WorldWideScience

Sample records for tunnel test results

  1. Wind tunnel test IA300 analysis and results, volume 1

    Science.gov (United States)

    Kelley, P. B.; Beaufait, W. B.; Kitchens, L. L.; Pace, J. P.

    1987-01-01

    The analysis and interpretation of wind tunnel pressure data from the Space Shuttle wind tunnel test IA300 are presented. The primary objective of the test was to determine the effects of the Space Shuttle Main Engine (SSME) and the Solid Rocket Booster (SRB) plumes on the integrated vehicle forebody pressure distributions, the elevon hinge moments, and wing loads. The results of this test will be combined with flight test results to form a new data base to be employed in the IVBC-3 airloads analysis. A secondary objective was to obtain solid plume data for correlation with the results of gaseous plume tests. Data from the power level portion was used in conjunction with flight base pressures to evaluate nominal power levels to be used during the investigation of changes in model attitude, eleveon deflection, and nozzle gimbal angle. The plume induced aerodynamic loads were developed for the Space Shuttle bases and forebody areas. A computer code was developed to integrate the pressure data. Using simplified geometrical models of the Space Shuttle elements and components, the pressure data were integrated to develop plume induced force and moments coefficients that can be combined with a power-off data base to develop a power-on data base.

  2. Wind Tunnel and Hover Performance Test Results for Multicopter UAS Vehicles

    Science.gov (United States)

    Russell, Carl R.; Jung, Jaewoo; Willink, Gina; Glasner, Brett

    2016-01-01

    There is currently a lack of published data for the performance of multicopter unmanned aircraft system (UAS) vehicles, such as quadcopters and octocopters, often referred to collectively as drones. With the rapidly increasing popularity of multicopter UAS, there is interest in better characterizing the performance of this type of aircraft. By studying the performance of currently available vehicles, it will be possible to develop models for vehicles at this scale that can accurately predict performance and model trajectories. This paper describes a wind tunnel test that was recently performed in the U.S. Army's 7- by 10-ft Wind Tunnel at NASA Ames Research Center. During this wind tunnel entry, five multicopter UAS vehicles were tested to determine forces and moments as well as electrical power as a function of wind speed, rotor speed, and vehicle attitude. The test is described here in detail, and a selection of the key results from the test is presented.

  3. Conversion Method of the Balance Test Results in Open Jet Tunnel on the Free Flow Conditions

    Directory of Open Access Journals (Sweden)

    V. T. Bui

    2015-01-01

    Full Text Available The paper considers a problem of sizing a model and converting the balance test results in the low speed open-jet wind tunnel to free-flow conditions. The ANSYS Fluent commercial code performs flow model calculations in the test section and in the free flow, and the ANSYS ICEM CFD module is used to provide grid generation. A structured grid is generated in the free flow and an unstructured one is provided in the test section. The changes of aerodynamic coefficients are determined at the different values of the blockage factor for the segmental-conical and hemisphere cylinder-cone shapes of the model. The blockage factor values are found at which the interference of the test section – model is neglected. The paper presents a technique to convert the wind tunnel test results to the free flow conditions.

  4. Wind Tunnel Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — NASA Ames Research Center is pleased to offer the services of our premier wind tunnel facilities that have a broad range of proven testing capabilities to customers...

  5. Results of Low Power Deicer tests on a swept inlet component in the NASA Lewis Icing Research Tunnel

    Science.gov (United States)

    Bond, Thomas H.; Shin, Jaiwon

    1993-01-01

    Tests were conducted under a USAF/NASA Low Power Deicer program on two expulsive technologies to examine system performance on hardware representative of a modern aircraft part. The BF Goodrich Electro-Expulsive Deicing System and Pneumatic Impulse Ice Protection system were installed on a swept, compound curve, engine inlet component with varying leading edge radius, and tested through a range of icing and system operating conditions in the NASA Lewis Icing Research Tunnel. A description of the experimental procedure and results, including residual ice thickness, shed ice particle size, and changes in system energy/pressure characteristics are presented.

  6. Design and preliminary test results at Mach 5 of an axisymmetric slotted sound shield. [for supersonic wind tunnels (noise reduction in wind tunnel nozzles)

    Science.gov (United States)

    Beckwith, I. E.; Spokowski, A. J.; Harvey, W. D.; Stainback, P. C.

    1975-01-01

    The basic theory and sound attenuation mechanisms, the design procedures, and preliminary experimental results are presented for a small axisymmetric sound shield for supersonic wind tunnels. The shield consists of an array of small diameter rods aligned nearly parallel to the entrance flow with small gaps between the rods for boundary layer suction. Results show that at the lowest test Reynolds number (based on rod diameter) of 52,000 the noise shield reduced the test section noise by about 60 percent ( or 8 db attenuation) but no attenuation was measured for the higher range of test reynolds numbers from 73,000 to 190,000. These results are below expectations based on data reported elsewhere on a flat sound shield model. The smaller attenuation from the present tests is attributed to insufficient suction at the gaps to prevent feedback of vacuum manifold noise into the shielded test flow and to insufficient suction to prevent transition of the rod boundary layers to turbulent flow at the higher Reynolds numbers. Schlieren photographs of the flow are shown.

  7. RITD – Wind tunnel testing

    Science.gov (United States)

    Haukka, Harri; Harri, Ari-Matti; Aleksashkin, Sergei; Koryanov, Valeri; Schmidt, Walter; Heilimo, Jyri; Finchenko, Valeri; Martynov, Maxim; Ponomarenko, Andrey; Kazakovtsev, Victor; Arruego, Ignazio

    2015-04-01

    An atmospheric re-entry and descent and landing system (EDLS) concept based on inflatable hypersonic decelerator techniques is highly promising for the Earth re-entry missions. We developed such EDLS for the Earth re-entry utilizing a concept that was originally developed for Mars. This EU-funded project is called RITD - Re-entry: Inflatable Technology Development - and it was to assess the bene¬fits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develope a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. The RITD entry and descent system utilizes an inflatable hypersonic decelerator. Development of such system requires a combination of wind tunnel tests and numerical simulations. This included wind tunnel tests both in transsonic and subsonic regimes. The principal aim of the wind tunnel tests was the determination of the RITD damping factors in the Earth atmosphere and recalculation of the results for the case of the vehicle descent in the Mars atmosphere. The RITD mock-up model used in the tests was in scale of 1:15 of the real-size vehicle as the dimensions were (midsection) diameter of 74.2 mm and length of 42 mm. For wind tunnel testing purposes the frontal part of the mock-up model body was manufactured by using a PolyJet 3D printing technology based on the light curing of liquid resin. The tail part of the mock-up model body was manufactured of M1 grade copper. The structure of the mock-up model placed th center of gravity in the same position as that of the real-size RITD. The wind tunnel test program included the defining of the damping factor at seven values of Mach numbers 0.85; 0.95; 1.10; 1.20; 1.25; 1.30 and 1.55 with the angle of attack ranging from 0 degree to 40 degrees with the step of 5 degrees. The damping characteristics of

  8. Tunnel boring waste test plan

    International Nuclear Information System (INIS)

    Patricio, J.G.

    1984-03-01

    The test plan has been prepared in anticipation of the need to excavate certain repository openings by relying upon mechanical excavation techniques. The test plan proposes that specific technical issues can be resolved and key design parameters defined by excavating openings in basalt near the surface, utilizing a full face tunnel boring machine (TBM). The purpose and objective of this type of testing will define the overall feasibility and attributes of mechanical excavation in basalt. The test plan recognizes that although this technology is generally available for underground construction for some geologic settings, the current state of technology for excavation in basalt is limited and the potential for improvement is considerable. The test plan recommends that it is economically advantageous to conduct additional testing in the laboratory to allow refinement of this plan based on the laboratory results. Thus, this test plan is considered preliminary in nature, with respect to detailed testing recommendations. However, the gross design attributes and resource requirements of a near-surface TBM demonstration are considered to be valid. 15 refs., 7 figs., 3 tabs

  9. Tunnel fire testing and modeling the Morgex North tunnel experiment

    CERN Document Server

    Borghetti, Fabio; Gandini, Paolo; Frassoldati, Alessio; Tavelli, Silvia

    2017-01-01

    This book aims to cast light on all aspects of tunnel fires, based on experimental activities and theoretical and computational fluid dynamics (CFD) analyses. In particular, the authors describe a transient full-scale fire test (~15 MW), explaining how they designed and performed the experimental activity inside the Morgex North tunnel in Italy. The entire organization of the experiment is described, from preliminary evaluations to the solutions found for management of operational difficulties and safety issues. This fire test allowed the collection of different measurements (temperature, air velocity, smoke composition, pollutant species) useful for validating and improving CFD codes and for testing the real behavior of the tunnel and its safety systems during a diesel oil fire with a significant heat release rate. Finally, the fire dynamics are compared with empirical correlations, CFD simulations, and literature measurements obtained in other similar tunnel fire tests. This book will be of interest to all ...

  10. Wind tunnel test of musi VI bridge

    Science.gov (United States)

    Permata, Robby; Andika, Matza Gusto; Syariefatunnisa, Risdhiawan, Eri; Hermawan, Budi; Noordiana, Indra

    2017-11-01

    Musi VI Bridge is planned to cross the Musi River in Palembang City, South Sumatera Province, Indonesia. The main span is a steel arch type with 200 m length and side span length is 75 m. Finite element analysis results showed that the bridge has frequency ratio for torsional and heaving mode (torsional frequency/heaving frequency)=1.14. This close to unity value rises concern about aerodynamic behaviour and stability of the bridge deck under wind loading. Sectional static and free vibration wind tunnel test were performed to clarify this phenomena in B2TA3 facility in Serpong, Indonesia. The test followed the draft of Guide of Wind Tunnel Test for Bridges developed by Indonesian Ministry of Public Works. Results from wind tunnel testing show that the bridge is safe from flutter instability and no coupled motion vibration observed. Therefore, low value of frequency ratio has no effect to aerodynamic behaviour of the bridge deck. Vortex-induced vibration in heaving mode occurred in relatively low wind velocity with permissible maximum amplitude value.

  11. Nano-ADEPT Aeroloads Wind Tunnel Test

    Science.gov (United States)

    Smith, Brandon; Yount, Bryan; Kruger, Carl; Brivkalns, Chad; Makino, Alberto; Cassell, Alan; Zarchi, Kerry; McDaniel, Ryan; Ross, James; Wercinski, Paul; hide

    2016-01-01

    A wind tunnel test of the Adaptable Deployable Entry and Placement Technology (ADEPT) was conducted in April 2015 at the US Army's 7 by10 Foot Wind Tunnel located at NASA Ames Research Center. Key geometric features of the fabric test article were a 0.7 meter deployed base diameter, a 70 degree half-angle forebody cone angle, eight ribs, and a nose-to-base radius ratio of 0.7. The primary objective of this wind tunnel test was to obtain static deflected shape and pressure distributions while varying pretension at dynamic pressures and angles of attack relevant to entry conditions at Earth, Mars, and Venus. Other objectives included obtaining aerodynamic force and moment data and determining the presence and magnitude of any dynamic aeroelastic behavior (buzz/flutter) in the fabric trailing edge. All instrumentation systems worked as planned and a rich data set was obtained. This paper describes the test articles, instrumentation systems, data products, and test results. Four notable conclusions are drawn. First, test data support adopting a pre-tension lower bound of 10 foot pounds per inch for Nano-ADEPT mission applications in order to minimize the impact of static deflection. Second, test results indicate that the fabric conditioning process needs to be reevaluated. Third, no flutter/buzz of the fabric was observed for any test condition and should also not occur at hypersonic speeds. Fourth, translating one of the gores caused ADEPT to generate lift without the need for a center of gravity offset. At hypersonic speeds, the lift generated by actuating ADEPT gores could be used for vehicle control.

  12. Results of the 1986 NASA/FAA/DFVLR main rotor test entry in the German-Dutch wind tunnel (DNW)

    Science.gov (United States)

    Brooks, Thomas F.; Martin, Ruth M.

    1987-10-01

    An acoustics test of a 40%-scale MBB BO-105 helicopter main rotor was conducted in the Deutsch-Niederlandischer Windkanal (DNW). The research, directed by NASA Langley Research Center, concentrated on the generation and radiation of broadband noise and impulsive blade-vortex interaction (BVI) noise over ranges of pertinent rotor operational envelopes. Both the broadband and BVI experimental phases are reviewed, along with highlights of major technical results. For the broadband portion, significant advancement is the demonstration of the accuracy of prediction methods being developed for broadband self noise, due to boundary layer turbulence. Another key result is the discovery of rotor blade-wake interaction (BWI) as an important contributor to mid frequency noise. Also the DNW data are used to determine for full scale helicopters the relative importance of the different discrete and broadband noise sources. For the BVI test portion, a comprehensive data base documents the BVI impulsive noise character and directionality as functions of rotor flight conditions. The directional mapping of BVI noise emitted from the advancing side as well as the retreating side of the rotor constitutes a major advancement in the understanding of this dominant discrete mechanism.

  13. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. [Lewis 8 by 6-foot supersonic wind tunnel tests

    Science.gov (United States)

    Nelson, D. P.

    1980-01-01

    Wind tunnel tests were conducted to evaluate the aerodynamic performance of a coannular exhaust nozzle for a proposed variable stream control supersonic propulsion system. Tests were conducted with two simulated configurations differing primarily in the fan duct flowpaths: a short flap mechanism for fan stream control with an isentropic contoured flow splitter, and an iris fan nozzle with a conical flow splitter. Both designs feature a translating primary plug and an auxiliary inlet ejector. Tests were conducted at takeoff and simulated cruise conditions. Data were acquired at Mach numbers of 0, 0.36, 0.9, and 2.0 for a wide range of nozzle operating conditions. At simulated supersonic cruise, both configurations demonstrated good performance, comparable to levels assumed in earlier advanced supersonic propulsion studies. However, at subsonic cruise, both configurations exhibited performance that was 6 to 7.5 percent less than the study assumptions. At take off conditions, the iris configuration performance approached the assumed levels, while the short flap design was 4 to 6 percent less.

  14. Aerodynamic results of wind tunnel tests on a 0.010-scale model (32-QTS) space shuttle integrated vehicle in the AEDC VKF-40-inch supersonic wind tunnel (IA61)

    Science.gov (United States)

    Daileda, J. J.

    1976-01-01

    Plotted and tabulated aerodynamic coefficient data from a wind tunnel test of the integrated space shuttle vehicle are presented. The primary test objective was to determine proximity force and moment data for the orbiter/external tank and solid rocket booster (SRB) with and without separation rockets firing for both single and dual booster runs. Data were obtained at three points (t = 0, 1.25, and 2.0 seconds) on the nominal SRB separation trajectory.

  15. Scanning Tunneling Spectroscope Use in Electrocatalysis Testing

    Science.gov (United States)

    Knutsen, Turid

    2010-01-01

    The relationship between the electrocatalytic properties of an electrode and its ability to transfer electrons between the electrode and a metallic tip in a scanning tunneling microscope (STM) is investigated. The alkaline oxygen evolution reaction (OER) was used as a test reaction with four different metallic glasses, Ni78Si8B14, Ni70Mo20Si5B5, Ni58Co20Si10B12, and Ni25Co50Si15B10, as electrodes. The electrocatalytic properties of the electrodes were determined. The electrode surfaces were then investigated with an STM. A clear relationship between the catalytic activity of an electrode toward the OER and its tunneling characteristics was found. The use of a scanning tunneling spectroscope (STS) in electrocatalytic testing may increase the efficiency of the optimization of electrochemical processes.

  16. Scanning Tunneling Spectroscope Use in Electrocatalysis Testing

    Directory of Open Access Journals (Sweden)

    Turid Knutsen

    2010-06-01

    Full Text Available The relationship between the electrocatalytic properties of an electrode and its ability to transfer electrons between the electrode and a metallic tip in a scanning tunneling microscope (STM is investigated. The alkaline oxygen evolution reaction (OER was used as a test reaction with four different metallic glasses, Ni78Si8B14, Ni70Mo20Si5B5, Ni58Co20Si10B12, and Ni25Co50Si15B10, as electrodes. The electrocatalytic properties of the electrodes were determined. The electrode surfaces were then investigated with an STM. A clear relationship between the catalytic activity of an electrode toward the OER and its tunneling characteristics was found. The use of a scanning tunneling spectroscope (STS in electrocatalytic testing may increase the efficiency of the optimization of electrochemical processes.

  17. Toward an Integrated Optical Data System for Wind Tunnel Testing

    National Research Council Canada - National Science Library

    Ruyten, Wim

    1999-01-01

    ...) of the test article in a wind tunnel test. The theory for such P&A determinations is developed and applied to data from a recent pressure sensitive paint test in AEDC's 16 ft transonic wind tunnel...

  18. SMART Rotor Development and Wind Tunnel Test

    Science.gov (United States)

    2009-09-01

    amplifier and control system , and data acquisition, processing, and display systems . Boeing�s LRTS (Fig. 2), consists of a sled structure that...Support Test Stand Sled Tail Sting Outrigger Arm Figure 2: System integration test at whirl tower Port Rotor Balance Main Strut Flap Tail...demonstrated. Finally, the reliability of the flap actuation system was successfully proven in more than 60 hours of wind tunnel testing

  19. Results of flutter test OS6 obtained using the 0.14-scale wing/elevon model (54-0) in the NASA LaRC 16-foot transonic dynamics wind tunnel

    Science.gov (United States)

    Berthold, C. L.

    1977-01-01

    A 0.14-scale dynamically scaled model of the space shuttle orbiter wing was tested in the Langley Research Center 16-Foot Transonic Dynamics Wind Tunnel to determine flutter, buffet, and elevon buzz boundaries. Mach numbers between 0.3 and 1.1 were investigated. Rockwell shuttle model 54-0 was utilized for this investigation. A description of the test procedure, hardware, and results of this test is presented.

  20. Results of flutter test OS7 obtained using the 0.14-scale space shuttle orbiter fin/rudder model number 55-0 in the NASA LaRC 16-foot transonic dynamics wind tunnel

    Science.gov (United States)

    Berthold, C. L.

    1977-01-01

    A 0.14-scale dynamically scaled model of the space shuttle orbiter vertical tail was tested in a 16-foot transonic dynamic wind tunnel to determine flutter, buffet, and rudder buzz boundaries. Mach numbers between .5 and 1.11 were investigated. Rockwell shuttle model 55-0 was used for this investigation. A description of the test procedure, hardware, and results of this test is presented.

  1. Seismic scanning tunneling macroscope - Elastic simulations and Arizona mine test

    KAUST Repository

    Hanafy, Sherif M.; Schuster, Gerard T.

    2012-01-01

    Elastic seismic simulations and field data tests are used to validate the theory of a seismic scanning tunneling macroscope (SSTM). For nearfield elastic simulation, the SSTM results show superresolution to be better than λ/8 if the only scattered data are used as input data. If the direct P and S waves are muted then the resolution of the scatterer locations are within about λ/5. Seismic data collected in an Arizona tunnel showed a superresolution limit of at least λ/19. These test results are consistent with the theory of the SSTM and suggest that the SSTM can be a tool used by geophysicists as a probe for near-field scatterers.

  2. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot Transonic wind tunnel (IA613A), volume 1

    Science.gov (United States)

    Marroquin, J.; Lemoine, P.

    1992-01-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e. top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  3. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot transonic wind tunnel, volume 2

    Science.gov (United States)

    Marroquin, J.; Lemoine, P.

    1992-01-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e., top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  4. Sub-Scale Orion Parachute Test Results from the National Full-Scale Aerodynamics Complex 80- By 120-ft Wind Tunnel

    Science.gov (United States)

    Anderson, Brian P.; Greathouse, James S.; Powell, Jessica M.; Ross, James C.; Schairer, Edward T.; Kushner, Laura; Porter, Barry J.; Goulding, Patrick W., II; Zwicker, Matthew L.; Mollmann, Catherine

    2017-01-01

    A two-week test campaign was conducted in the National Full-Scale Aerodynamics Complex 80 x 120-ft Wind Tunnel in support of Orion parachute pendulum mitigation activities. The test gathered static aerodynamic data using an instrumented, 3-tether system attached to the parachute vent in combination with an instrumented parachute riser. Dynamic data was also gathered by releasing the tether system and measuring canopy performance using photogrammetry. Several canopy configurations were tested and compared against the current Orion parachute design to understand changes in drag performance and aerodynamic stability. These configurations included canopies with varying levels and locations of geometric porosity as well as sails with increased levels of fullness. In total, 37 runs were completed for a total of 392 data points. Immediately after the end of the testing campaign a down-select decision was made based on preliminary data to support follow-on sub-scale air drop testing. A summary of a more rigorous analysis of the test data is also presented.

  5. Correlations of Platooning Track Test and Wind Tunnel Data

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, Michael P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kelly, Kenneth J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yanowitz, Janet [Ecoengineering, Sharonville, OH (United States)

    2018-02-02

    In this report, the National Renewable Energy Laboratory analyzed results from multiple, independent truck platooning projects to compare and contrast track test results with wind tunnel test results conducted by Lawrence Livermore National Laboratory (LLNL). Some highlights from the report include compiled data, and results from four independent SAE J1321 full-size track test campaigns that were compared to LLNL wind tunnel testing results. All platooning scenarios tested demonstrated significant fuel savings with good correlation relative to following distances, but there are still unanswered questions and clear opportunities for system optimization. NOx emissions showed improvements from NREL tests in 2014 to Auburn tests in 2015 with respect to J1321 platooning track testing of Peloton system. NREL evaluated data from Volpe's Naturalistic Study of Truck Following Behavior, which showed minimal impact of naturalistic background platooning. We found significant correlation between multiple track studies, wind tunnel tests, and computational fluid dynamics, but also showed that there is more to learn regarding close formation and longer-distance effects. We also identified potential areas for further research and development, including development of advanced aerodynamic designs optimized for platooning, measurement of platoon system performance in traffic conditions, impact of vehicle lateral offsets on platooning performance, and characterization of the national potential for platooning based on fleet operational characteristics.

  6. Characterization of magnetic tunnel junction test pads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Kjær, Daniel; Nielsen, Peter Folmer

    2015-01-01

    We show experimentally as well as theoretically that patterned magnetic tunnel junctions can be characterized using the current-in-plane tunneling (CIPT) method, and the key parameters, the resistance-area product (RA) and the tunnel magnetoresistance (TMR), can be determined. The CIPT method...

  7. Wind tunnel tests of a deep seabed penetrator model

    International Nuclear Information System (INIS)

    Visintini, L.; Murray, C.N.

    1991-01-01

    C.C.R. Euratom Ispra are currently involved in studies on the possibility of storing radioactive wastes in deep ocean sediment beds. The report summarizes the results of wind tunnel tests performed in March 1985 on a 1:2.5 scale model of a European Standard Penetrator in Aermacchi low speed wind tunnel. Tests covered the measurement of overall fluid dynamic forces at varying angle of attack and measurement of unsteady pressures acting on the instrumentation head protruding in the penetrator's wake. Overall force coefficients were found to be in good agreement with predictions. Unsteady pressures were found to be much smaller than expected so that no mechanical damage to instrumentation is to be foreseen even at the high dynamic pressures typical of the penetrator moving into water. The present work has been undertaken under contract 2450-84-08 ED ISP I of C.C.R. EURATOM ISPRA

  8. Build an Inexpensive Wind Tunnel to Test CO2 Cars

    Science.gov (United States)

    McCormick, Kevin

    2012-01-01

    As part of the technology education curriculum, the author's eighth-grade students design, build, test, and race CO2 vehicles. To help them in refining their designs, they use a wind tunnel to test for aerodynamic drag. In this article, the author describes how to build a wind tunnel using inexpensive, readily available materials. (Contains 1…

  9. Wind tunnel testing to predict control room atmospheric dispersion factors

    International Nuclear Information System (INIS)

    Holmquist, L.J.; Harden, P.A.; Muraida, J.E.

    1993-01-01

    Recent concerns at Palisades about control room habitability in the event of a loss-of-coolant accident have led to an extensive effort to increase control room habitability margin. The heating, ventilating and air-conditioning (HVAC) system servicing the control room has the potential for unfiltered in-leakage through its normal outside air intake louvered isolation dampers during emergency mode. The current limiting control room habitability analysis allows for 1.2 x 10 -2 m 3 /s (25 ft 3 /min) unfiltered in-leakage into the control room envelope. This leakage value was not thought to be achievable with the existing as-built configuration. Repairing the system was considered as a potential solution; however, this would be costly and could negatively affect plant operation. In addition, the system would still be required to meet the low specified unfiltered in-leakage. A second approach to this problem was to determine the atmospheric dispersion factors (x/Q's) through a wind tunnel test using a scale model of Palisades. The results of the wind tunnel testing could yield more realistic x/Q's for control room habitability than previously employed methods. Palisades selected the wind tunnel study option based on its ease of implementation, realistic results, and low cost. More importantly, the results of the study could increase the allowable unfiltered in-leakage

  10. Documentation and archiving of the Space Shuttle wind tunnel test data base. Volume 1: Background and description

    Science.gov (United States)

    Romere, Paul O.; Brown, Steve Wesley

    1995-01-01

    Development of the space shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of space shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the space shuttle wind tunnel program. The two-volume set covers evolution of space shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.

  11. Borehole heater test at KAERI Underground Research Tunnel

    International Nuclear Information System (INIS)

    Kwon, S. K.; Cho, W. J.; Jeon, S. W.

    2009-09-01

    At HLW repository, the temperature change due to the decay heat in near field can affect the hydraulic, mechanical, and chemical behaviors and influence on the repository safety. Therefore, the understanding of the thermal behavior in near field is essential for the site selection, design, as well as operation of the repository. In this study, various studies for the in situ heater test, which is for the investigation of the thermo-mechanical behavior in rock mass, were carried out. At first, similar in situ tests at foreign URLs were reviewed and summarized the major conclusions from the tests. After then an adequate design of heater, observation sensors, and data logging system were developed and installed with a consideration of the site condition and test purposes. In order to minimize the effect of hydraulic phenomenon, a relatively day zone was chosen for the in situ test. Joint distribution and characteristics in the zone were surveyed and the rock mass properties were determined with various laboratory tests. In this study, an adequate location for an in situ borehole heater test was chosen. Also a heater for the test was designed and manufactured and the sensors for measuring the rock behavior were installed. It was possible to observe that stiff joints are developed overwhelmingly in the test area from the joint survey at the tunnel wall. The major rock and rock mass properties at the test site could be determined from the thermo-mechanical laboratory tests using the rock cores retrieved from the site. The measured data were implemented in the three-dimensional computer simulation. From the modeling using FLAC3D code, it was possible to find that the heat convection through the tunnel wall can influence on temperature distribution in rock. Because of that it was necessary to installed a blocking wall to minimize the effect of ventilation system on the heater test, which is carrying out nearby the tunnel wall. The in situ borehole heater test is the first

  12. Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    Norbert ANGI

    2015-12-01

    Full Text Available This paper presents preliminary results concerning the design and aerodynamic calculations of a light sport aircraft (LSA. These were performed for a new lightweight, low cost, low fuel consumption and long-range aircraft. The design process was based on specific software tools as Advanced Aircraft Analysis (AAA, XFlr 5 aerodynamic and dynamic stability analysis, and Catia design, according to CS-LSA requirements. The calculations were accomplished by a series of tests performed in the wind tunnel in order to assess experimentally the aerodynamic characteristics of the airplane.

  13. Shock-tunnel combustor testing for hypersonic vehicles

    Science.gov (United States)

    Loomis, Mark P.

    1994-01-01

    Proposed configurations for the next generation of transatmospheric vehicles will rely on air breathing propulsion systems during all or part of their mission. At flight Mach numbers greater than about 7 these engines will operate in the supersonic combustion ramjet mode (scramjet). Ground testing of these engine concepts above Mach 8 requires high pressure, high enthalpy facilities such as shock tunnels and expansion tubes. These impulse, or short duration facilities have test times on the order of a millisecond, requiring high speed instrumentation and data systems. One such facility ideally suited for scramjet testing is the NASA-Ames 16-Inch shock tunnel, which over the last two years has completed a series of tests for the NASP (National Aero-Space Plane) program at simulated flight Mach numbers ranging from 12-16. The focus of the experimental programs consisted of a series of classified tests involving a near-full scale hydrogen fueled scramjet combustor model in the semi-free jet method of engine testing whereby the compressed forebody flow ahead of the cowl inlet is reproduced (see appendix A). The AIMHYE-1 (Ames Integrated Modular Hypersonic Engine) test entry for the NASP program was completed in April 1993, while AIMHYE-2 was completed in May 1994. The test entries were regarded as successful, resulting in some of the first data of its kind on the performance of a near full scale scramjet engine at Mach 12-16. The data was distributed to NASP team members for use in design system verification and development. Due to the classified nature of the hardware and data, the data reports resulting from this work are classified and have been published as part of the NASP literature. However, an unclassified AIAA paper resulted from the work and has been included as appendix A. It contains an overview of the test program and a description of some of the important issues.

  14. Photogrammetry Applied to Wind Tunnel Testing

    Science.gov (United States)

    Liu, Tian-Shu; Cattafesta, L. N., III; Radeztsky, R. H.; Burner, A. W.

    2000-01-01

    In image-based measurements, quantitative image data must be mapped to three-dimensional object space. Analytical photogrammetric methods, which may be used to accomplish this task, are discussed from the viewpoint of experimental fluid dynamicists. The Direct Linear Transformation (DLT) for camera calibration, used in pressure sensitive paint, is summarized. An optimization method for camera calibration is developed that can be used to determine the camera calibration parameters, including those describing lens distortion, from a single image. Combined with the DLT method, this method allows a rapid and comprehensive in-situ camera calibration and therefore is particularly useful for quantitative flow visualization and other measurements such as model attitude and deformation in production wind tunnels. The paper also includes a brief description of typical photogrammetric applications to temperature- and pressure-sensitive paint measurements and model deformation measurements in wind tunnels.

  15. Design and Testing of an Educational Water Tunnel

    Science.gov (United States)

    Kosaraju, Srinivas

    2017-11-01

    A new water tunnel is designed and tested for educational and research purposes at Northern Arizona University. The university currently owns an educational wind tunnel with a test section of 12in X 12in X 24in. However, due to limited size of test section and range of Reynolds numbers, its application is currently limited to very few experiments. In an effort to expand the educational and research capabilities, a student team is tasked to design, build and test a water tunnel as a Capstone Senior Design project. The water tunnel is designed to have a test section of 8in X 8in X 36in. and be able to test up to Re = 50E3. Multiple numerical models are used to optimize the flow field inside the test section before building the physical apparatus. The water tunnel is designed to accommodate multiple experiments for drag and lift studies. The built-in die system can deliver up to three different colors to study the streamlines and vortex shedding from the surfaces. During the first phase, a low discharge pump is used to achieve Re = 4E3 to test laminar flows. In the second phase, a high discharge pump will be used to achieve targeted Re = 50E3 to study turbulent flows.

  16. Contributions of Transonic Dynamics Tunnel Testing to Airplane Flutter Clearance

    Science.gov (United States)

    Rivera, Jose A.; Florance, James R.

    2000-01-01

    The Transonic Dynamics Tunnel (TDT) became in operational in 1960, and since that time has achieved the status of the world's premier wind tunnel for testing large in aeroelastically scaled models at transonic speeds. The facility has many features that contribute to its uniqueness for aeroelastic testing. This paper will briefly describe these capabilities and features, and their relevance to aeroelastic testing. Contributions to specific airplane configurations and highlights from the flutter tests performed in the TDT aimed at investigating the aeroelastic characteristics of these configurations are presented.

  17. Comparison of Force and Moment Coefficients for the Same Test Article in Multiple Wind Tunnels

    Science.gov (United States)

    Deloach, Richard

    2013-01-01

    This paper compares the results of force and moment measurements made on the same test article and with the same balance in three transonic wind tunnels. Comparisons are made for the same combination of Reynolds number, Mach number, sideslip angle, control surface configuration, and angle of attack range. Between-tunnel force and moment differences are quantified. An analysis of variance was performed at four unique sites in the design space to assess the statistical significance of between-tunnel variation and any interaction with angle of attack. Tunnel to tunnel differences too large to attribute to random error were detected were observed for all forces and moments. In some cases these differences were independent of angle of attack and in other cases they changed with angle of attack.

  18. Self streamlining wind tunnel: Further low speed testing and final design studies for the transonic facility

    Science.gov (United States)

    Wolf, S. W. D.

    1978-01-01

    Work was continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes (perhaps through changes in Reynold's number and freestream turbulence levels) on airfoil data and wall contours. Mechanical design analyses for the transonic self-streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility, which will eventually allow on-line computer operation of the wind tunnel, was outlined.

  19. Glide back booster wind tunnel model testing

    Science.gov (United States)

    Pricop, M. V.; Cojocaru, M. G.; Stoica, C. I.; Niculescu, M. L.; Neculaescu, A. M.; Persinaru, A. G.; Boscoianu, M.

    2017-07-01

    Affordable space access requires partial or ideally full launch vehicle reuse, which is in line with clean environment requirement. Although the idea is old, the practical use is difficult, requiring very large technology investment for qualification. Rocket gliders like Space Shuttle have been successfullyoperated but the price and correspondingly the energy footprint were found not sustainable. For medium launchers, finally there is a very promising platform as Falcon 9. For very small launchers the situation is more complex, because the performance index (payload to start mass) is already small, versus medium and heavy launchers. For partial reusable micro launchers this index is even smaller. However the challenge has to be taken because it is likely that in a multiyear effort, technology is going to enable the performance recovery to make such a system economically and environmentally feasible. The current paper is devoted to a small unitary glide back booster which is foreseen to be assembled in a number of possible configurations. Although the level of analysis is not deep, the solution is analyzed from the aerodynamic point of view. A wind tunnel model is designed, with an active canard, to enablea more efficient wind tunnel campaign, as a national level premiere.

  20. Wind tunnel tests of a free yawing downwind wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, Jan-Willem

    2014-01-01

    . The discussed test cases show that the turbine is stable while operating in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy......This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off...... the shelf three bladed hub, nacelle and generator on which relatively flexible blades are mounted. The tower support structure has free yawing capabilities provided at the base. A short overview on the technical details of the experiment is given as well as a brief summary of the design process...

  1. Ambient temperature testing of the G-tunnel heated block

    International Nuclear Information System (INIS)

    Zimmerman, R.M.; Board, M.P.; Hardin, E.L.; Voegele, M.D.

    1984-01-01

    The G-Tunnel heated block experiment is being conducted on the Nevada Test Site (NTS) as part of the Nevada Nuclear Waste Storage Investigations project (NNWSI). The purpose of the ambient temperature testing phase is to evaluate rock-mass mechanical properties of a block (≅8 m/sup 3/) under biaxial stress changes up to 7.5 MPa above an initialization in situ value of 3.1 MPa. Results indicate that the modulus of deformation ranges from 9.7 to 17.0 GPa and Poisson's ratio ranges from 0.21 to 0.33. In general, the higher values of the modulus and Poisson's ratio were influenced by fracture propagations parallel to the compressive stress field. Other measurements indicated that cross-hole compression (p) wave velocities and single fracture permeability values were relatively insensitive to stress changes above the in situ value

  2. Wall correction model for wind tunnels with open test section

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Shen, Wen Zhong; Mikkelsen, Robert Flemming

    2006-01-01

    In the paper we present a correction model for wall interference on rotors of wind turbines or propellers in wind tunnels. The model, which is based on a one-dimensional momentum approach, is validated against results from CFD computations using a generalized actuator disc principle. In the model...... good agreement with the CFD computations, demonstrating that one-dimensional momentum theory is a reliable way of predicting corrections for wall interference in wind tunnels with closed as well as open cross sections....

  3. [Remote results of high myopia surgical correction by tunnel keratoplasty ].

    Science.gov (United States)

    Dushin, N V; Beliaev, V S; Gonchar, P A; Barashkov, V I; Kravchinina, V V; Frolov, M A

    2000-01-01

    Remote results evidence high refraction efficiency of tunnel keratoplasty, stable results being observed for up to 15 years. A total of 104 operations (58 patients) were analyzed for a period of observation of more than 10 years. The patients' ages varied from 17 to 52 years, there were 34 women and 24 men. The main advantage of interlamellar refraction meridional keratoplasty is easiness of operation. At present it is the operation of choice for dosed reduction of eye refraction aimed at correction of high myopia and astigmatism. The possibility of correcting residual myopia after keratotomy and repair of refraction abnormalities resultant from perforating keratoplasty is particularly interesting. The possibility of regulating the corrective effect in remote periods by replacing the implants also deserves attention. Hence, low traumatism, high efficiency, and stability of the refraction effect once more confirm our recommendation to use tunnel keratoplasty in clinical practice.

  4. Small-scale tunnel test for blast performance

    International Nuclear Information System (INIS)

    Felts, J E; Lee, R J

    2014-01-01

    The data reported here provide a validation of a small-scale tunnel test as a tool to guide the optimization of new explosives for blast performance in tunnels. The small-scale arrangement consisted of a 2-g booster and 10-g sample mounted at the closed end of a 127 mm diameter by 4.6-m long steel tube with pressure transducers along its length. The three performance characteristics considered were peak pressure, initial energy release, and impulse. The relative performance from five explosives was compared to that from a 1.16-m diameter by 30-m long tunnel that used 2.27-kg samples. The peak pressure values didn't correlate between the tunnels. Partial impulse for the explosives did rank similarly. The initial energy release was determined from a one-dimensional point-source analysis, which nearly tracked with impulse suggesting additional energy released further down the tunnel for some explosives. This test is a viable tool for optimizing compositional variations for blast performance in target scenarios of similar geometry.

  5. Fault detection by surface seismic scanning tunneling macroscope: Field test

    KAUST Repository

    Hanafy, Sherif M.

    2014-08-05

    The seismic scanning tunneling macroscope (SSTM) is proposed for detecting the presence of near-surface impedance anomalies and faults. Results with synthetic data are consistent with theory in that scatterers closer to the surface provide brighter SSTM profiles than those that are deeper. The SSTM profiles show superresolution detection if the scatterers are in the near-field region of the recording line. The field data tests near Gulf of Aqaba, Haql, KSA clearly show the presence of the observable fault scarp, and identify the subsurface presence of the hidden faults indicated in the tomograms. Superresolution detection of the fault is achieved, even when the 35 Hz data are lowpass filtered to the 5-10 Hz band.

  6. Fault detection by surface seismic scanning tunneling macroscope: Field test

    KAUST Repository

    Hanafy, Sherif M.; Schuster, Gerard T.

    2014-01-01

    The seismic scanning tunneling macroscope (SSTM) is proposed for detecting the presence of near-surface impedance anomalies and faults. Results with synthetic data are consistent with theory in that scatterers closer to the surface provide brighter SSTM profiles than those that are deeper. The SSTM profiles show superresolution detection if the scatterers are in the near-field region of the recording line. The field data tests near Gulf of Aqaba, Haql, KSA clearly show the presence of the observable fault scarp, and identify the subsurface presence of the hidden faults indicated in the tomograms. Superresolution detection of the fault is achieved, even when the 35 Hz data are lowpass filtered to the 5-10 Hz band.

  7. Wind Tunnel Testing of Active Control System for Bridges

    DEFF Research Database (Denmark)

    Hansen, Henriette I.; Thoft-Christensen, Palle

    This paper describes preparation of wind tunnel testing of the principle of using flaps to control the motion of suspension bridges. The experiment will take place at the Instituto Superior Technico Lisbon, Portugal. The bridge section model is constructed of foam with an aluminium frame. The flaps...... are regulated by servo motors. Neural networks are used to position the flaps in the optimal positions....

  8. Overload prevention in model supports for wind tunnel model testing

    Directory of Open Access Journals (Sweden)

    Anton IVANOVICI

    2015-09-01

    Full Text Available Preventing overloads in wind tunnel model supports is crucial to the integrity of the tested system. Results can only be interpreted as valid if the model support, conventionally called a sting remains sufficiently rigid during testing. Modeling and preliminary calculation can only give an estimate of the sting’s behavior under known forces and moments but sometimes unpredictable, aerodynamically caused model behavior can cause large transient overloads that cannot be taken into account at the sting design phase. To ensure model integrity and data validity an analog fast protection circuit was designed and tested. A post-factum analysis was carried out to optimize the overload detection and a short discussion on aeroelastic phenomena is included to show why such a detector has to be very fast. The last refinement of the concept consists in a fast detector coupled with a slightly slower one to differentiate between transient overloads that decay in time and those that are the result of aeroelastic unwanted phenomena. The decision to stop or continue the test is therefore conservatively taken preserving data and model integrity while allowing normal startup loads and transients to manifest.

  9. Testing measurements of airflow velocity in road tunnels

    Directory of Open Access Journals (Sweden)

    Danišovič Peter

    2017-01-01

    Full Text Available Within the project entitled “Models of formation and spread of fire to increase safety of road tunnels”, it was necessary to devise a method how to record airflow velocity during the fire in situ tests in road tunnels. Project is in first year of its solution so one testing measurement was performed to check the functionality of anemometers selected for this project and the first in situ measurement was also performed just a few days ago.

  10. Documentation and archiving of the Space Shuttle wind tunnel test data base. Volume 2: User's Guide to the Archived Data Base

    Science.gov (United States)

    Romere, Paul O.; Brown, Steve Wesley

    1995-01-01

    Development of the Space Shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of Space Shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the Space Shuttle wind tunnel program. The two-volume set covers the evolution of Space Shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.

  11. Aerodynamic research of a racing car based on wind tunnel test and computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Wang Jianfeng

    2018-01-01

    Full Text Available Wind tunnel test and computational fluid dynamics (CFD simulation are two main methods for the study of automotive aerodynamics. CFD simulation software solves the results in calculation by using the basic theory of aerodynamic. Calculation will inevitably lead to bias, and the wind tunnel test can effectively simulate the real driving condition, which is the most effective aerodynamics research method. This paper researches the aerodynamic characteristics of the wing of a racing car. Aerodynamic model of a racing car is established. Wind tunnel test is carried out and compared with the simulation results of computational fluid dynamics. The deviation of the two methods is small, and the accuracy of computational fluid dynamics simulation is verified. By means of CFD software simulation, the coefficients of six aerodynamic forces are fitted and the aerodynamic equations are obtained. Finally, the aerodynamic forces and torques of the racing car travel in bend are calculated.

  12. Morphing wing system integration with wind tunnel testing =

    Science.gov (United States)

    Guezguez, Mohamed Sadok

    Preserving the environment is a major challenge for today's aviation industry. Within this context, the CRIAQ MDO 505 project started, where a multidisciplinary approach was used to improve aircraft fuel efficiency. This international project took place between several Canadian and Italian teams. Industrial teams are Bombardier Aerospace, Thales Canada and Alenia Aermacchi. The academic partners are from Ecole de Technologie Superieure, Ecole Polytechnique de Montreal and Naples University. Teams from 'CIRA' and IAR-NRC research institutes had, also, contributed on this project. The main objective of this project is to improve the aerodynamic performance of a morphing wing prototype by reducing the drag. This drag reduction is achieved by delaying the flow transition (from laminar to turbulent) by performing shape optimization of the flexible upper skin according to different flight conditions. Four linear axes, each one actuated by a 'BLDC' motor, are used to morph the skin. The skin displacements are calculated by 'CFD' numerical simulation based on flow parameters which are Mach number, the angle of attack and aileron's angle of deflection. The wing is also equipped with 32 pressure sensors to experimentally detect the transition during aerodynamic testing in the subsonic wind tunnel at the IAR-NRC in Ottawa. The first part of the work is dedicated to establishing the necessary fieldbus communications between the control system and the wing. The 'CANopen' protocol is implemented to ensure real time communication between the 'BLDC' drives and the real-time controller. The MODBUS TCP protocol is used to control the aileron drive. The second part consists of implementing the skin control position loop based on the LVDTs feedback, as well as developing an automated calibration procedure for skin displacement values. Two 'sets' of wind tunnel tests were carried out to, experimentally, investigate the morphing wing controller effect; these tests also offered the

  13. Testing of tunnel support: dynamic load testing of rock support containment systems (eg wire mesh).

    CSIR Research Space (South Africa)

    Ortlepp, WD

    1997-07-01

    Full Text Available The objective of this project was to determine the performance characteristics of containment elements of tunnel support in common use in South African mines under dynamic loading. The magnitude of the energy levels in this testing had...

  14. Excavation damage zone tracer experiment in the floor of the room 415 test tunnel

    International Nuclear Information System (INIS)

    Frost, L.H.; Everitt, R.A.

    1997-03-01

    A 3.5-m-diameter test tunnel was constructed on the 420 Level of AECL's Underground Research Laboratory using a mechanical excavation technique. The orientation of the tunnel was chosen to maximize the stress ratio in the plane perpendicular to the tunnel axis in order to promote and study stress-induced excavation damage. The resulting excavation damage zone (EDZ) is characterized by a distinct breakout notch in both the floor and roof of the tunnel. In the floor of the tunnel, the main flow pathway within the EDZ is within a zone of intense grain-size fracturing (process zone) located at the tip of the breakout notch; virtually no flow occurs outside this region. A tracer experiment was performed within the EDZ in the floor of the tunnel to characterize the solute transport properties (permeability, transport porosity and dispersivity) within the process zone, as well as to develop and demonstrate methods for determining the transport properties within EDZs of underground tunnels. The experiment was performed as a constant head test by continuously injecting a constant concentration of iodide tracer into a region of the process zone, and by monitoring tracer breakthrough from the zone at a distance 1.5 m away. An equivalent-porous-media approach was taken in analysing fluid flow and solute transport through the process zone. Based on mass flux calculations, the hydraulic conductivity and transport porosity of the process zone are estimated to be 7.4 x 10 -7 m/s and 2.7 % respectively. Based on an analytic solution that represents tracer transport within the process zone as one-dimensional advective diffusive transport in a finite homogeneous porous medium, the longitudinal dispersivity and transport porosity of the zone are estimated to be 0.60 m and 3.3 % respectively. The transport porosity values estimated by both the mass flux and analytic calculations compare quite well. (author)

  15. Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Hand, M. M.; Simms, D. A.; Fingersh, L. J.; Jager, D. W.; Cotrell, J. R.; Schreck, S.; Larwood, S. M.

    2001-12-01

    The primary objective of the insteady aerodynamics experiment was to provide information needed to quantify the full-scale, three-dimensional aerodynamic behavior of horizontal-axis wind turbines. This report is intended to familiarize the user with the entire scope of the wind tunnel test and to support the use of the resulting data.

  16. Final report on the Controlled Cold Helium Spill Test in the LHC tunnel at CERN

    International Nuclear Information System (INIS)

    Dufay-Chanat, L; Bremer, J; Casas-Cubillos, J; Koettig, T; Vauthier, N; Van Weelderen, R; Winkler, T; Chorowski, M; Grabowski, M; Jedrusyna, A; Lindell, G; Nonis, M

    2015-01-01

    The 27 km circumference LHC underground tunnel is a space in which the helium cooled LHC magnets are installed. The vacuum enclosures of the superconducting magnets are protected by over-pressure safety relief devices that open whenever cold helium escapes either from the magnet cold enclosure or from the helium supply headers, into this vacuum enclosure. A 3-m long no stay zone around these devices is defined based on scale model studies, protecting the personnel against cold burns or asphyxia caused by such a helium release event. Recently, several simulation studies have been carried out modelling the propagation of the helium/air mixture, resulting from the opening of such a safety device, along the tunnel. The released helium flows vary in the range between 1 kg/s and 0.1 kg/s. To validate these different simulation studies, real life mock-up tests have been performed inside the LHC tunnel, releasing helium flow rates of 1 kg/s, 0.3 kg/s and 0.1 kg/s. For each test, up to 1000 liters of liquid helium were released under standard operational tunnel conditions. The data recorded include oxygen concentration, temperature and flow speed measurements, and video footage used to assess qualitatively the visibility. These measurements have been made in the up- and downstream directions, with respect to the air ventilation flow, of the spill point.This paper presents the experimental set-up under which these release tests were made, the effects of these releases on the atmospheric tunnel condition as a function of the release flow rate. We discuss the modification to the personnel access conditions to the LHC tunnel that are presently implemented as a result of these tests. (paper)

  17. Final report on the Controlled Cold Helium Spill Test in the LHC tunnel at CERN

    Science.gov (United States)

    Dufay-Chanat, L.; Bremer, J.; Casas-Cubillos, J.; Chorowski, M.; Grabowski, M.; Jedrusyna, A.; Lindell, G.; Nonis, M.; Koettig, T.; Vauthier, N.; van Weelderen, R.; Winkler, T.

    2015-12-01

    The 27 km circumference LHC underground tunnel is a space in which the helium cooled LHC magnets are installed. The vacuum enclosures of the superconducting magnets are protected by over-pressure safety relief devices that open whenever cold helium escapes either from the magnet cold enclosure or from the helium supply headers, into this vacuum enclosure. A 3-m long no stay zone around these devices is defined based on scale model studies, protecting the personnel against cold burns or asphyxia caused by such a helium release event. Recently, several simulation studies have been carried out modelling the propagation of the helium/air mixture, resulting from the opening of such a safety device, along the tunnel. The released helium flows vary in the range between 1 kg/s and 0.1 kg/s. To validate these different simulation studies, real life mock-up tests have been performed inside the LHC tunnel, releasing helium flow rates of 1 kg/s, 0.3 kg/s and 0.1 kg/s. For each test, up to 1000 liters of liquid helium were released under standard operational tunnel conditions. The data recorded include oxygen concentration, temperature and flow speed measurements, and video footage used to assess qualitatively the visibility. These measurements have been made in the up- and downstream directions, with respect to the air ventilation flow, of the spill point. This paper presents the experimental set-up under which these release tests were made, the effects of these releases on the atmospheric tunnel condition as a function of the release flow rate. We discuss the modification to the personnel access conditions to the LHC tunnel that are presently implemented as a result of these tests.

  18. Application of Computational Fluid Dynamics (CFD) in transonic wind-tunnel/flight-test correlation

    Science.gov (United States)

    Murman, E. M.

    1982-01-01

    The capability for calculating transonic flows for realistic configurations and conditions is discussed. Various phenomena which were modeled are shown to have the same order of magnitude on the influence of predicted results. It is concluded that CFD can make the following contributions to the task of correlating wind tunnel and flight test data: some effects of geometry differences and aeroelastic distortion can be predicted; tunnel wall effects can be assessed and corrected for; and the effects of model support systems and free stream nonuniformities can be modeled.

  19. Results of the space shuttle vehicle ascent air data system probe calibration test using a 0.07-scale external tank forebody model (68T) in the AEDC 16-foot transonic wind tunnel (IA-310), volume 2

    Science.gov (United States)

    Collette, J. G. R.

    1991-01-01

    A recalibration of the Space Shuttle Vehicle Ascent Air Data System probe was conducted in the Arnold Engineering and Development Center (AEDC) transonic wind tunnel. The purpose was to improve on the accuracy of the previous calibration in order to reduce the existing uncertainties in the system. A probe tip attached to a 0.07-scale External Tank Forebody model was tested at angles of attack of -8 to +4 degrees and sideslip angles of -4 to +4 degrees. High precision instrumentation was used to acquire pressure data at discrete Mach numbers ranging from 0.6 to 1.55. Pressure coefficient uncertainties were estimated at less than 0.0020. Additional information is given in tabular form.

  20. Results of the space shuttle vehicle ascent air data system probe calibration test using a 0.07-scale external tank forebody model (68T) in the AEDC 16-foot transonic wind tunnel (IA-310), volume 1

    Science.gov (United States)

    Collette, J. G. R.

    1991-01-01

    A recalibration of the Space Shuttle Vehicle Ascent Air Data System probe was conducted in the Arnold Engineering Development Center (AEDC) transonic wind tunnel. The purpose was to improve on the accuracy of the previous calibration in order to reduce the existing uncertainties in the system. A probe tip attached to a 0.07-scale External Tank Forebody model was tested at angles of attack of -8 to +4 degrees and sideslip angles of -4 to +4 degrees. High precision instrumentation was used to acquire pressure data at discrete Mach numbers ranging from 0.6 to 1.55. Pressure coefficient uncertainties were estimated at less than 0.0020. Data is given in graphical and tabular form.

  1. Petrology and geochemistry of samples from bed-contact zones in Tunnel Bed 5, U12g-Tunnel, Nevada Test Site

    International Nuclear Information System (INIS)

    Connolly, J.R.; Keil, K.; Mansker, W.L.; Allen, C.C.; Husler, J.; Lowy, R.; Fortney, D.R.; Lappin, A.R.

    1984-10-01

    This report summarizes the detailed geologic characterization of samples of bed-contact zones and surrounding nonwelded bedded tuffs, both within Tunnel Bed 5, that are exposed in the G-Tunnel complex beneath Rainier Mesa on the Nevada Test Site (NTS). Original planning studies treated the bed-contact zones in Tunnel Bed 5 as simple planar surfaces of relatively high permeability. Detailed characterization, however, indicates that these zones have a finite thickness, are depositional in origin, vary considerably over short vertical and horizontal distances, and are internally complex. Fluid flow in a sequence of nonwelded zeolitized ash-flow or bedded tuffs and thin intervening reworked zones appears to be a porous-medium phenomenon, regardless of the presence of layering. There are no consistent differences in either bulk composition or detailed mineralogy between bedded tuffs and bed-contact zones in Tunnel Bed 5. Although the original bulk composition of Tunnel Bed 5 was probably peralkaline, extensive zeolitization has resulted in a present peraluminous bulk composition of both bedded tuffs and bed-contact zones. The major zeolite present, clinoptilolite, is intermediate (Ca:K:Na = 26:35:39) and effectively uniform in composition. This composition is similar to that of clinoptilolite from the tuffaceous beds of Calico Hills above the static water level in hole USW G-1, but somewhat different from that reported for zeolites from below the static water level in USW G-2. Tunnel Bed 5 also contains abundant hydrous manganese oxides. The similarity in composition of the clinoptilolites from Tunnel Bed 5 and those above the static water level at Yucca Mountain indicates that many of the results of nuclide-migration experiments in Tunnel Bed 5 would be transferrable to zeolitized nonwelded tuffs above the static water level at Yucca Mountain

  2. Wind-tunnel development of an SR-71 aerospike rocket flight test configuration

    Science.gov (United States)

    Smith, Stephen C.; Shirakata, Norm; Moes, Timothy R.; Cobleigh, Brent R.; Conners, Timothy H.

    1996-01-01

    A flight experiment has been proposed to investigate the performance of an aerospike rocket motor installed in a lifting body configuration. An SR-71 airplane would be used to carry the aerospike configuration to the desired flight test conditions. Wind-tunnel tests were completed on a 4-percent scale SR-71 airplane with the aerospike pod mounted in various locations on the upper fuselage. Testing was accomplished using sting and blade mounts from Mach 0.6 to Mach 3.2. Initial test objectives included assessing transonic drag and supersonic lateral-directional stability and control. During these tests, flight simulations were run with wind-tunnel data to assess the acceptability of the configurations. Early testing demonstrated that the initial configuration with the aerospike pod near the SR-71 center of gravity was unsuitable because of large nosedown pitching moments at transonic speeds. The excessive trim drag resulting from accommodating this pitching moment far exceeded the excess thrust capability of the airplane. Wind-tunnel testing continued in an attempt to find a configuration suitable for flight test. Multiple configurations were tested. Results indicate that an aft-mounted model configuration possessed acceptable performance, stability, and control characteristics.

  3. Climax granite test results

    Energy Technology Data Exchange (ETDEWEB)

    Ramspott, L.D.

    1980-01-15

    The Lawrence Livermore Laboratory (LLL), as part of the Nevada Nuclear Waste Storage Investigations (NNWSI) program, is carrying out in situ rock mechanics testing in the Climax granitic stock at the Nevada Test Site (NTS). This summary addresses only those field data taken to date that address thermomechanical modeling for a hard-rock repository. The results to be discussed include thermal measurements in a heater test that was conducted from October 1977 through July 1978, and stress and displacement measurements made during and after excavation of the canister storage drift for the Spent Fuel Test (SFT) in the Climax granite. Associated laboratory and field measurements are summarized. The rock temperature for a given applied heat load at a point in time and space can be adequately modeled with simple analytic calculations involving superposition and integration of numerous point source solutions. The input, for locations beyond about a meter from the source, can be a constant thermal conductivity and diffusivity. The value of thermal conductivity required to match the field data is as much as 25% different from laboratory-measured values. Therefore, unless we come to understand the mechanisms for this difference, a simple in situ test will be required to obtain a value for final repository design. Some sensitivity calculations have shown that the temperature field is about ten times more sensitive to conductivity than to diffusivity under the test conditions. The orthogonal array was designed to detect anisotropy. After considering all error sources, anisotropic efforts in the thermal field were less than 5 to 10%.

  4. New Rock Abrasivity Test Method for Tool Life Assessments on Hard Rock Tunnel Boring: The Rolling Indentation Abrasion Test (RIAT)

    Science.gov (United States)

    Macias, F. J.; Dahl, F.; Bruland, A.

    2016-05-01

    The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.

  5. Controlled Cold Helium Spill Test in the LHC Tunnel at CERN

    Science.gov (United States)

    Koettig, T.; Casas-Cubillos, J.; Chorowski, M.; Dufay-Chanat, L.; Grabowski, M.; Jedrusyna, A.; Lindell, G.; Nonis, M.; Vauthier, N.; van Weelderen, R.; Winkler, T.; Bremer, J.

    The helium cooled magnets of the LHC particle accelerator are installed in a confined space, formed by a 27 km circumference 3.8 m diameter underground tunnel. The vacuum enclosures of the superconducting LHC magnets are protected by a lift plate against excessive overpressure created by eventual leaks from the magnet helium bath, or from the helium supply headers. A three-meter long no stay zone has been defined centered to these plates, based on earlier scale model studies, to protect the personnel against the consequences of an eventual opening of such a lift plate. More recently several simulation studies have been carried out modelling the propagation of the resulting helium/air mixture along the tunnel in case of such a cold helium release at a rate in the range of 1 kg/s. To validate the different scale models and simulation studies, real life mock-up tests have been performed in the LHC, releasing about 1000 liter of liquid helium under standard operational tunnel conditions. Data recorded during these tests include oxygen level, temperature and flow speed as well as video recordings, taken up- and downstream of the spill point (-100 m to +200 m) with respect to the ventilation direction in the LHC tunnel. The experimental set-up and measurement results are presented. Generic effects found during the tests will be discussed to allow the transposal to possible cold helium release cases in similar facilities.

  6. The design of an aerosol test tunnel for occupational hygiene investigations

    Science.gov (United States)

    Blackford, D. B.; Heighington, K.

    An aerosol test tunnel which provides large working sections is described and its performance evaluated. Air movement within the tunnel is achieved with a powerful D.C. motor and centrifugal fan. Test dusts are dispersed and injected into the tunnel by means of an aerosol generator. A unique divertor valve allows aerosol laden air to be either cleaned by a commercial pulse jet filtration unit or recycled around the tunnel to obtain a high aerosol concentration. The tunnel instrumentation is managed by a microcomputer which automatically controls the airspeed and aerosol concentration.

  7. Results of a jet plume effects test on Rockwell International integrated space shuttle vehicle using a vehicle 5 configuration 0.02-scale model (88-OTS) in the 11 by 11 foot leg of the NASA/Ames Research Center unitary plan wind tunnel (IA19), volume 1

    Science.gov (United States)

    Nichols, M. E.

    1975-01-01

    Results are presented of jet plume effects test IA19 using a vehicle 5 configuration integrated space shuttle vehicle 0.02-scale model in the NASA/Ames Research Center 11 x 11-foot leg of the unitary plan wind tunnel. The jet plume power effects on the integrated vehicle static pressure distribution were determined along with elevon, main propulsion system nozzle, and solid rocket booster nozzle effectiveness and elevon hinge moments.

  8. Water table tests of proposed heat transfer tunnels for small turbine vanes

    Science.gov (United States)

    Meitner, P. L.

    1974-01-01

    Water-table flow tests were conducted for proposed heat-transfer tunnels which were designed to provide uniform flow into their respective test sections of a single core engine turbine vane and a full annular ring of helicopter turbine vanes. Water-table tests were also performed for the single-vane test section of the core engine tunnel. The flow in the heat-transfer tunnels was shown to be acceptable.

  9. Experiences with a high-blockage model tested in the NASA Ames 12-foot pressure wind tunnel

    Science.gov (United States)

    Coder, D. W.

    1984-01-01

    Representation of the flow around full-scale ships was sought in the subsonic wind tunnels in order to a Hain Reynolds numbers as high as possible. As part of the quest to attain the largest possible Reynolds number, large models with high blockage are used which result in significant wall interference effects. Some experiences with such a high blockage model tested in the NASA Ames 12-foot pressure wind tunnel are summarized. The main results of the experiment relating to wind tunnel wall interference effects are also presented.

  10. Wind tunnel tests of a free yawing downwind wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, J.W.

    2012-01-01

    During February and April 2012 a series of wind tunnel tests were performed at the TU Delft Open Jet Facility (OJF) with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible ...... in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy's aeroelastic simulation program HAWC2....... blades are mounted. The tower support structure has free yawing capabilities provided at the tower base. A short overview on the technical details of the experiment is provided as well as a brief summary of the design process. The discussed test cases show that the turbine is stable while operating...

  11. Tests to determine water uptake behaviour of tunnel backfill

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David (Atomic Energy of Canada Limited (AECL) (Canada)); Anttila, S.; Viitanen, M. (Poeyry InfRa Oy (Finland)); Keto, Paula (Saanio and Riekkola Oy, Helsinki (Finland))

    2008-12-15

    A series of 27 large-scale tests have been completed at the 420 level of SKB's Aespoe Hard Rock Laboratory. These tests have examined the influence of natural Aespoe fracture zone water on the movement of water into and through assemblies of Friedland clay blocks and bentonite pellets/ granules. These tests have established the manner in which groundwater may influence backfill and backfilling operations at the repository-scale. Tests have established that it is critical to provide a clay block backfilling system with lateral support and confinement as quickly as possible following block installation. Exposure of the blocks to even low rates of water ingress can result in rapid loss of block cohesion and subsequent slumping of the block materials into the spaces between the blocks and the tunnel walls. Installation of granular or pelletized bentonite clay between the blocks and the walls resulted in a system that was generally stable and not prone to unacceptable short-term strains as water entered. Inflow of water into a backfilled volume does not result in uniform wetting of the pellet/granule filled volume and as a result there is the potential for rapid movement of water from the point(s) of ingress to the downstream face of the backfill. Depending on the inflow rate and flow path(s) developed this flow can be via discrete flow channels that are essentially non-erosive or else they can develop highly erosive flow paths through the clay block materials. Erosion generally tends to be highest in the period immediately following first water exit from the backfill and then decreases as preferential flow paths develop to channel the water directly through the backfill, bypassing large volumes of unsaturated backfill. At the scale examined in this study inflow rates of 0.1 l/min or less do not tend to be immediately problematic when the source is 0.6 m distant from the downstream face of the backfill. At larger scales or longer distances from the working face, it

  12. Tests to determine water uptake behaviour of tunnel backfill

    International Nuclear Information System (INIS)

    Dixon, David; Anttila, S.; Viitanen, M.; Keto, Paula

    2008-12-01

    A series of 27 large-scale tests have been completed at the 420 level of SKB's Aespoe Hard Rock Laboratory. These tests have examined the influence of natural Aespoe fracture zone water on the movement of water into and through assemblies of Friedland clay blocks and bentonite pellets/ granules. These tests have established the manner in which groundwater may influence backfill and backfilling operations at the repository-scale. Tests have established that it is critical to provide a clay block backfilling system with lateral support and confinement as quickly as possible following block installation. Exposure of the blocks to even low rates of water ingress can result in rapid loss of block cohesion and subsequent slumping of the block materials into the spaces between the blocks and the tunnel walls. Installation of granular or pelletized bentonite clay between the blocks and the walls resulted in a system that was generally stable and not prone to unacceptable short-term strains as water entered. Inflow of water into a backfilled volume does not result in uniform wetting of the pellet/granule filled volume and as a result there is the potential for rapid movement of water from the point(s) of ingress to the downstream face of the backfill. Depending on the inflow rate and flow path(s) developed this flow can be via discrete flow channels that are essentially non-erosive or else they can develop highly erosive flow paths through the clay block materials. Erosion generally tends to be highest in the period immediately following first water exit from the backfill and then decreases as preferential flow paths develop to channel the water directly through the backfill, bypassing large volumes of unsaturated backfill. At the scale examined in this study inflow rates of 0.1 l/min or less do not tend to be immediately problematic when the source is 0.6 m distant from the downstream face of the backfill. At larger scales or longer distances from the working face, it is

  13. Wing configuration on Wind Tunnel Testing of an Unmanned Aircraft Vehicle

    Science.gov (United States)

    Daryanto, Yanto; Purwono, Joko; Subagyo

    2018-04-01

    Control surface of an Unmanned Aircraft Vehicle (UAV) consists of flap, aileron, spoiler, rudder, and elevator. Every control surface has its own special functionality. Some particular configurations in the flight mission often depend on the wing configuration. Configuration wing within flap deflection for takeoff setting deflection of flap 20° but during landing deflection of flap set on the value 40°. The aim of this research is to get the ultimate CLmax for take-off flap deflection setting. It is shown from Wind Tunnel Testing result that the 20° flap deflection gives optimum CLmax with moderate drag coefficient. The results of Wind Tunnel Testing representing by graphic plots show good performance as well as the stability of UAV.

  14. Electrodiagnostic Testing and Treatment for Carpal Tunnel Syndrome in Canada.

    Science.gov (United States)

    Li Pi Shan, Rodney; Nicolle, Michael; Chan, Ming; Ashworth, Nigel; White, Chris; Winston, Paul; Dukelow, Sean

    2016-01-01

    1) Assess which electrodiagnostic studies Canadian clinicians use to aid in the diagnosis of carpal tunnel syndrome (CTS). 2) Assess whether Canadian clinicians follow the American Association of Neuromuscular & Electrodiagnostic Medicine/American Academy of Neurology/American Academy of Physical Medicine and Rehabilitation Practice Parameter for Electrodiagnostic Studies in CTS. 3) Assess how Canadian clinicians manage CTS once a diagnosis has been established. In this prospective observational study, an electronic survey was sent to all members of the Canadian Neuromuscular Group (CNMG) and the Canadian Association of Physical Medicine and Rehabilitation (CAPM&R) Neuromuscular Special Interest Group. Questions addressed which electrodiagnostic tests were being routinely used for the diagnosis of carpal tunnel syndrome. Management recommendations for CTS was also explored. Of the 70 individuals who completed the survey, fourteen different nerve conduction study techniques were reported. Overall, 36/70 (51%) of participants followed the AANEM/AAN/AAPM&R Practice Parameter. The standard followed by the fewest of our respondents with 64% compliance (45/70) was the use of a standard distance of 13 to 14 cm with respect to the median sensory nerve conduction study. Regarding management, 99% would recommend splinting in the case of mild CTS. In moderate CTS, splinting was recommended by 91% of clinicians and 68% would also consider referral for surgery. In severe CTS, most recommended surgery (93%). There is considerable variability in terms of which electrodiagnostic tests Canadian clinicians perform for CTS. Canadian clinicians are encouraged to adhere to the AANEM/AAN/AAPM&R Practice Parameter for Electrodiagnostic Studies in CTS.

  15. A New Position Measurement System Using a Motion-Capture Camera for Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    Yousok Kim

    2013-09-01

    Full Text Available Considering the characteristics of wind tunnel tests, a position measurement system that can minimize the effects on the flow of simulated wind must be established. In this study, a motion-capture camera was used to measure the displacement responses of structures in a wind tunnel test, and the applicability of the system was tested. A motion-capture system (MCS could output 3D coordinates using two-dimensional image coordinates obtained from the camera. Furthermore, this remote sensing system had some flexibility regarding lab installation because of its ability to measure at relatively long distances from the target structures. In this study, we performed wind tunnel tests on a pylon specimen and compared the measured responses of the MCS with the displacements measured with a laser displacement sensor (LDS. The results of the comparison revealed that the time-history displacement measurements from the MCS slightly exceeded those of the LDS. In addition, we confirmed the measuring reliability of the MCS by identifying the dynamic properties (natural frequency, damping ratio, and mode shape of the test specimen using system identification methods (frequency domain decomposition, FDD. By comparing the mode shape obtained using the aforementioned methods with that obtained using the LDS, we also confirmed that the MCS could construct a more accurate mode shape (bending-deflection mode shape with the 3D measurements.

  16. 40 CFR 53.63 - Test procedure: Wind tunnel inlet aspiration test.

    Science.gov (United States)

    2010-07-01

    ... the sampler inlet opening centered in the sampling zone. To meet the maximum blockage limit of § 53.62(c)(1) or for convenience, part of the test sampler may be positioned external to the wind tunnel... = reference method sampler volumetric flow rate; and t = sampling time. (iii) Remove the reference method...

  17. Static Aeroelastic Deformation Effects in Preliminary Wind-tunnel Tests of Silent Supersonic Technology Demonstrator

    OpenAIRE

    Makino, Yoshikazu; Ohira, Keisuke; Makimoto, Takuya; Mitomo, Toshiteru; 牧野, 好和; 大平, 啓介; 牧本, 卓也; 三友, 俊輝

    2011-01-01

    Effects of static aeroelastic deformation of a wind-tunnel test model on the aerodynamic characteristics are discussed in wind-tunnel tests in the preliminary design phase of the silent supersonic technology demonstrator (S3TD). The static aeroelastic deformation of the main wing is estimated for JAXA 2m x 2m transonic wind-tunnel and 1m x 1m supersonic wind-tunnel by a finite element method (FEM) structural analysis in which its structural model is tuned with the model deformation calibratio...

  18. Wind tunneling testing and analysis relating to the spinning of light aircraft

    Science.gov (United States)

    Mccormick, B. W.; Zilliac, G. G.; Ballin, M. G.

    1984-01-01

    Included is a summary of two studies related to the spinning of light aircraft. The first study was conducted to demonstrate that the aerodynamic forces and moments acting on a tail of a spinning aircraft can be obtained from static wind-tunnel tests. The second study analytically investigated spinning using a high angle-of-attack aerodynamic model derived from a static wind-tunnel data base. The validity of the aerodynamic model is shown by comparisons with rotary-balance data and forced-oscillation tests. The results of a six-degree-of-freedom analysis show that the dynamics and aerodynamics of the steep- and flat-spin modes of a modified Yankee have been properly modeled.

  19. Wall Correction Model for Wind Tunnels with Open Test Section

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Shen, Wen Zhong; Mikkelsen, Robert Flemming

    2004-01-01

    , the corrections from the model are in very good agreement with the CFD computaions, demonstrating that one-dimensional momentum theory is a reliable way of predicting corrections for wall interference in wind tunnels with closed as well as open cross sections. Keywords: Wind tunnel correction, momentum theory...

  20. Emission factors from road traffic from a tunnel study (Gubrist tunnel, Switzerland). Part 1 Concept and first results

    Energy Technology Data Exchange (ETDEWEB)

    Staehelin, Johannes; Brunner, Dominik; Baumle, Martin [Atmospheric Science, ETH-Hoenggerberg, Zuerich (Switzerland); Schlapfer, Kurt [Carbotech AG, Basel (Switzerland); Burgin, Toni; Meier, Markus [Amt fuer Technische Anlagen und Lufthygiene Kanton Zuerich ATAL, Zuerich (Switzerland); Steinemann, Urs [Ingenieurbuero Steinemann, Wollerau (Switzerland); Schneider, Stefan; Zahner, Christoph; Keiser, Stephan [Planungsbuero Jud AG, Zuerich (Switzerland); Stahel, Werner; Keller, Christian [Sem. for Statistics, ETH-Z, Zuerich (Switzerland)

    1995-06-22

    In the industrialized world a large part of the emission of the primary air pollutants (NO{sub x}, volatile organic compounds (VOC) and CO) originates from road traffic. Here we present the concept and first results of a tunnel study which took place from September 20th to September 26th, 1993, at the Gubrist tunnel (close to Zuerich, Switzerland) in which the emission factors of a large number of individual VOCs, total hydrocarbons (t-HC), CO, NO{sub x} and SO{sub 2} are determined. The first tentative results of the emission factors of NO{sub x}, CO, t-HC and 26 individual hydrocarbons (alkanes and aromatics in the volatility range from n-heptane to n-decane) for the average of all vehicles and the light duty vehicles at an average speed of 90 km/h are given

  1. Facility Closure Report for T-Tunnel (U12T), Area 12, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    This Facility Closure Report (FCR) has been prepared to document the actions taken to permanently close the remaining accessible areas of U12t-Tunnel (T-Tunnel) in Area 12 of the Nevada Test Site (NTS). The closure of T-Tunnel was a prerequisite to transfer facility ownership from the Defense Threat Reduction Agency (DTRA) to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Closure of the facility was accomplished with the cooperation and concurrence of both NNSA/NSO and the Nevada Division of Environmental Protection (NDEP). The purpose of this FCR is to document that the closure of T-Tunnel complied with the closure requirements specified in the Facility Closure Plan for N- and T-Tunnels Area 12, Nevada Test Site (Appendix D) and that the facility is ready for transfer to NNSA/NSO. The Facility Closure Plan (FCP) is provided in Appendix D. T-Tunnel is located approximately 42 miles north of Mercury in Area 12 of the NTS (Figure 1). Between 1970 and 1987, T-Tunnel was used for six Nuclear Weapons Effects Tests (NWETs). The tunnel was excavated horizontally into the volcanic tuffs of Rainier Mesa. The T-Tunnel complex consists of a main access drift with two NWET containment structures, a Gas Seal Plug (GSP), and a Gas Seal Door (GSD) (Figure 2). The T-Tunnel complex was mothballed in 1993 to preserve the tunnel for resumption of testing, should it happen in the future, to stop the discharge of tunnel effluent, and to prevent unauthorized access. This was accomplished by sealing the main drift GSD

  2. Results of pressurized-slot measurements in the G-Tunnel underground facility

    International Nuclear Information System (INIS)

    Zimmerman, R.M.; Mann, K.L.; Dodds, D.J.

    1989-01-01

    A rock-mechanics field-testing program is underway at Sandia National Laboratories (SNL) as part of the YMP. SNL has the responsibility for assessing the repository design and performance as well as characterizing the geomechanical behavior of the rock. SNL has conducted field experiments in G-Tunnel in Rainier Mesa at the NTS, where tuffs similar to those at Yucca Mountain, the potential repository site, are found. Later experiments are planned as part of the YMP Exploratory Shaft investigations at Yucca Mountain. Major geomechanical factors in repository developments are determinations of the stress state and the deformability of the rock mass (described by the modulus of deformation). One feature of SNL's rock-mechanics program was the development of a testing program for cutting thin slots in a jointed welded tuff and utilizing flatjacks for pressurizing these thin-slots on a relatively, large scale. Objectives in the pressurized-slot testing in G-Tunnel have been to apply and possibly improve methods for (1) utilizing the flatjack cancellation (FC) method for measuring stresses normal to the slot and (2) measuring the modulus of deformation of the jointed rock surrounding the slot. This paper discusses the results of field measurements in and around a single slot and evaluates potential applications and limitations. 10 refs., 1 fig., 4 tabs

  3. An apparatus to estimate the hydrodynamic coefficients of autonomous underwater vehicles using water tunnel testing.

    Science.gov (United States)

    Nouri, N M; Mostafapour, K; Bahadori, R

    2016-06-01

    Hydrodynamic coefficients or hydrodynamic derivatives of autonomous underwater vehicles (AUVs) play an important role in their development and maneuverability. The most popular way of estimating their coefficients is to implement captive model tests such as straight line tests and planar motion mechanism (PMM) tests in the towing tanks. This paper aims to develop an apparatus based on planar experiments of water tunnel in order to estimate hydrodynamic derivatives due to AUVs' acceleration and velocity. The capability of implementing straight line tests and PMM ones using mechanical oscillators located in the downstream flow of the model is considered in the design procedure of the system. The hydrodynamic derivatives that resulted from the acceleration and velocity of the AUV model were estimated using the apparatus that we developed. Static and dynamics test results were compared for the similar derivatives. The findings showed that the system provided the basis for conducting static tests, i.e., straight-line and dynamic tests that included pure pitch and pure heave. By conducting such tests in a water tunnel, we were able to eliminate errors related to the time limitation of the tests and the effects of surface waves in the towing tank on AUVs with applications in the deep sea.

  4. Progression of Carpal Tunnel Syndrome According to Electrodiagnostic Testing in Nonoperatively Treated Patients

    Directory of Open Access Journals (Sweden)

    Mark van Suchtelen

    2014-09-01

    Full Text Available Background:  This study tested the null hypothesis that nonoperatively treated patients would not show disease progression of carpal tunnel syndrome (CTS over time according to median nerve distal motor latency (DML on two electrodiagnostic tests.   Methods:  This retrospective study analyzed sixty-two adult nonoperatively treated patients who were diagnosed with CTS confirmed by a minimum of two electrodiagnostic tests at our institution between December 2006 and  tober 2012. A Wilcoxon signed-rank test was conducted to test the difference between electrodiagnostic measurements between the first and last test. Results: The mean time between the first and last electrodiagnostic test was 26±12 months (range, 12 to 55 months. The only electrodiagnostic measurement that increased significantly was the difference between median and ulnar DML on the same side (r=0.19, P =0.038. The time between the electrodiagnostic tests was significantly longer for patients with at least 10% worsening of the DML at the second test compared to cases of which the DML did not worsen or improve a minimum of 10% (P =0.015.  Conclusions: There is evidence that—on average—idiopathic median neuropathy at the carpal tunnel slowly progresses over time, and this can be measured with electrodiagnostics, but studies with a much longer interval between lectrodiagnostic tests may be needed to determine if it always progresses.

  5. Application of Rapid Prototyping Methods to High-Speed Wind Tunnel Testing

    Science.gov (United States)

    Springer, A. M.

    1998-01-01

    This study was undertaken in MSFC's 14-Inch Trisonic Wind Tunnel to determine if rapid prototyping methods could be used in the design and manufacturing of high speed wind tunnel models in direct testing applications, and if these methods would reduce model design/fabrication time and cost while providing models of high enough fidelity to provide adequate aerodynamic data, and of sufficient strength to survive the test environment. Rapid prototyping methods utilized to construct wind tunnel models in a wing-body-tail configuration were: fused deposition method using both ABS plastic and PEEK as building materials, stereolithography using the photopolymer SL-5170, selective laser sintering using glass reinforced nylon, and laminated object manufacturing using plastic reinforced with glass and 'paper'. This study revealed good agreement between the SLA model, the metal model with an FDM-ABS nose, an SLA nose, and the metal model for most operating conditions, while the FDM-ABS data diverged at higher loading conditions. Data from the initial SLS model showed poor agreement due to problems in post-processing, resulting in a different configuration. A second SLS model was tested and showed relatively good agreement. It can be concluded that rapid prototyping models show promise in preliminary aerodynamic development studies at subsonic, transonic, and supersonic speeds.

  6. Pressure locking test results

    Energy Technology Data Exchange (ETDEWEB)

    DeWall, K.G.; Watkins, J.C.; McKellar, M.G.; Bramwell, D. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1996-12-01

    The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, is funding the Idaho National Engineering Laboratory (INEL) in performing research to provide technical input for their use in evaluating responses to Generic Letter 95-07, {open_quotes}Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves.{close_quotes} Pressure locking and thermal binding are phenomena that make a closed gate valve difficult to open. This paper discusses only the pressure locking phenomenon in a flexible-wedge gate valve; the authors will publish the results of their thermal binding research at a later date. Pressure locking can occur when operating sequences or temperature changes cause the pressure of the fluid in the bonnet (and, in most valves, between the discs) to be higher than the pressure on the upstream and downstream sides of the disc assembly. This high fluid pressure presses the discs against both seats, making the disc assembly harder to unseat than anticipated by the typical design calculations, which generally consider friction at only one of the two disc/seat interfaces. The high pressure of the bonnet fluid also changes the pressure distribution around the disc in a way that can further contribute to the unseating load. If the combined loads associated with pressure locking are very high, the actuator might not have the capacity to open the valve. The results of the NRC/INEL research discussed in this paper show that the relationship between bonnet pressure and pressure locking stem loads appears linear. The results also show that for this valve, seat leakage affects the bonnet pressurization rate when the valve is subjected to thermally induced pressure locking conditions.

  7. Pressure locking test results

    International Nuclear Information System (INIS)

    DeWall, K.G.; Watkins, J.C.; McKellar, M.G.; Bramwell, D.

    1996-01-01

    The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, is funding the Idaho National Engineering Laboratory (INEL) in performing research to provide technical input for their use in evaluating responses to Generic Letter 95-07, open-quotes Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves.close quotes Pressure locking and thermal binding are phenomena that make a closed gate valve difficult to open. This paper discusses only the pressure locking phenomenon in a flexible-wedge gate valve; we will publish the results of our thermal binding research at a later date. Pressure locking can occur when operating sequences or temperature changes cause the pressure of the fluid in the bonnet (and, in most valves, between the discs) to be higher than the pressure on the upstream and downstream sides of the disc assembly. This high fluid pressure presses the discs against both seats, making the disc assembly harder to unseat than anticipated by the typical design calculations, which generally consider friction at only one of the two disc/seat interfaces. The high pressure of the bonnet fluid also changes the pressure distribution around the disc in a way that can further contribute to the unseating load. If the combined loads associated with pressure locking are very high, the actuator might not have the capacity to open the valve. The results of the NRC/INEL research discussed in this paper show that the relationship between bonnet pressure and pressure locking stem loads appears linear. The results also show that for this valve, seat leakage affects the bonnet pressurization rate when the valve is subjected to thermally induced pressure locking conditions

  8. Evaluation of the scratch collapse test for the diagnosis of carpal tunnel syndrome

    NARCIS (Netherlands)

    Makanji, H. S.; Becker, S. J. E.; Mudgal, C. S.; Jupiter, J. B.; Ring, D.

    2014-01-01

    This prospective study measured and compared the diagnostic performance characteristics of various clinical signs and physical examination manoeuvres for carpal tunnel syndrome (CTS), including the scratch collapse test. Eighty-eight adult patients that were prescribed electrophysiological testing

  9. Nb/NiCu bilayers in single and stacked superconductive tunnel junctions: preliminary results

    International Nuclear Information System (INIS)

    Pepe, G.P.; Ruotolo, A.; Parlato, L.; Peluso, G.; Ausanio, G.; Carapella, G.; Latempa, R.

    2004-01-01

    We present preliminary experimental results concerning both single and stacked tunnel junctions in which one of the electrodes was formed by a superconductor/ferromagnet (S/F) bi-layer. In particular, in the stacked configuration a Nb/NiCu bi-layer was used as the intermediate electrode, and it was probed by tunneling on both sides. Tunnel junctions have been characterized in terms of current-voltage characteristics (IVC), and differential conductance. Preliminary steady-state injection-detection measurements performed in the stacked devices at T=4.2 K are also presented and discussed

  10. Validation of a wind tunnel testing facility for blade surface pressure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fuglsang, P.; Antoniou, I.; Soerensen, N.N.; Madsen, H.A.

    1998-04-01

    This report concerns development and validation of a 2d testing facility for airfoil pressure measurements. The VELUX open jet wind tunnel was used with a test stand inserted. Reynolds numbers until 1.3 million were achieved with an airfoil chord of 0.45 m. The aerodynamic load coefficients were found from pressure distribution measurements and the total drag coefficient was calculated from wake rake measurements. Stationary inflow as well as dynamic inflow through pitching motion was possible. Wind tunnel corrections were applied for streamline curvature and down-wash. Even though the wind tunnel is not ideal for 2d testing, the overall quality of the flow was acceptable with a uniform flow field at the test stand position and a turbulence intensity of 1 % at the inlet of the test section. Reference values for free stream static and total pressure were found upstream of the test stand. The NACA 63-215 airfoil was tested and the results were compared with measurements from FFA and NACA. The measurements agreed well except for lift coefficient values at high angles of attack and the drag coefficient values at low angles of attack, that were slightly high. Comparisons of the measured results with numerical predictions from the XFOIL code and the EllipSys2D code showed good agreement. Measurements with the airfoil in pitching motion were carried out to study the dynamic aerodynamic coefficients. Steady inflow measurements at high angles of attack were used to investigate the double stall phenomenon. (au) EFP-94; EFP-95; EFP-97. 8 tabs., 82 ills., 16 refs.

  11. Advanced Background Subtraction Applied to Aeroacoustic Wind Tunnel Testing

    Science.gov (United States)

    Bahr, Christopher J.; Horne, William C.

    2015-01-01

    An advanced form of background subtraction is presented and applied to aeroacoustic wind tunnel data. A variant of this method has seen use in other fields such as climatology and medical imaging. The technique, based on an eigenvalue decomposition of the background noise cross-spectral matrix, is robust against situations where isolated background auto-spectral levels are measured to be higher than levels of combined source and background signals. It also provides an alternate estimate of the cross-spectrum, which previously might have poor definition for low signal-to-noise ratio measurements. Simulated results indicate similar performance to conventional background subtraction when the subtracted spectra are weaker than the true contaminating background levels. Superior performance is observed when the subtracted spectra are stronger than the true contaminating background levels. Experimental results show limited success in recovering signal behavior for data where conventional background subtraction fails. They also demonstrate the new subtraction technique's ability to maintain a proper coherence relationship in the modified cross-spectral matrix. Beam-forming and de-convolution results indicate the method can successfully separate sources. Results also show a reduced need for the use of diagonal removal in phased array processing, at least for the limited data sets considered.

  12. Final report on the Controlled Cold Helium Spill Test in the LHC tunnel at CERN

    CERN Document Server

    Dufay-Chanat, L; Casas-Cubillos, J; Chorowski, M; Grabowski, M; Jedrusyna, A; Lindell, G; Nonis, M; Koettig, T; Vauthier, N; van Weelderen, R; Winkler, T

    2015-01-01

    The 27 km circumference LHC underground tunnel is a space in which the helium cooled LHC magnets are installed. The vacuum enclosures of the superconducting magnets are protected by over-pressure safety relief devices that open whenever cold helium escapes either from the magnet cold enclosure or from the helium supply headers, into this vacuum enclosure. A 3-m long no stay zone around these devices is defined based on scale model studies, protecting the personnel against cold burns or asphyxia caused by such a helium release event. Recently, several simulation studies have been carried out modelling the propagation of the helium/air mixture, resulting from the opening of such a safety device, along the tunnel. The released helium flows vary in the range between 1 kg/s and 0.1 kg/s. To validate these different simulation studies, real life mock-up tests have been performed inside the LHC tunnel, releasing helium flow rates of 1 kg/s, 0.3 kg/s and 0.1 kg/s. For each test, up to 1000 liters of liquid helium wer...

  13. Computational Wind Tunnel: A Design Tool for Rotorcraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Rotorcraft engineers traditionally use the wind tunnel to evaluate and finalize designs. Insufficient correlation between wind tunnel results and flight tests, have...

  14. In-situ failure test in the research tunnel at Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Autio, J.; Johansson, E.; Kirkkomaeki, T. [Saanio and Riekkola Consulting Engineers, Helsinki (Finland); Hakala, M. [Gridpoint Finland Oy (Finland); Heikkilae, E. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Rock Engineering

    2000-05-01

    A failure test suitable for execution in the Research Tunnel at Olkiluoto has been planned to study the failure of rock in-situ. The objectives of the in-situ failure test is to assess the applicability of numerical modelling codes and methods to the study of rock failure and associated crack propagation and to develop a novel technique to be used to determine the strength of rock in-situ. The objective of this study was to make a preliminary design of the failure test, assess the technical feasibility of the test and to give input information for further numerical modelling of the test. The design of the failure test is reported and results of preliminary modelling are given. The input information for future modelling includes a study of rock properties, fracture propagation in rock, in-situ stresses and the development of techniques for using the expanding agent to produce artificial stress field. The study showed that mechanical properties such as strength of gneissic tonalite, the main rock type in the Research Tunnel, depends highly on the orientation of schistocity. The in-situ failure test was shown to be technically feasible and a state of stress high enough to cause failure can be created artificially by using a proper expansive agent and design. (orig.)

  15. CCTF CORE I test results

    International Nuclear Information System (INIS)

    Murao, Yoshio; Sudoh, Takashi; Akimoto, Hajime; Iguchi, Tadashi; Sugimoto, Jun; Fujiki, Kazuo; Hirano, Kenmei

    1982-07-01

    This report presents the results of the following CCTF CORE I tests conducted in FY. 1980. (1) Multi-dimensional effect test, (2) Evaluation model test, (3) FLECHT coupling test. On the first test, one-dimensional treatment of the core thermohydrodynamics was discussed. On the second and third tests, the test results were compared with the results calculated by the evaluation model codes and the results of the corresponding FLECHT-SET test (Run 2714B), respectively. The work was performed under contracts with the Atomic Energy Bureau of Science and Technology Agency of Japan. (author)

  16. Simulation of Model Force-Loading with Changing Its Position in the Wind Tunnel Test Section

    Directory of Open Access Journals (Sweden)

    V. T. Bui

    2015-01-01

    Full Text Available When planning and implementing an aerodynamic experiment, model sizes and its position in the test section of the wind tunnel (WT play very important role. The paper focuses on the value variations of the aerodynamic characteristics of a model through changing its position in the WT test section and on the attenuation of the velocity field disturbance in front of the model. Flow around aerodynamic model profile in the open test section of the low-speed WT T-500 is simulated at BMSTU Department SM3. The problem is solved in a two-dimensional case using the ANSYS Fluent package. The mathematical model of flow is based on the Reynolds equations closed by the SST turbulence model. The paper also presents the results of the experiment. Experiments conducted in WT T-500 well correlate with the calculated data and show the optimal position in the middle of the test section when conducting the weighing and drainage experiments. Disturbance of tunnel dynamic pressure (velocity head and flow upwash around the model profile and circular cylinder in the WT test section is analyzed. It was found that flow upstream from the front stagnation point on the body weakly depends on the Reynolds number and obtained results can be used to assess the level of disturbances in the flow around a model by incompressible airflow.

  17. Nacelle Chine Installation Based on Wind-Tunnel Test Using Efficient Global Optimization

    Science.gov (United States)

    Kanazaki, Masahiro; Yokokawa, Yuzuru; Murayama, Mitsuhiro; Ito, Takeshi; Jeong, Shinkyu; Yamamoto, Kazuomi

    Design exploration of a nacelle chine installation was carried out. The nacelle chine improves stall performance when deploying multi-element high-lift devices. This study proposes an efficient design process using a Kriging surrogate model to determine the nacelle chine installation point in wind-tunnel tests. The design exploration was conducted in a wind-tunnel using the JAXA high-lift aircraft model at the JAXA Large-scale Low-speed Wind Tunnel. The objective was to maximize the maximum lift. The chine installation points were designed on the engine nacelle in the axial and chord-wise direction, while the geometry of the chine was fixed. In the design process, efficient global optimization (EGO) which includes Kriging model and genetic algorithm (GA) was employed. This method makes it possible both to improve the accuracy of the response surface and to explore the global optimum efficiently. Detailed observations of flowfields using the Particle Image Velocimetry method confirmed the chine effect and design results.

  18. Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.

    2008-05-01

    Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

  19. Background Acoustics Levels in the 9x15 Wind Tunnel and Linear Array Testing

    Science.gov (United States)

    Stephens, David

    2011-01-01

    The background noise level in the 9x15 foot wind tunnel at NASA Glenn has been documented, and the results compare favorably with historical measurements. A study of recessed microphone mounting techniques was also conducted, and a recessed cavity with a micronic wire mesh screen reduces hydrodynamic noise by around 10 dB. A three-microphone signal processing technique can provide additional benefit, rejecting up to 15 dB of noise contamination at some frequencies. The screen and cavity system offers considerable benefit to test efficiency, although there are additional calibration requirements.

  20. Correaltion of full-scale drag predictions with flight measurements on the C-141A aircraft. Phase 2: Wind tunnel test, analysis, and prediction techniques. Volume 1: Drag predictions, wind tunnel data analysis and correlation

    Science.gov (United States)

    Macwilkinson, D. G.; Blackerby, W. T.; Paterson, J. H.

    1974-01-01

    The degree of cruise drag correlation on the C-141A aircraft is determined between predictions based on wind tunnel test data, and flight test results. An analysis of wind tunnel tests on a 0.0275 scale model at Reynolds number up to 3.05 x 1 million/MAC is reported. Model support interference corrections are evaluated through a series of tests, and fully corrected model data are analyzed to provide details on model component interference factors. It is shown that predicted minimum profile drag for the complete configuration agrees within 0.75% of flight test data, using a wind tunnel extrapolation method based on flat plate skin friction and component shape factors. An alternative method of extrapolation, based on computed profile drag from a subsonic viscous theory, results in a prediction four percent lower than flight test data.

  1. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    Science.gov (United States)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  2. Theory and feasibility tests for a seismic scanning tunnelling macroscope

    KAUST Repository

    Schuster, Gerard T.

    2012-09-01

    We propose a seismic scanning tunnelling macroscope (SSTM) that can detect subwavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the scatterer is in the near-field region. This means that, as the scatterer approaches the source, imaging of the scatterer with super-resolution can be achieved. Acoustic and elastic simulations support this concept, and a seismic experiment in an Arizona tunnel shows a TRM profile with super-resolution adjacent to the fault location. The SSTM is analogous to the optical scanning tunnelling microscopes having subwavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by the imaging of near-field seismic energy.

  3. Minimally Invasive Ultrasound-Guided Carpal Tunnel Release: Preliminary Clinical Results.

    Science.gov (United States)

    Henning, P Troy; Yang, Lynda; Awan, Tariq; Lueders, Daniel; Pourcho, Adam M

    2018-04-02

    Ultrasound-guided carpal tunnel release was performed on 14 patients (18 wrists) using dynamic expansion of the transverse safe zone. Our patient population included able-bodied patients and those with impairments. The first 8 cases (12 wrists) underwent the procedure in an operating room, the remainder in an outpatient setting. No complications occurred, and all patients were able to immediately resume use of their hands without therapy. Improvements in the Quick Form of the Disabilities of the Arm, Shoulder, and Hand Index and Boston Carpal Tunnel Questionnaire at 3 months were comparable to results reported with mini-open and endoscopic release. Our results show that ultrasound-guided carpal tunnel release can be safely and effectively performed in an outpatient setting. © 2018 by the American Institute of Ultrasound in Medicine.

  4. The responsiveness of sensibility and strength tests in patients undergoing carpal tunnel decompression

    Directory of Open Access Journals (Sweden)

    Miller Leanne

    2011-10-01

    Full Text Available Abstract Background Several clinical measures of sensory and motor function are used alongside patient-rated questionnaires to assess outcomes of carpal tunnel decompression. However there is a lack of evidence regarding which clinical tests are most responsive to clinically important change over time. Methods In a prospective cohort study 63 patients undergoing carpal tunnel decompression were assessed using standardised clinician-derived and patient reported outcomes before surgery, at 4 and 8 months follow up. Clinical sensory assessments included: touch threshold with monofilaments (WEST, shape-texture identification (STI™ test, static two-point discrimination (Mackinnon-Dellon Disk-Criminator and the locognosia test. Motor assessments included: grip and tripod pinch strength using a digital grip analyser (MIE, manual muscle testing of abductor pollicis brevis and opponens pollicis using the Rotterdam Intrinsic Handheld Myometer (RIHM. The Boston Carpal Tunnel Questionnaire (BCTQ was used as a patient rated outcome measure. Results Relative responsiveness at 4 months was highest for the BCTQ symptom severity scale with moderate to large effects sizes (ES = -1.43 followed by the BCTQ function scale (ES = -0.71. The WEST and STI™ were the most responsive sensory tests at 4 months showing moderate effect sizes (WEST ES = 0.55, STI ES = 0.52. Grip and pinch strength had a relatively higher responsiveness compared to thenar muscle strength but effect sizes for all motor tests were very small (ES ≤0.10 or negative indicating a decline compared to baseline in some patients. Conclusions For clinical assessment of sensibility touch threshold assessed by monofilaments (WEST and tactile gnosis measured with the STI™ test are the most responsive tests and are recommended for future studies. The use of handheld myometry (RIHM for manual muscle testing, despite more specifically targeting thenar muscles, was less responsive than grip or tripod

  5. Evaluation of tunnel seismic prediction (TSP) result using the Japanese highway rock mass classification system for Pahang-Selangor Raw Water Transfer Tunnel

    Science.gov (United States)

    Von, W. C.; Ismail, M. A. M.

    2017-10-01

    The knowing of geological profile ahead of tunnel face is significant to minimize the risk in tunnel excavation work and cost control in preventative measure. Due to mountainous area, site investigation with vertical boring is not recommended to obtain the geological profile for Pahang-Selangor Raw Water Transfer project. Hence, tunnel seismic prediction (TSP) method is adopted to predict the geological profile ahead of tunnel face. In order to evaluate the TSP results, IBM SPSS Statistic 22 is used to run artificial neural network (ANN) analysis to back calculate the predicted Rock Grade Points (JH) from actual Rock Grade Points (JH) using Vp, Vs and Vp/Vs from TSP. The results show good correlation between predicted Rock Grade points and actual Rock Grade Points (JH). In other words, TSP can provide geological profile prediction ahead of tunnel face significantly while allowing continuously TBM excavation works. Identifying weak zones or faults ahead of tunnel face is crucial for preventative measures to be carried out in advance for a safer tunnel excavation works.

  6. Characterization of a new open jet wind tunnel to optimize and test vertical axis wind turbines

    DEFF Research Database (Denmark)

    Tourn, Silvana; Pallarès, Jordi; Cuesta, Ildefonso

    2017-01-01

    Based on the increasing interest in urban environmental technologies, the study of small scale vertical axis wind turbines shows motivating challenges. In this paper, we present the characteristics and potentials of a new open jet wind tunnel. It has a nozzle exit area of 1.5 × 1.5 m2, and it can......%. The detailed characterization of the flow carried out indicates that the wind tunnel can be used to test small scale models of wind turbines....

  7. EVALUATION OF REINFORCING EFFECT ON FACEBOLTS FOR TUNNELING USING X-RAY CT AND CENTRIFUGE MODEL TEST

    Science.gov (United States)

    Takano, Daiki; Otani, Jun; Date, Kensuke; Yokot, Yasuhiro; Nagatani, Hideki

    The purpose of this paper is firstly to simulate the tunnel face failure in laboratory with four cases of model tests by pulling out tunnel model from a sandy ground that are without using auxiliary method nor facebolts and using facebolts with three different lengths of bolts, and secondary, to investigate the behavior of model ground using X-ray computed tomography (CT) scanner to visualize the failure zone in three dimensions. In addition to those results, a series of centrifuge model tests are conducted to confirm the results of X-ray CT test and also to discuss the ground behavior under full scale stress level. Finally, the effect of face bolting method is evaluated based on all the test results.

  8. About tunnelling times

    International Nuclear Information System (INIS)

    Olkhovsky, V.S.; Recami, E.

    1991-08-01

    In this paper, first we critically analyse the main theoretical definitions and calculations of the sub-barrier tunnelling and reflection times. Secondly, we propose a new, physically sensible definition of such durations, on the basis of a recent general formalism (already tested for other types of quantum collisions). At last, we discuss some results regarding temporal evolution of the tunnelling processes, and in particular the ''particle'' speed during tunnelling. (author). 36 refs, 1 fig

  9. Tunneling splitting in double-proton transfer: direct diagonalization results for porphycene.

    Science.gov (United States)

    Smedarchina, Zorka; Siebrand, Willem; Fernández-Ramos, Antonio

    2014-11-07

    Zero-point and excited level splittings due to double-proton tunneling are calculated for porphycene and the results are compared with experiment. The calculation makes use of a multidimensional imaginary-mode Hamiltonian, diagonalized directly by an effective reduction of its dimensionality. Porphycene has a complex potential energy surface with nine stationary configurations that allow a variety of tunneling paths, many of which include classically accessible regions. A symmetry-based approach is used to show that the zero-point level, although located above the cis minimum, corresponds to concerted tunneling along a direct trans - trans path; a corresponding cis - cis path is predicted at higher energy. This supports the conclusion of a previous paper [Z. Smedarchina, W. Siebrand, and A. Fernández-Ramos, J. Chem. Phys. 127, 174513 (2007)] based on the instanton approach to a model Hamiltonian of correlated double-proton transfer. A multidimensional tunneling Hamiltonian is then generated, based on a double-minimum potential along the coordinate of concerted proton motion, which is newly evaluated at the RI-CC2/cc-pVTZ level of theory. To make it suitable for diagonalization, its dimensionality is reduced by treating fast weakly coupled modes in the adiabatic approximation. This results in a coordinate-dependent mass of tunneling, which is included in a unique Hermitian form into the kinetic energy operator. The reduced Hamiltonian contains three symmetric and one antisymmetric mode coupled to the tunneling mode and is diagonalized by a modified Jacobi-Davidson algorithm implemented in the Jadamilu software for sparse matrices. The results are in satisfactory agreement with the observed splitting of the zero-point level and several vibrational fundamentals after a partial reassignment, imposed by recently derived selection rules. They also agree well with instanton calculations based on the same Hamiltonian.

  10. Tunneling works. Tunnel koji

    Energy Technology Data Exchange (ETDEWEB)

    Higo, M [Hazam Gumi, Ltd., Tokyo (Japan)

    1991-10-25

    A mountain tunneling method for rock-beds used to be applied mainly to construction works in the mountains under few restrictions by environmental problems. However, construction works near residential sreas have been increasing. There are such enviromental problems due to tunneling works as vibration, noise, lowering of ground-water level, and influences on other structures. This report mainly describes the measurement examples of vibration and noise accompanied with blasting and the effects of the measures to lessen such influences. When the tunneling works for the railroad was carried out on the natural ground mainly composed of basalt, vibration of the test blasting was measured at three stations with piezoelectric accelerometers. Then, ordinary blasting, mutistage blasting, and ABM blasting methods were used properly besed on the above results, and only a few complaints were made. In the different works, normal noise and low-frequency sound were mesured at 22 stations around the pit mouth. As countermeasures for noise, sound-proof sheets, walls, and single and double doors were installed and foundto be effective. 1 ref., 6 figs., 1 tab.

  11. Diagnosis of carpal tunnel syndrome: interobserver reliability of the blinded scratch-collapse test

    NARCIS (Netherlands)

    Blok, Robin D.; Becker, Stéphanie J. E.; Ring, David C.

    2014-01-01

    The reliability of the scratch-collapse test for diagnosis of carpal tunnel syndrome (CTS) has not been tested by independent investigators. This study measured the reliability of the scratch-collapse test comparing the treating hand surgeon and blinded evaluators. We performed a prospective

  12. Noise Localization Method for Model Tests in a Large Cavitation Tunnel Using a Hydrophone Array

    Directory of Open Access Journals (Sweden)

    Cheolsoo Park

    2016-02-01

    Full Text Available Model tests are performed in order to predict the noise level of a full ship and to control its noise signature. Localizing noise sources in the model test is therefore an important research subject along with measuring noise levels. In this paper, a noise localization method using a hydrophone array in a large cavitation tunnel is presented. The 45-channel hydrophone array was designed using a global optimization technique for noise measurement. A set of noise experiments was performed in the KRISO (Korea Research Institute of Ships & Ocean Engineering large cavitation tunnel using scaled models, including a ship with a single propeller, a ship with twin propellers and an underwater vehicle. The incoherent broadband processors defined based on the Bartlett and the minimum variance (MV processors were applied to the measured data. The results of data analysis and localization are presented in the paper. Finally, it is shown that the mechanical noise, as well as the propeller noise can be successfully localized using the proposed localization method.

  13. MITG test procedure and results

    International Nuclear Information System (INIS)

    Eck, M.E.; Mukunda, M.

    1983-01-01

    Elements and modules for Radioisotope Thermoelectric Generator have been performance tested since the inception of the RTG program. These test articles seldom resembled flight hardware and often lacked adequate diagnostic instrumentation. Because of this, performance problems were not identified in the early stage of program development. The lack of test data in an unexpected area often hampered the development of a problem solution. A procedure for conducting the MITG Test was developed in an effort to obtain data in a systematic, unambiguous manner. This procedure required the development of extensive data acquisition software and test automation. The development of a facility to implement the test procedure, the facility hardware and software requirements, and the results of the MITG testing are the subject of this paper

  14. Development and Operation of an Automatic Rotor Trim Control System for the UH-60 Individual Blade Control Wind Tunnel Test

    Science.gov (United States)

    Theodore, Colin R.; Tischler, Mark B.

    2010-01-01

    An automatic rotor trim control system was developed and successfully used during a wind tunnel test of a full-scale UH-60 rotor system with Individual Blade Control (IBC) actuators. The trim control system allowed rotor trim to be set more quickly, precisely and repeatably than in previous wind tunnel tests. This control system also allowed the rotor trim state to be maintained during transients and drift in wind tunnel flow, and through changes in IBC actuation. The ability to maintain a consistent rotor trim state was key to quickly and accurately evaluating the effect of IBC on rotor performance, vibration, noise and loads. This paper presents details of the design and implementation of the trim control system including the rotor system hardware, trim control requirements, and trim control hardware and software implementation. Results are presented showing the effect of IBC on rotor trim and dynamic response, a validation of the rotor dynamic simulation used to calculate the initial control gains and tuning of the control system, and the overall performance of the trim control system during the wind tunnel test.

  15. Validation of US3D for Capsule Aerodynamics using 05-CA Wind Tunnel Test Data

    Science.gov (United States)

    Schwing, Alan

    2012-01-01

    Several comparisons of computational fluid dynamics to wind tunnel test data are shown for the purpose of code validation. The wind tunnel test, 05-CA, uses a 7.66% model of NASA's Multi-Purpose Crew Vehicle in the 11-foot test section of the Ames Unitary Plan Wind tunnel. A variety of freestream conditions over four Mach numbers and three angles of attack are considered. Test data comparisons include time-averaged integrated forces and moments, time-averaged static pressure ports on the surface, and Strouhal Number. The applicability of the US3D code to subsonic and transonic flow over a bluff body is assessed on a comprehensive data set. With close comparison, this work validates US3D for highly separated flows similar to those examined here.

  16. Suppression of background noise in a transonic wind-tunnel test section

    Science.gov (United States)

    Schutzenhofer, L. A.; Howard, P. W.

    1975-01-01

    Some exploratory tests were recently performed in the transonic test section of the NASA Marshall Space Flight Center 14-in. wind tunnel to suppress the background noise. In these tests, the perforated walls of the test section were covered with fine wire screens. The screens eliminated the edge tones generated by the holes in the perforated walls and significantly reduced the tunnel background noise. The tunnel noise levels were reduced to such a degree by this simple modification at Mach numbers 0.75, 0.9, 1.1, 1.2, and 1.46 that the fluctuating pressure levels of a turbulent boundary layer could be measured on a 5-deg half-angle cone.

  17. Anechoic wind tunnel tests on high-speed train bogie aerodynamic noise

    OpenAIRE

    Latorre Iglesias, E.; Thompson, D.; Smith, M.; Kitagawa, T.; Yamazaki, N.

    2016-01-01

    Aerodynamic noise becomes a significant noise source at speeds normally reached by high-speed trains. The train bogies are identified as important sources of aerodynamic noise. Due to the difficulty to assess this noise source carrying out field tests, wind tunnel tests offer many advantages. Tests were performed in the large-scale low-noise anechoic wind tunnel at Maibara, Japan, using a 1/7 scale train car and bogie model for a range of flow speeds between 50, 76, 89 and 100 m/s. The depend...

  18. Progression of carpal tunnel syndrome according to electrodiagnostic testing in nonoperatively treated patients

    NARCIS (Netherlands)

    van Suchtelen, Mark; Becker, Stéphanie J. E.; Gruber, Jillian S.; Ring, David

    2014-01-01

    This study tested the null hypothesis that nonoperatively treated patients would not show disease progression of carpal tunnel syndrome (CTS) over time according to median nerve distal motor latency (DML) on two electrodiagnostic tests. This retrospective study analyzed sixty-two adult

  19. Interventional radiologic placement of tunneled central venous catheters : results and complications in 557 cases

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Kyo; Do, Young Soo; Paik, Chul H. [Samsung Medical Center, Sungkyunkwan Univ. School of Medicine, Seoul (Korea, Republic of)] (and others)

    1999-05-01

    To evaluate prospectively the results of interventional radiologic placement of tunneled central venous catheters, and subsequent complications. Between April 1997 and April 1998, a total of 557 tunneled central venous catheters were percutaneously placed in 517 consecutive patients in an interventional radiology suite. The indications were chemotherapy in 533 cases, total parenteral nutrition in 23 and transfusion in one. Complications were evaluated prospectively by means of a chart review, chest radiography, central vein angiography and blood/catheter culture. The technical success rate for tunneled central venous catheter placement was 100% (557/557 cases). The duration of catheter placement ranged from 4 to 356 (mean, 112{+-}4.6) days; Hickman catheters were removed in 252 cases during follow-up. Early complications included 3 cases of pneumothorax(0.5%), 4 cases of local bleeding/hematoma(0.7%), 2 cases of primary malposition(0.4%), and 1 case of catheter leakage(0.2%). Late complications included 42 cases of catheter-related infection(7.5%), 40 cases of venous thrombosis (7.2%), 18 cases of migration (3.2%), 5 cases of catheter / pericatheter of occlusion(0.8%), and 1 case of pseudoaneurysm(0.2%). The infection rate and thrombosis rate per 1000 days were 1.57 and 1.50, respectively. The technical success rate of interventional radiologic placement of tunneled central venous catheters was high. In comparison to conventional surgical placement, it is a more reliable method and leads to fewer complications.

  20. Engineering model cryocooler test results

    International Nuclear Information System (INIS)

    Skimko, M.A.; Stacy, W.D.; McCormick, J.A.

    1992-01-01

    This paper reports that recent testing of diaphragm-defined, Stirling-cycle machines and components has demonstrated cooling performance potential, validated the design code, and confirmed several critical operating characteristics. A breadboard cryocooler was rebuilt and tested from cryogenic to near-ambient cold end temperatures. There was a significant increase in capacity at cryogenic temperatures and the performance results compared will with code predictions at all temperatures. Further testing on a breadboard diaphragm compressor validated the calculated requirement for a minimum axial clearance between diaphragms and mating heads

  1. G-tunnel pressurized slot-testing evaluations

    International Nuclear Information System (INIS)

    Zimmerman, R.M.; Sifre-Soto, C.; Mann, K.L.; Bellman, R.A. Jr.; Luker, S.; Dodds, D.J.

    1992-04-01

    Designers and analysts of radioactive waste repositories must be able to predict the mechanical behavior of the host rock. Sandia National Laboratories elected to conduct a development program to enhance mechanical-type measurements. The program was focused on pressurized slot testing and featured (1) development of an improved method to cut slots using a chain saw with diamond-tipped cutters, (2) measurements useful for determining in situ stresses normal to slots, (3) measurements applicable for determining the in situ modulus of deformation parallel to a drift surface, and (4) evaluations of pressurized slot strength testing results and methods. This report contains data interpretation and evaluations. Included are recommendations for future efforts. This third report contains the interpretations of the testing with emphasis on the measurement results as they apply to describing rock behavior. In particular, emphases are placed on (1) normal stress determinations using the flatjack cancellation (FC) method, (2) modulus of deformation determinations, and (3) high pressure investigations. Most of the material in the first two reports is not repeated here. Appropriate data are repeated in tabular form

  2. Summary of CCTF test results

    International Nuclear Information System (INIS)

    Iguchi, T.; Murao, Y.; Sugimoto, J.; Akimoto, H.; Okubo, T.; Hojo, T.

    1987-01-01

    Conservatism of current safety analysis was assessed by comparing the predicted result with cylindrical core test facility (CCTF) test result performed at Japan Atomic Energy Research Institute. WREM code was selected for the assessment. The overall conservatism of the WREM code on the peak clad temperature prediction was confirmed against CCTF evaluation model (EM) test which simulated the typical initial and boundary conditions in the safety evaluation analysis. WREM code predicted the reasonable core boundary conditions and the conservatism of the code came mainly from core calculation. The conservatism of the WREM code against CCTF data could be attributed to the following three points: (1) no horizontal mixing assumption between subchannels at each elevation; (2) no modeling on heat transfer enhancement caused by the radial core power profile; and (3) conservative heat transfer correlations in the code

  3. Mobile evaporator corrosion test results

    International Nuclear Information System (INIS)

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80 degrees C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either open-quotes satisfactoryclose quotes (2-20 mpy) or open-quotes excellentclose quotes (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment

  4. Preliminary studies of tunnel interface response modeling using test data from underground storage facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Sobolik, Steven Ronald; Bartel, Lewis Clark

    2010-11-01

    correctly image the tunnel. This report represents a preliminary step in the development of a methodology to convert numerical predictions of rock properties to an estimation of the extent of rock damage around an underground facility and its corresponding seismic velocity, and the corresponding application to design a testing methodology for tunnel detection.

  5. Analysis of dynamic accumulative damage about the lining structure of high speed railway’s tunnel based on ultrasonic testing technology

    Science.gov (United States)

    Wang, Xiang-qiu; Zhang, Huojun; Xie, Wen-xi

    2017-08-01

    Based on the similar material model test of full tunnel, the theory of elastic wave propagation and the testing technology of intelligent ultrasonic wave had been used to research the dynamic accumulative damage characteristics of tunnel’s lining structure under the dynamic loads of high speed train. For the more, the dynamic damage variable of lining structure of high speed railway’s tunnel was obtained. The results shown that the dynamic cumulative damage of lining structure increases nonlinearly with the times of cumulative vibration, the weakest part of dynamic cumulative damage is the arch foot of tunnel. Much more attention should be paid to the design and operation management of high speed railway’s tunnel.

  6. Overview of results from 2D airfoil testing at Risoe

    Energy Technology Data Exchange (ETDEWEB)

    Fuglsang, P. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1997-12-31

    This paper gives an overview of the results from two dimensional airfoil testing at Risoe. A two dimensional testing method was recently developed where a test rig is inserted into an open jet flow in a wind tunnel of the close return loop type with an open test section. Pressure measurements provide the lift and drag forces. Both stationary flow and dynamic inflow from pitch motion are possible. The wind tunnel static pressure and total dynamic pressures were calibrated and wind tunnel boundary corrections were found. So far, the testing method was verified by comparison of NACA 63-215 airfoil measurements to numerical predictions and to measurements. Furthermore, the Risoe-1, FFA-W3-241, FFA-W3-301 and NACA 63-430 airfoils were measured. Different types of leading edge roughness and vortex generators were investigated. For all airfoils, good agreements with predictions were obtained on both pressure distribution and on lift coefficient. The drag coefficients were slightly higher than predicted. (eg) 10 refs.

  7. Dynamic Wind-Tunnel Testing of a Sub-Scale Iced S-3B Viking

    Science.gov (United States)

    Lee, Sam; Barnhart, Billy; Ratvasky, Thomas P.

    2012-01-01

    The effect of ice accretion on a 1/12-scale complete aircraft model of S-3B Viking was studied in a rotary-balance wind tunnel. Two types of ice accretions were considered: ice protection system failure shape and runback shapes that form downstream of the thermal ice protection system. The results showed that the ice shapes altered the stall characteristics of the aircraft. The ice shapes also reduced the control surface effectiveness, but mostly near the stall angle of attack. There were some discrepancies with the data with the flaps deflected that were attributed to the low Reynolds number of the test. Rotational and forced-oscillation studies showed that the effects of ice were mostly in the longitudinal forces, and the effects on the lateral forces were relatively minor.

  8. Wind tunnel testing of the DeepWind demonstrator in design and tilted operating conditions

    DEFF Research Database (Denmark)

    Battistia, L.; Benini, E.; Brighenti, A.

    2016-01-01

    The DeepWind Project aims at investigating the feasibility of a new floating vertical-axis wind turbine (VAWT) concept, whose purpose is to exploit wind resources at deep-water offshore sites. The results of an extensive experimental campaign on the DeepWind reduced scale demonstrator are here...... was installed on a high precision test bench, whose axis was suitable to be inclined up to 15° with respect to the design (i.e. upright) operating condition. The experiments were performed at the large scale, high speed wind tunnel of the Politecnico di Milano (Italy), using a “free jet” (open channel...... presented for different wind speeds and rotor angular velocities, including also skewed flow operation due to a tilted rotor arrangement. To accomplish this, after being instrumented to measure aerodynamic power and thrust (both in streamwise and transversal directions), a troposkien three-bladed rotor...

  9. Performance of overlapped shield tunneling through an integrated physical model tests, numerical simulations and real-time field monitoring

    Directory of Open Access Journals (Sweden)

    Junlong Yang

    2017-03-01

    Full Text Available In this work, deformations and internal forces of an existing tunnel subjected to a closely overlapped shield tunneling are monitored and analyzed using a series of physical model experiments and numerical simulations. Effects of different excavation sequences and speeds are explicitly considered in the analysis. The results of the physical model experiments show that the bottom-up tunneling procedure is better than the top-down tunneling procedure. The incurred deformations and internal forces of the existing tunnel increase with the excavation speed and the range of influence areas also increase accordingly. For construction process control, real-time monitoring of the power tunnel is used. The monitoring processes feature full automation, adjustable frequency, real-time monitor and dynamic feedback, which are used to guide the construction to achieve micro-disturbance control. In accordance with the situation of crossing construction, a numerical study on the performance of power tunnel is carried out. Construction control measures are given for the undercrossing construction, which helps to accomplish the desired result and meet protection requirements of the existing tunnel structure. Finally, monitoring data and numerical results are compared, and the displacement and joint fracture change models in the power tunnel subject to the overlapped shield tunnel construction are analyzed. Keywords: Overlapped tunnel, Automatic monitoring, Micro-disturbance control

  10. Extruded Tunnel Lining System : Phase 1. Conceptual Design and Feasibility Testing.

    Science.gov (United States)

    1979-09-01

    The Extruded Tunnel Lining System (ETLS) has been conceived as a means of continuously placing the final concrete tunnel lining directly behind a tunnel boring machine. The system will shorten the time required to excavate and line a tunnel section, ...

  11. The Yucca Mountain Project prototype air-coring test, U12g tunnel, Nevada test site

    International Nuclear Information System (INIS)

    Ray, J.M.; Newsom, J.C.

    1994-12-01

    The Prototype Air-Coring Test was conducted at the Nevada Test Site (NTS) G-Tunnel facility to evaluate standard coring techniques, modified slightly for air circulation, for use in testing at a prospective nuclear waste repository at Yucca Mountain, Nevada. Air-coring technology allows sampling of subsurface lithology with minimal perturbation to ambient characteristic such as that required for exploratory holes near aquifers, environmental applications, and site characterization work. Two horizontal holes were cored, one 50 ft long and the other 150 ft long, in densely welded fractured tuff to simulate the difficult drilling conditions anticipated at Yucca Mountain. Drilling data from seven holes on three other prototype tests in nonwelded tuff were also collected for comparison. The test was used to establish preliminary standards of performance for drilling and dust collection equipment and to assess procedural efficiencies. The Longyear-38 drill achieved 97% recovery for HQ-size core (-2.5 in.), and the Atlas Copco dust collector (DCT-90) captured 1500 lb of fugitive dust in a mine environment with only minor modifications. Average hole production rates were 6-8 ft per 6-h shift in welded tuff and almost 20 ft per shift on deeper holes in nonwelded tuff. Lexan liners were successfully used to encapsulate core samples during the coring process and protect core properties effectively. The Prototype Air-Coring Test demonstrated that horizontal air coring in fractured welded tuff (to at least 150 ft) can be safely accomplished by proper selection, integration, and minor modification of standard drilling equipment, using appropriate procedures and engineering controls. The test also indicated that rig logistics, equipment, and methods need improvement before attempting a large-scale dry drilling program at Yucca Mountain

  12. Test Section Turbulence in the AEDC/VKF Supersonic/Hypersonic Wind Tunnels

    Science.gov (United States)

    1981-07-01

    8 4.3 Ins t rumen ta t ion ....................................................... 18...Pressure Fluctuation Spectral Content in AEDC Tunnels A and B (Based on FY79 Pitot Probe), Af = 200 Hz...intensity, spatial distribution, and spectral content , has become increasingly important in the analysis of test data. The sector- supported model in the

  13. Coldbox installation for HL-LHC crab cavity test in the SPS tunnel (BA6)

    CERN Document Server

    Ordan, Julien Marius

    2018-01-01

    The Cold-box, produced by Linde Kryotechnik for the SPS crab-cavity test stand for HL-LHC, on its arrival at CERN. It wll be transported into the tunnel in horizontal position and then will have to be tilted in its operational position, on its vertical axis, before connecting it to cryogenics lines.

  14. Construction of a cylindrical brine test room using a tunnel boring machine

    International Nuclear Information System (INIS)

    Likar, V.F.; Burrington, T.P.

    1990-01-01

    This paper discusses the construction of a horizontal cylindrical brine test room at the Waste Isolation Pilot Plant (WIPP). The room was constructed in the bedded salt formation at a depth of 655 meters with a tunnel boring machine. The machine leasing, technical and operational management, parameters involved, and successful completion of this effort are included. 3 figs

  15. Construction of a cylindrical brine test room using a tunnel boring machine

    International Nuclear Information System (INIS)

    Likar, V.F.; Burrington, T.P.

    1990-01-01

    This paper discusses the construction of a horizontal cylindrical brine test room at the Waste Isolation Pilot Plant (WIPP). The room was constructed in the bedded salt formation at a depth of 655 meters with a tunnel boring machine. The machine leasing technical and operational management, parameters involved, and successful completion of this effort are included. 3 figs

  16. Design and Wind Tunnel Testing of a Thick, Multi-Element High-Lift Airfoil

    DEFF Research Database (Denmark)

    Zahle, Frederik; Gaunaa, Mac; Sørensen, Niels N.

    2012-01-01

    In this work a 2D CFD solver has been used to optimize the shape of a leading edge slat with a chord length of 30% of the main airfoil which was 40% thick. The airfoil configuration was subsequently tested in a wind tunnel and compared to numerical predictions. The multi-element airfoil was predi...

  17. Weak-field asymptotic theory of tunneling ionization: benchmark analytical results for two-electron atoms

    International Nuclear Information System (INIS)

    Trinh, Vinh H; Morishita, Toru; Tolstikhin, Oleg I

    2015-01-01

    The recently developed many-electron weak-field asymptotic theory of tunneling ionization of atoms and molecules in an external static electric field (Tolstikhin et al 2014, Phys. Rev. A 89, 013421) is extended to the first-order terms in the asymptotic expansion in field. To highlight the results, here we present a simple analytical formula giving the rate of tunneling ionization of two-electron atoms H − and He. Comparison with fully-correlated ab initio calculations available for these systems shows that the first-order theory works quantitatively in a wide range of fields up to the onset of over-the-barrier ionization and hence is expected to find numerous applications in strong-field physics. (fast track communication)

  18. Wind Tunnel Testing of a 120th Scale Large Civil Tilt-Rotor Model in Airplane and Helicopter Modes

    Science.gov (United States)

    Theodore, Colin R.; Willink, Gina C.; Russell, Carl R.; Amy, Alexander R.; Pete, Ashley E.

    2014-01-01

    In April 2012 and October 2013, NASA and the U.S. Army jointly conducted a wind tunnel test program examining two notional large tilt rotor designs: NASA's Large Civil Tilt Rotor and the Army's High Efficiency Tilt Rotor. The approximately 6%-scale airframe models (unpowered) were tested without rotors in the U.S. Army 7- by 10-foot wind tunnel at NASA Ames Research Center. Measurements of all six forces and moments acting on the airframe were taken using the wind tunnel scale system. In addition to force and moment measurements, flow visualization using tufts, infrared thermography and oil flow were used to identify flow trajectories, boundary layer transition and areas of flow separation. The purpose of this test was to collect data for the validation of computational fluid dynamics tools, for the development of flight dynamics simulation models, and to validate performance predictions made during conceptual design. This paper focuses on the results for the Large Civil Tilt Rotor model in an airplane mode configuration up to 200 knots of wind tunnel speed. Results are presented with the full airframe model with various wing tip and nacelle configurations, and for a wing-only case also with various wing tip and nacelle configurations. Key results show that the addition of a wing extension outboard of the nacelles produces a significant increase in the lift-to-drag ratio, and interestingly decreases the drag compared to the case where the wing extension is not present. The drag decrease is likely due to complex aerodynamic interactions between the nacelle and wing extension that results in a significant drag benefit.

  19. Evaluating the RELM Test Results

    Directory of Open Access Journals (Sweden)

    Michael K. Sachs

    2012-01-01

    Full Text Available We consider implications of the Regional Earthquake Likelihood Models (RELM test results with regard to earthquake forecasting. Prospective forecasts were solicited for M≥4.95 earthquakes in California during the period 2006–2010. During this period 31 earthquakes occurred in the test region with M≥4.95. We consider five forecasts that were submitted for the test. We compare the forecasts utilizing forecast verification methodology developed in the atmospheric sciences, specifically for tornadoes. We utilize a “skill score” based on the forecast scores λfi of occurrence of the test earthquakes. A perfect forecast would have λfi=1, and a random (no skill forecast would have λfi=2.86×10-3. The best forecasts (largest value of λfi for the 31 earthquakes had values of λfi=1.24×10-1 to λfi=5.49×10-3. The best mean forecast for all earthquakes was λ̅f=2.84×10-2. The best forecasts are about an order of magnitude better than random forecasts. We discuss the earthquakes, the forecasts, and alternative methods of evaluation of the performance of RELM forecasts. We also discuss the relative merits of alarm-based versus probability-based forecasts.

  20. EFTF cobalt test assembly results

    International Nuclear Information System (INIS)

    Rawlins, J.A.; Wootan, D.W.; Carter, L.L.; Brager, H.R.; Schenter, R.E.

    1988-01-01

    A cobalt test assembly containing yttrium hydride pins for neutron moderation was irradiated in the Fast Flux Test Facility during Cycle 9A for 137.7 equivalent full power days at a power level fo 291 MW. The 36 test pins consisted of a batch of 32 pins containing cobalt metal to produce Co-60, and a set of 4 pins with europium oxide to produce Gd-153, a radioisotope used in detection of the bone disease Osteoporosis. Post-irradiation examination of the cobalt pins determined the Co-60 produced with an accuracy of about 5 %. The measured Co-60 spatially distributed concentrations were within 20 % of the calculated concentrations. The assembly average Co-60 measured activity was 4 % less than the calculated value. The europium oxide pins were gamma scanned for the europium isotopes Eu-152 and Eu-154 to an absolute accuracy of about 10 %. The measured europium radioisotpe anc Gd-153 concentrations were within 20 % of calculated values. In conclusion, the hydride assembly performed well and is an excellent vehicle for many Fast Flux Test Facility isotope production applications. The results also demonstrate that the calculational methods developed by the Westinghouse Hanford Company are very accurate. (author)

  1. NASA ERA Integrated CFD for Wind Tunnel Testing of Hybrid Wing-Body Configuration

    Science.gov (United States)

    Garcia, Joseph A.; Melton, John E.; Schuh, Michael; James, Kevin D.; Long, Kurt R.; Vicroy, Dan D.; Deere, Karen A.; Luckring, James M.; Carter, Melissa B.; Flamm, Jeffrey D.; hide

    2016-01-01

    NASAs Environmentally Responsible Aviation (ERA) Project explores enabling technologies to reduce aviations impact on the environment. One research challenge area for the project has been to study advanced airframe and engine integration concepts to reduce community noise and fuel burn. In order to achieve this, complex wind tunnel experiments at both the NASA Langley Research Centers (LaRC) 14x22 and the Ames Research Centers 40x80 low-speed wind tunnel facilities were conducted on a Boeing Hybrid Wing Body (HWB) configuration. These wind tunnel tests entailed various entries to evaluate the propulsion airframe interference effects including aerodynamic performance and aeroacoustics. In order to assist these tests in producing high quality data with minimal hardware interference, extensive Computational Fluid Dynamic (CFD) simulations were performed for everything from sting design and placement for both the wing body and powered ejector nacelle systems to the placement of aeroacoustic arrays to minimize its impact on the vehicles aerodynamics. This paper will provide a high level summary of the CFD simulations that NASA performed in support of the model integration hardware design as well as some simulation guideline development based on post-test aerodynamic data. In addition, the paper includes details on how multiple CFD codes (OVERFLOW, STAR-CCM+, USM3D, and FUN3D) were efficiently used to provide timely insight into the wind tunnel experimental setup and execution.

  2. RSG Deployment Case Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Owsley, Stanley L.; Dodson, Michael G.; Hatchell, Brian K.; Seim, Thomas A.; Alexander, David L.; Hawthorne, Woodrow T.

    2005-09-01

    The RSG deployment case design is centered on taking the RSG system and producing a transport case that houses the RSG in a safe and controlled manner for transport. The transport case was driven by two conflicting constraints, first that the case be as light as possible, and second that it meet a stringent list of Military Specified requirements. The design team worked to extract every bit of weight from the design while striving to meet the rigorous Mil-Spec constraints. In the end compromises were made primarily on the specification side to control the overall weight of the transport case. This report outlines the case testing results.

  3. Cyclonic valve test: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Andre Sampaio; Moraes, Carlos Alberto C.; Marins, Luiz Philipe M.; Soares, Fabricio; Oliveira, Dennis; Lima, Fabio Soares de; Airao, Vinicius [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Ton, Tijmen [Twister BV, Rijswijk (Netherlands)

    2012-07-01

    For many years, the petroleum industry has been developing a valve that input less shear to the flow for a given required pressure drop and this can be done using the cyclonic concept. This paper presents a comparison between the performances of a cyclonic valve (low shear) and a conventional globe valve. The aim of this work is to show the advantages of using a cyclonic low shear valve instead of the commonly used in the primary separation process by PETROBRAS. Tests were performed at PETROBRAS Experimental Center (NUEX) in Aracaju/SE varying some parameters: water cut; pressure loss (from 4 kgf/cm2 to 10 kgf/cm2); flow rates (30 m3/h and 45 m3/h). Results indicates a better performance of the cyclonic valve, if compared with a conventional one, and also that the difference of the performance, is a function of several parameters (emulsion stability, water content free, and oil properties). The cyclonic valve tested can be applied as a choke valve, as a valve between separation stages (for pressure drop), or for controlling the level of vessels. We must emphasize the importance to avoid the high shear imposed by conventional valves, because once the emulsion is created, it becomes more difficult to break it. New tests are being planned to occur in 2012, but PETROBRAS is also analyzing real cases where the applications could increase the primary process efficiency. In the same way, the future installations are also being designed considering the cyclonic valve usage. (author)

  4. Temperature measurements from a horizontal heater test in G-Tunnel

    International Nuclear Information System (INIS)

    Lin, Wunan; Ramirez, A.L.; Watwood, D.

    1991-10-01

    A horizontal heater test was conducted in G-Tunnel, Nevada Test Site, to study the hydrothermal response of the rock mass due to a thermal loading. The results of the temperature measurements are reported here. The measured temperatures agree well with a scoping calculation that was performed using a model which investigates the transport of water, vapor, air, and heat in fractured porous media. Our results indicate that the temperature field might be affected by the initial moisture content of the rock, the fractures in the rock, the distance from the free surface of the alcove wall, and the temperature distribution on the heater surface. Higher initial moisture content, higher fracture density, and cooling from the alcove wall tend to decrease the measured temperature. The temperature on top of the horizontal heater can was about 30 degrees C greater than at the bottom throughout most of the heating phase, causing the rock temperatures above the heater to be greater than those below. Along a radius from the center of the heater, the heating created a dry zone, followed by a boiling zone and condensation zone. Gravity drainage of the condensed water in the condensation zone had a strong effect on the boiling process in the test region. The temperatures below and to the side of the heater indicated a region receiving liquid drainage from an overlying region of condensation. We verified that a thermocouple in a thin-wall tubing measures the same temperature as one grouted in a borehole

  5. Wind tunnel tests on a one-foot diameter SR-7L propfan model

    Science.gov (United States)

    Aljabri, Abdullah S.

    1987-01-01

    Wind tunnel tests have been conducted on a one-foot diameter model of the SR-7L propfan in the Langley 16-Foot and 4 x 7 Meter Wind Tunnels as part of the Propfan Test Assessment (PTA) Program. The model propfan was sized to be used on a 1/9-scale model of the PTA testbed aircraft. The model propeller was tested in isolation and wing-mounted on the aircraft configuration at various Mach numbers and blade pitch angles. Agreement between data obtained from these tests and data from Hamilton Standard validate that the 1/9-scale propeller accurately simulates the aerodynamics of the SR-7L propfan. Predictions from an analytical computer program are presented and show good agreement with the experimental data.

  6. G-Tunnel pressurized slot-testing preparations

    International Nuclear Information System (INIS)

    Zimmerman, R.M.; Sifre-Soto, C.; Mann, K.L.; Bellman, R.A. Jr.; Luker, S.; Dodds, D.J.

    1992-04-01

    Designers and analysts of radioactive waste repositories must be able to predict the mechanical behavior of the host rock. Sandia National laboratories elected to conduct a development program on pressurized slot testing and featured (1) development of an improved method to cut slots using a chain saw with diamond-tipped cutters, (2) measurements useful for determining in situ stresses normal to slots, (3) measurements applicable for determining the in situ modulus of deformation parallel to a drift surface, and (4) evaluations of the potentials of pressurized slot strength testing. This report describes the preparations leading to the measurements and evaluations

  7. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2014-01-01

    been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade...... for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel...... that there is an increase in the lift coefficient by 26% for single-element airfoil at analysed conditions. The CFD simulation results were validated with wind tunnel tests. It is also observe that by selecting proper airfoil configuration and blade sizes an increase in lift coefficient can further be achieved....

  8. Background Pressure Profiles for Sonic Boom Vehicle Testing in the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel

    Science.gov (United States)

    Castner, Raymond; Shaw, Stephen; Adamson, Eric; Simerly, Stephanie

    2013-01-01

    In an effort to identify test facilities that offer sonic boom measurement capabilities, an exploratory test program was initiated using wind tunnels at NASA research centers. The subject of this report is the sonic boom pressure rail data collected in the Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel. The purpose is to summarize the lessons learned based on the test activity, specifically relating to collecting sonic boom data which has a large amount of spatial pressure variation. The wind tunnel background pressure profiles are presented as well as data which demonstrated how both wind tunnel Mach number and model support-strut position affected the wind tunnel background pressure profile. Techniques were developed to mitigate these effects and are presented.

  9. Cavitation erosion in sodium flow, sodium cavitation tunnel testing

    International Nuclear Information System (INIS)

    Courbiere, Pierre.

    1981-04-01

    The high-volume sodium flows present in fast neutron reactors are liable to induce cavitation phenomena in various portion of the sodium lines and pumps. The absence of sufficient data in this area led the C.E.A. to undertake an erosion research program in cavitating sodium flow. This paper discusses the considerations leading to the definition and execution of sodium cavitation erosion tests, and reviews the tests run with 400 0 C sodium on various steel grades: 316, 316 L, 316 Ti (Z8CNDT17-12), Poral (Z3CND18-12), 304 L and LN2 - clad 316 L (Ni coating-clad 316 L). Acoustic detection and signal processing methods were used with an instrument package designed and implemented at the Cadarache Nuclear Research Center

  10. Plasma Wind Tunnel Testing of Electron Transpiration Cooling Concept

    Science.gov (United States)

    2017-02-28

    Colorado State University ETC Electron Transpiration Cooling LHTS Local Heat Transfer Simulation LTE Local Thermodynamic Equilibrium RCC Reinforced...ceramic electric material testing in plasma environment (not performed), 4. measurements and analysis of the Electron Transpiration Cooling (Sec. 4.2). 2...VKI 1D boundary layer code for computation of enthalpy and boundary layer parameters: a) iterate on ’virtually measured ’ heat flux, b) once enthalpy

  11. Test Results for CSTR Test 4

    International Nuclear Information System (INIS)

    Lee, D.D.

    2001-01-01

    One of the 3 technologies currently being developed for the Savannah River Salt Waste Processing Program is the Small-Tank Tetraphenylborate Process (STTP). This process uses sodium tetraphenylborate to precipitate and remove radioactive Cs from the waste and monosodium titanate to sorb and remove radioactive Sr and actinides. ORNL is demonstrating this process at the 1:4000 scale using a 20-liter continuous-flow stirred tank reactor (CSTR) system. The primary goal of Test 4 was to verify that the STTP process could achieve and maintain the necessary Cs decontamination while TPB was actively decomposing. Even with TPB being decomposed by the off-normal conditions of this test, the decontaimination factor for 137 Cs obtained for the filtrate from the Slurry Concentrating Tank ranged from 47,000 to 646,000, exceeding the WAC standard

  12. Visualizing Flutter Mechanism as Traveling Wave Through Animation of Simulation Results for the Semi-Span Super-Sonic Transport Wind-Tunnel Model

    Science.gov (United States)

    Christhilf, David M.

    2014-01-01

    It has long been recognized that frequency and phasing of structural modes in the presence of airflow play a fundamental role in the occurrence of flutter. Animation of simulation results for the long, slender Semi-Span Super-Sonic Transport (S4T) wind-tunnel model demonstrates that, for the case of mass-ballasted nacelles, the flutter mode can be described as a traveling wave propagating downstream. Such a characterization provides certain insights, such as (1) describing the means by which energy is transferred from the airflow to the structure, (2) identifying airspeed as an upper limit for speed of wave propagation, (3) providing an interpretation for a companion mode that coalesces in frequency with the flutter mode but becomes very well damped, (4) providing an explanation for bursts of response to uniform turbulence, and (5) providing an explanation for loss of low frequency (lead) phase margin with increases in dynamic pressure (at constant Mach number) for feedback systems that use sensors located upstream from active control surfaces. Results from simulation animation, simplified modeling, and wind-tunnel testing are presented for comparison. The simulation animation was generated using double time-integration in Simulink of vertical accelerometer signals distributed over wing and fuselage, along with time histories for actuated control surfaces. Crossing points for a zero-elevation reference plane were tracked along a network of lines connecting the accelerometer locations. Accelerometer signals were used in preference to modal displacement state variables in anticipation that the technique could be used to animate motion of the actual wind-tunnel model using data acquired during testing. Double integration of wind-tunnel accelerometer signals introduced severe drift even with removal of both position and rate biases such that the technique does not currently work. Using wind-tunnel data to drive a Kalman filter based upon fitting coefficients to

  13. FIRST RESULTS FROM OEDOTENSIOMETRIC TESTS

    Directory of Open Access Journals (Sweden)

    Luigi Cavazza

    2008-09-01

    Full Text Available An oedotensiometer was used to examine to examine the behaviour of sieved sample of a swelling soil (a vertisol as well as of the same soils treated with solution of Na+ + Ca2+ to simulate the soil changes from excessive irrigation with brackish water. The oedometer test consisted in an infiltration of water from below through a ceramic porous plate at a feeding pressure of +10 cm water and successive drainage under a depression mostly of -112 cm of water. The rate of water entry as well as the swelling rate of the sample were monitored. Preliminary considerations regards the domains in which the shrinkage curve of a swelling soil is subdivided and make hypothesis on the swelling process expected when the infiltration from below of the sample is applied. The results support the hypothesis that when the water pressure is applied some water enters rather rapidly in the larger structural pores and is followed later by the swelling in the smaller pores, responsible for the basic domain. This first conclusion demonstrates that the assumption of a simultaneous movement of solid and liquid components in the sample, which is the base of most theoretical developments for swelling soils, cannot be accepted for the tested samples. Some cases with water clogging on the sample surface confirm a late final swelling of the soil and permitted to evaluate the hydraulic conductivity of the swollen soil. These manifestations are more evident in sodicated soils. The loading of the sample reduces the swelling of the sample and seems to reduce its permeability. The reduction of the feeding water pressure further reduces the sample swelling. The draining process from saturated soil sample shows that most of the process occurs in the large pores of the structural domain. This gives the possibility to evaluate the water diffusivity coefficient for the structural domain of the sample. In draining the soil with the highest sodication there was a variation of soil volume

  14. Irradiation effects test series test IE-1 test results report

    International Nuclear Information System (INIS)

    Quapp, W.J.; Allison, C.M.; Farrar, L.C.; Mehner, A.S.

    1977-03-01

    The report describes the results of the first programmatic test in the Nuclear Regulatory Commission Irradiation Effects Test Series. This test (IE-1) used four 0.97m long PWR-type fuel rods fabricated from previously irradiated Saxton fuel. The objectives of this test were to evaluate the effect of fuel pellet density on pellet-cladding interaction during a power ramp and to evaluate the influence of the irradiated state of the fuel and cladding on rod behavior during film boiling operation. Data are presented on the behavior of irradiated fuel rods during steady-state operation, a power ramp, and film boiling operation. The effects of as-fabricated gap size, as-fabricated fuel density, rod power, and power ramp rate on pellet-cladding interaction are discussed. Test data are compared with FRAP-T2 computer model predictions, and comments on the consequences of sustained film boiling operation on irradiated fuel rod behavior are provided

  15. Wind Tunnel Tests for Wind Pressure Distribution on Gable Roof Buildings

    Science.gov (United States)

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path. PMID:24082851

  16. Results of a M = 5.3 heat transfer test of the integrated vehicle using phase-change paint techniques on the 0.0175-scale model 56-OTS in the NASA/Ames Research Center 3.5-foot hypersonic wind tunnel

    Science.gov (United States)

    Marroquin, J.

    1985-01-01

    An experimental investigation was performed in the NASA/Ames Research Center 3.5-foot Hypersonic Wind Tunnel to obtain supersonic heat-distribution data in areas between the orbiter and external tank using phase-change paint techniques. The tests used Novamide SSV Model 56-OTS in the first and second-stage ascent configurations. Data were obtained at a nominal Mach number of 5.3 and a Reynolds number per foot of 5 x 10 to the 6th power with angles of attack of 0 deg, +/- 5 deg, and sideslip angles of 0 deg and +/- 5 deg.

  17. Space Launch System Base Heating Test: Experimental Operations & Results

    Science.gov (United States)

    Dufrene, Aaron; Mehta, Manish; MacLean, Matthew; Seaford, Mark; Holden, Michael

    2016-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Test methodology and conditions are presented, and base heating results from 76 runs are reported in non-dimensional form. Regions of high heating are identified and comparisons of various configuration and conditions are highlighted. Base pressure and radiometer results are also reported.

  18. Wind tunnel tests of stratospheric airship counter rotating propellers

    Directory of Open Access Journals (Sweden)

    Yaxi Chen

    2015-01-01

    Full Text Available Aerodynamic performance of the high-altitude propeller, especially the counter rotation effects, is experimentally studied. Influences of different configurations on a stratospheric airship, included 2-blade counter-rotating propeller (CRP, dual 2-blade single rotation propellers (SRPs and 4-blade SRP, are also indicated. This research indicates that the effect of counter rotation can greatly improve the efficiency. It shows that the CRP configuration results in a higher efficiency than the dual 2-blade SRPs configuration or 4-blade SRP configuration under the same advance ratio, and the CRP configuration also gains the highest efficiency whether under the situation of providing the same trust or absorbing the same power. It concludes that, for a stratospheric airship, the CRP configuration is better than the multiple SRPs configuration or a multi-blade SRP one.

  19. Resonant tunneling of UCN through the moving interference filter and experimental test of the UCN dispersion law

    International Nuclear Information System (INIS)

    Frank, A.I.; Bondarenko, I.V.; Balashov, S.N.; Geltenbort, P.; Hoghoj, P.; Kozlov, A.V.; Masalovich, S.V.; Toperverg, B.P.

    2004-01-01

    With the aim to test experimentally the dispersion law validity for very slow neutrons a spectrum of ultracold neutrons (UCN) under the condition of resonance tunneling through the moving Neutron Interference Filter was investigated. The neutron spectrum in this case has a narrow width resonance, whose parameters depend on the filter characteristics and dispersion law of neutron waves in matter. For a number of samples a noticeable shift of the resonance position when the filter moved parallel to its surface was detected. This shift is in strong contradiction with the commonly accepted dispersion law. Further investigations have shown that the spectrum of tunneling neutrons is not exactly defined by the solution of one-dimensional quantum problem, but substantially affected by neutron scattering from filter imperfections. The cross section of this scattering depends on the neutron wave number and increases dramatically in resonance conditions. Experimental results as well as comprehensive theoretical analysis have led us to the unambiguous conclusion that observed phenomena of the resonance shift in a moving sample are caused by scattering of neutron tunneling states rather than by a deviation from the commonly accepted dispersion law. (author)

  20. Design and Testing of a Natural Convection Solar Tunnel Dryer for Mango

    Directory of Open Access Journals (Sweden)

    Isaac Nyambe Simate

    2017-01-01

    Full Text Available A natural convection solar tunnel dryer comprising three major units, a solar collector unit, a drying unit, and a vertical bare flat-plate chimney, was constructed. No-load tests with a horizontal configuration of air entry into the collector resulted in a bidirectional air flow in the dryer. To correct this undesirable situation, an air guide at the collector was incorporated to ensure that air entered in a vertical direction. To investigate its performance, drying experiments with mango were carried out at the University of Zambia, Department of Agricultural Engineering. Uncertainties in the parameters measured in the experiment were analysed and quantified. The results showed that, under solar radiation between 568.4 and 999.5 W/m2, air temperature of up to 65.8°C was attained at the collector unit. The average relative humidity values were 30.8%, 6.4%, and 8.4% for the ambient, collector, and drying unit, respectively. Under these conditions, mango with an initial moisture content of 85.5% (wet basis was dried to 13.0% (wet basis in 9.5 hours. The collector, drying, and pick-up efficiencies were found to be 24.7%, 12.8%, and 35.0%, respectively. The average temperature difference between the chimney air and ambient air was 12.1°C, and this was sufficient in driving the flow of air through the dryer.

  1. Irradiation effects test Series Scoping Test 1: test results report

    International Nuclear Information System (INIS)

    Quapp, W.J.; Allison, C.M.; Farrar, L.C.

    1977-09-01

    The report describes the results of the first scoping test in the Irradiation Effects Test Series conducted by the Thermal Fuels Behavior Program, which is part of the Water Reactor Research Program of EG and G Idaho, Inc. The research is sponsored by the United States Nuclear Regulatory Commission. This test used an unirradiated, three-foot-long, PWR-type fuel rod. The objective of this test was to thoroughly evaluate the remote fabrication procedures to be used for irradiated rods in future tests, handling plans, and reactor operations. Additionally, selected fuel behavior data were obtained. The fuel rod was subjected to a series of preconditioning power cycles followed by a power increase which brought the fuel rod power to about 20.4 kW/ft peak linear heat rating at a coolant mass flux of 1.83 x 10 6 lb/hr-ft 2 . Film boiling occurred for a period of 4.8 minutes following flow reductions to 9.6 x 10 5 and 7.5 x 10 5 lb/hr-ft 2 . The test fuel rod failed following reactor shutdown as a result of heavy internal and external cladding oxidation and embrittlement which occurred during the film boiling operation

  2. Chemical compatibility screening test results

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Dickens, T.G.

    1997-12-01

    A program for evaluating packaging components that may be used in transporting mixed-waste forms has been developed and the first phase has been completed. This effort involved the screening of ten plastic materials in four simulant mixed-waste types. These plastics were butadiene-acrylonitrile copolymer rubber, cross-linked polyethylene (XLPE), epichlorohydrin rubber, ethylene-propylene rubber (EPDM), fluorocarbon (Viton or Kel-F), polytetrafluoroethylene, high-density polyethylene (HDPE), isobutylene-isoprene copolymer rubber (butyl), polypropylene, and styrene-butadiene rubber (SBR). The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. The testing protocol involved exposing the respective materials to 286,000 rads of gamma radiation followed by 14-day exposures to the waste types at 60 degrees C. The seal materials were tested using vapor transport rate (VTR) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criterion of 0.9 g/hr/m 2 for VTR and a specific gravity change of 10% was used. Based on this work, it was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. For specific gravity testing of liner materials, the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE offered the greatest resistance to the combination of radiation and chemicals

  3. Irradiation effects test series, test IE-5. Test results report

    International Nuclear Information System (INIS)

    Croucher, D.W.; Yackle, T.R.; Allison, C.M.; Ploger, S.A.

    1978-01-01

    Test IE-5, conducted in the Power Burst Facility at the Idaho National Engineering Laboratory, employed three 0.97-m long pressurized water reactor type fuel rods, fabricated from previously irradiated zircaloy-4 cladding and one similar rod fabricated from unirradiated cladding. The objectives of the test were to evaluate the influence of simulated fission products, cladding irradiation damage, and fuel rod internal pressure on pellet-cladding interaction during a power ramp and on fuel rod behavior during film boiling operation. The four rods were subjected to a preconditioning period, a power ramp to an average fuel rod peak power of 65 kW/m, and steady state operation for one hour at a coolant mass flux of 4880 kg/s-m 2 for each rod. After a flow reduction to 1800 kg/s-m 2 , film boiling occurred on one rod. Additional flow reductions to 970 kg/s-m 2 produced film boiling on the three remaining fuel rods. Maximum time in film boiling was 80s. The rod having the highest initial internal pressure (8.3 MPa) failed 10s after the onset of film boiling. A second rod failed about 90s after reactor shutdown. The report contains a description of the experiment, the test conduct, test results, and results from the preliminary postirradiation examination. Calculations using a transient fuel rod behavior code are compared with the test results

  4. Railgun bore material test results

    International Nuclear Information System (INIS)

    Wang, S.Y.; Burton, R.L.; Witherspoon, F.D.; Bloomberg, H.W.; Goldstein, S.A.; Tidman, D.A.; Winsor, N.K.

    1987-01-01

    GT-Devices, Inc. has constructed a material test facility (MTF) to study the fundamental heat transfer problem of both railgun and electrothermal guns, and to test candidate gun materials under real plasma conditions. The MTF electrothermally produces gigawatt-level plasmas with pulse lengths of 10-30 microseconds. Circular bore and non-circular bore test barrels have been successfully operated under a wide range of simulated heating environments for EM launchers. Diagnostics include piezoelectric MHz pressure probes, time-of-flight probes, and current and voltage probes. Ablation measurements are accomplished by weighing and optical inspection, including borescope, optical microscope, and scanning electron microscope (SEM). From these measurements the ablation threshold for both the rail and insulator materials can be determined as a function of plasma heating. The MTF diagnostics are supported by an unsteady 1-D model of MTF which uses the flux-corrected transport (FCT) algorithm to calculate the fluid equations in conservative form. A major advantage of the FCT algorithm is that it can model gas dynamic shock behaviour without the requirement of numerical diffusion. The principle use of the code is to predict the material surface temperature ΔT/α from the unsteady heat transfer q(t)

  5. Intraneural blood flow analysis during an intraoperative Phalen's test in carpal tunnel syndrome.

    Science.gov (United States)

    Yayama, Takafumi; Kobayashi, Shigeru; Awara, Kousuke; Takeno, Kenichi; Miyazaki, Tsuyoshi; Kubota, Masafumi; Negoro, Kohei; Baba, Hisatoshi

    2010-08-01

    Phalen's test has been one of the most significant of clinical signs when making a clinical diagnosis of idiopathic carpal tunnel syndrome (CTS). However, it is unknown whether intraneural blood flow changes during Phalen's test in patients with CTS. In this study, an intraoperative Phalen's test was conducted in patients with CTS to observe the changes in intraneural blood flow using a laser Doppler flow meter. During Phalen's test, intraneural blood flow showed a sharp decrease, which lasted for 1 min. Intraneural blood flow decreased by 56.7%-100% (average, 78.0%) in the median nerve relative to the blood flow before the test. At 1 min after completing the test, intraneural blood flow returned to the baseline value. After carpal tunnel release, there was no marked decrease in intraneural blood flow. This study demonstrated that the blood flow in the median nerve is reduced when Phalen's test is performed in vivo. Copyright 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Effect of localized water uptake on backfill hydration and water movement in a backfilled tunnel: half-scale tests at Aespoe Bentonite Laboratory

    International Nuclear Information System (INIS)

    Dixon, D.; Jonsson, E.; Hansen, J.; Hedin, M.; Ramqvist, G.

    2011-04-01

    The report describes the outcome of the work within the project 'SU508.20 Impact of water inflow in deposition tunnels'. Project decision SKB doc 1178871 Version 3.0. Two activity plans have been used for the field work: AP TD SU50820-09-019 and AP TD SU 50820-09-071. SKB and Posiva have been examining those processes that may have particularly strong effects on the evolution of a newly backfilled deposition tunnel in a KBS-3V repository. These assessments have involved the conduct of increasingly large and complex laboratory tests and simulations of a backfilled tunnel section. In this series of four tests, the effect of water inflow into a backfilled tunnel section via an intersecting fracture feature was evaluated. The tests included the monitoring of mock-ups where water entered via the simulated fractures as well as evaluation of what the effect of isolated tunnel sections caused by localized water inflow would have on subsequent evolution of these isolated sections. It was found that even a slowly seeping fracture can have a substantial effect on the backfill evolution as it will cause development of a gasket-like feature that effectively cuts of air and water movement from inner to outer regions of the backfilled tunnel. Water entering via these fractures will ultimately move out of the tunnel via a single discrete flow path, in a manner similar to what was observed in previous 1/2-scale and smaller simulations. If the low-rate of water inflow from fracture is the only source of water inflow to the tunnel this will result in hydraulic behaviour similar to that observed for a single inflow point in previous tests. The presence of a fracture feature will however result in a larger proportion of water uptake by the process of suction than might occur in a point inflow situation and hence a more uniform water distribution will be present in the pellet fill. This also results in a greater tendency for water to be absorbed into the adjacent block fill material and

  7. Effect of localized water uptake on backfill hydration and water movement in a backfilled tunnel: half-scale tests at Aespoe Bentonite Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D. [Atomic Energy of Canada Limited, Chalk River (Canada); Jonsson, E. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hansen, J. [Posiva Oy, Olkiluoto (Finland); Hedin, M. [Aangpannefoereningen, Stockholm (Sweden); Ramqvist, G. [Eltekno AB, Figeholm (Sweden)

    2011-04-15

    The report describes the outcome of the work within the project 'SU508.20 Impact of water inflow in deposition tunnels'. Project decision SKB doc 1178871 Version 3.0. Two activity plans have been used for the field work: AP TD SU50820-09-019 and AP TD SU 50820-09-071. SKB and Posiva have been examining those processes that may have particularly strong effects on the evolution of a newly backfilled deposition tunnel in a KBS-3V repository. These assessments have involved the conduct of increasingly large and complex laboratory tests and simulations of a backfilled tunnel section. In this series of four tests, the effect of water inflow into a backfilled tunnel section via an intersecting fracture feature was evaluated. The tests included the monitoring of mock-ups where water entered via the simulated fractures as well as evaluation of what the effect of isolated tunnel sections caused by localized water inflow would have on subsequent evolution of these isolated sections. It was found that even a slowly seeping fracture can have a substantial effect on the backfill evolution as it will cause development of a gasket-like feature that effectively cuts of air and water movement from inner to outer regions of the backfilled tunnel. Water entering via these fractures will ultimately move out of the tunnel via a single discrete flow path, in a manner similar to what was observed in previous 1/2-scale and smaller simulations. If the low-rate of water inflow from fracture is the only source of water inflow to the tunnel this will result in hydraulic behaviour similar to that observed for a single inflow point in previous tests. The presence of a fracture feature will however result in a larger proportion of water uptake by the process of suction than might occur in a point inflow situation and hence a more uniform water distribution will be present in the pellet fill. This also results in a greater tendency for water to be absorbed into the adjacent block fill

  8. Boraflex test results and evaluation

    International Nuclear Information System (INIS)

    Lindquist, K.; Kline, D.E.; Haley, T.C.

    1993-02-01

    New data developed, collected, and evaluated to further assess the in-pool performance of the neutron absorber material, Boraflex. The data are from new EPRI test programs, utility surveillance programs, and blackness testing at a number of plants. This new data provides a basis for quantifying the gap phenomenon in full length panels of Boraflex in spent fuel racks; the maximum anticipated gap size, frequency of gap occurrence, and axial distribution of gaps. Methods have been developed to assess the reactivity effects of gaps and Boraflex shrinkage. The analyses presented demonstrates that the reactivity effect of gaps is very small, not much larger than the statistical variations inherent in the calculational method. The data and analyses presented serve to close the issue of gap formation and shrinkage in panels of Boraflex and the effect of such gaps and shrinkage on the reactivity of the fuel/rack configuration. Ongoing EPRI programs to assess the long term performance of Boraflex in spent fuel storage racks are described

  9. Irradiation Effects Test Series: Test IE-3. Test results report

    International Nuclear Information System (INIS)

    Farrar, L.C.; Allison, C.M.; Croucher, D.W.; Ploger, S.A.

    1977-10-01

    The objectives of the test reported were to: (a) determine the behavior of irradiated fuel rods subjected to a rapid power increase during which the possibility of a pellet-cladding mechanical interaction failure is enhanced and (b) determine the behavior of these fuel rods during film boiling following this rapid power increase. Test IE-3 used four 0.97-m long pressurized water reactor type fuel rods fabricated from previously irradiated fuel. The fuel rods were subjected to a preconditioning period, followed by a power ramp to 69 kW/m at a coolant mass flux of 4920 kg/s-m 2 . After a flow reduction to 2120 kg/s-m 2 , film boiling occurred on the fuel rods. One rod failed approximately 45 seconds after the reactor was shut down as a result of cladding embrittlement due to extensive cladding oxidation. Data are presented on the behavior of these irradiated fuel rods during steady-state operation, the power ramp, and film boiling operation. The effects of a power ramp and power ramp rates on pellet-cladding interaction are discussed. Test data are compared with FRAP-T3 computer model calculations and data from a previous Irradiation Effects test in which four irradiated fuel rods of a similar design were tested. Test IE-3 results indicate that the irradiated state of the fuel rods did not significantly affect fuel rod behavior during normal, abnormal (power ramp of 20 kW/m per minute), and accident (film boiling) conditions

  10. Irradiation Effects Test Series: Test IE-2. Test results report

    International Nuclear Information System (INIS)

    Allison, C.M.; Croucher, D.W.; Ploger, S.A.; Mehner, A.S.

    1977-08-01

    The report describes the results of a test using four 0.97-m long PWR-type fuel rods with differences in diametral gap and cladding irradiation. The objective of this test was to provide information about the effects of these differences on fuel rod behavior during quasi-equilibrium and film boiling operation. The fuel rods were subjected to a series of preconditioning power cycles of less than 30 kW/m. Rod powers were then increased to 68 kW/m at a coolant mass flux of 4900 kg/s-m 2 . After one hour at 68 kW/m, a power-cooling-mismatch sequence was initiated by a flow reduction at constant power. At a flow of 2550 kg/s-m 2 , the onset of film boiling occurred on one rod, Rod IE-011. An additional flow reduction to 2245 kg/s-m 2 caused the onset of film boiling on the remaining three rods. Data are presented on the behavior of fuel rods during quasiequilibrium and during film boiling operation. The effects of initial gap size, cladding irradiation, rod power cycling, a rapid power increase, and sustained film boiling are discussed. These discussions are based on measured test data, preliminary postirradiation examination results, and comparisons of results with FRAP-T3 computer model calculations

  11. Wind tunnel test on PC cable-stayed bridge; PC shachokyo no taifu seino shiken

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Y. [Kyushu Inst. of Technology, Kitakyushu (Japan). Faculty of Engineering

    1997-05-30

    This paper describes the wind tunnel test on a PC cable-stayed bridge. The aerodynamic force that acts on a building is represented by the drag that works in the wind direction, the lift that works perpendicularly to the wind direction, and the aerodynamic moment that causes rotation. In the measurement of wind load, a girder is partially extracted in the wind tunnel and set in a three-component balance, and the drag, lift, and aerodynamic moment are measured using a strain meter while blowing the wind. In a wind tunnel experiment, the similarity on Reynolds number, field number, rigidity, hydraulic force, structural attenuation, and reduced wind velocity is required. However, the wind velocity in the actual bridge uses the same air as that in an experiment. The similarity rule on the Reynolds is not thus satisfied. It is necessary to cause no self-excited vibration (galloping and flutter) as wind-resistant performance and suppress the eddy excitation to less than the allowable amplitude. Moreover, the three-dimensional experiment using an elastic model is conducted in addition to the two-dimensional experiment using a rigid model. In the three-dimensional experiment, various vibration modes that occur in the actual bridge appear. 12 refs., 15 figs.

  12. Full-Span Tiltrotor Aeroacoustic Model (TRAM) Overview and 40- by 80-Foot Wind Tunnel Test. [conducted in the 40- by 80-Foot Wind Tunnel at Ames Research Center

    Science.gov (United States)

    McCluer, Megan S.; Johnson, Jeffrey L.; Rutkowski, Michael (Technical Monitor)

    2001-01-01

    a variety of tunnel speeds. Wake geometry images were acquired using LLS photographs and suggest dual tip vortex formation at low thrust conditions. The full paper will include comparisons to isolated-rotor TRAM data acquired at the Duits-Nederlandse Windtunnel (DNW) in 1998. The FS TRAM has been established as a valuable national asset for tiltrotor research. Data reduction and analysis of the 40- by 80-Foot Wind Tunnel test results are underway. Follow-on testing of the FS TRAM is currently being planned for the NASA Ames 80- by 120-Foot Wind Tunnel in late 2001.

  13. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 1 of 6

    Energy Technology Data Exchange (ETDEWEB)

    Drollinger, Harold [Desert Research Institute (DRI), Nevada System of Higher Education, Reno,NV (United States); Jones, Robert C. [Desert Research Institute (DRI), Nevada System of Higher Education, Reno,NV (United States); Bullard, Thomas F. [Desert Research Institute (DRI), Nevada System of Higher Education, Reno,NV (United States); Ashbaugh, Laurence J. [Southern Nevada Courier Service, NV (United States); Griffin, Wayne R. [Stoller-Navarro Joint Venture, Las Vegas, NV (United States)

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

  14. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 6 of 6

    Energy Technology Data Exchange (ETDEWEB)

    Harold Drollinger; Robert C. Jones; and Thomas F. Bullard; Desert Research Institute, Laurence J. Ashbaugh, Southern Nevada Courier Service and Wayne R. Griffin, Stoller-Navarro Joint Venture

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

  15. Second-Generation Large Civil Tiltrotor 7- by 10-Foot Wind Tunnel Test Data Report

    Science.gov (United States)

    Theodore, Colin R.; Russell, Carl R.; Willink, Gina C.; Pete, Ashley E.; Adibi, Sierra A.; Ewert, Adam; Theuns, Lieselotte; Beierle, Connor

    2016-01-01

    An approximately 6-percent scale model of the NASA Second-Generation Large Civil Tiltrotor (LCTR2) Aircraft was tested in the U.S. Army 7- by 10-Foot Wind Tunnel at NASA Ames Research Center January 4 to April 19, 2012, and September 18 to November 1, 2013. The full model was tested, along with modified versions in order to determine the effects of the wing tip extensions and nacelles; the wing was also tested separately in the various configurations. In both cases, the wing and nacelles used were adopted from the U.S. Army High Efficiency Tilt Rotor (HETR) aircraft, in order to limit the cost of the experiment. The full airframe was tested in high-speed cruise and low-speed hover flight conditions, while the wing was tested only in cruise conditions, with Reynolds numbers ranging from 0 to 1.4 million. In all cases, the external scale system of the wind tunnel was used to collect data. Both models were mounted to the scale using two support struts attached underneath the wing; the full airframe model also used a third strut attached at the tail. The collected data provides insight into the performance of the preliminary design of the LCTR2 and will be used for computational fluid dynamics (CFD) validation and the development of flight dynamics simulation models.

  16. Hard rock tunnel boring machine penetration test as an indicator of chipping process efficiency

    Directory of Open Access Journals (Sweden)

    M.C. Villeneuve

    2017-08-01

    Full Text Available The transition from grinding to chipping can be observed in tunnel boring machine (TBM penetration test data by plotting the penetration rate (distance/revolution against the net cutter thrust (force per cutter over the full range of penetration rates in the test. Correlating penetration test data to the geological and geomechanical characteristics of rock masses through which a penetration test is conducted provides the ability to reveal the efficiency of the chipping process in response to changing geological conditions. Penetration test data can also be used to identify stress-induced tunnel face instability. This research shows that the strength of the rock is an important parameter for controlling how much net cutter thrust is required to transition from grinding to chipping. It also shows that the geological characteristics of a rock will determine how efficient chipping occurs once it has begun. In particular, geological characteristics that lead to efficient fracture propagation, such as fabric and mica contents, will lead to efficient chipping. These findings will enable a better correlation between TBM performance and geological conditions for use in TBM design, as a basis for contractual payments where penetration rate dominates the excavation cycle and in further academic investigations into the TBM excavation process.

  17. Salt decontamination demonstration test results

    International Nuclear Information System (INIS)

    Snell, E.B.; Heng, C.J.

    1983-06-01

    The Salt Decontamination Demonstration confirmed that the precipitation process could be used for large-scale decontamination of radioactive waste sale solution. Although a number of refinements are necessary to safely process the long-term requirement of 5 million gallons of waste salt solution per year, there were no observations to suggest that any fundamentals of the process require re-evaluation. Major accomplishments were: (1) 518,000 gallons of decontaminated filtrate were produced from 427,000 gallons of waste salt solution from tank 24H. The demonstration goal was to produce a minimum of 200,000 gallons of decontaminated salt solution; (2) cesium activity in the filtrate was reduced by a factor of 43,000 below the cesium activity in the tank 24 solution. This decontamination factor (DF) exceeded the demonstration goal of a DF greater than 10,000; (3) average strontium-90 activity in the filtrate was reduced by a factor of 26 to less than 10 3 d/m/ml versus a goal of less than 10 4 d/m/ml; and (4) the concentrated precipitate was washed to a final sodium ion concentration of 0.15 M, well below the 0.225 M upper limit for DWPF feed. These accomplishments were achieved on schedule and without incident. Total radiation exposure to personnel was less than 350 mrem and resulted primarily from sampling precipitate slurry inside tank 48. 3 references, 6 figures, 2 tables

  18. New Model Exhaust System Supports Testing in NASA Lewis' 10- by 10-Foot Supersonic Wind Tunnel

    Science.gov (United States)

    Roeder, James W., Jr.

    1998-01-01

    In early 1996, the ability to run NASA Lewis Research Center's Abe Silverstein 10- by 10- Foot Supersonic Wind Tunnel (10x10) at subsonic test section speeds was reestablished. Taking advantage of this new speed range, a subsonic research test program was scheduled for the 10x10 in the fall of 1996. However, many subsonic aircraft test models require an exhaust source to simulate main engine flow, engine bleed flows, and other phenomena. This was also true of the proposed test model, but at the time the 10x10 did not have a model exhaust capability. So, through an in-house effort over a period of only 5 months, a new model exhaust system was designed, installed, checked out, and made ready in time to support the scheduled test program.

  19. Wind Tunnel Test of a Risk-Reduction Wing/Fuselage Model to Examine Juncture-Flow Phenomena

    Science.gov (United States)

    Kegerise, Michael A.; Neuhart, Dan H.

    2016-01-01

    A wing/fuselage wind-tunnel model was tested in the Langley 14- by 22-foot Subsonic Wind Tunnel in preparation for a highly-instrumented Juncture Flow Experiment to be conducted in the same facility. This test, which was sponsored by the NASA Transformational Tool and Technologies Project, is part of a comprehensive set of experimental and computational research activities to develop revolutionary, physics-based aeronautics analysis and design capability. The objectives of this particular test were to examine the surface and off-body flow on a generic wing/body combination to: 1) choose a final wing for a future, highly instrumented model, 2) use the results to facilitate unsteady pressure sensor placement on the model, 3) determine the area to be surveyed with an embedded laser-doppler velocimetry (LDV) system, 4) investigate the primary juncture corner- flow separation region using particle image velocimetry (PIV) to see if the particle seeding is adequately entrained and to examine the structure in the separated region, and 5) to determine the similarity of observed flow features with those predicted by computational fluid dynamics (CFD). This report documents the results of the above experiment that specifically address the first three goals. Multiple wing configurations were tested at a chord Reynolds number of 2.4 million. Flow patterns on the surface of the wings and in the region of the wing/fuselage juncture were examined using oil- flow visualization and infrared thermography. A limited number of unsteady pressure sensors on the fuselage around the wing leading and trailing edges were used to identify any dynamic effects of the horseshoe vortex on the flow field. The area of separated flow in the wing/fuselage juncture near the wing trailing edge was observed for all wing configurations at various angles of attack. All of the test objectives were met. The staff of the 14- by 22-foot Subsonic Wind Tunnel provided outstanding support and delivered

  20. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 2: Wind tunnel test force and moment data report

    Science.gov (United States)

    Zilz, D. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 2 of 2: Wind Tunnel Test Force and Moment Data Report.

  1. Full-scale wind-tunnel tests of high-lift system modifications on a carrier based fighter aircraft

    Science.gov (United States)

    Meyn, Larry A.; Zell, Peter T.; Hagan, John L.; Schoch, David

    1993-01-01

    Modifications to the high-lift system of a full-scale F/A-I8A were tested in the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamics Complex at the NASA Ames Research Center in Moffett Field, California. The objective was to measure the effect of simple modifications on the aerodynamic performance of the high-lift system. The modifications included the placement of a straight fairing in the shroud cove above the trailing-edge flap and the addition of seals to prevent air leakage through the hinge lines of the leading-edge flap, the trailing-edge shroud, and the wing fold. The test was carried out on an actual F/A-18A with it's flaps deployed in the landing approach configuration. The angle of attack ranged from 0 to 16 degrees and the wind speed was 100 knots. At an angle of attack of 8 degrees, the trimmed lift coefficient was improved by 0.09 with all wing seals in place. This corresponds to a reduction in the approach speed for the F/A-I8A of about 5 knots. The seal along the wing fold hinge, a feature present on many naval aircraft, provided one third of the total increment in trimmed lift. A comparison of the full-scale wind-tunnel results with those obtained from flight test is also presented.

  2. Morphing Wing-Tip Open Loop Controller and its Validation During Wind Tunnel Tests at the IAR-NRC

    Directory of Open Access Journals (Sweden)

    Mohamed Sadok GUEZGUEZ

    2016-09-01

    Full Text Available In this project, a wing tip of a real aircraft was designed and manufactured. This wing tip was composed of a wing and an aileron. The wing was equipped with a composite skin on its upper surface. This skin changed its shape (morphed by use of 4 electrical in-house developed actuators and 32 pressure sensors. These pressure sensors measure the pressures, and further the loads on the wing upper surface. Thus, the upper surface of the wing was morphed using these actuators with the aim to improve the aerodynamic performances of the wing-tip. Two types of ailerons were designed and manufactured: one aileron is rigid (non-morphed and one morphing aileron. This morphing aileron can change its shape also for the aerodynamic performances improvement. The morphing wing-tip internal structure is designed and manufactured, and is presented firstly in the paper. Then, the modern communication and control hardware are presented for the entire morphing wing tip equipped with actuators and sensors having the aim to morph the wing. The calibration procedure of the wing tip is further presented, followed by the open loop controller results obtained during wind tunnel tests. Various methodologies of open loop control are presented in this paper, and results obtained were obtained and validated experimentally through wind tunnel tests.

  3. Experimental Evidence for Quantum Tunneling Time

    Science.gov (United States)

    Camus, Nicolas; Yakaboylu, Enderalp; Fechner, Lutz; Klaiber, Michael; Laux, Martin; Mi, Yonghao; Hatsagortsyan, Karen Z.; Pfeifer, Thomas; Keitel, Christoph H.; Moshammer, Robert

    2017-07-01

    The first hundred attoseconds of the electron dynamics during strong field tunneling ionization are investigated. We quantify theoretically how the electron's classical trajectories in the continuum emerge from the tunneling process and test the results with those achieved in parallel from attoclock measurements. An especially high sensitivity on the tunneling barrier is accomplished here by comparing the momentum distributions of two atomic species of slightly deviating atomic potentials (argon and krypton) being ionized under absolutely identical conditions with near-infrared laser pulses (1300 nm). The agreement between experiment and theory provides clear evidence for a nonzero tunneling time delay and a nonvanishing longitudinal momentum of the electron at the "tunnel exit."

  4. Characteristics of Control Laws Tested on the Semi-Span Super-Sonic Transport (S4T) Wind-Tunnel Model

    Science.gov (United States)

    Christhilf, David M.; Moulin, Boris; Ritz, Erich; Chen, P. C.; Roughen, Kevin M.; Perry, Boyd

    2012-01-01

    The Semi-Span Supersonic Transport (S4T) is an aeroelastically scaled wind-tunnel model built to test active controls concepts for large flexible supersonic aircraft in the transonic flight regime. It is one of several models constructed in the 1990's as part of the High Speed Research (HSR) Program. Control laws were developed for the S4T by M4 Engineering, Inc. and by Zona Technologies, Inc. under NASA Research Announcement (NRA) contracts. The model was tested in the NASA-Langley Transonic Dynamics Tunnel (TDT) four times from 2007 to 2010. The first two tests were primarily for plant identification. The third entry was used for testing control laws for Ride Quality Enhancement, Gust Load Alleviation, and Flutter Suppression. Whereas the third entry only tested FS subcritically, the fourth test demonstrated closed-loop operation above the open-loop flutter boundary. The results of the third entry are reported elsewhere. This paper reports on flutter suppression results from the fourth wind-tunnel test. Flutter suppression is seen as a way to provide stability margins while flying at transonic flight conditions without penalizing the primary supersonic cruise design condition. An account is given for how Controller Performance Evaluation (CPE) singular value plots were interpreted with regard to progressing open- or closed-loop to higher dynamic pressures during testing.

  5. Tunneling Current Probe for Noncontract Wafer-Level Photodiode Array Testing

    National Research Council Canada - National Science Library

    Verdun, Horacio

    1999-01-01

    The Tunneling Current Probe (TCP) is an automated picometer-sensitive proximity sensor and current measurement system which measures the current through a photodiode detector array element by establishing a tunneling current...

  6. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    International Nuclear Information System (INIS)

    Chougule, Prasad; Nielsen, Søren R K

    2014-01-01

    Nowadays, small vertical axis wind turbines are receiving more attention due to their suitability in micro-electricity generation. There are few vertical axis wind turbine designs with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel test an orientation parameter for the slat airfoil is initially obtained. Further a computational fluid dynamics (CFD) has been used to obtain the aerodynamic characteristics of double-element airfoil. The CFD simulations were carried out using ANSYS CFX software. It is observed that there is an increase in the lift coefficient by 26% for single-element airfoil at analysed conditions. The CFD simulation results were validated with wind tunnel tests. It is also observe that by selecting proper airfoil configuration and blade sizes an increase in lift coefficient can further be achieved

  7. The application of cryogenics to high Reynolds number testing in wind tunnels. I - Evolution, theory, and advantages

    Science.gov (United States)

    Kilgore, R. A.; Dress, D. A.

    1984-01-01

    During the time which has passed since the construction of the first wind tunnel in 1870, wind tunnels have been developed to a high degree of sophistication. However, their development has consistently failed to keep pace with the demands placed on them. One of the more serious problems to be found with existing transonic wind tunnels is their inability to test subscale aircraft models at Reynolds numbers sufficiently near full-scale values to ensure the validity of using the wind tunnel data to predict flight characteristics. The Reynolds number capability of a wind tunnel may be increased by a number of different approaches. However, the best solution in terms of model, balance, and model support loads, as well as in terms of capital and operating cost appears to be related to the reduction of the temperature of the test gas to cryogenic temperatures. The present paper has the objective to review the evolution of the cryogenic wind tunnel concept and to describe its more important advantages.

  8. Abnormal Cervical Cancer Screening Test Results

    Science.gov (United States)

    ... AQ FREQUENTLY ASKED QUESTIONS FAQ187 GYNECOLOGIC PROBLEMS Abnormal Cervical Cancer Screening Test Results • What is cervical cancer screening? • What causes abnormal cervical cancer screening test ...

  9. Results of Large-Scale Spacecraft Flammability Tests

    Science.gov (United States)

    Ferkul, Paul; Olson, Sandra; Urban, David L.; Ruff, Gary A.; Easton, John; T'ien, James S.; Liao, Ta-Ting T.; Fernandez-Pello, A. Carlos; Torero, Jose L.; Eigenbrand, Christian; hide

    2017-01-01

    For the first time, a large-scale fire was intentionally set inside a spacecraft while in orbit. Testing in low gravity aboard spacecraft had been limited to samples of modest size: for thin fuels the longest samples burned were around 15 cm in length and thick fuel samples have been even smaller. This is despite the fact that fire is a catastrophic hazard for spaceflight and the spread and growth of a fire, combined with its interactions with the vehicle cannot be expected to scale linearly. While every type of occupied structure on earth has been the subject of full scale fire testing, this had never been attempted in space owing to the complexity, cost, risk and absence of a safe location. Thus, there is a gap in knowledge of fire behavior in spacecraft. The recent utilization of large, unmanned, resupply craft has provided the needed capability: a habitable but unoccupied spacecraft in low earth orbit. One such vehicle was used to study the flame spread over a 94 x 40.6 cm thin charring solid (fiberglasscotton fabric). The sample was an order of magnitude larger than anything studied to date in microgravity and was of sufficient scale that it consumed 1.5 of the available oxygen. The experiment which is called Saffire consisted of two tests, forward or concurrent flame spread (with the direction of flow) and opposed flame spread (against the direction of flow). The average forced air speed was 20 cms. For the concurrent flame spread test, the flame size remained constrained after the ignition transient, which is not the case in 1-g. These results were qualitatively different from those on earth where an upward-spreading flame on a sample of this size accelerates and grows. In addition, a curious effect of the chamber size is noted. Compared to previous microgravity work in smaller tunnels, the flame in the larger tunnel spread more slowly, even for a wider sample. This is attributed to the effect of flow acceleration in the smaller tunnels as a result of hot

  10. Implications of the Baltimore Rail Tunnel Fire for Full-Scale Testing of Shipping Casks

    International Nuclear Information System (INIS)

    Halstead, R. J.; Dilger, F.

    2003-01-01

    The U.S. Nuclear Regulatory Commission (NRC) does not currently require full-scale physical testing of shipping casks as part of its certification process. Stakeholders have long urged NRC to require full-scale testing as part of certification. NRC is currently preparing a full-scale casktesting proposal as part of the Package Performance Study (PPS) that grew out of the NRC reexamination of the Modal Study. The State of Nevada and Clark County remain committed to the position that demonstration testing would not be an acceptable substitute for a combination of full-scale testing, scale-model tests, and computer simulation of each new cask design prior to certification. Based on previous analyses of cask testing issues, and on preliminary findings regarding the July 2001 Baltimore rail tunnel fire, the authors recommend that NRC prioritize extra-regulatory thermal testing of a large rail cask and the GA-4 truck cask under the PPS. The specific fire conditions and other aspects of the full-scale extra-regulatory tests recommended for the PPS are yet to be determined. NRC, in consultation with stakeholders, must consider past real-world accidents and computer simulations to establish temperature failure thresholds for cask containment and fuel cladding. The cost of extra-regulatory thermal testing is yet to be determined. The minimum cost for regulatory thermal testing of a legal-weight truck cask would likely be $3.3-3.8 million

  11. Heat-flux gage measurements on a flat plate at a Mach number of 4.6 in the VSD high speed wind tunnel, a feasibility test (LA28). [wind tunnel tests of measuring instruments for boundary layer flow

    Science.gov (United States)

    1975-01-01

    The feasibility of employing thin-film heat-flux gages was studied as a method of defining boundary layer characteristics at supersonic speeds in a high speed blowdown wind tunnel. Flow visualization techniques (using oil) were employed. Tabulated data (computer printouts), a test facility description, and photographs of test equipment are given.

  12. Wind Tunnel Aeroacoustic Tests of Six Airfoils for Use on Small Wind Turbines; Period of Performance: August 23, 2002 through March 31, 2004

    Energy Technology Data Exchange (ETDEWEB)

    Oerlemans, S.

    2004-08-01

    The U.S. Department of Energy, working through the National Renewable Energy Laboratory, is engaged in a comprehensive research effort to improve our understanding of wind turbine aeroacoustics. Quiet wind turbines are an inducement to widespread deployment, so the goal of NREL's aeroacoustic research is to develop tools that the U.S. wind industry can use in developing and deploying highly efficient, quiet wind turbines at low wind speed sites. NREL's National Wind Technology Center is implementing a multifaceted approach that includes wind tunnel tests, field tests, and theoretical analyses in direct support of low wind speed turbine development by its industry partners. To that end, wind tunnel aerodynamic tests and aeroacoustic tests have been performed on six airfoils that are candidates for use on small wind turbines. Results are documented in this report.

  13. Water uptake by and movement through a Backfilled KBS-3V deposition tunnel: results of large-scale simulations

    International Nuclear Information System (INIS)

    Dixon, D.A.; Ramqvist, G.; Jonsson, E.; Gunnarsson, D.; Hansen, J.

    2010-01-01

    Document available in extended abstract form only. Posiva and SKB initiated a joint programme BACLO (Backfilling and Closure of the Deep repository) in 2003 with the aim to develop methods and clay-based materials for backfilling the deposition tunnels of a repository utilizing the KBS-3V deposition concept. This paper summarises the results obtained in intermediate and large-scale simulations to evaluate water movement into and through backfill consisting of bentonite pellets and pre-compacted clay blocks. The main objectives of Baclo Phase III were related to examining backfill materials, deposition concepts and their importance to the clay-block and pellet backfilling concept. Bench-scale studies produced a large body of information on how various processes (e.g. water inflow, piping, erosion, self-healing, homogenisation and interaction between backfill and buffer), might affect the hydro-mechanical evolution of backfill components. The tests described in this paper examined the movement of water into and through assemblies of clay blocks and bentonite pellets/granules and represent a substantial up-scaling and inclusion of parameters that more closely simulate a field situation. In total, 27 intermediate-scale tests have been completed and 18 large-scale tests (∼ 1/2-tunnel cross-section) will be completed at SKB's Aespoe HRL by mid 2010. At intermediate-scale, point inflow rates ranging from 0.01 to 1.0 l/min were applied to block - dry pellet assemblies and water movement into and through the system was monitored. Tests determined that it is critical to provide clay blocks with lateral support and confinement as quickly as possible following block installation. Exposure of the blocks to even low rates of water ingress can result in rapid loss of block cohesion and subsequent slumping of the block materials into the spaces between the blocks and the tunnel walls. Installation of granular or pelletized bentonite clay between the blocks and the walls

  14. Geotechnical aspects of tunnel construction in deep clay formations for radioactive waste disposal

    International Nuclear Information System (INIS)

    De Moor, E.K.

    1987-01-01

    The significant factors affecting the construction of tunnels in deep clay formations for radioactive waste disposal were outlined. Two aspects of tunneling were discussed; the feasibility of tunnel construction and changes in pore water pressure that might occur with time. Some results of model tunnel tests and analyses were presented. (U.K.)

  15. Thermal-cycle testing of the G-tunnel heated block

    International Nuclear Information System (INIS)

    Zimmerman, R.M.; Wilson, M.L.; Board, M.P.; Hall, M.E.; Schuch, R.L.

    1985-01-01

    Volcanic tuffs are being considered by the Department of Energy (DOE) as a medium for disposal of high-level radioactive wastes. The Nevada Nuclear Waste Storage Investigations (NNWSI) Project was established in 1977 to evaluate such disposal in geologic formations on or adjacent to the Nevada Test Site (NTS). Sandia National Laboratories (SNL), as one of the NNWSI project participants, is responsible for the rock mechanics program to support the design of underground portions of a radioactive-waste repository in tuff. A rock mechanics field testing program is underway in G-Tunnel in Rainier Mesa on the NTS, where tuffs similar to those at Yucca Mountain, the potential candidate site, are found; later experiments are planned as part of the exploratory shaft investigations in Yucca Mountain. Science Applications International Corporation has been under contract to SNL to prepare and install instrumentation and control systems and to aid in the evaluation of the heated-block rock mechanics experiment

  16. In situ tests for investigating thermal and mechanical rock behaviors at an underground research tunnel

    International Nuclear Information System (INIS)

    Kwon, Sangki; Cho, Won-Jin

    2013-01-01

    The understanding of the thermal and mechanical behaviors expected to be happened around an underground high-level radioactive waste (HLW) repository is important for a successful site selection, construction, operation, and closure of the repository. In this study, the thermal and mechanical behaviors of rock and rock mass were investigated from in situ borehole heater test and the studies for characterizing an excavation damaged zone (EDZ), which had been carried out at an underground research tunnel, KURT, constructed in granite for the validation of a HLW disposal concept. Thermal, mechanical, and hydraulic properties in EDZ could be predicted from various in situ and laboratory tests as well as numerical simulations. The complex thermo-mechanical coupling behavior of rock could be modeled using the rock properties. (author)

  17. Wind-tunnel Tests of a Hall High-life Wing

    Science.gov (United States)

    Weick, Fred E; Sanders, Robert

    1932-01-01

    Wind-tunnel tests have been made to find the lift, drag, and center-of-pressure characteristics of a Hall high-lift wing model. The Hall wing is essentially a split-flap airfoil with an internal air passage. Air enters the passage through an opening in the lower surface somewhat back of and parallel to the leading edge, and flows out through an opening made by deflecting the rear portion of the under surface downward as a flap. For ordinary flight conditions the front opening and the rear flap can be closed, providing in effect a conventional airfoil (the Clark Y in this case). The tests were made with various flap settings and with the entrance to the passage both open and closed. The highest lift coefficient found, C(sub L) = 2.08, was obtained with the passage closed.

  18. The value of ultrasonographic measurement in carpal tunnel syndrome in patients with negative electrodiagnostic tests

    International Nuclear Information System (INIS)

    Koyuncuoglu, Hasan Rifat; Kutluhan, Suleyman; Yesildag, Ahmet; Oyar, Orhan; Guler, Kezban; Ozden, Ahmet

    2005-01-01

    The diagnosis of carpal tunnel syndrome (CTS) is mainly based on clinical findings and electrodiagnostic tests (EDT). However, EDT results do not support clinical findings in some cases. It has been recently suggested that ultrasonography (US) can be used to diagnose CTS. In this study, we aimed to investigate whether US has a diagnostic value for CTS in patients with negative EDT findings or not. EDT was performed on 319 wrists with clinical CTS findings in electrophysiology laboratory. Median and ulnar nerve conduction velocities were measured in all cases and electromyography was performed in patient with tenar atrophy and having suspicion involvement of brachial plexus as EDT. Fifty-nine wrists with negative EDT (study group) and 30 wrists from 15 healthy individuals (control group) were examined using US. The mean of cross-sectional areas (CSAs) measurements were found 8.83 ± 3.05 mm 2 by tracing method (TM) and 8.51 ± 3.13 mm 2 by ellipsoid formula (EF) in study group, and 7.63 ± 1.52 mm 2 by TM and 7.66 ± 1.42 mm 2 by EF in control group. The differences between study group and control group according to both TM and EF were significant (t-test p = 0.0079, p = 0.0460, respectively). In study group, CSAs were larger than 10.5 mm 2 in 18 (30.51%) and 16 (27.12%) wrists according to TM and EF findings, respectively, and in only one wrist (3.33%) in control group by both TM and EF. The differences of ultrasonographic CTS numbers between study group and control group were significant (p = 0.0024 by TM, p = 0.0086 by EF). We confirmed the usefulness of quantitative US assessment in the diagnosis of CTS in the patients with negative EDT findings. If EDT findings are inadequate to confirm the CTS in the patients with clinical CTS, US studies may be helpful to diagnose

  19. BACEKO II. Flow-through, open-front and saturation tests of pre-compacted backfill blocks in a quarter-scale test tunnel

    International Nuclear Information System (INIS)

    Keski-Kuha, E.; Nemlander, R.; Koho, P.

    2013-11-01

    The series of tests performed in BACEKO II project examined three different block materials for potential use in backfilling the repository; Friedland clay, 40/60-mixture of bentonite (40 %) and crushed rock (60 %) and Milos B clay in conjunction with pellet materials Cebogel QSE and Milos B clay. The testing program consisted of 9 tests, that continued the 1/4-scale tests executed in BACEKO 2008. The block backfilling degree of the 1/4-scale test tunnels was 73.8 % which was consistent with the material ratios associated with filling a repository tunnel having a 10 % over-excavation ratio. Some of these tests were conducted using a restraint installed at the front face of the setup and open-front tests were subsequently added in order to establish the time span which an open backfill front can remain stable should an interruption in the backfilling process occur. Additionally one flow-through test with higher salinity water (7 % TDS versus the 3,5 % TDS used in all other tests), was performed for an assembly constructed using Friedland clay. The rate of test assembly, consumption of materials and achieved densities were all monitored. During the tests, the erosion rates, progression of saturation and development of total pressure were monitored. In disassembling the tests, samples were collected for gravimetric water content measurement, the erosion pathways were identified and the sections were photographed with an infrared camera to illustrate the moister areas in the backfill. The greatest amounts of eroded material were observed in open-front tests where exiting water removed clay from the face of the backfill and formed a deepening channel in the block backfill. The open-front tests remained stable only until the outflow emerged. The properties of the pellet layer depend on the as-placed conditions which were operatordependant and also affect the outflow times. There was not much difference in the amount of erosion observed for the different block materials

  20. Results for the hybrid laminar flow control experiment conducted in the NASA Langley 8-foot transonic pressure tunnel on a 7-foot chord model

    Science.gov (United States)

    Bobbitt, Percy J.; Ferris, James C.; Harvey, William D.; Goradia, Suresh H.

    1992-01-01

    A description is given of the development of, and results from, the hybrid laminar flow control (HLFC) experiment conducted in the NASA LaRC 8 ft Transonic Pressure Tunnel on a 7 ft chord, 23 deg swept model. The methods/codes used to obtain the contours of the HLFC model surface and to define the suction requirements are outlined followed by a discussion of the model construction, suction system, instrumentation, and some example results from the wind tunnel tests. Included in the latter are the effects of Mach number, suction level, and the extent of suction. An assessment is also given of the effect of the wind tunnel environment on the suction requirements. The data show that, at or near the design Mach number, large extents of laminar flow can be achieved with suction mass flows over the first 25 percent, or less, of the chord. Top surface drag coefficients with suction extending from the near leading edge to 20 percent of the chord were approximately 40 percent lower than those obtained with no suction. The results indicate that HLFC can be designed for transonic speeds with lift and drag coefficients approaching those of LFC designs but with much smaller extents and levels of suction.

  1. Laboratory tests to study the influence of rock stress confinement on the performances of TBM discs in tunnels

    Science.gov (United States)

    Innaurato, N.; Oggeri, C.; Oreste, P.; Vinai, R.

    2011-06-01

    To clarify some aspects of rock destruction with a disc acting on a high confined tunnel face, a series of tests were carried out to examine fracture mechanisms under an indenter that simulates the tunnel boring machine (TBM) tool action, in the presence of an adjacent groove, when a state of stress (lateral confinement) is imposed on a rock sample. These tests proved the importance of carefully establishing the optimal distance of grooves produced by discs acting on a confined surface, and the value (as a mere order of magnitude) of the increase of the thrust to produce the initiation of chip formation, as long as the confinement pressure becomes greater.

  2. Petrology and geochemistry of the Grouse Canyon Member of the Belted Range Tuff, Rock-Mechanics Drift, U12g Tunnel, Nevada Test Site

    International Nuclear Information System (INIS)

    Connolly, J.R.; Mansker, W.L.; Hicks, R.; Allen, C.C.; Husler, J.; Keil, K.; Lappin, A.R.

    1983-04-01

    G-Tunnel at Nevada Test Site (NTS) is the site of thermal and thermomechanical experiments examining the feasibility of emplacing heat-producing nuclear wastes in silicic tuffs. This report describes the general stratigraphy, mineralogy, and bulk chemistry of welded portions of the Grouse Canyon Member of the Belted Range Tuff, the unit in which most of these experiments will be performed. The geologic characteristics of the Grouse Canyon Member are compared with those of the Topopah Spring Member of the Paintbrush Tuff, presently the preferred horizon for an actual waste repository at Yucca Mountain, near the southwest boundary of Nevada Test Site. This comparison suggests that test results obtained in welded tuff from G-Tunnel are applicable, with limitations, to evaluation of the Topopah Spring Member at Yucca Mountain

  3. Reproducibility of the results in ultrasonic testing

    International Nuclear Information System (INIS)

    Chalaye, M.; Launay, J.P.; Thomas, A.

    1980-12-01

    This memorandum reports on the conclusions of the tests carried out in order to evaluate the reproducibility of ultrasonic tests made on welded joints. FRAMATOME have started a study to assess the dispersion of results afforded by the test line and to characterize its behaviour. The tests covered sensors and ultrasonic generators said to be identical to each other (same commercial batch) [fr

  4. Design, Development and Tests in Real Time of Control Methodologies for a Morphing Wing in Wind Tunnel =

    Science.gov (United States)

    Tchatchueng Kammegne, Michel Joel

    In order to leave a cleaner environmental space to future generations, the international community has been mobilized to find green solutions that are effective and feasible in all sectors. The CRIAQ MDO505 project was initiated to test the morphing wingtip (wing and aileron) technology as one of these possible solutions. The main objectives of this project are: the design and manufacturing of a morphing wing prototype, the extension and control of the laminar region over the extrados, and to compare the effects of morphing and rigid aileron in terms of lift, drag and pressure distributions. The advantage of the extension of the laminar region over a wing is the drag reduction that results by delaying the transition towards its trailing edge. The location of the transition region depends on the flight case and it is controlled, for a morphing wing, via the actuators positions and displacements. Therefore, this thesis work focuses on the control of the actuators positions and displacements. This thesis presents essentially the modeling, instrumentation and wind tunnel testing results. Three series of wind tunnel tests with different values of aileron deflection angle, angle of attack and Mach number have been performed in the subsonic wind tunnel of the IAR-NRC. The used wing airfoil consisted of stringers, ribs, spars and a flexible upper surface mad of composite materials (glass fiber carbon), a rigid aileron and flexible aileron. The aileron was able to move between +/-6 degrees. The demonstrator's span measures 1.5 m and its chord measures 1.5 m. Structural analyses have been performed to determine the plies orientation, and the number of fiberglass layers for the flexible skin. These analyses allowed also to determine the actuator's forces to push and pull the wing upper surface. The 2D XFoil and 3D solvers Fluent were used to find the optimized airfoil and the optimal location of the transition for each flight case. Based on the analyses done by the

  5. Preliminary wing model tests in the variable density wind tunnel of the National Advisory Committee for Aeronautics

    Science.gov (United States)

    Munk, Max M

    1926-01-01

    This report contains the results of a series of tests with three wing models. By changing the section of one of the models and painting the surface of another, the number of models tested was increased to five. The tests were made in order to obtain some general information on the air forces on wing sections at a high Reynolds number and in particular to make sure that the Reynolds number is really the important factor, and not other things like the roughness of the surface and the sharpness of the trailing edge. The few tests described in this report seem to indicate that the air forces at a high Reynolds number are not equivalent to respective air forces at a low Reynolds number (as in an ordinary atmospheric wind tunnel). The drag appears smaller at a high Reynolds number and the maximum lift is increased in some cases. The roughness of the surface and the sharpness of the trailing edge do not materially change the results, so that we feel confident that tests with systematic series of different wing sections will bring consistent results, important and highly useful to the designer.

  6. Application of tests of goodness of fit in determining the probability density function for spacing of steel sets in tunnel support system

    Directory of Open Access Journals (Sweden)

    Farnoosh Basaligheh

    2015-12-01

    Full Text Available One of the conventional methods for temporary support of tunnels is to use steel sets with shotcrete. The nature of a temporary support system demands a quick installation of its structures. As a result, the spacing between steel sets is not a fixed amount and it can be considered as a random variable. Hence, in the reliability analysis of these types of structures, the selection of an appropriate probability distribution function of spacing of steel sets is essential. In the present paper, the distances between steel sets are collected from an under-construction tunnel and the collected data is used to suggest a proper Probability Distribution Function (PDF for the spacing of steel sets. The tunnel has two different excavation sections. In this regard, different distribution functions were investigated and three common tests of goodness of fit were used for evaluation of each function for each excavation section. Results from all three methods indicate that the Wakeby distribution function can be suggested as the proper PDF for spacing between the steel sets. It is also noted that, although the probability distribution function for two different tunnel sections is the same, the parameters of PDF for the individual sections are different from each other.

  7. Wind Tunnel Testing on Crosswind Aerodynamic Forces Acting on Railway Vehicles

    Science.gov (United States)

    Kwon, Hyeok-Bin; Nam, Seong-Won; You, Won-Hee

    This study is devoted to measure the aerodynamic forces acting on two railway trains, one of which is a high-speed train at 300km/h maximum operation speed, and the other is a conventional train at the operating speed 100km/h. The three-dimensional train shapes have been modeled as detailed as possible including the inter-car, the upper cavity for pantograph, and the bogie systems. The aerodynamic forces on each vehicle of the trains have been measured in the subsonic wind tunnel with 4m×3m test section of Korea Aerospace Research Institute at Daejeon, Korea. The aerodynamic forces and moments of the train models have been plotted for various yaw angles and the characteristics of the aerodynamic coefficients has been discussed relating to the experimental conditions.

  8. Final report of the borehole, shaft, and tunnel sealing test. Vol. 3

    International Nuclear Information System (INIS)

    Pusch, R.; Boergesson, L.; Ramqvist, G.

    1987-02-01

    Like the borehole and shaft plugging tests, the tunnel test gave evidence of the very effective sealing power of Na betonite. The test arrangement consisted of a 9 m long 1.5 m diameter steel tube surrounded by sand and cast in concrete plugs at each end. These plugs contained bentonite forming 'O-ring' sealings at the concrete/rock interface. The test had the form of injecting water into the sand and measuring the leakage that took place through the adjacent rock and along the plug. It was concluded that the drop in leakage from more than 200 l at 100 kPa water pressure early in the test to 75 l at 3 MPa pressure at the end was due partly to the swelling pressure exerted by the bentonite on the rock and by penetration of bentonite into water-bearing rock fractures. The major sealing process appears to be the establishment of a very tight bentonite/rock interface. (orig./HP)

  9. Hypersonic Tunnel Facility (HTF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hypersonic Tunnel Facility (HTF) is a blow-down, non-vitiated (clean air) free-jet wind tunnel capable of testing large-scale, propulsion systems at Mach 5, 6,...

  10. Results of investigations on the 0.004-scale model 74-0 of the configuration 4 (modified) space shuttle vehicle orbiter in the NASA/MSFC 14-by-14-inch trisonic wind tunnel (oa131)

    Science.gov (United States)

    Nichols, M. E.

    1975-01-01

    The results of an oil flow boundary-layer visualization wind tunnel test of an 0.004-scale model of the Space Shuttle Vehicle Orbiter in the NASA/Marshall Space Flight Center 14-by-14-inch Trisonic Wind Tunnel are presented. The model was tested at Mach numbers from 0.60 through 2.75, at angles-of-attack from 0 through 25 degrees, and at unit Reynolds numbers from 5.0 to 7.0 million per foot. The test program involved still and motion picture photography of oil-paint flow patterns on the orbiter, during and immediately after tunnel flow, to determine areas of boundary layer separation and regions of potential auxiliary power unit exhaust recirculation during transonic and low supersonic re-entry flight.

  11. HIFiRE-5 Flight Test Preliminary Results (Postprint)

    Science.gov (United States)

    2013-11-01

    CFD . 15. SUBJECT TERMS Boundary layer transition, hypersonic , flight test 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18...consistent with prior CFD 33,34 and wind tunnel measurements 28,29 at hypersonic conditions that indicated that the centerline is more unstable... Hypersonic Sciences Branch High Speed Systems Division NOVEMBER 2013 Approved for public release; distribution unlimited

  12. What scaling means in wind engineering: Complementary role of the reduced scale approach in a BLWT and the full scale testing in a large climatic wind tunnel

    Science.gov (United States)

    Flamand, Olivier

    2017-12-01

    Wind engineering problems are commonly studied by wind tunnel experiments at a reduced scale. This introduces several limitations and calls for a careful planning of the tests and the interpretation of the experimental results. The talk first revisits the similitude laws and discusses how they are actually applied in wind engineering. It will also remind readers why different scaling laws govern in different wind engineering problems. Secondly, the paper focuses on the ways to simplify a detailed structure (bridge, building, platform) when fabricating the downscaled models for the tests. This will be illustrated by several examples from recent engineering projects. Finally, under the most severe weather conditions, manmade structures and equipment should remain operational. What “recreating the climate” means and aims to achieve will be illustrated through common practice in climatic wind tunnel modelling.

  13. Characterization of a New Open Jet Wind Tunnel to Optimize and Test Vertical Axis Wind Turbines Using Flow Visualization and Measurement

    DEFF Research Database (Denmark)

    Tourn, S.; Gilabert, R.; Sánchez, V.

    Characterize a new open jet wind tunnel and define the uniform test section where performance studies of small VAWTs will be carried out.......Characterize a new open jet wind tunnel and define the uniform test section where performance studies of small VAWTs will be carried out....

  14. First Results at ultra-high Rλ in a wind tunnel

    Science.gov (United States)

    Kuechler, Christian; Bodenschatz, Eberhard; Bewley, Gregory P.

    2017-11-01

    With a new active grid installed, the Variable Density Turbulence Tunnel (VDTT) at the Max-Planck-Institute for Dynamics and Self-Organization produced homogeneous turbulence at Reynolds numbers up to Rλ 7500 . The active grid consisted of 111 individually controllable flaps that produced more intense turbulence than classical fixed grids. We varied the Reynolds number by changing the pressure of sulfur hexafluoride gas in the tunnel between 0.5 and 15 bar, which changes the viscosity of the gas. With hot wire probes called NSTAPs that were 30 microns long, we measured velocity spectra and structure functions. While a bottleneck is present in the spectra at Reynolds numbers up to Rλ < 3000 , the bottleneck weakens and disappears at higher Rλ. We compare this observation with measurements made in the field and with computer simulations.

  15. Facility Closure Report for Tunnel U16a, Area 16, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    U16a is not listed in the Federal Facility Agreement and Consent Order. The closure of U16a was sponsored by the Defense Threat Reduction Agency (DTRA) and performed with the cooperation of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the Nevada Division of Environmental Protection. This report documents closure of this site as identified in the DTRA Fiscal Year 2008 Statement of Work, Task 6.3. Closure activities included: (1) Removing and disposing of a shack and its contents; (2) Disposing of debris from within the shack and in the vicinity of the tunnel entrance; (3) Verifying that the tunnel is empty; (4) Welding screened covers over tunnel vent holes to limit access and allow ventilation; and (5) Constructing a full-tunnel cross-section fibercrete bulkhead to prevent access to the tunnel Field activities were conducted from July to August 2008.

  16. A vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel tests and its application in pollutant dispersion studies

    International Nuclear Information System (INIS)

    Gromke, Christof

    2011-01-01

    A new vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel investigations was developed. The modeling concept is based on fluid dynamical similarity aspects and allows the small-scale modeling of various kinds of vegetation, e.g. field crops, shrubs, hedges, single trees and forest stands. The applicability of the modeling concept was validated in wind tunnel pollutant dispersion studies. Avenue trees in urban street canyons were modeled and their implications on traffic pollutant dispersion were investigated. The dispersion experiments proved the modeling concept to be practicable for wind tunnel studies and suggested to provide reliable concentration results. Unfavorable effects of trees on pollutant dispersion and natural ventilation in street canyons were revealed. Increased traffic pollutant concentrations were found in comparison to the tree-free reference case. - Highlights: → A concept for aerodynamic modelling of vegetation in small scale wind tunnel studies is presented. → The concept was applied to study pollutant dispersion in urban street canyons with avenue tress. → The wind tunnel studies show that modelling the aerodynamic effects of vegetation is important. → Avenue trees give rise to increased pollutant concentrations in urban street canyons. - Avenue trees in urban street canyons affect the pollutant dispersion and result in increased traffic exhaust concentrations.

  17. Results of steel containment vessel model test

    International Nuclear Information System (INIS)

    Luk, V.K.; Ludwigsen, J.S.; Hessheimer, M.F.; Komine, Kuniaki; Matsumoto, Tomoyuki; Costello, J.F.

    1998-05-01

    A series of static overpressurization tests of scale models of nuclear containment structures is being conducted by Sandia National Laboratories for the Nuclear Power Engineering Corporation of Japan and the US Nuclear Regulatory Commission. Two tests are being conducted: (1) a test of a model of a steel containment vessel (SCV) and (2) a test of a model of a prestressed concrete containment vessel (PCCV). This paper summarizes the conduct of the high pressure pneumatic test of the SCV model and the results of that test. Results of this test are summarized and are compared with pretest predictions performed by the sponsoring organizations and others who participated in a blind pretest prediction effort. Questions raised by this comparison are identified and plans for posttest analysis are discussed

  18. Gust load alleviation wind tunnel tests of a large-aspect-ratio flexible wing with piezoelectric control

    Directory of Open Access Journals (Sweden)

    Ying Bi

    2017-02-01

    Full Text Available An active control technique utilizing piezoelectric actuators to alleviate gust-response loads of a large-aspect-ratio flexible wing is investigated. Piezoelectric materials have been extensively used for active vibration control of engineering structures. In this paper, piezoelectric materials further attempt to suppress the vibration of the aeroelastic wing caused by gust. The motion equation of the flexible wing with piezoelectric patches is obtained by Hamilton’s principle with the modal approach, and then numerical gust responses are analyzed, based on which a gust load alleviation (GLA control system is proposed. The gust load alleviation system employs classic proportional-integral-derivative (PID controllers which treat piezoelectric patches as control actuators and acceleration as the feedback signal. By a numerical method, the control mechanism that piezoelectric actuators can be used to alleviate gust-response loads is also analyzed qualitatively. Furthermore, through low-speed wind tunnel tests, the effectiveness of the gust load alleviation active control technology is validated. The test results agree well with the numerical results. Test results show that at a certain frequency range, the control scheme can effectively alleviate the z and x wingtip accelerations and the root bending moment of the wing to a certain extent. The control system gives satisfying gust load alleviation efficacy with the reduction rate being generally over 20%.

  19. Hyper-X Mach 7 Scramjet Design, Ground Test and Flight Results

    Science.gov (United States)

    Ferlemann, Shelly M.; McClinton, Charles R.; Rock, Ken E.; Voland, Randy T.

    2005-01-01

    The successful Mach 7 flight test of the Hyper-X (X-43) research vehicle has provided the major, essential demonstration of the capability of the airframe integrated scramjet engine. This flight was a crucial first step toward realizing the potential for airbreathing hypersonic propulsion for application to space launch vehicles. However, it is not sufficient to have just achieved a successful flight. The more useful knowledge gained from the flight is how well the prediction methods matched the actual test results in order to have confidence that these methods can be applied to the design of other scramjet engines and powered vehicles. The propulsion predictions for the Mach 7 flight test were calculated using the computer code, SRGULL, with input from computational fluid dynamics (CFD) and wind tunnel tests. This paper will discuss the evolution of the Mach 7 Hyper-X engine, ground wind tunnel experiments, propulsion prediction methodology, flight results and validation of design methods.

  20. The PANDA facility and first test results

    International Nuclear Information System (INIS)

    Dreier, J.; Huggenberger, M.; Aubert, C.; Bandurski, T.; Fischer, O.; Healzer, J.; Lomperski, S.; Strassberger, H.J.; Varadi, G.; Yadigaroglu, G.

    1996-01-01

    The PANDA test facility at the Paul Scherrer Institute is used to study the long-term performance of the Simplified Boiling Water Reactor's passive containment cooling system. The PANDA tests demonstrate performance on a larger scale than previous tests and examine the effects of any non-uniform spatial distributions of steam and non-condensable gases in the system. The facility is in 1:1 vertical scale and 1:25 scale for volume, power etc. Extensive facility characterization tests and steady-state passive containment condenser performance tests are presented. The results of the base case test of a series of transient system behaviour tests are reviewed. The first PANDA tests exhibited reproducibility, and indicated that the Simplified Boiling Water Reactor's containment is likely to be favorably responsive and highly robust to changes in the thermal transport patterns. (orig.) [de

  1. Superconducting solenoid model magnet test results

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Dimarco, J.; Feher, S.; Ginsburg, C.M.; Hess, C.; Kashikhin, V.V.; Orris, D.F.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; /Fermilab

    2006-08-01

    Superconducting solenoid magnets suitable for the room temperature front end of the Fermilab High Intensity Neutrino Source (formerly known as Proton Driver), an 8 GeV superconducting H- linac, have been designed and fabricated at Fermilab, and tested in the Fermilab Magnet Test Facility. We report here results of studies on the first model magnets in this program, including the mechanical properties during fabrication and testing in liquid helium at 4.2 K, quench performance, and magnetic field measurements. We also describe new test facility systems and instrumentation that have been developed to accomplish these tests.

  2. Superconducting solenoid model magnet test results

    International Nuclear Information System (INIS)

    Carcagno, R.; Dimarco, J.; Feher, S.; Ginsburg, C.M.; Hess, C.; Kashikhin, V.V.; Orris, D.F.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; Tompkins, J.C.; Wokas, T.; Fermilab

    2006-01-01

    Superconducting solenoid magnets suitable for the room temperature front end of the Fermilab High Intensity Neutrino Source (formerly known as Proton Driver), an 8 GeV superconducting H- linac, have been designed and fabricated at Fermilab, and tested in the Fermilab Magnet Test Facility. We report here results of studies on the first model magnets in this program, including the mechanical properties during fabrication and testing in liquid helium at 4.2 K, quench performance, and magnetic field measurements. We also describe new test facility systems and instrumentation that have been developed to accomplish these tests

  3. Alternative filtration testing program: Pre-evaluation of test results

    International Nuclear Information System (INIS)

    Georgeton, G.K.; Poirier, M.R.

    1990-01-01

    Based on results of testing eight solids removal technologies and one pretreatment option, it is recommended that a centrifugal ultrafilter and polymeric ultrafilter undergo further testing as possible alternatives to the Norton Ceramic filters. Deep bed filtration should be considered as a third alternative, if a backwashable cartridge filter is shown to be inefficient in separate testing

  4. Alternative filtration testing program: Pre-evaluation of test results

    Energy Technology Data Exchange (ETDEWEB)

    Georgeton, G.K.; Poirier, M.R.

    1990-09-28

    Based on results of testing eight solids removal technologies and one pretreatment option, it is recommended that a centrifugal ultrafilter and polymeric ultrafilter undergo further testing as possible alternatives to the Norton Ceramic filters. Deep bed filtration should be considered as a third alternative, if a backwashable cartridge filter is shown to be inefficient in separate testing.

  5. Test results of HTTR control system

    International Nuclear Information System (INIS)

    Motegi, Toshihiro; Iigaki, Kazuhiko; Saito, Kenji; Sawahata, Hiroaki; Hirato, Yoji; Kondo, Makoto; Shibutani, Hideki; Ogawa, Satoru; Shinozaki, Masayuki; Mizushima, Toshihiko; Kawasaki, Kozo

    2006-06-01

    The plant control performance of the IHX helium flow rate control system, the PPWC helium flow rate control system, the secondary helium flow rate control system, the inlet temperature control system, the reactor power control system and the outlet temperature control system of the HTTR are obtained through function tests and power-up tests. As the test results, the control systems show stable control response under transient condition. Both of inlet temperature control system and reactor power control system shows stable operation from 30% to 100%, respectively. This report describes the outline of control systems and test results. (author)

  6. BWR Full Integral Simulation Test (FIST). Phase I test results

    International Nuclear Information System (INIS)

    Hwang, W.S.; Alamgir, M.; Sutherland, W.A.

    1984-09-01

    A new full height BWR system simulator has been built under the Full-Integral-Simulation-Test (FIST) program to investigate the system responses to various transients. The test program consists of two test phases. This report provides a summary, discussions, highlights and conclusions of the FIST Phase I tests. Eight matrix tests were conducted in the FIST Phase I. These tests have investigated the large break, small break and steamline break LOCA's, as well as natural circulation and power transients. Results and governing phenomena of each test have been evaluated and discussed in detail in this report. One of the FIST program objectives is to assess the TRAC code by comparisons with test data. Two pretest predictions made with TRACB02 are presented and compared with test data in this report

  7. Two-Dimensional Bifurcated Inlet Variable Cowl Lip Test Completed in 10- by 10-Foot Supersonic Wind Tunnel

    Science.gov (United States)

    Hoffman, T. R.

    2000-01-01

    Researchers at the NASA Glenn Research Center at Lewis Field successfully tested a variable cowl lip inlet at simulated takeoff conditions in Glenn s 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) as part of the High-Speed Research Program. The test was a follow-on to the Two-Dimensional Bifurcated (2DB) Inlet/Engine test. At the takeoff condition for a High-Speed Civil Transport aircraft, the inlet must provide adequate airflow to the engine with an acceptable distortion level and high-pressure recovery. The test was conducted to study the effectiveness of installing two rotating lips on the 2DB Inlet cowls to increase mass flow rate and eliminate or reduce boundary layer flow separation near the lips. Hardware was mounted vertically in the test section so that it extended through the tunnel ceiling and that the 2DB Inlet was exposed to the atmosphere above the test section. The tunnel was configured in the aerodynamic mode, and exhausters were used to pump down the tunnel to vacuum levels and to provide a maximum flow rate of approximately 58 lb/sec. The test determined the (1) maximum flow in the 2DB Inlet for each variable cowl lip, (2) distortion level and pressure recovery for each lip configuration, (3) boundary layer conditions near variable lips inside the 2DB Inlet, (4) effects of a wing structure adjacent to the 2DB Inlet, and (5) effects of different 2DB Inlet exit configurations. It also employed flow visualization to generate enough qualitative data on variable lips to optimize the variable lip concept. This test was a collaborative effort between the Boeing Company and Glenn. Extensive inhouse support at Glenn contributed significantly to the progress and accomplishment of this test.

  8. SULTAN test facility: Summary of recent results

    International Nuclear Information System (INIS)

    Stepanov, Boris; Bruzzone, Pierluigi; Sedlak, Kamil; Croari, Giancarlo

    2013-01-01

    The test campaigns of the ITER conductors in the SULTAN test facility re-started in December 2011 after three months break. The main focus of the activities is about the qualification tests of the Central Solenoid (CS) conductors, with three different samples for a total six variations of strand suppliers and cable layouts. In 2012, five Toroidal Field (TF) conductor samples have also been tested as part of the supplier and process qualification phase of the European, Korean, Chinese and Russian Federation Agencies. A summary of the test results for all the ITER samples tested in the last period is presented, including an updated statistics of the broad transition, the performance degradation and the impact of layout variations. The role of SULTAN test facility during the ITER construction is reviewed, and the load of work for the next three years is anticipated

  9. Capabilities of wind tunnels with two-adaptive walls to minimize boundary interference in 3-D model testing

    Science.gov (United States)

    Rebstock, Rainer; Lee, Edwin E., Jr.

    1989-01-01

    An initial wind tunnel test was made to validate a new wall adaptation method for 3-D models in test sections with two adaptive walls. First part of the adaptation strategy is an on-line assessment of wall interference at the model position. The wall induced blockage was very small at all test conditions. Lift interference occurred at higher angles of attack with the walls set aerodynamically straight. The adaptation of the top and bottom tunnel walls is aimed at achieving a correctable flow condition. The blockage was virtually zero throughout the wing planform after the wall adjustment. The lift curve measured with the walls adapted agreed very well with interference free data for Mach 0.7, regardless of the vertical position of the wing in the test section. The 2-D wall adaptation can significantly improve the correctability of 3-D model data. Nevertheless, residual spanwise variations of wall interference are inevitable.

  10. Production LHC HTS power lead test results

    CERN Document Server

    Tartaglia, M; Fehér, S; Huang, Y; Orris, D F; Pischalnikov, Y; Rabehl, Roger Jon; Sylvester, C D; Zbasnik, J

    2005-01-01

    The Fermilab Magnet test facility has built and operated a test stand to characterize the performance of HTS power leads. We report here the results of production tests of 20 pairs of 7.5 kA HTS power leads manufactured by industry for installation in feed boxes for the LHC Interaction Region quadrupole strings. Included are discussions of the thermal, electrical, and quench characteristics under "standard" and "extreme" operating conditions, and the stability of performance across thermal cycles.

  11. Production LHC HTS power lead test results

    International Nuclear Information System (INIS)

    Tartaglia, M.A.; Carcagno, R.H.; Feher, S.; Huang, Y.; Orris, D.F.; Pischalnikov, Y.; Rabehl, R.J.; Sylvester, C.; Zbasnik, J.

    2004-01-01

    The Fermilab Magnet test facility has built and operated a test stand to characterize the performance of HTS power leads. We report here the results of production tests of 20 pairs of 7.5 kA HTS power leads manufactured by industry for installation in feed boxes for the LHC Interaction Region quadrupole strings. Included are discussions of the thermal, electrical, and quench characteristics under ''standard'' and ''extreme'' operating conditions, and the stability of performance across thermal cycles

  12. Blockage and flow studies of a generalized test apparatus including various wing configurations in the Langley 7-inch Mach 7 Pilot Tunnel

    Science.gov (United States)

    Albertson, C. W.

    1982-03-01

    A 1/12th scale model of the Curved Surface Test Apparatus (CSTA), which will be used to study aerothermal loads and evaluate Thermal Protection Systems (TPS) on a fuselage-type configuration in the Langley 8-Foot High Temperature Structures Tunnel (8 ft HTST), was tested in the Langley 7-Inch Mach 7 Pilot Tunnel. The purpose of the tests was to study the overall flow characteristics and define an envelope for testing the CSTA in the 8 ft HTST. Wings were tested on the scaled CSTA model to select a wing configuration with the most favorable characteristics for conducting TPS evaluations for curved and intersecting surfaces. The results indicate that the CSTA and selected wing configuration can be tested at angles of attack up to 15.5 and 10.5 degrees, respectively. The base pressure for both models was at the expected low level for most test conditions. Results generally indicate that the CSTA and wing configuration will provide a useful test bed for aerothermal pads and thermal structural concept evaluation over a broad range of flow conditions in the 8 ft HTST.

  13. Relationship between Widening and Position of the Tunnels and Clinical Results of Anterior Cruciate Ligament Reconstruction to Knee Osteoarthritis: 30 Patients at a Minimum Follow-Up of 10 Years.

    Science.gov (United States)

    Ayala-Mejias, Juan Diego; Garcia-Gonzalez, Benjamin; Alcocer-Perez-España, Luis; Villafañe, Jorge Hugo; Berjano, Pedro

    2017-07-01

    To evaluate the relationship between tunnel position and widening and long-term clinical results in anterior cruciate ligament (ACL) reconstruction, a retrospective cohort of 30 patients undergoing ACL reconstruction with double semitendinous plus double gracilis (SAC technique) with longer than 10-year follow-up was selected. CT scans in the first 3 months and at final follow-up was evaluated. Position, angle, and widening of tunnels including Nebelung criteria were recorded in all CT scans. Physical, KT-1000, and clinical evaluation were performed at final follow-up. Outcomes and knee arthritis severity were evaluated at final follow-up. Mean follow-up was 11.2 ± 1.2. At final follow-up, 85 and 57% of tibial and femoral tunnels, respectively, developed some degree of enlargement. Frontal tibial angle (mean) was 72°, sagittal tibial angle 63°, frontal femoral angle 47°, sagittal femoral angle 20°, and tunnels divergence angle 36°. Preoperatively, KT-1000 30L and Lachman test scores were 5.52 and 5.79 respectively. In the last follow-up, 30L and manual Lachman test scores were 0.97 and 1.13, respectively ( p  verticalization. Tibial tunnel dilation was associated with long-term degenerative changes but not with final knee instability. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. A 1:8.7 Scale Water Tunnel Verification & Validation Test of an Axial Flow Water Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Fontaine, Arnold A. [Pennsylvania State Univ., University Park, PA (United States); Straka, William A. [Pennsylvania State Univ., University Park, PA (United States); Meyer, Richard S. [Pennsylvania State Univ., University Park, PA (United States); Jonson, Michael L. [Pennsylvania State Univ., University Park, PA (United States)

    2014-09-01

    As interest in waterpower technologies has increased over the last few years, there has been a growing need for a public database of measured data for these devices. This would provide a basic understanding of the technology and means to validate analytic and numerical models. Through collaboration between Sandia National Laboratories, Penn State University Applied Research Laboratory, and University of California, Davis, a new marine hydrokinetic turbine rotor was designed, fabricated at 1:8.7-scale, and experimentally tested to provide an open platform and dataset for further study and development. The water tunnel test of this three-bladed, horizontal-axis rotor recorded power production, blade loading, near-wake characterization, cavitation effects, and noise generation. This report documents the small-scale model test in detail and provides a brief discussion of the rotor design and an initial look at the results with comparison against low-order modeling tools. Detailed geometry and experimental measurements are released to Sandia National Laboratories as a data report addendum.

  15. Revalidation of the NASA Ames 11-by 11-Foot Transonic Wind Tunnel with a Commercial Airplane Model

    Science.gov (United States)

    Kmak, Frank J.; Hudgins, M.; Hergert, D.; George, Michael W. (Technical Monitor)

    2001-01-01

    The 11-By 11-Foot Transonic leg of the Unitary Plan Wind Tunnel (UPWT) was modernized to improve tunnel performance, capability, productivity, and reliability. Wind tunnel tests to demonstrate the readiness of the tunnel for a return to production operations included an Integrated Systems Test (IST), calibration tests, and airplane validation tests. One of the two validation tests was a 0.037-scale Boeing 777 model that was previously tested in the 11-By 11-Foot tunnel in 1991. The objective of the validation tests was to compare pre-modernization and post-modernization results from the same airplane model in order to substantiate the operational readiness of the facility. Evaluation of within-test, test-to-test, and tunnel-to-tunnel data repeatability were made to study the effects of the tunnel modifications. Tunnel productivity was also evaluated to determine the readiness of the facility for production operations. The operation of the facility, including model installation, tunnel operations, and the performance of tunnel systems, was observed and facility deficiency findings generated. The data repeatability studies and tunnel-to-tunnel comparisons demonstrated outstanding data repeatability and a high overall level of data quality. Despite some operational and facility problems, the validation test was successful in demonstrating the readiness of the facility to perform production airplane wind tunnel%, tests.

  16. Wind Tunnel Simulations of the Mock Urban Setting Test - Experimental Procedures and Data Analysis

    National Research Council Canada - National Science Library

    Gailis, Ralph

    2004-01-01

    ... of the data analysis techniques is given. Emphasis is placed on the scaling arguments used to compare data between a wind tunnel and full-scale study, and on methods of uncertainty analysis to provide a rigorous underpinning to the dataset. The report serves as a complete documentation for users of the MUST wind tunnel simulation dataset, which can be obtained by contacting the author.

  17. Interaction of Space Suits with Windblown Soil: Preliminary Mars Wind Tunnel Results

    Science.gov (United States)

    Marshall, J.; Bratton, C.; Kosmo, J.; Trevino, R.

    1999-09-01

    Experiments in the Mars Wind Tunnel at NASA Ames Research Center show that under Mars conditions, spacesuit materials are highly susceptible to dust contamination when exposed to windblown soil. This effect was suspected from knowledge of the interaction of electrostatically adhesive dust with solid surfaces in general. However, it is important to evaluate the respective roles of materials, meteorological and radiation effects, and the character of the soil. The tunnel permits evaluation of dust contamination and sand abrasion of space suits by simulating both pressure and wind conditions on Mars. The long-term function of space suits on Mars will be primarily threatened by dust contamination. Lunar EVA activities caused heavy contamination of space suits, but the problem was never seriously manifest because of the brief utilization of the suits, and the suits were never reused. Electrostatically adhering dust grains have various detrimental effects: (1) penetration and subsequent wear of suit fabrics, (2) viewing obscuration through visors and scratching/pitting of visor surfaces, (3) penetration, wear, and subsequent seizing-up of mechanical suit joints, (4) changes in albedo and therefore of radiation properties of external heat-exchanger systems, (5) changes in electrical conductivity of suit surfaces which may affect tribocharging of suits and create spurious discharge effects detrimental to suit electronics/radio systems. Additional information is contained in the original.

  18. Wind and water tunnel testing of a morphing aquatic micro air vehicle.

    Science.gov (United States)

    Siddall, Robert; Ortega Ancel, Alejandro; Kovač, Mirko

    2017-02-06

    Aerial robots capable of locomotion in both air and water would enable novel mission profiles in complex environments, such as water sampling after floods or underwater structural inspections. The design of such a vehicle is challenging because it implies significant propulsive and structural design trade-offs for operation in both fluids. In this paper, we present a unique Aquatic Micro Air Vehicle (AquaMAV), which uses a reconfigurable wing to dive into the water from flight, inspired by the plunge diving strategy of water diving birds in the family Sulidae . The vehicle's performance is investigated in wind and water tunnel experiments, from which we develop a planar trajectory model. This model is used to predict the dive behaviour of the AquaMAV, and investigate the efficacy of passive dives initiated by wing folding as a means of water entry. The paper also includes first field tests of the AquaMAV prototype where the folding wings are used to initiate a plunge dive.

  19. Reproducibility of the results in nondestructive testing

    International Nuclear Information System (INIS)

    Launay, J.P.; Chalaye, H.; Thomas, A.

    1980-10-01

    Pressure vessels must comply with very severe safety criteria. In order to ensure that the required quality is attained, non destructive tests are used and these have to be highly reliable: magnetoscopy and liquid penetration for surface examinations, radiography and ultrasonics for voluminal examinations. In the case of ultrasonic examinations, a study of parameters has been made and a statistical analysis of the results has made it possible to calculate the dispersion due to the testing equipment [fr

  20. Acknowledging the results of blood tests

    DEFF Research Database (Denmark)

    Torkilsheyggi, Arnvør Martinsdottir á; Hertzum, Morten

    At the studied hospital, physicians from the Medical and Surgical Departments work some of their shifts in the Emergency Department (ED). Though icons showing the blood-test process were introduced on electronic whiteboards in the ED, these icons did not lead to increased attention to test acknow...... acknowledgement. Rather, the physicians, trans-ferred work practices from their own departments, which did not have electronic white-boards, to the ED. This finding suggests a challenge to the cross-disciplinary work and norms for how to follow up on blood-test results in the ED....

  1. Results of interlaboratory tests regarding TXRF

    International Nuclear Information System (INIS)

    Klockenkaemper, R.; Bohlen, A. von

    2000-01-01

    Interlaboratory or intercomparison tests can be performed for proficiency testing of individual laboratories, for the certification of a special sample material and for the validation of a certain method. We participated in two interlaboratory tests in order to validate total reflection x-ray fluorescence analysis (TXRF). We used our results to evaluate TXRF and to compare it with other competing methods, particularly with respect of precision and accuracy. The first interlaboratory test was organized by IAEA (International Atomic Energy Agency, Vienna, Austria). As a candidate for reference material, a lichen (IAEA-336 Lichen) was distributed among 27 participants. In our laboratory, the powdered biogenic material was digested with nitric acid under high pressure and analyzed by TXRF. - The second interlaboratory test was organized by IRMM (Institute for Reference Materials and Measurements, Geel, Belgium). As a certified test sample with undisclosed values, a sediment (IMEP-14) was delivered to 220 laboratories. We digested the geogenic material again by nitric acid and additionally by hydrofluoric acid and analyzed it by TXRF. - In both test samples, six or eight different trace elements, respectively, were determined by TXRF with a content between 2 and 2000 mg/kg. Calibration was carried out by internal standardization. For that purpose, Ga or Se, respectively, was added as standard element. The measurement uncertainty of TXRF was estimated by the method of error propagation. In our paper we will report on the results of the two interlaboratory tests. It will be shown that TXRF is highly reliable for a correct determination of trace elements in biogenic and geogenic samples. It is competitive with the established methods of trace analyses which were involved in these tests and it is even superior to them in certain aspects. (author)

  2. Test Results of PBMR Fuel Spheres

    International Nuclear Information System (INIS)

    Koshcheev, Konstantin; Diakov, Alexander; Beltyukov, Igor; Barybin, Andrey; Chernetsov, Mikhail

    2014-01-01

    Results of pre-irradiation testing of fuel spheres (FS) and coated particles (CP) manufactured by PBMR SOC (Republic of South Africa) are described. The stable high quality level of major characteristics (dimensions, CP coating structure, uranium-235 contamination of the FS matrix graphite and the outer PyC layer of the CP coating) are shown. Results of a methodical irradiation test of two FS in helium and neon medium at temperatures of 800 to 1300 °C with simultaneous determination of release-to-birth ratios for major gaseous fission products (GFP) are described. (author)

  3. Cascade Distiller System Performance Testing Interim Results

    Science.gov (United States)

    Callahan, Michael R.; Pensinger, Stuart; Sargusingh, Miriam J.

    2014-01-01

    The Cascade Distillation System (CDS) is a rotary distillation system with potential for greater reliability and lower energy costs than existing distillation systems. Based upon the results of the 2009 distillation comparison test (DCT) and recommendations of the expert panel, the Advanced Exploration Systems (AES) Water Recovery Project (WRP) project advanced the technology by increasing reliability of the system through redesign of bearing assemblies and improved rotor dynamics. In addition, the project improved the CDS power efficiency by optimizing the thermoelectric heat pump (TeHP) and heat exchanger design. Testing at the NASA-JSC Advanced Exploration System Water Laboratory (AES Water Lab) using a prototype Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell d International, Torrance, Calif.) with test support equipment and control system developed by Johnson Space Center was performed to evaluate performance of the system with the upgrades as compared to previous system performance. The system was challenged with Solution 1 from the NASA Exploration Life Support (ELS) distillation comparison testing performed in 2009. Solution 1 consisted of a mixed stream containing human-generated urine and humidity condensate. A secondary objective of this testing is to evaluate the performance of the CDS as compared to the state of the art Distillation Assembly (DA) used in the ISS Urine Processor Assembly (UPA). This was done by challenging the system with ISS analog waste streams. This paper details the results of the AES WRP CDS performance testing.

  4. Wind tunnel tests of modified cross, hemisflo, and disk-gap-band parachutes with emphasis in the transonic range

    Science.gov (United States)

    Foughner, J. T., Jr.; Alexander, W. C.

    1974-01-01

    Transonic wind-tunnel studies were conducted with modified cross, hemisflo, and disk-gap-band parachute models in the wake of a cone-cylinder shape forebody. The basic cross design was modified with the addition of a circumferential constraining band at the lower edge of the canopy panels. The tests covered a Mach number range of 0.3 to 1.2 and a dynamic pressure range from 479 Newtons per square meter to 5746 Newtons per square meter. The parachute models were flexible textile-type structures and were tethered to a rigid forebody with a single flexible riser. Different size models of the modified cross and disk-gap-band canopies were tested to evaluate scale effects. Model reference diameters were 0.30, 0.61, and 1.07 meters (1.0, 2.0, and 3.5 ft) for the modified cross; and nominal diameters of 0.25 and 0.52 meter (0.83 and 1.7 ft) for the disk-gap-band; and 0.55 meter (1.8 ft) for the hemisflo. Reefing information is presented for the 0.61-meter-diameter cross and the 0.52-meter-diameter disk-gap-band. Results are presented in the form of the variation of steady-state average drag coefficient with Mach number. General stability characteristics of each parachute are discussed. Included are comments on canopy coning, spinning, and fluttering motions.

  5. ALICE TRD results from prototype tests

    CERN Document Server

    Andronic, A; Blume, C; Braun-Munzinger, P; Bucher, D; Catanescu, G; Ciobanu, M; Daues, H W; Devismes, A; Finck, C; Herrmann, N; Lister, T A; Mahmoud, Tariq; Peitzmann, Thomas; Petrovici, M; Reygers, K; Santo, R; Schicker, R; Sedykha, S; Simon, R S; Stachel, J; Stelzer, H; Wessels, J P; Winkelmann, O; Windelband, B; Xu, C

    2002-01-01

    We present results from tests of a prototype of the TRD for the ALICE experiment at LHC. We investigate the performance-of different radiator types, composed of foils, fibres and foams. The pion rejection performance for different methods of analysis over a momentum range from 0.7 to 2 GeV/c is presented. (8 refs).

  6. SLD liquid argon calorimeter prototype test results

    International Nuclear Information System (INIS)

    Dubois, R.; Eigen, G.; Au, Y.

    1985-10-01

    The results of the SLD test beam program for the selection of a calorimeter radiator composition within a liquid argon system are described, with emphasis on the study of the use of uranium to obtain equalization of pion and electron responses

  7. Cone Penetrometer N Factor Determination Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Follett, Jordan R.

    2014-03-05

    This document contains the results of testing activities to determine the empirical 'N Factor' for the cone penetrometer in kaolin clay simulant. The N Factor is used to releate resistance measurements taken with the cone penetrometer to shear strength.

  8. Ball Aerospace SBMD Coating Test Results

    Science.gov (United States)

    Brown, Robert; Lightsey, Paul; Russell, J. Kevin (Technical Monitor)

    2002-01-01

    The Sub-scale Beryllium Mirror Demonstrator that was successfully tested to demonstrate cryogenic figuring of a bare mirror has been coated with a protected gold reflective surface and retested at cryogenic temperatures. Results showing less than 9 nm rms surface distortion attributable to the added coating are presented.

  9. The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys

    Science.gov (United States)

    Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.

    2010-01-01

    The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.

  10. Wind tunnel tests for a flapping wing model with a changeable camber using macro-fiber composite actuators

    International Nuclear Information System (INIS)

    Kim, Dae-Kwan; Han, Jae-Hung; Kwon, Ki-Jung

    2009-01-01

    In the present study, a biomimetic flexible flapping wing was developed on a real ornithopter scale by using macro-fiber composite (MFC) actuators. With the actuators, the maximum camber of the wing can be linearly changed from −2.6% to +4.4% of the maximum chord length. Aerodynamic tests were carried out in a low-speed wind tunnel to investigate the aerodynamic characteristics, particularly the camber effect, the chordwise flexibility effect and the unsteady effect. Although the chordwise wing flexibility reduces the effective angle of attack, the maximum lift coefficient can be increased by the MFC actuators up to 24.4% in a static condition. Note also that the mean values of the perpendicular force coefficient rise to a value of considerably more than 3 in an unsteady aerodynamic flow region. Additionally, particle image velocimetry (PIV) tests were performed in static and dynamic test conditions to validate the flexibility and unsteady effects. The static PIV results confirm that the effective angle of attack is reduced by the coupling of the chordwise flexibility and the aerodynamic force, resulting in a delay in the stall phenomena. In contrast to the quasi-steady flow condition of a relatively high advance ratio, the unsteady aerodynamic effect due to a leading edge vortex can be found along the wing span in a low advance ratio region. The overall results show that the chordwise wing flexibility can produce a positive effect on flapping aerodynamic characteristics in quasi-steady and unsteady flow regions; thus, wing flexibility should be considered in the design of efficient flapping wings

  11. Force Tests of the Boeing XB-47 Full-Scale Empennage in the Ames 40- by 80-Foot Wind Tunnel

    Science.gov (United States)

    Hunton, Lynn W.

    1947-01-01

    A wind-tunnel investigation of the Boeing XB-47 full-scale empennage was conducted to provide, prior to flight tests, data required on the effectiveness of the elevator and rudder. The XB-47 airplane is a jet-propelled medium bomber having wing and tail surfaces swept back 35 degrees. The investigation included tests of the effectiveness of the elevator with normal straight sides, with a buldged trailing edge, and with a modified hinge-line gap and tests of the effectiveness of the rudder with a normal straight-sided tab and with a bulged tab.

  12. PIV Measurements in the 14 x 22 Low Speed Tunnel: Recommendations for Future Testing

    Science.gov (United States)

    Watson, Ralph D.; Jenkins, Luther N.; Yao, Chung-Sheng; McGinley, Catherine B.; Paschal, Keith B.; Neuhart, Dan H.

    2003-01-01

    During the period from February 4 to March 21, 2003 stereo digital particle imaging velocimetry measurements were made on a generic high lift model, the Trap Wing, as part of the High Lift Flow Physics Experiment. These measurements were the first PIV measurements made in the NASA, Langley Research Center 14 x 22 Foot Low Speed Tunnel, and several problems were encountered and solved in the acquisition of the data. It is the purpose of this paper to document the solutions to these problems and to make recommendations for further improvements to the tunnel/setup in order to facilitate future measurements of this type.

  13. Laboratory results of the AOF system testing

    Science.gov (United States)

    Kolb, Johann; Madec, Pierre-Yves; Arsenault, Robin; Oberti, Sylvain; Paufique, Jérôme; La Penna, Paolo; Ströbele, Stefan; Donaldson, Robert; Soenke, Christian; Suárez Valles, Marcos; Kiekebusch, Mario; Argomedo, Javier; Le Louarn, Miska; Vernet, Elise; Haguenauer, Pierre; Duhoux, Philippe; Aller-Carpentier, Emmanuel; Valenzuela, Jose Javier; Guerra, Juan Carlos

    2016-07-01

    For two years starting in February 2014, the AO modules GRAAL for HAWK-I and GALACSI for MUSE of the Adaptive Optics Facility project have undergone System Testing at ESO's Headquarters. They offer four different modes: NGS SCAO, LGS GLAO in the IR, LGS GLAO and LTAO in the visible. A detailed characterization of those modes was made possible by the existence of ASSIST, a test bench emulating an adaptive VLT including the Deformable Secondary Mirror, a star simulator and turbulence generator and a VLT focal plane re-imager. This phase aimed at validating all the possible components and loops of the AO modules before installation at the actual VLT that comprises the added complexity of real LGSs, a harsher non-reproducible environment and the adaptive telescope control. In this paper we present some of the major results obtained and challenges encountered during the phase of System Tests, like the preparation of the Acquisition sequence, the testing of the Jitter loop, the performance optimization in GLAO and the offload of low-order modes from the DSM to the telescope (restricted to the M2 hexapod). The System Tests concluded with the successful acceptance, shipping, installation and first commissioning of GRAAL in 2015 as well as the acceptance and shipping of GALACSI, ready for installation and commissioning early 2017.

  14. Lessons Learned from the Construction of Upgrades to the NASA Glenn Icing Research Tunnel and Re-activation Testing

    Science.gov (United States)

    Sheldon, David W.; Andracchio, Charles R.; Krivanek, Thomas M.; Spera, David A.; Austinson, Todd A.

    2001-01-01

    Major upgrades were made in 1999 to the 6- by 9-Foot (1.8- by 2.7-m) Icing Research Tunnel (IRT) at the NASA Glenn Research Center. These included replacement of the electronic controls for the variable-speed drive motor, replacement of the heat exchanger, complete replacement and enlargement of the leg of the tunnel containing the new heat-exchanger, the addition of flow-expanding and flow-contracting turning vanes upstream and downstream of the heat exchanger, respectively, and the addition of fan outlet guide vanes (OGV's). This paper presents an overview of the construction and reactivation testing phases of the project. Important lessons learned during the technical and contract management work are documented.

  15. NASA Langley Low Speed Aeroacoustic Wind Tunnel: Background Noise and Flow Survey Results Prior to FY05 Construction of Facilities Modifications

    Science.gov (United States)

    Booth, Earl R., Jr.; Henderson, Brenda S.

    2005-01-01

    The NASA Langley Research Center Low Speed Aeroacoustic Wind Tunnel is a premier facility for model-scale testing of jet noise reduction concepts at realistic flow conditions. However, flow inside the open jet test section is less than optimum. A Construction of Facilities project, scheduled for FY 05, will replace the flow collector with a new design intended to reduce recirculation in the open jet test section. The reduction of recirculation will reduce background noise levels measured by a microphone array impinged by the recirculation flow and will improve flow characteristics in the open jet tunnel flow. In order to assess the degree to which this modification is successful, background noise levels and tunnel flow are documented, in order to establish a baseline, in this report.

  16. Calibration of the Flow in the Test Section of the Research Wind Tunnel at DST Group

    Science.gov (United States)

    2015-10-01

    of research projects, including the prediction of the performance of gas - turbine engines under conditions of pulsating flow , parametric studies of...the tunnel. The calibration data are presented and analysed and explanations of flow behaviour are given. 2. Mean-Velocity Measurements 2.1...

  17. Boeing's STAR-FODB test results

    Science.gov (United States)

    Fritz, Martin E.; de la Chapelle, Michael; Van Ausdal, Arthur W.

    1995-05-01

    Boeing has successfully concluded a 2 1/2 year, two phase developmental contract for the STAR-Fiber Optic Data Bus (FODB) that is intended for future space-based applications. The first phase included system analysis, trade studies, behavior modeling, and architecture and protocal selection. During this phase we selected AS4074 Linear Token Passing Bus (LTPB) protocol operating at 200 Mbps, along with the passive, star-coupled fiber media. The second phase involved design, build, integration, and performance and environmental test of brassboard hardware. The resulting brassboard hardware successfully passed performance testing, providing 200 Mbps operation with a 32 X 32 star-coupled medium. This hardware is suitable for a spaceflight experiment to validate ground testing and analysis and to demonstrate performace in the intended environment. The fiber bus interface unit (FBIU) is a multichip module containing transceiver, protocol, and data formatting chips, buffer memory, and a station management controller. The FBIU has been designed for low power, high reliability, and radiation tolerance. Nine FBIUs were built and integrated with the fiber optic physical layer consisting of the fiber cable plant (FCP) and star coupler assembly (SCA). Performance and environmental testing, including radiation exposure, was performed on selected FBIUs and the physical layer. The integrated system was demonstrated with a full motion color video image transfer across the bus while simultaneously performing utility functions with a fiber bus control module (FBCM) over a telemetry and control (T&C) bus, in this case AS1773.

  18. Results from the CLIC Test Facility

    CERN Document Server

    Braun, H; Bossart, Rudolf; Chautard, F; Corsini, R; Delahaye, J P; Godot, J C; Hutchins, S; Kamber, I; Madsen, J H B; Rinolfi, Louis; Rossat, G; Schreiber, S; Suberlucq, Guy; Thorndahl, L; Wilson, Ian H; Wuensch, Walter

    1996-01-01

    In order to study the principle of the Compact Linear Collider (CLIC) based on the Two Beam Acceleration (TBA) scheme at high frequency, a CLIC Test Facility (CTF) has been set-up at CERN. After four years of successful running, the experimental programme is now fully completed and all its objectives reached, particularly the generation of a high intensity drive beam with short bunches by a photo-injector, the production of 30 GHz RF power and the acceleration of a probe beam by 30 GHz structures. A summary of the CTF results and their impact on linear collider design is given. This covers 30 GHz high power testing, study of intense, short single bunches; as well as RF-Gun, photocathode and beam diagnostic developments. A second phase of the test facility (CTF2) is presently being installed to demonstrate the feasibility of the TBA scheme by constructing a fully engineered, 10 m long, test section very similar to the CLIC drive and main linacs, producing up to 480 MW of peak RF power at 30 GHz and acceleratin...

  19. Wind-Tunnel Tests of Ailerons at Various Speeds. 1 - Ailerons of 0.20 Airfoil Chord and Tube Contour with 0.35 Aileron-Chord Extreme Blunt Nose Balance on the NACA 66,2-216 Airfoil

    Science.gov (United States)

    1943-06-01

    which includes effectelof boundary layer at the tunnel wall and of gaps at the ends of the aileron as well as the effects of any cross flow over the...the gap width cauaed a d? urease in the slope except at the highest speed tested where an increase in gap resulted in an increase in the slope. Figure 13

  20. The Benchmark Test Results of QNX RTOS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jang Yeol; Lee, Young Jun; Cheon, Se Woo; Lee, Jang Soo; Kwon, Kee Choon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    A Real-Time Operating System(RTOS) is an Operating System(OS) intended for real-time applications. Benchmarking is a point of reference by which something can be measured. The QNX is a Real Time Operating System(RTOS) developed by QSSL(QNX Software Systems Ltd.) in Canada. The ELMSYS is the brand name of commercially available Personal Computer(PC) for applications such as Cabinet Operator Module(COM) of Digital Plant Protection System(DPPS) and COM of Digital Engineered Safety Features Actuation System(DESFAS). The ELMSYS PC Hardware is being qualified by KTL(Korea Testing Lab.) for use as a Cabinet Operator Module(COM). The QNX RTOS is being dedicated by Korea Atomic Energy Research Institute (KAERI). This paper describes the outline and benchmarking test results on Context Switching, Message Passing, Synchronization and Deadline Violation of QNX RTOS under the ELMSYS PC platform

  1. The Benchmark Test Results of QNX RTOS

    International Nuclear Information System (INIS)

    Kim, Jang Yeol; Lee, Young Jun; Cheon, Se Woo; Lee, Jang Soo; Kwon, Kee Choon

    2010-01-01

    A Real-Time Operating System(RTOS) is an Operating System(OS) intended for real-time applications. Benchmarking is a point of reference by which something can be measured. The QNX is a Real Time Operating System(RTOS) developed by QSSL(QNX Software Systems Ltd.) in Canada. The ELMSYS is the brand name of commercially available Personal Computer(PC) for applications such as Cabinet Operator Module(COM) of Digital Plant Protection System(DPPS) and COM of Digital Engineered Safety Features Actuation System(DESFAS). The ELMSYS PC Hardware is being qualified by KTL(Korea Testing Lab.) for use as a Cabinet Operator Module(COM). The QNX RTOS is being dedicated by Korea Atomic Energy Research Institute (KAERI). This paper describes the outline and benchmarking test results on Context Switching, Message Passing, Synchronization and Deadline Violation of QNX RTOS under the ELMSYS PC platform

  2. Synthesis of low cycle fatigue test results

    International Nuclear Information System (INIS)

    Andrews, R.M.

    1990-01-01

    Axial strain controlled cycle fatigue tests were carried out on type 316 stainless steel parent metal, vacuum and non-vacuum electron beams welds, submerged arc welds and gas shielded metal arc welds. Testing covered total strains in the range 0.6% to 2%, and was at room temperature and 550 0 C. Parent metal and the electron beam welds showed rapid cyclic hardening, while arc welds showed little hardening. The weld metal cyclic stress-strain response was above that obtained for the parent metal, although below data obtained by other workers for similar parent materials. Weld metal endurances were above the ASME N47 continuous cycling design line at both temperatures, and comparable with parent metal data. However, the weld metal data approached the design line at low strain ranges (around 0.5%). Endurances were predicted from crack growth rates estimated from striation spacings, giving acceptable results except for the gas shielded metal arc weldments. (author)

  3. Results from the STAR TPC system test

    International Nuclear Information System (INIS)

    Betts, W.

    1996-01-01

    A system test of various components of the Solenoidal Tracker at RHIC (STAR) detector, operating in concern, has recently come on-line. Communication between a major sub-detector, a sector of the Time Projection Chamber (TPC), and the trigger, data acquisition and slow controls systems has been established, enabling data from cosmic ray muons to be collected. First results from an analysis of the TPC data are presented. These include measurements of system noise, electronic parameters such as amplifier gains and pedestal values, and tracking resolution for cosmic ray muons and laser induced ionization tracks. A discussion on the experience gained in integrating the different components for the system test is also given

  4. Model-Scale Aerodynamic Performance Testing of Proposed Modifications to the NASA Langley Low Speed Aeroacoustic Wind Tunnel

    Science.gov (United States)

    Booth, Earl R., Jr.; Coston, Calvin W., Jr.

    2005-01-01

    Tests were performed on a 1/20th-scale model of the Low Speed Aeroacoustic Wind Tunnel to determine the performance effects of insertion of acoustic baffles in the tunnel inlet, replacement of the existing collector with a new collector design in the open jet test section, and addition of flow splitters to the acoustic baffle section downstream of the test section. As expected, the inlet baffles caused a reduction in facility performance. About half of the performance loss was recovered by addition the flow splitters to the downstream baffles. All collectors tested reduced facility performance. However, test chamber recirculation flow was reduced by the new collector designs and shielding of some of the microphones was reduced owing to the smaller size of the new collector. Overall performance loss in the facility is expected to be a 5 percent top flow speed reduction, but the facility will meet OSHA limits for external noise levels and recirculation in the test section will be reduced.

  5. Evaluation of ring tensile test results

    International Nuclear Information System (INIS)

    Chatterjee, S.; Anantharaman, S.; Balakrishnan, K.S.; Sivaramakrish, K.S.

    1990-01-01

    Ring specimens of 5-mm width cut from Zircaloy-2 cladding of reactor operated fuel elements that had experienced 5000 to 15,000 MWD/T of fuel burnup were subjected to ring tensile testing. The true stress-true strain data points up to the onset of necking from the individual load-elongation curves of these specimens were used as input data in Voce's equation. The results reveal that the uniform elongation (UE) values generated using Voce's equation were within (UE-2)% of the experimental percent uniform elongation (UE%). The corresponding ultimate tensile strength values were within ±1%. The uncertainty inherently associated in the determination of gauge length introduces extraneous deformation in the rings tested. Previous results had shown that a 14% increase in cladding diameter caused the gauge length to increase by 40%. To simulate the contribution of extraneous deformation due to an increase in cladding diameter, an analysis of the variation of the tensile parameters (uniform elongation and ultimate tensile strength) due to increase in the gauge length in the range of 10 to 40% was carried out. The results are discussed

  6. Dual color radiometer imagery and test results

    International Nuclear Information System (INIS)

    Silver, A.; Carlen, F.; Link, D.; Zegel, F.

    1989-01-01

    This paper presents a review of the technical characteristics of the Dual Color Radiometer and recent data and test results. The Dual Color Radiometer is a state-of-the-art device that provides simultaneous pixel to pixel registered thermal imagery in both the 3 to 5 and 8 to 12 micron regions. The device is unique in terms of its spatial and temperature resolution of less than 0.10 degrees C temperature and 0.10 milliradian spatial resolution. In addition, the device is tailored for use by the Automatic Target Recognizer (ATR) community

  7. An overview of HyFIE Technical Research Project: cross testing in main European hypersonic wind tunnels on EXPERT body

    OpenAIRE

    Brazier , J.P.; Schramm , J.M.; Paris , S.; Gawehn , T.

    2015-01-01

    International audience; HyFIE project aimed at improving the measurement techniques in hypersonic wind-tunnels and comparing the experimental data provided by four major European facilities: DLR HEG and H2K, ONERA F4 and VKI Longshot. A common geometry of EXPERT body was chosen and four different models were used. A large amount of experimental data was collected and compared with the results of numerical simulations. Collapsing all the measured values showed a good agreement between the diff...

  8. Arc melter demonstration baseline test results

    International Nuclear Information System (INIS)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; Oden, L.L.; O'Connor, W.K.; Turner, P.C.

    1994-07-01

    This report describes the test results and evaluation for the Phase 1 (baseline) arc melter vitrification test series conducted for the Buried Waste Integrated Demonstration program (BWID). Phase 1 tests were conducted on surrogate mixtures of as-incinerated wastes and soil. Some buried wastes, soils, and stored wastes at the INEL and other DOE sites, are contaminated with transuranic (TRU) radionuclides and hazardous organics and metals. The high temperature environment in an electric arc furnace may be used to process these wastes to produce materials suitable for final disposal. An electric arc furnace system can treat heterogeneous wastes and contaminated soils by (a) dissolving and retaining TRU elements and selected toxic metals as oxides in the slag phase, (b) destroying organic materials by dissociation, pyrolyzation, and combustion, and (c) capturing separated volatilized metals in the offgas system for further treatment. Structural metals in the waste may be melted and tapped separately for recycle or disposal, or these metals may be oxidized and dissolved into the slag. The molten slag, after cooling, will provide a glass/ceramic final waste form that is homogeneous, highly nonleachable, and extremely durable. These features make this waste form suitable for immobilization of TRU radionuclides and toxic metals for geologic timeframes. Further, the volume of contaminated wastes and soils will be substantially reduced in the process

  9. AOF: standalone test results of GALACSI

    Science.gov (United States)

    La Penna, P.; Aller Carpentier, E.; Argomedo, J.; Arsenault, R.; Conzelmann, R. D.; Delabre, B.; Donaldson, R.; Gago, F.; Gutierrez-Cheetam, P.; Hubin, N.; Jolley, P.; Kiekebusch, M.; Kirchbauer, J. P.; Klein, B.; Kolb, J.; Kuntschner, H.; Le Louarn, M.; Lizon, J.-L.; Madec, P.-Y.; Manescau, A.; Mehrgan, L.; Oberti, S.; Quentin, J.; Sedghi, B.; Ströbele, S.; Suárez Valles, M.; Soenke, C.; Tordo, S.; Vernet, J.

    2016-07-01

    GALACSI is the Adaptive Optics (AO) module that will serve the MUSE Integral Field Spectrograph. In Wide Field Mode it will enhance the collected energy in a 0.2"×0.2" pixel by a factor 2 at 750 nm over a Field of View (FoV) of 1'×1' using the Ground Layer AO (GLAO) technique. In Narrow Field Mode, it will provide a Strehl Ratio of 5% (goal 10%) at 650 nm, but in a smaller FoV (7.5"×7.5" FoV), using Laser Tomography AO (LTAO). Before being ready for shipping to Paranal, the system has gone through an extensive testing phase in Europe, first in standalone mode and then in closed loop with the DSM in Europe. After outlining the technical features of the system, we describe here the first part of that testing phase and the integration with the AOF ASSIST (Adaptive Secondary Setup and Instrument Stimulator) testbench, including a specific adapter for the IRLOS truth sensor. The procedures for the standalone verification of the main system performances are outlined, and the results of the internal functional tests of GALACSI after full integration and alignment on ASSIST are presented.

  10. Partial-array test results in IFSMTF

    International Nuclear Information System (INIS)

    Lue, J.W.; Dresner, L.; Koizumi, K.; Lubell, M.S.; Luton, J.N.; Shen, S.S.; Zahn, G.R.; Zichy, J.A.

    1985-01-01

    Preliminary performance tests of two large superconducting magnets have been carried out in the International Fusion Superconducting Magnet Test Facility (IFSMTF). Each of the Japanese (JA) and General Dynamics/Convair (GD) coils was operated up to its full design current of 10.2 kA with the other serving as an adjacent background coil at 40% of design current. Cryostatic stability was demonstrated for both coils by noting recovery from a full half-turn (5 m) driven normal. A new pick-up coil compensation scheme was successfully used for the quench detection system. Each coil remained superconducting when the other was dumped. Unique instrumentation was used to measure changes in bore dimensions and displacement of the winding from the coil case. Agreement between structural analysis and measurement of bore dimension changes resulting from magnetic loads is good. The Swiss (CH) coil underwent only a cryogenic test. The forced cooling worked well and an inlet temperature of 3.8 K was demonstrated

  11. Proportional fuzzy feed-forward architecture control validation by wind tunnel tests of a morphing wing

    Directory of Open Access Journals (Sweden)

    Michel Joël Tchatchueng Kammegne

    2017-04-01

    wing for a specified flight condition. The feasibility and effectiveness of the developed control system by use of a proportional fuzzy feed-forward methodology are demonstrated experimentally through bench and wind tunnel tests of the morphing wing model.

  12. Updated Results of Ultrasonic Transducer Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua; Palmer, Joe [Idaho National Laboratory, P.O. Box 1625, MS 4112, Idaho Falls, ID, 38415-3840 (United States); Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert [Pacific Northwest National Laboratory, 902 Battelle Blvd. Richland, WA, 99354 (United States); Chien, Hual-Te [Argonne National Laboratory, 9700 S. Cass Avenue Argonne, IL, 60439 (United States); Tittmann, Bernhard; Reinhardt, Brian [Pennsylvania State University, 212 Earth and Engr. Sciences Building, University Park, PA, 16802 (United States); Kohse, Gordon [Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139 (United States); Rempe, Joy [Rempe and Associates, LLC, 360 Stillwater, Idaho Falls, ID 83404 (United States); Villard, J.F. [Commissariat a l' energie atomique et aux energies alternatives, Centre d' etudes de Cadarache, 13108 Saint-Paul-lez-Durance (France)

    2015-07-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10{sup 21} n/cm{sup 2}. A multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET-ASI) program also provided initial support for this effort. This irradiation, which started in February 2014, is an instrumented lead test and real-time transducer performance data are collected along with temperature and neutron and gamma flux data. The irradiation is ongoing and will continue to approximately mid-2015. To date, very encouraging results have been attained as several transducers continue to operate under irradiation. (authors)

  13. V/STOL Tandem Fan transition section model test. [in the Lewis Research Center 10-by-10 foot wind tunnel

    Science.gov (United States)

    Simpkin, W. E.

    1982-01-01

    An approximately 0.25 scale model of the transition section of a tandem fan variable cycle engine nacelle was tested in the NASA Lewis Research Center 10-by-10 foot wind tunnel. Two 12-inch, tip-turbine driven fans were used to simulate a tandem fan engine. Three testing modes simulated a V/STOL tandem fan airplane. Parallel mode has two separate propulsion streams for maximum low speed performance. A front inlet, fan, and downward vectorable nozzle forms one stream. An auxilliary top inlet provides air to the aft fan - supplying the core engine and aft vectorable nozzle. Front nozzle and top inlet closure, and removal of a blocker door separating the two streams configures the tandem fan for series mode operations as a typical aircraft propulsion system. Transition mode operation is formed by intermediate settings of the front nozzle, blocker door, and top inlet. Emphasis was on the total pressure recovery and flow distortion at the aft fan face. A range of fan flow rates were tested at tunnel airspeeds from 0 to 240 knots, and angles-of-attack from -10 to 40 deg for all three modes. In addition to the model variables for the three modes, model variants of the top inlet were tested in the parallel mode only. These lip variables were: aft lip boundary layer bleed holes, and Three position turning vane. Also a bellmouth extension of the top inlet side lips was tested in parallel mode.

  14. Airflow over Barchan dunes: field measurements, mathematical modelling and wind tunnel testing

    OpenAIRE

    Wiggs, G. F. S.

    1992-01-01

    There are few empirical measurements of velocity, shear velocity, sand transport, morphological change on the windward slopes of dunes.This thesis compares field measurements on a barchan dune in Oman with calculations using a mathematical model (FLOWSTAR) and measurements in a wind tunnel. All three techniques demonstrate similar patterns of velocity, confirming the acceleration of flow up the windward slope, deceleration between the crest and brink and significant flow decele...

  15. Results from the Cooler and Lead Tests

    International Nuclear Information System (INIS)

    Green, Michael A.

    2010-01-01

    The report presents the results of testing MICE spectrometer magnet current leads on a test apparatus that combines both the copper leads and the high temperature superconducting (HTS) leads with a single Cryomech PT415 cooler and liquid helium tank. The current is carried through the copper leads from 300 K to the top of the HTS leads. The current is then carried through the HTS leads to a feed-through from the vacuum space to the inside of a liquid helium tank. The experiment allows one to measure the performance of both cooler stages along with the performance of the leads. While the leads were powered we measured the voltage drops through the copper leads, through the HTS leads, through spliced to the feed-through, through the feed-through and through the low-temperature superconducting loop that connects one lead to the other. Measurements were made using the leads that were used in spectrometer magnet 1A and spectrometer magnet 2A. These are the same leads that were used for Superbend and Venus magnets at LBNL. The IL/A for these leads was 5.2 x 10 6 m -1 . The leads turned out to be too long. The same measurements were made using the leads that were installed in magnet 2B. The magnet 2B leads had an IL/A of 3.3 x 10 6 A m -1 . This report discusses the cooler performance and the measured electrical performance of the lead circuit that contains the copper leads and the superconducting leads. All of the HTS leads that were installed in magnet 2B were current tested using this apparatus.

  16. Tuned Chamber Core Panel Acoustic Test Results

    Science.gov (United States)

    Schiller, Noah H.; Allen, Albert R.

    2016-01-01

    This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.

  17. Parametric Data from a Wind Tunnel Test on a Rocket-Based Combined-Cycle Engine Inlet

    Science.gov (United States)

    Fernandez, Rene; Trefny, Charles J.; Thomas, Scott R.; Bulman, Mel J.

    2001-01-01

    A 40-percent scale model of the inlet to a rocket-based combined-cycle (RBCC) engine was tested in the NASA Glenn Research Center 1- by 1-Foot Supersonic Wind Tunnel (SWT). The full-scale RBCC engine is scheduled for test in the Hypersonic Tunnel Facility (HTF) at NASA Glenn's Plum Brook Station at Mach 5 and 6. This engine will incorporate the configuration of this inlet model which achieved the best performance during the present experiment. The inlet test was conducted at Mach numbers of 4.0, 5.0, 5.5, and 6.0. The fixed-geometry inlet consists of an 8 deg.. forebody compression plate, boundary layer diverter, and two compressive struts located within 2 parallel sidewalls. These struts extend through the inlet, dividing the flowpath into three channels. Test parameters investigated included strut geometry, boundary layer ingestion, and Reynolds number (Re). Inlet axial pressure distributions and cross-sectional Pitot-pressure surveys at the base of the struts were measured at varying back-pressures. Inlet performance and starting data are presented. The inlet chosen for the RBCC engine self-started at all Mach numbers from 4 to 6. Pitot-pressure contours showed large flow nonuniformity on the body-side of the inlet. The inlet provided adequate pressure recovery and flow quality for the RBCC cycle even with the flow separation.

  18. Field Lysimeter Test Facility: Second year (FY 1989) test results

    International Nuclear Information System (INIS)

    Campbell, M.D.; Gee, G.W.; Kanyid, M.J.; Rockhold, M.L.

    1990-04-01

    The Record of Decision associated with the Hanford Defense Waste Environmental Impact Statement (53 FR 12449-53) commits to an evaluation of the use of protective barriers placed over near-surface wastes. The barrier must protect against wind and water erosion and limit plant and animal intrusion and infiltration of water. Successful conclusion of this program will yield the necessary protective barrier design for near-surface waste isolation. This report presents results from the second year of tests at the FLTF. The primary objective of testing protective barriers at the FLTF was to measure the water budgets within the various barriers and assess the effectiveness of their designs in limiting water intrusion into the zone beneath each barrier. Information obtained from these measurements is intended for use in refining barrier designs. Four elements of water budget were measured during the year: precipitation, evaporation, storage, and drainage. Run-off, which is a fifth element of a complete water budget, was made negligible by a lip on the lysimeters that protrudes 5 cm above the soil surface to prevent run-off. A secondary objective of testing protective barriers at the FLTF was to refine procedures and equipment to support data collection for verification of the computer model needed for long-term projections of barrier performance. 6 refs

  19. A prototype tap test imaging system: Initial field test results

    Science.gov (United States)

    Peters, J. J.; Barnard, D. J.; Hudelson, N. A.; Simpson, T. S.; Hsu, D. K.

    2000-05-01

    This paper describes a simple, field-worthy tap test imaging system that gives quantitative information about the size, shape, and severity of defects and damages. The system consists of an accelerometer, electronic circuits for conditioning the signal and measuring the impact duration, a laptop PC and data acquisition and processing software. The images are generated manually by tapping on a grid printed on a plastic sheet laid over the part's surface. A mechanized scanner is currently under development. The prototype has produced images for a variety of aircraft composite and metal honeycomb structures containing flaws, damages, and repairs. Images of the local contact stiffness, deduced from the impact duration using a spring model, revealed quantitatively the stiffness reduction due to flaws and damages, as well as the stiffness enhancement due to substructures. The system has been field tested on commercial and military aircraft as well as rotor blades and engine decks on helicopters. Field test results will be shown and the operation of the system will be demonstrated.—This material is based upon work supported by the Federal Aviation Administration under Contract #DTFA03-98-D-00008, Delivery Order No. IA016 and performed at Iowa State University's Center for NDE as part of the Center for Aviation Systems Reliability program.

  20. Application of wind tunnel tests to the development of solutions to problems related to immissions which affect urban climates

    International Nuclear Information System (INIS)

    Kuttler, W.

    1991-01-01

    In the last two decades urban climatology has developed to a pragmatically oriented field of research. Synthetic-functional maps of the climate and derived maps for town planning have widely been accepted by municipal or communal management. However, there is a disadvantage of the generalized urban-climatic maps because they only show the actual climatic state for stable sunny weather conditions. When future planning is done with due regard to forecasts on possible changes of the climatic or air-hygienic conditions, it is necessary to carry out model calculations and/or wind tunnel experiments. Because of the complexity of urban building structures, it is still difficult to acquire necessary information by numeric models. In most cases wind tunnel measurements will have to be carried out. After having illustrated the methods of wind tunnel experiments, the following paper shows results from measurements carried out for a street canyon with dense traffic in Duesseldorf's northern quarter Moersenbroich. This investigation intended to show how the field of immissions - mainly caused by traffic - changes after the construction of a six-storey office building on a remaining free space. It proved that the planned building wouldn't really lead to a deterioration of the field of the immissive situation. On the contrary, in most cases we could measure a reduced amount of pollution compared to the former building structure with a free spot. Only in few cases, the new building led to increased values in proportion to the given threshold values. (orig.) [de

  1. Final Results from Mexnext-I. Analysis of detailed aerodynamic measurements on a 4.5 m diameter rotor placed in the large German Dutch Wind Tunnel DNW

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, J.G.; Boorsma, K. [Energy research Center of the Netherlands ECN, Petten (Netherlands); Munduate, X. [National Renewable Energy Center, CENER, Pamplona (Spain)

    2013-02-15

    The paper presents the final results from the first phase of IEA Task 29 'Mexnext'. Mexnext was a joint project in which 20 parties from 11 different countries cooperated. The main aim of Mexnext was to analyse the wind tunnel measurements which have been taken in the EU project 'MEXICO'. In the MEXICO project 10 institutes from 6 countries cooperated in doing experiments on an instrumented, three-bladed wind turbine of 4.5 m diameter placed in the 9.5 by 9.5 m{sup 2} open section of the Large Low-speed Facility (LLF) of the test facility DNW (German-Dutch Wind Tunnels). Pressure distributions on the blades were obtained from 148 Kulite pressure sensors, distributed over 5 sections at 25, 35, 60, 82 and 92% radial position respectively. Blade loads were monitored through two strain-gauge bridges at each blade root. Most interesting however are the extensive PIV flow field measurements, which have been taken simultaneously with the pressure and load measurements. As a result of the international collaboration within this task a very thorough analysis of the data could be carried out and a large number of codes were validated not only in terms of loads but also in terms of underlying flow field. The paper will present several results from Mexnext-I, i.e. validation results and conclusion on modelling deficiencies and directions for model improvement. The future plans of the Mexnext consortium are also briefly discussed. Amongst these are Mexnext-II, a project in which also aerodynamic measurements other than MEXICO are included, and 'New MEXICO' in which additional measurement on the MEXICO model are performed.

  2. Full length prototype SSC dipole test results

    International Nuclear Information System (INIS)

    Strait, J.; Brown, B.C.; Carson, J.

    1987-01-01

    Results are presented from tests of the first full length prototype SSC dipole magnet. The cryogenic behavior of the magnet during a slow cooldown to 4.5K and a slow warmup to room temperature has been measured. Magnetic field quality was measured at currents up to 2000 A. Averaged over the body field all harmonics with the exception of b 2 and b 8 are at or within the tolerances specified by the SSC Central Design Group. (The values of b 2 and b 8 result from known design and construction defects which will be be corrected in later magnets.) Using an NMR probe the average body field strength is measured to be 10.283 G/A with point to point variations on the order of one part in 1000. Data are presented on quench behavior of the magnet up to 3500 A (approximately 55% of full field) including longitudinal and transverse velocities for the first 250 msec of the quench

  3. Summary of CPAS EDU Testing Analysis Results

    Science.gov (United States)

    Romero, Leah M.; Bledsoe, Kristin J.; Davidson, John.; Engert, Meagan E.; Fraire, Usbaldo, Jr.; Galaviz, Fernando S.; Galvin, Patrick J.; Ray, Eric S.; Varela, Jose

    2015-01-01

    The Orion program's Capsule Parachute Assembly System (CPAS) project is currently conducting its third generation of testing, the Engineering Development Unit (EDU) series. This series utilizes two test articles, a dart-shaped Parachute Compartment Drop Test Vehicle (PCDTV) and capsule-shaped Parachute Test Vehicle (PTV), both of which include a full size, flight-like parachute system and require a pallet delivery system for aircraft extraction. To date, 15 tests have been completed, including six with PCDTVs and nine with PTVs. Two of the PTV tests included the Forward Bay Cover (FBC) provided by Lockheed Martin. Advancements in modeling techniques applicable to parachute fly-out, vehicle rate of descent, torque, and load train, also occurred during the EDU testing series. An upgrade from a composite to an independent parachute simulation allowed parachute modeling at a higher level of fidelity than during previous generations. The complexity of separating the test vehicles from their pallet delivery systems necessitated the use the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulator for modeling mated vehicle aircraft extraction and separation. This paper gives an overview of each EDU test and summarizes the development of CPAS analysis tools and techniques during EDU testing.

  4. Postprocedural Aspiration Test to Predict Adequacy of Dialysis Following Tunneled Catheter Placement

    International Nuclear Information System (INIS)

    Smith, Jason C.; Sullivan, Kevin L.; Michael, Beckie

    2006-01-01

    The objective of the study was to determine if a timed aspiration technique with a 20-ml syringe can be used to predict adequacy of blood flow in tunneled dialysis catheters. Sixteen patients referred for de novo placement or manipulation of failing tunneled hemodialysis catheters had the time it takes to fill a 20-ml syringe with the plunger fully withdrawn measured to the nearest tenth of a second. These measurements were correlated with flow rates recorded in dialysis just prior to (if failed catheter) and in the following dialysis session with adequacy determined as at least 300 ml/min. Syringe-filling time (22 catheters in 16 patients) was plotted against adequacy of dialysis. The mean time to fill a 20-ml syringe was 2.2 sec, with a range of 1.0-4.7 sec. The mean time to fill syringes for catheters with adequate dialysis was 1.7 ± 0.5 sec, and for inadequate catheters, it was 2.8 ± 0.8 sec. These differences are statistically significant (p < 0.001). Using a filling time of greater than or equal to 2 sec as a threshold gives the highest sensitivity (100%) for predicting inadequate dialysis while maintaining high specificity (75%). To achieve a specificity of 100%, a 3-sec cutoff would be necessary, but would lead to a sensitivity of only 20%. A simple and objective aspiration technique can be performed at the time of tunneled dialysis catheter placement/manipulation to reasonably predict adequacy of subsequent dialysis

  5. Description of buffer tests in 2005 - 2007. Results of laboratory tests

    Energy Technology Data Exchange (ETDEWEB)

    Sanden, Torbjoern; Boergesson, Lennart; Dueck, Ann; Goudarzi, Reza; Loennqvist, Margareta; Nilsson, Ulf; Aakesson, Mattias (Clay Technology AB, Lund (Sweden))

    2008-12-15

    The horizontal design for the deposition of nuclear waste in granitic rock has been ongoing since 2002. Clay Technology has contributed with studies that mainly concern the behaviour and design of the bentonite buffer material. The work described in this report was a part of the design subproject and was conducted from 2005 up to mid-2007. The results of the work and the increased general understanding of the behaviour of the buffer in KBS-3H have led to two main designs. BD (Basic Design) and DAWE (Drainage Artificial Watering and air Evacuation). Several significant uncertainties related to the behaviour of distance blocks and buffer materials were identified. The most important issues to be resolved were included in an extensive buffer test plan and this report presents the work carried. The critical issues (an issue is defined as critical if there is clear uncertainty in fulfilling the design basis) to be resolved to produce viable designs were: 1. Humidity-induced swelling. This process may cause cracking and subsequent loss of bentonite as the debris falls on to the floor. There is also the possibility that the blocks could swell and come into contact with the rock wall. Both these processes will lead to a hindering of the free water flow on the tunnel floor in DAWE and may subsequently result in the erosion of bentonite material from the tunnel. This is not expected to be an issue in the BD owing to the small buffer-rock gap engineered into the design. 2. Erosion of of filling blocks and buffer. This process will lead either to a loss of material from the emplacement drift if it takes place before a hydraulic plug is built or to redistribution of bentonite in the emplacement drift if it takes place afterwards. Localized erosion may be harmful for both design alternatives if it results in a substantial loss or redistribution of material. 3. Artificial wetting of distance blocks. Both design alternatives include artificial water filling of the gap between the

  6. Description of buffer tests in 2005 - 2007. Results of laboratory tests

    International Nuclear Information System (INIS)

    Sanden, Torbjoern; Boergesson, Lennart; Dueck, Ann; Goudarzi, Reza; Loennqvist, Margareta; Nilsson, Ulf; Aakesson, Mattias

    2008-12-01

    The horizontal design for the deposition of nuclear waste in granitic rock has been ongoing since 2002. Clay Technology has contributed with studies that mainly concern the behaviour and design of the bentonite buffer material. The work described in this report was a part of the design subproject and was conducted from 2005 up to mid-2007. The results of the work and the increased general understanding of the behaviour of the buffer in KBS-3H have led to two main designs. BD (Basic Design) and DAWE (Drainage Artificial Watering and air Evacuation). Several significant uncertainties related to the behaviour of distance blocks and buffer materials were identified. The most important issues to be resolved were included in an extensive buffer test plan and this report presents the work carried. The critical issues (an issue is defined as critical if there is clear uncertainty in fulfilling the design basis) to be resolved to produce viable designs were: 1. Humidity-induced swelling. This process may cause cracking and subsequent loss of bentonite as the debris falls on to the floor. There is also the possibility that the blocks could swell and come into contact with the rock wall. Both these processes will lead to a hindering of the free water flow on the tunnel floor in DAWE and may subsequently result in the erosion of bentonite material from the tunnel. This is not expected to be an issue in the BD owing to the small buffer-rock gap engineered into the design. 2. Erosion of of filling blocks and buffer. This process will lead either to a loss of material from the emplacement drift if it takes place before a hydraulic plug is built or to redistribution of bentonite in the emplacement drift if it takes place afterwards. Localized erosion may be harmful for both design alternatives if it results in a substantial loss or redistribution of material. 3. Artificial wetting of distance blocks. Both design alternatives include artificial water filling of the gap between the

  7. Initial Burn Pan (JMTF) Testing Results

    Science.gov (United States)

    2016-03-01

    burn pan and one located high on the Ex-USS Shadwell. There were also a number of GoPro cameras (3-4) that were positioned to observe specific...locations around the test area. A remote control drone equipped with a GoPro camera was also used to video the third test. All recorded video and still

  8. Summary of QRL 7-8 Repair and Re-installation Leak Test Results

    CERN Document Server

    Kos, N; CERN. Geneva. TE Department

    2009-01-01

    This note describes the leak tests that have been performed during the repair and re-installation of QRL sector 7-8 during 2005 and 2006. The leak tests were performed in UX65, where the pipe elements were refurbished before re-installation, and in the tunnel. A variety of leaks have been detected, localised and repaired in the tunnel, including weld defects, accidentally drilled holes and imported leaks in previously tested components.

  9. Investigation on wind turbine wakes: wind tunnel tests and field experiments with LIDARs

    Science.gov (United States)

    Iungo, Giacomo; Wu, Ting; Cöeffé, Juliette; Porté-Agel, Fernando; WIRE Team

    2011-11-01

    An investigation on the interaction between atmospheric boundary layer flow and wind turbines is carried out with wind tunnel and LIDAR measurements. The former were carried out using hot-wire anemometry and multi-hole pressure probes in the wake of a three-bladed miniature wind turbine. The wind turbine wake is characterized by a strong velocity defect in the proximity of the rotor, and its recovery is found to depend on the characteristics of the incoming atmospheric boundary layer (mean velocity and turbulence intensity profiles). Field experiments were performed using three wind LIDARs. Bi-dimensional scans are performed in order to analyse the wake wind field with different atmospheric boundary layer conditions. Furthermore, simultaneous measurements with two or three LIDARs allow the reconstruction of multi-component velocity fields. Both LIDAR and wind tunnel measurements highlight an increased turbulence level at the wake boundary for heights comparable to the top-tip of the blades; this flow feature can produce dangerous fatigue loads on following wind turbines.

  10. Supercritical CO2 test loop operation and first test results

    International Nuclear Information System (INIS)

    Wright, Steven A.; Pickard, Paul S.

    2009-01-01

    The DOE Office of Nuclear Energy is investigating advanced Brayton cycles for use with next generation nuclear power plants. The focus of this work is on the supercritical CO 2 Brayton cycle which has the potential for high efficiency, and for reduced capital costs due to very compact turbomachinery. Sandia has fabricated and is operating a supercritical CO 2 (S-CO 2 ) test loop to investigate the key technology issues associated with this cycle. This loop is part of a multi-year phased development program to develop a megawatt (MW) class closed S-CO 2 Brayton cycle to demonstrate the applicability of this cycle for DOE Gen-IV program. The current loop has been configured as both a compression loop and as simple heated but unrecuperated Brayton cycle. A second split-flow or re-compression Brayton cycle is currently under development that will use approximately 1 MW of heat to run the Brayton cycle. Early configurations of this split-flow Brayton cycle will be operational later this fiscal year. The key issues for this cycle include the fundamental issues of compressor fluid performance and system control near the critical point, but also the supporting technology issues of bearings, sealing technologies, and rotor windage losses which are also essential to achieving efficiency and cost objectives. These tests are providing the first measurements and information on these key supercritical CO 2 power conversion systems questions. Important data for all these issues has been obtained. This report presents the major results of the testing by showing and comparing the measured compressor performance map with the predicted performance. The compression loop uses a ∼50 kWe motor driven compressor to spin a 37 mm OD compressor at design speeds up to 75,000 rpm with a pressure ratio of 1.8 and a flow rate of 3.53 kg/s for a compressor inlet condition of 305.3 K and 7690 kPa. The most recent configuration of this loop has added a small turbine and 260 kW of heater power is

  11. SCTF Core-I test results

    International Nuclear Information System (INIS)

    Adachi, Hiromichi; Sudo, Yukio; Iwamura, Takamichi; Osakabe, Masahiro; Ohnuki, Akira; Hirano, Kemmei

    1982-07-01

    The Slab Core Test Facility (SCTF) of Japan Atomic Energy Research Institute (JAERI) was constructed to investigate two-dimensional thermohydrodynamics in the core and the communication in fluid behavior between the core and the upper plenum during the last part of blowdown, refill and reflood phases of a posturated loss-of-coolant accident (LOCA) of a pressurized water reactor (PWR). In the present report, effects of system pressure on reflooding phenomena shall be discussed based on the data of Tests S1-SH2, S1-01 and S1-02 which are the parameteris tests for system pressure effects belonging to the SCTF Core-I forced flooding test series. Major items discussed in this report are (1) hydrodynamic behavior in the system, (2) core thermal behavior, (3) core heat transfer and (4) two-dimensional hydrodynamic behavior in the pressure vessel including the core. (author)

  12. Reliability Estimation Based Upon Test Plan Results

    National Research Council Canada - National Science Library

    Read, Robert

    1997-01-01

    The report contains a brief summary of aspects of the Maximus reliability point and interval estimation technique as it has been applied to the reliability of a device whose surveillance tests contain...

  13. Test OPTRAN 1-1 results

    International Nuclear Information System (INIS)

    Martinson, Z.R.

    1982-01-01

    The objective of the OPT 1-1 Test Series was to evaluate the extent of damage and the threshold for failure during simulated BWR anticipated transients. Four power transient tests with progressively higher power levels were performed with preirradiated fuel rods at power ramp rates as high as 550 kW/m per second. Six separately shrouded fuel rods fabricated by the General Electric Co., and preirradiated in the Monticello BWR to burnups of about 5000 to 23,000 MWd/t were tested, four at a time. Four of the fuel rods were of typical GE 8 x 8 design, except for fuel length (0.75 m). Two of the rods included design modifications to improve their PCI-resistant characteristics. A lengthy fuel conditioning preceded the transient testing of the fuel rods

  14. Visual perception skills testing: preliminary results

    CSIR Research Space (South Africa)

    Smith, Andrew C

    2009-02-01

    Full Text Available Good visual perception skills are important in the effective manipulation of Tangible User Interfaces. This paper reports on the application of a test set researchers have developed specifically to quantify the visual perception skills of children...

  15. Emission factor of ammonia (NH3) from on-road vehicles in China: tunnel tests in urban Guangzhou

    International Nuclear Information System (INIS)

    Liu, Tengyu; Wang, Xinming; Ding, Xiang; Deng, Wei; Lü, Sujun; Zhang, Yanli; Wang, Boguang

    2014-01-01

    Ammonia (NH 3 ) is the primary alkaline gas in the atmosphere that contributes to formation of secondary particles. Emission of NH 3 from vehicles, particularly gasoline powered light duty vehicles equipped with three-way catalysts, is regarded as an important source apart from emissions from animal wastes and soils, yet measured emission factors for motor vehicles are still not available in China, where traffic-related emission has become an increasingly important source of air pollutants in urban areas. Here we present our tunnel tests for NH 3 from motor vehicles under ‘real world conditions’ in an urban roadway tunnel in Guangzhou, a central city in the Pearl River Delta (PRD) region in south China. By attributing all NH 3 emissions in the tunnel to light-duty gasoline vehicles, we obtained a fuel-based emission rate of 2.92 ± 0.18 g L −1 and a mileage-based emission factor of 229.5 ± 14.1 mg km −1 . These emission factors were much higher than those measured in the United States while measured NO x emission factors (7.17 ± 0.60 g L −1 or 0.56 ± 0.05 g km −1 ) were contrastingly near or lower than those previously estimated by MOBILE/PART5 or COPERT IV models. Based on the NH 3 emission factors from this study, on-road vehicles accounted for 8.1% of NH 3 emissions in the PRD region in 2006 instead of 2.5% as estimated in a previous study using emission factors taken from the Emission Inventory Improvement Program (EIIP) in the United States. (letter)

  16. Emission factor of ammonia (NH3) from on-road vehicles in China: tunnel tests in urban Guangzhou

    Science.gov (United States)

    Liu, Tengyu; Wang, Xinming; Wang, Boguang; Ding, Xiang; Deng, Wei; Lü, Sujun; Zhang, Yanli

    2014-05-01

    Ammonia (NH3) is the primary alkaline gas in the atmosphere that contributes to formation of secondary particles. Emission of NH3 from vehicles, particularly gasoline powered light duty vehicles equipped with three-way catalysts, is regarded as an important source apart from emissions from animal wastes and soils, yet measured emission factors for motor vehicles are still not available in China, where traffic-related emission has become an increasingly important source of air pollutants in urban areas. Here we present our tunnel tests for NH3 from motor vehicles under ‘real world conditions’ in an urban roadway tunnel in Guangzhou, a central city in the Pearl River Delta (PRD) region in south China. By attributing all NH3 emissions in the tunnel to light-duty gasoline vehicles, we obtained a fuel-based emission rate of 2.92 ± 0.18 g L-1 and a mileage-based emission factor of 229.5 ± 14.1 mg km-1. These emission factors were much higher than those measured in the United States while measured NO x emission factors (7.17 ± 0.60 g L-1 or 0.56 ± 0.05 g km-1) were contrastingly near or lower than those previously estimated by MOBILE/PART5 or COPERT IV models. Based on the NH3 emission factors from this study, on-road vehicles accounted for 8.1% of NH3 emissions in the PRD region in 2006 instead of 2.5% as estimated in a previous study using emission factors taken from the Emission Inventory Improvement Program (EIIP) in the United States.

  17. Overview of the PBF test results

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1980-01-01

    The Thermal Fuels Behavior Program (TFBP) of EG and G Idaho conducts fuel behavior research in the Power Burst Facility (PBF) at INEL and at the Halden Reactor in Norway. The fuels behavior research in the PBF is directed toward providing a detailed understanding of the response of light water reactor (LWR) nuclear fuel assemblies to off-normal and hypothesized accident conditions. Single fuel rods and clusters of highly instrumented fuel rods are installed within a central test space of the PBF core for testing. The core can be operated in various modes to provide test conditions typical of accidents and off-normal conditions that may be experienced in a pressurized water reactor or a boiling water reactor

  18. Wind-tunnel tests of a 1/4 scale model of the Bell XS-1 transonic airplane. 1: Longitudinal stability and control characteristics

    Science.gov (United States)

    Donlan, C. J.; Kemp, W. B., Jr.; Polhamus, E. C.

    1976-01-01

    A 1/4 scale model of the Bell XS-1 transonic aircraft was tested in the Langley 300 mile-per-hour 7 by 10 foot tunnel to determine its low speed longitudinal stability and control characteristics. Pertinent longitudinal flying qualities expected of the XS-1 research airplane were estimated from the results of these tests including the effects of compressibility likely to be encountered at speeds below the force break. It appears that the static longitudinal stability and elevator control power will be adequate, but that the elevator control force gradient in steady flight will be undesirably low for all configurations. It is suggested that a centering spring be incorporated in the elevator control system of the airplane in order to increase the control force gradient in steady flight and in maneuvers.

  19. Tests results of skutterudite based thermoelectric unicouples

    International Nuclear Information System (INIS)

    Saber, Hamed H.; El-Genk, Mohamed S.; Caillat, Thierry

    2007-01-01

    Tests were performed of skutterudite based unicouples with (MAY-04) and without (MAR-03) metallic coating on the legs near the hot junction to quantify the effect on reducing performance degradation with operation time. The p-legs in the unicouples were made of CeFe 3.5 Co 0.5 Sb 12 and the n-legs of CoSb 3 . The MAY-04 test was performed in vacuum (∼9 x 10 -7 torr) for ∼2000 h at hot and cold junction temperatures of 892.1 ± 11.9 K and 316.1 ± 5.5 K, respectively, while the MAR-03 test was performed in argon cover gas (0.051-0.068 MPa) at 972.61 ± 10.0 K and 301.1 ± 5.1 K, respectively. The argon cover gas decreased antimony loss from the legs in the MAR-03 test, but marked degradation in performance occurred over time. Conversely, the metallic coating in the MAY-04 test was very effective in reducing performance degradation of the unicouple. Because the cross sectional areas of the legs in MAY-04 were larger than those in MAR-03, the measured electrical power of the former is much higher than that of the latter, but the Beginning of Test (BOT) open circuit voltages, V oc (204.2 mV) for both unicouples were almost the same. The peak electrical power of the MAY-04 unicouple decreased 12.35% from 1.62W e at BOT to 1.42W e after ∼2000 h of testing, while that of the MAR-03 unicouple decreased 25.37% from 0.67 to 0.5W e after 261 h of testing at the above temperatures. The estimated peak efficiency of the MAY-04 unicouple, shortly after BOT (10.65%), was only ∼0.37% points lower than the theoretical value, calculated assuming zero side heat losses and zero contact resistance per leg

  20. Results of an investigation to determine local flow characteristics at the air data probe locations using an 0.030-scale model (45-0) of the space shuttle vehicle orbiter configuration 140A/B (modified) in the NASA Ames Research Center unitary plan wind tunnel (OA161, A, B, C), volume 1

    Science.gov (United States)

    Nichols, M. E.

    1976-01-01

    Results are presented of wind tunnel test 0A161 of a 0.030-scale model 45-0 of the configuration 140A/B (modified) space shuttle vehicle orbiter in the NASA Ames Research Center Unitary Plan Wind Tunnel facilities. The purpose of this test was to determine local total and static pressure environments for the air data probe locations and relative effectiveness of alternate flight-test probe configurations. Testing was done in the Mach number range from 0.30 to 3.5. Angle of attack was varied from -8 to 25 degrees while sideslip varied between -8 and 8 degrees.

  1. Development and Operation of an Automatic Rotor Trim Control System for use During the UH-60 Individual Blade Control Wind Tunnel Test

    Science.gov (United States)

    Theodore, Colin R.

    2010-01-01

    A full-scale wind tunnel test to evaluate the effects of Individual Blade Control (IBC) on the performance, vibration, noise and loads of a UH-60A rotor was recently completed in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel [1]. A key component of this wind tunnel test was an automatic rotor trim control system that allowed the rotor trim state to be set more precisely, quickly and repeatably than was possible with the rotor operator setting the trim condition manually. The trim control system was also able to maintain the desired trim condition through changes in IBC actuation both in open- and closed-loop IBC modes, and through long-period transients in wind tunnel flow. This ability of the trim control system to automatically set and maintain a steady rotor trim enabled the effects of different IBC inputs to be compared at common trim conditions and to perform these tests quickly without requiring the rotor operator to re-trim the rotor. The trim control system described in this paper was developed specifically for use during the IBC wind tunnel test

  2. Fire safety case study of a railway tunnel: Smoke evacuation

    Directory of Open Access Journals (Sweden)

    van Maele Karim

    2007-01-01

    Full Text Available When a fire occurs in a tunnel, it is of great importance to assure the safety of the occupants of the tunnel. This is achieved by creating smoke-free spaces in the tunnel through control of the smoke gases. In this paper, results are presented of a study concerning the fire safety in a real scale railway tunnel test case. Numerical simulations are performed in order to examine the possibility of natural ventilation of smoke in inclined tunnels. Several aspects are taken into account: the length of the simulated tunnel section, the slope of the tunnel and the possible effects of external wind at one portal of the tunnel. The Fire Dynamics Simulator of the National Institute of Standards and Technology, USA, is applied to perform the simulations. The simulations show that for the local behavior of the smoke during the early stages of the fire, the slope of the tunnel is of little importance. Secondly, the results show that external wind and/or pressure conditions have a large effect on the smoke gases inside the tunnel. Finally, some idea for the value of the critical ventilation velocity is given. The study also shows that computational fluid dynamics calculations are a valuable tool for large scale, real life complex fire cases. .

  3. Energy saver A-sector power test results

    International Nuclear Information System (INIS)

    Martin, P.; Flora, R.; Tool, G.; Wolff, D.

    1982-01-01

    The superconducting magnets and associated cryogenic components in A-sector represent the initial phase of installation of the Fermilab superconducting accelerator, designed to accelerate proton beams to energies of 1 TeV. Installation of the magnets, comprising one-eighth of the ring, was completed in December, 1981. Cooldown and power tests took place in the first half of 1982, concurrent with main ring use for 400 GeV high energy physics. The tests described in this paper involved 151 cryogenic components in the tunnel: 94 dipoles, 24 quadrupoles, 25 spool pieces, 3 feed cans, 4 turn-around boxes and 1 bypass. Refrigeration was supplied by three satellite refrigerators, the Central Helium Liquefier, and two compressor buildings. The magnets were powered by a single power supply

  4. Acoustic Modifications of the Ames 40x80 Foot Wind Tunnel and Test Techniques for High-Speed Research Model Testing

    Science.gov (United States)

    Soderman, Paul T.; Olson, Larry (Technical Monitor)

    1995-01-01

    The NFAC 40- by 80- Foot Wind Tunnel at Ames is being refurbished with a new, deep acoustic lining in the test section which will make the facility nearly anechoic over a large frequency range. The modification history, key elements, and schedule will be discussed. Design features and expected performance gains will be described. Background noise reductions will be summarized. Improvements in aeroacoustic research techniques have been developed and used recently at NFAC on several wind tunnel tests of High Speed Research models. Research on quiet inflow microphones and struts will be described. The Acoustic Survey Apparatus in the 40x80 will be illustrated. A special intensity probe was tested for source localization. Multi-channel, high speed digital data acquisition is now used for acoustics. And most important, phased microphone arrays have been developed and tested which have proven to be very powerful for source identification and increased signal-to-noise ratio. Use of these tools for the HEAT model will be illustrated. In addition, an acoustically absorbent symmetry plane was built to satisfy the HEAT semispan aerodynamic and acoustic requirements. Acoustic performance of that symmetry plane will be shown.

  5. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    Science.gov (United States)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares an mixed estimation methods, At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  6. Design and Numerical Calculation of Variable Test Section for Small Supersonic Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Václav DVOŘÁK

    2010-12-01

    Full Text Available The paper is concerned with numerical modelling of transition in a separated boundary layer. The model of laminar/turbulent transition is based on the combination of empirical terms determining position of the transition and averaged Navier – Stokes equations closed by the k – ω SST turbulence model. The model of transition is applied in computation of 2D flow past NACA63A421 airfoil. Computation is performed using the commercial code ANSYS Fluent 6.3.26, in which the transition method is implemented as a User-Defined-Function. Computed distributions of Cp along the airfoil are verified by comparison with experimental data, which were obtained by measurements in a closed circuit wind tunnel at the constant Reynolds number and several angles of attack. Comparisons prove applicability of the implemented transitional model.

  7. Conventional fuel tank blunt impact tests : test and analysis results

    Science.gov (United States)

    2014-04-02

    The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. A series of impact tests are planned to : measure fuel tank deformation under two types of dynamic : loading conditi...

  8. HERBE- Analysis of test operation results

    International Nuclear Information System (INIS)

    Pesic, M. et.al.

    1991-01-01

    This document is part of the safety analyses performed for the RB reactor operation with the coupled fast-thermal system HERBE and is part of the final safety report together with the 'Report on test operation of HERBE for the period Dec. 15 1989 - May 15 1990. This report covers the following main topics: determination of reactivity variations dependent on the variations moderator critical level; determination of reactivity for the flooded neutron converter; and the accident analysis of neutron converter flooding

  9. Results of Final Focus Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Walz, Dieter R

    2003-06-13

    The beam experiments of Final Focus Test Beam (FFTB) started in September 1993 at SLAC, and have produced a 1.7 {micro}m x 75 nm spot of 46 GeV electron beam. A number of new techniques involving two nanometer spot-size monitors have been developed. Several beam diagnostic/tuning schemes are applied to achieve and maintain the small spot. This experiment opens the way toward the nanometer world for future linear colliders.

  10. Results of workplace drug testing in Norway

    Directory of Open Access Journals (Sweden)

    Hilde Marie Erøy Lund

    2011-12-01

    Full Text Available Workplace drug testing is less common in Norway than in many other countries. During the period from 2000-2006, 13469 urine or blood samples from employees in the offshore industry, shipping companies and aviation industry were submitted to the Norwegian Institute of Public Health for drug testing. The samples were analysed for benzodiazepines, illicit drugs, muscle relaxants with sedating properties, opioids and z-hypnotics. In total, 2.9% of the samples were positive for one or more substances. During the study period the prevalence decreased for morphine (from 1.9% to 1.1% and increased for amphetamine (from 0.04% to 0.6%, clonazepam (from 0% to 0.1%, methamphetamine (from 0.04% to 0.6%, nitrazepam (from 0% to 0.4% and oxazepam (from 0.5% to 1.3% (p<0.05. There was no significant change in prevalence for the other substances included in the analytical programme. Illicit drugs were significantly associated with lower age (OR: 0.93, p<0.05. This study found low prevalence of drugs among employees in companies with workplace drug testing programmes in Norway.

  11. Cleanup Summary Report for the Defense Threat Reduction Agency Fiscal Year 2007, Task 6.7, U12u-Tunnel (Legacy Site), Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    This letter serves as notice of completion for cleanup of the U12u-Tunnel (Legacy Site) as specified in the Defense Threat Reduction Agency (DTRA) Fiscal Year 2007 Statement of Work, Task 6.7. The U12u-Tunnel Legacy Site is located near the intersection of the U12u-Tunnel access road and the U12n-Tunnel access road in Area 12 of the Nevada Test Site (see Figure 1). The site encompasses 1.2 acres and was used to store miscellaneous mining equipment and materials that were used to support DTRA testing in Area 12. Field activities commenced February 11, 2008, and were completed February 20, 2008. Radiological surveys were performed on a drill jumbo and all material stored at the site. The drill jumbo was relocated to U12p-Tunnel portal and consolidated with other critical mining equipment for future use or storage. Ten truck loads of solid waste (53 tons) were shipped to the Nevada Test Site, Area 9 U10c Sanitary Landfill for disposal. No hazardous or radiological waste was generated at this site

  12. AMORE Mo-99 Spike Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States); Krebs, John F. [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin J. [Argonne National Lab. (ANL), Argonne, IL (United States); Byrnes, James P. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, David A [Argonne National Lab. (ANL), Argonne, IL (United States); Brossard, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Wesolowski, Kenneth [Argonne National Lab. (ANL), Argonne, IL (United States); Alford, Kurt [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-27

    With funding from the National Nuclear Security Administrations Material Management and Minimization Office, Argonne National Laboratory (Argonne) is providing technical assistance to help accelerate the U.S. production of Mo-99 using a non-highly enriched uranium (non-HEU) source. A potential Mo-99 production pathway is by accelerator-initiated fissioning in a subcritical uranyl sulfate solution containing low enriched uranium (LEU). As part of the Argonne development effort, we are undertaking the AMORE (Argonne Molybdenum Research Experiment) project, which is essentially a pilot facility for all phases of Mo-99 production, recovery, and purification. Production of Mo-99 and other fission products in the subcritical target solution is initiated by putting an electron beam on a depleted uranium (DU) target; the fast neutrons produced in the DU target are thermalized and lead to fissioning of U-235. At the end of irradiation, Mo is recovered from the target solution and separated from uranium and most of the fission products by using a titania column. The Mo is stripped from the column with an alkaline solution. After acidification of the Mo product solution from the recovery column, the Mo is concentrated (and further purified) in a second titania column. The strip solution from the concentration column is then purified with the LEU Modified Cintichem process. A full description of the process can be found elsewhere [1–3]. The initial commissioning steps for the AMORE project include performing a Mo-99 spike test with pH 1 sulfuric acid in the target vessel without a beam on the target to demonstrate the initial Mo separation-and-recovery process, followed by the concentration column process. All glovebox operations were tested with cold solutions prior to performing the Mo-99 spike tests. Two Mo-99 spike tests with pH 1 sulfuric acid have been performed to date. Figure 1 shows the flow diagram for the remotely operated Mo-recovery system for the AMORE project

  13. SURVEY RESULTS AND TESTING OF RAILWAY BRIDGES

    Directory of Open Access Journals (Sweden)

    I. H. Haniiev

    2010-03-01

    Full Text Available The article is devoted to the survey and testing of railway bridges by the State Joint-Stock Railway Company «Uzbekiston Temir Yollari» («Uzbekistan Railways». It is stated that in the existing rules on determination of the capacity of bridges the recommendations on taking into account the cumulative deflection to the moment of technical diagnostics of spans on the bridge capacity are absent. The author states on the need to develop a method for determining the wear of spans on restriction of the residual deflection in the bridge floor slabs.

  14. Fort St. Vrain hot functional test results

    International Nuclear Information System (INIS)

    Phelps, R.D.

    1974-01-01

    A description is given of Fort St. Vrain hot functional tests performed to evaluate the initial nonnuclear performance of the primary coolant system and the associated effects on the various internal components of the reactor vessel and primary coolant system. The components included the twelve steam generator modules, the four helium circulators, the PCRV thermal barrier and liner coolant system, the helium purification system, and the primary and secondary closures at each of the PCRV penetrations. Additional objectives included analysis of the parallel operation of the four helium circulators and the performance of several circulator start/stop transients under various conditions of primary coolant temperature and pressure. Vibration and acoustical phenomena within the vessel were measured, recorded, and compared to theoretical analyses; a verification of reverse flow in the shutdown loop steam generator during one loop operation was performed; the PCRV was again observed for its structural response to internal pressure; and comparisons were made relative to data recorded during the initial pressure test completed in July 1971. (U.S.)

  15. Natural ventilation without air breathing in the top openings of highway tunnels

    Science.gov (United States)

    Jin, Sike; Jin, Jiali; Gong, Yanfeng

    2017-05-01

    A number of urban shallow-buried highway tunnels have been built in China. Despite much better internal air quality compared to the traditional tunnels, there is no sufficient theoretical ground or experimental support for the construction of such tunnels. Most researchers hold that natural ventilation in such tunnels depends on air breathing in the top openings, but some others are skeptical about this conclusion. By flow visualization technology on a tunnel experiment platform, we tested the characteristics of airflow in the top openings of highway tunnels. The results showed that air always flowed from outside to inside in all top openings above a continuous traffic stream, and the openings did not breathe at all. In addition, intake air in the top openings reached its maximum velocity at the tunnel entrance, and then gradually slowed down with tunnel depth increasing.

  16. U.S. aerospace industry opinion of the effect of computer-aided prediction-design technology on future wind-tunnel test requirements for aircraft development programs

    Science.gov (United States)

    Treon, S. L.

    1979-01-01

    A survey of the U.S. aerospace industry in late 1977 suggests that there will be an increasing use of computer-aided prediction-design technology (CPD Tech) in the aircraft development process but that, overall, only a modest reduction in wind-tunnel test requirements from the current level is expected in the period through 1995. Opinions were received from key spokesmen in 23 of the 26 solicited major companies or corporate divisions involved in the design and manufacture of nonrotary wing aircraft. Development programs for nine types of aircraft related to test phases and wind-tunnel size and speed range were considered.

  17. Tests of a photovoltaic pump: first results

    International Nuclear Information System (INIS)

    Petroselli, A.; Pica, M.; Biondi, P.

    2005-01-01

    The paper deals with a first series of tests conducted in Viterbo (42 deg 25 min North, 12 deg 06 min East) on a PV-DC pump. This series lasted eight months - from the first days of January to the end of August 2003 - and involved measurements of: air and PV-module temperatures; solar radiations, both on horizontal surface and tilted module surface; voltage and intensity of the DC currents from the panel; pump pressures and flow rates. In total, as much as 3,150 data were collected every day. The analysis of the data allowed to obtain some simple empirical relations expressing daily pumped water volumes, instantaneous flow rates and system efficiencies as a function of both radiations and total dynamic heads [it

  18. RESULTS OF INITIAL AMMONIA OXIDATION TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-30

    This memo presents an experimental survey of aqueous phase chemical processes to remove aqueous ammonia from waste process streams. Ammonia is generated in both the current Hanford waste flowsheet and in future waste processing. Much ammonia will be generated in the Low Activity Waste (LAW) melters.i Testing with simulants in glass melters at Catholic University has demonstrated the significant ammonia production.ii The primary reaction there is the reducing action of sugar on nitrate in the melter cold cap. Ammonia has been found to be a problem in secondary waste stabilization. Ammonia vapors are noxious and destruction of ammonia could reduce hazards to waste treatment process personnel. It is easily evolved especially when ammonia-bearing solutions are adjusted to high pH.

  19. U.S. Geological Survey investigations in connection with the dining car event, U12e.18 tunnel, rainier mesa, Nevada test site

    International Nuclear Information System (INIS)

    1978-06-01

    The Dining Car event was a Defense Nuclear Agency nuclear weapons test located in the U12e.18 drift of the E-tunnel complex, central Rainier Mesa, Area 12, Nevada Test Site. The main drift and bypass drift were mined in zeolitized tuff to a total length of 544 m (1,785 ft). The overburden thickness above the experiment is approximately 396 m (1,300 ft) in the U12e.18 area. The pre-Tertiary surface, which is most probably quartzite in this area, is located approximately 243.8 to 274.3 m (800 to 900 ft) below tunnel level. Site geology and geophysical investigations were made in one vertical and two horizontal drill holes prior to mining of the U12e.18 drift. Electric logs in the two horizontal holes indicate no extensive zones of argillization which might create problems in tunnelling. Geophysical logs in the vertical exploratory hole suggest that the tuff is saturated at a depth of about 244 m (800 ft). Electric logs in all three holes show a pronounced signature in tunnel bed 4J. Seismic velocities obtained in the tunnel after mining compare favorably with sonic velocities obtained in one hole by means of a sonic probe, indicating that the bulk geologic structure is not significant in affecting seismic-wave propagation. This condition is not always observed in such comparisons. A repeat seismic survey in the tunnel showed no change in seismic velocity 4 months after mining. In situ stresses determined by the overcore technique are within experience for the Rainier Mesa tunnel complex

  20. Decrease of VOC emissions from vehicular emissions in Hong Kong from 2003 to 2015: Results from a tunnel study

    Science.gov (United States)

    Cui, Long; Wang, Xiao Liang; Ho, Kin Fai; Gao, Yuan; Liu, Chang; Hang Ho, Steven Sai; Li, Hai Wei; Lee, Shun Cheng; Wang, Xin Ming; Jiang, Bo Qiong; Huang, Yu; Chow, Judith C.; Watson, John G.; Chen, Lung-Wen

    2018-03-01

    Vehicular emissions are one of major anthropogenic sources of ambient volatile organic compounds (VOCs) in Hong Kong. During the past twelve years, the government of the Hong Kong Special Administrative Region has undertaken a series of air pollution control measures to reduce vehicular emissions in Hong Kong. Vehicular emissions were characterized by repeated measurement in the same roadway tunnel in 2003 and 2015. The total net concentration of measured VOCs decreased by 44.7% from 2003 to 2015. The fleet-average VOC emission factor decreased from 107.1 ± 44.8 mg veh-1 km-1 in 2003 to 58.8 ± 50.7 mg veh-1 km-1 in 2015, and the total ozone (O3) formation potential of measured VOCs decreased from 474.1 mg O3 veh-1 km-1 to 190.8 mg O3 veh-1 km-1. The emission factor of ethene, which is one of the key tracers for diesel vehicular emissions, decreased by 67.3% from 2003 to 2015 as a result of the strict control measures on diesel vehicular emissions. Total road transport VOC emissions is estimated to be reduced by 40% as compared with 2010 by 2020, which will be an important contributor to achieve the goal of total VOC emission reduction in the Pearl River Delta region. The large decrease of VOC emissions from on-road vehicles demonstrates the effectiveness of past multi-vehicular emission control strategy in Hong Kong.

  1. Middleware for big data processing: test results

    Science.gov (United States)

    Gankevich, I.; Gaiduchok, V.; Korkhov, V.; Degtyarev, A.; Bogdanov, A.

    2017-12-01

    Dealing with large volumes of data is resource-consuming work which is more and more often delegated not only to a single computer but also to a whole distributed computing system at once. As the number of computers in a distributed system increases, the amount of effort put into effective management of the system grows. When the system reaches some critical size, much effort should be put into improving its fault tolerance. It is difficult to estimate when some particular distributed system needs such facilities for a given workload, so instead they should be implemented in a middleware which works efficiently with a distributed system of any size. It is also difficult to estimate whether a volume of data is large or not, so the middleware should also work with data of any volume. In other words, the purpose of the middleware is to provide facilities that adapt distributed computing system for a given workload. In this paper we introduce such middleware appliance. Tests show that this middleware is well-suited for typical HPC and big data workloads and its performance is comparable with well-known alternatives.

  2. Results and Conclusions from the NASA Isokinetic Total Water Content Probe 2009 IRT Test

    Science.gov (United States)

    Reehorst, Andrew; Brinker, David

    2010-01-01

    The NASA Glenn Research Center has developed and tested a Total Water Content Isokinetic Sampling Probe. Since, by its nature, it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument comprises the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Results and conclusions are presented from probe tests in the NASA Glenn Icing Research Tunnel (IRT) during January and February 2009. The use of reference probe heat and the control of air pressure in the water vapor measurement subsystem are discussed. Several run-time error sources were found to produce identifiable signatures that are presented and discussed. Some of the differences between measured Isokinetic Total Water Content Probe and IRT calibration seems to be caused by tunnel humidification and moisture/ice crystal blow around. Droplet size, airspeed, and liquid water content effects also appear to be present in the IRT calibration. Based upon test results, the authors provide recommendations for future Isokinetic Total Water Content Probe development.

  3. INTRAVAL test case 1b - modelling results

    International Nuclear Information System (INIS)

    Jakob, A.; Hadermann, J.

    1991-07-01

    This report presents results obtained within Phase I of the INTRAVAL study. Six different models are fitted to the results of four infiltration experiments with 233 U tracer on small samples of crystalline bore cores originating from deep drillings in Northern Switzerland. Four of these are dual porosity media models taking into account advection and dispersion in water conducting zones (either tubelike veins or planar fractures), matrix diffusion out of these into pores of the solid phase, and either non-linear or linear sorption of the tracer onto inner surfaces. The remaining two are equivalent porous media models (excluding matrix diffusion) including either non-linear sorption onto surfaces of a single fissure family or linear sorption onto surfaces of several different fissure families. The fits to the experimental data have been carried out by Marquardt-Levenberg procedure yielding error estimates of the parameters, correlation coefficients and also, as a measure for the goodness of the fits, the minimum values of the χ 2 merit function. The effects of different upstream boundary conditions are demonstrated and the penetration depth for matrix diffusion is discussed briefly for both alternative flow path scenarios. The calculations show that the dual porosity media models are significantly more appropriate to the experimental data than the single porosity media concepts. Moreover, it is matrix diffusion rather than the non-linearity of the sorption isotherm which is responsible for the tailing part of the break-through curves. The extracted parameter values for some models for both the linear and non-linear (Freundlich) sorption isotherms are consistent with the results of independent static batch sorption experiments. From the fits, it is generally not possible to discriminate between the two alternative flow path geometries. On the basis of the modelling results, some proposals for further experiments are presented. (author) 15 refs., 23 figs., 7 tabs

  4. Closure Report for Corrective Action Unit 481: Area 12 T-Tunnel Conditional Release Storage Yard, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    Corrective Action Unit (CAU) 481 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Area 12 T-Tunnel Conditional Release Storage Yard. CAU 481 is located in Area 12 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. This CAU consists of one Corrective Action Site (CAS), CAS 12-42-05, Housekeeping Waste. CAU 481 closure activities were conducted by the Defense Threat Reduction Agency from August 2007 through July 2008 according to the FFACO and Revision 3 of the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites. Closure activities included removal and disposal of construction debris and low-level waste. Drained fluids, steel, and lead was recycled as appropriate. Waste generated during closure activities was appropriately managed and disposed.

  5. Wind tunnel tests of the NACA 63-415 and a modified NACA 63-415 airfoil

    DEFF Research Database (Denmark)

    Bak, C.; Fuglsang, P.; Johansen, J.

    2000-01-01

    This report contains 2D measurements of the NACA 63-415 and a NACA 63-415 airfoil with modified leading edge called NACA 63-415-Risø-D. The aerodynamic properties were derived from pressure measurements on the airfoil surface and in the wake. The VELUXopen jet wind tunnel was used having a backgr......This report contains 2D measurements of the NACA 63-415 and a NACA 63-415 airfoil with modified leading edge called NACA 63-415-Risø-D. The aerodynamic properties were derived from pressure measurements on the airfoil surface and in the wake. The VELUXopen jet wind tunnel was used having...... a background turbulence intensity of 1%, an inlet flow velocity of 40 m/s which resulted in a Reynolds number of 1.6×106. The airfoil sections had a chord of 0.600 m and 0.606 m for NACA 63-415 and NACA 63-415-Risø-D,respectively. The span was 1.9 m and end plates were used to minimise 3D flow effects...

  6. The injection of TASS-tunnel. Design, implementation and results from the pre-injection; Injekteringen av TASS-tunneln. Design, genomfoerande och resultat fraan foerinjekteringen

    Energy Technology Data Exchange (ETDEWEB)

    Funehag, Johan (Chalmers university of technology, Goeteborg (Sweden)); Emmelin, Ann (Golder Associates (Sweden))

    2011-06-15

    The Swedish repository facility for spent nuclear fuel will be placed in crystalline rock at a depth of 400-500 m. In order to limit groundwater inflow to the facility, grouting is planned. To comply with the stringent material, execution and inflow restrictions, a series of research and development projects concerned with rock characterization for grouting, grouting materials and grouting design have been carried out by the Swedish Nuclear Fuel and Waste Management Co (SKB). The understanding and methods developed were tested in the sealing project carried out at Aespoe Hard Rock Laboratory (Aespoe HRL), Sweden, and presented in this report. The project consisted of the construction of a short tunnel at 450 m depth, the TASS-tunnel. Grouting was conducted as pre-grouting using ordinary grouting fans outside the planned tunnel contour, as well as with grout holes entirely within the planned contour. A cement-based low-pH grout and a silica based grouting agent, silica sol, were used. The methodology used included determination of the fracture transmissivity distribution; identification of the smallest hydraulic aperture that needs to be sealed; grout selection based on fracture aperture and grout penetrability; design of grout hole geometry, grouting pressure and time in order to achieve the penetration length required; and monitoring of the actual execution based on inflow in control holes with subsequent design revision. Special concern was given to equipment and execution due to the high groundwater pressures, 3.5 MPa. Before starting the construction, inflow to core drilled holes along the tunnel position amounted to 45-90 liters/minute. The project showed that it was possible to limit the inflow to the target value 1 liter/minute per 60 m tunnel

  7. Final report of the Buffer Mass Test. Volume II: test results

    International Nuclear Information System (INIS)

    Pusch, R.; Boerjesson, L.; Ramqvist, G.

    1985-08-01

    The evaluation of the Buffer Mass Test mainly concerned the heating of the bentonite/rock system that simulated hot canisters in deposition holes, the swelling and swelling pressure of the expanding bentonite in the heater holes, and the water uptake of the bentonite in the holes as well as in the tunnel backfill. These processes had been predicted on the basis of laboratory-derived data and FEM calculations with due consideration of the actual geometry. The recorded temperatures of the bentonite and surrounding rock were found to be below the maximum temperature that had been set, but higher than the expected values in the initial period of testing. The heater surface temperatures dropped in the course of the tests due to the uptake of water from the rock even in the driest hole which was located in almost fracture-free rock. The water uptake in the highly compacted bentonite in the heater holes was manifested by a successively increased swelling pressure at the bentonite/rock interface. It was rather uniformly distributed over this interface and reached a maximum value of about 10 MPa. The water content determination confirmed that water had been absorbed by the bentonite from the rock even in the driest holes where the counteracting thermal gradient was rather high. In the wettest holes the saturation became almost complete and a high degree of saturation was also observed in the tunnel backfill. Both in the heater holes and the tunnel, the moistening was found to be very uniform along the periphery, which is at least partly explained by the self-sealing ability of bentonite buffer materials. A general conclusion is that the involved physical processes are well understood and that the ultimate physical state of the buffer materials under repository conditions can be safely predicted. With 15 refs. (Author)

  8. Large bundle BWR test CORA-18: Test results

    International Nuclear Information System (INIS)

    Hagen, S.; Hofmann, P.; Noack, V.; Sepold, L.; Schanz, G.; Schumacher, G.

    1998-04-01

    The CORA out-of-pile experiments are part of the international Severe Fuel Damage (SFD) Program. They were performed to provide information on the damage progression of Light Water Reactor (LWR) fuel elements in Loss-of-coolant Accidents in the temperature range 1200 C to 2400 C. CORA-18 was the large BWR bundle test corresponding to the PWR test CORA-7. It should investigate if there exists an influence of the BWR bundle size on the fuel damage behaviour. Therefore, the standard-type BWR CORA bundle with 18 fuel rod simulators was replaced by a large bundle with two additional surrounding rows of 30 rods (48 rods total). Power input and steam flow were increased proportionally to the number of fuel rod simulators to give the same initial heat-up rate of about 1 K/s as in the smaller bundles. Emphasis was put on the initial phase of the damage progression. More information on the chemical composition of initial and intermediate interaction products and their relocation behaviour should be obtained. Therefore, power and steam input were terminated after the onset of the temperature escalation. (orig.) [de

  9. Mining methods used in the underground tunnels and test rooms at Stripa

    International Nuclear Information System (INIS)

    Andersson, B.; Halen, P.A.

    1978-08-01

    Results of the Swedish-American cooperative research program are reported in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a large crystalline rock mass as a geologic repository for nuclear waste. Two new methods, smooth blasting and slot drilling, were tested and used at Stripa. The smooth blasting technique uses the symmetric pattern of the contour holes and a low charge density in each round, which results in a uniform and minimal damage to the roof and walls of the excavated cavern and limits the number of newly opened fractures. The length of freshly opened fractures in meters is equal to the charge in kilograms per meter. The slot drilling technique uses an array of small-diameter peripheral percussion-drilled holes to drill ultra-large cores 1 meter in diameter and larger. Both techniques described have been successfully tested and their further use in future excavations of large storage caverns is recommended

  10. Wind tunnel test on airfoil Riso-B1-18 with an Active Trailing Edge Flap

    DEFF Research Database (Denmark)

    Bak, Christian; Gaunaa, Mac; Andersen, Peter Bjørn

    2010-01-01

    A wind tunnel test of the wind turbine airfoil Risø-B1-18 equipped with an Active Trailing Edge Flap (ATEF) was carried out. The ATEF was 9% of the total chord, made of piezo electric actuators attached to the trailing edge of a non-deformable airfoil and actuated using an (electric) amplifier....... The airfoil was tested at Re = 1.66 × 106. Steady state and dynamic tests were carried out with prescribed deflections of the ATEF. The steady state tests showed that deflecting the ATEF towards the pressure side (positive ) translated the lift curve to higher lift values and deflecting the ATEF towards...... the suction side (negative ) translated the lift curve to lower lift values. Testing the airfoil for a step change of the ATEF from = -3.0 to +1.8 showed that the obtainable cl was 0.10 to 0.13 in the linear part of the lift curve. Modeling the step response with an indicial function formulation showed...

  11. Stirling convertor performance mapping test results

    Science.gov (United States)

    Qiu, Songgang; Peterson, Allen A.; White, Maurice A.; Faultersack, Franklyn; Redinger, Darin L.; Petersen, Stephen L.

    2002-01-01

    The Department of Energy (DOE) has selected Free-Piston Stirling Convertors as a technology for future advanced radioisotope space power systems. In August 2000, DOE awarded competitive Phase I, Stirling Radioisotope Generator (SRG) power system integration contracts to three major aerospace contractors, resulting in SRG conceptual designs in February 2001. All three contractors based their designs on the Technology Demonstration Convertor (TDC) developed by Stirling Technology Company (STC) for DOE. The contract award to a single system integration contractor for Phases II and III of the SRG program is anticipated in late 2001. The first potential SRG mission is targeted for a Mars rover. Recent TDC performance data are provided in this paper, together with predictions from Stirling simulation models. .

  12. Electron tunneling in chemistry

    International Nuclear Information System (INIS)

    Zamaraev, K.I.; Khajrutdinov, R.F.; Zhdanov, V.P.; Molin, Yu.N.

    1985-01-01

    Results of experimental and theoretical investigations are outlined systematically on electron tunnelling in chemical reactions. Mechanism of electron transport to great distances is shown to be characteristic to chemical compounds of a wide range. The function of tunnel reactions is discussed for various fields of chemistry, including radiation chemistry, electrochemistry, chemistry of solids, chemistry of surface and catalysis

  13. Interaction between groundwater and TBM (Tunnel Boring Machine) excavated tunnels

    OpenAIRE

    Font Capó, Jordi

    2012-01-01

    A number of problems, e.g. sudden inflows are encountered during tunneling under the piezometric level, especially when the excavation crosses high transmissivity areas. These inflows may drag materials when the tunnel crosses low competent layers, resulting in subsidence, chimney formation and collapses. Moreover, inflows can lead to a decrease in head level because of aquifer drainage. Tunnels can be drilled by a tunnel boring machine (TBM) to minimize inflows and groundwater impacts, restr...

  14. Drill and blast tunnelling; Konvensjonell drift av tunneler

    Energy Technology Data Exchange (ETDEWEB)

    Roenn, Paal-Egil

    1997-12-31

    This thesis treats drill and blast tunnelling. The rapid technological advance necessitates revised and updated design criteria, quality requirements and quality control. In situ blast experiments were carried out in order to test new methods and improve the basis for calculation and design. The main topics of the experiments were (1) longer rounds and increased drillhole diameter, (2) emulsion slurry as explosives in tunnelling, and (3) electronic detonators in contour blasting. The experiments show that it is technically feasible to blast rounds of up to 8.6 m length. Using current technology, the economical optimum round length is substantially shorter. Dust, low visibility, noise and toxic fumes are occupational environmental strains for the tunnel workers. Several of the environmental factors are strongly influenced by the type of explosives used. For example, emulsion slurry resulted in 4 to 5 times better visibility than Anolit and the concentration of respirable dust and total dust was reduced by 30-50 %. Electronic detonators were tested and found to give a higher percentage of remaining drillholes in the contour than Nonel detonators. The thesis includes a chapter on economic design of hydropower tunnels. 42 refs., 83 figs., 45 tabs.

  15. Determination of aerodynamic damping and force coefficients of filleted twin cables in dry conditions through passive-dynamic wind tunnel tests

    DEFF Research Database (Denmark)

    Mattiello, E.; Eriksen, M. B.; Georgakis, Christos T.

    /FORCE Technology Climatic Wind Tunnel facility. The measured aerodynamic damping of the twin-cable arrangement in dry conditions was compared to the values obtained from full-scale monitoring and from an analytical model using static force coefficients. The comparison revealed broad agreement in the investigated...... Re range, as did the force coefficients obtained from dynamic and static tests....

  16. Control of tunneling in heterostructures

    International Nuclear Information System (INIS)

    Volokhov, V M; Tovstun, C A; Ivlev, B

    2007-01-01

    A tunneling current between two rectangular potential wells can be effectively controlled by applying an external ac field. A variation of the ac frequency by 10% may lead to the suppression of the tunneling current by two orders of magnitude, which is a result of quantum interference under the action of the ac field. This effect of destruction of tunneling can be used as a sensitive control of tunneling current across nanosize heterostructures

  17. Evolution, calibration, and operational characteristics of the two-dimensional test section of the Langley 0.3-meter transonic cryogenic tunnel

    Science.gov (United States)

    Ladson, Charles L.; Ray, Edward J.

    1987-01-01

    Presented is a review of the development of the world's first cryogenic pressure tunnel, the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT). Descriptions of the instrumentation, data acquisition systems, and physical features of the two-dimensional 8- by 24-in, (20.32 by 60.96 cm) and advanced 13- by 13-in (33.02 by 33.02 cm) adaptive-wall test-section inserts of the 0.3-m TCT are included. Basic tunnel-empty Mach number distributions, stagnation temperature distributions, and power requirements are included. The Mach number capability of the facility is from about 0.20 to 0.90. Stagnation pressure can be varied from about 80 to 327 K.

  18. Scanning tunneling microscope nanoetching method

    Science.gov (United States)

    Li, Yun-Zhong; Reifenberger, Ronald G.; Andres, Ronald P.

    1990-01-01

    A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.

  19. Geared-elevator flutter study. [wind tunnel tests of transonic flutter effects on control surfaces of supersonic transport tail assemblies, conducted in a NASA-Langley transonic wind tunnel

    Science.gov (United States)

    Ruhlin, C. L.; Doggett, R. V., Jr.; Gregory, R. A.

    1976-01-01

    An experimental and analytical study was made of the transonic flutter characteristics of a supersonic transport tail assembly model having an all-movable, horizontal tail with a geared elevator. Two model configurations, namely, one with a gear-elevator (2.8 to 1.0 gear ratio) and one with locked-elevator (1.0 to 1.0 gear ratio), were flutter tested in the Langley transonic dynamics tunnel with an empennage cantilever-mounted on a sting. The geared-elevator configuration fluttered experimentally at about 20% higher dynamic pressures than the locked-elevator configuration. The experimental flutter dynamic pressure boundaries for both configurations were nearly flat over a Mach number range from 0.9 to 1.1. Flutter calculations (mathematical models) were made for the geared-elevator configuration using three subsonic lifting-surface methods. In one method, the elevator was treated as a discrete surface, and in the other two methods, the stabilizer and elevator were treated as a single warped-surface with the primary difference between these two methods being in the mathematical implementation used. A comparison of the experimental and analytical results shows that the discrete-elevator method predicted best the experimental flutter dynamic pressure level. However, the single warped-surface methods predicts more closely the experimental flutter frequencies and Mach number trends.

  20. Wind tunnel testing of scaled models of a newly developed Darrieus-style vertical axis wind turbine with auxiliary straight blades

    International Nuclear Information System (INIS)

    Scungio, M.; Arpino, F.; Focanti, V.; Profili, M.; Rotondi, M.

    2016-01-01

    Highlights: • Wind tunnel investigations of Darrieus-style VAWT with auxiliary blades have been made. • Results have been compared with those from standard Darrieus VAWT. • Static and dynamic power and torque coefficients were measured and evaluated. • The auxiliary airfoils have demonstrated to give more torque at the lower wind speeds. • The proposed VAWT configuration is able to work in a wide range of wind speeds. - Abstract: Renewable sources of energy, needed because of the increasing price of fossil derivatives, global warming and energy market instabilities, have led to an increasing interest in wind energy. Among the different typologies, small scale Vertical Axis Wind Turbines (VAWT) present the greatest potential for off grid power generation at low wind speeds. In the present work, wind tunnel investigations about the performance of an innovative configuration of straight-blades Darrieus-style vertical axis micro wind turbine, specifically developed for small scale energy conversion at low wind speeds, has been made on scaled models. The micro turbine under investigation consists of three pairs of airfoils. Each pair consists of a main and auxiliary airfoil with different chord lengths. A standard Darrieus configuration, consisting of three single airfoils, was also tested for comparison. The experiments were conducted in a closed circuit open chamber wind tunnel facility available at the Laboratory of Industrial Measurements (LaMI) of the University of Cassino and Lazio Meridionale (UNICLAM). Measured data were reported in terms of dimensionless power and torque coefficients for dynamic performance analysis and static torque coefficient for static performance analysis. The adoption of auxiliary airfoils has demonstrated to give more dynamic torque at the lower wind speeds with respect to a standard Darrieus rotor, resulting in better performance for all the wind speeds considered. In terms of dynamic power coefficient, the standard Darrieus

  1. Experimental Verification of a Pneumatic Transport System for the Rapid Evacuation of Tunnels, Part II - Test Program

    Science.gov (United States)

    1978-12-01

    This study is the final phase of a muck pipeline program begun in 1973. The objective of the study was to evaluate a pneumatic pipeline system for muck haulage from a tunnel excavated by a tunnel boring machine. The system was comprised of a muck pre...

  2. Interpreting Results from the Standardized UXO Test Sites

    National Research Council Canada - National Science Library

    May, Michael; Tuley, Michael

    2007-01-01

    ...) and the Environmental Security Technology Certification Program (ESCTP) to complete a detailed analysis of the results of testing carried out at the Standardized Unexploded Ordnance (UXO) Test Sites...

  3. INCAS TRISONIC WIND TUNNEL

    Directory of Open Access Journals (Sweden)

    Florin MUNTEANU

    2009-09-01

    Full Text Available The 1.2 m x 1.2 m Trisonic Blowdown Wind Tunnel is the largest of the experimental facilities at the National Institute for Aerospace Research - I.N.C.A.S. "Elie Carafoli", Bucharest, Romania. The tunnel has been designed by the Canadian company DSMA (now AIOLOS and since its commissioning in 1978 has performed high speed aerodynamic tests for more than 120 projects of aircraft, missiles and other objects among which the twin jet fighter IAR-93, the jet trainer IAR-99, the MIG-21 Lancer, the Polish jet fighter YRYDA and others. In the last years the wind tunnel has been used mostly for experimental research in European projects such as UFAST. The high flow quality parameters and the wide range of testing capabilities ensure the competitivity of the tunnel at an international level.

  4. 3D Centrifuge Modeling of the Effect of Twin Tunneling to an Existing Pile Group

    Directory of Open Access Journals (Sweden)

    M. A. Soomr

    2017-10-01

    Full Text Available In densely built urban areas, it is inevitable that tunnels will be constructed near existing pile groups. The bearing capacity of a pile group depends on shear stress along the soil-pile interface and normal stress underneath the pile toe while the two would be adversely affected by the unloading process of tunneling. Although extensive studies have been conducted to investigate the effects of tunnel construction on existing single piles, the influence of twin tunnel advancement on an existing pile group is merely reported in the literature. In this study, a series of three-dimensional centrifuge tests were carried out to investigate the response of an existing pile group under working load subjected to twin tunneling at various locations in dry Toyoura sand. In each twin tunneling test, the first tunnel is constructed near the mid-depth of the pile shaft, while the second tunnel is subsequently constructed either next to, below or right underneath the pile toe (Tests G_ST, G_SB and G_SU, respectively. Among the three tests, the 2nd tunnel excavated near the pile toe (Test G_ST results in the smallest settlement but the largest transverse tilting (0.2% of pile group. Significant bending moment was induced at the pile head (1.4 times of its bending moment capacity due to the 2nd tunnel T. On the contrary, tunneling right underneath the toe of pile (i.e., Test G_SU results in the smallest tilting but largest settlement of the pile group (4.6% of pile diameter and incremental mobilisation of shaft resistance (13%. Due to stress release by the twin tunneling, the axial force taken by the front piles close to tunnels was reduced and partially transferred to the rear piles. This load transfer can increase the axial force in rear piles by 24%.

  5. Mobile sources of polycyclic aromatic hydrocarbons (PAH) and nitro-PAH: Results of samples collected in a roadway tunnel

    International Nuclear Information System (INIS)

    Benner, B.A. Jr.; Gordon, G.E.; Wise, S.A.

    1987-01-01

    A recent review article emphasized the need for further characterizations of the carbonaceous fraction of mobile source emissions, particularly with the impending removal of lead alkyl octane boosters and bromine-containing lead scavengers from regular leaded gasolines. The lead and bromine emitted from the combustion of these fuels have been used as tracers of mobile source emissions for a number of years. Single vehicle emission studies have shed light on the relationship between engine operating parameters and the chemical characteristics of the emissions but they are not suitable for use in source apportionment studies which require emission data from a large number of different vehicles. Air particulate samples collected near a busy highway or in a roadway tunnel would be more appropriate for use in estimating the mobile source contribution of organic compounds to a region. Suspended particle samples collected in a heavily-travelled roadway tunnel (Baltimore Harbor Tunnel, Baltimore, Maryland) were characterized for polycyclic aromatic hydrocarbons (PAH) and some nitro-PAH by gas and liquid chromatographic techniques. These samples included those collected on Teflon filters and on glass fiber filters for investigating any differences in samples collected on an inert (Teflon) and more reactive (glass-fiber) medium. All samples collected on Teflon were backed-up with polyurethane foam plugs (PUF) which trapped any inherent vapor-phase PAH as well as any compounds ''blown-off'' the particles during collection

  6. Wind tunnel tests with combined pitch and free-floating flap control: data-driven iterative feedforward controller tuning

    Directory of Open Access Journals (Sweden)

    S. T. Navalkar

    2016-10-01

    Full Text Available Wind turbine load alleviation has traditionally been addressed in the literature using either full-span pitch control, which has limited bandwidth, or trailing-edge flap control, which typically shows low control authority due to actuation constraints. This paper combines both methods and demonstrates the feasibility and advantages of such a combined control strategy on a scaled prototype in a series of wind tunnel tests. The pitchable blades of the test turbine are instrumented with free-floating flaps close to the tip, designed such that they aerodynamically magnify the low stroke of high-bandwidth actuators. The additional degree of freedom leads to aeroelastic coupling with the blade flexible modes. The inertia of the flaps was tuned such that instability occurs just beyond the operational envelope of the wind turbine; the system can however be stabilised using collocated closed-loop control. A feedforward controller is shown to be capable of significant reduction of the deterministic loads of the turbine. Iterative feedforward tuning, in combination with a stabilising feedback controller, is used to optimise the controller online in an automated manner, to maximise load reduction. Since the system is non-linear, the controller gains vary with wind speed; this paper also shows that iterative feedforward tuning is capable of generating the optimal gain schedule online.

  7. Experimental evaluation of blockage ratio and plenum evacuation system flow effects on pressure distribution for bodies of revolution in 0.1 scale model test section of NASA Lewis Research Center's proposed altitude wind tunnel

    Science.gov (United States)

    Burley, Richard R.; Harrington, Douglas E.

    1987-01-01

    An experimental investigation was conducted in the slotted test section of the 0.1-scale model of the proposed Altitude Wind Tunnel to evaluate wall interference effects at tunnel Mach numbers from 0.70 to 0.95 on bodies of revolution with blockage rates of 0.43, 3, 6, and 12 percent. The amount of flow that had to be removed from the plenum chamber (which surrounded the slotted test section) by the plenum evacuation system (PES) to eliminate wall interference effects was determined. The effectiveness of tunnel reentry flaps in removing flow from the plenum chamber was examined. The 0.43-percent blockage model was the only one free of wall interference effects with no PES flow. Surface pressures on the forward part of the other models were greater than interference-free results and were not influenced by PES flow. Interference-free results were achieved on the aft part of the 3- and 6-percent blockage models with the proper amount of PES flow. The required PES flow was substantially reduced by opening the reentry flaps.

  8. Post-test geologic observations made at the non-proliferation experiment site, N-tunnel, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, D.R.; Bradford, R.P.; Hopkins, S.P. [Raytheon Services Nevada, Mercury, NV (United States)] [and others

    1994-12-31

    Qualitative evaluations of damage resulting from an underground explosion can provide valuable information concerning the size of the charge, as well as the location of a clandestine detonation. However, caution must be exercised during the appraisal because the effects of an explosion are a function of many factors in addition to yield. Construction techniques, the physical properties of the surrounding rock, and the depth of burial are all important considerations when evaluating the effects of an underground detonation. Raytheon Services Nevada geologists documented underground and surface effects of the Non-Proliferation Experiment, as they have for all recent underground weapons-effects tests conducted by the Defense Nuclear Agency. Underground, the extent of the visible damage decreased rapidly from severe at the closest inspection point 100 m from the Working Point, to insignificant 300 m from the Working Point. The severity of damage correlates in some instances with the orientation of the drift with respect to the shock-wave propagation direction. No evidence of the Non-Proliferation explosion was visible on the mesa surface 389 m above the Working Point the day after the explosion.

  9. Supersonic Panel Flutter Test Results for Flat Fiber-Glass Sandwich Panels with Foamed Cores

    Science.gov (United States)

    Tuovila, W. J.; Presnell, John G., Jr.

    1961-01-01

    Flutter tests have been made on flat panels having a 1/4 inch-thick plastic-foam core covered with thin fiber-glass laminates. The testing was done in the Langley Unitary Plan wind tunnel at Mach numbers from 1.76 t o 2.87. The flutter boundary for these panels was found to be near the flutter boundary of thin metal panels when compared on the basis of an equivalent panel stiffness. The results also demonstrated that the depth of the cavity behind the panel has a pronounced influence on flutter. Changing the cavity depth from 1 1/2 inches to 1/2 inch reduced the dynamic pressure at start of flutter by 40 percent. No flutter was obtained when the spacers on the back of the panel were against the bottom of the cavity.

  10. Final report of the borehole, shaft, and tunnel sealing test. Vol.2

    International Nuclear Information System (INIS)

    Pusch, R.; Boergesson, L.; Ramqvist, G.

    1987-01-01

    Shaft sealing by use of highly compacted bentonite was investigated in a 14 m long shaft in which two plugs were constructed with a central sand-filled central space for injecting water. A first reference test with concrete plugs was followed by a main test in which the plug material consisted of blocks of highly compacted sodium bentonite powder. In the latter test, the outflow from the injection chamber was only a few percent of that with the concrete plugs, which demonstrates the excellent sealing properties of the clay. The main effect was that practically no water flow took place along the rock/clay interface. The longevity of smectite clay in crystalline rock is sufficient to make bentonite plugs operative for several thousand years. (authors)

  11. Final report of the borehole, shaft and tunnel sealing test. Vol.1

    International Nuclear Information System (INIS)

    Pusch, R.; Boergesson, L.; Ramqvist, G.

    1987-01-01

    The Borehole Plugging Experiment comprised field tests of the sealing function and the practicality in handling and application of plugs consisting of segments of perforated metal casings filled with cylindrical blocks of highly compacted sodium bentonite. Preparative tests had shown that the clay swells out through the perforation and embeds the casings. The field tests demonstrated that even very long holes can be effectively sealed by such plugs and that the clay becomes very homogeneous and forms a tight contact with the rock in a relatively short time. By that the plugs become practically impervious and the flow along the clay/rock contact will be insignificant. The longevity of such plugs extends over several thousand years under the conditions that usually prevail in crystalline rock. (authors)

  12. Cubital tunnel syndrome: comparative results of a multicenter study of 4 surgical techniques with a mean follow-up of 92 months.

    Science.gov (United States)

    Bacle, G; Marteau, E; Freslon, M; Desmoineaux, P; Saint-Cast, Y; Lancigu, R; Kerjean, Y; Vernet, E; Fournier, J; Corcia, P; Le Nen, D; Rabarin, F; Laulan, J

    2014-06-01

    Cubital tunnel syndrome is the second most frequent entrapment syndrome. Physiopathology is mixed, and treatment options are multiple, none having yet proved superior efficacy. The present retrospective multicenter study compared results and rates of complications and recurrence between the 4 main cubital tunnel syndrome treatments, to identify trends and optimize outcome. Patients presenting with primary clinical cubital tunnel syndrome diagnosed on electroneuromyography were included and operated on using 1 of the following 4 techniques: open or endoscopic in situ decompression, or subcutaneous or submuscular anterior transposition. Four specialized upper-limb surgery centers participated, each systematically performing 1 of the above procedures. Subjective and objective results and rates of complications and recurrence were compared at end of follow-up. Five hundred and two patients were included and 375 followed up for a mean 92 months (range, 9-144 months); 103 were lost to follow-up and 24 died. Whichever the procedure, more than 90% of patients were cured or showed improvement. There was a single case of scar pain at end of follow-up, managed by endoscopic decompression; there were no other long-term complications. None of the 4 techniques aggravated symptoms. There were 6 recurrences by end of follow-up: 1 associated with open in situ decompression and 5 with submuscular transposition. Surgery was effective in treating cubital tunnel syndrome. Submuscular anterior transposition was associated with recurrence. In contrast to literature reports, subcutaneous anterior transposition, which is a reliable and valid technique, was not associated with a higher complication rate than in situ decompression. Level IV. Multicenter retrospective. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. An evaluation of iced bridge hanger vibrations through wind tunnel testing and quasi-steady theory

    DEFF Research Database (Denmark)

    Gjelstrup, Henrik; Georgakis, Christos T.; Larsen, A.

    2012-01-01

    roughness is also examined. The static force coefficients are used to predict parameter regions where aerodynamic instability of the iced bridge hanger might be expected to occur, through use of an adapted theoretical 3- DOF quasi-steady galloping instability model, which accounts for sectional axial...... rotation. A comparison between the 3-DOF model and the instabilities found through two degree-of-freedom (2-DOF) dynamic tests is presented. It is shown that, although there is good agreement between the instabilities found through use of the quasi-steady theory and the dynamic tests, discrepancies exist......-indicating the possible inability of quasi-steady theory to fully predict these vibrational instabilities....

  14. On-Line Flutter Prediction Tool for Wind Tunnel Flutter Testing using Parameter Varying Estimation Methodology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes to develop an on-line flutter prediction tool for wind tunnel model using the parameter varying estimation (PVE) technique to...

  15. Evaluation of a Proposed Drift Reduction Technology High-Speed Wind Tunnel Testing Protocol

    Science.gov (United States)

    2009-03-01

    05: “Standard Test Method for Determining Liquid Drop Size Characteristics in a Spray Using Optical Nonimaging Light- Scattering Instruments” 15...Method for Determining Liquid Drop Size Characteris- tics in a Spray Using Optical Nonimaging Light-Scattering Instruments,” Annual Book of ASTM Standards

  16. Post Flight Analysis Of SHEFEX I: Shock Tunnel Testing And Related CFD Analysis

    Science.gov (United States)

    Schramm, Jan Martinez; Barth, Tarik; Wagner, Alexander; Hannemann, Klaus

    2011-05-01

    The SHarp Edge Flight EXperiment (SHEFEX) program of the German Aerospace Center (DLR) is primarily focused on the investigation of the potential to utilise improved shapes for space vehicles by considering sharp edges and facetted surfaces. One goal is to set up a sky based test facility to gain knowledge of the physics of hypersonic flow, complemented by numerical analysis and ground based testing. Further, the series of SHEFEX flight experiments is an excellent test bed for new technological concepts and flight instrumentation, and it is a source of motivation for young scientist and engineers providing an excellent school for future space-program engineers and managers. After the successful first SHEFEX flight in October 2005, a second flight is scheduled for September 2011 and additional flights are planned for 2015 ff. With the SHEFEX-I flight and the subsequent numerical and experimental post flight analysis, DLR could for the first time close the loop between the three major disciplines of aerothermodynamic research namely CFD, ground based testing and flight.

  17. Wind tunnel tests of biodegradable fugitive dust suppressants being considered to reduce soil erosion by wind at radioactive waste construction sites

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Dennis, G.W.; Bushaw, L.L.

    1993-10-01

    Wind tunnel tests were performed of three fugitive dust control agents derived from potato and sugar beet products. These materials are being considered for use as dust suppressants to reduce the potential for transport of radioactive materials by wind from radioactive waste construction and remediation sites. Soil and dust control agent type, solution concentrations, application quantities, aging (or drying) conditions, surface disturbance, and wind and saltating sand eolian erosive stresses were selected and controlled to simulate application and exposure of excavated soil surfaces in the field. A description of the tests, results, conclusions, and recommendations are presented in this report. The results of this study indicate that all three dust control agents can protect exposed soil surfaces from extreme eolian stresses. It is also clear that the interaction and performance of each agent with various soil types may differ dramatically. Thus, soils similar to that received from ML should be best protected by high concentration (∼2.5%) solutions of potato starch at low water application levels (∼1 to 2 L/m 2 ). Because the effectiveness of PS on this soil type is degraded after a moderate amount of simulated rainfall, other options or additives should be considered if surfaces are to be protected for long intervals or during periods of intermittent rainfall and hot, windy conditions. On the other hand, XDCA should be considered when excavating sandy soils. It should be noted, however, that because the Hanford soil test results are based on a small number of tests, it would be prudent to perform additional tests prior to selecting a fugitive dust control agent for use at the Hanford Site. While fermented potato waste was not the best fixative used on either soil, it did perform reasonably well on both soil types (better than XDCA on Idaho soil and better than PS on Hanford soil)

  18. An investigation of drag reduction for tractor trailer vehicles with air deflector and boattail. [wind tunnel tests

    Science.gov (United States)

    Muirhead, V. U.

    1981-01-01

    A wind tunnel investigation was conducted to determine the influence of several physical variables on the aerodynamic drag of a trailer model. The physical variables included: a cab mounted wind deflector, boattail on trailer, flow vanes on trailer front, forced transition on trailer, and decreased gap between tractor and trailer. Tests were conducted at yaw angles (relative wind angles) of 0, 5, 10, 20, and 30 degrees and Reynolds numbers of 3.58 x 10 to the 5th power 6.12 x 10 to the 5th power based upon the equivalent diameter of the vehicles. The wind deflector on top of the cab produced a calculated reduction in fuel consumption of about 5 percent of the aerodynamic portion of the fuel budget for a wind speed of 15.3 km/hr (9.5 mph) over a wind angle range of 0 deg to 180 deg and for a vehicle speed of 88.5 km/hr (55 mph). The boattail produced a calculated 7 percent to 8 percent reduction in fuel consumption under the same conditions. The decrease in gap reduced the calculated fuel consumption by about 5 percent of the aerodynamic portion of the fuel budget.

  19. Testing of tunnel support : dynamic load testing of rockbolt elements to provide data for safer support design.

    CSIR Research Space (South Africa)

    Ortlepp, WD

    1998-06-01

    Full Text Available This research report discusses the development of a realistic and controllable method of testing support tendons dynamically, which has been achieved in this research project, offers a new and fresh opportunity for improving the design methodology...

  20. Wind Tunnel Assessment of Ship Manoeuvrability using a PMM Technique

    DEFF Research Database (Denmark)

    Agdrup, Kristian; Jensen, Andreas G.; Aage, Christian

    1999-01-01

    Tests have been performed at the Danish Maritime Institute (DMI) to investigate the applicability of a new wind tunnel Planar Motion Mechanism (PMM) for the determination of hydrodynamic coefficients of ships. The method has been tested on a tanker with known towing tank data. The wind tunnel model...... data giving reasonable results. The dependency of amplitude and frequency is evaluated, and sources of inaccuracy are discussed. It is concluded that the wind tunnel method is a promising method to achieve a fast and cost-effective estimate of the hydrodynamic coefficients of a ship hull...

  1. Relationship between ultrasonic pulse velocity test result and ...

    African Journals Online (AJOL)

    Ultrasonic Pulse Velocity test result showed an inverse relationship (of -0.935) with the crushed concrete compressive strength. Correlation test, multiple regression analysis, graphs and visual inspection were used to analyze the results. The conclusion drawn is that there exists a relationship between UPV test results and ...

  2. Mathematics Placement Test: Typical Results with Unexpected Outcomes

    Science.gov (United States)

    Ingalls, Victoria

    2011-01-01

    Based on the results of a prior case-study analysis of mathematics placement at one university, the mathematics department developed and piloted a mathematics placement test. This article describes the implementation process for a mathematics placement test and further analyzes the test results for the pilot group. As an unexpected result, the…

  3. COR1 Engineering Test Unit Measurements at the NCAR/HAO Vacuum Tunnel Facility, October-November 2002

    Science.gov (United States)

    Thompson, William

    2002-01-01

    The Engineering Test Unit (ETU) of COR1 was made in two configurations. The first configuration, ETU-1, was for vibration testing, while the second, ETU-2, was for optical testing. This is a report on the optical testing performed on ETU-2 at the NCAR/HAO Vacuum Tunnel Facility during the months of October and November, 2002. This was the same facility used to test the two previous breadboard models. In both configurations, the first two tube sections were complete, with all optical elements aligned. The vibration model ETU-1 had the remaining tube sections attached, with mass models for the remaining optics, for the various mechanisms, and for the focal plane assembly. It was then converted into the optical model ETU-2 by removing tube sections 3 to 5, and mounting the remaining optics on commercial mounts. (The bandpass filter was also installed into tube 2, which had been replaced in ETU-1 by a mass model, so that pre- and post-vibration optical measurements could be made.) Doublet 2 was installed in a Newport LP-2 carrier, and aligned to the other optics in the first two tube sections. The LP-2 adjustment screws were then uralened so that the alignment could be maintained during shipping. Because neither the flight polarizer nor Hollow Core Motor were available, they were simulated by a commercial polarizer and rotational mount, both from Oriel corporation. The Oriel rotational stage was not designed for vacuum use, but it was determined after consultation with the company, and lab testing, that the stage could be used in the moderate vacuum conditions at the NCAR/HAO facility. The shutter and focal plane assembly were simulated with the same camera used for the previous two breadboard tests. The focal plane mask was simulated with a plane of BK7 glass with a mask glued on, using the same procedure as for the Lyot spot on Doublet 1, and mounted in an adjustable LP-2 carrier. Two masks were made, one made to the precise specifications of the optical design, the

  4. Early effects of water inflow into a deposition hole. Laboratory tests results

    International Nuclear Information System (INIS)

    Sanden, Torbjoern; Boergesson, Lennart

    2010-12-01

    material continuously measured. The results from all tests were well within the limits of the erosion model. The erosion rate was in all tests in the lower range of the model which probably depends on the fact that the tests were performed in vertical direction with upwards flow. An interesting result from the tests (Test type 1) was that the buffer blocks moved upwards when water was filled into the surrounding pellets, but the movements did not seem to depend on swelling of the blocks. Instead the heave seemed to depend on a high relative humidity in the pellets filling which made the blocks crack and by that cause an upwards movement. The long term test verified that the decrease of the erosion rate with time that have been measured in earlier tests and is predicted in the model seemed to continue for long time and for large water volumes. With the performed laboratory tests as basis, analysis of the processes related to water inflow into a deposition hole have been made. The processes may lead to unacceptable reduction in buffer density during the installation and water saturation phases. There are mainly two processes that may be detrimental to the buffer. One of them occurs during installation before the backfill has been placed on top of the deposition hole. The inflowing water will cause a heave of the buffer blocks, which may cause unacceptably decrease in density of the buffer material around the canister. The other process is erosion that will take place when water flows out from the deposition hole into the tunnel in channels formed in the pellets filling. The criterion for acceptable heave of the buffer blocks before installation of backfill on top of the deposition hole is suggested to be one cm and the maximum allowable water inflow rate that causes such a heave within four days was found to be 0.1 l/min. The criterion for acceptable loss of bentonite in one spot in a deposition hole is suggested to be 100 kg. The allowable inflow rate that limits the amount

  5. Early effects of water inflow into a deposition hole. Laboratory tests results

    Energy Technology Data Exchange (ETDEWEB)

    Sanden, Torbjoern; Boergesson, Lennart (Clay Technology AB, Lund (Sweden))

    2010-12-15

    material continuously measured. The results from all tests were well within the limits of the erosion model. The erosion rate was in all tests in the lower range of the model which probably depends on the fact that the tests were performed in vertical direction with upwards flow. An interesting result from the tests (Test type 1) was that the buffer blocks moved upwards when water was filled into the surrounding pellets, but the movements did not seem to depend on swelling of the blocks. Instead the heave seemed to depend on a high relative humidity in the pellets filling which made the blocks crack and by that cause an upwards movement. The long term test verified that the decrease of the erosion rate with time that have been measured in earlier tests and is predicted in the model seemed to continue for long time and for large water volumes. With the performed laboratory tests as basis, analysis of the processes related to water inflow into a deposition hole have been made. The processes may lead to unacceptable reduction in buffer density during the installation and water saturation phases. There are mainly two processes that may be detrimental to the buffer. One of them occurs during installation before the backfill has been placed on top of the deposition hole. The inflowing water will cause a heave of the buffer blocks, which may cause unacceptably decrease in density of the buffer material around the canister. The other process is erosion that will take place when water flows out from the deposition hole into the tunnel in channels formed in the pellets filling. The criterion for acceptable heave of the buffer blocks before installation of backfill on top of the deposition hole is suggested to be one cm and the maximum allowable water inflow rate that causes such a heave within four days was found to be 0.1 l/min. The criterion for acceptable loss of bentonite in one spot in a deposition hole is suggested to be 100 kg. The allowable inflow rate that limits the amount

  6. Base pressure and heat transfer tests of the 0.0225-scale space shuttle plume simulation model (19-OTS) in yawed flight conditions in the NASA-Lewis 10x10-foot supersonic wind tunnel (test IH83)

    Science.gov (United States)

    Foust, J. W.

    1979-01-01

    Wind tunnel tests were performed to determine pressures, heat transfer rates, and gas recovery temperatures in the base region of a rocket firing model of the space shuttle integrated vehicle during simulated yawed flight conditions. First and second stage flight of the space shuttle were simulated by firing the main engines in conjunction with the SRB rocket motors or only the SSME's into the continuous tunnel airstream. For the correct rocket plume environment, the simulated altitude pressures were halved to maintain the rocket chamber/altitude pressure ratio. Tunnel freestream Mach numbers from 2.2 to 3.5 were simulated over an altitude range of 60 to 130 thousand feet with varying angle of attack, yaw angle, nozzle gimbal angle and SRB chamber pressure. Gas recovery temperature data derived from nine gas temperature probe runs are presented. The model configuration, instrumentation, test procedures, and data reduction are described.

  7. Irradiation effects test series, test IE-5. Test results report. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Croucher, D. W.; Yackle, T. R.; Allison, C. M.; Ploger, S. A.

    1978-01-01

    Test IE-5, conducted in the Power Burst Facility at the Idaho National Engineering Laboratory, employed three 0.97-m long pressurized water reactor type fuel rods, fabricated from previously irradiated zircaloy-4 cladding and one similar rod fabricated from unirradiated cladding. The objectives of the test were to evaluate the influence of simulated fission products, cladding irradiation damage, and fuel rod internal pressure on pellet-cladding interaction during a power ramp and on fuel rod behavior during film boiling operation. The four rods were subjected to a preconditioning period, a power ramp to an average fuel rod peak power of 65 kW/m, and steady state operation for one hour at a coolant mass flux of 4880 kg/s-m/sup 2/ for each rod. After a flow reduction to 1800 kg/s-m/sup 2/, film boiling occurred on one rod. Additional flow reductions to 970 kg/s-m/sup 2/ produced film boiling on the three remaining fuel rods. Maximum time in film boiling was 80s. The rod having the highest initial internal pressure (8.3 MPa) failed 10s after the onset of film boiling. A second rod failed about 90s after reactor shutdown. The report contains a description of the experiment, the test conduct, test results, and results from the preliminary postirradiation examination. Calculations using a transient fuel rod behavior code are compared with the test results.

  8. Snowdrift – visualisation on an architectural model in wind tunnel testing

    DEFF Research Database (Denmark)

    Fiebig, Jennifer; Koss, Hans Holger Hundborg

    2016-01-01

    transport and deposition at and around buildings in comparison to the nature phenomenon. Although a number of studies performed the deposition on a test model with different snow substitutes, the scaling of the phenomenon is still not understood or inaccurate. The study is a visual method of the snow...... is an alternative approach hence the model design and the visual effect was primarily considered. Main aspects in the model design were different materials and sizes (matter of scale) which were photographed in picture series and time laps. The method indicates the aerodynamic phenomenon as a visual understanding...

  9. New test methods for BIPV. Results from IP performance

    International Nuclear Information System (INIS)

    Jol, J.C.; Van Kampen, B.J.M.; De Boer, B.J.; Reil, F.; Geyer, D.

    2009-11-01

    Within the Performance project new test procedures for PV building products and the building performance as a whole when PV is applied in buildings have been drafted. It has resulted in a first draft of new test procedures for PV building products and proposals for tests for novel BIPV technology like thin film. The test proposed are a module breakage test for BIPV products, a fire safety test for BIPV products and a dynamic load test for BIPV products. Furthermore first proposals of how flexible PV modules could be tested in an appropriate way to ensure long time quality and safety of these new products are presented.

  10. Legal provisions governing the acknowledgment of test results

    International Nuclear Information System (INIS)

    Strecker, A.

    1982-01-01

    The legal provisions governing the acknowledgment of test results are most frequently applied by administrative orders (design and qualification approvals or specimen testing and approval) and are thus claimable and voidable in accordance with general administrative law. The acknowledgment of test certificates requires a legal basis. Test results, however, can be acknowledged also by administrative bodies. Recently, the Federal Government began to delegate more of its legal authority in this field to private institutions, allowing test results to be acknowledged and test certificates to be issued by government controlled private institutions. (orig.) [de

  11. FUNDAMENTAL TUNNELING PROCESSES IN MOSa SOLAR CELLS

    OpenAIRE

    Balberg , I.; Hanak , J.; Weakliem , H.; Gal , E.

    1981-01-01

    In previous studies of tunneling through a MOSa tunnel junction, where Sa was a-Si : H, it was shown that their characteristics resemble those of MOSc devices where Sc was crystalline silicon. In the present work we would like to report a demonstration of fundamental tunneling processes in such tunnel junctions. In particular, the transition from semiconductor controlled regime to tunneling controlled regime can be clearly distinguished. The present results represent one of the rare cases whe...

  12. Sequential Indentation Tests to Investigate the Influence of Confining Stress on Rock Breakage by Tunnel Boring Machine Cutter in a Biaxial State

    Science.gov (United States)

    Liu, Jie; Cao, Ping; Han, Dongya

    2016-04-01

    The influence of confining stress on rock breakage by a tunnel boring machine cutter was investigated by conducting sequential indentation tests in a biaxial state. Combined with morphology measurements of breaking grooves and an analysis of surface and internal crack propagation between nicks, the effects of maximum confining stress and minimum stress on indentation efficiency, crack propagation and chip formation were investigated. Indentation tests and morphology measurements show that increasing a maximum confining stress will result in increased consumed energy in indentations, enlarged groove volumes and promoted indentation efficiency when the corresponding minimum confining stress is fixed. The energy consumed in indentations will increase with increase in minimum confining stress, however, because of the decreased groove volumes as the minimum confining stress increases, the efficiency will decrease. Observations of surface crack propagation show that more intensive fractures will be induced as the maximum confining stress increases, whereas the opposite occurs for an increase of minimum confining stress. An observation of the middle section, cracks and chips shows that as the maximum confining stress increases, chips tend to form in deeper parts when the minimum confining stress is fixed, whereas they tend to formed in shallower parts as the minimum confining stress increases when the maximum confining stress is fixed.

  13. 42 CFR 493.1281 - Standard: Comparison of test results.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Standard: Comparison of test results. 493.1281 Section 493.1281 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... Testing Analytic Systems § 493.1281 Standard: Comparison of test results. (a) If a laboratory performs the...

  14. Feasibility Study for Implementing Magnetic Suspension in the Glenn Research Center 225 cm2 Supersonic Wind Tunnel for Testing the Dynamic Stability of Blunt Bodies

    Science.gov (United States)

    Sevier, Abigail; Davis, David O.; Schoenenberger, Mark; Barnhart, Paul

    2016-01-01

    The implementation of a magnetic suspension system in the NASA Glenn Research Center (GRC) 225 cm2 Supersonic Wind Tunnel would be a powerful test technique that could accurately determine the dynamic stability of blunt body entry vehicles with no sting interference. This paper explores initial design challenges to be evaluated before implementation, including defining the lowest possible operating dynamic pressure and corresponding model size, developing a compatible video analysis technique, and incorporating a retractable initial support sting.

  15. Effect of tunnel cross section on gas temperatures and heat fluxes in case of large heat release rate

    International Nuclear Information System (INIS)

    Fan, Chuan Gang; Li, Ying Zhen; Ingason, Haukur; Lönnermark, Anders

    2016-01-01

    Highlights: • The effect of tunnel cross section together with ventilation velocity was studied. • Ceiling temperature varies clearly with tunnel height, but little with tunnel width. • Downstream temperature decreases with increasing tunnel dimensions. • HRR is an important factor that influences decay rate of excess gas temperature. • An equation considering both tunnel dimensions and HRR was developed. - Abstract: Tests with liquid and solid fuels in model tunnels (1:20) were performed and analysed in order to study the effect of tunnel cross section (width and height) together with ventilation velocity on ceiling gas temperatures and heat fluxes. The model tunnel was 10 m long with varying width (0.3 m, 0.45 m and 0.6 m) and height (0.25 m and 0.4 m). Test results show that the maximum temperature under the ceiling is a weak function of heat release rate (HRR) and ventilation velocity for cases with HRR more than 100 MW at full scale. It clearly varies with the tunnel height and is a weak function of the tunnel width. With a lower tunnel height, the ceiling is closer to the base of continuous flame zone and the temperatures become higher. Overall, the gas temperature beneath the ceiling decreases with the increasing tunnel dimensions, and increases with the increasing longitudinal ventilation velocity. The HRR is also an important factor that influences the decay rate of excess gas temperature, and a dimensionless HRR integrating HRR and other two key parameters, tunnel cross-sectional area and distance between fuel centre and tunnel ceiling, was introduced to account for the effect. An equation for the decay rate of excess gas temperature, considering both the tunnel dimensions and HRR, was developed. Moreover, a larger tunnel cross-sectional area will lead to a smaller heat flux.

  16. Irradiation Effects Test Series: Test IE-3. Test results report. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, L. C.; Allison, C. M.; Croucher, D. W.; Ploger, S. A.

    1977-10-01

    The objectives of the test reported were to: (a) determine the behavior of irradiated fuel rods subjected to a rapid power increase during which the possibility of a pellet-cladding mechanical interaction failure is enhanced and (b) determine the behavior of these fuel rods during film boiling following this rapid power increase. Test IE-3 used four 0.97-m long pressurized water reactor type fuel rods fabricated from previously irradiated fuel. The fuel rods were subjected to a preconditioning period, followed by a power ramp to 69 kW/m at a coolant mass flux of 4920 kg/s-m/sup 2/. After a flow reduction to 2120 kg/s-m/sup 2/, film boiling occurred on the fuel rods. One rod failed approximately 45 seconds after the reactor was shut down as a result of cladding embrittlement due to extensive cladding oxidation. Data are presented on the behavior of these irradiated fuel rods during steady-state operation, the power ramp, and film boiling operation. The effects of a power ramp and power ramp rates on pellet-cladding interaction are discussed. Test data are compared with FRAP-T3 computer model calculations and data from a previous Irradiation Effects test in which four irradiated fuel rods of a similar design were tested. Test IE-3 results indicate that the irradiated state of the fuel rods did not significantly affect fuel rod behavior during normal, abnormal (power ramp of 20 kW/m per minute), and accident (film boiling) conditions.

  17. Results from the 2013 drug and alcohol testing survey.

    Science.gov (United States)

    2015-12-01

    This report summarizes the results of the 2013 Federal Motor Carrier Safety Administration (FMCSA) Drug and Alcohol Testing Survey. This annual survey measures the percentage of drivers with commercial drivers licenses (CDLs) that test positive fo...

  18. Results from the 2008 Drug and Alcohol Testing Survey

    Science.gov (United States)

    2010-01-01

    This report summarizes the results of the 2008 Federal Motor Carrier Safety Administration Drug and Alcohol Testing Survey. This annual survey measures the percentage of drivers with commercial drivers licenses who test positive for controlled sub...

  19. Experimental test results of multi-channel test rig of T1 test section, 5

    International Nuclear Information System (INIS)

    Hino, Ryutaro; Takase, Kazuyuki; Miyamoto, Yoshiaki

    1990-09-01

    Channel blockage test on a fuel column of the high temperature engineering test reactor (HTTR) has been performed under the helium gas atmosphere at a high temperature and a high pressure in order to obtain safety data on flow rate and temperature distributions in the fuel column with the multi-channel test rig of the fuel stack test section (T 1 ) in HENDEL. In the test, one of 12 fuel channels was blockaded to 90% of flow area at the channel inlet. Experimental results showed that the helium gas flow rate in the blockaded channel was 28%∼33% lower than the average flow rate for Reynolds number from 2300 to 14000 in isothermal flow. When simulated fuel rods were heated, the flow rate in the blockaded channel did not decrease down in comparison with the isothermal flow. This is due to that the heat generated in the fuel rods conducts to the other fuel channels in graphite fuel blocks, so that accelerated pressure losses in the fuel channels change with helium gas temperatures. (author)

  20. Study on climate control of dwellings using underground air tunnel in the cold region. Part 1. Cooling performance of the underground air tunnel connected to a small-scaled test house; Kanreichi ni okeru chika air tunnel ni yoru junetsukankyo kaizen ni kansuru kenkyu. 1. Shokibo shiken kaoku ni okeru kaki no ryobo seino hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Miki, Y; Sanji, H; Ito, J; Komoda, T; Mitsuoka, K; Mogami, S [Kitami Institute of Technology, Hokkaido (Japan)

    1997-11-25

    Underground air tunnel is provided for cooling an experimentally built small house and the cooling performance is examined at Kitami Institute of Technology, Hokkaido. The house is provided with 120mm-thick layers of insulating material under the floor and inside the side walls and partitioning walls. The windows are equipped with blinds, with reed screens positioned outside to cover the windows. The air tunnel is a hard vinyl chloride tube, 200mm in internal diameter. It is buried 4.5m deep in the ground, and extends as long as 27m. A filter-provided 72W blower installed at the tunnel outlet is driven to force air through. As for the natural soil temperature in summer, it is found variable between 7.2 and 8.5degC. As the result of the experiment, it is found that thanks to the underground tunnel the room temperature is kept below 27degC even when the maximum temperature in the daytime is 30degC or higher provided the air flow is appropriately regulated. In this experiment, the maximum rate of instantaneously removed heat is approximately 2.5 times higher than the values in other previously reported experiments. The daily coefficient of performance is 6.5-11.1, again higher than the previously reported values. Different from application in warm regions, the effect of rise in the surrounding soil temperature on the cooling performance is not so conspicuous. 3 refs., 12 figs., 1 tab.

  1. Investigation of electromagnetic interference effects by ESD simulator on test parameters of tunneling magnetic recording heads

    Energy Technology Data Exchange (ETDEWEB)

    Kruesubthaworn, A., E-mail: anankr@kku.ac.th [KKU-Seagate Cooperation Research Laboratory, Department of Electrical Engineering, Khon Kaen University, Khon Kaen 40002 (Thailand); Khunkitti, P.; Siritaratiwat, A.; Kaewrawang, A. [KKU-Seagate Cooperation Research Laboratory, Department of Electrical Engineering, Khon Kaen University, Khon Kaen 40002 (Thailand); Mewes, T.; Mewes, C.K.A. [Department of Physics and Astronomy, MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2017-01-01

    Electrostatic discharge (ESD) has been an important issue in the manufacturing processes of hard disk drive. It can also generate electromagnetic interference (EMI) which could possibly damage magnetic recording heads. The aims of this work are to measure the EMI from ESD events and to examine the effects of EMI on the heads. The discharge current and the EMI generated by an ESD simulator were experimentally measured. Also, the EMI was applied to the heads to determine if this can cause changes of head parameters. Our results show that the discharge current waveform is consistent with the theoretical waveform of the IEC ESD standard. Additionally, we found that the EMI applied due to ESD at distances greater than 2 cm does not have any significant effect on the head parameters. Hence, further detailed experiments are proposed to evaluate the EMI effects on recording head parameters in order to improve the measurement methodologies to prevent the degradation of the heads performance and to increase the robustness of the heads. - Highlights: • The electrostatic discharge (ESD) has been an important issue for the hard disk drive. • The electromagnetic interference (EMI) radiated by ESD IEC 61000-4-2 was focused. • Effects of the EMI on the magnetic recording head were examined. • The change of parameters of the writer and reader due to the EMI was measured. • The EMI could not cause any significant affectation on the writer and reader.

  2. Integrated leak rate test results of JOYO reactor containment vessel

    International Nuclear Information System (INIS)

    Tamura, M.; Endo, J.

    1982-02-01

    Integrated leak rate tests of JOYO after the reactor coolant system had been filled with sodium have been performed two times since 1978 (February 1978 and December 1979). The tests were conducted with the in-containment sodium systems, primary argon cover gas system and air conditioning systems operating. Both the absolute pressure method and the reference chamber method were employed during the test. The results of both tests confirmed the functioning of the containment vessel, and leak rate limits were satisfied. In Addition, the adequancy of the test instrumentation system and the test method was demonstrated. Finally the plant conditions required to maintain reasonable accuracy for the leak rate testing of LMFBR were established. In this paper, the test conditions and the test results are described. (author)

  3. Assessment of the quality of test results from selected civil engineering material testing laboratories in Tanzania

    CSIR Research Space (South Africa)

    Mbawala, SJ

    2017-12-01

    Full Text Available Civil and geotechnical engineering material testing laboratories are expected to produce accurate and reliable test results. However, the ability of laboratories to produce accurate and reliable test results depends on many factors, among others...

  4. Sonographic diagnosis of carpal tunnel syndrome: a study in 200 hospital workers

    Directory of Open Access Journals (Sweden)

    Adham do Amaral e Castro

    2015-10-01

    Full Text Available AbstractObjective:To describe the prevalence of carpal tunnel syndrome in a sample of 200 healthy hospital workers, establishing the respective epidemiological associations.Materials and Methods:Two hundred individuals were submitted to wrist ultrasonography to measure the median nerve area. They were questioned and examined for epidemiological data, body mass index, carpal tunnel syndrome signs and symptoms, and submitted to the Boston carpal tunnel questionnaire (BCTQ to evaluate the carpal tunnel syndrome severity. A median nerve area ≥ 9 mm2 was considered to be diagnostic of carpal tunnel syndrome.Results:Carpal tunnel syndrome was diagnosed by ultrasonography in 34% of the sample. It was observed the association of carpal tunnel syndrome with age (p < 0.0001, paresthesia (p < 0.0001, Tinel's test (p < 0.0001, Phalen's test (p< 0.0001, BCTQ score (p < 0.0001, and years of formal education (p < 0.0001. Years of formal education was the only variable identified as an independent risk factor for carpal tunnel syndrome (95% CI = 1.03 to 1.24.Conclusion:The prevalence of carpal tunnel syndrome in a population of hospital workers was of 34%. The number of years of formal education was the only independent risk factor for carpal tunnel syndrome.

  5. Tunnelling of a molecule

    International Nuclear Information System (INIS)

    Jarvis, P.D.; Bulte, D.P.

    1998-01-01

    A quantum-mechanical description of tunnelling is presented for a one-dimensional system with internal oscillator degrees of freedom. The 'charged diatomic molecule' is frustrated on encountering a barrier potential by its centre of charge not being coincident with its centre of mass, resulting in transitions amongst internal states. In an adiabatic limit, the tunnelling of semiclassical coherent-like oscillator states is shown to exhibit the Hartman and Bueuttiker-Landauer times t H and t BL , with the time dependence of the coherent state parameter for the tunnelled state given by α(t) = α e -iω(t+Δt) , Δt = t H - it BL . A perturbation formalism is developed, whereby the exact transfer matrix can be expanded to any desired accuracy in a suitable limit. An 'intrinsic' time, based on the oscillator transition rate during tunnelling, transmission or reflection, is introduced. In simple situations the resulting intrinsic tunnelling time is shown to vanish to lowest order. In the general case a particular (nonzero) parametrisation is inferred, and its properties discussed in comparison with the literature on tunnelling times for both wavepackets and internal clocks. Copyright (1998) CSIRO Australia

  6. Melter operation results in chemical test at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Kanehira, Norio; Yoshioka, Masahiro; Muramoto, Hitoshi; Oba, Takaaki; Takahashi, Yuji

    2005-01-01

    Chemical Test of the glass melter system of the Vitrification Facility at Rokkasho Reprocessing Plant (RRP) was performed. In this test, basic performance of heating-up of the melter, melting glass, pouring glass was confirmed using simulated materials. Through these tests and operation of all modes, good results were gained, and training of operators was completed. (author)

  7. Blended-Wing-Body Transonic Aerodynamics: Summary of Ground Tests and Sample Results

    Science.gov (United States)

    Carter, Melissa B.; Vicroy, Dan D.; Patel, Dharmendra

    2009-01-01

    The Blended-Wing-Body (BWB) concept has shown substantial performance benefits over conventional aircraft configuration with part of the benefit being derived from the absence of a conventional empennage arrangement. The configuration instead relies upon a bank of trailing edge devices to provide control authority and augment stability. To determine the aerodynamic characteristics of the aircraft, several wind tunnel tests were conducted with a 2% model of Boeing's BWB-450-1L configuration. The tests were conducted in the NASA Langley Research Center's National Transonic Facility and the Arnold Engineering Development Center s 16-Foot Transonic Tunnel. Characteristics of the configuration and the effectiveness of the elevons, drag rudders and winglet rudders were measured at various angles of attack, yaw angles, and Mach numbers (subsonic to transonic speeds). The data from these tests will be used to develop a high fidelity simulation model for flight dynamics analysis and also serve as a reference for CFD comparisons. This paper provides an overview of the wind tunnel tests and examines the effects of Reynolds number, Mach number, pitch-pause versus continuous sweep data acquisition and compares the data from the two wind tunnels.

  8. The Dornier 328 Acoustic Test Cell (ATC) for interior noise tests and selected test results

    Science.gov (United States)

    Hackstein, H. Josef; Borchers, Ingo U.; Renger, Klaus; Vogt, Konrad

    1992-01-01

    To perform acoustic studies for achieving low noise levels for the Dornier 328, an acoustic test cell (ATC) of the Dornier 328 has been built. The ATC consists of a fuselage section, a realistic fuselage suspension system, and three exterior noise simulation rings. A complex digital 60 channel computer/amplifier noise generation system as well as multichannel digital data acquisition and evaluation system have been used. The noise control tests started with vibration measurements for supporting acoustic data interpretation. In addition, experiments have been carried out on dynamic vibration absorbers, the most important passive noise reduction measure for low frequency propeller noise. The design and arrangement of the current ATC are presented. Furthermore, exterior noise simulation as well as data acquisition are explained. The most promising results show noise reduction due to synchrophasing and dynamic vibration absorbers.

  9. Production Facility Prototype Blower 1000 Hour Test Results II

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Alexander Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-08

    Long duration tests of the Aerzen GM 12.4 roots style blower in a closed loop configuration provides valuable data and lessons learned for long-term operation at the Mo-99 production facility. The blower was operated in a closed loop configuration with the flow conditions anticipated in plant operation with a Mo-100 target inline. The additional thermal energy generated from beam heating of the Mo-100 disks were not included in these tests. Five 1000 hour tests have been completed since the first test was performed in January of 2016. All five 1000 hour tests have proven successful in exposing preventable issues related to oil and helium leaks. All blower tests to this date have resulted in stable blower performance and consistency. A summary of the results for each test, including a review of the first and second tests, are included in this report.

  10. Results and Analysis from Space Suit Joint Torque Testing

    Science.gov (United States)

    Matty, Jennifer

    2010-01-01

    This joint mobility KC lecture included information from two papers, "A Method for and Issues Associated with the Determination of Space Suit Joint Requirements" and "Results and Analysis from Space Suit Joint Torque Testing," as presented for the International Conference on Environmental Systems in 2009 and 2010, respectively. The first paper discusses historical joint torque testing methodologies and approaches that were tested in 2008 and 2009. The second paper discusses the testing that was completed in 2009 and 2010.

  11. Hawaiian Electric Advanced Inverter Test Plan - Result Summary

    Energy Technology Data Exchange (ETDEWEB)

    Hoke, Anderson; Nelson, Austin; Prabakar, Kumaraguru; Nagarajan, Adarsh

    2016-10-14

    This presentation is intended to share the results of lab testing of five PV inverters with the Hawaiian Electric Companies and other stakeholders and interested parties. The tests included baseline testing of advanced inverter grid support functions, as well as distribution circuit-level tests to examine the impact of the PV inverters on simulated distribution feeders using power hardware-in-the-loop (PHIL) techniques. hardware-in-the-loop (PHIL) techniques.

  12. Wind tunnel tests of Risø-B1-18 and Risø-B1-24

    DEFF Research Database (Denmark)

    Fuglsang, P.; Bak, Christian; Gaunaa, Mac

    2003-01-01

    This report contains 2D measurements of the Risø-B1-18 and Risø-B1-24 airfoils. The aerodynamic properties were derived from pressure measurements on the airfoil surface and in the wake. The measurements were conducted in the VELUX open jet wind tunnel,which has a background turbulence intensity...

  13. Evaluation of LLTR series II test A-7 results

    International Nuclear Information System (INIS)

    Knittle, D.E.; Amos, J.C.; Yang, T.M.

    1981-09-01

    This report evaluates the test A-7 data and assesses the capability of the analytical methodology (as a result of Series I program) to predict the thermal/hydraulic phenomena associated with a large SWR event occurring after the sodium system pressure has increased to near the rupture disc burst pressure due to a smaller size leak event. Evaluation of intertest examination data to determine the extent of test article damage resulting from test A-7 is also included

  14. Test beam results from the D0 end electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Roe, N.A.

    1991-11-01

    Test beam results are presented for the DO end electromagnetic calorimeter. Data were taken with electrons and pions ranging in energy from 5 GeV to 150 GeV. Results from the analysis of the test beam data are presented on energy resolution and linearity, stability and uniformity of response, position resolution and electron-pion separation

  15. Results of Detailed Hydrologic Characterization Tests - Fiscal Year 2000

    International Nuclear Information System (INIS)

    Spane, Frank A; Thorne, Paul D; Newcomer, Darrell R

    2001-01-01

    This report provides the results of detailed hydrologic characterization tests conducted within eleven Hanford Site wells during fiscal year 2000. Detailed characterization tests performed included groundwater-flow characterization; barometric response evaluation; slug tests; single-well tracer tests; constant-rate pumping tests; and in-well, vertical flow tests. Hydraulic property estimates obtained from the detailed hydrologic tests include transmissivity; hydraulic conductivity; specific yield; effective porosity; in-well, lateral flow velocity; aquifer-flow velocity; vertical distribution of hydraulic conductivity (within the well-screen section); and in-well, vertical flow velocity. In addition, local groundwater-flow characteristics (i.e., hydraulic gradient and flow direction) were determined for four sites where detailed well testing was performed

  16. Early results of gate valve flow interruption blowdown tests

    International Nuclear Information System (INIS)

    DeWall, K.G.

    1988-01-01

    The preliminary results of the USNRC/INEL high-energy BWR line break flow interruption testing are presented. Two representative nuclear valve assemblies were cycled under design basis Reactor Water Cleanup pipe break conditions to provide input for the technical basis for resolving the Nuclear Regulatory Commission's Generic Issue 87. The effects of the blowdown hydraulic loadings on valve operability, especially valve closure stem forces, were studied. The blowdown tests showed that, given enough thrust, typical gate valves will close against the high flow resulting from a line break. The tests also showed that proper operator sizing depends on the correct identification of values for the sizing equation. Evidence exists that values used in the past may not be conservative for all valve applications. The tests showed that improper operator lock ring installation following test or maintenance can invalidate in-situ test results and prevent the valve from performing its design function. 2 refs., 12 figs., 2 tabs

  17. Two-Tunnel Transtibial Repair of Radial Meniscus Tears Produces Comparable Results to Inside-Out Repair of Vertical Meniscus Tears.

    Science.gov (United States)

    Cinque, Mark E; Geeslin, Andrew G; Chahla, Jorge; Dornan, Grant J; LaPrade, Robert F

    2017-08-01

    Radial meniscus tears disrupt the circumferential fibers and thereby compromise meniscus integrity. Historically, radial tears were often treated with meniscectomy because of an incomplete understanding of the biomechanical consequences of these tears, limited information regarding the biomechanical performance of repair, and the technical difficulty associated with repair. There is a paucity of studies on the outcomes of the repair of radial meniscus tears. Purpose/Hypothesis: The purpose was to determine the outcomes of 2-tunnel transtibial repair of radial meniscus tears and compare these results to the outcomes of patients who underwent the repair of vertical meniscus tears with a minimum of 2-year follow-up. The hypothesis was that radial and vertical meniscus tear repair outcomes were comparable. Cohort study; Level of evidence, 3. Patients who underwent 2-tunnel transtibial pullout repair for a radial meniscus tear were included in this study and compared with patients who underwent inside-out repair for a vertical meniscus tear. Subjective questionnaires were administered preoperatively and at a minimum of 2-year follow-up, including the Lysholm score, the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), the Short Form-12 (SF-12) physical component summary (PCS), the Tegner activity scale, and patient satisfaction. Analysis of covariance was used to compare postoperative outcome scores between the meniscus repair groups while accounting for baseline scores. Adjusted mean effects relative to the radial repair group were reported with 95% CIs. Twenty-seven patients who underwent 2-tunnel transtibial pullout repair for radial meniscus tears and 33 patients who underwent inside-out repair for vertical meniscus tears were available for follow-up at a mean of 3.5 years (range, 2.0-5.4 years). No preoperative outcome score significantly differed between the groups. There were no significant group differences for any of the 2-year

  18. Phase 2 and 3 wind tunnel tests of the J-97 powered, external augmentor V/STOL model. [conducted in Ames 40- by 80-foot wind tunnel

    Science.gov (United States)

    Garland, D. B.

    1980-01-01

    Modifications were made to the model to improve longitudinal acceleration capability during transition from hovering to wing borne flight. A rearward deflection of the fuselage augmentor thrust vector is shown to be beneficial in this regard. Other agmentor modifications were tested, notably the removal of both endplates, which improved acceleration performance at the higher transition speeds. The model tests again demonstrated minimal interference of the fuselage augmentor on aerodynamic lift. A flapped canard surface also shows negligible influence on the performance of the wing and of the fuselage augmentor.

  19. Finite Element Analysis and Test Results Comparison for the Hybrid Wing Body Center Section Test Article

    Science.gov (United States)

    Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.

    2016-01-01

    This report documents the comparison of test measurements and predictive finite element analysis results for a hybrid wing body center section test article. The testing and analysis efforts were part of the Airframe Technology subproject within the NASA Environmentally Responsible Aviation project. Test results include full field displacement measurements obtained from digital image correlation systems and discrete strain measurements obtained using both unidirectional and rosette resistive gauges. Most significant results are presented for the critical five load cases exercised during the test. Final test to failure after inflicting severe damage to the test article is also documented. Overall, good comparison between predicted and actual behavior of the test article is found.

  20. Relationship between substances in seminal plasma and Acrobeads Test results.

    Science.gov (United States)

    Komori, Kazuhiko; Tsujimura, Akira; Okamoto, Yoshio; Matsuoka, Yasuhiro; Takao, Tetsuya; Miyagawa, Yasushi; Takada, Shingo; Nonomura, Norio; Okuyama, Akihiko

    2009-01-01

    To asses the effects of seminal plasma on sperm function. Retrospective case-control study. University hospital. One hundred fourteen infertile men. Acrobeads Test scores (0-4) and measurement of interleukin (IL)-6, soluble IL-6 receptor, epidermal growth factor, insulin-like growth factor-I (IGF-I), transforming growth factor-beta I, superoxide dismutase, calcitonin, and macrophage migration inhibitory factor (MIF) levels in seminal plasma. Kruskal-Wallis test to compare the concentrations of substances as a nonparametric test for differences among Acrobeads Test scores and a multivariable logistic regression model to find independent risk factors associated with abnormal Acrobeads Test results. The Acrobeads Test score was 0 for 7 samples, 1 for 20 samples, 2 for 18 samples, 3 for 28 samples, and 4 for 41 samples. Age, abstinence period, and semen parameters, except for sperm motility and percentage of sperm with abnormal morphology, had no effect on the Acrobeads Test results. Concentrations of IGF-I and MIF were significantly higher in patients with abnormal Acrobeads Test results. Multivariate analysis indicated that MIF and IGF-I were significantly associated with abnormal Acrobeads Test results (scores 0 to 1). Although further studies are needed, IGF-I and MIF in seminal plasma may have negative effects on sperm function.

  1. Results of recent KROTOS FCI tests. Alumina vs. corium melts

    Energy Technology Data Exchange (ETDEWEB)

    Huhtiniemi, I.; Magallon, D.; Hohmann, H. [Commission of the European Communities, Ispra (Italy). Joint Research Center

    1998-01-01

    Recent results from KROTOS fuel-coolant interaction experiments are discussed. Five tests with alumina were performed under highly subcooled conditions, all of these tests resulted in spontaneous steam explosions. Additionally, four tests were performed at low subcooling to confirm, on one hand, the suppression of spontaneous steam explosions under such conditions and, on the other hand, that such a system is still triggerable using an external initiator. The other test parameters in these alumina tests included the melt superheat and the initial pressure. All the tests in the investigated superheat range (150 K - 750 K) produced a steam explosion and no evidence of the explosion suppression by the elevated initial pressure (in the limited range of 0.1 - 0.375 MPa) was observed in the alumina tests. The corium test series include a test with 3 kg of melt under both subcooled and near saturated conditions at ambient pressure. Two additional tests were performed with subcooled water; one test was performed at an elevated pressure of 0.2 MPa with 2.4 kg of melt and another test with 5.1 kg of melt at ambient pressure. None of these tests with corium produced a propagating energetic steam explosion. However, propagating low energy (about twice the energy of the trigger pulse) events were observed. All corium tests produced significantly higher water level swells during the mixing phase than the corresponding alumina tests. Present experimental evidence suggests that the water depletion in the mixing zone suppresses energetic steam explosions with corium melts at ambient pressure and in the present pour geometry. Processes that could produce such a difference in void generation are discussed. (author)

  2. Probability density of tunneled carrier states near heterojunctions calculated numerically by the scattering method.

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, William R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Myers, Samuel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Modine, Normand A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    The energy-dependent probability density of tunneled carrier states for arbitrarily specified longitudinal potential-energy profiles in planar bipolar devices is numerically computed using the scattering method. Results agree accurately with a previous treatment based on solution of the localized eigenvalue problem, where computation times are much greater. These developments enable quantitative treatment of tunneling-assisted recombination in irradiated heterojunction bipolar transistors, where band offsets may enhance the tunneling effect by orders of magnitude. The calculations also reveal the density of non-tunneled carrier states in spatially varying potentials, and thereby test the common approximation of uniform- bulk values for such densities.

  3. Physical and chemical test results of electrostatic safe flooring materials

    Science.gov (United States)

    Gompf, R. H.

    1988-01-01

    This test program was initiated because a need existed at the Kennedy Space Center (KSC) to have this information readily available to the engineer who must make the choice of which electrostatic safe floor to use in a specific application. The information, however, should be of value throughout both the government and private industry in the selection of a floor covering material. Included are the test results of 18 floor covering materials which by test evaluation at KSC are considered electrostatically safe. Tests were done and/or the data compiled in the following areas: electrostatics, flammability, hypergolic compatibility, outgassing, floor type, material thickness, and available colors. Each section contains the test method used to gather the data and the test results.

  4. Thermal results of the Japanese LCT coil's domestic test

    International Nuclear Information System (INIS)

    Tada, Eisuke; Hiyama, Tadao; Kato, Takashi; Takahashi, Osamu; Shimamoto, Susumu

    1984-01-01

    This paper describes thermal results obtained in the domestic test of the Japanese LCT coil which was constructed at the Japan Atomic Energy Research Institute (JAERI) in order to develop large superconducting coils for fusion in international collaboration proposed by the IEA. The domestic test was carried out from May 13 to June 17 in 1982 by using the test facility named as SETF (Superconducting Engineering Test Facility) which was composed of a 350-l/h helium cryogenic system, a vacuum system, a 30 KA-DC power supply and protection system, and a PDP-11/70 computer system. The cool-down characteristics, heat load, fast discharge characteristics, stability, and warm-up characteristics of the LCT coil were successfully measured in the test. The details of thermal test results acquired in the cool-down, heat load measurement, fast discharge, and warm-up, and the comparison between measurements and calculations are described in this paper. (author)

  5. A case history of a tunnel constructed by ground freezing

    Science.gov (United States)

    Lacy, H. S.; Jones, J. S., Jr.; Gidlow, B.

    Artificial ground freezing was used for structural support and groundwater control for a 37 m long, 3.2 m diameter tunnel located about 2 m beneath high speed railroad lines in Syracuse, New York. A double row of freeze pipes spaced approximately 0.9 m on-center was used around the periphery of the tunnel above the spring line, while only a single row of freeze pipes was required below the spring line. Excavation of the frozen soil within the tunnel was accomplished with a small road header tunnel boring machine. The results of in situ testing of frozen soil, laboratory testing of frozen soils, computer analysis to predict stress deformation-time characteristics under static and cyclic loading, the instrumentation program including a comparison of estimated and measured performance are discussed.

  6. Commissioning and First Results from the Fermilab Cryomodule Test Stand

    Energy Technology Data Exchange (ETDEWEB)

    Harms, Elvin; et al.

    2017-05-01

    A new test stand dedicated to SRF cryomodule testing, CMTS1, has been commissioned and is now in operation at Fermilab. The first device to be cooled down and powered in this facility is the prototype 1.3 GHz cryomodule assembled at Fermilab for LCLS-II. We describe the demonstrated capabilities of CMTS1, report on steps taken during commissioning, provide an overview of first test results, and survey future plans.

  7. Sims Prototype System 2 test results: Engineering analysis

    Science.gov (United States)

    1978-01-01

    The testing, problems encountered, and the results and conclusions obtained from tests performed on the IBM Prototype System, 2, solar hot water system, at the Marshall Space Flight Center Solar Test Facility was described. System 2 is a liquid, non draining solar energy system for supplying domestic hot water to single residences. The system consists of collectors, storage tank, heat exchanger, pumps and associated plumbing and controls.

  8. RTG performance on Galileo and Ulysses and Cassini test results

    International Nuclear Information System (INIS)

    Kelly, C. Edward; Klee, Paul M.

    1997-01-01

    Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Similar comparisons are made for the RTG on the Ulysses spacecraft which completed its planned mission in 1995. Also presented are test results from small scale thermoelectric modules and full scale converters performed for the Cassini program. The Cassini mission to Saturn is scheduled for an October 1997 launch. Small scale module test results on thermoelectric couples from the qualification and flight production runs are shown. These tests have exceeded 19,000 hours are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. Test results are presented for full scale units both ETGs (E-6, E-7) and RTGs (F-2, F-5) along with mission power predictions. F-5, fueled in 1985, served as a spare for the Galileo and Ulysses missions and plays the same role in the Cassini program. It has successfully completed all acceptance testing. The ten years storage between thermal vacuum tests is the longest ever experienced by an RTG. The data from this test are unique in providing the effects of long term low temperature storage on power output. All ETG and RTG test results to date indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of at least five percent are predicted

  9. RTG performance on Galileo and Ulysses and Cassini test results

    International Nuclear Information System (INIS)

    Kelly, C.E.; Klee, P.M.

    1997-01-01

    Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Similar comparisons are made for the RTG on the Ulysses spacecraft which completed its planned mission in 1995. Also presented are test results from small scale thermoelectric modules and full scale converters performed for the Cassini program. The Cassini mission to Saturn is scheduled for an October 1997 launch. Small scale module test results on thermoelectric couples from the qualification and flight production runs are shown. These tests have exceeded 19,000 hours are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. Test results are presented for full scale units both ETGs (E-6, E-7) and RTGs (F-2, F-5) along with mission power predictions. F-5, fueled in 1985, served as a spare for the Galileo and Ulysses missions and plays the same role in the Cassini program. It has successfully completed all acceptance testing. The ten years storage between thermal vacuum tests is the longest ever experienced by an RTG. The data from this test are unique in providing the effects of long term low temperature storage on power output. All ETG and RTG test results to date indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of at least five percent are predicted. copyright 1997 American Institute of Physics

  10. Results of EMC market surveillance tests for UPS systems

    Energy Technology Data Exchange (ETDEWEB)

    Rajamaeki, J. [Safety Technology Authority, Helsinki (Finland)

    1997-12-31

    This paper reports the first wide electromagnetic compatibility (EMC) market surveillance project in Finland in which the uninterruptible power systems (UPS) on the Finnish market are monitored. Altogether 11 UPS units are EMC tested and the results of these tests are described in this paper. The effect of basic characters of UPS on the level of electromagnetic interference are analysed. (orig.) 3 refs.

  11. 7 CFR 91.24 - Reports of test results.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Reports of test results. 91.24 Section 91.24 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS...

  12. Power-cooling mismatch test series. Test PCM-2A; test results report

    International Nuclear Information System (INIS)

    Cawood, G.W.; Holman, G.W.; Martinson, Z.R.; Legrand, B.L.

    1976-09-01

    The report describes the results of an in-pile experimental investigation of pre- and postcritical heat flux (CHF) behavior of a single 36-inch-long, pressurized water reactor (PWR) type, UO 2 -fueled, zircaloy-clad fuel rod. The nominal coolant conditions for pressure and temperature were representative of those found in a commercial PWR. Nine separate departures from nucleate boiling (DNB) cycles were performed by either of two different methods: (a) decreasing the coolant flow rate while the fuel rod power was held constant, or (b) increasing the fuel rod power while the coolant flow rate was held constant. DNB was obtained during eight of the nine cycles performed. For the final flow reduction, the mass flux was decreased to 6.1 x 10 5 lb/hr-ft 2 at a constant peak linear heat generation rate of 17.8 kW/ft. The fuel rod was allowed to remain in film boiling for about 210 seconds during this final flow reduction. The fuel rod remained intact during the test. Results of on-line measurements of the fuel rod behavior are presented together with discussion of instrument performance. A comparison of the data with Fuel Rod Analysis Program-Transient 2 (FRAP-T2) computer code calculations is included

  13. Drug and alcohol testing results 2009 annual report

    Science.gov (United States)

    2013-11-01

    This is the 15th annual report of the results of the Federal Transit Administrations (FTA) Drug and Alcohol Testing Program. This report summarizes the reporting requirements for calendar year 2009, the requirements of the overall drug and alcohol...

  14. Drug and alcohol testing results 2007 annual report

    Science.gov (United States)

    2009-05-01

    This is the 13th annual report of the results of the Federal Transit Administrations (FTA) Drug and Alcohol Testing Program. This report summarizes the reporting requirements for calendar year 2007, the requirements of the overall drug and alcohol...

  15. Drug and Alcohol Testing Results 2008 Annual Report

    Science.gov (United States)

    2010-09-01

    This is the 14th annual report of the results of the Federal Transit Administration's (FTA) Drug and Alcohol Testing : Program. This report summarizes the reporting requirements for calendar year 2008, the requirements of the overall : drug and alcoh...

  16. Drug and alcohol testing results 2006 annual report.

    Science.gov (United States)

    2008-08-01

    This is the 12th annual report of the results of the Federal Transit Administration's (FTA) Drug and Alcohol Testing Program. This report summarizes the reporting requirements for calendar year 2006, the requirements of the overall drug and alcohol t...

  17. Results from tests of the Delphi TPC prototype

    International Nuclear Information System (INIS)

    Vilanova, D.

    1985-01-01

    Results from beam tests of a half-scale sector of the Delphi TPC are presented. The spatial resolution is slightly higher than predicted by Monte Carlo simulations, corresponding to an average value of about 300 μm. (orig.)

  18. Test emission of uranium hexafluoride in atmosphere. Results interpretation

    International Nuclear Information System (INIS)

    Crabol, B.; Deville-Cavelin, G.

    1989-01-01

    To permit the modelization of gaseous uranium hexafluoride behaviour in atmosphere, a validation test has been executed the 10 April 1987. The experimental conditions, the main results and a comparison with a diffusion model are given in this report [fr

  19. Numerical modeling of time-dependent deformation and induced stresses in concrete pipes constructed in Queenston shale using micro-tunneling technique

    Directory of Open Access Journals (Sweden)

    Hayder Mohammed Salim Al-Maamori

    2018-04-01

    Full Text Available Effects of time-dependent deformation (TDD on a tunnel constructed using the micro-tunneling technique in Queenston shale (QS are investigated employing the finite element method. The TDD and strength parameters of the QS were measured from tests conducted on QS specimens soaked in water and lubricant fluids (LFs used in micro-tunneling such as bentonite and polymer solutions. The numerical model was verified using the results of TDD tests performed on QS samples, field measurements of some documented projects, and the closed-form solutions to circular tunnels in swelling rock. The verified model was then employed to conduct a parametric study considering important micro-tunneling design parameters, such as depth and diameter of the tunnel, in situ stress ratio (Ko, and the time lapse prior to replacing LFs with permanent cement grout around the tunnel. It was revealed that the time lapse plays a vital role in controlling deformations and associated stresses developed in the tunnel lining. The critical case of a pipe or tunnel in which the maximum tensile stress develops at its springline occurs when it is constructed at shallow depths in the QS layer. The results of the parametric study were used to suggest recommendations for the construction of tunnels in QS employing micro-tunneling. Keywords: Numerical model, Micro-tunneling, Queenston shale (QS, Lubricant fluids (LFs

  20. Interim results from UO2 fuel oxidation tests in air

    International Nuclear Information System (INIS)

    Campbell, T.K.; Gilbert, E.R.; Thornhill, C.K.; White, G.D.; Piepel, G.F.; Griffin, C.W.j.

    1987-08-01

    An experimental program is being conducted at Pacific Northwest Laboratory (PNL) to extend the characterization of spent fuel oxidation in air. To characterize oxidation behavior of irradiated UO 2 , fuel oxidation tests were performed on declad light-water reactor spent fuel and nonirradited UO 2 pellets in the temperature range of 135 to 250 0 C. These tests were designed to determine the important independent variables that might affect spent fuel oxidation behavior. The data from this program, when combined with the test results from other programs, will be used to develop recommended spent fuel dry-storage temperature limits in air. This report describes interim test results. The initial PNL investigations of nonirradiated and spent fuels identified the important testing variables as temperature, fuel burnup, radiolysis of the air, fuel microstructure, and moisture in the air. Based on these initial results, a more extensive statistically designed test matrix was developed to study the effects of temperature, burnup, and moisture on the oxidation behavior of spent fuel. Oxidation tests were initiated using both boiling-water reactor and pressurized-water reactor fuels from several different reactors with burnups from 8 to 34 GWd/MTU. A 10 5 R/h gamma field was applied to the test ovens to simulate dry storage cask conditions. Nonirradiated fuel was included as a control. This report describes experimental results from the initial tests on both the spent and nonirradiated fuels and results to date on the tests in a 10 5 R/h gamma field. 33 refs., 51 figs., 6 tabs

  1. NNWSI Phase II materials interaction test procedure and preliminary results

    International Nuclear Information System (INIS)

    Bates, J.K.; Gerding, T.J.

    1985-01-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) project is investigating the volcanic tuff beds of Yucca Mountain, Nevada, as a potential location for a high-level radioactive waste repository. This report describes a test method (Phase II) that has been developed to measure the release of radionuclides from the waste package under simulated repository conditions, and provides information on materials interactions that may occur in the repository. The results of 13 weeks of testing using the method are presented, and an analog test is described that investigates the relationship between the test method and expected repository conditions. 9 references, 10 figures, 11 tables

  2. Recent test results on the ATLAS SCT detector

    International Nuclear Information System (INIS)

    Pernegger, H.

    2003-01-01

    The ATLAS Semiconductor Tracker (SCT) will be a central part of the tracking system of the ATLAS experiment. The SCT, which is currently under construction, will consist of four concentric barrels of silicon detectors as well as two silicon endcap detectors formed by nine disks each. After an overview of the SCT and the detector module layout, the paper will summarize recent test results obtained from silicon detector modules, which have been extensively tested before starting their large series production. The tests presented here cover electrical performance of individual modules, their performance after irradiation, as well as system tests in a multi-module setup

  3. Preliminary results of steel containment vessel model test

    International Nuclear Information System (INIS)

    Matsumoto, T.; Komine, K.; Arai, S.

    1997-01-01

    A high pressure test of a mixed-scaled model (1:10 in geometry and 1:4 in shell thickness) of a steel containment vessel (SCV), representing an improved boiling water reactor (BWR) Mark II containment, was conducted on December 11-12, 1996 at Sandia National Laboratories. This paper describes the preliminary results of the high pressure test. In addition, the preliminary post-test measurement data and the preliminary comparison of test data with pretest analysis predictions are also presented

  4. Test results on reuse of reclaimed shower water - A summary

    Science.gov (United States)

    Verostko, Charles E.; Garcia, Rafael; Sauer, Richard; Reysa, Richard P.; Linton, Arthur T.

    1989-01-01

    Results are presented from tests to evaluate a microgravity whole body shower and waste water recovery system design for possible use on the Space Station. Several water recovery methods were tested, including phase change distillation, a thermoelectric hollow fiber membrane evaporation subsystem, and a reverse osmosis dynamic membrane system. Consideration is given to the test hardware, the types of soaps evaluated, the human response to showering with reclaimed water, chemical treatment for microbial control, the procedures for providing hygienic water, and the quality of water produced by the systems. All three of the waste water recovery systems tested successfully produced reclaimed water for reuse.

  5. Lessons in the Design and Characterization Testing of the Semi-Span Super-Sonic Transport (S4T) Wind-Tunnel Model

    Science.gov (United States)

    2012-01-01

    This paper focuses on some of the more challenging design processes and characterization tests of the Semi-Span Super-Sonic Transport (S4T)-Active Controls Testbed (ACT). The model was successfully tested in four entries in the National Aeronautics and Space Administration Langley Transonic Dynamics Tunnel to satisfy the goals and objectives of the Fundamental Aeronautics Program Supersonic Project Aero-Propulso-Servo-Elastic effort. Due to the complexity of the S4T-ACT, only a small sample of the technical challenges for designing and characterizing the model will be presented. Specifically, the challenges encountered in designing the model include scaling the Technology Concept Airplane to model scale, designing the model fuselage, aileron actuator, and engine pylons. Characterization tests included full model ground vibration tests, wing stiffness measurements, geometry measurements, proof load testing, and measurement of fuselage static and dynamic properties.

  6. Expected Productivity Benefits Resulting from the New Data Acquisition, Processing, and Control System for Tunnel 16T at AEDC

    National Research Council Canada - National Science Library

    Stich, Philip

    1998-01-01

    ...) Facility at AEDC launched a 7 year, $80M sustainment program which will improve reliability, reduce testing cycle time, reduce the number of operational station keepers, and improve the quality of test data in the 16 foot transonic...

  7. Tunnel Boring Machine Performance Study. Final Report

    Science.gov (United States)

    1984-06-01

    Full face tunnel boring machine "TBM" performance during the excavation of 6 tunnels in sedimentary rock is considered in terms of utilization, penetration rates and cutter wear. The construction records are analyzed and the results are used to inves...

  8. Rock mass seismic imaging around the ONKALO tunnel, Olkiluoto 2007

    International Nuclear Information System (INIS)

    Cosma, C.; Cozma, M.; Balu, L.; Enescu, N.

    2008-11-01

    Posiva Oy prepares for disposal of spent nuclear fuel in bedrock focusing in Olkiluoto, Eurajoki. This is in accordance of the application filed in 1999, the Decision-in-Principle of the State Council in 2000, and ratification by the Parliament in 2001. Vibrometric Oy has performed a tunnel seismic survey in ONKALO access tunnel on a 100 m line in December 2007. Tunnel length (chainage) was 1720 - 1820 m (vertical depth 170 - 180 m). Measurement applied 120 source positions at 1 m spacing, and on the both ends at 4 m spacing. Electromechanical Vibsist-20 tool was used as the source. Hammer produced 15.36 s sweeps. Signal was recorded with 2-component geophone assemblies, installed in 400 mm long, 45 mm drillholes in the tunnel wall. Sweeps were recorded with Summit II seismograph and decoded to seismic traces. Also percussion drill rig, which is used in drilling the blasting holes in tunnel excavation, was tested from a 100-m distance as a seismic source. Signal is equally good as from actual seismic source, and may be applied later on for production. Obtained seismic results were processed with tomographic reconstruction of the first arrivals to P and S wave refraction tomograms, and to tomograms of Young's modulus and Shear Modulus. The obtained values correspond the typical levels known from Olkiluoto. There are indications of lower velocity near tunnel wall, but resolution is not adequate for further interpretation. Some variation of velocity is detected in the rock mass. Seismic data was also processed with normal reflection profile interpretation and migrated. As a result there was obtained reflection images to a 100-m distance from the tunnel. Several reflecting events were observed in the rock mass. Features making an angle of 30 deg or more with tunnel axis can be imaged from distances of tens of metres. Vertical fractures perpendicular to tunnel can be imaged only near the tunnel. Gently dipping features can be imaged below and above. Images are 2D, i

  9. Structural fatigue test results for large wind turbine blade sections

    Science.gov (United States)

    Faddoul, J. R.; Sullivan, T. L.

    1982-01-01

    In order to provide quantitative information on the operating life capabilities of wind turbine rotor blade concepts for root-end load transfer, a series of cantilever beam fatigue tests was conducted. Fatigue tests were conducted on a laminated wood blade with bonded steel studs, a low cost steel spar (utility pole) with a welded flange, a utility pole with additional root-end thickness provided by a swaged collar, fiberglass spars with both bonded and nonbonded fittings, and, finally, an aluminum blade with a bolted steel fitting (Lockheed Mod-0 blade). Photographs, data, and conclusions for each of these tests are presented. In addition, the aluminum blade test results are compared to field failure information; these results provide evidence that the cantilever beam type of fatigue test is a satisfactory method for obtaining qualitative data on blade life expectancy and for identifying structurally underdesigned areas (hot spots).

  10. Influence of diet on the results of laboratory tests

    Directory of Open Access Journals (Sweden)

    Kinga Lis

    2013-12-01

    Full Text Available Blood and urine laboratory tests are necessary to diagnose the state of the patient. These tests are also helpful in the assessment of diet and nutritional status of the organism. It is recommended that both blood and urine for laboratory tests be collected in the morning, from fasting patients after an overnight rest. These conditions are defined as the standard conditions for collection of material for laboratory testing. Before testing, patients should follow their natural diet and avoid physical exertion, night work, long-distance travel, as well as consumption of alcohol and drugs. They should also reduce the consumption of synthetic vitamins and herbal remedies and other dietary supplements. Medications should be limited to those that are absolutely necessary. All of these factors can affect the results of laboratory tests.

  11. Results of tests with open fuel in KNK II

    International Nuclear Information System (INIS)

    Schmitz, G.

    1987-03-01

    For the operation of Liquid Metal Cooled Fast Breeder Reactors with cladding failures the consequences of increased contamination by fission products and fuel and the possibility of failure propagation to adjacent fuel pins due to fuel swelling have to be envisaged. To clarify some of these problems a KNK II test program involving open fuel was defined with the first experiments of this program being performed between October 1981 and May 1984. After the description of the test equipment and of the test program, the results will be presented on delayed neutron measurements, fission gas measurements and post irradiation examinations. The report will conclude with a discussion of the results [de

  12. A Fuzzy Logic Based Method for Analysing Test Results

    Directory of Open Access Journals (Sweden)

    Le Xuan Vinh

    2017-11-01

    Full Text Available Network operators must perform many tasks to ensure smooth operation of the network, such as planning, monitoring, etc. Among those tasks, regular testing of network performance, network errors and troubleshooting is very important. Meaningful test results will allow the operators to evaluate network performanceof any shortcomings and to better plan for network upgrade. Due to the diverse and mainly unquantifiable nature of network testing results, there is a needs to develop a method for systematically and rigorously analysing these results. In this paper, we present STAM (System Test-result Analysis Method which employs a bottom-up hierarchical processing approach using Fuzzy logic. STAM is capable of combining all test results into a quantitative description of the network performance in terms of network stability, the significance of various network erros, performance of each function blocks within the network. The validity of this method has been successfully demonstrated in assisting the testing of a VoIP system at the Research Instiute of Post and Telecoms in Vietnam. The paper is organized as follows. The first section gives an overview of fuzzy logic theory the concepts of which will be used in the development of STAM. The next section describes STAM. The last section, demonstrating STAM’s capability, presents a success story in which STAM is successfully applied.

  13. Interaction Driven Interband Tunneling of Bosons in the Triple Well

    OpenAIRE

    Cao, Lushuai; Brouzos, Ioannis; Zöllner, Sascha; Schmelcher, Peter

    2010-01-01

    We study the tunneling of a small ensemble of strongly repulsive bosons in a one-dimensional triple-well potential. The usual treatment within the single-band approximation suggests suppression of tunneling in the strong interaction regime. However, we show that several windows of enhanced tunneling are opened in this regime. This enhanced tunneling results from higher band contributions, and has the character of interband tunneling. It can give rise to various tunneling processes, such as si...

  14. Electrical resistivity borehole measurements: application to an urban tunnel site

    Science.gov (United States)

    Denis, A.; Marache, A.; Obellianne, T.; Breysse, D.

    2002-06-01

    This paper shows how it is possible to use wells drilled during geotechnical pre-investigation of a tunneling site to obtain a 2-D image of the resistivity close to a tunnel boring machine. An experimental apparatus is presented which makes it possible to perform single and borehole-to-borehole electrical measurements independent of the geological and hydrogeological context, which can be activated at any moment during the building of the tunnel. This apparatus is first demonstrated through its use on a test site. Numerical simulations and data inversion are used to analyse the experimental results. Finally, electrical resistivity tomography and single-borehole measurements on a tunneling site are presented. Experimental results show the viability of the apparatus and the efficiency of the inverse algorithm, and also highlight the limitations of the electrical resistivity tomography as a tool for geotechnical investigation in urban areas.

  15. Tunnel flexibility effect on the ground surface acceleration response

    Science.gov (United States)

    Baziar, Mohammad Hassan; Moghadam, Masoud Rabeti; Choo, Yun Wook; Kim, Dong-Soo

    2016-09-01

    Flexibility of underground structures relative to the surrounding medium, referred to as the flexibility ratio, is an important factor that influences their dynamic interaction. This study investigates the flexibility effect of a box-shaped subway tunnel, resting directly on bedrock, on the ground surface acceleration response using a numerical model verified against dynamic centrifuge test results. A comparison of the ground surface acceleration response for tunnel models with different flexibility ratios revealed that the tunnels with different flexibility ratios influence the acceleration response at the ground surface in different ways. Tunnels with lower flexibility ratios have higher acceleration responses at short periods, whereas tunnels with higher flexibility ratios have higher acceleration responses at longer periods. The effect of the flexibility ratio on ground surface acceleration is more prominent in the high range of frequencies. Furthermore, as the flexibility ratio of the tunnel system increases, the acceleration response moves away from the free field response and shifts towards the longer periods. Therefore, the flexibility ratio of the underground tunnels influences the peak ground acceleration (PGA) at the ground surface, and may need to be considered in the seismic zonation of urban areas.

  16. Uprated OMS Engine Status-Sea Level Testing Results

    Science.gov (United States)

    Bertolino, J. D.; Boyd, W. C.

    1990-01-01

    The current Space Shuttle Orbital Maneuvering Engine (OME) is pressure fed, utilizing storable propellants. Performance uprating of this engine, through the use of a gas generator driven turbopump to increase operating pressure, is being pursued by the NASA Johnson Space Center (JSC). Component level design, fabrication, and test activities for this engine system have been on-going since 1984. More recently, a complete engine designated the Integrated Component Test Bed (ICTB), was tested at sea level conditions by Aerojet. A description of the test hardware and results of the sea level test program are presented. These results, which include the test condition operating envelope and projected performance at altitude conditions, confirm the capability of the selected Uprated OME (UOME) configuration to meet or exceed performance and operational requirements. Engine flexibility, demonstrated through testing at two different operational mixture ratios, along with a summary of projected Space Shuttle performance enhancements using the UOME, are discussed. Planned future activities, including ICTB tests at simulated altitude conditions, and recommendations for further engine development, are also discussed.

  17. Cement/bentonite interaction. Results from 16 month laboratory tests

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, O. [Clay Technology AB, Lund (Sweden)

    1997-12-01

    The work concerns possible bentonite clay mineral alteration in constructions with bentonite in close contact with cement, and the effect of such changes on bentonite buffer properties. The investigation comprises a 16 months laboratory test series with hydrothermal cell tests, percolation tests and diffusion tests. MX-80 Wyoming bentonite was used in all tests. Two types of artificial cement pore water solutions were used in the percolation and diffusion tests. The swelling pressure and the hydraulic conductivity were measured continuously in the percolation tests. After termination, the clay was analyzed with respect to changes in element distribution, mineralogy and shear strength. The water solutions were analyzed with respect to pH, cations and major anions. The results concerning chemical and mineralogical changes are in summary: Ion exchange in the montmorillonite until equilibrium with cement pore-water ions was reached; Increase in cation exchange capacity; Dissolution of original cristobalite; Increase in quartz content; Minor increase in illite content; Minor formation of chlorite; Formation of CSH(I); Wash away of CSH-gel into surrounding water. A large decrease in swelling pressure and a moderate increase in hydraulic conductivity were recorded in the samples percolated by SULFACEM pore-water solution. The mineralogical alterations only concerned a minor part of the total bentonite mass and the changes in physical properties were therefore most likely due to the replacement of the original charge balancing cation by cement pore-water cations. Comparisons between the current test result and results from 4 month tests indicate that the rates of illite and chlorite formation were reduced during the tests. The presence of zeolites in the clay could not be ensured. However, the discovery of CSH material is important since CSH is expected to precede the formation of zeolites 5 refs, 48 figs, 11 tabs

  18. ExEP yield modeling tool and validation test results

    Science.gov (United States)

    Morgan, Rhonda; Turmon, Michael; Delacroix, Christian; Savransky, Dmitry; Garrett, Daniel; Lowrance, Patrick; Liu, Xiang Cate; Nunez, Paul

    2017-09-01

    EXOSIMS is an open-source simulation tool for parametric modeling of the detection yield and characterization of exoplanets. EXOSIMS has been adopted by the Exoplanet Exploration Programs Standards Definition and Evaluation Team (ExSDET) as a common mechanism for comparison of exoplanet mission concept studies. To ensure trustworthiness of the tool, we developed a validation test plan that leverages the Python-language unit-test framework, utilizes integration tests for selected module interactions, and performs end-to-end crossvalidation with other yield tools. This paper presents the test methods and results, with the physics-based tests such as photometry and integration time calculation treated in detail and the functional tests treated summarily. The test case utilized a 4m unobscured telescope with an idealized coronagraph and an exoplanet population from the IPAC radial velocity (RV) exoplanet catalog. The known RV planets were set at quadrature to allow deterministic validation of the calculation of physical parameters, such as working angle, photon counts and integration time. The observing keepout region was tested by generating plots and movies of the targets and the keepout zone over a year. Although the keepout integration test required the interpretation of a user, the test revealed problems in the L2 halo orbit and the parameterization of keepout applied to some solar system bodies, which the development team was able to address. The validation testing of EXOSIMS was performed iteratively with the developers of EXOSIMS and resulted in a more robust, stable, and trustworthy tool that the exoplanet community can use to simulate exoplanet direct-detection missions from probe class, to WFIRST, up to large mission concepts such as HabEx and LUVOIR.

  19. Recognition tunneling

    Czech Academy of Sciences Publication Activity Database

    Lindsay, S.; He, J.; Sankey, O.; Hapala, Prokop; Jelínek, Pavel; Zhang, P.; Chang, S.; Huang, S.

    2010-01-01

    Roč. 21, č. 26 (2010), 262001/1-262001/12 ISSN 0957-4484 R&D Projects: GA ČR GA202/09/0545 Institutional research plan: CEZ:AV0Z10100521 Keywords : STM * tunneling current * molecular electronics * DFT calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.644, year: 2010

  20. Results from Testing of Two Rotary Percussive Drilling Systems

    Science.gov (United States)

    Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi

    2010-01-01

    The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.

  1. Measurement of ability emotional intelligence: results for two new tests.

    Science.gov (United States)

    Austin, Elizabeth J

    2010-08-01

    Emotional intelligence (EI) has attracted considerable interest amongst both individual differences researchers and those in other areas of psychology who are interested in how EI relates to criteria such as well-being and career success. Both trait (self-report) and ability EI measures have been developed; the focus of this paper is on ability EI. The associations of two new ability EI tests with psychometric intelligence, emotion perception, and the Mayer-Salovey-Caruso EI test (MSCEIT) were examined. The new EI tests were the Situational Test of Emotion Management (STEM) and the Situational Test of Emotional Understanding (STEU). Only the STEU and the MSCEIT Understanding Emotions branch were significantly correlated with psychometric intelligence, suggesting that only understanding emotions can be regarded as a candidate new intelligence component. These understanding emotions tests were also positively correlated with emotion perception tests, and STEM and STEU scores were positively correlated with MSCEIT total score and most branch scores. Neither the STEM nor the STEU were significantly correlated with trait EI tests, confirming the distinctness of trait and ability EI. Taking the present results as a starting-point, approaches to the development of new ability EI tests and models of EI are suggested.

  2. Analysis of heat-transfer measurements from 2 AEDC wind tunnels on the Shuttle external tank

    Science.gov (United States)

    Nutt, K. W.

    1984-01-01

    Previous aerodynamic heating tests have been conducted in the AEDC/VKF Supersonic Wind Tunnel (A) to aid in defining the design thermal environment for the space shuttle external tank. The quality of these data has been under discussion because of the effects of low tunnel enthalpy and slow model injection rates. Recently the AEDC/VKF Hypersonic Wind Tunnel (C) has been modified to provide a Mach 4 capability that has significantly higher tunnel enthalpy with more rapid model injection rates. Tests were conducted in Tunnel C at Mach 4 to obtain data on the external tank for comparison with Tunnel A results. Data were obtained on a 0.0175 scale model of the Space Shuttle Integrated Vehicle at Re/ft = 4 x 10 to the 6th power with the tunnel stagnation temperature varying from 740 to 1440 R. Model attitude varied from an angle of attack of -5 to 5 deg and an angle of sideslip of -3 to 3 deg. One set of data was obtained in Tunnel C at Re/ft = 6.9 x 10 to the 6th for comparison with flight data. Data comparisons between the two tunnels for numerous regions on the external tank are given.

  3. Seismic Response of Tunnel Lining for Shallow-Bias Tunnel with a Small Clear Distance under Wenchuan Earthquake

    Directory of Open Access Journals (Sweden)

    Yang Hui

    2018-01-01

    Full Text Available In order to study the internal force characteristics of shallow-bias tunnel with a small clear distance in earthquake, a large-scale shaking table slope model test was designed, and the geometric scale was 1 : 10. In the model test, the Wenchuan (WC seismic wave was used as the excitation wave. Then, the three-dimensional numerical model was established by using MIDAS-NX, and the reliability of the numerical model was verified by comparing the acceleration of the test results. The axial force, bending moment, and shear force of the tunnel cross section and longitudinal direction were calculated by the numerical model under different excitation directions included the horizontal direction (X, the vertical direction (Z, and the horizontal and vertical direction (XZ. The results show the following. (1 The internal force of right arch foot of left hole and the left arch foot of right hole is larger than other part of the tunnels because the distance between the two tunnels is smaller and they interact with each other. (2 The loading direction of single direction loading method is different and the variation trend of tunnel force are different, so the loading direction of seismic wave has a significant influence on the seismic force response of the tunnel. (3 All of the internal force values of tunnel lining under the seismic wave action in bidirection are larger than those in single direction. The value is not a simple superposition of two directions and has some coupling effect. The influence of the vertical seismic wave cannot be ignored in dynamic response research. These results improve the understanding of the rock slope with small spacing tunnel under seismic action.

  4. Proposed Interventions to Decrease the Frequency of Missed Test Results

    Science.gov (United States)

    Wahls, Terry L.; Cram, Peter

    2009-01-01

    Numerous studies have identified that delays in diagnosis related to the mishandling of abnormal test results are an import contributor to diagnostic errors. Factors contributing to missed results included organizational factors, provider factors and patient-related factors. At the diagnosis error conference continuing medical education conference…

  5. EOL3 M0 X-ray Tomography Test Results

    CERN Document Server

    Avramidou, R; Bozhko, N; Borisov, A; Goriatchev, V; Goriatchev, S; Gushin, V; Fakhroutdinov, R; Kojine, A; Kononov, A; Larionov, A; Salomatin, Yu I; Schuh, S; Sedykh, Yu; Tchougouev, A

    2001-01-01

    Results of X-ray tomography test of EOL3 module 0 chamber is presented in the note. Peculiarities of the X-ray tomography of the chamber are discussed. Comparison of the tomography results with predictions of the production site measurements is made.

  6. Automated Testing Infrastructure and Result Comparison for Geodynamics Codes

    Science.gov (United States)

    Heien, E. M.; Kellogg, L. H.

    2013-12-01

    The geodynamics community uses a wide variety of codes on a wide variety of both software and hardware platforms to simulate geophysical phenomenon. These codes are generally variants of finite difference or finite element calculations involving Stokes flow or wave propagation. A significant problem is that codes of even low complexity will return different results depending on the platform due to slight differences in hardware, software, compiler, and libraries. Furthermore, changes to the codes during development may affect solutions in unexpected ways such that previously validated results are altered. The Computational Infrastructure for Geodynamics (CIG) is funded by the NSF to enhance the capabilities of the geodynamics community through software development. CIG has recently done extensive work in setting up an automated testing and result validation system based on the BaTLab system developed at the University of Wisconsin, Madison. This system uses 16 variants of Linux and Mac platforms on both 32 and 64-bit processors to test several CIG codes, and has also recently been extended to support testing on the XSEDE TACC (Texas Advanced Computing Center) Stampede cluster. In this work we overview the system design and demonstrate how automated testing and validation occurs and results are reported. We also examine several results from the system from different codes and discuss how changes in compilers and libraries affect the results. Finally we detail some result comparison tools for different types of output (scalar fields, velocity fields, seismogram data), and discuss within what margins different results can be considered equivalent.

  7. Free Surface Water Tunnel (FSWT)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Free Surface Water Tunnel consists of the intake plenum, the test section and the exit plenum. The intake plenum starts with a perforated pipe that...

  8. Single Electron Tunneling

    International Nuclear Information System (INIS)

    Ruggiero, Steven T.

    2005-01-01

    Financial support for this project has led to advances in the science of single-electron phenomena. Our group reported the first observation of the so-called ''Coulomb Staircase'', which was produced by tunneling into ultra-small metal particles. This work showed well-defined tunneling voltage steps of width e/C and height e/RC, demonstrating tunneling quantized on the single-electron level. This work was published in a now well-cited Physical Review Letter. Single-electron physics is now a major sub-field of condensed-matter physics, and fundamental work in the area continues to be conducted by tunneling in ultra-small metal particles. In addition, there are now single-electron transistors that add a controlling gate to modulate the charge on ultra-small photolithographically defined capacitive elements. Single-electron transistors are now at the heart of at least one experimental quantum-computer element, and single-electron transistor pumps may soon be used to define fundamental quantities such as the farad (capacitance) and the ampere (current). Novel computer technology based on single-electron quantum dots is also being developed. In related work, our group played the leading role in the explanation of experimental results observed during the initial phases of tunneling experiments with the high-temperature superconductors. When so-called ''multiple-gap'' tunneling was reported, the phenomenon was correctly identified by our group as single-electron tunneling in small grains in the material. The main focus throughout this project has been to explore single electron phenomena both in traditional tunneling formats of the type metal/insulator/particles/insulator/metal and using scanning tunneling microscopy to probe few-particle systems. This has been done under varying conditions of temperature, applied magnetic field, and with different materials systems. These have included metals, semi-metals, and superconductors. Amongst a number of results, we have

  9. Electromagnetic results of the Japanese LCT coil's domestic test

    International Nuclear Information System (INIS)

    Nishi, Masataka; Okuno, Kiyoshi; Takahashi, Yoshikazu; Tsuji, Hiroshi; Ando, Toshinari; Shimamoto, Susumu

    1984-01-01

    The domestic test of the Japanese LCT coil was carried out in 1982. During this test, the coil was charged up to the single coil's 100% state (10.22kA, 6.4T, 106MJ) four times and experienced no quenche. at the 100% charging state, coil stability was tested by using heaters installed in the conductor. A half turn length normal zone (about 5 m) generated by heaters was spontenously disappeared in 2 second. This normalized zone included the highest magnetic field position. The transport current which gives the stable limit is extraporated to be about 12.5kA at 8T by this test result. The dump test was carried out also from the 100% charging state. At that time, about 90% of the coil's stored energy was extracted by the dump resistor and the coil was not damaged. (author)

  10. Test results and operational characteristics of prototype SSCL half cell

    International Nuclear Information System (INIS)

    McInturff, A.D.; Burgett, W.; Carter, H.

    1994-01-01

    The SSCL Accelerator System's String Test (ASST) has had several cool down, subsequent operational test series, and warm up cycles. The first cycle of these was rather limited in scope as mandated by Congress. The subsequent tests have been performed to obtain more complete information about parameters of, or operating experience with, the ensemble of magnets and spools when operating serially as in accelerator operations. The tests and procedures performed to date have emphasized cryogenic, mechanical, and electrical operations. These have included running, as well as upset conditions, i.e., superconducting to normal transition of the string (quench). This paper represents a summary of the operational test results and characteristics seen to date. A limited discussion will be included as to their implications with respect to a successful accelerator operation

  11. Depressurisation studies. Phase 2: results of Tests 127 and 128

    International Nuclear Information System (INIS)

    Edwards, A.R.; Borgartz, B.O.; Goodman, R.M.E.; O'Brien, T.P.; Rawlingson, M.

    1978-06-01

    A basic experimental programme involving the sudden depressurisation of a simple pipe system containing water at 3.45 to 17.24MPa pressure and temperature in the range of 200 to 250 0 C has been concluded. Measurements were made of the transient density, pressure, and temperature variations in a two phase fluid in the system during discharge. Phase 1 tests investigated blowdown from straight pipes 4m long with constant internal diameters of 73 and 32 mm. Phase 2 tests incorporated a reservoir added to the 32mm pipe. In this, the second of three reports on Phase 2 tests, the test assembly, instrumentation and experimental procedure are briefly described. The conditions and results are reported for two of the tests in which the liquid in the long discharge pipe was initially subcooled by 10 0 C and 15 0 C while the reservoir was at saturation conditions with a steam dome present. (UK)

  12. Wing pressure distributions from subsonic tests of a high-wing transport model. [in the Langley 14- by 22-Foot Subsonic Wind Tunnel

    Science.gov (United States)

    Applin, Zachary T.; Gentry, Garl L., Jr.; Takallu, M. A.

    1995-01-01

    A wind tunnel investigation was conducted on a generic, high-wing transport model in the Langley 14- by 22-Foot Subsonic Tunnel. This report contains pressure data that document effects of various model configurations and free-stream conditions on wing pressure distributions. The untwisted wing incorporated a full-span, leading-edge Krueger flap and a part-span, double-slotted trailing-edge flap system. The trailing-edge flap was tested at four different deflection angles (20 deg, 30 deg, 40 deg, and 60 deg). Four wing configurations were tested: cruise, flaps only, Krueger flap only, and high lift (Krueger flap and flaps deployed). Tests were conducted at free-stream dynamic pressures of 20 psf to 60 psf with corresponding chord Reynolds numbers of 1.22 x 10(exp 6) to 2.11 x 10(exp 6) and Mach numbers of 0.12 to 0.20. The angles of attack presented range from 0 deg to 20 deg and were determined by wing configuration. The angle of sideslip ranged from minus 20 deg to 20 deg. In general, pressure distributions were relatively insensitive to free-stream speed with exceptions primarily at high angles of attack or high flap deflections. Increasing trailing-edge Krueger flap significantly reduced peak suction pressures and steep gradients on the wing at high angles of attack. Installation of the empennage had no effect on wing pressure distributions. Unpowered engine nacelles reduced suction pressures on the wing and the flaps.

  13. Tensile and fracture toughness test results of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R.; Moons, F.; Puzzolante, J.L. [Centre d`Etude de l`Energie Nucleaire, Mol (Belgium)

    1998-01-01

    Tensile and fracture toughness test results of four Beryllium grades are reported here. The flow and fracture properties are investigated by using small size tensile and round compact tension specimens. Irradiation was performed at the BR2 material testing reactor which allows various temperature and irradiation conditions. The fast neutron fluence (>1 MeV) ranges between 0.65 and 2.45 10{sup 21} n/cm{sup 2}. In the meantime, un-irradiated specimens were aged at the irradiation temperatures to separate if any the effect of temperature from irradiation damage. Test results are analyzed and discussed, in particular in terms of the effects of material grade, test temperature, thermal ageing and neutron irradiation. (author)

  14. COMPARISON OF RESULTS OF THERMAL TESTS OF BALCONY DOORS

    Directory of Open Access Journals (Sweden)

    Golubev Stanislav Sergeevich

    2012-10-01

    Full Text Available Results of thermal tests of balcony doors are presented in the article. In the course of the research project, two types of doors were tested. The first type represents a PVC frame door (width 82 mm; it has a triple glazing (4K-16Ar-4-16Ar-K4; its blank part represents a polystyrene sandwich panel (width 40 mm. The second type represents a PVC frame door (width 82 mm, that has a triple glazing (4K-16Ar-4-16Ar-K4 and composite PVC panels. The testing procedure and processing results are described in the article. The test has demonstrated that the thermal resistance value of the balcony door of the first type exceeds the thermal resistance value of the balcony door of the second type.

  15. Analysis of SCTF/CCTF counterpart test results

    International Nuclear Information System (INIS)

    Okubo, Tsutomu; Sobajima, Makoto; Iwamura, Takamichi; Ohnuki, Akira; Abe, Yutaka; Adachi, Hiromichi; Murao, Yoshio

    1990-06-01

    Slab Core Test Facility (SCTF) and Cylindrical Core Test Facility (CCTF) are large scale experimental facilities of Japan Atomic Energy Research Institute (JAERI) for the investigation of reflooding behavior during a postulated loss-of-coolant accident (LOCA) in PWRs. Although the flow area scaling ratios of both facilities to a 1,000 MWe class PWR are the same and 1/21.4, the SCTF has the same core width as the radius of the reference PWR while the CCTF has a 1/4.5 times shorter core radius. Therefore, a few SCTF/CCTF counterpart tests were conducted in order to investigate the difference in core reflooding behavior between in the SCTF and CCTF tests as well as the effect of core radial length on core two-dimensional thermo-hydrodynamic behavior. This report present the test results and an analysis on them. Major results obtained are: (1) Taking account of the differences in test conditions and facility design, core reflooding behavior is considered to be similar between the SCTF and the CCTF test. Main difference of the facility design is in the effective core flow area and this is considered to result in the difference in core water accumulation behavior. (2) The effect of core radial length on core two-dimensional thermo-hydrodynamic behavior has been observed to be significant and heat transfer enhancement or degradation in radial direction is more significant for the longer radius core. (3) In addition, where the core power varies significantly in the radial direction, significant heat transfer enhancement has been observed in the higher power bundle during the LPCI period. Also, in the peripheral region, heat transfer degradation has been observed more significantly in the outer bundle even they have the same bundle power. (4) Magnitude of these heat transfer enhancement or degradation was larger at the higher elevation than the midplane level in the SCTF test, whereas smaller in the CCTF test. (author)

  16. Improved PFB operations - 400-hour turbine test results

    Science.gov (United States)

    Rollbuhler, R. J.; Benford, S. M.; Zellars, G. R.

    1980-04-01

    The paper deals with a 400-hr small turbine test in the effluent of a pressurized fluidized bed (PFB) at an average temperature of 770 C, an average relative gas velocity of 300 m/sec, and average solid loadings of 200 ppm. Consideration is given to combustion parameters and operating procedure as well as to the turbine system and turbine test operating procedures. Emphasis is placed on erosion/corrosion results.

  17. Test Beam Results of a 3D Diamond Detector

    CERN Document Server

    Dunser, Marc

    2015-01-01

    3D pixel technology has been used successfully in the past with silicon detectors for tracking applications. Recently, a first prototype of the same 3D technology has been produced on a chemical vapour deposited single-crystal diamond sensor. This device has been subsequently tested in a beam test at CERN’s SPS accelerator in a beam of 120 GeV protons. Details on the production and results of testbeam data are presented.

  18. Creep in rock salt with temperature. Testing methods and results

    International Nuclear Information System (INIS)

    Charpentier, J.P.; Berest, P.

    1985-01-01

    The growing interest shown in the delayed behaviour of rocks at elevated temperature has led the Solid Mechanics Laboratory to develop specific equipment designed for creep tests. The design and dimensioning of these units offer the possibility of investigating a wide range of materials. The article describes the test facilities used (uni-axial and tri-axial creep units) and presents the experimental results obtained on samples of Bresse salt [fr

  19. Acoustic results of the Boeing model 360 whirl tower test

    Science.gov (United States)

    Watts, Michael E.; Jordan, David

    1990-09-01

    An evaluation is presented for whirl tower test results of the Model 360 helicopter's advanced, high-performance four-bladed composite rotor system intended to facilitate over-200-knot flight. During these performance measurements, acoustic data were acquired by seven microphones. A comparison of whirl-tower tests with theory indicate that theoretical prediction accuracies vary with both microphone position and the inclusion of ground reflection. Prediction errors varied from 0 to 40 percent of the measured signal-to-peak amplitude.

  20. Results of initial nuclear tests on LWBR (LWBR Development Program)

    International Nuclear Information System (INIS)

    Sarber, W.K.

    1979-06-01

    This report presents and discusses the results of physics tests performed at beginning of life on the Light Water Breeder Reactor (LWBR). These tests have confirmed that movable seed assembly critical positions and reactivity worths, temperature coefficients, xenon transient characteristics, core symmetry, and core shutdown are within the range of values used in the design of the LWBR and its reactor protection analysis. Measured core physics parameters were found to be in good agreement with the calculated values

  1. Wellbore inertial navigation system (WINS) software development and test results

    Energy Technology Data Exchange (ETDEWEB)

    Wardlaw, R. Jr.

    1982-09-01

    The structure and operation of the real-time software developed for the Wellbore Inertial Navigation System (WINS) application are described. The procedure and results of a field test held in a 7000-ft well in the Nevada Test Site are discussed. Calibration and instrumentation error compensation are outlined, as are design improvement areas requiring further test and development. Notes on Kalman filtering and complete program listings of the real-time software are included in the Appendices. Reference is made to a companion document which describes the downhole instrumentation package.

  2. Construction details and test results from RHIC sextupoles

    International Nuclear Information System (INIS)

    Lindner, M.; Anerella, M.; Ganetis, G.

    1993-01-01

    Four 8 cm aperture sextupoles have been built at BNL to verify the magnetic performance of this magnet in the RHIC installation. Two significantly different mechanical configurations have been designed, and two magnets of each design have been built, and successfully tested, and have exceeded the required minimum quench current by a substantial margin. This report describes the assembly details of the second configuration, which is the final production configuration. In addition the first industry built production sextupole has been delivered and tested. This report presents the results of quench tests on all 5 magnets and field measurements on the first production sextupole

  3. Advanced Stirling Convertor Durability Testing: Plans and Interim Results

    Science.gov (United States)

    Meer, David W.; Oriti, Salvatore M.

    2012-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. In support of this program, GRC has been involved in testing Stirling convertors, including the Advanced Stirling Convertor (ASC), for use in the ASRG. This testing includes electromagnetic interference/compatibility (EMI/EMC), structural dynamics, advanced materials, organics, and unattended extended operation. The purpose of the durability tests is to experimentally demonstrate the margins in the ASC design. Due to the high value of the hardware, previous ASC tests focused on establishing baseline performance of the convertors within the nominal operating conditions. The durability tests present the first planned extension of the operating conditions into regions beyond those intended to meet the product spec, where the possibility exists of lateral contact, overstroke, or over-temperature events. These tests are not intended to cause damage that would shorten the life of the convertors, so they can transition into extended operation at the conclusion of the tests. This paper describes the four tests included in the durability test sequence: 1) start/stop cycling, 2) exposure to constant acceleration in the lateral and axial directions, 3) random vibration at increased piston amplitude to induce contact events, and 4) overstroke testing to simulate potential failures during processing or during the mission life where contact events could occur. The paper also summarizes the analysis and simulation used to predict the results of each of these tests.

  4. Results of patch testing in 10 patients with peristomal dermatitis.

    Science.gov (United States)

    Landis, Megan N; Keeling, James H; Yiannias, James A; Richardson, Donna M; Nordberg Linehan, Diane L; Davis, Mark D P

    2012-09-01

    Peristomal dermatitis is a common problem in patients with ostomies that is a source of considerable morbidity. Irritant contact dermatitis is most common, but allergic contact dermatitis can also occur. Because of the lack of published reports on patch testing for this indication, we undertook a retrospective study of patch testing results in patients with suspected peristomal allergic contact dermatitis. We sought to describe our patch testing experience with patients referred with peristomal dermatitis. This was a retrospective review of medical records of patients with ostomies and peristomal dermatitis who underwent patch testing in the Mayo Clinic Departments of Dermatology in Jacksonville, FL; Rochester, MN; and Scottsdale, AZ, during a 10-year period (2000-2010). Ten patients with peristomal dermatitis were referred for patch testing (6 in Minnesota, 2 in Florida, and 2 in Arizona). Patients were patch tested to the materials used in their stoma devices, to the standard series, and in some cases to supplemental series. All 10 had at least one allergic patch test reaction, most commonly to stoma paste (3 of 10 patients). Retrospective nature of study via chart review is a limitation. Patch testing is a useful tool for identification of allergens in patients with peristomal dermatitis. Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  5. Physical separations soil washing system cold test results

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, J.P.

    1993-07-28

    This test summary describes the objectives, methodology, and results of a physical separations soil-washing system setup and shakedown test using uncontaminated soil. The test is being conducted in preparation for a treatability test to be conducted in the North Pond of the 300-FF-1 Operable Unit. It will be used to assess the feasibility of using a physical separations process to reduce the volume of contaminated soils in the 300-FF-1 Operable Unit. The test is described in DOE-RL (1993). The setup test was conducted at an uncontrolled area located approximately 3.2 km northwest of the 300-FF-1 Operable Unit. The material processed was free of contamination. The physical separation equipment to be used in the test was transferred to the US Department of Energy (DOE) by the US Environmental Protection Agency (EPA) Risk Reduction Engineering Laboratory. On May 13, 1993, soil-washing equipment was moved to the cold test location. Design assistance and recommendation for operation was provided by the EPA.

  6. LWR surveillance dosimetry improvement program: PSF metallurgical blind test results

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.; Guthrie, G.; McElroy, W.N.

    1985-01-01

    The ORR-PSF benchmark experiment was designed to simulate the surveillance capsule-pressure vessel configuration in power reactors and to test the validity of procedures which determine the radiation damage in the vessel from test results in the surveillance capsule. The PSF metallurgical blind test was initiated to give participants an opportunity to test their current embrittlement prediction methodologies. Experimental results were withheld from the participants except for the type of information which is normally contained in surveillance reports. Preliminary analysis of the PSF metallurgical blind test results shows that: (1) current prediction methodologies, as used by the PSF Blind Test participants, are adequate, falling within +- 20 0 C of the measured values for Δ NDT. None of the different methods is clearly superior; (2) the proposed revision of Reg. Guide 1.99 (Rev. 2) gives a better representation of the fluence and chemistry dependency of Δ NDT than the current version (Rev. 1); and (3) fluence rate effects can be seen but not quantified. Fluence spectral effects are too small to be detectable in this experiment. (orig.)

  7. Thermal Analysis of Low Layer Density Multilayer Insulation Test Results

    Science.gov (United States)

    Johnson, Wesley L.

    2011-01-01

    Investigation of the thermal performance of low layer density multilayer insulations is important for designing long-duration space exploration missions involving the storage of cryogenic propellants. Theoretical calculations show an analytical optimal layer density, as widely reported in the literature. However, the appropriate test data by which to evaluate these calculations have been only recently obtained. As part of a recent research project, NASA procured several multilayer insulation test coupons for calorimeter testing. These coupons were configured to allow for the layer density to be varied from 0.5 to 2.6 layer/mm. The coupon testing was completed using the cylindrical Cryostat-l00 apparatus by the Cryogenics Test Laboratory at Kennedy Space Center. The results show the properties of the insulation as a function of layer density for multiple points. Overlaying these new results with data from the literature reveals a minimum layer density; however, the value is higher than predicted. Additionally, the data show that the transition region between high vacuum and no vacuum is dependent on the spacing of the reflective layers. Historically this spacing has not been taken into account as thermal performance was calculated as a function of pressure and temperature only; however the recent testing shows that the data is dependent on the Knudsen number which takes into account pressure, temperature, and layer spacing. These results aid in the understanding of the performance parameters of MLI and help to complete the body of literature on the topic.

  8. Clinical Trial Results Summary for Laypersons: A User Testing Study.

    Science.gov (United States)

    Raynor, D K; Myers, L; Blackwell, K; Kress, B; Dubost, A; Joos, A

    2018-01-01

    To apply "user testing" to maximize readability and acceptability of a Clinical Trial Results Laypersons Summary-a new European requirement. "User testing" (using questionnaire and semistructured interview) assessed whether people could find and understand key points. Findings were used to improve content and design, prior to retesting. Participants had a range of levels of health literacy and there was a higher education group. Participants accessed the summary on screen. In round 1 we tested 12 points of information. In round 2 a revised summary addressing round 1 findings was tested, leading to a third final version. In round 1, 2 of 12 points of information did not reach the target and interviews raised further format and content issues (some distracting technical explanations and inability to find or understand the 2 main study purposes). These findings informed revisions for the version tested in round 2, with 2 different points not reaching the target (inclusion criteria relating to duration of seasonal allergies and how researchers found out about participants' symptoms). Identified problems in both rounds were addressed and reflected in the final version. Despite improvements, participants did not consistently understand that summaries were intended for the public, or to only interpret results of single trials in the context of additional trials. All readers, including those with higher education, found the clear and straightforward language acceptable. Applying "user testing" resulted in a largely health-literate summary suitable for people across a range of backgrounds.

  9. Reduction of exit-site infections of tunnelled intravascular catheters among neutropenic patients by sustained-release chlorhexidine dressings: results from a prospective randomized controlled trial.

    Science.gov (United States)

    Chambers, S T; Sanders, J; Patton, W N; Ganly, P; Birch, M; Crump, J A; Spearing, R L

    2005-09-01

    Exit-site and tunnel infections of tunnelled central intravascular catheters are a frequent source of morbidity among neutropenic patients and may necessitate catheter removal. They require antimicrobial therapy that increases healthcare costs and is associated with adverse drug reactions. A prospective randomized clinical trial was conducted among adult patients undergoing chemotherapy in a haematology unit. Tunnelled intravascular catheters were randomized to receive the control of a standard dressing regimen as recommended by the British Committee for Standards in Haematology, or to receive the intervention of a sustained-release chlorhexidine dressing. Follow-up data were available in 112 of 114 tunnelled intravascular catheters which were randomized. Exit-site or combined exit-site/tunnel infections occurred in 23 (43%) of 54 catheters in the control group, and five (9%) of 58 catheters in the intervention group [odds ratio (OR) for intervention group compared with control group =0.13, 95% confidence intervals (CI) 0.04-0.37, P<0.001]. More tunnelled intravascular catheters were prematurely removed from the control group than the intervention group for documented infections [20/54 (37%) vs 6/58 (10%), OR=0.20, 95%CI 0.53-0.07]. However, there was no difference in the numbers of tunnelled intravascular catheters removed for all proven and suspected intravascular catheter-related infections [21/54 (39%) vs 19/58 (33%)], or in the time to removal of catheters for any reason other than death or end of treatment for underlying disease. Thus chlorhexidine dressings reduced the incidence of exit-site/tunnel infections of indwelling tunnelled intravascular catheters without prolonging catheter survival in neutropenic patients, and could be considered as part of the routine management of indwelling tunnelled intravascular catheters among neutropenic patients.

  10. Spent fuel drying system test results (first dry-run)

    International Nuclear Information System (INIS)

    Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site. Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the first dry-run test, which was conducted without a fuel element. The empty test apparatus was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The data from this dry-run test can serve as a baseline for the first two fuel element tests, 1990 (Run 1) and 3128W (Run 2). The purpose of this dry-run was to establish the background levels of hydrogen in the system, and the hydrogen generation and release characteristics attributable to the test system without a fuel element present. This test also serves to establish the background levels of water in the system and the water release characteristics. The system used for the drying test series was the Whole Element Furnace Testing System, described in Section 2.0, which is located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodology are given in section 3.0, and the experimental

  11. Small-Scale Spray Releases: Initial Aerosol Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

    2013-05-29

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and net generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of antifoam agents was assessed with most of the simulants. Orifices included round holes and

  12. The CANopen Controller IP Core: Implementation, Synthesis and Test Results

    Science.gov (United States)

    Caramia, Maurizio; Bolognino, Luca; Montagna, Mario; Tosi, Pietro; Errico, Walter; Bigongiari, Franco; Furano, Gianluca

    2011-08-01

    This paper will describe the implementation and test results of the CANopen Controller IP Core (CCIPC) implemented by Thales Alenia Space and SITAEL Aerospace with the support of ESA in the frame of the EXOMARS Project. The CCIPC is a configurable VHDL implementation of the CANOPEN protocol [1]; it is foreseen to be used as CAN bus slave controller within the EXOMARS Entry Descending and Landing Demonstrato Module (EDM) and Rover Module. The CCIPC features, configuration capability, synthesis and test results will be described and the evidence of the state of maturity of this innovative IP core will be demonstrated.

  13. Tunnel - history of

    International Nuclear Information System (INIS)

    1998-11-01

    This book introduces history of tunnel in ancient times, the middle ages and modern times, survey of tunnel and classification of bedrock like environment survey of position, survey of the ground, design of tunnel on basic thing of the design, and design of tunnel of bedrock, analysis of stability of tunnel and application of the data, construction of tunnel like lattice girder and steel fiber reinforced shot crete, and maintenance control and repair of tunnel.

  14. Uncooled tunneling infrared sensor

    Science.gov (United States)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Muller, Richard E. (Inventor); Maker, Paul D. (Inventor)

    1995-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane. The resulting infrared sensor can be miniaturized to pixel dimensions smaller than 100 .mu.m. An alternative embodiment is implemented using a corrugated membrane to permit large deflection without complicated clamping and high deflection voltages. The alternative embodiment also employs a pinhole aperture in a membrane to accommodate environmental temperature variation and a sealed chamber to eliminate environmental contamination of the tunneling electrodes and undesireable accoustic coupling to the sensor.

  15. Pressure Fluctuation Characteristics of Narrow Gauge Train Running Through Tunnel

    Science.gov (United States)

    Suzuki, Masahiro; Sakuma, Yutaka

    Pressure fluctuations on the sides of narrow (1067 mm) gauge trains running in tunnels are measured for the first time to investigate the aerodynamic force acting on the trains. The present measurements are compared with earlier measurements obtained with the Shinkansen trains. The results are as follows: (1) The aerodynamic force, which stems from pressure fluctuations on the sides of cars, puts the energy into the vibration of the car body running through a tunnel. (2) While the pressure fluctuations appear only on one of the two sides of the trains running in double-track tunnels, the fluctuations in opposite phase on both sides in single-track tunnels. (3) The on-track test data of the narrow gauge trains show the same tendency as those of the Shinkansen trains, although it is suggested that the pressure fluctuations develop faster along the narrow gauge trains than the Shinkansen trains.

  16. Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speeds, Part II - Experimental validation using Infra-Red transition measurement from Wind Tunnel tests

    Directory of Open Access Journals (Sweden)

    Andreea Koreanschi

    2017-02-01

    Full Text Available In the present paper, an ‘in-house’ genetic algorithm was numerically and experimentally validated. The genetic algorithm was applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The optimization was performed for 16 flight cases expressed in terms of various combinations of speeds, angles of attack and aileron deflections. The displacements resulted from the optimization were used during the wind tunnel tests of the wing tip demonstrator for the actuators control to change the upper surface shape of the wing. The results of the optimization of the flow behavior for the airfoil morphing upper-surface problem were validated with wind tunnel experimental transition results obtained with infra-red Thermography on the wing-tip demonstrator. The validation proved that the 2D numerical optimization using the ‘in-house’ genetic algorithm was an appropriate tool in improving various aspects of a wing’s aerodynamic performances.

  17. Large coil task and results of testing US coils

    International Nuclear Information System (INIS)

    Haubenreich, P.N.

    1986-01-01

    The United States, EURATOM, Japan, and Switzerland have collaborated since 1978 in development of superconducting toroidal field coils for fusion reactor applications. The United States provided a test facility nd three coils; the other participants, one coil each. All coils have the same interface dimensions and performance requirements (stable at 8 T), but internal design was decided by each team. Two US coil teams chose bath-cooled NbTi, 10-kA conductors. One developed a Nb 3 Sn conductor, cooled by internal flow, rated at 18 kA. All US coils have diagnostic instrumentation and imbedded heaters that enable stability tests and simulated nuclear heating experiments. In single-coil tests, each coil operated at full current in self-field (6.4 T). In six-coil tests that began in July 1986, one US coil and the Japanese coil hve been successfully operated at full current at 8 T. The other coils have operated as background coils while awaiting their turn as test coil. Coil tests have been informative and results gratifying. The facility has capably supported coil testing and its operation has provided information that will be useful in designing future fusion systems. Coil capabilities beyond nominal design points will be determined

  18. Healthy Efficient New Gas Homes (HENGH) Pilot Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Wanyu R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Maddalena, Randy L [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hotchi, Toshifumi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, Max H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-05-01

    The Healthy Efficient New Gas Homes (HENGH) is a field study that will collect data on ventilation systems and indoor air quality (IAQ) in new California homes that were built to 2008 Title 24 standards. A pilot test was performed to help inform the most time and cost effective approaches to measuring IAQ in the 100 test homes that will be recruited for this study. Two occupied, single-family detached homes built to 2008 Title 24 participated in the pilot test. One of the test homes uses exhaust-only ventilation provided by a continuous exhaust fan in the laundry room. The other home uses supply air for ventilation. Measurements of IAQ were collected for two weeks. Time-resolved concentrations of particulate matter (PM), nitrogen dioxide (NO2), carbon dioxide (CO2), carbon monoxide (CO), and formaldehyde were measured. Measurements of IAQ also included time-integrated concentrations of volatile organic compounds (VOCs), volatile aldehydes, and NO2. Three perfluorocarbon tracers (PFTs) were used to estimate the dilution rate of an indoor emitted air contaminant in the two pilot test homes. Diagnostic tests were performed to measure envelope air leakage, duct leakage, and airflow of range hood, exhaust fans, and clothes dryer vent when accessible. Occupant activities, such as cooking, use of range hood and exhaust fans, were monitored using various data loggers. This document describes results of the pilot test.

  19. Tunneling Ionization of Diatomic Molecules

    DEFF Research Database (Denmark)

    Svensmark, Jens Søren Sieg

    2016-01-01

    When a molecule is subject to a strong laser field, there is a probability that an electron can escape, even though the electrons are bound by a large potential barrier. This is possible because electrons are quantum mechanical in nature, and they are therefore able to tunnel through potential...... barriers, an ability classical particles do not possess. Tunnelling is a fundamental quantum mechanical process, a process that is distinctly non-classical, so solving this tunnelling problem is not only relevant for molecular physics, but also for quantum theory in general. In this dissertation the theory...... of tunneling ionizaion of molecules is presented and the results of numerical calculations are shown. One perhaps surprising result is, that the frequently used Born-Oppenheimer approximation breaks down for weak fields when describing tunneling ionization. An analytic theory applicable in the weak-field limit...

  20. Test results of the SMES model coil. Pulse performance

    International Nuclear Information System (INIS)

    Hamajima, Takataro; Shimada, Mamoru; Ono, Michitaka

    1998-01-01

    A model coil for superconducting magnetic energy storage (SMES model coil) has been developed to establish the component technologies needed for a small-scale 100 kWh SMES device. The SMES model coil was fabricated, and then performance tests were carried out in 1996. The coil was successfully charged up to around 30 kA and down to zero at the same ramp rate of magnetic field experienced in a 100 kWh SMES device. AC loss in the coil was measured by an enthalpy method as parameters of ramp rate and flat top current. The results were evaluated by an analysis and compared with short-sample test results. The measured hysteresis loss is in good agreement with that estimated from the short-sample results. It was found that the coupling loss of the coil consists of two major coupling time constants. One is a short time constant of about 200 ms, which is in agreement with the test results of a short real conductor. The other is a long time constant of about 30 s, which could not be expected from the short sample test results. (author)

  1. LWR aerosol containment experiments (LACE) program and initial test results

    International Nuclear Information System (INIS)

    Muhlestein, L.D.; Hilliard, R.K.; Bloom, G.R.; McCormack, J.D.; Rahn, F.J.

    1985-01-01

    The LWR aerosol containment experiments (LACE) program is described. The LACE program is being performed at the Hanford Engineer Development Laboratory (operated by Westinghouse Hanford Company) and the initial tests are sponsored by EPRI. The objectives of the LACE program are: to demonstrate, at large-scale, inherent radioactive aerosol retention behavior for postulated high consequence LWR accident situations; and to provide a data base to be used for aerosol behavior . Test results from the first phase of the LACE program are presented and discussed. Three large-scale scoping tests, simulating a containment bypass accident sequence, demonstrated the extent of agglomeration and deposition of aerosols occurring in the pipe pathway and vented auxiliary building under realistic accident conditions. Parameters varied during the scoping tests were aerosol type and steam condensation

  2. Selected Test Results from the Encell Technology Nickel Iron Battery

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Summer Kamal Rhodes [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Power Sources R& D; Baca, Wes Edmund [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Power Sources R& D; Avedikian, Kristan [Encell Technology, Alachua, FL (United States)

    2014-09-01

    The performance of the Encell Nickel Iron (NiFe) battery was measured. Tests included capacity, capacity as a function of rate, capacity as a function of temperature, charge retention (28-day), efficiency, accelerated life projection, and water refill evaluation. The goal of this work was to evaluate the general performance of the Encell NiFe battery technology for stationary applications and demonstrate the chemistry's capabilities in extreme conditions. Test results have indicated that the Encell NiFe battery technology can provide power levels up to the 6C discharge rate, ampere-hour efficiency above 70%. In summary, the Encell batteries have met performance metrics established by the manufacturer. Long-term cycle tests are not included in this report. A cycle test at elevated temperature was run, funded by the manufacturer, which Encell uses to predict long-term cycling performance, and which passed their prescribed metrics.

  3. Results of assembly test of HTTR reactor internals

    International Nuclear Information System (INIS)

    Maruyama, S.; Saikusa, A.; Shiozawa, S.; Tsuji, N.; Miki, T.

    1996-01-01

    The assembly test of the HTTR actual reactor internals had been carried out at the works, prior to their installation in the actual reactor pressure vessel(RPV) at the construction site. The assembly test consists of several items such as examining fabricating precision of each component and alignment of piled-up structures, measuring circumferential coolant velocity profile in the passage between the simulated RPV and the reactor internals as well as under the support plates, measuring by-pass flow rate through gaps between the reactor internals, and measuring the binding force of the core restraint mechanism. Results of the test showed good performance of the HTTR reactor internals. Installation of the reactor internals in the actual RPV was started at the construction site of HTTR in April, 1995. In the installation process, main items of the assembly test at the works were repeated to investigate the reproducibility of installation. (author). 5 refs, 11 figs

  4. Small-Scale Spray Releases: Initial Aerosol Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

    2012-11-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and

  5. Tunneling in axion monodromy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Jon; Cottrell, William; Shiu, Gary; Soler, Pablo [Department of Physics, University of Wisconsin,Madison, WI 53706 (United States)

    2016-10-06

    The Coleman formula for vacuum decay and bubble nucleation has been used to estimate the tunneling rate in models of axion monodromy in recent literature. However, several of Coleman’s original assumptions do not hold for such models. Here we derive a new estimate with this in mind using a similar Euclidean procedure. We find that there are significant regions of parameter space for which the tunneling rate in axion monodromy is not well approximated by the Coleman formula. However, there is also a regime relevant to large field inflation in which both estimates parametrically agree. We also briefly comment on the applications of our results to the relaxion scenario.

  6. Potential for false positive HIV test results with the serial rapid HIV testing algorithm

    Directory of Open Access Journals (Sweden)

    Baveewo Steven

    2012-03-01

    Full Text Available Abstract Background Rapid HIV tests provide same-day results and are widely used in HIV testing programs in areas with limited personnel and laboratory infrastructure. The Uganda Ministry of Health currently recommends the serial rapid testing algorithm with Determine, STAT-PAK, and Uni-Gold for diagnosis of HIV infection. Using this algorithm, individuals who test positive on Determine, negative to STAT-PAK and positive to Uni-Gold are reported as HIV positive. We conducted further testing on this subgroup of samples using qualitative DNA PCR to assess the potential for false positive tests in this situation. Results Of the 3388 individuals who were tested, 984 were HIV positive on two consecutive tests, and 29 were considered positive by a tiebreaker (positive on Determine, negative on STAT-PAK, and positive on Uni-Gold. However, when the 29 samples were further tested using qualitative DNA PCR, 14 (48.2% were HIV negative. Conclusion Although this study was not primarily designed to assess the validity of rapid HIV tests and thus only a subset of the samples were retested, the findings show a potential for false positive HIV results in the subset of individuals who test positive when a tiebreaker test is used in serial testing. These findings highlight a need for confirmatory testing for this category of individuals.

  7. Test-beam results of a SOI pixel detector prototype

    CERN Document Server

    Bugiel, Roma; Dannheim, Dominik; Fiergolski, Adrian; Hynds, Daniel; Idzik, Marek; Kapusta, P; Kucewicz, Wojciech; Munker, Ruth Magdalena; Nurnberg, Andreas Matthias

    2018-01-01

    This paper presents the test-beam results of a monolithic pixel-detector prototype fabricated in 200 nm Silicon-On-Insulator (SOI) CMOS technology. The SOI detector was tested at the CERN SPS H6 beam line. The detector is fabricated on a 500 μm thick high-resistivity float- zone n-type (FZ-n) wafer. The pixel size is 30 μm × 30 μm and its readout uses a source- follower configuration. The test-beam data are analysed in order to compute the spatial resolution and detector efficiency. The analysis chain includes pedestal and noise calculation, cluster reconstruction, as well as alignment and η-correction for non-linear charge sharing. The results show a spatial resolution of about 4.3 μm.

  8. Guidelines to Interpret Results of Mechanical Blade Test

    International Nuclear Information System (INIS)

    Arias Vega, F.; Sanz Martin, J. C.

    1999-01-01

    This report shows the interpretation of full scale rotor blade test results and describes the engineering testing models and coefficients for any feasible rotor blade design, in order to accept and to certify any final manufactured blade as an allowable product, fit for use and working with a completely security during all the wind turbines lifetime. This work was carried out at the Wind Energy Division of the CIEMAT.DER and it is based on the authors technical experience in this field, after many years working on testing blades. Also, this paper contains results of the European wind turbine Standards II relevant to the European Project: JOULE III R.D. where the Wind Energy Division took part as participant too. (Author)

  9. Guidelines to Interpret Results of Mechanical Blade Test

    Energy Technology Data Exchange (ETDEWEB)

    Arias Vega, F.; Sanz Martin, J. C. [Ciemat, Madrid (Spain)

    2000-07-01

    This report shows the interpretation of full scale rotor blade test results and describes the engineering testing models and coefficients for any feasible rotor blade design, in order to accept and to certify any final manufactured blades as an allowable product, fit for use and working with a completely security during all the windturbine's lifetime. This work was carried out at the Wind Energy Division of the CIEMAT.DER and it is based on the author's technical experience in this field, after many years working on testing blades. Also, this paper contains results of the European wind turbine Standards II relevant to the European Project: JOULE III R.D. where the Wind Energy Division took part as participant too. (Author)

  10. Results for the Brine Evaporation Bag (BEB) Brine Processing Test

    Science.gov (United States)

    Delzeit, Lance; Flynn, Michael; Fisher, John; Shaw, Hali; Kawashima, Brian; Beeler, David; Howard, Kevin

    2015-01-01

    The recent Brine Processing Test compared the NASA Forward Osmosis Brine Dewatering (FOBD), Paragon Ionomer Water Processor (IWP), UMPQUA Ultrasonic Brine Dewatering System (UBDS), and the NASA Brine Evaporation Bag (BEB). This paper reports the results of the BEB. The BEB was operated at 70 deg C and a base pressure of 12 torr. The BEB was operated in a batch mode, and processed 0.4L of brine per batch. Two different brine feeds were tested, a chromic acid-urine brine and a chromic acid-urine-hygiene mix brine. The chromic acid-urine brine, known as the ISS Alternate Pretreatment Brine, had an average processing rate of 95 mL/hr with a specific power of 5kWhr/L. The complete results of these tests will be reported within this paper.

  11. Preliminary results of testing bioassay analytical performance standards

    International Nuclear Information System (INIS)

    Fisher, D.R.; Robinson, A.V.; Hadley, R.T.

    1983-08-01

    The analytical performance of both in vivo and in vitro bioassay laboratories is being studied to determine the capability of these laboratories to meet the minimum criteria for accuracy and precision specified in the draft ANSI Standard N13.30, Performance Criteria for Radiobioassay. This paper presents preliminary results of the first round of testing

  12. Pattern Of Skin Prick Allergy Test Results In Enugu | Mgbor ...

    African Journals Online (AJOL)

    In this study we report on pattern of allergy prick skin test results found among atopic patients attending the department of otorhinolargngology of the University of Nigeria Teaching Hospital Enugu and Hansa Clinics, Enugu and propose ways of minimizing the exposure of the population to allergens. Material and method

  13. Test Beam Results Obtained with the Q4 Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Benitez, M.; Alberdi, J.; Cerrada, M.; Colino, N.; Daniel, M.; Fouz, M. c.; Marin, J.; Mocholi, J.; Oller, J. C.; Puerta, J.; Romero, L.; Salicio, J. M.

    2000-07-01

    A prototype of the CMS Barrel Muon Detector incorporating all the features of the final chambers was built at CIEMAT using the mass production assembly procedures and tools. The performance of this prototype was studied in a muon test beam at CERN and the results obtained are presented here. (Author)

  14. Recent results on the RIA test in IGR reactor

    International Nuclear Information System (INIS)

    Asmolov, V.; Yegorova, L.

    1997-01-01

    At the 23d WRSM meeting the data base characterizing results of VVER high burnup fuel rods tests under reactivity-initiated accident (RIA) conditions was presented. Comparison of PWR and VVER failure thresholds was given also. Additional analysis of the obtained results was being carried out during 1996. The results of analysis show that the two different failure mechanisms were observed for PWR and VVER fuel rods. Some factors which can be as the possible reasons of these differences are presented. First of them is the state of preirradiated cladding. Published test data for PWR high burnup fuel rods demonstrated that the PWR high burnup fuel rods failed at the RIA test are characterized by very high level of oxidation and hydriding for the claddings. Corresponding researches were performed at Institute of Atomic Reactors (RLAR, Dimitrovgrad, Russia) for large set of VVER high burnup fuel rods. Results of these investigations show that preirradiated commercial Zr-1%Nb claddings practically keep their initial levels of oxidation and H 2 concentration. Consequently the VVER preirradiated cladding must keep the high level of mechanical properties. The second reason leading to differences between failure mechanisms for two types of high burnup fuel rods can be the test conditions. Now such kind of analysis have been performed by two methods

  15. Interpretation of Chemical Pathology Test Results in Paediatrics ...

    African Journals Online (AJOL)

    At any time we interprete paediatric chemical pathology test results we must take into consideration a number of factors, which are related with and restricted to paediatric patients. Such factors include the paediatric patient's age that may change from prematurity to above 18 years, and the paediatric patient's body weight ...

  16. VEGETABLE OILS AS SUBSTITUTION FOR DIESEL OIL Test results ...

    African Journals Online (AJOL)

    Test results obtained on a Diesel Engine with direct injection. W. Scheer, Professor ... High kinematic viscosities, high flash points and high ... nozzle and in the combustion chamber. This is ... speed, fuel consumption and exhaust tempera· tures. ... it enters the fuel system of the engine. An one ..... Internal publi- cation of ...

  17. SIMS prototype System 3 test results: engineering analysis

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    The results obtained during testing of a closed hydronic drain down solar system designed for space and hot water heating are presented. Data analysis is included which documents the system performance and verifies the suitability of SIMS Prototype System 3 for field installation.

  18. Multi-bundle shashlik calorimeter prototypes beam-test results

    International Nuclear Information System (INIS)

    Badier, J.; Bloch, P.; Bityukov, S.; Bordalo, P.; Busson, P.; Charlot, C.; Dobrzynski, L.; Golutvin, I.; Guschin, E.; Issakov, V.; Ivanchenko, I.; Klimenko, V.; Marin, V.; Moissenz, P.; Obraztsov, V.; Ostankov, A.; Popov, V.; Puljak, I.; Ramos, S.; Seez, C.; Sergueev, S.; Soushkov, V.; Tanaka, R.; Varela, J.; Virdee, T.S.; Zaitchenko, A.; Zamiatin, N.

    1995-01-01

    The first beam-test results for two- and three-bundle shashlik tower prototypes are described. We found that the spatial resolution, the uniformity of energy response, the calorimeter reliability and hermeticity and also two showers separation are improved in multi-bundle design approach. ((orig.))

  19. SIMS prototype system 3 test results: Engineering analysis

    Science.gov (United States)

    1978-01-01

    The results obtained during testing of a closed hydronic drain down solar system designed for space and hot water heating is presented. Data analysis is included which documents the system performance and verifies the suitability of SIMS Prototype System 3 for field installation.

  20. Results of the Intelligence Test for Visually Impaired Children (ITVIC).

    Science.gov (United States)

    Dekker, R.; And Others

    1991-01-01

    Statistical analyses of scores on subtests of the Intelligence Test for Visually Impaired Children were done for two groups of children, either with or without usable vision. Results suggest that the battery has differential factorial and predictive validity. (Author/DB)