate the current operation of twelve (12) existing combined-cycle gas turbine power plants and the design of two (2) new plants in Beijing and their emission reduction potential, in comparison with a state-of-the-art power plant in California, United States. The study found that Best Management Practices (BMPs) could potentially improve the emission level of the power plants, and should be implemented to minimize emissions under current design characteristics. These BMPs include (1) more frequent tuning of turbine combustors; (2) onsite testing of natural gas characteristics in comparison to turbine manufacturer's specifics and tuning of turbine to natural gas quality; (3) onsite testing of aqueous ammonia to ensure adequate ammonia concentration in the mixed solution, and the purity of the solution; (4) more careful inspection of the heat recovery steam generator (HRSG), and the selective catalytic reduction (SCR) during operation and maintenance; (5) annual testing of the catalyst coupon on the SCR to ensure catalyst effectiveness; and (6) annual ammonia injection grid (AIG) tuning. The study found that without major modification to the plants, improving the management of the Beijing gas turbine power plants may potentially reduce the current hourly-average NOx emission level of 5-10 parts per million (ppm, ranges reflects plant variation) by up to 20%. The exact improvement associated with each BMP for each facility requires more detailed analysis, and requires engagement of turbine, HRSG, and SCR manufacturers. This potential improvement is an important factor to consider when strengthening the emission standard. However it is to be noted that with the continuous

  19. The role of cogeneration systems in sustainability of energy

    International Nuclear Information System (INIS)

    Çakir, Uğur; Çomakli, Kemal; Yüksel, Fikret

    2012-01-01

    Highlights: ► Energy source on the world is tending to run out day by day while the energy need of humanity is increasing simultaneously. ► There are two ways to overcome this problem; one of them is renewable energy sources like solar or wind energy systems. ► The other way is like cogeneration systems. ► Cogeneration system is one of the ways to save the energy and use the energy efficiently. ► A case study is made for a hospital to present the sustainability aspects of cogeneration systems. - Abstract: Cogeneration system (CHP) is one of the ways to save the energy and use the energy efficiently. When compared to separate fossil-fired generation of heat and electricity, CHP may result in a consistent energy conservation (usually ranging from 10% to 30%) while the avoided CO 2 emissions are, as a first approximation, similar to the amount of energy saving. In terms of sustainability, one of the primary considerations is energy efficiency. Sustainable energy is considered as a kind of energy which is renewable and continuous, meaning that the use of such energy can potentially be kept up well into the future without causing harmful repercussions for future generations. In this study, environmental benefits and sustainability aspects of cogeneration systems and importance of those systems to the use of sustainable energy are underlined. To support this idea, first we have referred some scientific studies previously made on cogeneration systems and then we have used our own case study. The case study made on gas engined cogeneration system was applied for a hospital to show the sustainability aspects of cogeneration systems.

  20. Comparison based on energy and exergy analyses of the potential cogeneration efficiencies for fuel cells and other electricity generation devices

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, M A [Ryerson Polytechnical Inst., Toronto, (CA). Dept. of Mechanical Engineering

    1990-01-01

    Comparisons of the potential cogeneration efficiencies are made, based on energy and exergy analyses, for several devices for electricity generation. The investigation considers several types of fuel cell system (Phosphoric Acid, Alkaline, Solid Polymer Electrolyte, Molten Carbonate and Solid Oxide), and several fossil-fuel and nuclear cogeneration systems based on steam power plants. In the analysis, each system is modelled as a device for which fuel and air enter, and electrical- and thermal-energy products and material and thermal-energy wastes exit. The results for all systems considered indicate that exergy analyses should be used when analysing the cogeneration potential of systems for electricity generation, because they weigh the usefulnesses of heat and electricity on equivalent bases. Energy analyses tend to present overly optimistic views of performance. These findings are particularly significant when large fractions of the heat output from a system are utilized for cogeneration. (author).

  1. Fuel-Flexible Combustion System for Co-production Plant Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joel Haynes; Justin Brumberg; Venkatraman Iyer; Jonathan Janssen; Ben Lacy; Matt Mosbacher; Craig Russell; Ertan Yilmaz; Williams York; Willy Ziminsky; Tim Lieuwen; Suresh Menon; Jerry Seitzman; Ashok Anand; Patrick May

    2008-12-31

    Future high-efficiency, low-emission generation plants that produce electric power, transportation fuels, and/or chemicals from fossil fuel feed stocks require a new class of fuel-flexible combustors. In this program, a validated combustor approach was developed which enables single-digit NO{sub x} operation for a future generation plants with low-Btu off gas and allows the flexibility of process-independent backup with natural gas. This combustion technology overcomes the limitations of current syngas gas turbine combustion systems, which are designed on a site-by-site basis, and enable improved future co-generation plant designs. In this capacity, the fuel-flexible combustor enhances the efficiency and productivity of future co-production plants. In task 2, a summary of market requested fuel gas compositions was created and the syngas fuel space was characterized. Additionally, a technology matrix and chemical kinetic models were used to evaluate various combustion technologies and to select two combustor concepts. In task 4 systems analysis of a co-production plant in conjunction with chemical kinetic analysis was performed to determine the desired combustor operating conditions for the burner concepts. Task 5 discusses the experimental evaluation of three syngas capable combustor designs. The hybrid combustor, Prototype-1 utilized a diffusion flame approach for syngas fuels with a lean premixed swirl concept for natural gas fuels for both syngas and natural gas fuels at FA+e gas turbine conditions. The hybrid nozzle was sized to accommodate syngas fuels ranging from {approx}100 to 280 btu/scf and with a diffusion tip geometry optimized for Early Entry Co-generation Plant (EECP) fuel compositions. The swozzle concept utilized existing GE DLN design methodologies to eliminate flow separation and enhance fuel-air mixing. With changing business priorities, a fully premixed natural gas & syngas nozzle, Protoytpe-1N, was also developed later in the program. It did

  2. Power plant and system for accelerating a cross compound turbine in such plant, especially one having an HTGR steam supply

    International Nuclear Information System (INIS)

    Jaegtnes, K.O.; Braytenbah, A.S.

    1979-01-01

    In accordance with the present invention, a power plant includes a steam source to generate superheat and reheat steam which flows through a turbine-generator and an associated bypass system. A high-pressure and an intermediate-pressure turbine portion drive a first electrical generating means, and a low-pressure turbine portion drives a second electrical generating means. A first flow of superheat steam flows through the high-pressure portion, while a second flow of reheat steam flows through the intermediate and low-pressure portions in succession. Provision is made for bypassing steam around the turbine portions; in particular, one bypass means permits a flow of superheat steam from the steam source to the exhaust of the high-pressure portion, and another bypass means allows reheated steam to pass from the source to the exhaust of the low-pressure portion. The first and second steam flows are governed independently. While one of such flows is varied for purposes of controlling the rotational speed of the first generating means according to a desired speed, the other flow is varied to regulate a power plant variable at its desired level. (author)

  3. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 4: Open recuperated and bottomed gas turbine cycles. [performance prediction and energy conversion efficiency of gas turbines in electric power plants (thermodynamic cycles)

    Science.gov (United States)

    Amos, D. J.; Grube, J. E.

    1976-01-01

    Open-cycle recuperated gas turbine plant with inlet temperatures of 1255 to 1644 K (1800 to 2500 F) and recuperators with effectiveness values of 0, 70, 80 and 90% are considered. A 1644 K (2500 F) gas turbine would have a 33.5% plant efficiency in a simple cycle, 37.6% in a recuperated cycle and 47.6% when combined with a sulfur dioxide bottomer. The distillate burning recuperated plant was calculated to produce electricity at a cost of 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost $170 to 200 $/kW, the open cycle gas turbine plant should see duty for peaking and intermediate load duty.

  4. Life cycle energy use and GHG emission assessment of coal-based SNG and power cogeneration technology in China

    International Nuclear Information System (INIS)

    Li, Sheng; Gao, Lin; Jin, Hongguang

    2016-01-01

    Highlights: • Life cycle energy use and GHG emissions are assessed for SNG and power cogeneration. • A model based on a Chinese domestic database is developed for evaluation. • Cogeneration shows lower GHG emissions than coal-power pathway. • Cogeneration has lower life cycle energy use than supercritical coal-power pathway. • Cogeneration is a good option to implement China’s clean coal technologies. - Abstract: Life cycle energy use and GHG emissions are assessed for coal-based synthetic natural gas (SNG) and power cogeneration/polygenereation (PG) technology and its competitive alternatives. Four main SNG applications are considered, including electricity generation, steam production, SNG vehicle and battery electric vehicle (BEV). Analyses show that if SNG is produced from a single product plant, the lower limits of its life cycle energy use and GHG emissions can be comparable to the average levels of coal-power and coal-BEV pathways, but are still higher than supercritical and ultra supercritical (USC) coal-power and coal-BEV pathways. If SNG is coproduced from a PG plant, when it is used for power generation, steam production, and driving BEV car, the life cycle energy uses for PG based pathways are typically lower than supercritical coal-power pathways, but are still 1.6–2.4% higher than USC coal-power pathways, and the average life cycle GHG emissions are lower than those of all coal-power pathways including USC units. If SNG is used to drive vehicle car, the life cycle energy use and GHG emissions of PG-SNGV-power pathway are both much higher than all combined coal-BEV and coal-power pathways, due to much higher energy consumption in a SNG driven car than in a BEV car. The coal-based SNG and power cogeneration technology shows comparable or better energy and environmental performances when compared to other coal-based alternatives, and is a good option to implement China’s clean coal technologies.

  5. Gas-steam turbine plant for cogenerative process at 'Toplifikacija' - Skopje (Joint-Stock Co. for district heating - Macedonia)

    International Nuclear Information System (INIS)

    Cvetkovski, Andrijan

    2003-01-01

    The gas-steam power plant for combined heat and electric power production at A.D. 'Toplifikacija' Skopje - TO 'Zapad' is analyzed and determined. The analyzed plant is consisted of gas turbine, heat recovery steam generator (HRSG) and condensate steam turbine with controlled steam extraction. It operates on natural gas as a main fuel source. The heating of the water for the district heating is dine in the heat exchanger, with // heat of controlled extraction from condensate turbine. The advantages of the both binary plant and centralized co generative production compared with the individual are analyzed. The natural gas consumption of for both specific heating and electrical capacity in join production as well as fuel savings compared to the separate production of the same quantity of energy is also analyzed. (Original)

  6. Documentation, User Support, and Verification of Wind Turbine and Plant Models

    Energy Technology Data Exchange (ETDEWEB)

    Robert Zavadil; Vadim Zheglov; Yuriy Kazachkov; Bo Gong; Juan Sanchez; Jun Li

    2012-09-18

    As part of the Utility Wind Energy Integration Group (UWIG) and EnerNex's Wind Turbine Modeling Project, EnerNex has received ARRA (federal stimulus) funding through the Department of Energy (DOE) to further the progress of wind turbine and wind plant models. Despite the large existing and planned wind generation deployment, industry-standard models for wind generation have not been formally adopted. Models commonly provided for interconnection studies are not adequate for use in general transmission planning studies, where public, non-proprietary, documented and validated models are needed. NERC MOD (North American Electric Reliability Corporation) reliability standards require that power flow and dynamics models be provided, in accordance with regional requirements and procedures. The goal of this project is to accelerate the appropriate use of generic wind turbine models for transmission network analysis by: (1) Defining proposed enhancements to the generic wind turbine model structures that would allow representation of more advanced; (2) Comparative testing of the generic models against more detailed (and sometimes proprietary) versions developed by turbine vendors; (3) Developing recommended parameters for the generic models to best mimic the performance of specific commercial wind turbines; (4) Documenting results of the comparative simulations in an application guide for users; (5) Conducting technology transfer activities in regional workshops for dissemination of knowledge and information gained, and to engage electric power and wind industry personnel in the project while underway; (6) Designing of a "living" homepage to establish an online resource for transmission planners.

  7. Modular cogeneration for commercial light industrial sector

    Energy Technology Data Exchange (ETDEWEB)

    Sakhuja, R.

    1984-01-01

    An analysis of gas utilities' efforts to market small cogeneration systems could be helpful to entrepreneurs now venturing into this area. Orders have been placed with Thermo Electron, USA for 15 Tecogen modular cogeneration units. Applications range from an airline catering kitchen to a university swimming pool. 5 figures, 1 table.

  8. Pitot-tube turbine as wind power plant

    Energy Technology Data Exchange (ETDEWEB)

    Naake, L

    1978-10-19

    The use of the Pitot tube turbine as a wind power station is an application of the well known Pitot tube with the turbines built into jet engines. The novelty of this invention lies in the combined nozzle and turbine unit, where the wind is caught in the funnel opening, is accelerated in the narrow flow zone and then acts on the turbine blades. Due to the acceleration, a greater torque is exerted on the turbine than in free air flow. The Pitot tube turbine consists of a casing with a turbine inside, which is fixed by guide vane supports to the casing and which contains one or two stage turbine blades and electrical generators. The whole structure with the rotor is set on a sub-frame and rotation is contained by control surfaces. The subframe can be used as a building.

  9. Evaluating the role of cogeneration for carbon management in Alberta

    International Nuclear Information System (INIS)

    Doluweera, G.H.; Jordaan, S.M.; Moore, M.C.; Keith, D.W.; Bergerson, J.A.

    2011-01-01

    Developing long-term carbon control strategies is important in energy intensive industries such as the oil sands operations in Alberta. We examine the use of cogeneration to satisfy the energy demands of oil sands operations in Alberta in the context of carbon management. This paper evaluates the role of cogeneration in meeting Provincial carbon management goals and discusses the arbitrary characteristics of facility- and product-based carbon emissions control regulations. We model an oil sands operation that operates with and without incorporated cogeneration. We compare CO 2 emissions and associated costs under different carbon emissions control regulations, including the present carbon emissions control regulation of Alberta. The results suggest that incorporating cogeneration into the growing oil sands industry could contribute in the near-term to reducing CO 2 emissions in Alberta. This analysis also shows that the different accounting methods and calculations of electricity offsets could lead to very different levels of incentives for cogeneration. Regulations that attempt to manage emissions on a product and facility basis may become arbitrary and complex as regulators attempt to approximate the effect of an economy-wide carbon price. - Highlights: ► We assess the effectiveness of cogeneration for carbon management in Alberta. ► Cogeneration can offset a significant portion of Alberta's high carbon electricity. ► CO 2 reduction potential of cogeneration may be higher if installed immediately. ► Product based policies should approximate the effect of an economy-wide policy.

  10. Cogeneration and taxation in a liberalised Nordic power market

    International Nuclear Information System (INIS)

    Jess Olsen, O.; Munksgaard, J.

    1997-01-01

    This report is about the impact of the liberalisation of the Nordic power market on cogeneration of heat and power. Special attention is given to the effects on competition of the entirely different tax regimes in the Nordic countries. Some of the main questions answered in this study are: Which cogeneration technologies are able to compete on a liberalised power market? What are the consequences of different tax structures in the four countries for cross-border competition? Which principles should be applied if a common Nordic tax structure is to be developed? The following countries are included in the study: Denmark, Finland, Norway and Sweden. Today, cogeneration provides a larger contribution to the energy supply in the Nordic countries than elsewhere in the world. Our analysis demonstrates that most cogeneration technologies can compete with the power-only technologies. This is the case with respect to both long- and short-term marginal costs. The main exception is the very expensive straw-fired cogeneration technology. The analysis is extended to include the effects of the existing tax regimes (in 1996) in Denmark, Finland and Sweden as well as of the combines energy/CO 2 -tax that was proposed in 1992 by the European Commission. Each of the four tax regimes preserve the competitiveness of cogeneration within its own regime, i.e. if a given cogeneration technology is competitive without taxes it will remain so in a closed market when either Danish, Finnish, Swedish or European taxes are added. The implication of this is that the same cogeneration technology will be exposed to very different conditions in an open power market with cross-border competition, if the present tax regimes in the Nordic countries are allowed to continue. (EG) Also published in Danish. 15 refs

  11. Cogeneration and taxation in a liberalised Nordic power market

    Energy Technology Data Exchange (ETDEWEB)

    Jess Olsen, O.; Munksgaard, J.

    1997-12-31

    This report is about the impact of the liberalisation of the Nordic power market on cogeneration of heat and power. Special attention is given to the effects on competition of the entirely different tax regimes in the Nordic countries. Some of the main questions answered in this study are: Which cogeneration technologies are able to compete on a liberalised power market? What are the consequences of different tax structures in the four countries for cross-border competition? Which principles should be applied if a common Nordic tax structure is to be developed? The following countries are included in the study: Denmark, Finland, Norway and Sweden. Today, cogeneration provides a larger contribution to the energy supply in the Nordic countries than elsewhere in the world. Our analysis demonstrates that most cogeneration technologies can compete with the power-only technologies. This is the case with respect to both long- and short-term marginal costs. The main exception is the very expensive straw-fired cogeneration technology. The analysis is extended to include the effects of the existing tax regimes (in 1996) in Denmark, Finland and Sweden as well as of the combines energy/CO{sub 2}-tax that was proposed in 1992 by the European Commission. Each of the four tax regimes preserve the competitiveness of cogeneration within its own regime, i.e. if a given cogeneration technology is competitive without taxes it will remain so in a closed market when either Danish, Finnish, Swedish or European taxes are added. The implication of this is that the same cogeneration technology will be exposed to very different conditions in an open power market with cross-border competition, if the present tax regimes in the Nordic countries are allowed to continue. (EG) Also published in Danish. 15 refs.

  12. The prospects of development of the market of cogeneration in Europe; Les perspectives de developpement du marche de la cogeneration eu Europe

    Energy Technology Data Exchange (ETDEWEB)

    Cotard, E. [Association Europeenne de Promotion de la Cogeneration, COGEN Europe (Country unknown/Code not available)

    1999-01-01

    Cogeneration or Combined Heat and Power has a high overall efficiency and brings about important environmental advantages in particular in terms of CO{sub 2} emissions. This win-win position is crucial at a time of widespread liberalization in energy markets. However, as shown by the various development rates within the EU, cogeneration is not equally treated across Europe. These differences are not only due to local climates - the development difference can ba as high as over 30% for example between France and The Netherlands. Nevertheless some recent European legislation such as the Gas and the Electricity Directives attempt to harmonize through liberalization. Liberalization should have positive aspects for cogeneration, in particular industrial cogeneration, provided that it is well designed and implemented. (authors)

  13. New purchasing conditions for the electricity produced by cogeneration; Nouvelles conditions d`achat de l`electricite produite par cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Pierret, Ch

    1999-12-31

    This short note summarizes the new conditions of electricity purchase as stipulated in the contracts passed between Electricite de France (EdF) and the independent companies exploiting cogeneration units. These new conditions should allow the continuation of the development of cogeneration units in a power market progressively opened to competition. (J.S.)

  14. New purchasing conditions for the electricity produced by cogeneration; Nouvelles conditions d`achat de l`electricite produite par cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Pierret, Ch.

    1998-12-31

    This short note summarizes the new conditions of electricity purchase as stipulated in the contracts passed between Electricite de France (EdF) and the independent companies exploiting cogeneration units. These new conditions should allow the continuation of the development of cogeneration units in a power market progressively opened to competition. (J.S.)

  15. Diesel engine cogeneration plants in the context of integration of renewable energy sources in power supply; Dieselmotor-Kraft-Waerme-Kopplungsanlagen im Kontext der Integration Erneuerbarer Energien in die Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, John

    2010-10-29

    The aim of this thesis is to investigate and assess future options, potentials, strengths and weaknesses of cogeneration of heat and power. This is carried out against the background of global climate change and the integration of an increasing share of fluctuating renewable energies in power generation considering the necessity of guaranteeing a reliable, efficient, sustainable and cost effective power supply. It is assumed that the transition process to an entirely renewable energy-based electricity generation in Germany will considerably depend on the integration of wind energy because of its economic competitiveness, environmental friendliness and potential. However, power generation using wind energy fluctuates quite considerably. Diesel motors are here investigated as a decentralized integration instrument. Thanks to their great flexibility, high efficiency and relatively low nominal capacity, they perfectly meet the requirements for the simultaneous decentralized use of heat. Boundary conditions of Diesel motor combined heat and power plants (CHP) are analyzed and described in this work, different models for wind energy integration are elaborated, and these models are used for several variations to simulate the balance of wind energy by cogeneration. In this context, environmental impacts are discussed. Common assessment methods on environmental impacts of CHP distort the results. The so-called output method is developed and described, by which the final assessment of environmental impacts is not implicitly mixed - as is commonly the case - with the calculation of environmental impacts. This output method is used to compare CHP generation with other energy conversion processes within the context of power generation including insulation of buildings, the use of different fuels and different applications for cogeneration. This work clearly demonstrates that while bio fuel resources can be optimally used for power generation, cogenerated electricity could also

  16. Dynamics of decentralization: The case of micro cogeneration diffusion in Germany

    International Nuclear Information System (INIS)

    Praetorius, Barbara; Schneider, Lambert

    2005-01-01

    Micro cogeneration is the simultaneous generation of heat and electricity in small units; it is expected to allow for a higher energy efficiency than separate generation. For Germany, the potential of micro cogeneration has been estimated with about 3 GW. Introduced in a larger scale and as part of a general move towards distributed generation, micro cogeneration may contribute to substantial structural changes on electricity and heat markets. We start with an assessment of existing micro cogeneration technologies, including reciprocating engines, Stirling engines and fuel cells, and describe their characteristics and state of development. Based on a model to calculate costs of micro cogeneration operation, we examine their economic feasibility in Germany in a number of typical applications from an operator's and a societal perspective. On this basis, we explore the actual dynamics of its diffusion in Germany. We analyze the interests, attitudes and strategies of actors concerned with implementing micro cogeneration, such as network operators, appliance industry, gas and electricity suppliers, etc. We explore the impacts of their (diverging) interests and strategies and mirror them with the economic potential and institutional setting for micro cogeneration with respect to competition, grid access and transaction costs. We conclude with assessing barriers for and measures to facilitate the diffusion of micro cogeneration in Germany

  17. Performance Comparison on Repowering of a Steam Power Plant with Gas Turbines and Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2016-01-01

    Repowering is a process for transforming an old power plant for greater capacity and/or higher efficiency. As a consequence, the repowered plant is characterized by higher power output and less specific CO2 emissions. Usually, repowering is performed by adding one or more gas turbines into an exi......Repowering is a process for transforming an old power plant for greater capacity and/or higher efficiency. As a consequence, the repowered plant is characterized by higher power output and less specific CO2 emissions. Usually, repowering is performed by adding one or more gas turbines...... into an existing steam cycle which was built decades ago. Thus, traditional repowering results in combined cycles (CC). High temperature fuel cells (such as solid oxide fuel cell (SOFC)) could also be used as a topping cycle, achieving even higher global plant efficiency and even lower specific CO2 emissions....... Decreasing the operating temperature in a SOFC allows the use of less complex materials and construction methods, consequently reducing plant and the electricity costs. A lower working temperature makes it also suitable for topping an existing steam cycle, instead of gas turbines. This is also the target...

  18. Cogeneration trends in Europe history -- State of the art - Outlook

    International Nuclear Information System (INIS)

    Hunschofsky, H.

    1998-01-01

    Cogeneration, the utilization of heat created while producing electricity from fossil fuels, is by no means a new technology. In 1926, 71 years ago, a brochure from MAN in Germany showed a heat recovery system for diesel engines. Despite the fact that cogeneration has existed for a long time, it took half a century and the first so called ''oil crisis'' in the 1970's for societies to become aware of limited energy resources. Environmental groups gave cogeneration an additional boost in the 1980's. Additionally, governments in the Western European Nations attracted cogeneration investors by not only providing subsidies and tax breaks but also regulating electricity prices. Although there has been much growth in the cogeneration market in the past years, the industry has still not reached its peak in Europe. A variety of studies have shown that there is still significant growth potential in the future: WWF (World Wildlife Fund) published a study in 1996 suggesting a target of 330 Twh of generation will be produced through cogeneration by the year 2005, a tripling of current generation. Due to the EU's belief that cogeneration is an optimal form of generation, it has developed a cogeneration strategy. As part of this strategy, the EC is promoting cogeneration so that it accounts for 20% of all European generation by the year 2010. These factors would give a variety of companies such as equipment suppliers, investment companies, utilities, consultants and energy brokers a wide range of opportunities in Europe. Detailed information and some hints will be given as to how to participate in this fast growing industry. Ways to overcome obstacles in those markets will be shown as well as the pros and cons of different entry strategies

  19. Community Design Parameters and the Performance of Residential Cogeneration Systems

    Directory of Open Access Journals (Sweden)

    Hazem Rashed-Ali

    2012-11-01

    Full Text Available The integration of cogeneration systems in residential and mixed-use communities has the potential of reducing their energy demand and harmful emissions and can thus play asignificant role in increasing their environmental sustainability. This study investigated the impact of selected planning and architectural design parameters on the environmental and economic performances of centralized cogeneration systems integrated into residential communities in U.S.cold climates. Parameters investigated include: 1 density, 2 use mix, 3 street configuration, 4 housing typology, 5 envelope and building systems’ efficiencies, and 6 passive solar energyutilization. The study integrated several simulation tools into a procedure to assess the impact of each design parameter on the cogeneration system performance. This assessment procedure included: developing a base-line model representing typical design characteristics of U.S. residential communities; assessing the cogeneration system’s performance within this model using three performance indicators: percentage of reduction in primary energy use, percentage of reduction in CO2 emissions; and internal rate of return; assessing the impact of each parameter on the system performance through developing 46 design variations of the base-line model representing potential changes in each parameter and calculating the three indicators for each variation; and finally, using a multi-attribute decision analysis methodology to evaluate the relative impact of each parameter on the cogeneration system performance. The study results show that planning parameters had a higher impact on the cogeneration system performance than architectural ones. Also, a significant correlation was found between design characteristics identified as favorable for the cogeneration system performance and those of sustainable residential communities. These include high densities, high use mix, interconnected street networks, and mixing of

  20. Wave energy plants: Control strategies for avoiding the stalling behaviour in the Wells turbine

    Energy Technology Data Exchange (ETDEWEB)

    Amundarain, Modesto; Alberdi, Mikel; Garrido, Aitor J.; Garrido, Izaskun; Maseda, Javier [Dept. of Automatic Control and Systems Engineering, EUITI Bilbao, University of the Basque Country, Plaza de la Casilla 3, 48012 Bilbao (Spain)

    2010-12-15

    This study analyzes the problem of the stalling behaviour in Wells turbines, one of the most widely used turbines in wave energy plants. For this purpose two different control strategies are presented and compared. In the first one, a rotational speed control system is employed to appropriately adapt the speed of the double-fed induction generator coupling to the turbine, according to the pressure drop entry. In the second control strategy, an airflow control regulates the power generated by the turbine generator module by means of the modulation valve avoiding the stalling behaviour. It is demonstrated that the proposed rotational speed control design adequately matches the desired relationship between the slip of the double-fed induction generator and the pressure drop input, whilst the valve control using a traditional PID controller successfully governs the flow that modulates the pressure drop across the turbine. (author)