WorldWideScience

Sample records for tungsten-base composite materials

  1. Tungsten-based composite materials for fusion reactor shields

    International Nuclear Information System (INIS)

    Greenspan, E.; Karni, Y.

    1985-01-01

    Composite tungsten-based materials were recently proposed for the heavy constituent of compact fusion reactor shields. These composite materials will enable the incorporation of tungsten - the most efficient nonfissionable inelastic scattering (as well as good neutron absorbing and very good photon attenuating) material - in the shield in a relatively cheap way and without introducing voids (so as to enable minimizing the shield thickness). It is proposed that these goals be achieved by bonding tungsten powder, which is significantly cheaper than high-density tungsten, with a material having the following properties: good shielding ability and relatively low cost and ease of fabrication. The purpose of this work is to study the effectiveness of the composite materials as a function of their composition, and to estimate the economic benefit that might be gained by the use of these materials. Two materials are being considered for the binder: copper, second to tungsten in its shielding ability, and iron (or stainless steel), the common fusion reactor shield heavy constituent

  2. Tungsten - Yttrium Based Nuclear Structural Materials

    Science.gov (United States)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  3. High-energy, high-rate consolidation of tungsten and tungsten-based composite powders

    Energy Technology Data Exchange (ETDEWEB)

    Raghunathan, S.K.; Persad, C.; Bourell, D.L.; Marcus, H.L. (Center for Materials Science and Engineering, Univ. of Texas, Austin (USA))

    1991-01-20

    Tungsten and tungsten-based heavy alloys are well known for their superior mechanical properties at elevated temperatures. However, unalloyed tungsten is difficult to consolidate owing to its very high melting temperature (3683 K). The additions of small amounts of low-melting elements such as iron, nickel, cobalt and copper, facilitate the powder processing of dense heavy alloys at moderate temperatures. Energetic high-current pulses have been used recently for powder consolidation. In this paper, the use of a homopolar generator as a power source to consolidate selected tungsten and tungsten-based alloys is examined. Various materials were consolidated including unalloyed tungsten, W-Nb, W-Ni, and tungsten heavy alloy with boron carbide. The effect of process parameters such as pressure and specific energy input on the consolidation of different alloy systems is described in terms of microstructure and property relationships. (orig.).

  4. Chemical behavior of lanthanides-tungsten composite materials used in thermo-emissive cathodes

    International Nuclear Information System (INIS)

    Cadoret, K.; Cachard, J. de; Martinez, L.; Millot, F.; Hennet, L.; Douy, A.; Licheron, M.

    2001-01-01

    This work presents the crystallography and chemistry of new lanthanides-tungsten composite materials developed to manufacture thermionic cathodes for power grid tubes, based on the same principle than thorium-free cathodes. By mean of x-Ray diffraction at high temperature and under vacuum with synchrotron radiation facilities, we followed in real time the different phases and phase transitions that can occur during the heating process and the carburization at 1550 o C of such tungstates deposits on thin tungsten ribbons. Melting points for composition between 9 La 2 O 3 - 1 WO 3 and 2 La 2 O 3 - 9 WO 3 were specified under the pressure of 1x10 -6 mbar. After interpretation of x-ray diffraction results, phase diagram of n La 2 O 3 - m WO 3 system under vacuum in equilibrium with metallic tungsten have been deduced. Moreover we underline by these works the fact that using a lanthanum-rich tungstate involves better stability and chemical homogeneity of the cathodes surfaces with temperature. (author)

  5. Irradiation effects in tungsten-copper laminate composite

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, L.M., E-mail: garrisonlm@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Katoh, Y. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Snead, L.L. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Byun, T.S. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Reiser, J.; Rieth, M. [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2016-12-01

    Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410–780 °C and fast neutron fluences of 0.02–9.0 × 10{sup 25} n/m{sup 2}, E > 0.1 MeV, 0.0039–1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 °C. After only 0.0039 dpa this was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 °C. For elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile. - Highlights: • Fusion reactors need a tough, ductile tungsten plasma-facing material. • The unirradiated tungsten-copper laminate is more ductile than tungsten alone. • After neutron irradiation, the composite has significantly less ductility. • The tungsten behavior appears to dominate the overall composite behavior.

  6. Further development of the tungsten-fibre reinforced tungsten composite

    Energy Technology Data Exchange (ETDEWEB)

    Gietl, Hanns; Hoeschen, Till; Riesch, Johann [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Aumann, Martin; Coenen, Jan [Forschungszentrum Juelich, IEK4, 52425 Juelich (Germany); Huber, Philipp [Lehrstuhl fuer Textilmaschinenbau und Institut fuer Textiltechnik (ITA), 52062 Aachen (Germany); Neu, Rudolf [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Technische Universitaet Muenchen, 85748 Garching (Germany)

    2016-07-01

    For the use in a fusion device tungsten has a unique property combination. The brittleness below the ductile-to-brittle transition temperature and the embrittlement during operation e.g. by overheating, neutron irradiation are the main drawbacks for the use of pure tungsten. Tungsten fibre-reinforced tungsten composites utilize extrinsic mechanisms to improve the toughness. After proofing that this idea works in principle the next step is the conceptual proof for the applicability in fusion reactors. This will be done by producing mock-ups and testing them in cyclic high heat load tests. For this step all constituents of the composite, which are fibre, matrix and interface, and all process steps need to be investigated. Tungsten fibres are investigated by means of tension tests to find the optimum diameter and pretreatment. New interface concepts are investigated to meet the requirements in a fusion reactor, e.g. high thermal conductivity, low activation. In addition weaving processes are evaluated for their use in the fibre preform production. This development is accompanied by an extensive investigation of the materials properties e.g. single fibre tension tests.

  7. Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO—potassium doped tungsten wire

    Science.gov (United States)

    Riesch, J.; Han, Y.; Almanstötter, J.; Coenen, J. W.; Höschen, T.; Jasper, B.; Zhao, P.; Linsmeier, Ch; Neu, R.

    2016-02-01

    For the next step fusion reactor the use of tungsten is inevitable to suppress erosion and allow operation at elevated temperature and high heat loads. Tungsten fibre-reinforced composites overcome the intrinsic brittleness of tungsten and its susceptibility to operation embrittlement and thus allow its use as a structural as well as an armour material. That this concept works in principle has been shown in recent years. In this contribution we present a development approach towards its use in a future fusion reactor. A multilayer approach is needed addressing all composite constituents and manufacturing steps. A huge potential lies in the optimization of the tungsten wire used as fibre. We discuss this aspect and present studies on potassium doped tungsten wire in detail. This wire, utilized in the illumination industry, could be a replacement for the so far used pure tungsten wire due to its superior high temperature properties. In tensile tests the wire showed high strength and ductility up to an annealing temperature of 2200 K. The results show that the use of doped tungsten wire could increase the allowed fabrication temperature and the overall working temperature of the composite itself.

  8. Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO—potassium doped tungsten wire

    International Nuclear Information System (INIS)

    Riesch, J; Han, Y; Höschen, T; Zhao, P; Neu, R; Almanstötter, J; Coenen, J W; Jasper, B; Linsmeier, Ch

    2016-01-01

    For the next step fusion reactor the use of tungsten is inevitable to suppress erosion and allow operation at elevated temperature and high heat loads. Tungsten fibre-reinforced composites overcome the intrinsic brittleness of tungsten and its susceptibility to operation embrittlement and thus allow its use as a structural as well as an armour material. That this concept works in principle has been shown in recent years. In this contribution we present a development approach towards its use in a future fusion reactor. A multilayer approach is needed addressing all composite constituents and manufacturing steps. A huge potential lies in the optimization of the tungsten wire used as fibre. We discuss this aspect and present studies on potassium doped tungsten wire in detail. This wire, utilized in the illumination industry, could be a replacement for the so far used pure tungsten wire due to its superior high temperature properties. In tensile tests the wire showed high strength and ductility up to an annealing temperature of 2200 K. The results show that the use of doped tungsten wire could increase the allowed fabrication temperature and the overall working temperature of the composite itself. (paper)

  9. Constitutive modeling of two-phase metallic composites with application to tungsten-based composite 93W–4.9Ni–2.1Fe

    International Nuclear Information System (INIS)

    Lu, W.R.; Gao, C.Y.; Ke, Y.L.

    2014-01-01

    The two-phase metallic composites, composed by the metallic particulate reinforcing phase and the metallic matrix phase, have attracted a lot of attention in recent years for their excellent material properties. However, the constitutive modeling of two-phase metallic composites is still lacking currently. Most used models for them are basically oriented for single-phase homogeneous metallic materials, and have not considered the microstructural evolution of the components in the composite. This paper develops a new constitutive model for two-phase metallic composites based on the thermally activated dislocation motion mechanism and the volume fraction evolution. By establishing the relation between microscopic volume fraction and macroscopic state variables (strain, strain rate and temperature), the evolution law of volume fraction during the plastic deformation in two-phase composites is proposed for the first time and introduced into the new model. Then the new model is applied to a typical two-phase tungsten-based composite – 93W–4.9Ni–2.1Fe tungsten heavy alloy. It has been found that our model can effectively describe the plastic deformation behaviors of the tungsten-based composite, because of the introduction of volume fraction evolution and the connecting of macroscopic state variables and micromechanical characteristics in the constitutive model. The model's validation by experimental data indicates that our new model can provide a satisfactory prediction of flow stress for two-phase metallic composites, which is better than conventional single-phase homogeneous constitutive models including the Johnson–Cook (JC), Khan–Huang–Liang (KHL), Nemat-Nasser–Li (NNL), Zerilli–Armstrong (ZA) and Voyiadjis–Abed (VA) models

  10. Yield strengths of tungsten-base composites determined from bend tests

    International Nuclear Information System (INIS)

    Zukas, E.G.; Eash, D.T.

    1976-08-01

    The variation in yield strength with either strain rate or temperature was determined for a number of tungsten-base composites by use of the simple three-point bend test. The yield strengths were comparable with those obtained in standard tensile tests. Additional studies on 1019 steel, either in the as-rolled or annealed condition, gave results in agreement with handbook values, as did two aluminum alloys. These results demonstrate that the bend test deserves wider acceptance in materials testing programs

  11. Chemical and microstructural changes at high temperature in tungsten wire reinforced metal-matrix composite materials

    International Nuclear Information System (INIS)

    Eaton, H.C.; Norden, H.

    1985-01-01

    Tungsten wire reinforced metal-matrix composites have been developed as a gas turbine blade material. Initially it was thought desirable to employ nickel or iron based superalloys as the matrix material due to their demonstrated reliability in applications where a high degree of dimensional stability, and thermal and mechanical fatigue resistance are required. It has been found, however, that deleterious fiber/matrix interactions occur in these systems under in-service conditions. These interactions seriously degrade the mechanical properties, and there is an effective lowering of the recrystallization temperature of the tungsten to the degree that grain structure changes can take place at unusually low temperatures. The present communication reports a study of the early stages of these interactions. Several microscopic and analytical techniques are used: TEM, SIMS, FIM, and the field ion atom probe. The nickel/tungsten interaction is thought to involve solute atom transport along grain boundaries. The grain boundary chemistry after short exposures to nickel at 1100 0 C is determined. In this manner the precursor interaction mechanisms are observed. These observations suggest that the strong nickel/tungsten grain boundary interactions do not involve the formation of distinct alloy phases, but instead involve rapid diffusion of essentially unalloyed nickel along the grain boundaries

  12. Micro/nano composited tungsten material and its high thermal loading behavior

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jinglian, E-mail: fjl@csu.edu.cn; Han, Yong; Li, Pengfei; Sun, Zhiyu; Zhou, Qiang

    2014-12-15

    Tungsten (W) is considered as promising candidate material for plasma facing components (PFCs) in future fusion reactors attributing to its many excellent properties. Current commercial pure tungsten material in accordance with the ITER specification can well fulfil the performance requirements, however, it has defects such as coarse grains, high ductile–brittle transition temperature (DBTT) and relatively low recrystallization temperature compared with its using temperature, which cannot meet the harsh wall loading requirement of future fusion reactor. Grain refinement has been reported to be effective in improving the thermophysical and mechanical properties of W. In this work, rare earth oxide (Y{sub 2}O{sub 3}/La{sub 2}O{sub 3}) and carbides (TiC/ZrC) were used as dispersion phases to refine W grains, and micro/nano composite technology with a process of “sol gel – heterogeneous precipitation – spray drying – hydrogen reduction – ordinary consolidation sintering” was invented to introduce these second-phase particles uniformly dispersed into W grains and grain-boundaries. Via this technology, fine-grain W materials with near-full density and relatively high mechanical properties compared with traditional pure W material were manufactured. Preliminary transient high-heat flux tests were performed to evaluate the thermal response under plasma disruption conditions, and the results show that the W materials prepared by micro/nano composite technology can endure high-heat flux of 200 MW/m{sup 2} (5 ms)

  13. Development and characterisation of a tungsten-fibre reinforced tungsten composite

    International Nuclear Information System (INIS)

    Riesch, Johann

    2012-01-01

    In tungsten-fibre reinforced tungsten, tungsten wire is combined with a tungsten matrix. The outstanding ductility of the fibres and extrinsic mechanisms of energy dissipation lead to an intense toughening. With extensive analytical and experimental investigations a manufacturing method based on chemical vapour infiltration is developed and first material is produced. The toughening mechanisms are shown by means of sophisticated mechanical experiments i.a. X-ray microtomography.

  14. Room temperature humidity sensor based on polyaniline-tungsten disulfide composite

    Science.gov (United States)

    Manjunatha, S.; Chethan, B.; Ravikiran, Y. T.; Machappa, T.

    2018-05-01

    Polyaniline-tungsten disulfide (PANI-WS2) composite was synthesized using in situ polymerization technique by adding finely grinded powder of WS2 during the polymerization of aniline. Field emission scanning electron microscopy (FESEM) images showed the granular morphology with porous nature. Energy dispersive X-ray spectroscopy (EDX) confirmed the presence of carbon, nitrogen, chlorine of PANI, tungsten and sulfur elements of WS2. Humidity sensing property of the composite was investigated by plotting change in its resistance with different relative humidity environments ranging from 10 to 97% RH. Decrease in resistance of the composite was observed with increase in relative humidity. Maximum sensing response of the composite was found to be 88.46%. Response and recovery times of the composite at 97%RH were fair enough to fabricate a sensor based on it. Stability of the composite with respect to the humidity sensing behavior was observed to be unchanged even after two months.

  15. Fabrication of tungsten wire reinforced nickel-base alloy composites

    Science.gov (United States)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  16. Binary-collision-approximation-based simulation of noble gas irradiation to tungsten materials

    International Nuclear Information System (INIS)

    Saito, Seiki; Takayama, Arimichi; Ito, Atsushi M.; Nakamura, Hiroaki

    2013-01-01

    To reveal the possibility of fuzz formation of tungsten material under noble gas irradiation, helium, neon, and argon atom injections into tungsten materials are performed by binary-collision-approximation-based simulation. The penetration depth is strongly depends on the structure of the target material. Therefore, the penetration depth for amorphous and bcc crystalline structure is carefully investigated in this paper

  17. Insensitive high-energy energetic structural material of tungsten-polytetrafluoroethylene-aluminum composites

    Directory of Open Access Journals (Sweden)

    Liu Wang

    2015-11-01

    Full Text Available Energetic structural material is a kind of materials that are inert under normal conditions but could produce exothermic chemical reaction when subjected to impact. This report shows a kind of energetic structural material of tungsten (W-polytetrafluoroethylene (PTFE-aluminum (Al with density of 4.12 g/cm3, excellent ductility and dynamic compressive strength of 96 MPa. Moreover, 50W-35PTFE-15Al (wt% can exhibit a high reaction energy value of more than 2 times of TNT per unit mass and 5 times of TNT per unit volume, respectively, but with excellent insensitivity compared with traditional explosives. Under thermal conditions, the W-PTFE-Al composite can keep stable at 773 K. Under impact loading, when the strain rate up to ∼4820 s−1 coupled with the absorbed energy per unit volume of 120 J/cm3, deflagration occurs and combustion lasts for 500 μs. During impact compressive deformation, the PTFE matrix is elongated into nano-fibers, thus significantly increases the reaction activity of W-PTFE-Al composites. The nano-fiber structure is necessary for the reaction of W-PTFE-Al composites. The formation of PTFE nano-fibers must undergo severe plastic deformation, and therefore the W-PTFE-Al composites exhibit excellent insensitivity and safety. Furthermore, the reaction mechanisms of W-PTFE-Al composites in argon and in air are revealed.

  18. Tungsten fibre-reinforced composites for advanced plasma facing components

    Directory of Open Access Journals (Sweden)

    R. Neu

    2017-08-01

    Full Text Available The European Fusion Roadmap foresees water cooled plasma facing components in a first DEMO design in order to provide enough margin for the cooling capacity and to only moderately extrapolate the technology which was developed and tested for ITER. In order to make best use of the water cooling concept copper (Cu and copper-chromium-zirconium alloy (CuCrZr are envisaged as heat sink whereas as armour tungsten (W based materials will be used. Combining both materials in a high heat flux component asks for an increase of their operational range towards higher temperature in case of Cu/CuCrZr and lower temperatures for W. A remedy for both issues- brittleness of W and degrading strength of CuCrZr- could be the use of W fibres (Wf in W and Cu based composites. Fibre preforms could be manufactured with industrially viable textile techniques. Flat textiles with a combination of 150/70 µm W wires have been chosen for layered deposition of tungsten-fibre reinforced tungsten (Wf/W samples and tubular multi-layered braidings with W wire thickness of 50 µm were produced as a preform for tungsten-fibre reinforced copper (Wf /Cu tubes. Cu melt infiltration was performed together with an industrial partner resulting in sample tubes without any blowholes. Property estimation by mean field homogenisation predicts strongly enhanced strength of the Wf/CuCrZr composite compared to its pure CuCrZr counterpart. Wf /W composites show very high toughness and damage tolerance even at room temperature. Cyclic load tests reveal that the extrinsic toughening mechanisms counteracting the crack growth are active and stable. FEM simulations of the Wf/W composite suggest that the influence of fibre debonding, which is an integral part of the toughening mechanisms, and reduced thermal conductivity of the fibre due to the necessary interlayers do not strongly influence the thermal properties of future components.

  19. The erosion and erosion products of tungsten and carbon based materials bombarded by high energy pulse electron beam

    International Nuclear Information System (INIS)

    Liu Xiang; Zhang Fu; Xu Zengyu; Liu Yong; Yoshida, N.; Noda, N.

    2002-01-01

    In this paper, the erosion behaviors and erosion products of tungsten and some carbon based materials, such as graphite, C/C composite and B 4 C/Cu functionally graded material, were investigated by using a pulse electron beam to simulate the vertical displacement events (VDE) process. The authors will focus on the forms and differences of erosion products among these testing materials, and make clear to their erosion mechanisms

  20. Tungsten oxide nanowires grown on graphene oxide sheets as high-performance electrochromic material

    International Nuclear Information System (INIS)

    Chang, Xueting; Sun, Shibin; Dong, Lihua; Hu, Xiong; Yin, Yansheng

    2014-01-01

    Graphical abstract: Electrochromic mechanism of tungsten oxide nanowires-reduced graphene oxide composite. - Highlights: • A novel inorganic-nano-carbon hybrid composite was prepared. • The hybrid composite has sandwich-like structure. • The hybrid composite exhibited high-quality electrohcromic performance. - Abstract: In this work, we report the synthesis of a novel hybrid electrochromic composite through nucleation and growth of ultrathin tungsten oxide nanowires on graphene oxide sheets using a facile solvothermal route. The competition between the growth of tungsten oxide nanowires and the reduction of graphene oxide sheets leads to the formation of sandwich-structured tungsten oxide-reduced graphene oxide composite. Due to the strongly coupled effect between the ultrathin tungsten oxide nanowires and the reduced graphene oxide nanosheets, the novel electrochromic composite exhibited high-quality electrochromic performance with fast color-switching speed, good cyclic stability, and high coloration efficiency. The present tungsten oxide-reduced graphene oxide composite represents a new approach to prepare other inorganic-reduced graphene oxide hybrid materials for electrochemical applications

  1. Tungsten-microdiamond composites for plasma facing components

    International Nuclear Information System (INIS)

    Livramento, V.; Nunes, D.; Correia, J.B.; Carvalho, P.A.; Mardolcar, U.; Mateus, R.; Hanada, K.; Shohoji, N.; Fernandes, H.; Silva, C.; Alves, E.

    2011-01-01

    Tungsten is considered as one of promising candidate materials for plasma facing component in nuclear fusion reactors due to its resistance to sputtering and high melting point. High thermal conductivity is also a prerequisite for plasma facing components under the unique service environment of fusion reactor characterised by the massive heat load, especially in the divertor area. The feasibility of mechanical alloying of nanodiamond and tungsten, and the consolidation of the composite powders with Spark Plasma Sintering (SPS) was previously demonstrated. In the present research we report on the use of microdiamond instead of nanodiamond in such composites. Microdiamond is more favourable than nanodiamond in view of phonon transport performance leading to better thermal conductivity. However, there is a trade off between densification and thermal conductivity as the SPS temperature increases tungsten carbide formation from microdiamond is accelerated inevitably while the consolidation density would rise.

  2. Current status of nanostructured tungsten-based materials development

    International Nuclear Information System (INIS)

    Kurishita, H; Matsuo, S; Arakawa, H; Hatakeyama, M; Shikama, T; Sakamoto, T; Kobayashi, S; Nakai, K; Okano, H; Watanabe, H; Yoshida, N; Torikai, Y; Hatano, Y; Takida, T; Kato, M; Ikegaya, A; Ueda, Y

    2014-01-01

    Nanostructured tungsten (W)-based materials offer many advantages for use as plasma facing materials and components exposed to heavy thermal loads combined with irradiation with high-energy neutron and low-energy ion. This paper first presents the recent progress in nanostructured toughened, fine grained, recrystallized W materials. Thermal desorption spectrometry apparatus equipped with an ion gun has been installed in the radiation controlled area in our Center at Tohoku University to systematically investigate the effects of displacement damage due to high-energy neutron irradiation on hydrogen isotope retention in connection with the nano- or micro-structures in W-based materials. In this paper, the effects of high-energy heavy ion irradiation on deuterium retention in W with different microstructures are described as a preliminary work with the prospective view of neutron irradiation effects. (paper)

  3. Process for improving the low temperature ductility of tungsten-base composites

    International Nuclear Information System (INIS)

    Zukas, E.G.

    1975-05-01

    At temperatures below about 100 0 C, liquid-phase-sintered tungsten-base composites fail in a brittle manner because of the formation of cleavage cracks in the tungsten spheroids. Improving the ductility, then, would require some alloying addition or treatment which would improve the ductility of these spheroids, or some method of changing the stress distribution, such as putting the surface in compression, which would reduce stress concentrations and thereby require a higher load to initiate fracture. The ductilizing process used here consists of coating the composite with a ductile metal followed by heat treating at a high enough temperature to insure sufficient diffusion so that the coat and base become integral. The ductile coat is now the 'piece' surface, and the initiation of cleavage cracks requires much greater stresses. Coats of copper, nickel, gold, and cobalt have been used successfully. A possible added advantage is that the surface properties can now be controlled if certain reflective properties or corrosion resistance are needed. Also soldering or low temperature brazing operations are feasible, allowing the construction or assembly of intricate shapes which could not be accomplished previously. (U.S.)

  4. Overview of processing technologies for tungsten-steel composites and FGMs for fusion applications

    Directory of Open Access Journals (Sweden)

    Matějíček Jiří

    2015-06-01

    Full Text Available Tungsten is a prime candidate material for the plasma-facing components in future fusion devices, e.g. ITER and DEMO. Because of the harsh and complex loading conditions and the differences in material properties, joining of the tungsten armor to the underlying construction and/or cooling parts is a complicated issue. To alleviate the thermal stresses at the joint, a sharp interface may be replaced by a gradual one with a smoothly varying composition. In this paper, several techniques for the formation of tungsten-steel composites and graded layers are reviewed. These include plasma spraying, laser cladding, hot pressing and spark plasma sintering. Structure, composition and selected thermal and mechanical properties of representative layers produced by each of these techniques are presented. A summary of advantages and disadvantages of the techniques and an assessment of their suitability for the production of plasma-facing components is provided.

  5. Experimental evidence for several spheroid growth mechanisms in the liquid-phase sintered tungsten-base composites

    International Nuclear Information System (INIS)

    Zukas, E.G.; Rogers, P.S.Z.; Rogers, R.S.

    1976-01-01

    The generally accepted mechanism for spheroid growth during sintering of tungsten-base composites in the presence of a liquid phase is the dissolution of the small spheroids with simultaneous precipitation of tungsten from the molten matrix onto the larger spheroids, the process being driven by the difference in surface energy between the larger and smaller spheroids. From theoretical considerations, the slope of the straight line of log diameter versus log time should be 1 / 3 for this process. The experimental evidence for the dissolution and reprecipitation mechanism is meager, being based primarily on the spheroid growth rate during the latter stages of liquid-phase sintering. Experimental evidence is presented that shows spheroid growth taking place in systems where the tungsten and the matrix are mutually insoluble thereby making dissolution and reprecipitation impossible. Furthermore, the results from these studies and others using the usual matrix compositions indicate that spheroid growth takes place predominantly by the combination or coalescence of two or more spheroids. Deposition of tungsten from the molten matrix also occurs, although not necessarily on spheroid surfaces which have the lowest surface energy. Thus, many mechanisms, each depending on temperature and other variables, operate simultaneously. A satisfactory theoretical treatment must include them all

  6. Tensile behaviour of drawn tungsten wire used in tungsten fibre-reinforced tungsten composites

    International Nuclear Information System (INIS)

    Riesch, J; Feichtmayer, A; Fuhr, M; Gietl, H; Höschen, T; Neu, R; Almanstötter, J; Coenen, J W; Linsmeier, Ch

    2017-01-01

    In tungsten fibre-reinforced tungsten composites (W f /W) the brittleness problem of tungsten is solved by utilizing extrinsic toughening mechanisms. The properties of the composite are very much related to the properties of the drawn tungsten wire used as fibre reinforcements. Its high strength and capability of ductile deformation are ideal properties facilitating toughening of W f /W. Tensile tests have been used for determining mechanical properties and study the deformation and the fracture behaviour of the wire. Tests of as-fabricated and straightened drawn wires with a diameter between 16 and 150 μ m as well as wire electrochemically thinned to a diameter of 5 μ m have been performed. Engineering stress–strain curves and a microscopic analysis are presented with the focus on the ultimate strength. All fibres show a comparable stress–strain behaviour comprising necking followed by a ductile fracture. A reduction of the diameter by drawing leads to an increase of strength up to 4500 MPa as a consequence of a grain boundary hardening mechanism. Heat treatment during straightening decreases the strength whereas electrochemical thinning has no significant impact on the mechanical behaviour. (paper)

  7. A brief summary of the progress on the EFDA tungsten materials program

    Czech Academy of Sciences Publication Activity Database

    Rieth, M.; Dudarev, S.L.; Gonzalez de Vicente, S.M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D.E.J.; Balden, M.; Baluc, N.; Barthe, M.-F.; Basuki, W.W.; Battabyal, M.; Becquart, C.S.; Blagoeva, D.; Boldyryeva, Hanna; Brinkmann, J.; Celino, M.; Ciupinski, L.; Correia, J.B.; De Backer, A.; Domain, C.; Gaganidze, E.; García-Rosales, C.; Gibson, J.; Gilbert, M.R.; Giusepponi, S.; Gludovatz, B.; Greuner, H.; Heinola, K.; Höschen, T.; Hoffmann, A.; Holstein, N.; Koch, F.; Krauss, W.; Li, H.; Lindig, S.; Linke, J.; Linsmeier, Ch.; López-Ruiz, P.; Maier, H.; Matějíček, Jiří; Mishra, T.P.; Muhammed, M.; Munoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Opschoor, J.; Ordás, N.; Palacios, T.; Pintsuk, G.; Pippan, R.; Reiser, J.; Riesch, J.; Roberts, S. G.; Romaner, L.; Rosiński, M.; Sanchez, M.; Schulmeyer, W.; Traxler, H.; Urena, A.; van der Laan, J.G.; Veleva, L.; Wahlberg, S.; Walter, M.; Weber, T.; Weitkamp, T.; Wurster, S.; Yar, M.A.; You, J.H.; Zivelonghi, A.

    2013-01-01

    Roč. 442, 1-3 (2013), S173-S180 ISSN 0022-3115. [Fifteenth International Conference on Fusion Reactor Materials. Charleston, South Carolina, 16.10.2011-22.10.2011] Institutional support: RVO:61389021 Keywords : tungsten * joining * composites * graded materials * fusion materials Subject RIV: JI - Composite Materials Impact factor: 2.016, year: 2013 http://dx.doi.org/10.1016/j.jnucmat.2013.03.062

  8. Micromechanical modeling of tungsten-based bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Li Hao [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Li Ke [Department of Mechanical Engineering, Texas A and M University, TAMU 3123, College Station, TX 77843 (United States)]. E-mail: keli@tamu.edu; Subhash, Ghatu [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Kecskes, Laszlo J. [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Dowding, Robert J. [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)

    2006-08-15

    Micromechanics models are developed for tungsten (W)-based bulk metallic glass (BMG) matrix composites employing the Voronoi tessellation technique and the finite element (FE) method. The simulation results indicate that the computed elastic moduli are close to those measured in the experiments. The predicted stress-strain curves agree well with their experimentally obtained counterparts in the early stage of the plastic deformation. An increase in the W volume fraction leads to a decrease in the yield stress and an increase in the Young's modulus of the composite. In addition, contours of equivalent plastic strain for increasing applied strains provide an explanation why shear bands were observed in the glassy phase, along the W/BMG interface, and in the W phase of failed W/BMG composite specimens.

  9. Investigation of composition of the products of thermal processing of tungsten concentrate

    International Nuclear Information System (INIS)

    Sokol, I.V.; Krasnova, T.V.

    1994-01-01

    The composition of the products of carbidization of tungsten concentrate has been investigated. A method ha sbeen developed for chemcial phase analysis of multicomponent powders based on tungsten carbides. The prepared powders have been used for the manufacture of electrode tools based on a tungsten-copper preudoalloy, which can be for dimensional electroerosion treatment of hard alloys and electrodes for electric-spark alloying

  10. Load sharing in tungsten fiber reinforced Kanthal composites

    International Nuclear Information System (INIS)

    Clausen, B.; Bourke, Mark A.M.; Brown, Donald W.; Ustuendag, E.

    2006-01-01

    The load sharing in three tungsten fiber reinforced Kanthal matrix composites (with fiber volume fractions of 10, 20 and 30%) have been determined using in situ neutron diffraction measurements. The expected iso-strain region was limited in the 20 and 30% composites due to thermal residual stresses. The experimental data have been used to validate the predictions of a unit-cell finite element model. The model was able to accurately predict the measured in situ loading data for all three composites using the same material properties for all calculations

  11. Load sharing in tungsten fiber reinforced Kanthal composites

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, B. [Los Alamos National Laboratory, LANSCE-12, P.O. Box 1663, MS H805, Los Alamos, NM 87545 (United States)]. E-mail: clausen@lanl.gov; Bourke, Mark A.M. [Los Alamos National Laboratory, MST-8, P.O. Box 1663, MS H805, Los Alamos, NM 87545 (United States); Brown, Donald W. [Los Alamos National Laboratory, MST-8, P.O. Box 1663, MS H805, Los Alamos, NM 87545 (United States); Ustuendag, E. [California Institute of Technology, Keck Laboratory, M/C 138-78, 1200 E. California Blvd., Pasadena, CA 91125 (United States)

    2006-04-15

    The load sharing in three tungsten fiber reinforced Kanthal matrix composites (with fiber volume fractions of 10, 20 and 30%) have been determined using in situ neutron diffraction measurements. The expected iso-strain region was limited in the 20 and 30% composites due to thermal residual stresses. The experimental data have been used to validate the predictions of a unit-cell finite element model. The model was able to accurately predict the measured in situ loading data for all three composites using the same material properties for all calculations.

  12. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, Z.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)]. E-mail: zhfzhang@imr.ac.cn; Wang, Z.G. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Qiu, K.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, H.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zang, Q.S. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Hu, Z.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2006-02-25

    The fatigue life, damage and fracture behavior of tungsten fiber reinforced metallic glass Zr{sub 41.25}Ti{sub 13.75}Ni{sub 10}Cu{sub 12.5}Be{sub 22.5} composites are investigated under cyclic push-pull loading. It is found that the fatigue life of the composite increases with increasing the volume fraction of tungsten fibers. Similar to crystalline metals, the regions of crack initiation, propagation and overload fracture can be discerned on the fracture surface of the specimen. Fatigue crack normally initiates in the metallic glass matrix at the outer surface of the composite specimen and propagates predominantly in the matrix. Different crack front profile around the tungsten fibers and fiber pullout demonstrate that fatigue crack may propagate around the fiber, leading to bridging of the crack faces by the unbroken fiber and hence improved fatigue crack-growth resistance. Locally decreased effective stiffness in the region where fiber distribution is sparse may provide preferential crack path in the composite. A proposed model was exercised to elucidate different tungsten fiber fracture morphologies in the fatigue crack propagation and overload fracture regions in the light of Poisson's ratio effect during fatigue loading.

  13. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite

    International Nuclear Information System (INIS)

    Zhang, H.; Zhang, Z.F.; Wang, Z.G.; Qiu, K.Q.; Zhang, H.F.; Zang, Q.S.; Hu, Z.Q.

    2006-01-01

    The fatigue life, damage and fracture behavior of tungsten fiber reinforced metallic glass Zr 41.25 Ti 13.75 Ni 10 Cu 12.5 Be 22.5 composites are investigated under cyclic push-pull loading. It is found that the fatigue life of the composite increases with increasing the volume fraction of tungsten fibers. Similar to crystalline metals, the regions of crack initiation, propagation and overload fracture can be discerned on the fracture surface of the specimen. Fatigue crack normally initiates in the metallic glass matrix at the outer surface of the composite specimen and propagates predominantly in the matrix. Different crack front profile around the tungsten fibers and fiber pullout demonstrate that fatigue crack may propagate around the fiber, leading to bridging of the crack faces by the unbroken fiber and hence improved fatigue crack-growth resistance. Locally decreased effective stiffness in the region where fiber distribution is sparse may provide preferential crack path in the composite. A proposed model was exercised to elucidate different tungsten fiber fracture morphologies in the fatigue crack propagation and overload fracture regions in the light of Poisson's ratio effect during fatigue loading

  14. Synthesis of molybdenum and tungsten modified composite systems based on bisorbent from rice husk

    Directory of Open Access Journals (Sweden)

    Duisek Haisagalievich Kamysbaev

    2017-12-01

    Full Text Available The article presents results of the synthesis of a new composite material modified with polyvalent metals. Rice husk was chosen as a raw material for obtaining a carrier – a bisorbent consisting of carbon and amorphous silicon oxide. The sorption material was obtained from the products of thermal decomposition of rice husks. Further it was modified with ammonium salts of molybdenum and tungsten: (NH46Mo7O24·4H2O and (NH42O·12WO3·5H2O in Mo/W ratios: 5/5 wt. %, 10/5 wt. % and reducted by heating in a stream of hydrogen. The registration of the voltammetric curves in the medium of 1-methyl-4-piperidone was carried out in various background electrolytes: 0.2 M Li2SO4, pH = 6.36 and 0.1 M KOH, pH = 13, 2,5·10–2 M K2HPO4 + 2,5·10–2 M NaH2PO4, pH = 6.86. Differential voltammetric curves were analyzed. The electrochemical activity of the obtained modified composites in the potential range from -1.2 V to 0.5 V was determinated. The mechanism of the proceeding electrochemical processes on these modified electrode materials has been studied. The possibility of further use of synthesized composite systems based on bisorbents from the rice husk for the electrochemical reduction of 1-methyl-4-piperidone was shown.

  15. Comparative Investigation of Tungsten Fibre Nets Reinforced Tungsten Composite Fabricated by Three Different Methods

    Directory of Open Access Journals (Sweden)

    Linhui Zhang

    2017-07-01

    Full Text Available Tungsten fibre nets reinforced tungsten composites (Wf/W containing four net layers were fabricated by spark plasma sintering (SPS, hot pressing (HP and cold rolling after HP (HPCR, with the weight fraction of fibres being 17.4%, 10.5% and 10.5%, respectively. The relative density of the HPCRed samples is the highest (99.8% while that of the HPed composites is the lowest (95.1%. Optical and scanning electron microscopy and electron back scattering diffraction were exploited to characterize the microstructure, while tensile and hardness tests were used to evaluate the mechanical properties of the samples. It was found that partial recrystallization of fibres occurred after the sintering at 1800 °C. The SPSed and HPed Wf/W composites begin to exhibit plastic deformation at 600 °C with tensile strength (TS of 536 and 425 MPa and total elongation at break (TE of 11.6% and 23.0%, respectively, while the HPCRed Wf/W composites exhibit plastic deformation at around 400 °C. The TS and TE of the HPCRed Wf/W composites at 400 °C are 784 MPa and 8.4%, respectively. The enhanced mechanical performance of the Wf/W composites over the pure tungsten can be attributed to the necking, cracking, and debonding of the tungsten fibres.

  16. Matrix composition effects on the tensile properties of tungsten-molybdenum heavy alloys

    International Nuclear Information System (INIS)

    Bose, A.; German, R.N.

    1990-01-01

    Tungsten-base heavy alloys are liquid-phase sintered from mixed tungsten, nickel, and iron powders. The sintered product is a composite consisting of interlaced tungsten and solidified matrix (W-Ni-Fe) phases. These alloys are most useful in applications requiring high density, strength, and toughness. The design of improved tungsten heavy alloys has been the subject of several research investigations. Much success has taken place through improved processing, but parallel compositional studies have resulted in new microstructure-property combinations. As part of these investigations, the Ni/Fe ratio has been varied, with the general conclusion that optimal strength and ductility occur with a ratio between 2 and 4. Brittle intermetallic phases can form outside of this composition range. Historically, a 7/3 Ni/Fe ratio has been selected for processing studies. Recently, others reported higher ductilities and impact energies for 90 and 93 pct W heavy alloys with the 8/2 Ni/Fe ratio. Alternatively, these alloys can be strengthened by both solid solution and grain size refinement through incorporation of molybdenum, tantalum, or rhenium. These additions are soluble in both the tungsten and matrix phases and retard solution-reprecipitation during liquid phase sintering. In this study, the alloy composition was varied in the nickel/iron ratio and molybdenum was partially substituted for tungsten. The sintered tensile properties are assessed vs these compositional variations

  17. Tungsten-nanodiamond composite powders produced by ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, D., E-mail: daniela.nunes@ist.utl.pt [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); ICEMS, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Livramento, V. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); Mardolcar, U.V. [Departamento de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Centro de Ciencias Moleculares e Materiais, Faculdade de Ciencias da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Correia, J.B. [LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); Carvalho, P.A. [ICEMS, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Departamento de Bioengenharia, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2012-07-15

    The major challenge in producing tungsten-nanodiamond composites by ball milling lies in successfully dispersing carbon nanoparticles in the metallic matrix while keeping carbide formation at a minimum. Processing windows for carbide minimization have been established through systematic variation of the nanodiamond fraction, milling energy and milling time. Materials characterization has been carried out by X-ray diffraction, scanning and transmission electron microscopy and microhardness testing. Nanostructured matrices with homogeneously dispersed particles that preserved the diamond structure have been produced. Differential thermal analysis has been used to evaluate the composites thermal stability.

  18. In-situ tomographic observation of crack formation and propagation in tungsten materials in the framework of FEMaS-CA

    International Nuclear Information System (INIS)

    Riesch, J.; Linsmeier, C.; Nielsen, S.F.

    2010-01-01

    The EU has funded the Fusion Energy Materials Science project Coordination Action (FEMaSCA) with the intension to utilize the know-how in the materials community to help overcome the material science problems with fusion related materials. In this framework three different material concepts, tungsten-copper-composite (W/Cu), vacuum plasma sprayed tungsten (VPSW), and tungsten-fiber/tungsten-matrix-composite (W f /W m ) were investigated by means of insitu tomography during mechanical testing. The measuring campaign was conducted at the high energy beamtine ID ISA at the European Synchrotron Radiation Facility (ESRF) in Grenoble. A tensile testing machine was used to perform displacement controlled tension tests. At the end of each well defined displacement step a tomogram was taken. Tomographic reconstructions were successfully produced of samples with high tungsten content and sample diameters up to 1 mm. Force-displacement curves were measured during loading to complete fracture. Crack propagation could he observed in the tomographic reconstructions. This paper describes the first results with special focus on the experimental work and the role of FEMaS-CA. (Author)

  19. Tungsten as First Wall Material in Fusion Devices

    International Nuclear Information System (INIS)

    Kaufmann, M.

    2006-01-01

    In the PLT tokamak with a tungsten limiter strong cooling of the central plasma was observed. Since then mostly graphite has been used as limiter or target plate material. Only a few tokamaks (limiter: FTU, TEXTOR; divertor: Alcator C-Mod, ASDEX Upgrade) gained experience with high-Z-materials. With the observed strong co- deposition of tritium together with carbon in JET and as a result of design studies of fusion reactors, it became clear that in the long run tungsten is the favourite for the first-wall material. Tungsten as a plasma facing material requires intensive research in all areas, i.e. in plasma physics, plasma wall-interaction and material development. Tungsten as an impurity in the confined plasma reveals considerable differences to carbon. Strong radiation at high temperatures, in connection with mostly a pronounced inward drift forms a particular challenge. Turbulent transport plays a beneficial role in this regard. The inward drift is an additional problem in the pedestal region of H-mode plasmas in ITER-like configurations. The erosion by low energy hydrogen atoms is in contrast to carbon small. However, erosion by fast particles from heating measures and impurity ions, accelerated in the sheath potential, play an important role in the case of tungsten. Radiation by carbon in the plasma boundary reduces the load to the target plates. Neon or Argon as substitutes will increase the erosion of tungsten. So far experiments have demonstrated that in most scenarios the tungsten content in the central plasma can be kept sufficiently small. The material development is directed to the specific needs of existing or future devices. In ASDEX Upgrade, which will soon be a divertor experiment with a complete tungsten first-wall, graphite tiles are coated with tungsten layers. In ITER, the solid tungsten armour of the target plates has to be castellated because of its difference in thermal expansion compared to the cooling structure. In a reactor the technical

  20. Mechanical properties of molybdenum alloyed liquid phase-sintered tungsten-based composites

    International Nuclear Information System (INIS)

    Kemp, P.B.; German, R.M.

    1995-01-01

    Tungsten-based composites are fabricated from mixed elemental powders using liquid phase sintering, usually with a nickel-iron matrix. During sintering, the tungsten undergoes grain growth, leading to microstructure coarsening that lowers strength but increases ductility. Often the desire is to increase strength at the sacrifice of ductility, and historically, this has been performed by postsintering deformation. There has been considerable research on alloying to adjust the as-sintered mechanical properties to match those of swaged alloys. Prior reports cover many additions, seemingly including much of the periodic table. Unfortunately, many of the modified alloys proved disappointing, largely due to degraded strength at the tungsten-matrix interface. Of these modified alloys, the molybdenum-containing systems exhibit a promising combination of properties, cost, and processing ease. For example, the 82W-8Mo-7Ni-3Fe alloy gives a yield strength that is 34% higher than the equivalent 90W-7Ni-3Fe alloy (from 535 to 715 MPa) but with a 33% decrease in fracture elongation (from 30 to 20% elongation). This article reports on experiments geared to promoting improved properties in the W-Mo-Ni-Fe alloys. However, unlike the prior research which maintained a constant Ni + Fe content and varied the W:Mo ratio, this study considers the Mo:(Ni + Fe) ratio effect for 82, 90, and 93 wt pct W

  1. Investigation of the interaction between the components of a Nichrome-tungsten composite

    Energy Technology Data Exchange (ETDEWEB)

    Prokopov, I.P.; Logvinova, T.N.

    1980-01-01

    Experimental results are presented on the effect of Nichrome melting on tungsten in the case of different rates of solidification of the composite. Consideration is given to the effect of the volume fraction of reinforced materials on the size of the transition zone between the fibers and the die and on the microhardness distribution in the composite system.

  2. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    Czech Academy of Sciences Publication Activity Database

    Rieth, M.; Dudarev, S.L.; Gonzalez de Vicente, S.M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D.E.J.; Balden, M.; Baluc, N.; Barthe, M.-F.; Basuki, W.W.; Battabyal, M.; Becquart, C.S.; Blagoeva, N.; Boldyryeva, Hanna; Brinkmann, J.; Celino, M.; Ciupinski, L.; Correia, J.B.; De Backer, A.; Domain, C.; Gaganidze, E.; García-Rosales, C.; Gibson, J.; Gilbert, M.R.; Giusepponi, S.; Gludovatz, B.; Greuner, H.; Heinola, K.; Höschen, T.; Hoffmann, A.; Holstein, A.; Koch, F.; Krauss, W.; Li, H.; Lindig, S.; Linke, J.; Linsmeier, Ch.; López-Ruiz, P.; Maier, H.; Matějíček, Jiří; Mishra, T.P.; Muhammed, M.; Muñoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Opschoor, J.; Ordás, N.; Palacios, Y.; Pintsuk, G.; Pippan, R.; Reiser, J.; Riesch, J.; Roberts, S. G.; Romaner, L.; Rosiński, M.; Sanchez, M.; Schulmeyer, W.; Traxler, H.; Ureña, G.; van der Laan, J.G.; Veleva, L.; Wahlberg, S.; Walter, M.; Weber, T.; Weitkamp, T.; Wurster, S.; Yar, M.A.; You, J.H.; Zivelonghi, A.

    2013-01-01

    Roč. 432, 1-3 (2013), s. 482-500 ISSN 0022-3115 Institutional support: RVO:61389021 Keywords : tungsten * joining * composites * graded materials * fusion materials Subject RIV: JF - Nuclear Energetics Impact factor: 2.016, year: 2013 http://www.sciencedirect.com/science/article/pii/S0022311512004278

  3. Elaboration, physical and electrochemical characterizations of CO tolerant PEMFC anode materials. Study of platinum-molybdenum and platinum-tungsten alloys and composites; Elaborations et caracterisations electrochimiques et physiques de materiaux d'anode de PEMFC peu sensibles a l'empoisonnement par CO: etude d'alliages et de composites a base de platine-molybdene et de platine-tungstene

    Energy Technology Data Exchange (ETDEWEB)

    Peyrelade, E.

    2005-06-15

    PEMFC development is hindered by the CO poisoning ability of the anode platinum catalyst. It has been previously shown that the oxidation potential of carbon monoxide adsorbed on the platinum atoms can be lowered using specific Pt based catalysts, either metallic alloys or composites. The objective is then to realize a catalyst for which the CO oxidation is compatible with the working potential of a PEMFC anode. In our approach, to enhance the CO tolerance of platinum based catalyst supported on carbon, we studied platinum-tungsten and platinum-molybdenum alloys and platinum-metal oxide materials (Pt-WO{sub x} and Pt-MoO{sub x}). The platinum based alloys demonstrate a small effect of the second metal towards the oxidation of carbon monoxide. The platinum composites show a better tolerance to carbon monoxide. Electrochemical studies on both Pt-MoO{sub x} and Pt-WO{sub x} demonstrate the ability of the metal-oxides to promote the ability of Pt to oxidize CO at low potentials. However, chrono-amperometric tests reveal a bigger influence of the tungsten oxide. Complex chemistry reactions on the molybdenum oxide surface make it more difficult to observe. (author)

  4. Chemically deposited tungsten fibre-reinforced tungsten – The way to a mock-up for divertor applications

    Directory of Open Access Journals (Sweden)

    J. Riesch

    2016-12-01

    Full Text Available The development of advanced materials is essential for sophisticated energy systems like a future fusion reactor. Tungsten fibre-reinforced tungsten composites (Wf/W utilize extrinsic toughening mechanisms and therefore overcome the intrinsic brittleness of tungsten at low temperature and its sensitivity to operational embrittlement. This material has been successfully produced and tested during the last years and the focus is now put on the technological realisation for the use in plasma facing components of fusion devices. In this contribution, we present a way to utilize Wf/W composites for divertor applications by a fabrication route based on the chemical vapour deposition (CVD of tungsten. Mock-ups based on the ITER typical design can be realized by the implementation of Wf/W tiles. A concept based on a layered deposition approach allows the production of such tiles in the required geometry. One fibre layer after the other is positioned and ingrown into the W-matrix until the final sample size is reached. Charpy impact tests on these samples showed an increased fracture energy mainly due to the ductile deformation of the tungsten fibres. The use of Wf/W could broaden the operation temperature window of tungsten significantly and mitigate problems of deep cracking occurring typically in cyclic high heat flux loading. Textile techniques are utilized to optimise the tungsten wire positioning and process speed of preform production. A new device dedicated to the chemical deposition of W enhances significantly, the available machine time for processing and optimisation. Modelling shows that good deposition results are achievable by the use of a convectional flow and a directed temperature profile in an infiltration process.

  5. Surface composition of carburized tungsten trioxide and its catalytic activity

    International Nuclear Information System (INIS)

    Nakazawa, M.; Okamoto, H.

    1985-01-01

    The surface composition and electronic structure of carburized tungsten trioxide are investigated using x-ray photoelectron spectroscopy (XPS). The relationship between the surface composition and the catalytic activity for methanol electro-oxidation is clarified. The tungsten carbide concentration in the surface layer increases with the carburization time. The formation of tungsten carbide enhances the catalytic activity. On the other hand, the presence of free carbon or tungsten trioxide in the surface layer reduces the activity remarkably. It is also shown that, the higher the electronic density of states near the Fermi level, the higher the catalytic activity

  6. Validation of new ceramic materials from tungsten mining wastes. Mechanical properties

    International Nuclear Information System (INIS)

    Duran Suarez, J. A.; Montoya Herrera, J.; Silva, A. P.; Peralbo Cano, R.; Castro-Gomes, J. P.

    2014-01-01

    New ceramic materials obtained from tungsten mining wastes, from region of Beira Interior in Portugal, with no commercial use, responsible for landscape and environmental problems are presented. These preshaped new ceramic products, prepared in a wide thermal range (800 degree centigrade to 1300 degree centigrade) was evaluated by mechanical test, but also was characterized the starting raw materials: tungsten wastes mining and industrial kaolin. Results, which also include a mineralogical characterization of ceramic products and morphologic evaluation of neoformed by scanning electron microscopy, show firstly, the feasibility of converting a large number of these wastes in marketable ceramics. Thanks to the experimentation carried out, the ability to generate ceramic materials is emphasized, without the presence of mineral clay, due to the particular composition of these waste of mining with content of acid, neutral and basic oxides. (Author)

  7. Thermomechanical behaviour of two heterogeneous tungsten materials via 2D and 3D image-based FEM

    International Nuclear Information System (INIS)

    Zivelonghi, Alessandro

    2011-01-01

    An advanced numerical procedure based on imaging of the material microstructure (Image- Based Finite Element Method or Image-Based FEM) was extended and applied to model the thermomechanical behaviour of novel materials for fusion applications. Two tungsten based heterogeneous materials with different random morphologies have been chosen as challenging case studies: (1) a two-phase mixed ductile-brittle W/CuCr1Zr composite and (2) vacuum plasma-sprayed tungsten (VPS-W 75 vol.%), a porous coating system with complex dual-scale microstructure. Both materials are designed for the future fusion reactor DEMO: W/CuCr1Zr as main constituent of a layered functionally graded joint between plasma-facing armor and heat sink whereas VPS-W for covering the first wall of the reactor vessel in direct contact with the plasma. The primary focus of this work was to investigate the mesoscopic material behaviour and the linkage to the macroscopic response in modeling failure and heat-transfer. Particular care was taken in validating and integrating simulation findings with experimental inputs. The solution of the local thermomechanical behaviour directly on the real material microstructure enabled meaningful insights into the complex failure mechanism of both materials. For W/CuCr1Zr full macroscopic stress-strain curves including the softening and failure part could be simulated and compared with experimental ones at different temperatures, finding an overall good agreement. The comparison of simulated and experimental macroscopic behaviour of plastic deformation and rupture also showed the possibility to indirectly estimate micro- and mesoscale material parameters. Both heat conduction and elastic behaviour of VPS-W have been extensively investigated. New capabilities of the Image-Based FEM could be shown: decomposition of the heat transfer reduction as due to the individual morphological phases and back-fitting of the reduced stiffness at interlamellar boundaries. The

  8. Correlation of microstructure and compressive properties of amorphous matrix composites reinforced with tungsten continuous fibers or porous foams

    International Nuclear Information System (INIS)

    Son, Chang-Young; Lee, Sang-Bok; Lee, Sang-Kwan; Kim, Choongnyun Paul; Lee, Sunghak

    2010-01-01

    Zr-based amorphous alloy matrix composites reinforced with tungsten continuous fibers or porous foams were fabricated without pores or defects by liquid pressing process, and their microstructures and compressive properties were investigated. About 65-70 vol.% of tungsten reinforcements were homogeneously distributed inside the amorphous matrix. The compressive test results indicated that the tungsten-reinforced composites showed considerable plastic strain as the compressive load was sustained by fibers or foams. Particularly in the tungsten porous foam-reinforced composite, the compressive stress continued to increase according to the work hardening after the yielding, thereby leading to the maximum strength of 2764 MPa and the plastic strain of 39.4%. This dramatic increase in strength and ductility was attributed to the simultaneous and homogeneous deformation at tungsten foams and amorphous matrix since tungsten foams did not show anisotropy and tungsten/matrix interfaces were excellent.

  9. Mechanical and Thermal Properties of Individual Phases Formed in Sintered Tungsten-Steel Composites

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Nevrlá, Barbara; Čech, J.; Vilémová, Monika; Klevarová, V.; Haušild, P.

    2015-01-01

    Roč. 128, č. 4 (2015), s. 718-721 ISSN 0587-4246. [International Symposium on Physics of Material s /13./. Praha, 31.08.2014-04.09.2014] R&D Projects: GA ČR(CZ) GAP108/12/1872 Institutional support: RVO:61389021 Keywords : Composite * Tungsten * Steel * Fusion reactor material Subject RIV: JG - Metallurgy Impact factor: 0.525, year: 2015

  10. Evaluation of Shielding Performance for Newly Developed Composite Materials

    Science.gov (United States)

    Evans, Beren Richard

    This work details an investigation into the contributing factors behind the success of newly developed composite neutron shield materials. Monte Carlo simulation methods were utilized to assess the neutron shielding capabilities and secondary radiation production characteristics of aluminum boron carbide, tungsten boron carbide, bismuth borosilicate glass, and Metathene within various neutron energy spectra. Shielding performance and secondary radiation data suggested that tungsten boron carbide was the most effective composite material. An analysis of the macroscopic cross-section contributions from constituent materials and interaction mechanisms was then performed in an attempt to determine the reasons for tungsten boron carbide's success over the other investigated materials. This analysis determined that there was a positive correlation between a non-elastic interaction contribution towards a material's total cross-section and shielding performance within the thermal and epi-thermal energy regimes. This finding was assumed to be a result of the boron-10 absorption reaction. The analysis also determined that within the faster energy regions, materials featuring higher non-elastic interaction contributions were comparable to those exhibiting primarily elastic scattering via low Z elements. This allowed for the conclusion that composite shield success within higher energy neutron spectra does not necessitate the use elastic scattering via low Z elements. These findings suggest that the inclusion of materials featuring high thermal absorption properties is more critical to composite neutron shield performance than the presence of constituent materials more inclined to maximize elastic scattering energy loss.

  11. Tungsten/copper composite deposits produced by a cold spray

    International Nuclear Information System (INIS)

    Kang, Hyun-Ki; Kang, Suk Bong

    2003-01-01

    An agglomerated tungsten/copper composite powder was both cold sprayed and plasma sprayed onto a mild steel substrate for electronic package applications. Most pores resulting from the spraying were found in the vicinity of the tungsten-rich regions of the final product. The levels of porosity varied with the amount of tungsten present. No copper oxidation was found at the cold-sprayed deposit, but relatively high copper oxidation was observed at the plasma-sprayed deposit

  12. Development of tungsten coatings for the corrosion protection of alumina-based ceramics

    International Nuclear Information System (INIS)

    Arons, R.M.; Dusek, J.T.; Hafstrom, J.W.

    1979-01-01

    A means of applying tungsten coatings to an alumina based ceramic is described. A slurry of pure tungsten was prepared and applied by brush coating or slip casting on the alumina-3 wt % Yt small crucible. The composite was fired and a very dense ceramic crucible with a crack free tungsten coating was produced

  13. Review on the explosive consolidation methods to fabricate tungsten based PFMs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuming, E-mail: wangshuming@ustb.edu.cn; Sun, Chongxiao; Guo, Wenhao; Yan, Qingzhi; Zhou, Zhangjian; Zhang, Yingchun; Shen, Weiping; Ge, Changchun

    2014-12-15

    Tungsten is one of the best candidates for plasma-facing materials in the fusion reactors, owing to its many unique properties. In the development of tungsten-based Plasma Facing Materials/Components (PFMs/PFCs), materials scientists have explored many different, innovative preparation and processing routes to meet the requirement of International Thermonuclear Experimental Reactor (ITER). Some explosive consolidation technology intrinsic characteristics, which make it suitable for powder metallurgy (powders consolidation) and PFMs production, are the high pressure processing, highly short heating time and can be considered as a highly competitive green technology. In this work, an overview of explosive consolidation techniques applied to fabricate tungsten-based PFMs is presented. Emphasis is given to describe the main characteristics and potentialities of the explosive sintering, explosive consolidation techniques. The aspects presented and discussed in this paper indicate the explosive consolidation processes as a promising and competitive technology for tungsten-based PFMs processing.

  14. Tungsten and tungsten alloys by powder metallurgy

    International Nuclear Information System (INIS)

    Belhadjhamida, A.; German, R.M.

    1991-01-01

    Tungsten has a historical link with powder metallurgy and there is continued progress in expanding the available compositions and processing options. This paper starts with an introduction to the history of tungsten powder metallurgy and use this as a basis for analyzing some of the current trends. The literature base in tungsten processing is expanding and includes new alloys, microstructures, and processing routes. A few examples will be emphasize here to produce a frame work for this program, including description of sintering mechanisms for tungsten, liquid phase sintering advances, hot consolidation fundamentals, and options for complex shaping using powder injection modeling. For this base, subsequent presentations will expand on these fundamental advances

  15. Hydrogen permeation properties of plasma-sprayed tungsten

    International Nuclear Information System (INIS)

    Anderl, R.A.; Pawelko, R.J.; Hankins, M.R.; Longhurst, G.R.; Neiser, R.A.

    1994-01-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D + 3 ion beam with fluxes of similar 6.5x10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity. ((orig.))

  16. Hydrogen permeation properties of plasma-sprayed tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Pawelko, R.J. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Hankins, M.R. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Longhurst, G.R. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Neiser, R.A. (Sandia National Laboratories, Albuquerque, NM 87185 (United States))

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D[sup +][sub 3] ion beam with fluxes of similar 6.5x10[sup 19] D/m[sup 2] s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity. ((orig.))

  17. Application of tungsten-fibre-reinforced copper matrix composites to a high-heat-flux component: A design study by dual scale finite element analysis

    International Nuclear Information System (INIS)

    Jeong-Ha You

    2006-01-01

    According to the European Power Plant Conceptual Study, actively cooled tungsten mono-block is one of the divertor design options for fusion reactors. In this study the coolant tube acts as a heat sink and the tungsten block as plasma-facing armour. A key material issue here is how to achieve high temperature strength and high heat conductivity of the heat sink tube simultaneously. Copper matrix composite reinforced with continuous strong fibres has been considered as a candidate material for heat sink of high-heat-flux components. Refractory tungsten wire is a promising reinforcement material due to its high strength, winding flexibility and good interfacial wetting with copper. We studied the applicability of tungsten-fibre-reinforced copper matrix composite heat sink tubes for the tungsten mono-block divertor by means of dual-scale finite element analysis. Thermo-elasto-plastic micro-mechanics homogenisation technique was applied. A heat flux of 15 MW/m 2 with cooling water temperature of 320 o C was considered. Effective stress-free temperature was assumed to be 500 o C. Between the tungsten block and the composite heat sink tube interlayer (1 mm thick) of soft Cu was inserted. The finite element analysis yields the following results: The predicted maximum temperature at steady state is 1223 o C at the surface and 562 o C at the interface between tube and copper layer. On the macroscopic scale, residual stress is generated during fabrication due to differences in thermal expansion coefficients of the materials. Strong compressive stress occurs in the tungsten block around the tube while weak tensile stress is present in the interlayer. The local and global probability of brittle failure of the tungsten block was also estimated using the probabilistic failure theories. The thermal stresses are significantly decreased upon subsequent heat flux loading. Resolving the composite stress on microscopic scale yields a maximum fibre axial stress of 3000 MPa after

  18. Performance ratio hardness characteristics polystyrene-metal composite materials

    International Nuclear Information System (INIS)

    Klepikov, V.F.; Prokhorenko, E.M.; Lytvynenko, V.V.; Zakharchenko, A.A.; Hazhmuradov, M.A.

    2015-01-01

    The methods of measuring the hardness of layered polystyrene-metallic composite materials. It is proposed to use powder-like tungsten and powder-like steel as radiation-protective layer. A measurement of the hardness of composites of different composition, and given its dependence on the particle size and their form. The possibility of increasing the hardness of the composites reinforced with metallic additives. Radiation-protective characteristics were calculated for the studied species of composite materials. Influence of the quantitative composition of the metal components is studied on the change of the absorbed dose of gamma radiation

  19. Hydrogen permeation properties of plasma-sprayed tungsten*1

    Science.gov (United States)

    Anderl, R. A.; Pawelko, R. J.; Hankins, M. R.; Longhurst, G. R.; Neiser, R. A.

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D 3+ ion beam with fluxes of ˜6.5 × 10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity.

  20. Recent progress in R and D on tungsten alloys for divertor structural and plasma facing materials

    Energy Technology Data Exchange (ETDEWEB)

    Wurster, S., E-mail: stefan.wurster@oeaw.ac.at [Erich Schmid Institute of Materials Science, Austria and Association EURATOM-ÖAW, Jahnstrasse 12, A-8700 Leoben (Austria); Baluc, N.; Battabyal, M. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Villigen PSI (Switzerland); Crosby, T. [University of California, Mechanical and Aerospace Engineering Department, Los Angeles, CA (United States); Du, J. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); García-Rosales, C. [Centro de Estudios e Investigaciones Técnicas de Gipuzkoa (CEIT), San Sebastián (Spain); Hasegawa, A. [Department of Quantum Science and Energy Engineering, Faculty of Engineering, Tohoku University (Japan); Hoffmann, A. [Plansee Metall GmbH, Reutte (Austria); Kimura, A. [Institute of Advanced Energy, Kyoto University (Japan); Kurishita, H. [International Research Center for Nuclear Material Science, Institute for Materials Research, Tohoku University (Japan); Kurtz, R.J. [Pacific Northwest National Laboratory, Richland, WA (United States); Li, H. [Erich Schmid Institute of Materials Science, Austria and Association EURATOM-ÖAW, Jahnstrasse 12, A-8700 Leoben (Austria); Chair of Atomistic Modelling and Design of Materials, University of Leoben, Leoben (Austria); Noh, S.; Reiser, J. [Karlsruhe Institute of Technology, Karlsruhe (Germany); Riesch, J. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Rieth, M. [Karlsruhe Institute of Technology, Karlsruhe (Germany); Setyawan, W. [Pacific Northwest National Laboratory, Richland, WA (United States); Walter, M. [Karlsruhe Institute of Technology, Karlsruhe (Germany); You, J.-H. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); and others

    2013-11-15

    Tungsten materials are candidates for plasma-facing components for the International Thermonuclear Experimental Reactor and the DEMOnstration power plant because of their superior thermophysical properties. Because these materials are not common structural materials like steels, knowledge and strategies to improve the properties are still under development. These strategies discussed here, include new alloying approaches and microstructural stabilization by oxide dispersion strengthened as well as TiC stabilized tungsten based materials. The fracture behavior is improved by using tungsten laminated and tungsten wire reinforced materials. Material development is accompanied by neutron irradiation campaigns. Self-passivation, which is essential in case of loss-of-coolant accidents for plasma facing materials, can be achieved by certain amounts of chromium and titanium. Furthermore, modeling and computer simulation on the influence of alloying elements and heat loading and helium bombardment will be presented.

  1. Nanocellulose based polymer composite for acoustical materials

    Science.gov (United States)

    Farid, Mohammad; Purniawan, Agung; Susanti, Diah; Priyono, Slamet; Ardhyananta, Hosta; Rahmasita, Mutia E.

    2018-04-01

    Natural fibers are biodegradable materials that are innovatively and widely used for composite reinforcement in automotive components. Nanocellulose derived from natural fibers oil palm empty bunches have properties that are remarkable for use as a composite reinforcement. However, there have not been many investigations related to the use of nanocellulose-based composites for wideband sound absorption materials. The specimens of nanocellulose-based polyester composite were prepared using a spray method. An impedance tube method was used to measure the sound absorption coefficient of this composite material. To reveal the characteristics of the nanocellulose-based polyester composite material, SEM (scanning electron microscope), TEM (Transmission Electron Microscope), FTIR (Fourier Transform Infra Red), TGA (Thermogravimetric Analysis), and density tests were performed. Sound absorption test results showed the average value of sound absorption coefficient of 0.36 to 0,46 for frequency between 500 and 4000 Hz indicating that this nanocellulose-based polyester composite materials had a tendency to wideband sound absorption materials and potentially used as automotive interior materials.

  2. Synthesis, Consolidation and Characterization of Sol-gel Derived Tantalum-Tungsten Oxide Thermite Composites

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, O [Univ. of California, Davis, CA (United States)

    2010-06-01

    Energetic composite powders consisting of sol-gel (SG) derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The SG derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO3) energetic composite was consolidated to a density of 9.17 g·cm-3 or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy.

  3. Wood-based composite materials : panel products, glued-laminated timber, structural composite lumber, and wood-nonwood composite materials

    Science.gov (United States)

    Nicole M. Stark; Zhiyong Cai; Charles Carll

    2010-01-01

    This chapter gives an overview of the general types and composition of wood-based composite products and the materials and processes used to manufacture them. It describes conventional wood-based composite panels and structural composite materials intended for general construction, interior use, or both. This chapter also describes wood–nonwood composites. Mechanical...

  4. Spark plasma sintering of pure and doped tungsten as plasma facing material

    Science.gov (United States)

    Autissier, E.; Richou, M.; Minier, L.; Naimi, F.; Pintsuk, G.; Bernard, F.

    2014-04-01

    In the current water cooled divertor concept, tungsten is an armour material and CuCrZr is a structural material. In this work, a fabrication route via a powder metallurgy process such as spark plasma sintering is proposed to fully control the microstructure of W and W composites. The effect of chemical composition (additives) and the powder grain size was investigated. To reduce the sintering temperature, W powders doped with a nano-oxide dispersion of Y2O3 are used. Consequently, the sintering temperature for W-oxide dispersed strengthened (1800 °C) is lower than for pure W powder. Edge localized mode tests were performed on pure W and compared to other preparation techniques and showed promising results.

  5. Room temperature NO2-sensing properties of porous silicon/tungsten oxide nanorods composite

    International Nuclear Information System (INIS)

    Wei, Yulong; Hu, Ming; Wang, Dengfeng; Zhang, Weiyi; Qin, Yuxiang

    2015-01-01

    Highlights: • Porous silicon/WO 3 nanorods composite is synthesized via hydrothermal method. • The morphology of WO 3 nanorods depends on the amount of oxalic acid (pH value). • The sensor can detect ppb level NO 2 at room temperature. - Abstract: One-dimensional single crystalline WO 3 nanorods have been successfully synthesized onto the porous silicon substrates by a seed-induced hydrothermal method. The controlled morphology of porous silicon/tungsten oxide nanorods composite was obtained by using oxalic acid as an organic inducer. The reaction was carried out at 180 °C for 2 h. The influence of oxalic acid (pH value) on the morphology of porous silicon/tungsten oxide nanorods composite was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The NO 2 -sensing properties of the sensor based on porous silicon/tungsten oxide nanorods composite were investigated at different temperatures ranging from room temperature (∼25 °C) to 300 °C. At room temperature, the sensor behaved as a typical p-type semiconductor and exhibited high gas response, good repeatability and excellent selectivity characteristics toward NO 2 gas due to its high specific surface area, special structure, and large amounts of oxygen vacancies

  6. Study of tungsten based positron moderators

    International Nuclear Information System (INIS)

    Lucio, O.G. de; Pérez, M.; Mendoza, U.; Morales, J.G.; Cruz, J.C.; DuBois, R.D.

    2015-01-01

    Positrons and how they interact with matter has a growing interest in many fields. Most of their uses require the production of slow positron beams with a well-defined energy, but since these particles are usually generated by means of a radioactive source, they are fast and with a broad distribution of energies. For this reason it is necessary to moderate them to lower energies via inelastic collisions. Then, they can be accelerated to the desired energies. This requires the use of a moderator. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency and relatively low cost. In this work we present different methods of producing transmission tungsten-based moderators, with particular interest in a combination of tungsten thin foils and grids. We also show results about the characterization of these moderators by ion beam analysis and microscopy techniques along with their relative moderation efficiencies

  7. Study of tungsten based positron moderators

    Energy Technology Data Exchange (ETDEWEB)

    Lucio, O.G. de; Pérez, M.; Mendoza, U.; Morales, J.G.; Cruz, J.C. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México DF (Mexico); DuBois, R.D. [Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2015-07-01

    Positrons and how they interact with matter has a growing interest in many fields. Most of their uses require the production of slow positron beams with a well-defined energy, but since these particles are usually generated by means of a radioactive source, they are fast and with a broad distribution of energies. For this reason it is necessary to moderate them to lower energies via inelastic collisions. Then, they can be accelerated to the desired energies. This requires the use of a moderator. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency and relatively low cost. In this work we present different methods of producing transmission tungsten-based moderators, with particular interest in a combination of tungsten thin foils and grids. We also show results about the characterization of these moderators by ion beam analysis and microscopy techniques along with their relative moderation efficiencies.

  8. Performance of tungsten-based materials and components under ITER and DEMO relevant steady-state thermal loads

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, Guillaume Henri

    2011-07-01

    In nuclear fusion devices the surfaces directly facing the plasma are irradiated with high energy fluxes. The most intense loads are deposited on the divertor located at the bottom of the plasma chamber, which has to withstand continuous heat loads with a power density of several MW . m{sup -2} as well as transient events. These are much shorter (in the millisecond and sub-millisecond regime) but deposit a higher power densities of a few GW . m{sup -2}. The search for materials that can survive to those severe loading conditions led to the choice of tungsten which possesses advantageous attributes such as a high melting point, high thermal conductivity, low thermal expansion and an acceptable activation rate. These properties made it an attractive and promising candidate as armor material for divertors of future fusion devices such as ITER and DEMO. For the DEMO divertor, conceptual studies on helium-cooled tungsten plasma-facing components were performed. The concept was realized and tested under DEMO specific cyclic thermal loads. The examination of the plasma-facing components by microstructural analyses before and after thermal loading enabled to determine the mechanisms for components failure. Among others, it clearly showed the impact of the tungsten grade and the thermal stress induced crack formation on the performance of the armor material and in general of the plasma-facing component under high heat loads. A tungsten qualification program was launched to study the behaviour of various tungsten grades, in particular the crack formation, under fusion relevant steady-state thermal loads. In total, seven commercially available materials from two industrial suppliers were investigated. As the material's thermal response is strongly related to its microstructure, this program comprised different material geometries and manufacturing technologies. It also included the utilization of an actively cooled specimen holder which has been designed to perform

  9. Performance of tungsten-based materials and components under ITER and DEMO relevant steady-state thermal loads

    International Nuclear Information System (INIS)

    Ritz, Guillaume Henri

    2011-01-01

    In nuclear fusion devices the surfaces directly facing the plasma are irradiated with high energy fluxes. The most intense loads are deposited on the divertor located at the bottom of the plasma chamber, which has to withstand continuous heat loads with a power density of several MW . m -2 as well as transient events. These are much shorter (in the millisecond and sub-millisecond regime) but deposit a higher power densities of a few GW . m -2 . The search for materials that can survive to those severe loading conditions led to the choice of tungsten which possesses advantageous attributes such as a high melting point, high thermal conductivity, low thermal expansion and an acceptable activation rate. These properties made it an attractive and promising candidate as armor material for divertors of future fusion devices such as ITER and DEMO. For the DEMO divertor, conceptual studies on helium-cooled tungsten plasma-facing components were performed. The concept was realized and tested under DEMO specific cyclic thermal loads. The examination of the plasma-facing components by microstructural analyses before and after thermal loading enabled to determine the mechanisms for components failure. Among others, it clearly showed the impact of the tungsten grade and the thermal stress induced crack formation on the performance of the armor material and in general of the plasma-facing component under high heat loads. A tungsten qualification program was launched to study the behaviour of various tungsten grades, in particular the crack formation, under fusion relevant steady-state thermal loads. In total, seven commercially available materials from two industrial suppliers were investigated. As the material's thermal response is strongly related to its microstructure, this program comprised different material geometries and manufacturing technologies. It also included the utilization of an actively cooled specimen holder which has been designed to perform sophisticated

  10. Synergistic effect of tungsten disulfide and cenosphere combination on braking performance of composite friction materials

    International Nuclear Information System (INIS)

    Kachhap, Rakesh K.; Satapathy, Bhabani K.

    2014-01-01

    Graphical abstract: Graphical abstract showing correlation between enhanced frictional stability and enhanced visc-oelastic energy dissipation. - Highlights: • Developed new class of brake composites based on WS 2 and cenosphere. • Synergistic effect of WS 2 and cenosphere for enhanced friction stability. • Wear surface morphology revealed composition specific topography. • Friction fade-recovery performance remained optimal. - Abstract: Tungsten disulfide (WS 2 /TDS) based cenosphere (Cn) filled friction composites with varying cenosphere to WS 2 ratio (Cn/TDS) were fabricated by compression molding of phenolic resin based dry formulation mix and evaluated for their thermal, thermo-mechanical and tribological performances. The loss and revival of braking friction effectiveness due to heating or cooling of the disc termed as fade and recovery performance have been characterized on a Krauss friction testing machine following ECE R-90 industrial standards. The fade performance remained dependent on Cn/TDS, where enhanced fading could be correlated to lower Cn/TDS value accompanied with broader frictional fluctuations i.e. μ max –μ min . A decrease in the frictional-recovery response ensued with increase in Cn/TDS. Dynamic mechanical analysis revealed an increase in storage modulus till 2.5 wt.% of TDS loading followed by consistent decrease whereas two distinct peaks in loss modulus plots that are composition independent have been observed. Scanning electron microscopy revealed the worn surface morphology associated with the dynamics of contact patches formation and deformation vis-a-vis friction layer formation as integrally responsible for the observed friction performance. Energy dispersive analysis of X-rays (EDX) enabled compositional analysis of the friction layer viz. Fe, W, Si, and Al content which may have a mechanistic role in controlling phenomena like, disc rubbing, lubricity, porosity, and hardness of friction layer formed during braking

  11. Production And Characterization Of Tungsten-Based Positron Moderators

    International Nuclear Information System (INIS)

    Lucio, O. G. de; Morales, J. G.; Cruz-Manjarrez, H.

    2011-01-01

    Experiments of interest in Atomic Physics require production of well-defined low-energy positron beams through a moderation process of high-energy positrons, which can be produced by either the use of a radioactive source or by accelerator based pair production process. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency, high work function and relatively low cost. In this work we present different methods to produce tungsten-based candidate moderators in a variety of shapes. We also present results from characterizing these candidate moderators by ion beam analysis and microscopy techniques.

  12. Study of mechanoactivation of tungsten-molybdenum containing raw material in gas-jet mill

    International Nuclear Information System (INIS)

    Agnokov, T.Sh.; Gorobets, L.Zh.; Martynenko, V.P.; Fedorov, Yu.P.; Krakhmaleva, M.T.; Sokolova, L.A.

    1988-01-01

    Investigation is aimed at intensifying autoclave-soda leaching of tungsten-molybdenum-containing raw material. Connection of reactivity and physicochemical properties of crushed tungsten-molybdenum-containing products under different gas-jet crushing parameters is investigated. Optimal technological indices of hydrometallurgical reprocessing of tungsten-molybdenum-containing raw materials and products processed by gas-jet technique are given. The results obtained point out to perspectiveness of applying gas-jet technique of thermomechanical processing for intensifying and increasing the quality of tungsten- and molybdenum-containing raw materials and products of hydrometallurgical production

  13. Reinforcement of Conducting Silver-based Materials

    Directory of Open Access Journals (Sweden)

    Heike JUNG

    2014-09-01

    Full Text Available Silver is a well-known material in the field of contact materials because of its high electrical and thermal conductivity. However, due to its bad mechanical and switching properties, silver alloys or reinforcements of the ductile silver matrix are required. Different reinforcements, e. g. tungsten, tungsten carbide, nickel, cadmium oxide or tin oxide, are used in different sectors of switches. To reach an optimal distribution of these reinforcements, various manufacturing techniques (e. g. powder blending, preform infiltration, wet-chemical methods, internal oxidation are being used for the production of these contact materials. Each of these manufacturing routes offers different advantages and disadvantages. The mechanical alloying process displays a successful and efficient method to produce particle-reinforced metal-matrix composite powders. This contribution presents the obtained fine disperse microstructure of tungsten-particle-reinforced silver composite powders produced by the mechanical alloying process and displays this technique as possible route to provide feedstock powders for subsequent consolidation processes. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4889

  14. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    Science.gov (United States)

    Rieth, M.; Dudarev, S. L.; Gonzalez de Vicente, S. M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D. E. J.; Balden, M.; Baluc, N.; Barthe, M.-F.; Basuki, W. W.; Battabyal, M.; Becquart, C. S.; Blagoeva, D.; Boldyryeva, H.; Brinkmann, J.; Celino, M.; Ciupinski, L.; Correia, J. B.; De Backer, A.; Domain, C.; Gaganidze, E.; García-Rosales, C.; Gibson, J.; Gilbert, M. R.; Giusepponi, S.; Gludovatz, B.; Greuner, H.; Heinola, K.; Höschen, T.; Hoffmann, A.; Holstein, N.; Koch, F.; Krauss, W.; Li, H.; Lindig, S.; Linke, J.; Linsmeier, Ch.; López-Ruiz, P.; Maier, H.; Matejicek, J.; Mishra, T. P.; Muhammed, M.; Muñoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Opschoor, J.; Ordás, N.; Palacios, T.; Pintsuk, G.; Pippan, R.; Reiser, J.; Riesch, J.; Roberts, S. G.; Romaner, L.; Rosiński, M.; Sanchez, M.; Schulmeyer, W.; Traxler, H.; Ureña, A.; van der Laan, J. G.; Veleva, L.; Wahlberg, S.; Walter, M.; Weber, T.; Weitkamp, T.; Wurster, S.; Yar, M. A.; You, J. H.; Zivelonghi, A.

    2013-01-01

    The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme's main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.

  15. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    International Nuclear Information System (INIS)

    Rieth, M.; Dudarev, S.L.; Gonzalez de Vicente, S.M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D.E.J.; Balden, M.; Baluc, N.; Barthe, M.-F.; Basuki, W.W.; Battabyal, M.; Becquart, C.S.; Blagoeva, D.; Boldyryeva, H.

    2013-01-01

    The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme’s main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.

  16. Tensile behavior of unnotched and notched tungsten--copper laminar composites

    International Nuclear Information System (INIS)

    Hoffman, C.A.

    1976-06-01

    Relations were studied between the tensile strengths of unnotched and of notched, and elastic moduli of unnotched laminar sheet or foil composites and the amounts of reinforcement. Tungsten was used as the reinforcement and copper as the matrix, and the tests were run at room temperature. Three thicknesses of tungsten (i.e., 0.00254, 0.0127, and 0.0254 cm (0.001, 0.005, and 0.010 in) were used, and the nominal volume fraction of tungsten was varied from about 0.05 to 0.95. It was found that the tensile strength of the unnotched specimens could be related to the amount of reinforcement, as could the elastic moduli, and that these values could be predicted by use of the rule of mixtures. The tensile strengths of the notched laminar composites could be predicted by use of the rule of mixtures using strengths for notched constituents, provided notch effects did not predominate. (Author)

  17. Behavior and microstructural changes in different tungsten-based materials under pulsed plasma loading

    Czech Academy of Sciences Publication Activity Database

    Vilémová, Monika; Pala, Zdeněk; Jäger, Aleš; Matějíček, Jiří; Chernyshova, M.; Kowalska-Strzeciwilk, E.; Gribkov, V. A.; Janata, Marek

    2016-01-01

    Roč. 9, December (2016), s. 123-127 ISSN 2352-1791. [International Conference of Fusion Reactor Material (ICFRM-17) /17./. Aachen, 11.10.2015-16.10.2015] R&D Projects: GA ČR(CZ) GA14-12837S Institutional support: RVO:61389021 ; RVO:68378271 Keywords : ODS tungsten * yttrium oxide * porosity * phase stability * monoclinic phase * plasma focus * damage * erosion Subject RIV: JJ - Other Materials; JJ - Other Materials (FZU-D) http://dx.doi.org/10.1016/j.nme.2016.06.004

  18. Tungsten fibre-reinforced composites for advanced plasma facing components

    OpenAIRE

    Neu, R.; Riesch, J.; Müller, A.v.; Balden, M.; Coenen, J.W.; Gietl, H.; Höschen, T.; Li, M.; Wurster, S.; You, J.-H.

    2016-01-01

    The European Fusion Roadmap foresees water cooled plasma facing components in a first DEMO design in order to provide enough margin for the cooling capacity and to only moderately extrapolate the technology which was developed and tested for ITER. In order to make best use of the water cooling concept copper (Cu) and copper-chromium-zirconium alloy (CuCrZr) are envisaged as heat sink whereas as armour tungsten (W) based materials will be used. Combining both materials in a high heat flux comp...

  19. Effect of carbide particles on the ablation properties of tungsten composites

    International Nuclear Information System (INIS)

    Song Guiming; Zhou Yu; Wang Yujin

    2003-01-01

    The high temperature ablation behavior of tungsten composites containing carbides produced by vacuum hot pressing is studied as a function of reinforcement chemistry (ZrC and TiC) and content using a self-made oxyacetylene ablation equipment. A dynamic responding multiwavelength pyrometer was employed to measure the temperature of the ablation surface, and a thermocouple was employed to measure the temperature of the back surface during the time that a specimen was being ablated. The mass and linear ablation rates are lower in composites containing ZrC, decreasing with increasing particle content in both composites system. The values of the mass and linear ablation rates were in the order from high to low: W>30TiC/W>40TiC/W>30ZrC/W>40ZrC/W (30TiC/W stands for 30 vol.% TiC particle content in the W matrix, the same below). The important temperature curves of the ablation surfaces of specimens were successfully detected online. Ablated surfaces and vertical sections of the specimens were investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Thermochemical oxidation of tungsten, TiC, and ZrC was the main ablation mechanism of ZrC/W and TiC/W composites. These ablation behaviors are discussed based on the thermophysical and chemical properties of both the composite systems

  20. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Rieth, M., E-mail: Michael.rieth@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Dudarev, S.L. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Gonzalez de Vicente, S.M. [EFDA-Close Support Unit, Garching (Germany); Aktaa, J. [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Ahlgren, T. [University of Helsinki, Department of Physics, Helsinki (Finland); Antusch, S. [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Armstrong, D.E.J. [Department of Materials, University of Oxford (United Kingdom); Balden, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Baluc, N. [Centre de Recherches en Physique des Plasmas, CRPP EPFL - Materials, 5232 Villigen/PSI (Switzerland); Barthe, M.-F. [CNRS, UPR3079 CEMHTI, 1D Avenue, de la Recherche Scientifique, 45071 Orleans cedex 2 (France); Universite d' Orleans, Polytech ou Faculte des Sciences, Avenue du Parc Floral, BP 6749, 45067 Orleans cedex 2 (France); Basuki, W.W. [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Battabyal, M. [Centre de Recherches en Physique des Plasmas, CRPP EPFL - Materials, 5232 Villigen/PSI (Switzerland); Becquart, C.S. [Unite Materiaux et Transformations, UMR 8207, 59655 Villeneuve d' Ascq (France); Blagoeva, D. [NRG, Nuclear Research and consultancy Group, Petten (Netherlands); Boldyryeva, H. [Institute of Plasma Physics, Za Slovankou 3, 18200 Praha (Czech Republic); and others

    2013-01-15

    The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme's main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.

  1. Effects of phosphourus addition on the physical properties and surface condition of tungsten-copper composites

    International Nuclear Information System (INIS)

    Akiyoshi, N.; Nakada, K.; Nakayama, M.; Kohda, K.

    2001-01-01

    Tungsten-copper composites containing a small amount of phosphorus prepared using conventional P/M method. Cu 3 P powder was used as phosphorous source. The effects of phosphorus addition on the physical properties and the surface condition were investigated and the existing form of phosphorus was specified on the tungsten-copper composites The results are summarized as follows. The tungsten-copper composite containing 10 % copper, for example, demonstrated optimum thermal conductivity at the phosphorus addition of 0.02 %. The density of the composites was almost 100 % and the surface of the sintered body was flat and smooth after sintering at a temperature between 1100 and 1150 o C. It was shown that phosphorus exists as Co 2 P. (author)

  2. CONSTRUCTION MATERIALS FROM WASTE PRODUCTS

    Directory of Open Access Journals (Sweden)

    Тахира Далиевна Сидикова

    2016-02-01

    Full Text Available We have studied the physical and chemical processes occurring during the thermal treatment of ceramic masses on the basis of compositions of natural raw materials and waste processing facilities. The study of structures of ceramic samples species has shown different types of crystalline phases.The results have shown that the waste of Kaytashsky tungsten-molybdenum ores (KVMR may be used as the main raw material to develop new compositions for ceramic materials. The optimal compositions of ceramic tiles for the masses and technological parameters of obtaining sintered materials based on the compositions of kaolin fireclay KVMR have been developed.It has been found that the use of the waste of Kaytashskoy tungsten-molybdenum ore (KVMR in the composition of the ceramic material will expand the raw material base of ceramic production, reduce the roasting temperature and the cost of ceramic materials and products.

  3. Developments toward the use of tungsten as armour material in plasma facing components promoted by Euratom-CEA Association

    International Nuclear Information System (INIS)

    Mitteau, R.; Missiaen, J.M.; Brustolin, P.

    2006-01-01

    Tungsten is increasingly considered as a prime candidate armour material facing the plasma in fusion experiments (ASDEX, JET, ITER). This material is, however, a challenge for the engineers due to its brittleness at room temperature. Its bonding to structural or cooled substrates is a critical issue. The Euratom-CEA Association promotes the development of evolutionary techniques aiming to produce high performance assemblies between tungsten and various substrates. These are 1) functionally graded tungsten to copper, 2) direct electron beam welding of tungsten to Mo-alloy TZM and 3) the characterisation of tungsten coatings deposited on carbon fibre composite by high energy deposition processes. 1) A functionally graded material eliminates the singular point which weakens the heterogeneous assembly, reducing the stresses and allowing a better behaviour. The sintering of submicronic W-Cu powders is investigated. The green shape is processed from W-CuO powder, which is reduced by a hydrogen flow. The compaction and sintering of layers of various compositions (10 to 30 % Cu) produces an assembly (density of ∼ 94%) with a good cohesion. However, the gradient is not effectively controlled, because of the migration of melt copper during the sintering. Future work aims to improve the process by using spark or microwave assisted sintering. 2) Electron beam welding of Mo-alloy TZM is investigated, to produce high temperature components required by radiation cooled PFCs. They require only mechanical properties and no vacuum sealing. The driving line is to use simple tungsten shapes to reduce the milling cost. In spite of low weldable properties of the refractory alloys, a good bonding up to a depth of 5 mm is obtained. Hardness measurements show that the melt area and the heat affected zone are harder than TZM, the weakest materials at 230 Hv. Quench tests in water from up to 2000 o C are done without apparent crack formation. 3) Finally, characterisation techniques are

  4. Incorporation of tungsten metal fibers in a metal and ceramic matrix

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Vokáč, M.; Kolísko, J.; Pokorný, P.; Kubatík, Tomáš František

    2017-01-01

    Roč. 56, 1-2 (2017), s. 79-82 ISSN 0543-5846 Institutional support: RVO:61389021 Keywords : tungsten wires * tungsten fibers * plasma spraying * metallic coatings * ceramic coatings Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics http://hrcak.srce.hr/168890

  5. Sputtering/redeposition analysis of alkali-based tungsten composites for limiter/divertor applications

    International Nuclear Information System (INIS)

    DeWald, A.B.; Krauss, A.R.; Gruen, D.M.; Valentine, M.G.

    1986-07-01

    Composites of porous tungsten infiltrated with alkali metal-bearing alloys have been projected as a means of reducing plasma impurities and sputter erosion in magnetic fusion devices. Self-sustaining alkali metal overlayers have been observed to inhibit erosion of the underlying structural substrate by 2X to 10X. The alkali metal itself, insofar as it sputters as a secondary ion, is trapped at the surface by sheath potential and tangential magnetic fields. Self-regeneration of the alkali metal coating is obtained by thermal and radiation-induced segregation from the bulk

  6. Divertor materials for ITER - Tungsten and carbon/carbon composite behavior under coupled ionic irradiation and high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Raunier, S.; Balat-Pichelin, M.; Sans, J.L.; Hernandez, D. [Laboratoire PROMES-CNRS, Laboratoire Procedes, Materiaux et Energie Solaire, 7 rue du Four Solaire, 66120 Font-Romeu Odeillo (France)

    2007-07-01

    Full text of publication follows: In the frame of the International Thermonuclear Experimental Reactor ITER, the physical-chemical characterization of plasma-facing components (divertor and structural materials) is essential because they are subjected to simultaneous high thermal and ionic fluxes. In this paper, an experimental and theoretical study of the physical-chemical behavior of carbon/carbon composite and tungsten (materials for ITER divertor) under extreme conditions is performed. The simulation of the interaction of hydrogen ions with the material, the theoretical study of physical erosion (TRIM and TRIDYN codes) and the chemical erosion (GEMINI code) are carried out. The conditions of nominal or accidental mode that can occur during the operation of the reactor (high temperature 1300 - 2500 K, high vacuum, H{sup +} ionic flux with different energies) are experimentally simulated. In this work, we have studied the material degradation, the mass loss kinetics, the characterization of the emitted neutral and charged species of heated and both heated and irradiated materials, and the determination of the thermo-radiative properties versus time. This study, done in collaboration with CEA Cadarache, is realized using the MEDIASE experimental device (Moyen d'Essai et de Diagnostic en Ambiance Solaire Extreme) located at the focus of the 1000 kW solar furnace of PROMES-CNRS laboratory in Odeillo. Material characterization pre- and post-processing is performed with classical techniques as SEM, XRD and XPS and also by measuring the BRDF (Bidirectional Reflectivity Diffusion Function). (authors)

  7. Divertor materials for ITER - Tungsten and carbon/carbon composite behavior under coupled ionic irradiation and high temperature

    International Nuclear Information System (INIS)

    Raunier, S.; Balat-Pichelin, M.; Sans, J.L.; Hernandez, D.

    2007-01-01

    Full text of publication follows: In the frame of the International Thermonuclear Experimental Reactor ITER, the physical-chemical characterization of plasma-facing components (divertor and structural materials) is essential because they are subjected to simultaneous high thermal and ionic fluxes. In this paper, an experimental and theoretical study of the physical-chemical behavior of carbon/carbon composite and tungsten (materials for ITER divertor) under extreme conditions is performed. The simulation of the interaction of hydrogen ions with the material, the theoretical study of physical erosion (TRIM and TRIDYN codes) and the chemical erosion (GEMINI code) are carried out. The conditions of nominal or accidental mode that can occur during the operation of the reactor (high temperature 1300 - 2500 K, high vacuum, H + ionic flux with different energies) are experimentally simulated. In this work, we have studied the material degradation, the mass loss kinetics, the characterization of the emitted neutral and charged species of heated and both heated and irradiated materials, and the determination of the thermo-radiative properties versus time. This study, done in collaboration with CEA Cadarache, is realized using the MEDIASE experimental device (Moyen d'Essai et de Diagnostic en Ambiance Solaire Extreme) located at the focus of the 1000 kW solar furnace of PROMES-CNRS laboratory in Odeillo. Material characterization pre- and post-processing is performed with classical techniques as SEM, XRD and XPS and also by measuring the BRDF (Bidirectional Reflectivity Diffusion Function). (authors)

  8. Behavior and microstructural changes in different tungsten-based materials under pulsed plasma loading

    Directory of Open Access Journals (Sweden)

    M. Vilémová

    2016-12-01

    Full Text Available In this study, morphological, microstructural and phase changes of four types of tungsten materials after exposure to dense deuterium plasma were examined. The microstructures of the prepared materials mutually differ by the porosity, grain size and phase content. It was found that inherent porosity of sintered materials leads to a specific mechanism of erosion and might be a significant source of dust in the case of materials with higher porosity. Further, a preferential erosion of the dispersed particles by melting and evaporation and subsequent formation of thin film on the surface of W-Y2O3 was described as well.

  9. Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites

    International Nuclear Information System (INIS)

    Lou, D.; Hellman, J.; Luhulima, D.; Liimatainen, J.; Lindroos, V.K.

    2003-01-01

    A variety of experimental techniques have been used to investigate the interactions between tungsten carbide (WC-Co 88/12) particulates and the matrix in some new wear resistant cobalt-based superalloy and steel matrix composites produced by hot isostatic pressing. The results show that the chemical composition of the matrix has a strong influence on the interface reaction between WC and matrix and the structural stability of the WC particulates in the composite. Some characteristics of the interaction between matrix and reinforcement are explained by the calculation of diffusion kinetics. The three-body abrasion wear resistance of the composites has been examined based on the ASTM G65-91 standard procedure. The wear behavior of the best composites of this study shows great potential for wear protection applications

  10. Correlation between Composition and Properties of Composite Material Based on Scrap Tires

    OpenAIRE

    Mālers, L; Plēsuma, R; Ločmele, L; Kalniņš, M

    2010-01-01

    Purpose of present work is to investigate mechanical and insulation properties of the composite material based on scrap tires and polyurethane-type binder in correlation with composition of composite material. The studies of material’s hardness must be considered as an express-method for estimation of the selected mechanical properties (E and ccompressive stress) of the composite material without direct experimental testing of given parameters. It was shown that composite material must be r...

  11. A composite material based on recycled tires

    Science.gov (United States)

    Malers, L.; Plesuma, R.; Locmele, L.

    2009-01-01

    The present study is devoted to the elaboration and investigation of a composite material based on mechanically grinded recycled tires and a polymer binder. The correlation between the content of the binder, some technological parameters, and material properties of the composite was clarified. The apparent density, the compressive stress at a 10% strain, the compressive elastic modulus in static and cyclic loadings, and the insulating properties (acoustic and thermal) were the parameters of special interest of the present investigation. It is found that a purposeful variation of material composition and some technological parameters leads to multifunctional composite materials with different and predictable mechanical and insulation properties.

  12. Tungsten alloy research at the US Army Materials Technology Laboratory

    International Nuclear Information System (INIS)

    Dowding, R.J.

    1991-01-01

    This paper reports that recent research into tungsten heavy alloys at the U. S. Army Materials Technology Laboratory (MTL) has explored many areas of processing and process development. The recrystallization and respheroidization of tungsten grains in a heavily cold worked heavy alloy has been examined and resulted in the identification of a method of grain refinement. Another area of investigation has been lightly cold worked. It was determined that it was possible to increase the strength and hardness of the tungsten grains by proper hat treatment. MTL has been involved in the Army's small business innovative research (SBIR) program and several programs have been funded. Included among these are a method of coating the tungsten powders with the alloying elements and the development of techniques of powder injection molding of heavy alloys

  13. Incorporation of tungsten metal fibers in a metal and ceramic matrix

    Directory of Open Access Journals (Sweden)

    V. Brozek

    2017-01-01

    Full Text Available Tungsten fibers have high tensile strength but a poor oxidation resistance at elevated temperatures. Using this first characteristic and to prevent oxidation of tungsten coated composite materials in which the primary requirement: reinforcement against destruction or deformation, was studied on tungsten fibers and tungsten wires which were coated by applying the metal and ceramic powders via plasma spraying device in plasma generator WSP®. Deposition took place in an atmosphere of Ar + 7 % H2, sufficient to reduce the oxidized trace amounts of tungsten.

  14. Comparative study of tungsten and lead as gamma ray shielding material

    International Nuclear Information System (INIS)

    Wang Jian; Zou Shuliang

    2011-01-01

    This article firstly compares the tungsten and lead's physical properties, price and environmental performance, then calculates the thickness of tungsten and lead with the gamma ray 10% transmission when the photon energy are 0.1 MeV, 0.2 MeV, 0.5, 1 MeV and 1.25 MeV, and makes a comparison chart. Finally, it establishes a commonly used shielding model, through which to validate whether the thickness of theoretical calculation can achieve an effective shielding effect by MCNP program. The results showers that tungsten as a new type of shielding material has a lot of advantages, which shielding ability is far higher than the lead. Thus it provides the reference to choose the suitable shielding materials in special occasions. (authors)

  15. Tungsten and carbon surface change under high dose plasma exposure

    International Nuclear Information System (INIS)

    Martynenko, Y.V.; Khripunov, B.I.; Petrov, V.B.

    2009-01-01

    Study of surface composition dynamics has been made on the LENTA linear plasma simulator. Experiments have been made on tungsten and carbon materials subjected to steady-state plasma exposure. The achieved ion doses on the surface were 10 21 ion cm -2 . WL 10 tungsten containing 1% of La2O3 oxide and titanium-doped graphite RG-T were studied. The following experimental conditions were varied in these experiments: energy of ions, surface temperature, working gas. Irradiations of tungsten WL 10 were executed in deuterium plasma at low ion energies (about 20 eV) and at 200 eV for temperatures below 340 K. Graphite RG-T was exposed at 1300 K. Elevated surface temperature (about 1050K) was also characteristic of experiments on tungsten sample under nitrogen plasma impact (simulated inter-ELMs condition). Surface microstructure modification has been observed and surface composition changes were found on the materials showing influence of high dose plasma irradiations on element redistribution in the near surface layers. (author)

  16. Tungsten - rhenium alloys wire: overview of thermomechanical processing and properties data

    International Nuclear Information System (INIS)

    Bryskin, B.

    2001-01-01

    The scope of this study encompasses the compositional modifications of the tungsten-rhenium dual system (W-3/5 Re up to W-27 Re) as well as some of the tungsten-molybdenum-rhenium ternary system. The alloys of interest are considered with a specific representation of powder metallurgy route based on doped or undoped tungsten vs. vacuum melted materials. This paper constitutes an in-depth review of structural and mechanical properties and systematic compilation of challenges necessary to provide the quality consistency of severely drawn filaments. The issue of thermomechanical processing trends is addressed as an important part of W-Re fabrication technology to achieve further improvement in design properties of rod and wire. (author)

  17. Thermal shock tests to qualify different tungsten grades as plasma facing material

    Science.gov (United States)

    Wirtz, M.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Uytdenhouwen, I.

    2016-02-01

    The electron beam device JUDITH 1 was used to establish a testing procedure for the qualification of tungsten as plasma facing material. Absorbed power densities of 0.19 and 0.38 GW m-2 for an edge localized mode-like pulse duration of 1 ms were chosen. Furthermore, base temperatures of room temperature, 400 °C and 1000 °C allow investigating the thermal shock performance in the brittle, ductile and high temperature regime. Finally, applying 100 pulses under all mentioned conditions helps qualifying the general damage behaviour while with 1000 pulses for the higher power density the influence of thermal fatigue is addressed. The investigated reference material is a tungsten product produced according to the ITER material specifications. The obtained results provide a general overview of the damage behaviour with quantified damage characteristics and thresholds. In particular, it is shown that the damage strongly depends on the microstructure and related thermo-mechanical properties.

  18. Tungsten coatings electro-deposited on CFC substrates from oxide molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ningbo; Zhang, Yingchun, E-mail: zycustb@163.com; Lang, Shaoting; Jiang, Fan; Wang, Lili

    2014-12-15

    Tungsten is considered as plasma facing material in fusion devices because of its high melting point, its good thermal conductivity, its low erosion rate and its benign neutron activation properties. On the other hand, carbon based materials like C/C fiber composites (CFC) have been used for plasma facing materials (PFMs) due to their high thermal shock resistance, light weight and high strength. Tungsten coatings on CFC substrates are used in the JET divertor in the frame of the JET ITER-like wall project, and have been prepared by plasma spray (PS) and other techniques. In this study, tungsten coatings were electro-deposited on CFC from Na{sub 2}WO{sub 4}–WO{sub 3} molten salt under various deposition parameters at 900 °C in air. In order to obtain tungsten coatings with excellent performance, the effects of pulse duration ratio and pulse current density on microstructures and crystal structures of tungsten coatings were investigated by X-ray diffraction (XRD, Rigaku Industrial Co., Ltd., D/MAX-RB) and a scanning electron microscope (SEM, JSM 6480LV). It is found that the pulsed duration ratio and pulse current density had a significant influence on tungsten nucleation and electro-crystallization phenomena. SEM observation revealed that intact, uniform and dense tungsten coatings formed on the CFC substrates. Both the average grain size and thickness of the coating increased with the pulsed current density. The XRD results showed that the coatings consisted of a single phase of tungsten with the body centered cubic (BCC) structure. The oxygen content of electro-deposited tungsten coatings was lower than 0.05%, and the micro-hardness was about 400 HV.

  19. Effect of composition on the high rate dynamic behaviour of tungsten heavy alloys

    Directory of Open Access Journals (Sweden)

    Latif Kesemen

    2015-01-01

    Full Text Available Tungsten heavy alloys are currently used as kinetic energy penetrators in military applications due to their high density and superior mechanical properties. In the literature, quasi-static properties of different tungsten heavy alloys based on W-Ni-Cu and W-Ni-Fe ternary systems are well documented and presented. However, comparison of the dynamic behaviour of these alloys in terms of the correlation between quasi-static mechanical characterization and dynamical properties is lacking. In the present study, dynamic properties of tungsten heavy alloys having different binder phase compositions (90W-7Ni-3Cu and 90W-8Ni-2Fe at different projectile velocities were investigated. The examined and tested alloys were produced through the conventional powder metallurgy route of mixing, cold compaction and sintering. Mechanical characterization of these alloys was performed. In the ballistic tests, cylindrical tungsten heavy alloys with L/D ratio of 3 were impacted to hardened steel target at different projectile velocities. After the ballistic tests, deformation characteristics of test specimens during dynamic loading were evaluated by comparing the change of length and diameter of the specimens versus kinetic energy densities. The study concluded that 90W-8Ni-2Fe alloy has better perforation characteristics than 90W-7Ni-3Cu alloy.

  20. Mechanical properties of wood-based composite materials

    Science.gov (United States)

    Zhiyong Cai; Robert J. Ross

    2010-01-01

    The term composite is used to describe any wood material bonded together with adhesives. The current product mix ranges from fiberboard to laminated beams and components. In this chapter, wood-based composite materials are classified into the following categories: panel products (plywood, oriented strandboard (OSB), particleboard, fiberboard, medium-density fiberboard...

  1. Differences in Nanosecond Laser Ablation and Deposition of Tungsten, Boron, and WB2/B Composite due to Optical Properties

    Directory of Open Access Journals (Sweden)

    Tomasz Moscicki

    2016-01-01

    Full Text Available The first attempt to the deposition of WB3 films using nanosecond Nd:YAG laser demonstrated that deposited coatings are superhard. However, they have very high roughness. The deposited films consisted mainly of droplets. Therefore, in the present work, the explanation of this phenomenon is conducted. The interaction of Nd:YAG nanosecond laser pulse with tungsten, boron, and WB2/B target during ablation is investigated. The studies show the fundamental differences in ablation of those materials. The ablation of tungsten is thermal and occurs due to only evaporation. In the same conditions, during ablation of boron, the phase explosion and/or fragmentation due to recoil pressure is observed. The deposited films have a significant contribution of big debris with irregular shape. In the case of WB2/B composite, ablation is significantly different. The ablation seems to be the detonation in the liquid phase. The deposition mechanism is related mainly to the mechanical transport of the target material in the form of droplets, while the gaseous phase plays marginal role. The main origin of differences is optical properties of studied materials. A method estimating phase explosion occurrence based on material data such as critical temperature, thermal diffusivity, and optical properties is shown. Moreover, the effect of laser wavelength on the ablation process and the quality of the deposited films is discussed.

  2. Toughness enhancement of tungsten reinforced with short tungsten fibres

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhang, L.H. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Fang, Q.F., E-mail: qffang@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Zhang, T.; Wang, X.P.; Hao, T.; Liu, C.S. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-04-06

    The feasibility and toughening efficiency of the short tungsten fibre reinforcement on tungsten were investigated in W{sub f}/W composites fabricated by powder metallurgy method of spark plasma sintering. Fibres in the composites presented a Z-free laminar structure. Partial recrystallization of fibre grains occurred but fibre crack or damage was not detected. Fracture energy of W{sub f}/W composites was estimated in tensile tests, and the results indicated great toughness improvement over pure tungsten in virtue of frictional pullout and plastic deformation of fibres, and matrix-fibres interfacial debonding since 873 K. The specimen with mass fraction of 10% and fibre diameter of 100 µm exhibits the largest elongation of 9±1.1% and the highest ultimate strength of 482±13 MPa at 873 K.

  3. Electrokinetic treatment of firing ranges containing tungsten-contaminated soils

    International Nuclear Information System (INIS)

    Braida, Washington; Christodoulatos, Christos; Ogundipe, Adebayo; Dermatas, Dimitris; O'Connor, Gregory

    2007-01-01

    Tungsten-based alloys and composites are being used and new formulations are being considered for use in the manufacturing of different types of ammunition. The use of tungsten heavy alloys (WHA) in new munitions systems and tungsten composites in small caliber ammunition could potentially release substantial amounts of this element into the environment. Although tungsten is widely used in industrial and military applications, tungsten's potential environmental and health impacts have not been thoroughly addressed. This necessitates the research and development of remedial technologies to contain and/or remove tungsten from soils that may serve as a source for water contamination. The current work investigates the feasibility of using electrokinetics for the remediation of tungsten-contaminated soils in the presence of other heavy metals of concern such as Cu and Pb with aim to removing W from the soil while stabilizing in situ, Pb and Cu

  4. Precipitation formation in recrystallized nickel-plated non-sag tungsten wire

    International Nuclear Information System (INIS)

    Lai, Z.H.

    1994-01-01

    It is well established that some metals, such as palladium and nickel, can easily penetrate into tungsten by fast diffusion via crystal defects such as grain boundaries and dislocations. As a result of the fast penetration of these so called activators the recrystallization temperature of heavily drawn non-sag tungsten wire can be lower from about 2,000 C to about 1,000 C, thus the application of the tungsten wire, serving as reinforcement material in metal matrix composites used at high temperatures, is limited. An interesting question is in which form these activators exist in the recrystallized tungsten wire. It is generally believed that W-Ni intermediate compounds could form in the recrystallized material, presumably at grain boundaries. The free energy difference between the pure tungsten fibbers and the precipitating W(Ni) solid solution was suggested as the chemical driving force which governed the recrystallization process. The presence of nickel in small particles had also been observed in recrystallized grains of nickel plated tungsten wires using scanning electron microscopy (SEM) and secondary ion mass spectroscopy. These particles were considered to be nickel rich precipitates. However, a detailed investigation of the precipitation process has not been reported. In the present work an investigation of the structure, composition and distribution of nickel rich particles precipitated in recrystallized grains of nickel plated heavily drawn non-sage tungsten wires was carried out using analytical electron microscopy (AEM)

  5. Preparation and Dynamic Mechanical Properties at Elevated Temperatures of a Tungsten/Glass Composite

    Science.gov (United States)

    Gao, Chong; Wang, Yingchun; Ma, Xueya; Liu, Keyi; Wang, Yubing; Li, Shukui; Cheng, Xingwang

    2018-03-01

    Experiments were conducted to prepare a borosilicate glass matrix composite containing 50 vol.% tungsten and examine its dynamic compressive behavior at elevated temperatures in the range of 450-775 °C. The results show that the homogenous microstructure of the tungsten/glass composite with relative density of 97% can be obtained by hot-pressing sintering at 800 °C for 1 h under pressure of 30 MPa. Dynamic compressive testing was carried out by a separate Hopkinson pressure bar system with a synchronous device. The results show that the peak stress decreases and the composite transforms from brittle to ductile in nature with testing temperature increasing from 450 to 750 °C. The brittle-ductile transition temperature is about 500 °C. Over 775 °C, the composite loses load-bearing capacity totally because of the excessive softening of the glass phase. In addition, the deformation and failure mechanism were analyzed.

  6. Self-castellation of tungsten monoblock under high heat flux loading and impact of material properties

    OpenAIRE

    Panayotis, S.; Hirai, T.; Wirtz, Marius; Barabash, V.; Durocher, A.; Escourbiac, F.; Linke, J.; Loewenhoff, Th.; Merola, M.; Pintsuk, G.; Uytdenhouwen, I.

    2017-01-01

    In the full-tungsten divertor qualification program at ITER Organization, macro-cracks, so called self-castellation were found in a fraction of tungsten monoblocks during cyclic high heat flux loading at 20MW/m2. The number of monoblocks with macro-cracks varied with the tungsten products used as armour material. In order to understand correlation between the macro-crack appearance and W properties, an activity to characterize W monoblock materials was launched at the IO. The outcome highligh...

  7. Preparation of Pt-mesoporous tungsten carbide/carbon composites via a soft-template method for electrochemical methanol oxidation

    International Nuclear Information System (INIS)

    Ma, Chun’an; Kang, Lingzhi; Shi, Meiqin; Lang, Xiaoling; Jiang, Yekun

    2014-01-01

    Highlights: • Mesoporous composite Pt-m(WC/C) is prepared by a soft template method. • The structure of phenolic gives a space limitation effect on the growth of WC. • Analysis of the effect of F127 on controlling the structure of composites. • Pt-m(WC/C) exhibits more than three times higher than Pt/C in catalytic activity. -- Abstract: This paper introduces a simple and reproducible chemical process for synthesis of Pt-mesoporous tungsten carbide/carbon composites composites Pt-m(WC/C) by means of a soft-template method. In this process, low-molecular-weight phenolic resol acted as the precursor both for carbon support and also the carbon resource of tungsten carbide. Tungsten hexachloride was used as a tungsten precursor along with different amount of triblock copolymer Pluronic F127 as pore-forming component. The best performance of Pt-m(WC/C) towards methanol oxidation is found when the mass ratios of WCl 6 :F127 is 1:0.6. The composite presents an improved methanol oxidation performance evidenced by a negative shift in onset potential, and increase of peak current density, compared with commercial Pt/C. The difference is explained by the adding of appropriate amount of F127 which facilitates the construction of mesoporous matrix structure of WC/C

  8. Investigation of plasma interaction with carbon based and mixed materials related to next-generation fusion devices

    International Nuclear Information System (INIS)

    Guseva, M.I.; Martynenko, Yu.V.; Korshunov, S.N.

    2003-01-01

    Carbon-carbon composites, tungsten and beryllium are considered at present as candidate-materials for International Thermonuclear Experimental Reactor (ITER). The presence of various materials, as the divertor and the first wall components, will unavoidably result in the formation of mixed layers on the surfaces of plasma facing components. In this review, processes of plasma interaction with these materials and layers formed by mixing of the materials are considered. Mixed W-Be and W-C layers were prepared by deposition of two species atoms upon a substrate under simultaneous sputtering of two targets by 20 keV Ar + -ions. The thickness of the deposited mixed layers was 100-500 nm. The most important processes investigated here are: a) erosion at threshold energies and at various temperatures, b) erosion at plasma disruption, c) surface modification at normal operation regime and disruption, d) the influence of the surface modification on material erosion, e) erosion product formation at plasma disruption (dust creation), f) hydrogen isotopes retention in materials. An experimental method of determination of sputtering yield under ion bombardment in the near-threshold energy range has been developed. The method is based on the use of special regimes of field ion microscopic analysis. The method has been used for measurement of the sputtering yield of C-C composite, technically pure tungsten, tungsten oxide and mixed W-C layer on the tungsten by deuterium ions. The energy dependences of the sputtering yield of those materials by deuterium ions at energies ranging from 10 to 500 eV was investigated. Temperature dependences of pure and B-doped C-C composites erosion by deuterium ions were investigated. Material erosion was studied in a steady state plasma at the LENTA facility with parameters close to those expected at normal operation of ITER, and in the MKT plasma accelerator simulating plasma disruption. Surface modifications of graphite materials and tungsten

  9. The use of tungsten as a chronically implanted material

    Science.gov (United States)

    Shah Idil, A.; Donaldson, N.

    2018-04-01

    This review paper shows that tungsten should not generally be used as a chronically implanted material. The metal has a long implant history, from neuroscience, vascular medicine, radiography, orthopaedics, prosthodontics, and various other fields, primarily as a result of its high density, radiopacity, tensile strength, and yield point. However, a crucial material criterion for chronically implanted metals is their long-term resistance to corrosion in body fluids, either by inherently noble metallic surfaces, or by protective passivation layers of metal oxide. The latter is often assumed for elemental tungsten, with references to its ‘inertness’ and ‘stability’ common in the literature. This review argues that in the body, metallic tungsten fails this criterion, and will eventually dissolve into the soluble hexavalent form W6+, typically represented by the orthotungstate WO42- (monomeric tungstate) anion. This paper outlines the metal’s unfavourable corrosion thermodynamics in the human physiological environment, the chemical pathways to either metallic or metal oxide dissolution, the rate-limiting steps, and the corrosion-accelerating effects of reactive oxidising species that the immune system produces post-implantation. Multiple examples of implant corrosion have been reported, with failure by dissolution to varying extents up to total loss, with associated emission of tungstate ions and elevated blood serum levels measured. The possible toxicity of these corrosion products has also been explored. As the field of medical implants grows and designers explore novel solutions to medical implant problems, the authors recommend the use of alternative materials.

  10. Superficial roughness on composite surface, composite enamel and composite dentin junctions after different finishing and polishing procedures. Part I: roughness after treatments with tungsten carbide vs diamond burs.

    Science.gov (United States)

    Ferraris, Federico; Conti, Alessandro

    2014-01-01

    The aim of this study is to investigate different instruments for finishing composite restorations, as well as examining different surfaces and interfaces of the same restoration. The null hypothesis is represented by the fact that there are no significant differences on roughness of composite restorations finishing between tungsten carbide and diamond burs, furthermore the null hypothesis is that there are no significant differences on roughness between finishing on composite surfaces (C), compositeenamel (CE) and composite-dentin (CD) interfaces. The study was performed on 28 teeth, and class V cavities were prepared on the extracted teeth. Restorations were done in Filtek XTE nanofilled composite (3M Espe) in a standardized method, to then be finished. A comparison was made in the phase 1 between tungsten carbide burs (16 blades), diamond burs (46 μm), with a similar shape by the same manufacturer (Komet). Each surface received 5 bur applications. Consequently, an analysis with a profilometer was performed. Phase 2 involved further confrontation of ulterior finishing with ultrafine tungsten carbide burs (30 blades) and with extra and ultrafine diamond burs (25 and 8 μm) (the same shape as previously mentioned). A second analysis was then performed with a profilometer. All measurements were taken on C surfaces, CE and CD interfaces. Statistical analyses were carried out with c2 test (a = 0.05). The finishing procedures with fine grit or toothing burs gave a better smoothness with tungsten carbide burs compared to diamond burs. While with the ultrafine grit no significant differences were noted between tungsten carbide and diamond burs on the CE and CD interfaces, the diamond bur left less superficial roughness on the C surfaces. With regards to the superficial roughness of the different areas of restoration, it can be concluded that: minor roughness was detected on C surfaces, while the CD interface had the most superficial roughness, regardless of whether the

  11. Self-propagating high-temperature synthesis of TiC-WC composite materials

    International Nuclear Information System (INIS)

    Mas-Guindal, M.J.; Contreras, L.; Turrillas, X.; Vaughan, G.B.M.; Kvick, A.; Rodriguez, M.A.

    2006-01-01

    TiC-WC composites have been obtained in situ by self-propagating high-temperature synthesis (SHS) from a mixture of compacted powders of elemental titanium, tungsten and graphite. The Rietveld method has proved to be a useful tool to quantify the different phases in the reaction and calculate the cell parameters of the solid solution found in the products. The reaction has also been followed in real time by X-ray diffraction at the European Synchrotron Radiation Facility (ESRF ID-11 Materials Science Beamline). The mechanism of the reaction is discussed in terms of the diffusion of liquid titanium to yield titanium carbide with a solid solution of tungsten. The microstructures of the materials obtained by this method are presented

  12. Tungsten tetraboride, an inexpensive superhard material

    Science.gov (United States)

    Mohammadi, Reza; Lech, Andrew T.; Xie, Miao; Weaver, Beth E.; Yeung, Michael T.; Tolbert, Sarah H.; Kaner, Richard B.

    2011-01-01

    Tungsten tetraboride (WB4) is an interesting candidate as a less expensive member of the growing group of superhard transition metal borides. WB4 was successfully synthesized by arc melting from the elements. Characterization using powder X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) indicates that the as-synthesized material is phase pure. The zero-pressure bulk modulus, as measured by high-pressure X-ray diffraction for WB4, is 339 GPa. Mechanical testing using microindentation gives a Vickers hardness of 43.3 ± 2.9 GPa under an applied load of 0.49 N. Various ratios of rhenium were added to WB4 in an attempt to increase hardness. With the addition of 1 at.% Re, the Vickers hardness increased to approximately 50 GPa at 0.49 N. Powders of tungsten tetraboride with and without 1 at.% Re addition are thermally stable up to approximately 400 °C in air as measured by thermal gravimetric analysis. PMID:21690363

  13. Electro-chemically-based technologies for processing of tungsten components in fusion technology

    International Nuclear Information System (INIS)

    Holstein, N.; Konys, J.; Krauss, W.; Lorenz, J.

    2010-01-01

    In fusion technology layers and bulk components fabricated from tungsten and W-alloys are used as functional materials, e.g. as coatings of blanket modules or T-permeation barriers and also as structural components in a He-cooled divertor. Their application under high heat loads and temperatures is besides manufacturing, also challenging regarding joining, caused e.g. by expansion mismatches in combination with steel or other diffusion issues. Driven by these needs, electro-chemically-based technologies were analyzed concerning their advantages in processing in the fields of soft structuring of tungsten alloys and in deposition of functional scales. The Electro-Chemistry (EC) of tungsten is characterized by its affection to build up passivation layers in aqueous media during the initial oxidation, which is the result of an unavoidable basic electrochemical reaction with water (W + 3H 2 O → WO 3 + 3H 2 ), although the element standard potential is situated between common EC material like iron and copper. (orig.)

  14. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, B.; Lee, S.-Y.; Uestuendag, E.; Aydiner, C.C.; Conner, R.D.; Bourke, M.A.M

    2003-07-15

    In-situ uniaxial compression tests were conducted on four tungsten fiber reinforced bulk metallic glass matrix composites using neutron diffraction. The results were interpreted with a finite element model. Both phases were seen to approximately obey the von Mises yield criterion. The fibers were observed to yield first and then transfer load to the matrix.

  15. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites

    International Nuclear Information System (INIS)

    Clausen, B.; Lee, S.-Y.; Uestuendag, E.; Aydiner, C.C.; Conner, R.D.; Bourke, M.A.M.

    2003-01-01

    In-situ uniaxial compression tests were conducted on four tungsten fiber reinforced bulk metallic glass matrix composites using neutron diffraction. The results were interpreted with a finite element model. Both phases were seen to approximately obey the von Mises yield criterion. The fibers were observed to yield first and then transfer load to the matrix

  16. Brazing of molybdenum- and tungsten based refractory materials with copper and graphite

    International Nuclear Information System (INIS)

    Boutes, J.; Falbriard, P.; Rochette, P.; Nicolas, G.

    1989-01-01

    Molybdenum and Tungsten base refractory metals and alloys have been brazed 1. to copper between 800 0 C and 900 0 C with silver base metal; 2. to graphite, with CVD coatings between 800 0 C and 900 0 C with silver base metal and between 1100 0 C and 1200 0 C with copper base metal; 3. to graphite between 800 0 C and 1100 0 C with silver or nickel base metal. The brazed joints have been characterized by micrographic observations before and after bending tests from room temperature to 800 0 C. 2 tabs., 9 figs. (Author)

  17. Preparation of Pt-mesoporous tungsten carbide/carbon composites via a soft-template method for electrochemical methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chun’an, E-mail: science@zjut.edu.cn; Kang, Lingzhi; Shi, Meiqin; Lang, Xiaoling; Jiang, Yekun

    2014-03-05

    Highlights: • Mesoporous composite Pt-m(WC/C) is prepared by a soft template method. • The structure of phenolic gives a space limitation effect on the growth of WC. • Analysis of the effect of F127 on controlling the structure of composites. • Pt-m(WC/C) exhibits more than three times higher than Pt/C in catalytic activity. -- Abstract: This paper introduces a simple and reproducible chemical process for synthesis of Pt-mesoporous tungsten carbide/carbon composites composites Pt-m(WC/C) by means of a soft-template method. In this process, low-molecular-weight phenolic resol acted as the precursor both for carbon support and also the carbon resource of tungsten carbide. Tungsten hexachloride was used as a tungsten precursor along with different amount of triblock copolymer Pluronic F127 as pore-forming component. The best performance of Pt-m(WC/C) towards methanol oxidation is found when the mass ratios of WCl{sub 6}:F127 is 1:0.6. The composite presents an improved methanol oxidation performance evidenced by a negative shift in onset potential, and increase of peak current density, compared with commercial Pt/C. The difference is explained by the adding of appropriate amount of F127 which facilitates the construction of mesoporous matrix structure of WC/C.

  18. Exploration on Wire Discharge Machining Added Powder for Metal-Based Diamond Grinding Wheel on Wire EDM Dressing and Truing of Grinding Tungsten Carbide Material

    Science.gov (United States)

    Chow, H. M.; Yang, L. D.; Lin, Y. C.; Lin, C. L.

    2017-12-01

    In this paper, the effects of material removal rate and abrasive grain protrusion on the metal-based diamond grinding wheel were studied to find the optimal parameters for adding powder and wire discharge. In addition, this kind of electric discharge method to add powder on the metal-based diamond grinding wheel on line after dressing and truing will be applied on tungsten carbide to study the grinding material removal rate, grinding wheel wear, surface roughness, and surface micro-hardness.

  19. Self-castellation of tungsten monoblock under high heat flux loading and impact of material properties

    Directory of Open Access Journals (Sweden)

    S. Panayotis

    2017-08-01

    Full Text Available In the full-tungsten divertor qualification program at ITER Organization, macro-cracks, so called self-castellation were found in a fraction of tungsten monoblocks during cyclic high heat flux loading at 20MW/m2. The number of monoblocks with macro-cracks varied with the tungsten products used as armour material. In order to understand correlation between the macro-crack appearance and W properties, an activity to characterize W monoblock materials was launched at the IO. The outcome highlighted that the higher the recrystallization resistance, the lower the number of cracks detected during high heat flux tests. Thermo-mechanical finite element modelling demonstrated that the maximum surface temperature ranges from 1800 °C to 2200 °C and in this range recrystallization of tungsten occurred. Furthermore, it indicated that loss of strength due to recrystallization is responsible for the development of macro-cracks in the tungsten monoblock.

  20. Recent progress in tungsten oxides based memristors and their neuromorphological applications

    Science.gov (United States)

    Qu, Bo; Younis, Adnan; Chu, Dewei

    2016-09-01

    The advance in conventional silicon based semiconductor industry is now becoming indeterminacy as it still along the road of Moore's Law and concomitant problems associated with it are the emergence of a number of practical issues such as short channel effect. In terms of memory applications, it is generally believed that transistors based memory devices will approach to their scaling limits up to 2018. Therefore, one of the most prominent challenges today in semiconductor industry is the need of a new memory technology which is able to combine the best characterises of current devices. The resistive switching memories which are regarded as "memristors" thus gain great attentions thanks to their specific nonlinear electrical properties. More importantly, their behaviour resembles with the transmission characteristic of synapse in biology. Therefore, the research of synapses biomimetic devices based on memristor will certainly bring a great research prospect in studying synapse emulation as well as building artificial neural networks. Tungsten oxides (WO x ) exhibits many essential characteristics as a great candidate for memristive devices including: accredited endurance (over 105 cycles), stoichiometric flexibility, complimentary metal-oxide-semiconductor (CMOS) process compatibility and configurable properties including non-volatile rectification, memorization and learning functions. Herein, recent progress on Tungsten oxide based materials and its associating memory devices had been reviewed. The possible implementation of this material as a bio-inspired artificial synapse is also highlighted. The penultimate section summaries the current research progress for tungsten oxide based biological synapses and end up with several proposals that have been suggested for possible future developments.

  1. Graphene-Based Composites as Cathode Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Libao Chen

    2013-01-01

    Full Text Available Owing to the superior mechanical, thermal, and electrical properties, graphene was a perfect candidate to improve the performance of lithium ion batteries. Herein, we review the recent advances in graphene-based composites and their application as cathode materials for lithium ion batteries. We focus on the synthesis methods of graphene-based composites and the superior electrochemical performance of graphene-based composites as cathode materials for lithium ion batteries.

  2. Low-temperature densification and excellent thermal properties of W–Cu thermal-management composites prepared from copper-coated tungsten powders

    International Nuclear Information System (INIS)

    Zhang, Lianmeng; Chen, Wenshu; Luo, Guoqiang; Chen, Pingan; Shen, Qiang; Wang, Chuanbin

    2014-01-01

    Highlights: • High-density (98.4%) W–20 wt.%Cu composites were low-temperature fabricated. • A highly pure Cu network and a homogenous microstructure formed in the composites. • The interfaces between W and Cu are well bonded with no spaces. • The composites have excellent thermal properties. -- Abstract: High-density W–20 wt.%Cu composites containing a Cu-network structure and exhibiting good thermal properties were fabricated by low-temperature hot-press sintering from high-purity copper-coated tungsten powders. The relative density of W–20 wt.%Cu composites sintered at 950 °C–100 MPa–2 h was 98.4%. The low-temperature densification of W–Cu composites occurs because the sintering mode of the coated particles involves only sintering of Cu to Cu, rather than both Cu to W and Cu to Cu, as required for conventional powder particles. The microstructure shows that a network of high-purity Cu extends throughout the composites, and that the W is distributed homogeneously; the interfaces between W and Cu show good contact. The composites have excellent thermal conductivity (239 W/(m K)) and a relatively low coefficient of thermal expansion (7.4 × 10 −6 /K), giving them some of the best properties reported to date for thermal-management materials. The excellent performance is mainly because of their structure, which arises from the characteristics of the high-purity copper-coated tungsten powders

  3. Microscopic investigations of chemo-mechanical polishing of tungsten

    International Nuclear Information System (INIS)

    Lim, Min Soo; Heide, Paul A.W. van der; Perry, Scott S.; Galloway, Heather C.; Koeck, Deborah C.

    2004-01-01

    The influence of aqueous solutions of KNO 3 , KClO 3 , and KIO 3 on tungsten surfaces has been investigated in terms of the degree of surface oxidation, metal dissolution and interfacial friction. The surface properties of tungsten films have been measured ex-situ with X-ray photoelectron spectroscopy and in situ with atomic force microscopy. Measurements of the surface composition reveal a greater degree of oxidation for surfaces treated in solutions of KIO 3 in comparison to the other solutions. This increase in surface oxidation is correlated to a greater rate of localized film dissolution that occurs under the action of the scanning probe tip. In turn, the process of material removal is the predominant origin of the higher interfacial friction measured at tungsten surfaces immersed in KIO 3 solutions, as compared to KClO 3 and KNO 3 solutions. Collectively, these measurements portray a fundamental pathway of material removal at tungsten surfaces in the presence of oxidizing species and highlight complementary roles of chemical and mechanical action

  4. Microscopic investigations of chemo-mechanical polishing of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Min Soo; Heide, Paul A.W. van der; Perry, Scott S.; Galloway, Heather C.; Koeck, Deborah C

    2004-06-15

    The influence of aqueous solutions of KNO{sub 3}, KClO{sub 3}, and KIO{sub 3} on tungsten surfaces has been investigated in terms of the degree of surface oxidation, metal dissolution and interfacial friction. The surface properties of tungsten films have been measured ex-situ with X-ray photoelectron spectroscopy and in situ with atomic force microscopy. Measurements of the surface composition reveal a greater degree of oxidation for surfaces treated in solutions of KIO{sub 3} in comparison to the other solutions. This increase in surface oxidation is correlated to a greater rate of localized film dissolution that occurs under the action of the scanning probe tip. In turn, the process of material removal is the predominant origin of the higher interfacial friction measured at tungsten surfaces immersed in KIO{sub 3} solutions, as compared to KClO{sub 3} and KNO{sub 3} solutions. Collectively, these measurements portray a fundamental pathway of material removal at tungsten surfaces in the presence of oxidizing species and highlight complementary roles of chemical and mechanical action.

  5. Nanosecond laser pulses for mimicking thermal effects on nanostructured tungsten-based materials

    Science.gov (United States)

    Besozzi, E.; Maffini, A.; Dellasega, D.; Russo, V.; Facibeni, A.; Pazzaglia, A.; Beghi, M. G.; Passoni, M.

    2018-03-01

    In this work, we exploit nanosecond laser irradiation as a compact solution for investigating the thermomechanical behavior of tungsten materials under extreme thermal loads at the laboratory scale. Heat flux factor thresholds for various thermal effects, such as melting, cracking and recrystallization, are determined under both single and multishot experiments. The use of nanosecond lasers for mimicking thermal effects induced on W by fusion-relevant thermal loads is thus validated by direct comparison of the thresholds obtained in this work and the ones reported in the literature for electron beams and millisecond laser irradiation. Numerical simulations of temperature and thermal stress performed on a 2D thermomechanical code are used to predict the heat flux factor thresholds of the different thermal effects. We also investigate the thermal effect thresholds of various nanostructured W coatings. These coatings are produced by pulsed laser deposition, mimicking W coatings in tokamaks and W redeposited layers. All the coatings show lower damage thresholds with respect to bulk W. In general, thresholds decrease as the porosity degree of the materials increases. We thus propose a model to predict these thresholds for coatings with various morphologies, simply based on their porosity degree, which can be directly estimated by measuring the variation of the coating mass density with respect to that of the bulk.

  6. Hot tungsten plate based ionizer for cesium plasma in a multi-cusp field experiment

    International Nuclear Information System (INIS)

    Patel, Amitkumar D.; Sharma, Meenakshee; Ramasubramanian, Narayanan; Chattopadhyay, Prabal K.

    2015-01-01

    In a newly proposed basic experiment, contact-ionized cesium ions will be confined by a multi cups magnetic field configuration. The cesium ion will be produced by impinging collimated neutral atoms on an ionizer consisting of the hot tungsten plate. The temperature of the tungsten plate will also be made high enough (∼2700 K) such that it will contribute electrons also to the plasma. It is expected that at this configuration the cesium plasma would be really quiescent and would be free from even the normal drift waves observed in the classical Q-machines. For the ionizer a design based on F. F. Chen's design was made. This ionizer is very fine machining and exotic material like Tungsten plate, Molybdenum screws, rings, and Boron Nitride ceramics etc. The fine and careful machining of these materials was very hard. In this paper, the experience about to join the tungsten wire to molybdenum plate and alloy of tantalum and molybdenum ring is described. In addition experimental investigations have been made to measure 2D temperature distribution profile of the Tungsten hot plate using infrared camera and the uniformity of temperature distribution over the hot plate surface is discussed. (author)

  7. Impact of microstructure on the plasma performance of industrial and high-end tungsten grades

    Energy Technology Data Exchange (ETDEWEB)

    Pintsuk, G., E-mail: g.pintsuk@fz-juelich.de [Forschungszentrum Jülich, EURATOM Association, 52428 Jülich (Germany); Loewenhoff, Th. [Forschungszentrum Jülich, EURATOM Association, 52428 Jülich (Germany)

    2013-07-15

    Tungsten and tungsten alloys are actually the primary choice as plasma facing materials for future fusion reactors. Thereby, the material’s response to the different loading conditions occurring in a tokamak is strongly depending on the material properties and therefore the material’s microstructure. This is on the one hand controlled via the manufacturing process and/or the material’s composition and on the other hand by the operational conditions causing recrystallization and melting, and subsequently not only a modified microstructure but also locally a modified composition. The influence of the variation in microstructure is addressed and the pros and cons for using the respective materials and tungsten in general in a fusion environment with steady state and transient thermal loads are outlined. While roughening and the related cracking can hardly be avoided, melting will thwart all efforts to establish a high end microstructure with defined directional properties.

  8. Impact of microstructure on the plasma performance of industrial and high-end tungsten grades

    International Nuclear Information System (INIS)

    Pintsuk, G.; Loewenhoff, Th.

    2013-01-01

    Tungsten and tungsten alloys are actually the primary choice as plasma facing materials for future fusion reactors. Thereby, the material’s response to the different loading conditions occurring in a tokamak is strongly depending on the material properties and therefore the material’s microstructure. This is on the one hand controlled via the manufacturing process and/or the material’s composition and on the other hand by the operational conditions causing recrystallization and melting, and subsequently not only a modified microstructure but also locally a modified composition. The influence of the variation in microstructure is addressed and the pros and cons for using the respective materials and tungsten in general in a fusion environment with steady state and transient thermal loads are outlined. While roughening and the related cracking can hardly be avoided, melting will thwart all efforts to establish a high end microstructure with defined directional properties

  9. Comparison of W-VC-C composites against Co-60, Se-75 and Sb-125 for gamma radioisotope sources

    Science.gov (United States)

    Demir, Ertugrul; Tugrul, A. Beril; Buyuk, Bulent; Yilmaz, Ozan; Ovecoglu, Lutfi

    2018-02-01

    Tungsten based materials are considered to be the promising materials for nuclear applications due to the good properties. The tungsten composite materials have so many advantages in nuclear technological applications especially fusion reactor systems. In this paper, Tungsten-Vanadium carbide-Graphite (W-VC-C) which include 93% tungsten (W), 6% vanadium carbide (VC) and 1% graphite (C) also which has three different alloying time (6-12-24 hours) were produced by mechanical alloying method. Co-60, Se-75 and Sb-125 gamma radioisotopeswere used as a gamma sources in order to determine behavior of gamma attenuation properties of the composite materials. The experimental results were compared with each other to clarify effects of varying gamma energies on the tungsten based composite materials. The mass attenuation coefficients of the samples were obtained by using XCOM computer code and compared with experimental data. The gamma linear attenuation, the mass attenuation coefficients and half value thickness (HVL) of the samples were evaluated and compared with Co-60, Se-75 and Sb-125 for gamma radioisotopes. Results showed that gamma attenuation coefficients of the samples depend on gamma energies and mechanical alloying time has negatively effect on the gamma shielding properties for the all studied W-VC-C.

  10. Thermal shock behaviour of different tungsten grades under varying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, Oliver Marius

    2012-07-19

    Thermonuclear fusion power plants are a promising option to ensure the energy supply for future generations, but in many fields of research enormous challenges have to be faced. A major step on the way to the prototype fusion reactor DEMO will be ITER which is build in Cadarache, southern France. One of the most critical issues is the field of in-vessel materials and components, in particular the plasma facing materials (PFM). PFMs that will be used in a device like ITER have to withstand severe environmental conditions in terms of steady state and transient thermal loads as well as high particle fluxes such as hydrogen, helium and neutrons. Candidate wall materials are beryllium, tungsten and carbon based materials like CFC (carbon fibre composite). Tungsten is the most promising material for an application in the divertor region with very severe loading conditions and it will most probably also be used as PFM for DEMO. Hence, this work focuses on the investigation of the thermal shock response of different tungsten grades in order to understand the damage mechanisms and to identify material parameters which influence this behaviour under ITER and DEMO relevant operation conditions. Therefore the microstructure and the mechanical and thermal properties of five industrially manufactured tungsten grades were characterised. All five tungsten grades were exposed to transient thermal events with very high power densities of up to 1.27 GWm{sup -2} at varying base temperatures between RT and 600 C in the electron beam device JUDITH 1. The pulse numbers were limited to a maximum of 1000 in order to avoid immoderate workload on the test facility and to have enough time to cover a wide range of loading conditions. The results of this damage mapping enable to define different damage and cracking thresholds for the investigated tungsten grades and to identify certain material parameters which influence the location of these thresholds and the distinction of the induced

  11. Thermal shock behaviour of different tungsten grades under varying conditions

    International Nuclear Information System (INIS)

    Wirtz, Oliver Marius

    2012-01-01

    Thermonuclear fusion power plants are a promising option to ensure the energy supply for future generations, but in many fields of research enormous challenges have to be faced. A major step on the way to the prototype fusion reactor DEMO will be ITER which is build in Cadarache, southern France. One of the most critical issues is the field of in-vessel materials and components, in particular the plasma facing materials (PFM). PFMs that will be used in a device like ITER have to withstand severe environmental conditions in terms of steady state and transient thermal loads as well as high particle fluxes such as hydrogen, helium and neutrons. Candidate wall materials are beryllium, tungsten and carbon based materials like CFC (carbon fibre composite). Tungsten is the most promising material for an application in the divertor region with very severe loading conditions and it will most probably also be used as PFM for DEMO. Hence, this work focuses on the investigation of the thermal shock response of different tungsten grades in order to understand the damage mechanisms and to identify material parameters which influence this behaviour under ITER and DEMO relevant operation conditions. Therefore the microstructure and the mechanical and thermal properties of five industrially manufactured tungsten grades were characterised. All five tungsten grades were exposed to transient thermal events with very high power densities of up to 1.27 GWm -2 at varying base temperatures between RT and 600 C in the electron beam device JUDITH 1. The pulse numbers were limited to a maximum of 1000 in order to avoid immoderate workload on the test facility and to have enough time to cover a wide range of loading conditions. The results of this damage mapping enable to define different damage and cracking thresholds for the investigated tungsten grades and to identify certain material parameters which influence the location of these thresholds and the distinction of the induced damages

  12. Advanced tungsten materials for plasma-facing components of DEMO and fusion power plants

    International Nuclear Information System (INIS)

    Neu, R.; Riesch, J.; Coenen, J.W.; Brinkmann, J.; Calvo, A.; Elgeti, S.; García-Rosales, C.; Greuner, H.; Hoeschen, T.; Holzner, G.; Klein, F.; Koch, F.

    2016-01-01

    Highlights: • Development of W-fibre enhanced W-composites incorporating extrinsic toughening mechanisms. • Production of a large sample (more than 2000 long fibres) for mechanical and thermal testing. • Even in a fully embrittled state, toughening mechanisms are still effective. • Emissions of volatile W-oxides can be suppressed by alloying W with elements forming stable oxides. • WCr10Ti2 has been successfully tested under accidental conditions and high heat fluxes. - Abstract: Tungsten is the major candidate material for the armour of plasma facing components in future fusion devices. To overcome the intrinsic brittleness of tungsten, which strongly limits its operational window, a W-fibre enhanced W-composite material (W_f/W) has been developed incorporating extrinsic toughening mechanisms. Small W_f/W samples show a large increase in toughness. Recently, a large sample (50 mm × 50 mm × 3 mm) with more than 2000 long fibres has been successfully produced allowing further mechanical and thermal testing. It could be shown that even in a fully embrittled state, toughening mechanisms as crack bridging by intact fibres, as well as the energy dissipation by fibre-matrix interface debonding and crack deflection are still effective. A potential problem with the use of pure W in a fusion reactor is the formation of radioactive and highly volatile WO_3 compounds and their potential release under accidental conditions. It has been shown that the oxidation of W can be strongly suppressed by alloying with elements forming stable oxides. WCr10Ti2 alloy has been produced on a technical scale and has been successfully tested in the high heat flux test facility GLADIS. Recently, W-Cr-Y alloys have been produced on a lab-scale. They seem to have even improved properties compared to the previously investigated W alloys.

  13. Advanced tungsten materials for plasma-facing components of DEMO and fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Neu, R., E-mail: Rudolf.Neu@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Fakultät für Maschinenbau, Technische Universität München, D-85748 Garching (Germany); Riesch, J. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Coenen, J.W. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, D-52425 Jülich (Germany); Brinkmann, J. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, D-52425 Jülich (Germany); Calvo, A. [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); Elgeti, S. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); García-Rosales, C. [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); Greuner, H.; Hoeschen, T.; Holzner, G. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Klein, F. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, D-52425 Jülich (Germany); Koch, F. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); and others

    2016-11-01

    Highlights: • Development of W-fibre enhanced W-composites incorporating extrinsic toughening mechanisms. • Production of a large sample (more than 2000 long fibres) for mechanical and thermal testing. • Even in a fully embrittled state, toughening mechanisms are still effective. • Emissions of volatile W-oxides can be suppressed by alloying W with elements forming stable oxides. • WCr10Ti2 has been successfully tested under accidental conditions and high heat fluxes. - Abstract: Tungsten is the major candidate material for the armour of plasma facing components in future fusion devices. To overcome the intrinsic brittleness of tungsten, which strongly limits its operational window, a W-fibre enhanced W-composite material (W{sub f}/W) has been developed incorporating extrinsic toughening mechanisms. Small W{sub f}/W samples show a large increase in toughness. Recently, a large sample (50 mm × 50 mm × 3 mm) with more than 2000 long fibres has been successfully produced allowing further mechanical and thermal testing. It could be shown that even in a fully embrittled state, toughening mechanisms as crack bridging by intact fibres, as well as the energy dissipation by fibre-matrix interface debonding and crack deflection are still effective. A potential problem with the use of pure W in a fusion reactor is the formation of radioactive and highly volatile WO{sub 3} compounds and their potential release under accidental conditions. It has been shown that the oxidation of W can be strongly suppressed by alloying with elements forming stable oxides. WCr10Ti2 alloy has been produced on a technical scale and has been successfully tested in the high heat flux test facility GLADIS. Recently, W-Cr-Y alloys have been produced on a lab-scale. They seem to have even improved properties compared to the previously investigated W alloys.

  14. Behavior of W-based materials in hot helium gas

    Directory of Open Access Journals (Sweden)

    J. Matějíček

    2016-12-01

    A number of W-based materials (pure tungsten and some of its alloys prepared by powder metallurgy techniques was exposed to He atmosphere at 720ºC and 500kPa for 500h. Morphological surface changes were observed by SEM, chemical and phase composition was analyzed by EDS and XRD, respectively. The internal microstructure was observed by a combination of SEM, FIB and TEM techniques. Mechanical properties were determined by instrumented indentation. Some alloys developed a thin oxide layer, in some cases new morphological features were observed, while some samples remained mostly intact. The observed changes are correlated with specific compositions and microstructures.

  15. Potentiometric determination of the tungsten content of tantalum-tungsten alloys with chromium II

    International Nuclear Information System (INIS)

    Gavra, Z.; Ronen, S.; Levin, R.

    1977-05-01

    A method was developed for the potentiometric determination of the tungsten content of tantalum-tungsten alloys of different compositions. These were dissolved under conditions that enabled the tungsten content to be determined with chromium (II). Phosphoric acid was selected as a suitable complexing agent for the prevention of the precipitation of tungsten and tantalum compounds. The use of chromium (II) required an oxygen-tight system and therefore the work was carried out in suitable vessels for storage and tritation

  16. Tungsten-rhenium composite tube fabricated by CVD for application in 18000C high thermal efficiency fuel processing furnace

    International Nuclear Information System (INIS)

    Svedberg, R.C.; Bowen, W.W.; Buckman, R.W. Jr.

    1980-04-01

    Chemical Vapor Deposit (CVD) rhenium was selected as the muffle material for an 1800 0 C high thermal efficiency fuel processing furnace. The muffle is exposed to high vacuum on the heater/insulation/instrumentation side and to a flowing argon-8 V/0 hydrogen gas mixture at one atmosphere pressure on the load volume side. During operation, the muffle cycles from room temperature to 1800 0 C and back to room temperature once every 24 hours. Operational life is dependent on resistance to thermal fatigue during the high temperature exposure. For a prototypical furnace, the muffle is approximately 13 cm I.D. and 40 cm in length. A small (about one-half size) rhenium closed end tube overcoated with tungsten was used to evaluate the concept. The fabrication and testing of the composite tungsten-rhenium tube and prototypic rhenium muffle is described

  17. A review of penetration mechanisms and dynamic properties of tungsten and depleted uranium penetrators

    International Nuclear Information System (INIS)

    Andrew, S.P.; Caligiuri, R.D.; Eiselstein, L.E.

    1991-01-01

    Kinetic energy penetrators must posses the best possible combination of hardness, stiffness, strength, and fracture toughness characteristics to be effective against modern armor systems. Over the last decade, depleted uranium (DU) and tungsten alloys have been the materials of choice for kinetic energy penetrators. Du and tungsten perform abut the same against semi-infinite targets, and DU outperforms tungsten penetrators in oblique, spaced array targets, but because of environmental and subsequent cost concerns, effort has focused on improving the performance of tungsten penetrators over the last few years. However, despite recent improvements in material properties, the penetration performance of tungsten still lags behind that of DU. One possible reason is the difference in deformation mechanisms at the leading edge of the penetrator during the penetration process-DU alloys tend to shear band and sharpen as they penetrate the target material, whereas tungsten penetrators tend to mushroom and blunt. As a first step to determine whether shear banding is truly the reason for superior DU performance, a review of the fabrication, high strain-rate properties, and penetration phenomena of penetrators manufactured from both tungsten and DU alloys. Specifically, the effects of composition, processing, and heat treatment on material properties and penetration mechanisms of these alloys are discussed

  18. Cell-Based Fabrication of Organic/Inorganic Composite Gel Material

    Directory of Open Access Journals (Sweden)

    Takayoshi Nakano

    2011-01-01

    Full Text Available Biomaterials containing components similar to the native biological tissue would have benefits as an implantable scaffold material. To obtain such biomimetic materials, cells may be great contributors because of their crucial roles in synthetic organics. In addition, the synthesized organics—especially those derived from osteogenic differentiated cells—become a place where mineral crystals nucleate and grow even in vitro. Therefore to fabricate an organic/inorganic composite material, which is similar to the biological osteoid tissue, bone marrow derived mesenchymal stem cells (BMSCs were cultured in a 3D fibrin gel in this study. BMSCs secreted bone-related proteins that enhanced the biomineralization within the gel when the cells were cultured with an osteogenic differentiation medium. The compositions of both synthesized matrices and precipitated minerals in the obtained materials altered depending on the cell culture period. The mineral obtained in the 3D gel showed low crystalline hydroxyapatite. The composite materials also showed excellent osteoconductivity with new bone formation when implanted in mice tibiae. Thus, we demonstrated the contributions of cells for fabricating implantable organic/inorganic composite gel materials and a method for controlling the material composition in the gel. This cell-based material fabrication method would be a novel method to fabricate organic/inorganic composite biomimetic materials for bone tissue engineering.

  19. Copper infiltrated high speed steels based composites

    International Nuclear Information System (INIS)

    Madej, M.; Lezanski, J.

    2003-01-01

    High hardness, mechanical strength, heat resistance and wear resistance of M3/2 high speed steel (HSS) make it an attractive material. Since technological and economical considerations are equally important, infiltration of high-speed steel skeleton with liquid cooper has proved to be a suitable technique whereby fully dense material is produced at low cost. Attempts have been made to describe the influence of the production process parameters and alloying additives, such as tungsten carbide on the microstructure and mechanical properties of copper infiltrated HSS based composites. The compositions of powder mixtures are 100% M3/2, M3/2+10% Wc, M3/2=30% WC. The powders were uniaxially cold compacted in a cylindrical die at 800 MPa. The green compacts were sintered in vacuum at 1150 o C for 60 minutes. Thereby obtained porous skeletons were subsequently infiltrated with cooper, by gravity method, in vacuum furnace at 1150 o C for 15 minutes. (author)

  20. Microstructural stability of spark-plasma-sintered Wf/W composite with zirconia interface coating under high-heat-flux hydrogen beam irradiation

    OpenAIRE

    M. Avello de Lama; M. Balden; H. Greuner; T. Höschen; J. Matejicek; J.H. You

    2017-01-01

    Tungsten is considered as the most suitable material for the plasma-facing armour of future fusion reactors. However, in spite of many advantageous properties, pure tungsten has a major drawback, namely, brittleness at lower temperatures and embrittlement by neutron irradiation. Tungsten fibre-reinforced tungsten (Wf/W) composites are thought to be a promising candidate material for armour owing to the pseudo-toughness effect which is based on controlled cracking of coated interfaces. In this...

  1. Investigation on the photophysical properties of tungsten trioxide and tungstate based nanocomposites

    Science.gov (United States)

    Palanisamy, G.; Pazhanivel, T.

    2018-04-01

    Tungsten trioxide (WO3), Metal tungstates (SrWO4, Cr2WO6), WO3/SrWO4 and WO3/Cr2WO6 nanocomposites were successfully prepared by microwave irradiation method at relatively low temperature (500 °C). The synthesized samples were subjected to different investigation techniques, to know the materials physical and chemical properties. The structural and phase change formation of nanoparticles were investigated through XRD analysis. It shows that, the nanoparticles have highly crystalline nature. The shape and composition of the prepared nanoparticles were investigated through SEM and EDAX analysis. The optical properties of the synthesized samples were verified by Ultraviolet-diffuse reflectance spectroscopy and photoluminescence spectrometer. The emission intensity maximum of WO3 nanoparticle was red shifted when compared to composites. It may be due to the effect of delocalized electrons in the parent material. Simultaneously, the emission intensity was decreased because of trap states occurred on the surface of the composite nanoparticles. The photoluminescence spectra of the synthesized samples exhibit different emission (violet and blue) behavior. Hence, it may be useful for light emitting diode (LED) applications.

  2. Multifunctional composite material based on carbon-filled polyurethane

    International Nuclear Information System (INIS)

    Malinovskaya, T; Melentyev, S; Pavlov, S

    2015-01-01

    The research paper deals with the performance of composite resistive material heating coatings based on the polyurethane binder, filled with colloidal-graphite preparation C- 1, which can be used in structures of electric heaters. Frequency dependences of transmission and reflection coefficients, dielectric permeability of composite materials with the various content of carbon fillers (technical carbon, graphite) in polyurethane varnish in ranges of frequencies 26-40 GHz and 110-260 GHz are experimentally investigated. (paper)

  3. Chemical etching of Tungsten thin films for high-temperature surface acoustic wave-based sensor devices

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, M., E-mail: m.spindler@ifw-dresden.de [IFW Dresden, SAWLab Saxony, P.O. Box 270116, D-01171 Dresden (Germany); Herold, S.; Acker, J. [BTU Cottbus – Senftenberg, Faculty of Sciences, P.O. Box 101548, 01968 Senftenberg (Germany); Brachmann, E.; Oswald, S.; Menzel, S.; Rane, G. [IFW Dresden, SAWLab Saxony, P.O. Box 270116, D-01171 Dresden (Germany)

    2016-08-01

    Surface acoustic wave devices are widely used as wireless sensors in different application fields. Recent developments aimed to utilize those devices as temperature sensors even in the high temperature range (T > 300 °C) and in harsh environmental conditions. Therefore, conventional materials, which are used for the substrate and for the interdigital transducer finger electrodes such as multilayers or alloys based on Al or Cu have to be exchanged by materials, which fulfill some important criteria regarding temperature related effects. Electron beam evaporation as a standard fabrication method is not well applicable for depositing high temperature stable electrode materials because of their very high melting points. Magnetron sputtering is an alternative deposition process but is also not applicable for lift-off structuring without any further improvement of the structuring process. Due to a relatively high Ar gas pressure of about 10{sup −1} Pa, the sidewalls of the photoresist line structures are also covered by the metallization, which subsequently prevents a successful lift-off process. In this study, we investigate the chemical etching of thin tungsten films as an intermediate step between magnetron sputtering deposition of thin tungsten finger electrodes and the lift-off process to remove sidewall covering for a successful patterning process of interdigital transducers. - Highlights: • We fabricated Tungsten SAW Electrodes by magnetron sputtering technology. • An etching process removes sidewall covering of photoresist, which allows lift-off. • Tungsten etching rates based on a hydrogen peroxide solutions were determined.

  4. Low temperature processing of tungsten-fibre high-strength composite

    International Nuclear Information System (INIS)

    Semrau, W.M.

    2001-01-01

    A tungsten nickel/iron compound with a high tungsten content up to over 90 percent by volume of tungsten and an ideal distribution of the nickel-iron multilayer-matrix avoiding tungsten - tungsten interfaces, has been processed without the use of any sintering process and thus resulted in avoiding temperatures of above 700 o C during the entire manufacturing process. An electrochemical coating of coarse tungsten powder with alternating layers of nickel and iron and a forging process at temperatures not exceeding 650 o C resulted in a high strength compound, which easily could be altered into a tungsten fiber compound with a fiber-length to fiber-diameter ratio of more than 10 3 . From the viewpoint of the metallurgist, easier handling systems are obtained when both a liquid phase and high temperatures with their risks for grain structures and grain boundaries are lacking. (author)

  5. Information extraction from FN plots of tungsten microemitters.

    Science.gov (United States)

    Mussa, Khalil O; Mousa, Marwan S; Fischer, Andreas

    2013-09-01

    Tungsten based microemitter tips have been prepared both clean and coated with dielectric materials. For clean tungsten tips, apex radii have been varied ranging from 25 to 500 nm. These tips were manufactured by electrochemical etching a 0.1 mm diameter high purity (99.95%) tungsten wire at the meniscus of two molar NaOH solution. Composite micro-emitters considered here are consisting of a tungsten core coated with different dielectric materials-such as magnesium oxide (MgO), sodium hydroxide (NaOH), tetracyanoethylene (TCNE), and zinc oxide (ZnO). It is worthwhile noting here, that the rather unconventional NaOH coating has shown several interesting properties. Various properties of these emitters were measured including current-voltage (IV) characteristics and the physical shape of the tips. A conventional field emission microscope (FEM) with a tip (cathode)-screen (anode) separation standardized at 10 mm was used to electrically characterize the electron emitters. The system was evacuated down to a base pressure of ∼10(-8) mbar when baked at up to ∼180 °C overnight. This allowed measurements of typical field electron emission (FE) characteristics, namely the IV characteristics and the emission images on a conductive phosphorus screen (the anode). Mechanical characterization has been performed through a FEI scanning electron microscope (SEM). Within this work, the mentioned experimental results are connected to the theory for analyzing Fowler-Nordheim (FN) plots. We compared and evaluated the data extracted from clean tungsten tips of different radii and determined deviations between the results of different extraction methods applied. In particular, we derived the apex radii of several clean and coated tungsten tips by both SEM imaging and analyzing FN plots. The aim of this analysis is to support the ongoing discussion on recently developed improvements of the theory for analyzing FN plots related to metal field electron emitters, which in particular

  6. Information extraction from FN plots of tungsten microemitters

    Energy Technology Data Exchange (ETDEWEB)

    Mussa, Khalil O. [Department of Physics, Mu' tah University, Al-Karak (Jordan); Mousa, Marwan S., E-mail: mmousa@mutah.edu.jo [Department of Physics, Mu' tah University, Al-Karak (Jordan); Fischer, Andreas, E-mail: andreas.fischer@physik.tu-chemnitz.de [Institut für Physik, Technische Universität Chemnitz, Chemnitz (Germany)

    2013-09-15

    Tungsten based microemitter tips have been prepared both clean and coated with dielectric materials. For clean tungsten tips, apex radii have been varied ranging from 25 to 500 nm. These tips were manufactured by electrochemical etching a 0.1 mm diameter high purity (99.95%) tungsten wire at the meniscus of two molar NaOH solution. Composite micro-emitters considered here are consisting of a tungsten core coated with different dielectric materials—such as magnesium oxide (MgO), sodium hydroxide (NaOH), tetracyanoethylene (TCNE), and zinc oxide (ZnO). It is worthwhile noting here, that the rather unconventional NaOH coating has shown several interesting properties. Various properties of these emitters were measured including current–voltage (IV) characteristics and the physical shape of the tips. A conventional field emission microscope (FEM) with a tip (cathode)–screen (anode) separation standardized at 10 mm was used to electrically characterize the electron emitters. The system was evacuated down to a base pressure of ∼10{sup −8}mbar when baked at up to ∼180°C overnight. This allowed measurements of typical field electron emission (FE) characteristics, namely the IV characteristics and the emission images on a conductive phosphorus screen (the anode). Mechanical characterization has been performed through a FEI scanning electron microscope (SEM). Within this work, the mentioned experimental results are connected to the theory for analyzing Fowler–Nordheim (FN) plots. We compared and evaluated the data extracted from clean tungsten tips of different radii and determined deviations between the results of different extraction methods applied. In particular, we derived the apex radii of several clean and coated tungsten tips by both SEM imaging and analyzing FN plots. The aim of this analysis is to support the ongoing discussion on recently developed improvements of the theory for analyzing FN plots related to metal field electron emitters, which in

  7. Information extraction from FN plots of tungsten microemitters

    International Nuclear Information System (INIS)

    Mussa, Khalil O.; Mousa, Marwan S.; Fischer, Andreas

    2013-01-01

    Tungsten based microemitter tips have been prepared both clean and coated with dielectric materials. For clean tungsten tips, apex radii have been varied ranging from 25 to 500 nm. These tips were manufactured by electrochemical etching a 0.1 mm diameter high purity (99.95%) tungsten wire at the meniscus of two molar NaOH solution. Composite micro-emitters considered here are consisting of a tungsten core coated with different dielectric materials—such as magnesium oxide (MgO), sodium hydroxide (NaOH), tetracyanoethylene (TCNE), and zinc oxide (ZnO). It is worthwhile noting here, that the rather unconventional NaOH coating has shown several interesting properties. Various properties of these emitters were measured including current–voltage (IV) characteristics and the physical shape of the tips. A conventional field emission microscope (FEM) with a tip (cathode)–screen (anode) separation standardized at 10 mm was used to electrically characterize the electron emitters. The system was evacuated down to a base pressure of ∼10 −8 mbar when baked at up to ∼180°C overnight. This allowed measurements of typical field electron emission (FE) characteristics, namely the IV characteristics and the emission images on a conductive phosphorus screen (the anode). Mechanical characterization has been performed through a FEI scanning electron microscope (SEM). Within this work, the mentioned experimental results are connected to the theory for analyzing Fowler–Nordheim (FN) plots. We compared and evaluated the data extracted from clean tungsten tips of different radii and determined deviations between the results of different extraction methods applied. In particular, we derived the apex radii of several clean and coated tungsten tips by both SEM imaging and analyzing FN plots. The aim of this analysis is to support the ongoing discussion on recently developed improvements of the theory for analyzing FN plots related to metal field electron emitters, which in

  8. Effects of heat treatment on mechanical properties and microstructure of tungsten fi ber reinforced grey cast iron matrix composites

    Directory of Open Access Journals (Sweden)

    Peng jianHong

    2009-11-01

    Full Text Available In this study, grey cast iron matrix composites reinforced by different volume fractions of tungsten fibers (Vr = 0.95 %, 1.90 %, 2.85 %, 3.80 % were investigated in as-cast and under the heat treatment temperatures of 1,000℃ and 1,100℃. The microstructure and mechanical properties of the composites were analyzed and tested by means of SEM, micro-hardness tester and three-point bend testing. The results show that with increasing of the volume fraction of tungsten fibers, the composites reinforced by the tungsten fiber have higher fl exural strength and modulus than that of cast iron without reinforcement, and the fl exural strength increases with the increasing of heat treatment temperatures. Due to diffusion reaction between matrix and reinforcing phases, the process of heat treatment, the number of graphite fl akes in the matrix seemingly becomes lower; and some hard carbide particles are formed around the residual tungsten fi bers. Not only does the hardness of both matrix and reinforcement change tremendously, but also the region of reinforcement is also extended from the original 0.11 mm to 0.19 mm in radius.

  9. Chemically produced nanostructured ODS-lanthanum oxide-tungsten composites sintered by spark plasma

    International Nuclear Information System (INIS)

    Yar, Mazher Ahmed; Wahlberg, Sverker; Bergqvist, Hans; Salem, Hanadi G.; Johnsson, Mats; Muhammed, Mamoun

    2011-01-01

    High purity W and W-0.9La 2 O 3 (wt.%) nanopowders were produced by a wet chemical route. The precursor was prepared by the reaction of ammonium paratungstate (APT) with lanthanum salt in aqueous solutions. High resolution electron microscopy investigations revealed that the tungstate particles were coated with oxide precipitates. The precursor powder was reduced to tungsten metal with dispersed lanthanum oxide. Powders were consolidated by spark plasma sintering (SPS) at 1300 and 1400 o C to suppress grain growth during sintering. The final grain size relates to the SPS conditions, i.e. temperature and heating rate, regardless of the starting powder particle size. Scanning electron microscopy revealed that oxide phases were mainly accumulated at grain boundaries while the tungsten matrix constituted of nanosized sub-grains. The transmission electron microscopy revealed that the tungsten grains consist of micron-scale grains and finer sub-grains. EDX analysis confirmed the presence of W in dispersed oxide phases with varying chemical composition, which evidenced the presence of complex oxide phases (W-O-La) in the sintered metals.

  10. Three-terminal nanoelectromechanical switch based on tungsten nitride—an amorphous metallic material

    KAUST Repository

    Mayet, Abdulilah M.; Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2015-01-01

    © 2016 IOP Publishing Ltd. Nanoelectromechanical (NEM) switches inherently have zero off-state leakage current and nearly ideal sub-threshold swing due to their mechanical nature of operation, in contrast to semiconductor switches. A challenge for NEM switches to be practical for low-power digital logic application is their relatively large operation voltage which can result in higher dynamic power consumption. Herein we report a three-terminal laterally actuated NEM switch fabricated with an amorphous metallic material: tungsten nitride (WNx). As-deposited WNx thin films have high Young's modulus (300 GPa) and reasonably high hardness (3 GPa), which are advantageous for high wear resistance. The first prototype WNx switches are demonstrated to operate with relatively low control voltage, down to 0.8 V for an air gap thickness of 150 nm.

  11. Three-terminal nanoelectromechanical switch based on tungsten nitride—an amorphous metallic material

    KAUST Repository

    Mayet, Abdulilah M.

    2015-12-04

    © 2016 IOP Publishing Ltd. Nanoelectromechanical (NEM) switches inherently have zero off-state leakage current and nearly ideal sub-threshold swing due to their mechanical nature of operation, in contrast to semiconductor switches. A challenge for NEM switches to be practical for low-power digital logic application is their relatively large operation voltage which can result in higher dynamic power consumption. Herein we report a three-terminal laterally actuated NEM switch fabricated with an amorphous metallic material: tungsten nitride (WNx). As-deposited WNx thin films have high Young\\'s modulus (300 GPa) and reasonably high hardness (3 GPa), which are advantageous for high wear resistance. The first prototype WNx switches are demonstrated to operate with relatively low control voltage, down to 0.8 V for an air gap thickness of 150 nm.

  12. The investigation of Y doping content effect on the microstructure and microhardness of tungsten materials

    International Nuclear Information System (INIS)

    Zhao, Mingyue; Zhou, Zhangjian; Ding, Qingming; Zhong, Ming; Tan, Jun

    2014-01-01

    In this study, the microstructure and microhardness of tungsten–yttrium (W–Y) composites were investigated as a function of Y doping content (0.25–3 wt%). It was found that the crystallite sizes and the powder particle sizes were increased as a result of the increase of Y content. Nearly fully dense materials were obtained for W–Y alloys when the Y content was higher than 0.5 wt%. The EDS analysis revealed that the Y rich phases were complex (W–Y) oxides formed during the sintering process. The Y doping content showed obvious influence on the refinement of tungsten grains during sintering. W–1.5Y composite showed the finest microstructure with an average grain size of 0.32 μm, and thus achieved the highest Vickers microhardness with the value of 770 HV 0.2

  13. Deuterium trapping in tungsten

    Science.gov (United States)

    Poon, Michael

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  14. Deuterium trapping in tungsten

    International Nuclear Information System (INIS)

    Poon, M.

    2004-01-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D 2 molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  15. Deuterium trapping in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Poon, M

    2004-07-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D{sub 2} molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  16. Synthesis and Performance of Tungsten Disulfide/Carbon (WS2/C) Composite as Anode Material

    Science.gov (United States)

    Yuan, Zhengyong; Jiang, Qiang; Feng, Chuanqi; Chen, Xiao; Guo, Zaiping

    2018-01-01

    The precursors of an amorphous WS2/C composite were synthesized by a simple hydrothermal method using Na2WO4·2H2O and CH3CSNH2 as raw materials, polyethylene glycol as dispersant, and glucose as the carbon source. The as-synthesized precursors were further annealed at a low temperature in flowing argon to obtain the final materials (WS2/C composite). The structure and morphology of the WS2/C composite were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy. The electrochemical properties were tested by galvanostatic charge/discharge testing and alternating current (AC) impedance measurements. The results show that the as-prepared amorphous WS2/C composite features both high specific capacity and good cycling performance at room temperature within the potential window from 3.0 V to 0.01 V (versus Li+/Li) at current density of 100 mAg-1. The achieved initial discharge capacity was 1080 mAhg-1, and 786 mAhg-1 was retained after 170 cycles. Furthermore, the amorphous WS2/C composite exhibited a lower charge/discharge plateau than bare WS2, which is more beneficial for use as an anode. The cyclic voltammetry and AC impedance testing further confirmed the change in the plateau and the decrease in the charge transfer resistance in the WS2/C composite. The chemical formation process and the electrochemical mechanism of the WS2/C composite are also presented. The amorphous WS2/C composite can be used as a new anode material for future applications.

  17. Materials Survey: Tungsten

    Science.gov (United States)

    1956-12-01

    Columbia, from which tungsten production is planned approximately 60 miles east fromSkagway, were estimated at the end of 1951 to be Alaska. Reserves...of the principal mines inimportant producers. 1952 halted expansion programs planned by Production in Argentina reached a maxi- Patiffo Mines and...government.Concentrates International Mining Co. (W. R. Grace & from small producers are collected and Co.), La Paz; Chojlla Mine; type ore-- marketed by Banco Minero

  18. Mechanical alloying and sintering of nanostructured tungsten carbide-reinforced copper composite and its characterization

    International Nuclear Information System (INIS)

    Yusoff, Mahani; Othman, Radzali; Hussain, Zuhailawati

    2011-01-01

    Research highlights: → W 2 C phase was formed at short milling time while WC only appears after longer milling time. → Cu crystallite size decreased but internal strain increased with increasing milling time. → Increasing milling time induced more WC formation, thus improving the hardness of the composite. → Electrical conductivity is reduced due to powder refinement and the presence of carbide phases. -- Abstract: Elemental powders of copper (Cu), tungsten (W) and graphite (C) were mechanically alloyed in a planetary ball mill with different milling durations (0-60 h), compacted and sintered in order to precipitate hard tungsten carbide particles into a copper matrix. Both powder and sintered composite were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and assessed for hardness and electrical conductivity to investigate the effects of milling time on formation of nanostructured Cu-WC composite and its properties. No carbide peak was detected in the powder mixtures after milling. Carbide WC and W 2 C phases were precipitated only in the sintered composite. The formation of WC began with longer milling times, after W 2 C formation. Prolonged milling time decreased the crystallite size as well as the internal strain of Cu. Hardness of the composite was enhanced but electrical conductivity reduced with increasing milling time.

  19. The shielding against radiation produced by powder metallurgy with tungsten copper alloy applied on transport equipment for radio-pharmaceutical products

    International Nuclear Information System (INIS)

    Cione, Francisco C.; Sene, Frank F.; Souza, Armando C. de; Betini, Evandro G.; Rossi, Jesualdo L.; Rizzuto, Marcia A.

    2015-01-01

    Safety is mandatory on medicine radiopharmaceutical transportation and dependent on radiation shielding material. The focus of the present work is to minimize the use of harmful materials as lead and depleted uranium usually used in packages transportation. The tungsten-copper composite obtained by powder metallurgy (PM) is non-toxic. In powder metallurgy the density and the porosity of the compacted parts depends basically upon particle size distribution of each component, mixture, compacting pressure and sintering temperature cycle. The tungsten-copper composite, when used for shielding charged particles, X-rays, gamma photons or other photons of lower energy require proper interpretation of the radiation transport phenomena. The radioactive energy reduction varies according to the porosity and density of the materials used as shielding. The main factor for radiation attenuation is the cross section value for tungsten. The motivation research factor is an optimization of the tungsten and cooper composition in order to achieve the best linear absorption coefficient given by equation I (x) = I 0 e (-ux) . Experiments were conducted to quantify the effective radiation shielding properties of tungsten-copper composite produced by PM, varying the cooper amount in the composite. The studied compositions were 15%, 20% and 25% copper in mass. The Compaction pressure was 270 MPa and the sintering atmosphere was in 1.1 atm in N 2 +H 2 . The sintering temperature was 980 deg C for 2 h. The linear absorption coefficient factor was similar either for the green and the sintered compacts, due the amount of porosity did not affect the radiation attenuation. Thus the sintered was meant for size reduction and mechanical properties enhancement. (author)

  20. The shielding against radiation produced by powder metallurgy with tungsten copper alloy applied on transport equipment for radio-pharmaceutical products

    Energy Technology Data Exchange (ETDEWEB)

    Cione, Francisco C.; Sene, Frank F.; Souza, Armando C. de; Betini, Evandro G.; Rossi, Jesualdo L., E-mail: fceoni@hotmail.com, E-mail: ffsene@hotmail.com, E-mail: armandocirilo@yahoo.com, E-mail: evandrobetini@gmail.com, E-mail: jelrossi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rizzuto, Marcia A., E-mail: marizzutto@if.usp.br [Universidade de Sao Paulo (IF/USP), SP (Brazil). Instituto de Fisica

    2015-07-01

    Safety is mandatory on medicine radiopharmaceutical transportation and dependent on radiation shielding material. The focus of the present work is to minimize the use of harmful materials as lead and depleted uranium usually used in packages transportation. The tungsten-copper composite obtained by powder metallurgy (PM) is non-toxic. In powder metallurgy the density and the porosity of the compacted parts depends basically upon particle size distribution of each component, mixture, compacting pressure and sintering temperature cycle. The tungsten-copper composite, when used for shielding charged particles, X-rays, gamma photons or other photons of lower energy require proper interpretation of the radiation transport phenomena. The radioactive energy reduction varies according to the porosity and density of the materials used as shielding. The main factor for radiation attenuation is the cross section value for tungsten. The motivation research factor is an optimization of the tungsten and cooper composition in order to achieve the best linear absorption coefficient given by equation I{sub (x)} = I{sub 0}e{sup (-ux)}. Experiments were conducted to quantify the effective radiation shielding properties of tungsten-copper composite produced by PM, varying the cooper amount in the composite. The studied compositions were 15%, 20% and 25% copper in mass. The Compaction pressure was 270 MPa and the sintering atmosphere was in 1.1 atm in N{sub 2}+H{sub 2}. The sintering temperature was 980 deg C for 2 h. The linear absorption coefficient factor was similar either for the green and the sintered compacts, due the amount of porosity did not affect the radiation attenuation. Thus the sintered was meant for size reduction and mechanical properties enhancement. (author)

  1. Tungsten wire-nickel base alloy composite development

    Science.gov (United States)

    Brentnall, W. D.; Moracz, D. J.

    1976-01-01

    Further development and evaluation of refractory wire reinforced nickel-base alloy composites is described. Emphasis was placed on evaluating thermal fatigue resistance as a function of matrix alloy composition, fabrication variables and reinforcement level and distribution. Tests for up to 1,000 cycles were performed and the best system identified in this current work was 50v/o W/NiCrAlY. Improved resistance to thermal fatigue damage would be anticipated for specimens fabricated via optimized processing schedules. Other properties investigated included 1,093 C (2,000 F) stress rupture strength, impact resistance and static air oxidation. A composite consisting of 30v/o W-Hf-C alloy fibers in a NiCrAlY alloy matrix was shown to have a 100-hour stress rupture strength at 1,093 C (2,000 F) of 365 MN/square meters (53 ksi) or a specific strength advantage of about 3:1 over typical D.S. eutectics.

  2. Suspended tungsten-based nanowires with enhanced mechanical properties grown by focused ion beam induced deposition

    Science.gov (United States)

    Córdoba, Rosa; Lorenzoni, Matteo; Pablo-Navarro, Javier; Magén, César; Pérez-Murano, Francesc; María De Teresa, José

    2017-11-01

    The implementation of three-dimensional (3D) nano-objects as building blocks for the next generation of electro-mechanical, memory and sensing nano-devices is at the forefront of technology. The direct writing of functional 3D nanostructures is made feasible by using a method based on focused ion beam induced deposition (FIBID). We use this technique to grow horizontally suspended tungsten nanowires and then study their nano-mechanical properties by three-point bending method with atomic force microscopy. These measurements reveal that these nanowires exhibit a yield strength up to 12 times higher than that of the bulk tungsten, and near the theoretical value of 0.1 times the Young’s modulus (E). We find a size dependence of E that is adequately described by a core-shell model, which has been confirmed by transmission electron microscopy and compositional analysis at the nanoscale. Additionally, we show that experimental resonance frequencies of suspended nanowires (in the MHz range) are in good agreement with theoretical values. These extraordinary mechanical properties are key to designing electro-mechanically robust nanodevices based on FIBID tungsten nanowires.

  3. A new fully automatic PIM tool to replicate two component tungsten DEMO divertor parts

    International Nuclear Information System (INIS)

    Antusch, Steffen; Commin, Lorelei; Heneka, Jochen; Piotter, Volker; Plewa, Klaus; Walter, Heinz

    2013-01-01

    Highlights: • Development of a fully automatic 2C-PIM tool. • Replicate fusion relevant components in one step without additional brazing. • No cracks or gaps in the seam of the joining zone visible. • For both material combinations a solid bond of the material interface was achieved. • PIM is a powerful process for mass production as well as for joining even complex shaped parts. -- Abstract: At Karlsruhe Institute of Technology (KIT), divertor design concepts for future nuclear fusion power plants beyond ITER are intensively investigated. One promising KIT divertor design concept for the future DEMO power reactor is based on modular He-cooled finger units. The manufacturing of such parts by mechanical machining such as milling and turning, however, is extremely cost and time intensive because tungsten is very hard and brittle. Powder Injection Molding (PIM) has been adapted to tungsten processing at KIT since a couple of years. This production method is deemed promising in view of large-scale production of tungsten parts with high near-net-shape precision, hence, offering an advantage of cost-saving process compared to conventional machining. The properties of the effectively and successfully manufactured divertor part tile consisting only of pure tungsten are a microstructure without cracks and a high density (>98% T.D.). Based on the achieved results a new fully automatic multicomponent PIM tool was developed and allows the replication and joining without brazing of fusion relevant components of different materials in one step and the creation of composite materials. This contribution describes the process route to design and engineer a new fully automatic 2C-PIM tool, including the filling simulation and the implementing of the tool. The complete technological fabrication process of tungsten 2C-PIM, including material and feedstock (powder and binder) development, injection molding, and heat-treatment of real DEMO divertor parts is outlined

  4. Validation of new ceramic materials from tungsten mining wastes. Mechanical properties; Validacion de nuevos materiales ceramicos a partir de rocas de desecho de mineria. Propiedades mecanicas

    Energy Technology Data Exchange (ETDEWEB)

    Duran Suarez, J. A.; Montoya Herrera, J.; Silva, A. P.; Peralbo Cano, R.; Castro-Gomes, J. P.

    2014-07-01

    New ceramic materials obtained from tungsten mining wastes, from region of Beira Interior in Portugal, with no commercial use, responsible for landscape and environmental problems are presented. These preshaped new ceramic products, prepared in a wide thermal range (800 degree centigrade to 1300 degree centigrade) was evaluated by mechanical test, but also was characterized the starting raw materials: tungsten wastes mining and industrial kaolin. Results, which also include a mineralogical characterization of ceramic products and morphologic evaluation of neoformed by scanning electron microscopy, show firstly, the feasibility of converting a large number of these wastes in marketable ceramics. Thanks to the experimentation carried out, the ability to generate ceramic materials is emphasized, without the presence of mineral clay, due to the particular composition of these waste of mining with content of acid, neutral and basic oxides. (Author)

  5. Joining of Tungsten Armor Using Functional Gradients

    International Nuclear Information System (INIS)

    John Scott O'Dell

    2006-01-01

    The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.

  6. Genotoxic Changes to Rodent Cells Exposed in Vitro to Tungsten, Nickel, Cobalt and Iron

    Directory of Open Access Journals (Sweden)

    Stephanie Bardack

    2014-03-01

    Full Text Available Tungsten-based materials have been proposed as replacements for depleted uranium in armor-penetrating munitions and for lead in small-arms ammunition. A recent report demonstrated that a military-grade composition of tungsten, nickel, and cobalt induced a highly-aggressive, metastatic rhabdomyosarcoma when implanted into the leg muscle of laboratory rats to simulate a shrapnel wound. The early genetic changes occurring in response to embedded metal fragments are not known. In this study, we utilized two cultured rodent myoblast cell lines, exposed to soluble tungsten alloys and the individual metals comprising the alloys, to study the genotoxic effects. By profiling cell transcriptomes using microarray, we found slight, yet distinct and unique, gene expression changes in rat myoblast cells after 24 h metal exposure, and several genes were identified that correlate with impending adverse consequences of ongoing exposure to weapons-grade tungsten alloy. These changes were not as apparent in the mouse myoblast cell line. This indicates a potential species difference in the cellular response to tungsten alloy, a hypothesis supported by current findings with in vivo model systems. Studies examining genotoxic-associated gene expression changes in cells from longer exposure times are warranted.

  7. Some functional properties of composite material based on scrap tires

    Science.gov (United States)

    Plesuma, Renate; Malers, Laimonis

    2013-09-01

    The utilization of scrap tires still obtains a remarkable importance from the aspect of unloading the environment from non-degradable waste [1]. One of the most prospective ways for scrap tires reuse is a production of composite materials [2] This research must be considered as a continuation of previous investigations [3, 4]. It is devoted to the clarification of some functional properties, which are considered important for the view of practical applications, of the composite material. Some functional properties of the material were investigated, for instance, the compressive stress at different extent of deformation of sample (till 67% of initial thickness) (LVS EN 826) [5] and the resistance to UV radiation (modified method based on LVS EN 14836) [6]. Experiments were realized on the purposefully selected samples. The results were evaluated in the correlation with potential changes of Shore C hardness (Shore scale, ISO 7619-1, ISO 868) [7, 8]. The results showed noticeable resistance of the composite material against the mechanical influence and ultraviolet (UV) radiation. The correlation with the composition of the material, activity of binder, definite technological parameters, and the conditions supported during the production, were determined. It was estimated that selected properties and characteristics of the material are strongly dependent from the composition and technological parameters used in production of the composite material, and from the size of rubber crumb. Obtained results show possibility to attain desirable changes in the composite material properties by changing both the composition and technological parameters of examined material.

  8. Influence of Al-W-B Recycled Composite Material on the Properties of High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Baronins Janis

    2015-12-01

    Full Text Available The aim of this study is to obtain high performance boron containing material with sufficient carrying capacity with increased porosity and lower density at the same time. The influence of the different concentrations of Al-W-B powder on the properties of the fresh and hardened HPC was investigated. In the concrete mix design, the allite containing White Portland cement CEM I 52,5 R, granite stone, sand, microsilica, on polycarboxylates based super plasticizer and Al-W-B powder were used. As a source of boron composite material (CM, previously grinded powder containing boron-tungsten fiber and aluminium matrix (CM Al-W-B was used. Grinding was used for processing of CM Al-W-B powder.

  9. Microstructural and Mechanical Study of Inconel 625 – Tungsten Carbide Composite Coatings Obtained by Powder Laser Cladding

    Directory of Open Access Journals (Sweden)

    Huebner J.

    2017-06-01

    Full Text Available This study focuses on the investigation of fine (~0.54 μm tungsten carbide particles effect on structural and mechanical properties of laser cladded Inconel 625-WC composite. Three powder mixtures with different Inconel 625 – WC weight ratio (10, 20 and 30 weight % of WC were prepared. Coatings were made using following process parameters: laser beam diameter ø ≈ 500 μm, powder feeder rotation speed – 7 m/min, scanning velocity – 10 m/min, laser power – 220 W changed to 320 W, distance between tracks – 1 mm changed to 0.8 mm. Microstructure and hardness were investigated. Coatings produced by laser cladding were crack and pore free, chemically and structurally homogenous. High cooling rate during cladding process resulted in fine microstructure of material. Hardness improved with addition of WC from 396.3 ±10.5 HV for pure Inconel 625, to 469.9 ±24.9 HV for 30 weight % of WC. Tungsten carbide dissolved in Inconel 625 which allowed formation of intergranular eutectic that contains TCP phases.

  10. Comparison of Iron and Tungsten Based Oxygen Carriers for Hydrogen Production Using Chemical Looping Reforming

    Science.gov (United States)

    Khan, M. N.; Shamim, T.

    2017-08-01

    Hydrogen production by using a three reactor chemical looping reforming (TRCLR) technology is an innovative and attractive process. Fossil fuels such as methane are the feedstocks used. This process is similar to a conventional steam-methane reforming but occurs in three steps utilizing an oxygen carrier. As the oxygen carrier plays an important role, its selection should be done carefully. In this study, two oxygen carrier materials of base metal iron (Fe) and tungsten (W) are analysed using a thermodynamic model of a three reactor chemical looping reforming plant in Aspen plus. The results indicate that iron oxide has moderate oxygen carrying capacity and is cheaper since it is abundantly available. In terms of hydrogen production efficiency, tungsten oxide gives 4% better efficiency than iron oxide. While in terms of electrical power efficiency, iron oxide gives 4.6% better results than tungsten oxide. Overall, a TRCLR system with iron oxide is 2.6% more efficient and is cost effective than the TRCLR system with tungsten oxide.

  11. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    Energy Technology Data Exchange (ETDEWEB)

    Z. Zak Fang, H. Y. Sohn

    2009-03-10

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  12. Gas-driven permeation of deuterium through tungsten and tungsten alloys

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, Dean A., E-mail: dabuche@sandia.gov [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States); Karnesky, Richard A. [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States); Fang, Zhigang Zak; Ren, Chai [University of Utah, Department of Metallurgical Engineering, Salt Lake City, UT 84112 (United States); Oya, Yasuhisa [Shizuoka University, Graduate School of Science, Shizuoka (Japan); Otsuka, Teppei [Kyushu University, Department of Advanced Energy Engineering Science, Fukuoka (Japan); Yamauchi, Yuji [Hokkaido University, Third Division of Quantum Science and Engineering, Faculty of Engineering, Sapporo (Japan); Whaley, Josh A. [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States)

    2016-11-01

    Highlights: • We have designed and performed initial studies on a high temperature gas-driven permeation cell capable of operating at temperatures up to 1150 °C and at pressures between 0.1–1 atm. • Permeation measurements on ITER grade tungsten compare well with past studies by Frauenfelder and Zahkarov in the temperature range from 500 to 1000 °C. • First permeation measurements on Ti dispersoid-strengthened ultra-fine grained tungsten show higher permeation at 500 °C, but very similar permeation with ITER tungsten at 1000 °C. Diffusion along grain boundaries may be playing a role for this type of material. - Abstract: To address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150 °C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungsten being developed in the US. Experiments were performed at 500–1000 °C and 0.1–1.0 atm D{sub 2} pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (< 10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000 °C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation

  13. Deuterium transport and trapping in polycrystalline tungsten

    International Nuclear Information System (INIS)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R.; Pawelko, R.J.; Trybus, C.L.; Sellers, C.H.

    1992-01-01

    This paper reports that deuterium permeation studies for polycrystalline tungsten foil have been conducted to provide data for estimating tritium transport and trapping in tungsten-clad divertors proposed for advanced fusion-reactor concepts. Based on a detailed transmission electron microscopy (TEM) microstructural characterization of the specimen material and on analyses of permeation data measured at temperatures ranging form 610 to 823 K for unannealed and annealed tungsten foil (25 μm thick), the authors note the following key results: deuterium transport in tungsten foil is dominated by extensive trapping that varies inversely with prior anneal temperatures of the foil material, the reduction in the trapped fraction correlates with a corresponding elimination of a high density of dislocations in cell-wall structures introduced during the foil fabrication process, trapping behavior in these foils can be modelled using trap energies between 1.3 eV and 1.5 eV and trap densities ranging from 1 x 10 -5 atom fraction

  14. On possibility of fabrication of monolith composite materials on niobium carbide base

    International Nuclear Information System (INIS)

    Ploshkin, V.V.; Ul'yanina, I.Yu.; Filonenko, V.P.

    1984-01-01

    An attempt was made to fabricate the composite material on niobium carbide base possessing the elevated heat resistance, erosion and chemical resistance in special media, as well as capable of withstanding sufficient thermal shocks. Powder of niobium carbide of 10 μm fraction was used as base material, the powder of pure copper of 10...12 μm fraction - as binder. It was shown that samples of composite mateiral on niobium carbide base fabricated by the method of hydrostatic pressing possessed the minimal porosity as compared to samples fabricated by usual methods of powder metallurgy. The basic phases of composite material-copper and niobium carbide - distribute uniformly over sample cross-section and don't interact with each other under any conditions. The fabricated composite material possesses sufficient thermal shock resistance and isn't subjected to brittle fracture

  15. Mechanical and corrosion behaviors of developed copper-based metal matrix composites

    Science.gov (United States)

    Singh, Manvandra Kumar; Gautam, Rakesh Kumar; Prakash, Rajiv; Ji, Gopal

    2018-03-01

    This work investigates mechanical properties and corrosion resistances of cast copper-tungsten carbide (WC) metal matrix composites (MMCs). Copper matrix composites have been developed by stir casting technique. Different sizes of micro and nano particles of WC particles are utilized as reinforcement to prepare two copper-based composites, however, nano size of WC particles are prepared by high-energy ball milling. XRD (X-rays diffraction) characterize the materials for involvement of different phases. The mechanical behavior of composites has been studied by Vickers hardness test and compression test; while the corrosion behavior of developed composites is investigated by electrochemical impedance spectroscopy in 0.5 M H2SO4 solutions. The results show that hardness, compressive strength and corrosion resistance of copper matrix composites are very high in comparison to that of copper matrix, which attributed to the microstructural changes occurred during composite formation. SEM (Scanning electron microscopy) reveals the morphology of the corroded surfaces.

  16. Two component tungsten powder injection molding – An effective mass production process

    International Nuclear Information System (INIS)

    Antusch, Steffen; Commin, Lorelei; Mueller, Marcus; Piotter, Volker; Weingaertner, Tobias

    2014-01-01

    Tungsten and tungsten-alloys are presently considered to be the most promising materials for plasma facing components for future fusion power plants. The Karlsruhe Institute of Technology (KIT) divertor design concept for the future DEMO power plant is based on modular He-cooled finger units and the development of suitable mass production methods for such parts was needed. A time and cost effective near-net-shape forming process with the advantage of shape complexity, material utilization and high final density is Powder Injection Molding (PIM). This process allows also the joining of two different materials e.g. tungsten with a doped tungsten alloy, without brazing. The complete technological process of 2-Component powder injection molding for tungsten materials and its application on producing real DEMO divertor parts, characterization results of the finished parts e.g. microstructure, hardness, density and joining zone quality are discussed in this contribution

  17. In Situ Synthesis of Tungsten-Doped SnO2 and Graphene Nanocomposites for High-Performance Anode Materials of Lithium-Ion Batteries.

    Science.gov (United States)

    Wang, Shuai; Shi, Liyi; Chen, Guorong; Ba, Chaoqun; Wang, Zhuyi; Zhu, Jiefang; Zhao, Yin; Zhang, Meihong; Yuan, Shuai

    2017-05-24

    The composite of tungsten-doped SnO 2 and reduced graphene oxide was synthesized through a simple one-pot hydrothermal method. According to the structural characterization of the composite, tungsten ions were doped in the unit cells of tin dioxide rather than simply attaching to the surface. Tungsten-doped SnO 2 was in situ grown on the surface of graphene sheet to form a three-dimensional conductive network that enhanced the electron transportation and lithium-ion diffusion effectively. The issues of SnO 2 agglomeration and volume expansion could be also avoided because the tungsten-doped SnO 2 nanoparticles were homogeneously distributed on a graphene sheet. As a result, the nanocomposite electrodes of tungsten-doped SnO 2 and reduced graphene oxide exhibited an excellent long-term cycling performance. The residual capacity was still as high as 1100 mA h g -1 at 0.1 A g -1 after 100 cycles. It still remained at 776 mA h g -1 after 2000 cycles at the current density of 1A g -1 .

  18. Characterization of plasma coated tungsten heavy alloy

    International Nuclear Information System (INIS)

    Bose, A.; Kapoor, D.; Lankford, J. Jr.; Nicholls, A.E.

    1996-01-01

    The detrimental environmental impact of Depleted Uranium-based penetrators have led to tremendous development efforts in the area of tungsten heavy alloy based penetrators. One line of investigation involves the coating of tungsten heavy alloys with materials that are prone to shear localization. Plasma spraying of Inconel 718 and 4340 steel have been used to deposit dense coatings on tungsten heavy alloy substrates. The aim of the investigation was to characterize the coating primarily in terms of its microstructure and a special push-out test. The paper describes the results of the push-out tests and analyzes some of the possible failure mechanisms by carrying out microstructural characterization of the failed rings obtained from the push out tests

  19. New doped tungsten cathodes. Applications to power grid tubes

    International Nuclear Information System (INIS)

    Cachard, J. de; Cadoret, K; Martinez, L.; Veillet, D.; Millot, F.

    2001-01-01

    Thermionic emission behavior of tungsten/tungsten carbide modified with rare earth (La, Ce, Y) oxides is examined on account of suitability to deliver important current densities in a thermo-emissive set up and for long lifetime. Work functions of potential cathodes have been determined from Richardson plots for La 2 O 3 doped tungsten and for tungsten covered with variable compositions rare earth tungstates. The role of platinum layers covering the cathode was also examined. Given all cathodes containing mainly lanthanum oxides were good emitters, emphasis was put on service lifetime. Comparisons of lifetime in tungsten doped with rare earth oxides and with rare earth tungstates show that microstructure of the operating cathodes may play the major role in the research of very long lifetime cathodes. Based on these results, tests still running show lifetime compatible with power grid tubes applications. (author)

  20. Tungsten and refractory metals 3, proceedings

    International Nuclear Information System (INIS)

    Bose, A.; Dowding, R.J.

    1996-01-01

    The Third International Conference on Tungsten and Refractory Metals was held in Greater Washington DC at the McLean Hilton, McLean Virginia, on November 15--16, 1995. This meeting was the third in a series of conferences held in the Washington DC area. The first meeting was in 1992 and was entitled ''International Conference on Tungsten and Tungsten Alloys.'' In 1994, the scope of the meeting was expanded to include other refractory metals such as molybdenum, iridium, rhenium, tantalum and niobium. The tremendous success of that meeting was the primary motivation for this Conference. The broader scope (the inclusion of other refractory metals and alloys) of the Conference was kept intact for this meeting. In fact, it was felt that the developments in the technology of these materials required a common forum for the interchange of current research information. The papers presented in this meeting examined the rapid advancements in the technology of refractory metals, with special emphasis on the processing, structure, and properties. Among the properties there was emphasis on both quasi-static and dynamic rates. Another topic that received considerable interest was the area of refractory carbides and tungsten-copper composites. One day of concurrent session was necessary to accommodate all of the presentations

  1. Oxidation behaviour of silicon-free tungsten alloys for use as the first wall material

    Science.gov (United States)

    Koch, F.; Brinkmann, J.; Lindig, S.; Mishra, T. P.; Linsmeier, Ch

    2011-12-01

    The use of self-passivating tungsten alloys as armour material of the first wall of a fusion power reactor may be advantageous concerning safety issues. In earlier studies good performance of the system W-Cr-Si was demonstrated. Thin films of such alloys showed a strongly reduced oxidation rate compared to pure tungsten. However, the formation of brittle tungsten silicides may be disadvantageous for the powder metallurgical production of bulk W-Cr-Si alloys if a good workability is needed. This paper shows the results of screening tests to identify suitable silicon-free alloys with distinguished self-passivation and a potentially good workability. Of all the tested systems W-Cr-Ti alloys showed the most promising results. The oxidation rate was even lower than the one of W-Cr-Si alloys, the reduction factor was about four orders of magnitude compared to pure tungsten. This performance could be conserved even if the content of alloying elements was reduced.

  2. Oxidation behaviour of silicon-free tungsten alloys for use as the first wall material

    International Nuclear Information System (INIS)

    Koch, F; Brinkmann, J; Lindig, S; Mishra, T P; Linsmeier, Ch

    2011-01-01

    The use of self-passivating tungsten alloys as armour material of the first wall of a fusion power reactor may be advantageous concerning safety issues. In earlier studies good performance of the system W-Cr-Si was demonstrated. Thin films of such alloys showed a strongly reduced oxidation rate compared to pure tungsten. However, the formation of brittle tungsten silicides may be disadvantageous for the powder metallurgical production of bulk W-Cr-Si alloys if a good workability is needed. This paper shows the results of screening tests to identify suitable silicon-free alloys with distinguished self-passivation and a potentially good workability. Of all the tested systems W-Cr-Ti alloys showed the most promising results. The oxidation rate was even lower than the one of W-Cr-Si alloys, the reduction factor was about four orders of magnitude compared to pure tungsten. This performance could be conserved even if the content of alloying elements was reduced.

  3. Novel high-strength Fe-based composite materials with large plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Werniewicz, Katarzna; Kuehn, Uta; Mattern, Norbert; Eckert, Juergen; Siegel, Uwe; Bartusch, Birgit; Schultz, Ludwig [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Kulik, Tadeusz [Warsaw University of Technology, Faculty of Materials Science and Engineering (Poland)

    2007-07-01

    Among glass-forming alloy systems reported so far, Fe-based bulk metallic glasses play a special role. Compared to other amorphous alloys e.g. Zr-, Ti-based, such glasses show superior mechanical strength. However, due to the general brittleness their wider application as structural materials is strongly restricted. The alternative approach to overcome this defect is to design BMG composites. In this work we present a series of new Fe-Cr-Mo-Ga-(Si,C) composite materials derived from an Fe-Cr-Mo-Ga-C-P-B glassy alloy, with the aim to improve the ductility of this high-strength material. The effect of the composition and the phase formation on the resulting mechanical properties was investigated. It has been found that the formation of a complex microstructure, which essentially consists of soft Ga-rich dendrites embedded in a hard Cr- and Mo-rich matrix, leads to a material with excellent compressive mechanical properties. While the obtained values of true strength are comparable with data reported for Fe-Cr-Mo-Ga-C-P-B BMG, the values of true strain are greatly improved for investigated composites.

  4. Propagation of internal stresses in composite materials during heating and cooling according to thermal cycles of welding

    International Nuclear Information System (INIS)

    Gukasyan, L.E.; Belov, V.V.

    1977-01-01

    Investigations of free thermal expansion of a composite material, of fibre and matrix during welding thermal cycle make it possible to estimate mean internal strain and stress in the composite components, as well as the residual internal stress and strain present in the composite material after manufacturing. The samples investigated consisted of nickel-chromium EhI445 alloy, reinforced by tungsten-rhenium alloy fibres. As the composite material was cooled and heated in course of welding, the stress and strain changed their sign twice, the first time upon heating, the second time upon cooling. After complete cooling of the composite material residual stresses in the fibre stay at the proportionality level, while those in the matrix are lower. Experimental evidence of internal stress and strain appearing in the composite material during heating are fairly consistent with calculations in the elastic region, if account is taken of the temperature of internal residual stress relaxation upon heating

  5. Self-passivating bulk tungsten-based alloys manufactured by powder metallurgy

    Science.gov (United States)

    López-Ruiz, P.; Ordás, N.; Lindig, S.; Koch, F.; Iturriza, I.; García-Rosales, C.

    2011-12-01

    Self-passivating tungsten-based alloys are expected to provide a major safety advantage compared to pure tungsten, which is at present the main candidate material for the first wall armour of future fusion reactors. WC10Si10 alloys were manufactured by mechanical alloying (MA) in a Planetary mill and subsequent hot isostatic pressing (HIP), achieving densities above 95%. Different MA conditions were studied. After MA under optimized conditions, a core with heterogeneous microstructure was found in larger powder particles, resulting in the presence of some large W grains after HIP. Nevertheless, the obtained microstructure is significantly refined compared to previous work. First MA trials were also performed on the Si-free system WCr12Ti2.5. In this case a very homogeneous structure inside the powder particles was obtained, and a majority ternary metastable bcc phase was found, indicating that almost complete alloying occurred. Therefore, a very fine and homogeneous microstructure can be expected after HIP in future work.

  6. Self-passivating bulk tungsten-based alloys manufactured by powder metallurgy

    International Nuclear Information System (INIS)

    López-Ruiz, P; Ordás, N; Iturriza, I; García-Rosales, C; Lindig, S; Koch, F

    2011-01-01

    Self-passivating tungsten-based alloys are expected to provide a major safety advantage compared to pure tungsten, which is at present the main candidate material for the first wall armour of future fusion reactors. WC10Si10 alloys were manufactured by mechanical alloying (MA) in a Planetary mill and subsequent hot isostatic pressing (HIP), achieving densities above 95%. Different MA conditions were studied. After MA under optimized conditions, a core with heterogeneous microstructure was found in larger powder particles, resulting in the presence of some large W grains after HIP. Nevertheless, the obtained microstructure is significantly refined compared to previous work. First MA trials were also performed on the Si-free system WCr12Ti2.5. In this case a very homogeneous structure inside the powder particles was obtained, and a majority ternary metastable bcc phase was found, indicating that almost complete alloying occurred. Therefore, a very fine and homogeneous microstructure can be expected after HIP in future work.

  7. Quasi physisorptive two dimensional tungsten oxide nanosheets with extraordinary sensitivity and selectivity to NO2.

    Science.gov (United States)

    Khan, Hareem; Zavabeti, Ali; Wang, Yichao; Harrison, Christopher J; Carey, Benjamin J; Mohiuddin, Md; Chrimes, Adam F; De Castro, Isabela Alves; Zhang, Bao Yue; Sabri, Ylias M; Bhargava, Suresh K; Ou, Jian Zhen; Daeneke, Torben; Russo, Salvy P; Li, Yongxiang; Kalantar-Zadeh, Kourosh

    2017-12-14

    Attributing to their distinct thickness and surface dependent physicochemical properties, two dimensional (2D) nanostructures have become an area of increasing interest for interfacial interactions. Effectively, properties such as high surface-to-volume ratio, modulated surface activities and increased control of oxygen vacancies make these types of materials particularly suitable for gas-sensing applications. This work reports a facile wet-chemical synthesis of 2D tungsten oxide nanosheets by sonication of tungsten particles in an acidic environment and thermal annealing thereafter. The resultant product of large nanosheets with intrinsic substoichiometric properties is shown to be highly sensitive and selective to nitrogen dioxide (NO 2 ) gas, which is a major pollutant. The strong synergy between polar NO 2 molecules and tungsten oxide surface and also abundance of active surface sites on the nanosheets for molecule interactions contribute to the exceptionally sensitive and selective response. An extraordinary response factor of ∼30 is demonstrated to ultralow 40 parts per billion (ppb) NO 2 at a relatively low operating temperature of 150 °C, within the physisorption temperature band for tungsten oxide. Selectivity to NO 2 is demonstrated and the theory behind it is discussed. The structural, morphological and compositional characteristics of the synthesised and annealed materials are extensively characterised and electronic band structures are proposed. The demonstrated 2D tungsten oxide based sensing device holds the greatest promise for producing future commercial low-cost, sensitive and selective NO 2 gas sensors.

  8. Tungsten foil laminate for structural divertor applications – Analyses and characterisation of tungsten foil

    International Nuclear Information System (INIS)

    Reiser, Jens; Rieth, Michael; Dafferner, Bernhard; Hoffmann, Andreas; Yi Xiaoou; Armstrong, David E.J.

    2012-01-01

    It has been attempted for several years to synthesise a tungsten material with a low brittle-to-ductile transition temperature and a high fracture toughness that can be used for structural parts. It was shown in our previous work that tungsten foil is ductile at room temperature and that this ductility can be transformed to bulk by synthesising a tungsten laminate. In this work we want to focus on tungsten foil and assess the microstructure as well as the mechanical properties of the foil. The assessment of the microstructure of 0.1 mm tungsten foil will be performed using electron microscopy. It will be shown that the grains of the tungsten foil have a dimension of 0.5 μm × 3 μm × 15 μm and a clear texture in (1 0 0) 〈0 1 1〉. This texture becomes even more pronounced by annealing. Three-point-bending tests with tungsten foil, as-received, will define the barriers: ductile at room temperature and brittle in liquid nitrogen (−196 °C). This shows that the ductility is a thermally activated process. Recrystallised tungsten foil (annealed for 1 h/2700 °C) shows ductile material behaviour at 200 °C. The paper closes with a discussion on the reasons of the ductility of 0.1 mm tungsten foil. These might be the ultra fine grained (UFG) microstructure or, in other words, a nano microstructure (see tungsten foil as-received), the high amount of mobile edge dislocations, and/or the foil effect, which means that dislocations can move to the surface and are annihilated (see tungsten foil recrystallised).

  9. Microstructure, mechanical behaviour and fracture of pure tungsten wire after different heat treatments

    DEFF Research Database (Denmark)

    Zhao, P.; Riesch, J.; Höschen, T.

    2017-01-01

    Plastic deformation of tungsten wire is an effective source of toughening tungsten fibre-reinforced tungsten composites (Wf/W) and other tungsten fibre-reinforced composites. To provide a reference for optimization of those composites, unconstrained pure tungsten wire is studied after various hea...... a rather different microstructure. As-fabricated wire and wire recrystallized at 1273 K for 3 h show fine grains with a high aspect ratio and a substantial plastic deformability: a clearly defined tensile strength, high plastic work, similar necking shape, and the characteristic knife...

  10. Tungsten carbide/porous carbon composite as superior support for platinum catalyst toward methanol electro-oxidation

    International Nuclear Information System (INIS)

    Jiang, Liming; Fu, Honggang; Wang, Lei; Mu, Guang; Jiang, Baojiang; Zhou, Wei; Wang, Ruihong

    2014-01-01

    Graphical abstract: The WC nanoparticles are well dispersed in the carbon matrix. The size of WC nanoparticles is about 30 nm. It can be concluded that tungsten carbide and carbon composite was successfully prepared by the present synthesis conditions. - Highlights: • The WC/PC composite with high specific surface area was prepared by a simple way. • The Pt/WC/PC catalyst has superior performance toward methanol electro-oxidation. • The current density for methanol electro-oxidation is as high as 595.93 A g −1 Pt. • The Pt/WC/PC catalyst shows better durability and stronger CO electro-oxidation. • The performance of Pt/WC/PC is superior to the commercial Pt/C (JM) catalyst. - Abstract: Tungsten carbide/porous carbon (WC/PC) composites have been successfully synthesized through a surfactant assisted evaporation-induced-assembly method, followed by a thermal treatment process. In particular, WC/PC-35-1000 composite with tungsten content of 35% synthesized at the carbonized temperature of 1000 °C, exhibited a specific surface area (S BET ) of 457.92 m 2 g −1 . After loading Pt nanoparticles (NPs), the obtained Pt/WC/PC-35-1000 catalyst exhibits the highest unit mass electroactivity (595.93 A g −1 Pt) toward methanol electro-oxidation, which is about 2.6 times as that of the commercial Pt/C (JM) catalyst. Furthermore, the Pt/WC/PC-35-1000 catalyst displays much stronger resistance to CO poisoning and better durability toward methanol electrooxidation compared with the commercial Pt/C (JM) catalyst. The high electrocatalytic activity, strong poison-resistivity and good stability of Pt/WC/PC-35-1000 catalyst are attributed to the porous structures and high specific surface area of WC/PC support could facilitate the rapid mass transportation. Moreover, synergistic effect between WC and Pt NPs is favorable to the higher catalytic performance

  11. Wood-based Tri-Axial Sandwich Composite Materials: Design, Fabrication, Testing, Modeling and Application

    Science.gov (United States)

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2014-01-01

    As the demand for sustainable materials increases, there are unique challenges and opportunities to develop light-weight green composites materials for a wide range of applications. Thus wood-based composite materials from renewable forests may provide options for some niche applications while helping to protect our environment. In this paper, the wood-based tri-axial...

  12. Composite Materials in Overhead Lines

    DEFF Research Database (Denmark)

    Sørensen, Thomas Kjærsgaard; Holbøll, Joachim

    2009-01-01

    towers and recently conductors based on composite materials are available at transmission levels. In this paper it is investigated which composite based solutions are available in connection with complete overhead line systems including insulators, towers and conductors. The components are reviewed......The use of composite materials, e.g. fibreglass materials, in overhead transmission line systems is nothing new. Composite based insulators have been applied to transmission lines for over 30 years, mainly as suspension and post insulators and often as an option for special applications. Also...... with respect to solved and persisting known failures/problems of both mechanical and electrical nature. Major challenges related to extensive use of composite materials in an overhead line system are identified, as are possible benefits - both when using standard as well as customised composite components, e...

  13. Structural, mechanical, and tribological characterization of sol-gel layers with inbedded anorganic fullerene-like tungsten-disulphide particles

    International Nuclear Information System (INIS)

    Hattermann, Hilke

    2010-01-01

    The preparation of composite coatings consisting of different materials with improved properties has been an intensively studied area of thin film technology in recent years. One method to prepare such composite coatings is the incorporation of nano or micro particles into a matrix of a different material. In this thesis, such composite coatings are investigated which have been prepared via a sol-gel route und contain up to about 30 wt.-% tungsten disulfide particles. These inorganic fullerenes have typical particle sizes of about 100 nm to 200 nm. Two different types of composite coatings with a thickness of up to a few micrometers and with embedded tungsten disulfide particles are prepared: First, coatings with a relatively stiff alumina matrix, and second, coatings with a matrix made of organically modified silica. Different analytical methods are used for the structural characterization of the coatings. The crystal structure and the chemical composition of the coatings are determined via X-ray diffraction and X-ray fluorescence measurements and via energy-dispersive X-ray spectroscopy. Through scanning and transmission electron microscopy the incorporation and the distribution of the tungsten disulfide particles in the respective matrix are analysed. Furthermore, the roughness and the adhesion of the coatings on the substrate are investigated. The influence of the embedded particles and of the temperature of the final heat treatment during the sample preparation on the mechanical properties, like elastic modulus and hardness, of the composite coatings are measured through nanoindentation testing. These experimental results are compared with theoretical values determined via different analytical models for effective materials. Finally, the tribological behavior of the composite coatings is investigated in comparison to pure coatings made of alumina or organically modified silica. With ball-on-disc tests the coefficient of friction of the coatings is measured

  14. Hydrogen trapping in and release from tungsten: modeling and comparison with graphite with regard to its use as fusion reactor material

    International Nuclear Information System (INIS)

    Franzen, P.; Garcia-Rosales, C.; Plank, H.; Alimov, V.Kh.

    1997-01-01

    Trapping and release of deuterium implanted in tungsten is investigated by modeling the results of reemission, thermal and isothermal desorption experiments. Rate coefficients and activation energies for diffusion, trapping and detrapping are derived. Hydrogen atoms are able to diffuse deep into tungsten, establishing a solute amount of the same order of magnitude as the trapped one. This 'diffusion zone' exceeds the implantation zone by more than two orders of magnitude, even at room temperature. The solute amount of hydrogen in tungsten depends only slightly on the incident ion energy, but scales with implantation fluence. This high amount of solute hydrogen is the main difference of tungsten compared to graphite where nearly all hydrogen is trapped in the implantation zone, the solute amount being orders of magnitude lower. The resulting unlimited accumulation of hydrogen in tungsten deep in the material down to the backward surface disadvantages tungsten as fusion reactor material with regard to hydrogen recycling properties. (orig.)

  15. Tungsten particle reinforced Al 5083 composite with high strength and ductility

    Energy Technology Data Exchange (ETDEWEB)

    Bauri, Ranjit, E-mail: rbauri@iitm.acin; Yadav, Devinder; Shyam Kumar, C.N.; Balaji, B.

    2015-01-03

    Tungsten particles were incorporated into an Al 5083 matrix by friction stir processing (FSP). FSP resulted in uniform dispersion of the tungsten particles with excellent interfacial bonding and more importantly without the formation of any harmful intermetallics. For the first time, the particles penetrated to a depth equal to the full pin length of the tool. A novel aspect of the 5083 Al–W composite is that it showed an improvement of more than 100 MPa in the UTS and at the same time exhibited a high ductility (30%). The ductility was also evident from the well defined dimples in the fracture surface which also revealed the superior bonding between the particles and the matrix. FSP also resulted in substantial grain refinement of the Al matrix. Electron backscatter diffraction (EBSD) and transmission electron microscopy analysis revealed that the fine grains formed by dynamic recrystallization. A gradual transformation from sub-grain to high-angle grain boundaries was observed from EBSD analysis pointing towards the occurrence of a continuous type of dynamic recrystallization process.

  16. Effect of negative bias on the composition and structure of the tungsten oxide thin films deposited by magnetron sputtering

    Science.gov (United States)

    Wang, Meihan; Lei, Hao; Wen, Jiaxing; Long, Haibo; Sawada, Yutaka; Hoshi, Yoichi; Uchida, Takayuki; Hou, Zhaoxia

    2015-12-01

    Tungsten oxide thin films were deposited at room temperature under different negative bias voltages (Vb, 0 to -500 V) by DC reactive magnetron sputtering, and then the as-deposited films were annealed at 500 °C in air atmosphere. The crystal structure, surface morphology, chemical composition and transmittance of the tungsten oxide thin films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis spectrophotometer. The XRD analysis reveals that the tungsten oxide films deposited at different negative bias voltages present a partly crystallized amorphous structure. All the films transfer from amorphous to crystalline (monoclinic + hexagonal) after annealing 3 h at 500 °C. Furthermore, the crystallized tungsten oxide films show different preferred orientation. The morphology of the tungsten oxide films deposited at different negative bias voltages is consisted of fine nanoscale grains. The grains grow up and conjunct with each other after annealing. The tungsten oxide films deposited at higher negative bias voltages after annealing show non-uniform special morphology. Substoichiometric tungsten oxide films were formed as evidenced by XPS spectra of W4f and O1s. As a result, semi-transparent films were obtained in the visible range for all films deposited at different negative bias voltages.

  17. Glass-Graphite Composite Materials

    International Nuclear Information System (INIS)

    Mayzan, M.Z.H.; Lloyd, J.W.; Heath, P.G.; Stennett, M.C.; Hyatt, N.C.; Hand, R.J.

    2016-01-01

    A summary is presented of investigations into the potential of producing glass-composite materials for the immobilisation of graphite or other carbonaceous materials arising from nuclear power generation. The methods are primarily based on the production of base glasses which are subsequently sintered with powdered graphite or simulant TRISO particles. Consideration is also given to the direct preparation of glass-graphite composite materials using microwave technology. Production of dense composite wasteforms with TRISO particles was more successful than with powdered graphite, as wasteforms containing larger amounts of graphite were resistant to densification and the glasses tried did not penetrate the pores under the pressureless conditions used. Based on the results obtained it is concluded that the production of dense glassgraphite composite wasteforms will require the application of pressure. (author)

  18. Hydrofluoric–nitric–sulphuric-acid surface treatment of tungsten for carbon fibre-reinforced composite hybrids in space applications

    Energy Technology Data Exchange (ETDEWEB)

    Kanerva, M., E-mail: Mikko.Kanerva@aalto.fi [Aalto University, School of Engineering, Department of Applied Mechanics, P.O.B. 14300, FI-00076 Aalto (Finland); Johansson, L.-S.; Campbell, J.M. [Aalto University, School of Chemical Technology, Department of Forest Products Technology, P.O.B. 16300, FI-00076 Aalto (Finland); Revitzer, H. [Aalto University, School of Chemical Technology, Department of Chemistry, P.O.B. 16300, FI-00076 Aalto (Finland); Sarlin, E. [Tampere University of Technology, Department of Materials Science, P.O.B. 589, FI-33101 Tampere (Finland); Brander, T.; Saarela, O. [Aalto University, School of Engineering, Department of Applied Mechanics, P.O.B. 14300, FI-00076 Aalto (Finland)

    2015-02-15

    Highlights: • XPS and AFM analysis of the effect of hydrofluoric–nitric–sulphuric-acid on tungsten. • Dreiling's model established 54.4% thinning of WO{sub 3} due to 67 s treatment. • Strain energy release rate increased ≈8.4 J/m{sup 2} at the interface. • Failure loci analysis expressed the oxide and carbon fibre surfaces as weak points. - Abstract: Hybrid material systems, such as combinations of tungsten foils and carbon fibre-reinforced plastic (CFRP), are replacing metal alloy concepts in spacecraft enclosures. However, a good adhesion between the tungsten oxide scale and the epoxy resin used is required. Here, the effects of a hydrofluoric–nitric–sulphuric-acid (HFNS) treatment on tungsten oxides and subsequent adhesion to CFRP are analysed using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fracture testing. The work shows that HFNS treatment results in decreased oxygen content, over 50% thinner tungsten trioxide (WO{sub 3}) layer and increased nano-roughness on thin tungsten foils. Fracture testing established a 39% increase in the average critical strain for tungsten–CFRP specimens after HFNS treatment was carried out on tungsten. The effect of the oxide scale modification regarding the critical strain energy release rate was ΔG{sub c}≈ 8.4 J/m{sup 2}.

  19. Micro-powder injection moulding of tungsten

    International Nuclear Information System (INIS)

    Zeep, B.

    2007-12-01

    For He-cooled Divertors as integral components of future fusion power plants, about 300000 complex shaped tungsten components are to be fabricated. Tungsten is the favoured material because of its excellent properties (high melting point, high hardness, high sputtering resistance, high thermal conductivity). However, the material's properties cause major problems for large scale production of complex shaped components. Due to the resistance of tungsten to mechanical machining, new fabrication technologies have to be developed. Powder injection moulding as a well established shaping technology for a large scale production of complex or even micro structured parts might be a suitable method to produce tungsten components for fusion applications but is not yet commercially available. The present thesis is dealing with the development of a powder injection moulding process for micro structured tungsten components. To develop a suitable feedstock, the powder particle properties, the binder formulation and the solid load were optimised. To meet the requirements for a replication of micro patterned cavities, a special target was to define the smallest powder particle size applicable for micro-powder injection moulding. To investigate the injection moulding performance of the developed feedstocks, experiments were successfully carried out applying diverse cavities with structural details in micro dimension. For debinding of the green bodies, a combination of solvent debinding and thermal debinding has been adopted for injection moulded tungsten components. To develop a suitable debinding strategy, a variation of the solvent debinding time, the heating rate and the binder formulation was performed. For investigating the thermal consolidation behaviour of tungsten components, sinter experiments were carried out applying tungsten powders suitable for micro-powder injection moulding. First mechanical tests of the sintered samples showed promising material properties such as a

  20. High-temperature brazing for reliable tungsten-CFC joints

    International Nuclear Information System (INIS)

    Koppitz, Th; Pintsuk, G; Reisgen, U; Remmel, J; Hirai, T; Sievering, R; Rojas, Y; Casalegno, V

    2007-01-01

    The joining of tungsten and carbon-based materials is demanding due to the incompatibility of their chemical and thermophysical properties. Direct joining is unfeasible by the reason of brittle tungsten carbide formation. High-temperature brazing has been investigated in order to find a suitable brazing filler metal (BFM) which successfully acts as an intermediary between the incompatible properties of the base materials. So far only low Cr-alloyed Cu-based BFMs provide the preferential combination of good wetting action on both materials, tolerable interface reactions, and a precipitation free braze joint. Attempts to implement a higher melting metal (e.g. Pd, Ti, Zr) as a BFM have failed up to now, because the formation of brittle precipitations and pores in the seam were inevitable. But the wide metallurgical complexity of this issue is regarded to offer further joining potential

  1. MRR and TWR evaluation on electrical discharge machining of Ti-6Al-4V using tungsten : copper composite electrode

    Science.gov (United States)

    Prasanna, J.; Rajamanickam, S.; Amith Kumar, O.; Karthick Raj, G.; Sathya Narayanan, P. V. V.

    2017-05-01

    In this paper Ti-6Al-4V used as workpiece material and it is keenly seen in variety of field including medical, chemical, marine, automotive, aerospace, aviation, electronic industries, nuclear reactor, consumer products etc., The conventional machining of Ti-6Al-4V is very difficult due to its distinctive properties. The Electrical Discharge Machining (EDM) is right choice of machining this material. The tungsten copper composite material is employed as tool material. The gap voltage, peak current, pulse on time and duty factor is considered as the machining parameter to analyze the machining characteristics Material Removal Rate (MRR) and Tool Wear Rate (TWR). The Taguchi method is provided to work for finding the significant parameter of EDM. It is found that for MRR significant parameters rated in the following order Gap Voltage, Pulse On-Time, Peak Current and Duty Factor. On the other hand for TWR significant parameters are listed in line of Gap Voltage, Duty Factor, Peak Current and Pulse On-Time.

  2. Electronic Structure Control of Tungsten Oxide Activated by Ni for Ultrahigh-Performance Supercapacitors.

    Science.gov (United States)

    Meng, Tian; Kou, Zongkui; Amiinu, Ibrahim Saana; Hong, Xufeng; Li, Qingwei; Tang, Yongfu; Zhao, Yufeng; Liu, Shaojun; Mai, Liqiang; Mu, Shichun

    2018-04-17

    Tuning the electron structure is of vital importance for designing high active electrode materials. Here, for boosting the capacitive performance of tungsten oxide, an atomic scale engineering approach to optimize the electronic structure of tungsten oxide by Ni doping is reported. Density functional theory calculations disclose that through Ni doping, the density of state at Fermi level for tungsten oxide can be enhanced, thus promoting its electron transfer. When used as electrode of supercapacitors, the obtained Ni-doped tungsten oxide with 4.21 at% Ni exhibits an ultrahigh mass-specific capacitance of 557 F g -1 at the current density of 1 A g -1 and preferable durability in a long-term cycle test. To the best of knowledge, this is the highest supercapacitor performance reported so far in tungsten oxide and its composites. The present strategy demonstrates the validity of the electronic structure control in tungsten oxide via introducing Ni atoms for pseudocapacitors, which can be extended to other related fields as well. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Structure of tungsten electrodeposited from oxide chloride-fluoride molten salts

    International Nuclear Information System (INIS)

    Pavlovskij, V.A.; Reznichenko, V.A.

    1998-01-01

    Investigation results on the influence of electrolysis parameters and electrolyte composition on tungsten cathode deposit structure are presented. The electrolysis was performed in NaCl-NaF-WO 3 molten salts using tungsten and tungsten coated molybdenum cathodes. Morphological and metallographic studies of tungsten crystals were carrier out. Tungsten deposits were obtained in the form of crystalline conglomerates, sponge and high dispersity powder

  4. X-ray based micromechanical finite element modeling of composite materials

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard; Emerson, Monica Jane; Jespersen, Kristine Munk

    2016-01-01

    This is a study of a uni-directional non-crimp fabric reinforced epoxy composite material typically used as the load carrying laminate in wind turbine blades. Based on a 3D xray tomography scan, the bundle and fibre/matrix structure of the composite is segmented. This segmentation is used...

  5. Development and electrochemical characterization of Ni‐P coated tungsten incorporated electroless nickel coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shibli, S.M.A., E-mail: smashibli@yahoo.com; Chinchu, K.S.

    2016-08-01

    Ni‐P-W alloy and composite coatings were prepared by incorporation of sodium tungstate/tungsten and Ni‐P coated tungsten into electroless nickel bath respectively. Good inter-particle interactions among the depositing elements i.e. Ni and P with the incorporating tungsten particles were achieved by means of pre-coated tungsten particle by electroless nickel covering prior to its addition into the electroless bath. The pre-coated tungsten particles got incorporated uniformly into the Ni-P matrix of the coating. The particles and the coatings were characterized at different stages by different techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The electroless Ni-P coating incorporated with pre-coated tungsten exhibited considerably high hardness, thickness and deposition rate. The performance and corrosion resistance characteristics of the composite coating incorporated with the nickel coated tungsten were found to be superior over other conventional Ni-P-W ternary alloy coatings currently reported. - Highlights: • An amorphous Ni-P coating was effectively formed on tungsten particles. • Electroless ternary Ni-P-W composite coatings were successfully prepared. • Enhancement in the inter-particle interaction in the Ni-P composite matrix was achieved. • Efficient and uniform incorporation of the composite in the internal layer was evident. • The tungsten incorporated coating possessed effective barrier protection.

  6. In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding

    Science.gov (United States)

    Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas

    2018-01-01

    A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.

  7. Sputtered tungsten-based ternary and quaternary layers for nanocrystalline diamond deposition.

    Science.gov (United States)

    Walock, Michael J; Rahil, Issam; Zou, Yujiao; Imhoff, Luc; Catledge, Shane A; Nouveau, Corinne; Stanishevsky, Andrei V

    2012-06-01

    Many of today's demanding applications require thin-film coatings with high hardness, toughness, and thermal stability. In many cases, coating thickness in the range 2-20 microm and low surface roughness are required. Diamond films meet many of the stated requirements, but their crystalline nature leads to a high surface roughness. Nanocrystalline diamond offers a smoother surface, but significant surface modification of the substrate is necessary for successful nanocrystalline diamond deposition and adhesion. A hybrid hard and tough material may be required for either the desired applications, or as a basis for nanocrystalline diamond film growth. One possibility is a composite system based on carbides or nitrides. Many binary carbides and nitrides offer one or more mentioned properties. By combining these binary compounds in a ternary or quaternary nanocrystalline system, we can tailor the material for a desired combination of properties. Here, we describe the results on the structural and mechanical properties of the coating systems composed of tungsten-chromium-carbide and/or nitride. These WC-Cr-(N) coatings are deposited using magnetron sputtering. The growth of adherent nanocrystalline diamond films by microwave plasma chemical vapor deposition has been demonstrated on these coatings. The WC-Cr-(N) and WC-Cr-(N)-NCD coatings are characterized with atomic force microscopy and SEM, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and nanoindentation.

  8. Investigation of positron moderator materials for electron-linac-based slow positron beamlines

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Ohdaira, Toshiyuki; Uedono, Akira

    1998-01-01

    Positron re-emission properties were studied on moderator materials in order to improve the positron moderation system of electron-linac-based intense slow positron beamlines. The re-emitted positron fraction was measured on tungsten, SiC, GaN, SrTiO 3 , and hydrogen-terminated Si with a variable-energy pulsed positron beam. The results suggested that tungsten is the best material for the primary moderator of the positron beamlines while epitaxially grown n-type 6H-SiC is the best material for the secondary moderator. Defect characterization by monoenergetic positron beams and surface characterization by Auger electron spectroscopy were carried out to clarify the mechanism of tungsten moderator degradation induced by high-energy electron irradiation. The characterization experiments revealed that the degradation is due to both radiation-induced vacancy clusters and surface carbon impurities. For the restoration of degraded tungsten moderators, oxygen treatment at ∼900degC is effective. Furthermore, it was found that oxygen at the tungsten surface inhibits positronium formation; as a result, it can increase the positron re-emission fraction. (author)

  9. The effects of tantalum addition on the microtexture and mechanical behaviour of tungsten for ITER applications

    International Nuclear Information System (INIS)

    Tejado, E.; Carvalho, P.A.; Munoz, A.; Dias, M.; Correia, J.B.

    2015-01-01

    Tungsten (W) and its alloys are very promising materials for producing plasma-facing components (PFCs) in the fusion power reactors of the near future, even as a structural part in them. However, whereas the properties of pure tungsten are suitable for a PFC, its structural applications are still limited due to its low toughness, ductile to brittle transition temperature and recrystallization behaviour. Therefore, many efforts have been made to improve its performance by alloying tungsten with other elements. Hence, in this investigation, the thermo-mechanical performance of two new tungsten-tantalum materials has been evaluated. Materials with W–5wt.%Ta and W–15wt.%Ta were processed by mechanical alloying (MA) and later consolidation by hot isostatic pressing (HIP), with distinct settings for each composition. Thus, it was possible to determine the relationship between the microstructure and the addition of Ta with the macroscopic mechanical properties. These were measured by means of hardness, flexural strength and fracture toughness, in the temperature range of 300–1473 K. The microstructure and the fracture surfaces features of the tested materials were analysed by Field Emission Scanning Electron Microscopy (FESEM).

  10. The effects of tantalum addition on the microtexture and mechanical behaviour of tungsten for ITER applications

    Energy Technology Data Exchange (ETDEWEB)

    Tejado, E., E-mail: elena.tejado@mater.upm.es [Departamento de Ciencia de Materiales-CIME, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid (Spain); Centro Nacional de Investigaciones Metalúrgicas (CSIC), Madrid (Spain); Carvalho, P.A. [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); ICEMS, Departamento de Bioengenharia, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Munoz, A. [Departamento de Física, Universidad Carlos III, Leganés (Spain); Dias, M. [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Correia, J.B. [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 1649-038 Lisboa (Portugal); and others

    2015-12-15

    Tungsten (W) and its alloys are very promising materials for producing plasma-facing components (PFCs) in the fusion power reactors of the near future, even as a structural part in them. However, whereas the properties of pure tungsten are suitable for a PFC, its structural applications are still limited due to its low toughness, ductile to brittle transition temperature and recrystallization behaviour. Therefore, many efforts have been made to improve its performance by alloying tungsten with other elements. Hence, in this investigation, the thermo-mechanical performance of two new tungsten-tantalum materials has been evaluated. Materials with W–5wt.%Ta and W–15wt.%Ta were processed by mechanical alloying (MA) and later consolidation by hot isostatic pressing (HIP), with distinct settings for each composition. Thus, it was possible to determine the relationship between the microstructure and the addition of Ta with the macroscopic mechanical properties. These were measured by means of hardness, flexural strength and fracture toughness, in the temperature range of 300–1473 K. The microstructure and the fracture surfaces features of the tested materials were analysed by Field Emission Scanning Electron Microscopy (FESEM).

  11. Bonding tungsten, W–Cu-alloy and copper with amorphous Fe–W alloy transition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song, E-mail: wangsongrain@163.com [Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Ling, Yunhan, E-mail: yhling@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Zhao, Pei [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zang, Nanzhi [Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Wang, Jianjun [Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Guo, Shibin [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Jun [Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Xu, Guiying [Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China)

    2013-05-15

    W/Cu graded materials are the leading candidate materials used as the plasma facing components in a fusion reactor. However, tungsten and copper can hardly be jointed together due to their great differences in physical properties such as coefficient of thermal expansion and melting point, and the lack of solid solubility between them. To overcome those difficulties, a new amorphous Fe–W alloy transitional coating and vacuum hot pressing (VHP) method were proposed and introduced in this paper. The morphology, composition and structure of the amorphous Fe–W alloy coating and the sintering interface of the specimens were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The thermal shock resistance of the bonded composite was also tested. The results demonstrated that amorphous structure underwent change from amorphous to nano grains during joining process, and the joined W/Cu composite can endued plasma thermal shock resistance with energy density more than 5.33 MW/m{sup 2}. It provides a new feasible technical to join refractory tungsten to immiscible copper with amorphous Fe–W alloy coating.

  12. Cast-in hardfacing composite

    International Nuclear Information System (INIS)

    Ji, Jia-Lin; Wang, Hua-Ming.

    1991-01-01

    Tungsten carbide and chromium ferroalloy particles in binderless state were placed on a vacuum sealed mold surface, and a wear resistant surface was formed by pouring high temperature liquid steel into the mold cavity. Higher surface hardness HRC 65-69 and increased toughness were obtained by this composite material. It is shown that a strengthened martensitic matrix alloyed by tungsten and chromium supports tungsten carbide particles as well as reformed carbides (M6C, M7C3). 3 refs

  13. Supercapacitors Based on Nickel Oxide/Carbon Materials Composites

    OpenAIRE

    Lota, Katarzyna; Sierczynska, Agnieszka; Lota, Grzegorz

    2011-01-01

    In the thesis, the properties of nickel oxide/active carbon composites as the electrode materials for supercapacitors are discussed. Composites with a different proportion of nickel oxide/carbon materials were prepared. A nickel oxide/carbon composite was prepared by chemically precipitating nickel hydroxide on an active carbon and heating the hydroxide at 300 ∘C in the air. Phase compositions of the products were characterized using X-ray diffractometry (XRD). The morphology of the composite...

  14. A review of penetration mechanisms and dynamic properties of tungsten and depleted uranium penetrators

    International Nuclear Information System (INIS)

    Andrew, S.P.; Caligiuri, R.D.; Eiselstein, L.E.

    1991-01-01

    Over the last decade, depleted uranium (DU) and tungsten alloys have been the materials of choice for kinetic energy penetrators. However, despite improvements in mechanical properties in recent years, the penetration performance of tungsten still lags behind that of DU. One possible reason is the difference in deformation mechanisms- DU alloys tend to shear band as they penetrate the target material, whereas tungsten penetrators tend to mushroom. As a first step to determining whether shear banding is truly the reason for superior DU performance, a review and summary of the available information was performed. This paper presents a state-of-the-art review of the formulation, high strain- rate properties, and penetration phenomena of penetrators manufactured from both tungsten and DU alloys. Specifically, the effects of composition, processing, and heat treatment on mechanical properties and penetration mechanisms of these alloys are discussed. Penetration data and models for penetration mechanisms (in particular shear banding) are also presented, as well as the applicability of these models and their salient features

  15. Characterization of composite materials based on cement-ceramic powder blended binder

    Science.gov (United States)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  16. Petri Net-Based R&D Process Modeling and Optimization for Composite Materials

    Directory of Open Access Journals (Sweden)

    Xiaomei Hu

    2013-01-01

    Full Text Available Considering the current R&D process for new composite materials involves some complex details, such as formula design, specimen/sample production, materials/sample test, assessment, materials/sample feedback from customers, and mass production, the workflow model of Petri net-based R&D process for new composite materials’ is proposed. By analyzing the time property of the whole Petri net, the optimized model for new composite materials R&D workflow is further proposed. By analyzing the experiment data and application in some materials R&D enterprise, it is demonstrated that the workflow optimization model shortens the period of R&D on new materials for 15%, definitely improving the R&D efficiency. This indicates the feasibility and availability of the model.

  17. Antibacterial properties of nanocomposite materials and compositions on there bases

    International Nuclear Information System (INIS)

    Podol'skaya, V.I.; Vojtenko, O.Yu.; Grishenko, N.I.; Ul'berg, Z.P.; Yakubenko, L.N.

    2012-01-01

    The structured nanobiocomposite materials based on microbial cells and colloidal silver can serve as the new adjuvant systems. These composite materials being filled with active components, in particular the medications allow to prepare the long release preparations with synergetic effect or can just contribute to prolonged drug action

  18. and O-based composite materials derived from differential ...

    Indian Academy of Sciences (India)

    Abstract. In this work, we have made an effort to determine whether the effective atomic numbers of H-, C-, N- and O-based composite materials would indeed remain a constant over the energy grid of 280–1200 keV wherein incoherent scattering dominates their interaction with photons. For this purpose, the differential ...

  19. Tungsten carbide/porous carbon composite as superior support for platinum catalyst toward methanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Liming [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Fu, Honggang, E-mail: fuhg@vip.sina.com [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Functional Inorganic Material Chemistry, Heilongjiang University, Harbin 150080 (China); Wang, Lei; Mu, Guang; Jiang, Baojiang; Zhou, Wei; Wang, Ruihong [Key Laboratory of Functional Inorganic Material Chemistry, Heilongjiang University, Harbin 150080 (China)

    2014-01-01

    Graphical abstract: The WC nanoparticles are well dispersed in the carbon matrix. The size of WC nanoparticles is about 30 nm. It can be concluded that tungsten carbide and carbon composite was successfully prepared by the present synthesis conditions. - Highlights: • The WC/PC composite with high specific surface area was prepared by a simple way. • The Pt/WC/PC catalyst has superior performance toward methanol electro-oxidation. • The current density for methanol electro-oxidation is as high as 595.93 A g{sup −1} Pt. • The Pt/WC/PC catalyst shows better durability and stronger CO electro-oxidation. • The performance of Pt/WC/PC is superior to the commercial Pt/C (JM) catalyst. - Abstract: Tungsten carbide/porous carbon (WC/PC) composites have been successfully synthesized through a surfactant assisted evaporation-induced-assembly method, followed by a thermal treatment process. In particular, WC/PC-35-1000 composite with tungsten content of 35% synthesized at the carbonized temperature of 1000 °C, exhibited a specific surface area (S{sub BET}) of 457.92 m{sup 2} g{sup −1}. After loading Pt nanoparticles (NPs), the obtained Pt/WC/PC-35-1000 catalyst exhibits the highest unit mass electroactivity (595.93 A g{sup −1} Pt) toward methanol electro-oxidation, which is about 2.6 times as that of the commercial Pt/C (JM) catalyst. Furthermore, the Pt/WC/PC-35-1000 catalyst displays much stronger resistance to CO poisoning and better durability toward methanol electrooxidation compared with the commercial Pt/C (JM) catalyst. The high electrocatalytic activity, strong poison-resistivity and good stability of Pt/WC/PC-35-1000 catalyst are attributed to the porous structures and high specific surface area of WC/PC support could facilitate the rapid mass transportation. Moreover, synergistic effect between WC and Pt NPs is favorable to the higher catalytic performance.

  20. Dynamic Response of PELE With Tungsten Fiber Composite Jacket Impacting Target%集束钨丝壳体PELE撞击靶板的动态响应

    Institute of Scientific and Technical Information of China (English)

    朱建生; 杜忠华

    2014-01-01

    Tungsten alloy is adopted as the j acket of penetrator with enhanced lateral effect(PELE) widely,but it has a series of disadvantages,such as inadequate obdurability,irregular shape of fragments.To overcome the problem,tungsten fiber composite was brought forward to produce PELE jacket.The process of PELE with tungsten fiber composite jacket impacting RHA target was studied by experiments.The dynamic response of PELE impacting target was numerically simulated by ANSYS/LS-DYNA.The simulated results were campared with experiment results. Research results show that PELE with tungsten fiber composite can produce obvious lateral effect behind target.Compared to PELE with tungsten alloy j acket,the shapes of kill elements of PELE with tungsten fiber composite j acket are more regular,and their velocities are much higher,and the penetrating performance and lateral damage effect of PELE with tungsten fiber composite j acket are superior.%为克服目前普遍采用的钨合金壳体的PELE侵彻能力不足、靶后破片形状不规则等问题,提出采用集束钨丝复合材料制作PELE壳体,对其穿甲过程进行了试验研究,利用有限元分析软件 ANSYS/LS-DYNA对PELE撞击靶板的动态响应进行了数值仿真,仿真结果与试验结果的对比分析表明:集束钨丝壳体 PELE 在穿透靶板后能产生明显的横向效应;与钨合金壳体PELE相比,集束钨丝壳体 PELE 靶后形成破片速度更高、破片形状更规则,具有更优异的侵彻能力和横向毁伤性能。

  1. Influence of the base temperature on the performance of tungsten under thermal and particle exposure

    Directory of Open Access Journals (Sweden)

    I. Steudel

    2017-08-01

    Full Text Available Tungsten, the plasma facing material (PFM for the divertor in ITER, must sustain severe, distinct loading conditions. This broad array of exposure conditions necessitates comprehensive experiments that cover most of the expected loading parameters to predict qualitative statements about the performance and as a consequence thereof the intended operation time. However, comprehensive experiments are inherently difficult to realize due to the fact that there is no device that is capable of simulating all loading conditions simultaneously. Nevertheless, the linear plasma device PSI-2 enables experiments combining thermal and particle exposure at the same time. In this work, sequential and simultaneous loads on pure tungsten at different base temperatures were investigated to study not only the performance of the material, but also the influence of the experimental parameters. The detailed analysis and comparison of the obtained results showed different kinds of damage depending on the loading sequence, power density, microstructure of the samples, and base temperature. Finally, samples with transversal grain orientation (T showed the weakest damage resistance and the increase of the base temperature could not compensate the detrimental impact of deuterium.

  2. Temperature changes under demineralized dentin during polymerization of three resin-based restorative materials using QTH and LED units

    Directory of Open Access Journals (Sweden)

    Sayed-Mostafa Mousavinasab

    2014-08-01

    Full Text Available Objectives Light-curing of resin-based materials (RBMs increases the pulp chamber temperature, with detrimental effects on the vital pulp. This in vitro study compared the temperature rise under demineralized human tooth dentin during light-curing and the degrees of conversion (DCs of three different RBMs using quartz tungsten halogen (QTH and light-emitting diode (LED units (LCUs. Materials and Methods Demineralized and non-demineralized dentin disks were prepared from 120 extracted human mandibular molars. The temperature rise under the dentin disks (n = 12 during the light-curing of three RBMs, i.e. an Ormocer-based composite resin (Ceram. X, Dentsply DeTrey, a low-shrinkage silorane-based composite (Filtek P90, 3M ESPE, and a giomer (Beautifil II, Shofu GmbH, was measured with a K-type thermocouple wire. The DCs of the materials were investigated using Fourier transform infrared spectroscopy. Results The temperature rise under the demineralized dentin disks was higher than that under the non-demineralized dentin disks during the polymerization of all restorative materials (p 0.05. Conclusions Although there were no significant differences in the DCs, the temperature rise under demineralized dentin disks for the silorane-based composite was higher than that for dimethacrylate-based restorative materials, particularly with QTH LCU.

  3. Silk Composite with a Fluoropolymer as a Water-Resistant Protein-Based Material

    Directory of Open Access Journals (Sweden)

    Keiji Numata

    2018-04-01

    Full Text Available Silk-based materials are water-sensitive and show different physical properties at different humidities and under wet/dry conditions. To overcome the water sensitivity of silk-based materials, we developed a silk composite material with a fluoropolymer. Blending and coating the silk protein-based materials, such as films and textiles, with the fluoropolymer enhanced the surface hydrophobicity, water vapor barrier properties, and size stability during shrinkage tests. This material design with a protein biopolymer and a fluoropolymer is expected to broaden the applicability of protein-based materials.

  4. Surface analysis of WC--Co composite materials (2) Quantitative Auger electron spectrometry

    International Nuclear Information System (INIS)

    Tongson, L.L.; Biggers, J.V.; Dayton, G.O.; Bind, J.M.; Knox, B.E.

    1978-01-01

    The unique sensitivity of Auger electron spectrometry (AES) to combined carbon has been exploited in measuring the surface compositions of hot-pressed, conventionally sintered and mixed powders of WC--Co composite materials. AES sensitivity factors for tungsten and carbon (in WC) relative to cobalt were determined. The concentrations of the major elements in hot-pressed samples measured with AES using the relative sensitivity method were compared to those obtained independently by electron microprobe (EMP) and x-ray fluorescence (XRF) techniques. Corollary studies using ion scattering spectrometry (ISS) showed the absence of (1) matrix effects in the AES measurements, (2) preferential sputtering during ion bombardment, and (3) deposition of the easier-to-sputter component (cobalt) onto WC

  5. Tungsten foil laminate for structural divertor applications - Joining of tungsten foils

    Science.gov (United States)

    Reiser, Jens; Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan; Mrotzek, Tobias; Hoffmann, Andreas; Armstrong, D. E. J.; Yi, Xiaoou

    2013-05-01

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  6. Fe-based composite materials with improved mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Werniewicz, Katarzyna [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland); Kuehn, Uta; Mattern, Norbert; Eckert, Juergen; Schultz, Ludwig [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Kulik, Tadeusz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland)

    2008-07-01

    Following a previous study by the authors two new compositions (Fe{sub 89.0}Cr{sub 5.5}Mo{sub 5.5}){sub 91}C{sub 9} and (Fe{sub 89.0}Cr{sub 5.5}Mo{sub 5.5}){sub 83}C{sub 17} have been developed with the aim of improving the ductility of Fe{sub 65.5}Cr{sub 4}Mo{sub 4}Ga{sub 4}P{sub 12}C{sub 5}B{sub 5.5} bulk metallic glass (BMG). In contrast to the alloys in that study, the recently prepared Fe-based materials are Ga-free. It was expected that the variations in the composition will lead to the changes in the phase formation and, hence, in the mechanical response of the investigated alloys. It was recognized that in-situ formed Fe-based composites show superior plasticity ({epsilon}{sub pl}{approx}37%) for the alloy with lower C content and ({epsilon}{sub pl}{approx}4%) for the alloy with higher C content compared to monolithic glass ({epsilon}{sub pl}{approx}0.2%). Furthermore, on the basis of present as well as previous investigations it has been shown that the Ga addition is beneficial for the plasticity of these Fe-based alloys. It was observed that the (Fe{sub 89.0}Cr{sub 5.5}Mo{sub 5.5}){sub 83}C{sub 17} alloy exhibits a significantly smaller fracture strain ({epsilon}{sub f}{approx}5%) compared to its Ga-containing counterpart ({epsilon}{sub f}{approx}16%). Therefore, it can be concluded that appropriate alloying additions are crucial in enhancing the mechanical properties of the complex Fe-based materials developed here.

  7. Composite Materials for Low-Temperature Applications

    Science.gov (United States)

    2008-01-01

    Composite materials with improved thermal conductivity and good mechanical strength properties should allow for the design and construction of more thermally efficient components (such as pipes and valves) for use in fluid-processing systems. These materials should have wide application in any number of systems, including ground support equipment (GSE), lunar systems, and flight hardware that need reduced heat transfer. Researchers from the Polymer Science and Technology Laboratory and the Cryogenics Laboratory at Kennedy Space Center were able to develop a new series of composite materials that can meet NASA's needs for lightweight materials/composites for use in fluid systems and also expand the plastic-additive markets. With respect to thermal conductivity and physical properties, these materials are excellent alternatives to prior composite materials and can be used in the aerospace, automotive, military, electronics, food-packaging, and textile markets. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid-processing systems where heat flow through materials is a problem to be avoided. These materials can also substitute for metals in cryogenic and other low-temperature applications. These organic/inorganic polymeric composite materials were invented with significant reduction in heat transfer properties. Decreases of 20 to 50 percent in thermal conductivity versus that of the unmodified polymer matrix were measured. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. These composite materials consist of an inorganic additive combined with a thermoplastic polymer material. The intrinsic, low thermal conductivity of the additive is imparted into the thermoplastic, resulting in a significant reduction in heat transfer over that of the base polymer itself, yet maintaining most of the polymer's original properties. Normal

  8. Overview of processing technologies for tungsten-steel composites and FGMs for fusion applications

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Nevrlá, Barbara; Vilémová, Monika; Boldyryeva, Hanna

    2015-01-01

    Roč. 60, č. 2 (2015), s. 267-273 ISSN 0029-5922. [Kudowa Summer School „Towards Fusion Energy“. Kudowa Zdrój, 09.06.2014-13.06.2014] R&D Projects: GA ČR(CZ) GAP108/12/1872 Institutional support: RVO:61389021 Keywords : plasma-facing components * functionally graded materials (FGMs), * tungsten * steel * plasma spraying * powder metallurgy Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 0.546, year: 2015 http://www.nukleonika.pl/#/?p=1222

  9. Magnetization curves of sintered heavy tungsten alloys for applications in MRI-guided radiotherapy

    International Nuclear Information System (INIS)

    Kolling, Stefan; Oborn, Bradley M.; Keall, Paul J.; Horvat, Joseph

    2014-01-01

    Purpose: Due to the current interest in MRI-guided radiotherapy, the magnetic properties of the materials commonly used in radiotherapy are becoming increasingly important. In this paper, measurement results for the magnetization (BH) curves of a range of sintered heavy tungsten alloys used in radiation shielding and collimation are presented. Methods: Sintered heavy tungsten alloys typically contain >90 % tungsten and 0 and the BH curve derived. Results: The iron content of the alloys was found to play a dominant role, directly influencing the magnetizationM and thus the nonlinearity of the BH curve. Generally, the saturation magnetization increased with increasing iron content of the alloy. Furthermore, no measurable magnetization was found for all alloys without iron content, despite containing up to 6% of nickel. For two samples from different manufacturers but with identical quoted nominal elemental composition (95% W, 3.5% Ni, 1.5% Fe), a relative difference in the magnetization of 11%–16% was measured. Conclusions: The measured curves show that the magnetic properties of sintered heavy tungsten alloys strongly depend on the iron content, whereas the addition of nickel in the absence of iron led to no measurable effect. Since a difference in the BH curves for two samples with identical quoted nominal composition from different manufacturers was observed, measuring of the BH curve for each individual batch of heavy tungsten alloys is advisable whenever accurate knowledge of the magnetic properties is crucial. The obtained BH curves can be used in FEM simulations to predict the magnetic impact of sintered heavy tungsten alloys

  10. Behavior of porous tungsten under shock compression at room temperature

    International Nuclear Information System (INIS)

    Dandekar, D.P.; Lamothe, R.M.

    1977-01-01

    This work reports the results of room-temperature shock-compression experiments on porous tungsten. The porous tungsten was fabricated by sintering 1-μm tungsten particles. The initial density of the material was 15290 kg/m 3 . Around 97% of the pores in the material were interconnected. The main features of the results are as follows: (1) porous tungsten behaves as a linear elastic material to 1.43 GPa; (2) the shock wave following the elastic precursor is unstable in the material in the stress range 1.43--2.7 GPa; (3) a stable two-wave structure is established at and above 6.4 GPa; (4) the response of porous tungsten is accurately described by the Mie-Grueneisen equation of state at stresses above 4.9 GPa, the stress at which the voids suffer a complete extinction in the material; (5) the deformations induced in the material due to shock compression are irreversible; (6) the recentered Hugoniot of porous tungsten becomes stiffer with the increasing magnitude of initial compressive stress

  11. Effects of hydrogen and helium irradiation on optical property of tungsten

    International Nuclear Information System (INIS)

    Kazutoshi Tokunaga; Tadashi Fujiwara; Naoaki Yoahida; Koichiro Ezato; Satoshi Suzuki; Masato Akiba

    2006-01-01

    Plasma-wall interactions cause surface modification, compositional and structural change on material surface due to sputtering, impurity deposition and radiation damage, etc. As a result, optical property (response of electron and lattice on material for electromagnetic wave) on surface of the plasma facing components would be changed. In particular, diagnostic components, such as metallic mirrors, mounted close to the plasma will be subjected by plasma particles such as hydrogen isotope and helium in the fusion devices. It is well recognized that decrease of optical reflectivity of the metallic mirrors due to the plasma-material interaction will be critical issues for the plasma diagnosis. In the present work, tungsten has been irradiated by hydrogen and helium beam. After that, optical reflectivity and surface modification have been measured to investigate fundamental process of optical property change due to hydrogen and helium beam irradiation. Samples used in the present experiment are powder metallurgy tungsten. Hydrogen and helium irradiations are performed in an ion beam facility at JAEA, the Particle Beam Engineering Facility (PBEF). The energy of hydrogen and helium is 19.0 and 18.7 keV, respectively. Beam duration is 1.3 - 3.5 s. The samples are irradiated up to a fluence of the orders between 10 22 and 10 24 He/m 2 by the repeated pulse irradiations of 14-450 cycles. The surface temperature is measured with an optical pyrometer. After the repeated irradiation experiments, surface modification and composition are examined with a scanning electron microscope (SEM) and a scanning probe microscope (SPM), etc. In addition, the optical reflectivity is measured in the wavelength range of 190 - 2400 nm using an ultraviolet-visible and near-infrared spectrophotometer. The reflectivity after the irradiation decreases depending on fluence and a peak temperature of the samples during the irradiation. In addition, their reflectivity spectra also change. This means

  12. Vanadium Doped Tungsten Oxide Material - Electrical Physical and Sensing Properties

    Directory of Open Access Journals (Sweden)

    Shishkin N. Y.

    2008-05-01

    Full Text Available The electrical physical and sensing (to VOCs and inorganic gases properties of vanadium doped tungsten oxide in the regions of phase transition temperature were investigated. Vanadium oxide (II dimerization was observed in the doped material, corresponding to new phase transition. The extreme sensitivity and selectivity to chemically active gases and vapors in small concentrations: CO, NOx, NH3 acetone, ethanol near phase transitions temperature was found. Sensor elements were manufactured for the quantitative detection (close to 1 ppm of alcohol and ammonia.

  13. Simulation of cracks in tungsten under ITER specific heat loads

    International Nuclear Information System (INIS)

    Peschany, S.

    2006-01-01

    The problem of high tritium retention in co-deposited carbon layers on the walls of ITER vacuum chamber motivates investigation of materials for the divertor armour others than carbon fibre composite (CFC). Tungsten is most probable material for CFC replacement as the divertor armour because of high vaporisation temperature and heat conductivity. In the modern ITER design tungsten is a reference material for the divertor cover, except for the separatrix strike point armoured with CFC. As divertor armour, tungsten should withstand severe heat loads at off-normal ITER events like disruptions, ELMs and vertical displacement events. Experiments on tungsten heating with plasma streams and e-beams have shown an intense crack formation at the surface of irradiated sample [ V.I. Tereshin, A.N. Bandura, O.V. Byrka et al. Repetitive plasma loads typical for ITER type-I ELMs: Simulation at QSPA Kh-50.PLASMA 2005. ed. By Sadowski M.J., AIP Conference Proceedings, American Institute of Physics, 2006, V 812, p. 128-135., J. Linke. Private communications.]. The reason for tungsten cracking under severe heat loads is thermo stress. It appears as due to temperature gradient in solid tungsten as in resolidified layer after cooling down. Both thermo stresses are of the same value, but the gradiental stress is compressive and the stress in the resolidified layer is tensile. The last one is most dangerous for crack formation and it was investigated in this work. The thermo stress in tungsten that develops during cooling from the melting temperature down to room temperature is ∼ 8-16 GPa. Tensile strength of tungsten is much lower, < 1 GPa at room temperature, and at high temperatures it drops at least for one order of magnitude. As a consequence, various cracks of different characteristic scales appear at the heated surface of the resolidified layer. For simulation of the cracks in tungsten the numeric code PEGASUS-3D [Pestchanyi and I. Landman. Improvement of the CFC structure to

  14. Kinetics of low pressure chemical vapor deposition of tungsten silicide from dichlorocilane reduction of tungsten hexafluoride

    International Nuclear Information System (INIS)

    Srinivas, D.; Raupp, G.B.; Hillman, J.

    1990-01-01

    The authors report on experiments to determine the intrinsic surface reaction rate dependences and film properties' dependence on local reactant partial pressures and wafer temperature in low pressure chemical vapor deposition (LPCVD) of tungsten silicide from dichlorosilane reduction of tungsten hexafluoride. Films were deposited in a commercial-scale Spectrum CVD cold wall single wafer reactor under near differential, gradientless conditions. Over the range of process conditions investigated, deposition rate was found to be first order in dichlorosillane and negative second order in tungsten hexafluoride partial pressure. The apparent activation energy in the surface reaction limited regime was found to be 70-120 kcal/mol. The silicon to tungsten ratio of as deposited silicide films ranged from 1.1 to 2.4, and increased with increasing temperature and dichlorosillane partial pressure, and decreased with increasing tungsten hexafluoride pressure. These results suggest that the apparent silicide deposition rate and composition are controlled by the relative rates of at least two competing reactions which deposit stoichiometric tungsten silicides and/or silicon

  15. Smart tungsten alloys as a material for the first wall of a future fusion power plant

    Science.gov (United States)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch.; Rasinski, M.; Kreter, A.; Unterberg, B.; Coenen, J. W.; Du, H.; Mayer, J.; Garcia-Rosales, C.; Calvo, A.; Ordas, N.

    2017-06-01

    Tungsten is currently deemed as a promising plasma-facing material (PFM) for the future power plant DEMO. In the case of an accident, air can get into contact with PFMs during the air ingress. The temperature of PFMs can rise up to 1200 °C due to nuclear decay heat in the case of damaged coolant supply. Heated neutron-activated tungsten forms a volatile radioactive oxide which can be mobilized into the atmosphere. New self-passivating ‘smart’ alloys can adjust their properties to the environment. During plasma operation the preferential sputtering of lighter alloying elements will leave an almost pure tungsten surface facing the plasma. During an accident the alloying elements in the bulk are forming oxides thus protecting tungsten from mobilization. Good plasma performance and the suppression of oxidation are required for smart alloys. Bulk tungsten (W)-chroimum (Cr)-titanium (Ti) alloys were exposed together with pure tungsten (W) samples to the steady-state deuterium plasma under identical conditions in the linear plasma device PSI 2. The temperature of the samples was ~576 °C-715 °C, the energy of impinging ions was 210 eV matching well the conditions expected at the first wall of DEMO. Weight loss measurements demonstrated similar mass decrease of smart alloys and pure tungsten samples. The oxidation of exposed samples has proven no effect of plasma exposure on the oxidation resistance. The W-Cr-Ti alloy demonstrated advantageous 3-fold lower mass gain due to oxidation than that of pure tungsten. New yttrium (Y)-containing thin film systems are demonstrating superior performance in comparison to that of W-Cr-Ti systems and of pure W. The oxidation rate constant of W-Cr-Y thin film is 105 times less than that of pure tungsten. However, the detected reactivity of the bulk smart alloy in humid atmosphere is calling for a further improvement.

  16. Conceptual design for a bulk tungsten divertor tile in JET

    International Nuclear Information System (INIS)

    Mertens, Ph.; Hirai, T.; Linke, J.; Neubauer, O.; Pintsuk, G.; Philipps, V.; Sadakov, S.; Samm, U.; Schweer, B.

    2007-01-01

    The ITER-like Wall project (ILW) for JET aims at providing the plasma chamber of the tokamak with an environment of mixed materials which will be relevant for the actual first wall construction on ITER. Tungsten plays a key role in the divertor cladding. For the central tile, also called LB-SRP for 'load-bearing septum replacement plate', bulk tungsten is envisaged in order to cope with the high heat loads expected (up to 10 MW/m 2 for 10 s). The outer strike-point in the divertor will be positioned on this tile for the most relevant configurations. Forschungszentrum Juelich (FZJ) has developed a conceptual design based on an assembly of tungsten blades or lamellae. An appropriate interface with the base carrier of JET, on which modules of two tiles are positioned and fixed by remote handling procedures, is a substantial part of the integral design. Important issues are the electromagnetic forces and expected temperature distributions. Material choices combine tungsten, TZM TM , Inconel and ceramic parts. The completed design has been finalised in a proposal to the ILW project, with utmost ITER-relevance

  17. Metallic composite materials

    International Nuclear Information System (INIS)

    Frommeyer, G.

    1987-01-01

    The structure and properties of metallic composite materials and composite materials with metallic matrix are considered. In agreement with the morphology of constituent phases the following types of composite materials are described: dispersion-strengthened composite materials; particle-reinforced composite materials; fibrous composite materials; laminar composite materials. Data on strength and electric properties of the above-mentioned materials, as well as effect of the amount, location and geometric shape of the second phase on them, are presented

  18. Temperature changes under demineralized dentin during polymerization of three resin-based restorative materials using QTH and LED units.

    Science.gov (United States)

    Mousavinasab, Sayed-Mostafa; Khoroushi, Maryam; Moharreri, Mohammadreza; Atai, Mohammad

    2014-08-01

    Light-curing of resin-based materials (RBMs) increases the pulp chamber temperature, with detrimental effects on the vital pulp. This in vitro study compared the temperature rise under demineralized human tooth dentin during light-curing and the degrees of conversion (DCs) of three different RBMs using quartz tungsten halogen (QTH) and light-emitting diode (LED) units (LCUs). Demineralized and non-demineralized dentin disks were prepared from 120 extracted human mandibular molars. The temperature rise under the dentin disks (n = 12) during the light-curing of three RBMs, i.e. an Ormocer-based composite resin (Ceram. X, Dentsply DeTrey), a low-shrinkage silorane-based composite (Filtek P90, 3M ESPE), and a giomer (Beautifil II, Shofu GmbH), was measured with a K-type thermocouple wire. The DCs of the materials were investigated using Fourier transform infrared spectroscopy. The temperature rise under the demineralized dentin disks was higher than that under the non-demineralized dentin disks during the polymerization of all restorative materials (p 0.05). Although there were no significant differences in the DCs, the temperature rise under demineralized dentin disks for the silorane-based composite was higher than that for dimethacrylate-based restorative materials, particularly with QTH LCU.

  19. Suppression of cavitation in melted tungsten by doping with lanthanum oxide

    International Nuclear Information System (INIS)

    Yuan, Y.; Lu, G.H.; Xu, B.; Fu, B.Q.; Xu, H.Y.; Li, C.; Jia, Y.Z.; Qu, S.L.; Liu, W.; Greuner, H.; Böswirth, B.; Luo, G.-N.

    2014-01-01

    Melting and boiling behaviour of pure tungsten and 1 wt% lanthanum-oxide-doped tungsten (WL10) are investigated, focusing on the material selection with respect to material loss induced by cavitation. Melting experiments under high heat loads are carried out in the high heat flux facility GLADIS. Pulsed hydrogen neutral beams with heat flux of 10 and 23 MW m −2 are applied onto the adiabatically loaded samples for intense surface melting. Melt layer of the two tungsten grades exhibit different microstructure characteristics. Substantive voids owing to cavitation in the liquid phase are observed in pure W and lead to porous resolidified material. However, little cavitation bubbles can be found in the dense resolidified layer of WL10. In order to find out the gaseous sources, vapour collection is performed and the components are subsequently detected. Based on the observations and analyses, the microstructure evolutions corresponding to melting and vapourization behaviour of the two tungsten grades are tentatively described, and furthermore, the underlying mechanisms of cavitation in pure W and its suppression in WL10 are discussed. (paper)

  20. Effect of solvent composition on the limiting current of anodic dissolution of tungsten in aqueous-ethanol solutions of alkali

    International Nuclear Information System (INIS)

    Konoplyantseva, N.A.; L'vova, L.A.; Davydov, A.D.; AN SSSR, Moscow. Inst. Ehlektrokhimii)

    1987-01-01

    The effect of quantitative composition of solvent on tungsten anodic dissolution in aqueous-ethanol solutions of KOH is studied. It is shown that with an increase in ethanol content in aqueous-ethanol solutions of alkali the limiting current of tungsten anodic dissolution decreases. An increase in KOH concentration in certain limits (in ethanol solutions it is the range between 0.75 and 1.0 M KOH) results in the increase of the limiting current; with further increase in solution concentration the limiting current decreases, which can be related to the change of the limiting stage. An assumption is made that total reaction of tungsten anodic dissolution and the main reasons for the limiting current appearance do not change from aqueous to aqueous-ethanol and ethanol solutions of alkali

  1. Tungsten Oxide and Polyaniline Composite Fabricated by Surfactant-Templated Electrodeposition and Its Use in Supercapacitors

    Directory of Open Access Journals (Sweden)

    Benxue Zou

    2014-01-01

    Full Text Available Composite nanostructures of tungsten oxide and polyaniline (PANI were fabricated on carbon electrode by electrocodeposition using sodium dodecylbenzene sulfonate (SDBS as the template. The morphology of the composite can be controlled by changing SDBS surfactant and aniline monomer concentrations in solution. With increasing concentration of aniline in surfactant solution, the morphological change from nanoparticles to nanofibers was observed. The nanostructured WO3/PANI composite exhibited enhanced capacitive charge storage with the specific capacitance of 201 F g−1 at 1.28 mA cm−2 in large potential window of -0.5~ 0.65 V versus SCE compared to the bulk composite film. The capacitance retained about 78% when the sweeping potential rate increased from 10 to 150 mV/s.

  2. Tungsten foil laminate for structural divertor applications – Joining of tungsten foils

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Jens, E-mail: jens.reiser@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Mrotzek, Tobias; Hoffmann, Andreas [PLANSEE SE, Reutte (Austria); Armstrong, D.E.J.; Yi, Xiaoou [University of Oxford, Department of Materials (United Kingdom)

    2013-05-15

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  3. Influence of grain boundaries on the fracture toughness of tungsten alloys

    International Nuclear Information System (INIS)

    Gludovatz, B.; Faleschini, M.; Pippan, R.; Hoffmann, A.

    2007-01-01

    Full text of publication follows: Tungsten and tungsten alloys are possible candidates for future fusion reactors because of their high melting points, high thermal conductivity and their high erosion resistance. Since these materials have a body-centered cubic (bcc) structure, they show a typical change in fracture behaviour from brittle at low temperatures to ductile at high temperatures. For that reason the fracture behaviour of pure tungsten (W), potassium doped tungsten (AKS) and tungsten with 1 wt% La 2 O 3 (WL10) was studied, taking into account the influence of temperature and fabrication condition. Especially AKS has been studied to investigate the longitudinal splitting of the AKS-wires, the crack propagation direction with the lowest fracture toughness. This alloy subjected to intense deformation leads to a material with an elongated grain structure after recrystallization because of the potassium bubbles. Fracture toughness has been investigated by means of 3-point bending (3PB) specimens, double cantilever beam (DCB) specimens and compact tension (CT) specimens. Tests were performed in the range -196 deg. C to more than 1000 deg. C. Though all these materials show an expected increase in fracture toughness with increasing temperature, influences like texture, chemical composition, grain boundary segregation and dislocation density seem to have an extreme influence on the obtained results. These influences can especially be seen in the fracture behaviour and morphology, where two kinds of fracture can occur: on one hand the trans-crystalline and on the other hand the intercrystalline fracture. Therefore techniques like electron backscatter diffraction, auger electron spectroscopy and X-ray line profile analysis were used to determine the parameter influencing fracture toughness. Also new testing techniques have been devised and successfully applied. Additional tests like an 'in-situ EBSD' technique for investigating the formation of dislocations during

  4. Supercapacitors Based on Nickel Oxide/Carbon Materials Composites

    Directory of Open Access Journals (Sweden)

    Katarzyna Lota

    2011-01-01

    Full Text Available In the thesis, the properties of nickel oxide/active carbon composites as the electrode materials for supercapacitors are discussed. Composites with a different proportion of nickel oxide/carbon materials were prepared. A nickel oxide/carbon composite was prepared by chemically precipitating nickel hydroxide on an active carbon and heating the hydroxide at 300 ∘C in the air. Phase compositions of the products were characterized using X-ray diffractometry (XRD. The morphology of the composites was observed by SEM. The electrochemical performances of composite electrodes used in electrochemical capacitors were studied in addition to the properties of electrode consisting of separate active carbon and nickel oxide only. The electrochemical measurements were carried out using cyclic voltammetry, galvanostatic charge/discharge, and impedance spectroscopy. The composites were tested in 6 M KOH aqueous electrolyte using two- and three-electrode Swagelok systems. The results showed that adding only a few percent of nickel oxide to active carbon provided the highest value of capacity. It is the confirmation of the fact that such an amount of nickel oxide is optimal to take advantage of both components of the composite, which additionally can be a good solution as a negative electrode in asymmetric configuration of electrode materials in an electrochemical capacitor.

  5. Metal/graphite-composite materials for fusion device

    International Nuclear Information System (INIS)

    Kneringer, G.; Kny, E.; Fischer, W.; Reheis, N.; Staffler, R.; Samm, U.; Winter, J.

    1995-01-01

    The utilization of graphite as a structural material depends to an important extent on the availability of a joining technique suitable for the production of reliable large scale metal/graphite-composites. This study has been conducted to evaluate vacuum brazes and procedures for graphite and metals which can be used in fusion applications up to about 1500 degree C. The braze materials included: AgCuTi, CuTi, NiTi, Ti, ZrTi, Zr. Brazing temperatures ranged from 850 degree C to 1900 degree C. The influence of graphite quality on wettability and pore-penetration of the braze has been investigated. Screening tests of metal/graphite-assemblies with joint areas exceeding some square-centimeters have shown that they can only successfully be produced when graphite is brazed to a metal, such as tungsten or molybdenum with a coefficient of thermal expansion closely matching that of graphite. Therefore all experimental work on evaluation of joints has been concentrated on molybdenum/graphite brazings. The tensile strength of molybdenum/graphite-composites compares favorably with the tensile strength of bulk graphite from room temperature close to the melting temperature of the braze. In electron beam testing the threshold damage line for molybdenum/graphite-composites has been evaluated. Results show that even composites with the low melting AgCuTi-braze are expected to withstand 10 MW/m 2 power density for at least 10 3 cycles. Limiter testing in TEXTOR shows that molybdenum/graphite-segments with 3 mm graphite brazed on molybdenum-substrate withstand severe repeated TEXTOR plasma discharge conditions without serious damage. Results prove that actively cooled components on the basis of a molybdenum/graphite-composite can sustain a higher heat flux than bulk graphite alone. (author)

  6. Analytical method for predicting plastic flow in notched fiber composite materials

    International Nuclear Information System (INIS)

    Flynn, P.L.; Ebert, L.J.

    1977-01-01

    An analytical system was developed for prediction of the onset and progress of plastic flow of oriented fiber composite materials in which both externally applied complex stress states and stress raisers were present. The predictive system was a unique combination of two numerical systems, the ''SAAS II'' finite element analysis system and a micromechanics finite element program. The SAAS II system was used to generate the three-dimensional stress distributions, which were used as the input into the finite element micromechanics program. Appropriate yielding criteria were then applied to this latter program. The accuracy of the analytical system was demonstrated by the agreement between the analytically predicted and the experimentally measured flow values of externally notched tungsten wire reinforced copper oriented fiber composites, in which the fiber fraction was 50 vol pct

  7. Composite Material Switches

    Science.gov (United States)

    Javadi, Hamid (Inventor)

    2002-01-01

    A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.

  8. Effect of the metallic glass volume fraction on the mechanical properties of Zr-based metallic glass reinforced with porous W composite

    International Nuclear Information System (INIS)

    Zhang, X.Q.; Wang, L.; Xue, Y.F.; Cheng, X.W.; Wang, Y.D.; Nie, Z.H.; Zhang, H.F.; Fu, H.M.; Ma, L.L.; Ren, Y.

    2013-01-01

    The mechanical properties of both as-cast and as-extruded Zr-based metallic glass reinforced with tungsten composites with 33, 28, and 21 vol. % of metallic glass were investigated under quasi-static compression at strain rates from 10 −4 s −1 to 10 −1 s −1 . These two types of composites exhibited a strain rate sensitivity exponent that increased with the increase of the tungsten volume fraction. Compared to the composites with 33 and 21 vol. % of the metallic glass, the two types of composites with 28 vol. % of the metallic glass phase exhibited superior fracture energies. The in-situ compression test on the as-cast composites using high-energy synchrotron X-ray diffraction (HEXRD) revealed that the yield stress of the tungsten phase increased with a decrease in the metallic glass volume fraction. The as-cast composite with 28 vol. % of the metallic glass exhibited relatively great mechanical properties compared to the composites that contained 33 and 21 vol. % of the metallic glass. This result was attributed to the great coupling of the load distribution between the two phases and the high lattice strain in the tungsten phase.

  9. Comparative study of the mechanical properties of different tungsten materials for fusion applications

    Science.gov (United States)

    Krimpalis, S.; Mergia, K.; Messoloras, S.; Dubinko, A.; Terentyev, D.; Triantou, K.; Reiser, J.; Pintsuk, G.

    2017-12-01

    The mechanical properties of tungsten produced in different forms before and after neutron irradiation are of considerable interest for their application in fusion devices such as ITER. In this work the mechanical properties and the microstructure of two tungsten (W) products with different microstructures are investigated using depth sensing nano/micro-indentation and transmission electron microscopy, respectively. Neutron irradiation of these materials for different doses, in the temperature range 600 °C-1200 °C, is underway within the EUROfusion project in order to progress our basic understanding of neutron irradiation effects on W. The hardness and elastic modulus are determined as a function of the penetration depth, loading/unloading rate, holding time at maximum load and the final surface treatment. The results are correlated with the microstructure as investigated by SEM and TEM measurements.

  10. Operation of ASDEX Upgrade with tungsten coated walls

    International Nuclear Information System (INIS)

    Rohde, V.

    2002-01-01

    An alternative for low-Z materials in the main chamber of a future fusion device are high-Z materials, but the maximal tolerable concentration in the plasma core is restricted. A step by step approach to employ tungsten at the central column of ASDEX Upgrade was started in 1999. Meanwhile almost the whole central column is covered with tiles, which were coated by PVD with tungsten. Up to now 9000 s of plasma discharge covering all relevant scenarios were performed. Routine operation of ASDEX Upgrade was not affected by the tungsten. Typical concentrations below 10 -5 were found. The tungsten concentration is mostly connected to the transport into the core plasma, not to the tungsten erosion. It can be demonstrated, that additional central heating can eliminate the tungsten accumulation. These experiments demonstrate the compatibility of fusion plasmas with W plasma facing components under reactor relevant conditions. The erosion pattern found by post mortem analysis indicates that the main effect is ion sputtering. The main erosion of tungsten seems to occur during plasma ramp-up and ramp-down. (author)

  11. Development of a tungsten heavy alloy, W-Ni-Mn, used as kinetic energy penetrator

    International Nuclear Information System (INIS)

    Zahraee, S. M.; Salehi, M. T.; Arabi, H.; Tamizifar, M.

    2007-01-01

    The objective of this research was to develop a tungsten heavy alloy having a microstructure and properties good enough to penetrate hard rolled steels as deep as possible. In addition this alloy should not have environmental problems as depleted uranium materials, For this purpose a wide spread literature survey was performed and on the base of information obtained in this survey, three compositions of tungsten heavy alloy were chosen for investigation in this research. The alloys namely 90 W-7 Ni-3 Fe, 90 W-9 Ni-Mn and 90 W-8 Ni-2 Mn were selected and after producing these alloys through powder metallurgy technique, their thermal conductivity, compression flow properties and microstructure, were studied. The results of these investigations indicated that W-Ni-Mn alloys had better flow properties and lower thermal conductivities relative to W-Ni-Fe alloy. In addition Mn helped to obtain a finer microstructure in tungsten heavy alloy. Worth mentioning that a finer microstructure as well as lower thermal conductivity in this type of alloys increased the penetration depth due to formation of adiabatic shear bands during impact

  12. Corrosion resistant composite materials

    International Nuclear Information System (INIS)

    Ul'yanin, E.A.

    1986-01-01

    Foundations for corrosion-resistant composite materials design are considered with account of components compatibility. Fibrous and lamellar composites with metal matrix, dispersion-hardened steels and alloys, refractory metal carbides-, borides-, nitrides-, silicides-based composites are described. Cermet compositions and fields of their application, such as protective coatings for operation in agressive media at high temperatures, are presented

  13. Irradiation effects of hydrogen and helium plasma on different grade tungsten materials

    Directory of Open Access Journals (Sweden)

    X. Liu

    2017-08-01

    Full Text Available Fine-grain tungsten alloys could be one of the solutions for the plasma facing materials of future DEMO reactors. In order to evaluate the service performances of the newly developed W alloys under edge plasma irradiation and the synergetic effect of fusion plasma together with high heat flux, both low energy He ions and high energy H, H/He mixed neutral beam irradiation on W-ZrC, W-K, W-Y2O3, W-La2O3 and CVD-W coating were performed respectively at a liner plasma facility (Dalian Nationality University, China and the neutral beam facility GLADIS (IPP, Germany. Surface damages were characterized, and the crack formation and extension behaviors under ELM-like transient loading after H and H/He mixed beam irradiation were also investigated in the 60kW EMS-60 facility (Electron beam Materials testing Scenario at SWIP (Southwestern Institute of Physics, China. The experimental results indicated that surface damages induced by low or high energy H/He ion/neutral beam didn't closely correlate with the type of tungsten materials. However, H/He (6at% He concentration neutral beam induced more significant surface damages of the tested W materials than only H neutral beam irradiation under the similar irradiation conditions. Similarly, the mixed H/He pre-exposure remarkably reduced the critical power of crack initiation compared with the un-irradiated samples under 100 repetitive loads of 1ms pulse, while no significant degeneration for the case of only H beam irradiation was observed.

  14. Tungsten Oxide Photonic Crystals as Optical Transducer for Gas Sensing.

    Science.gov (United States)

    Amrehn, Sabrina; Wu, Xia; Wagner, Thorsten

    2018-01-26

    Some metal oxide semiconductors, such as tungsten trioxide or tin dioxide, are well-known as resistive transducers for gas sensing and offer high sensitivities down to the part per billion level. Electrical signal read-out, however, limits the information obtained on the electronic properties of metal oxides to a certain frequency range and its application because of the required electrical contacts. Therefore, a novel approach for building an optical transducer for gas reactions utilizing metal oxide photonic crystals is presented here. By the rational design of the structure and composition it is possible to synthesize a functional material which allows one to obtain insight into its electronic properties in the optical frequency range with simple experimental measures. The concept is demonstrated by tungsten trioxide inverse opal structure as optical transducer material for hydrogen sensing. The sensing behavior is analyzed in a temperature range from room temperature to 500 °C and in a wide hydrogen concentration range (3000 ppm to 10%). The sensing mechanism is mainly the refractive index change resulting from hydrogen intercalation in tungsten trioxide, but the back reaction has also impact on the optical properties of this system. Detailed chemical reaction studies provide suggestions for specific sensing conditions.

  15. Tritium decay helium-3 effects in tungsten

    Directory of Open Access Journals (Sweden)

    M. Shimada

    2017-08-01

    Full Text Available Tritium (T implanted by plasmas diffuses into bulk material, especially rapidly at elevated temperatures, and becomes trapped in neutron radiation-induced defects in materials that act as trapping sites for the tritium. The trapped tritium atoms will decay to produce helium-3 (3He atoms at a half-life of 12.3 years. 3He has a large cross section for absorbing thermal neutrons, which after absorbing a neutron produces hydrogen (H and tritium ions with a combined kinetic energy of 0.76 MeV through the 3He(n,HT nuclear reaction. The purpose of this paper is to quantify the 3He produced in tungsten by tritium decay compared to the neutron-induced helium-4 (4He produced in tungsten. This is important given the fact that helium in materials not only creates microstructural damage in the bulk of the material but alters surface morphology of the material effecting plasma-surface interaction process (e.g. material evolution, erosion and tritium behavior of plasma-facing component materials. Effects of tritium decay 3He in tungsten are investigated here with a simple model that predicts quantity of 3He produced in a fusion DEMO FW based on a neutron energy spectrum found in literature. This study reveals that: (1 helium-3 concentration was equilibrated to ∼6% of initial/trapped tritium concentration, (2 tritium concentration remained approximately constant (94% of initial tritium concentration, and (3 displacement damage from 3He(n,HT nuclear reaction became >1 dpa/year in DEMO FW.

  16. MEGAPIE analytical support task : characterization of lead-bismuth eutectic and sodium-cooled tungsten target materials for accelerator driven systems

    International Nuclear Information System (INIS)

    Gohar, Y.

    2002-01-01

    Lead-Bismuth Eutectic and Tungsten are under consideration as target materials with high-energy protons for generating neutrons to drive actinide and fission product transmuters. A detailed characterization has been performed to study the performance of these target materials as a function of the main variables and the design selections. The characterization includes the neutron yield, the spatial energy deposition, the neutron spectrum, the beam window performance, and the target buffer impact on the target performance. The characterization has also considered high-energy deuteron particles to study the impact on the target neutronic performance. The obtained results quantify the performance of the Lead-Bismuth Eutectic and Tungsten target materials as a function of the target variables and design selections

  17. SiC-Based Composite Materials Obtained by Siliconizing Carbon Matrices

    Science.gov (United States)

    Shikunov, S. L.; Kurlov, V. N.

    2017-12-01

    We have developed a method for fabrication of parts of complicated configuration from composite materials based on SiC ceramics, which employs the interaction of silicon melt with the carbon matrix having a certain composition and porosity. For elevating the operating temperatures of ceramic components, we have developed a method for depositing protective silicon-carbide coatings that is based on the interaction of the silicon melt and vapor with carbon obtained during thermal splitting of hydrocarbon molecules. The new structural ceramics are characterized by higher operating temperatures; chemical stability; mechanical strength; thermal shock, wear and radiation resistance; and parameters stability.

  18. On the rational technology of low-grade tungsten raw material reprocessing

    International Nuclear Information System (INIS)

    Verevkin, G.V.; Kulmukhamedov, G.K.; Perlov, P.M.; Zelikman, A.N.; Ivanov, I.M.; Medvedev, V.V.

    1989-01-01

    The most rational technology for autoclave alkali reprocessing is presented. It lies in selective extraction of tungsten from alkali, containing the excess soda. It is shown that deep purification of tungsten from silicon, phosphorus and arsenic impurities takes place during tungsten extraction out of alkaline media. The important advantage of alkaline extraction technology is the exclusion of acid usage, possibility of soda regeneration and liquidation of acid flows, which solves the ecological problems

  19. Underwater explosive compaction-sintering of tungsten-copper coating on a copper surface

    Science.gov (United States)

    Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Chen, Saiwei

    2018-01-01

    This study investigated underwater explosive compaction-sintering for coating a high-density tungsten-copper composite on a copper surface. First, 50% W-50% Cu tungsten-copper composite powder was prepared by mechanical alloying. The composite powder was pre-compacted and sintered by hydrogen. Underwater explosive compaction was carried out. Finally, a high-density tungsten-copper coating was obtained by diffusion sintering of the specimen after explosive compaction. A simulation of the underwater explosive compaction process showed that the peak value of the pressure in the coating was between 3.0 and 4.8 GPa. The hardness values of the tungsten-copper layer and the copper substrate were in the range of 87-133 and 49 HV, respectively. The bonding strength between the coating and the substrate was approximately 100-105 MPa.

  20. Hydrogen in tungsten as plasma-facing material

    Science.gov (United States)

    Roth, Joachim; Schmid, Klaus

    2011-12-01

    Materials facing plasmas in fusion experiments and future reactors are loaded with high fluxes (1020-1024 m-2 s-1) of H, D and T fuel particles at energies ranging from a few eV to keV. In this respect, the evolution of the radioactive T inventory in the first wall, the permeation of T through the armour into the coolant and the thermo-mechanical stability after long-term exposure are key parameters determining the applicability of a first wall material. Tungsten exhibits fast hydrogen diffusion, but an extremely low solubility limit. Due to the fast diffusion of hydrogen and the short ion range, most of the incident ions will quickly reach the surface and recycle into the plasma chamber. For steady-state operation the solute hydrogen for the typical fusion reactor geometry and wall conditions can reach an inventory of about 1 kg. However, in short-pulse operation typical of ITER, solute hydrogen will diffuse out after each pulse and the remaining inventory will consist of hydrogen trapped in lattice defects, such as dislocations, grain boundaries and irradiation-induced traps. In high-flux areas the hydrogen energies are too low to create displacement damage. However, under these conditions the solubility limit will be exceeded within the ion range and the formation of gas bubbles and stress-induced damage occurs. In addition, simultaneous neutron fluxes from the nuclear fusion reaction D(T,n)α will lead to damage in the materials and produce trapping sites for diffusing hydrogen atoms throughout the bulk. The formation and diffusive filling of these different traps will determine the evolution of the retained T inventory. This paper will concentrate on experimental evidence for the influence different trapping sites have on the hydrogen inventory in W as studied in ion beam experiments and low-temperature plasmas. Based on the extensive experimental data, models are validated and applied to estimate the contribution of different traps to the tritium inventory in

  1. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    This book deals with the mechanical and physical behavior of composites as influenced by composite geometry. "Composite Materials" provides a comprehensive introduction for researchers and students to modern composite materials research with a special emphasis on the significance of phase geometry......, viscoelastic behavior, and internal stress states. Other physical properties considered are thermal and electrical conductivities, diffusion coefficients, dielectric constants and magnetic permeability. Special attention is given to the effect of pore shape on the mechanical and physical behavior of porous....... The book enables the reader to a better understanding of the behavior of natural composites, improvement of such materials, and design of new materials with prescribed properties. A number of examples are presented: Special composite properties considered are stiffness, shrinkage, hygro-thermal behavior...

  2. Niobium-Matrix-Composite High-Temperature Turbine Blades

    Science.gov (United States)

    Kaplan, Richard B.; Tuffias, Robert H.; La Ferla, Raffaele; Heng, Sangvavann; Harding, John T.

    1995-01-01

    High-temperture composite-material turbine blades comprising mainly niobium matrices reinforced with refractory-material fibers being developed. Of refractory fibrous materials investigated, FP-AL(2)0(3), tungsten, and polymer-based SiC fibers most promising. Blade of this type hollow and formed in nearly net shape by wrapping mesh of reinforcing refractory fibers around molybdenum mandrel, then using thermal-gradient chemical-vapor infiltration (CVI) to fill interstices with niobium. CVI process controllable and repeatable, and kinetics of both deposition and infiltration well understood.

  3. Fracture behavior of W based materials

    International Nuclear Information System (INIS)

    Hack, J.E.

    1991-01-01

    This report describes the results of a program to investigate the fracture properties of tungsten based materials. In particular, the role of crack velocity on crack instability was determined in a W-Fe-Ni-Co ''heavy alloy'' and pure polycrystalline tungsten. A considerable effort was expended on the development of an appropriate crack velocity gage for use on these materials. Having succeeded in that, the gage technology was employed to determine the crack velocity response to the applied level of stress intensity factor at the onset of crack instability in pre-cracked specimens. The results were also correlated to the failure mode observed in two material systems of interest. Major results include: (1) unstable crack velocity measurements on metallic specimens which require high spatial resolution require the use of brittle, insulating substrates, as opposed to the ductile, polymer based substrates employed in low spatial resolution measurements; and (2) brittle failure modes, such as cleavage, are characterized by relatively slow unstable crack velocities while evidence of high degrees of deformation are associated with failures which proceed at high unstable crack velocities. This latter behavior is consistent with the predictions of the modeling of Hack et al and may have a significant impact on the interpretation of fractographs in general

  4. On tungsten technologies and qualification for DEMO

    International Nuclear Information System (INIS)

    Laan, J. van der; Hegeman, H.; Wouters, O.; Luzginova, N.; Jonker, B.; Van der Marck, S.; Opschoor, J.; Wang, J.; Dowling, G.; Stuivenga, M.; Carton, E.

    2009-01-01

    Tungsten alloys are considered prime candidates for the in-vessel components directly facing the plasma. For example, in the HEMJ helium cooled divertor design tiles may be operated at temperatures up to 1700 deg. C, supported by a structure partially consisting of tungsten at temperatures from 600 to 1000 deg. C, and connected to a HT steel structure. The tungsten armoured primary wall is operated at 500-900 deg. C. Irradiation doses will be few tens dpa at minimum, but FPR requirements for plants availability will stretch these targets. Recently injection moulding technology was developed for pure tungsten and representative parts were manufactured for ITER monobloc divertors and DEMO HEMJ thimbles. The major advantages for this technology are the efficient use of material feedstock/resources and the intrinsic possibility to produce near-finished product, avoiding machining processes that are costly and may introduce surface defects deteriorating the component in service performance. It is well suited for mass-manufacturing of components as well known in e.g. lighting industries. To further qualify this material technology various specimen types were produced with processing parameters identical to the components, and tested successfully, showing the high potential for implementation in (fusion) devices. Furthermore, the engineering approach can clearly be tailored away from conventional design and manufacturing technologies based on bulk materials. The technology is suitable for shaping of new W-alloys and W-ODS variants as well. Basically this technology allows a particular qualification trajectory. There is no need to produce large batches of material during the material development and optimization stage. For the verification of irradiation behaviour in the specific neutron spectra, there is a further attractive feature to use e.g. isotope tailored powders to adjust to available irradiation facilities like MTR's. In addition the ingrowth of transmutation

  5. Development of W-composites/EUROFER brazed joints for the first wall component of future fusion reactors

    Science.gov (United States)

    de Prado, J.; Sánchez, M.; Antusch, S.; Ureña, A.

    2017-12-01

    The present work describes a joining procedure between two different tungsten composite materials (W-2Y2O3 and W-1TiC) with reduced activation ferritic-martensitic steel (Eurofer). The results indicated the achievement, in both cases, of high quality W-composites/Eurofer joints using 80Cu-20Ti as filler material. The braze is constituted by several ternary Cu-Ti-Fe phases distributed along a Cu-matrix, which acts as ductile phase capable of relieving the residual stresses, which could be produced during the service life of the component. Some cracks growing from W-braze interface into the base material have been detected. They are originated by the stresses produced during the cooling stage of the brazing cycle. Regarding the strength of the joints, similar shear strengths of both joints were obtained (˜105 MPa). These values were slightly lower than the ones obtained when pure tungsten was used as the base metal.

  6. Magneto-electro-responsive material based on magnetite nanoparticles/polyurethane composites

    International Nuclear Information System (INIS)

    Petcharoen, Karat; Sirivat, Anuvat

    2016-01-01

    Multi-functional materials in actuator applications have been developed toward reversibility and sensitivity under various actuating fields. In this work, magneto-electro-responsive materials consisting of a polyurethane (PU) matrix and its composites embedded with magnetite nanoparticles (MNP) as a dispersed phase were fabricated to tailor the electromechanical properties and bending performance under electric, magnetic, and electromagnetic fields. Due to the superior characteristics of MNP over other magnetic materials, the composites fabricated with electronic polarization were highly responsive under electric field. The highest storage modulus sensitivity belonged to the 1.0% v/v MNP/PU composite which possessed the value of 3.46 at the electric field 2 kV mm"−"1. Moreover, all of the PU composites behaved as an electrostrictive material in which the stress depended quadratically on the electric field. It was demonstrated that the PU composites also possessed very good recoverability, fast response (< 15 s) and large bending angle relative to that of pristine PU under applied electric field. Interestingly, the steady state storage modulus response was attained within the first electrical actuation cycle and the PU composite was a fully reversible material. In addition, it was shown that superparamagnetism was a common characteristic of all fabricated composites under magnetic field. The 3.0%v/v MNP/PU composite provided the largest bending distance up to 23.60 mm, and 14.10 mm under the magnetic field of 5000 G, and the electromagnetic field of 320 G, respectively. In summary, the MNP/PU composite material is a potential candidate to be used as a smart material under the influences of electric and/or magnetic fields over other existing dielectric materials. - Highlights: • MNP/PU composites exhibit a superparamagnetic behavior. • MNP/PU composites show full reversibility under electric field. • 1.0% v/v MNP/PU composite provides the highest sensitivity

  7. Magneto-electro-responsive material based on magnetite nanoparticles/polyurethane composites

    Energy Technology Data Exchange (ETDEWEB)

    Petcharoen, Karat; Sirivat, Anuvat, E-mail: anuvat.s@chula.ac.th

    2016-04-01

    Multi-functional materials in actuator applications have been developed toward reversibility and sensitivity under various actuating fields. In this work, magneto-electro-responsive materials consisting of a polyurethane (PU) matrix and its composites embedded with magnetite nanoparticles (MNP) as a dispersed phase were fabricated to tailor the electromechanical properties and bending performance under electric, magnetic, and electromagnetic fields. Due to the superior characteristics of MNP over other magnetic materials, the composites fabricated with electronic polarization were highly responsive under electric field. The highest storage modulus sensitivity belonged to the 1.0% v/v MNP/PU composite which possessed the value of 3.46 at the electric field 2 kV mm{sup −1}. Moreover, all of the PU composites behaved as an electrostrictive material in which the stress depended quadratically on the electric field. It was demonstrated that the PU composites also possessed very good recoverability, fast response (< 15 s) and large bending angle relative to that of pristine PU under applied electric field. Interestingly, the steady state storage modulus response was attained within the first electrical actuation cycle and the PU composite was a fully reversible material. In addition, it was shown that superparamagnetism was a common characteristic of all fabricated composites under magnetic field. The 3.0%v/v MNP/PU composite provided the largest bending distance up to 23.60 mm, and 14.10 mm under the magnetic field of 5000 G, and the electromagnetic field of 320 G, respectively. In summary, the MNP/PU composite material is a potential candidate to be used as a smart material under the influences of electric and/or magnetic fields over other existing dielectric materials. - Highlights: • MNP/PU composites exhibit a superparamagnetic behavior. • MNP/PU composites show full reversibility under electric field. • 1.0% v/v MNP/PU composite provides the highest

  8. Sequential and simultaneous thermal and particle exposure of tungsten

    International Nuclear Information System (INIS)

    Steudel, I; Huber, A; Kreter, A; Linke, J; Sergienko, G; Unterberg, B; Wirtz, M

    2016-01-01

    The broad array of expected loading conditions in a fusion reactor such as ITER necessitates high requirements on the plasma facing materials (PFMs). Tungsten, the PFM for the divertor region, the most affected part of the in-vessel components, must thus sustain severe, distinct exposure conditions. Accordingly, comprehensive experiments investigating sequential and simultaneous thermal and particle loads were performed on double forged pure tungsten, not only to investigate whether the thermal and particle loads cause damage but also if the sequence of exposure maintains an influence. The exposed specimens showed various kinds of damage such as roughening, blistering, and cracking at a base temperature where tungsten could be ductile enough to compensate the induced stresses exclusively by plastic deformation (Pintsuk et al 2011 J. Nucl. Mater. 417 481–6). It was found out that hydrogen has an adverse effect on the material performance and the loading sequence on the surface modification. (paper)

  9. Antibacterial Properties of Calcium Fluoride-Based Composite Materials: In Vitro Study

    Science.gov (United States)

    Zarzycka, Beata; Grzegorczyk, Janina; Sokołowski, Krzysztof; Półtorak, Konrad; Sokołowski, Jerzy

    2016-01-01

    The aim of the study was to evaluate antibacterial activity of composite materials modified with calcium fluoride against cariogenic bacteria S. mutans and L. acidophilus. One commercially available conventional light-curing composite material containing fluoride ions (F2) and two commercially available flowable light-curing composite materials (Flow Art and X-Flow) modified with 1.5, 2.5, and 5.0 wt% anhydrous calcium fluoride addition were used in the study. Composite material samples were incubated in 0.95% NaCl at 35°C for 3 days; then dilution series of S. mutans and L. acidophilus strains were made from the eluates. Bacteria dilutions were cultivated on media afterwards. Colony-forming unit per 1 mL of solution (CFU/mL) was calculated. Composite materials modified with calcium fluoride highly reduced (p composite materials containing fluoride compounds. The greatest reduction in bacteria growth was observed for composite materials modified with 1.5% wt. CaF2. All three tested composite materials showed statistically greater antibacterial activity against L. acidophilus than against S. mutans. PMID:28053976

  10. Hydrothermal synthesis of electrode materials pyrochlore tungsten trioxide film

    Science.gov (United States)

    Guo, Jingdong; Li, Yingjeng James; Stanley Whittingham, M.

    Hydrothermal synthesis methods have been successfully used to prepare new transition-metal oxides for cathodes in electrochemical devices such as lithium batteries and electrochromic windows. The tungsten oxides were the first studied, but the method has been extended to the oxides of molybdenum, vanadium and manganese. Sodium tungsten oxide films with the pyrochlore structure have been prepared on gold/alumina and indium-doped tin oxide substrates. These films reversibly and rapidly intercalate lithium and hydrogen ions.

  11. Composite Material Suitable for Use as Electrode Material in a SOC

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to composite material suitable for use as an electrode material in a solid oxide cell, said composite material consist of at least two non-miscible mixed ionic and electronic conductors. Further provided is a composite material suitable for use as an electrode material...... in a solid oxide cell, said composite material being based on (Gd1-xSrx)1-sFe1-yCoyO3-[delta] or (Ln1-xSrx)1-sFe1-yCioyO3-[delta](s equal to 0.05 or larger) wherein Ln is a lanthanide element, Sc or Y, said composite material comprising at least two phases which are non-miscible, said composite material...... being obtainable by the glycine nitrate combustion method. Said composite material may be used for proving an electrode material in the form of at least a two-phase system showing a very low area specific resistance of around 0.1 [Omega]cm2 at around 600 DEG C....

  12. Studying reactions of interaction of tungsten (6) with rhodamine B and rhodamine 6 Zh

    International Nuclear Information System (INIS)

    Andreeva, I.Yu.; Lebedeva, L.I.; Burmistrova, N.M.

    1978-01-01

    The reaction of the interaction between tungsten (6) and rhodamine B and rhodamine 6 Zh has been investigated. The formation of two compounds in the tungsten-rhodamine system is shown. The composition of these compounds has been determined, and their stability has been estimated. The composition of compounds in the solid phase has also been determined. This reaction is used for the determination of tungsten in stells

  13. Nanocomposite polymer materials used in radioprotection

    International Nuclear Information System (INIS)

    Cherestes, Codrut; Cherestes, Margareta; Constantinescu, Livia

    2004-01-01

    A thermoplastic polymer-tungsten composite has been developed with characteristics that preserve the performance attributes of Pb (good radiation absorption, easy of forming, etc.) while avoiding its toxicity. This poly-metal composite formed primarily of tungsten and polymeric resins can be used in a wide range of applications in which lead and other toxic heavy metals have been historically applied. With density equal to that of Pb, the new material offers greater yield strength than Pb, can be injection molded, is nontoxic, and can be formulated to be very flexible or very stiff, depending on the application. With a large applicability in radiation shielding for nuclear medicine, radiology and nuclear power, the new material represents an ecologically sound alternative to toxic, environmentally undesirable traditional materials. The properties of the new material, its applications and its characteristics relative to Pb will be examined. (authors)

  14. Selection, development and characterisation of plasma facing materials for ITER

    International Nuclear Information System (INIS)

    Barabash, V.; Akiba, M.; Ulrickson, M.; Vieider, G.

    1996-01-01

    The current status of the selection of the armour materials for first wall, limiters and divertor are presented. The candidate armour materials are beryllium, tungsten and carbon base materials (mainly carbon fiber composites). The selection of the references grades from these material classes is discussed and the candidate grades are described. The main reasons for the selection of the reference grades are also discussed. The urgent materials R and D needs for the development of the design are described briefly. (orig.)

  15. Preparation and Photocatalytic Property of TiO2/Diatomite-Based Porous Ceramics Composite Materials

    Directory of Open Access Journals (Sweden)

    Shuilin Zheng

    2012-01-01

    Full Text Available The diatomite-based porous ceramics was made by low-temperature sintering. Then the nano-TiO2/diatomite-based porous ceramics composite materials were prepared by hydrolysis deposition method with titanium tetrachloride as the precursor of TiO2 and diatomite-based porous as the supporting body of the nano-TiO2. The structure and microscopic appearance of nano-TiO2/diatomite-based porous ceramics composite materials was characterized by XRD and SEM. The photocatalytic property of the composite was investigated by the degradation of malachite green. Results showed that, after calcination at 550°C, TiO2 thin film loaded on the diatomite-based porous ceramics is anatase TiO2 and average grain size of TiO2 is about 10 nm. The degradation ratio of the composite for 5 mg/L malachite green solution reached 86.2% after irradiation for 6 h under ultraviolet.

  16. Thermal conductivity and electrical resistivity standard reference materials: tungsten SRM's 730 and 799, from 4 to 30000K. Final report

    International Nuclear Information System (INIS)

    Hust, J.G.; Giarratano, P.J.

    1975-09-01

    A historical review of the development of thermophysical Standard Reference Materials, SRM's, is given and selection criteria of SRM's are listed. Thermal conductivity and electrical resistivity data for arc cast and sintered tungsten are compiled, analyzed, and correlated. Recommended values of thermal conductivity (SRM 730) and electrical resistivity (SRM 799) for these lots of tungsten are presented for the range 4 to 3000 0 K

  17. Novel hard compositions and methods of preparation

    Science.gov (United States)

    Sheinberg, H.

    1983-08-23

    Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value. Photomicrographs show that the shapes of the grains of the alloy mixture with which the minor amount of carbide (or carbide-formers) is mixed are radically altered from large, rounded to small, very angular by the addition of the carbide. Superiority of one of these hard compositions of matter over cobalt-bonded tungsten carbide for ultra-high pressure anvil applications was demonstrated. 3 figs.

  18. Friction material composites copper-metal-free material design perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2015-01-01

    This book examines material composites used in connection with brake friction, their design and safety. To aid in understanding, the essentials of friction are explained. This second edition was extended to include friction material composites without copper, as they offer an environmentally friendlier option. The second edition is intended to support beginners by offering insights into the essentials of friction material composites, helping them to develop a broader understanding of brake friction materials. Friction materials find wide-ranging applications in household and industrial appliances, brake pads for automotive applications, rail brake friction pads and composition brake blocks. This second edition is an introductory volume to a set of related books, and is based on the author’s experience and expertise with various material manufacturers, brake manufacturers, vehicle manufacturers, researchers and testing labs around the world with which the author has been associated for the past 28 years.

  19. Brazing molybdenum and tungsten for high temperature service

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Turner, W.C.; Hoffman, C.G.

    1978-01-01

    Investigations were conducted to develop vacuum brazes for molybdenum and tungsten which can be used in seal joint applications up to 1870 K (1597 C, 2907 F). Joints were attempted in molybdenum, tungsten and tungsten--molybdenum. The braze materials included: Ti--10Cr powder, Ti--30V wire, Ti--65V wire, V wire, Ni electroplate, MoB--50MoC powder mixture, V--50Mo powder mixture, Mo--15MoB 2 powder mixture and Mo--49V--15MoB 2 powder mixture. Braze temperature ranged from 1900 K (1627 C, 2961 F) to 2530 K, (2257 C, 4095 F), and leak-tight joints were made with all braze materials except Ti--10Cr. After heat treatments up to 1870 K (1597 C, 2907 F) Kirkendall voiding was found to cause leakage of some of the joints made with only substitutional alloying elements. However, adding base metal powders to the braze or narrowing the root opening eliminated this problem. Kirkendall voiding was not a problem when interstitial elements were a major ingredient in the braze material. Shear testing of Ti--65V, V, MoB--50MoC and V--50Mo brazed molybdenum at 1670 K (1397 C, 2547 F) indicated strengths equal to or better than the base metal. Ti--65V, V--50Mo and MoB--50MoC brazed joints were exposed to basalt at 1670 K (1397 C, 2547 F) for 3 h without developing leaks

  20. Processing of tungsten scrap into powders by electroerosion disintegration

    International Nuclear Information System (INIS)

    Fominskii, L.P.; Leuchuk, M.V.; Myuller, A.S.; Tarabrina, V.P.

    1985-01-01

    Utilization of tungsten and tungsten alloy swarf and other waste and also of rejected and worn parts is a matter of great importance in view of the shortage of this metal. The authors examine the electroerosion (EE) disintegration of tungsten in water as a means of utilizing swarf and other loose waste. Unlike chemical methods, EE disintegration ensures ecological purity since there are no effluent waters or toxic discharges. Swarf and trimmings of rods of diameters up to 20 mm obtained after the lathe-turning of tungsten bars sintered from PVN and PVV tungsten powders were disintegrated in water at room temperature between tungsten electrodes. The phase composition of the powder was studied using FeK /SUB alpha/ radiation, by x-ray diffraction methods in a DRON-2 diffractometer with a graphite monochromator on the secondary beam. When tungsten is heated to boiling during EE disintegration, the impurities present in it can evaporate and burn out. Thus, tungsten powder produced by EE disintegration can be purer than the starting metal

  1. Composites and blends from biobased materials

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, S.S. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-05-01

    The program is focused on the development of composites and blends from biobased materials to use as membranes, high value plastics, and lightweight composites. Biobased materials include: cellulose derivative microporous materials, cellulose derivative copolymers, and cellulose derivative blends. This year`s research focused on developing an improved understanding of the molecular features that cellulose based materials with improved properties for gas separation applications. Novel cellulose ester membrane composites have been developed and are being evaluated under a collaborative research agreement with Dow Chemicals Company.

  2. Mechanical Properties of Composite Waste Material Based Styrofoam, Baggase and Eggshell Powder for Application of Drone Frames

    Science.gov (United States)

    Perdana, Mastariyanto; Prastiawan; Hadi, Syafrul

    2017-12-01

    The garbage issue becomes a very serious problem at the moment. Much research has been done to make waste into useful materials. One of the utilization of waste is as the basic material of composite material that can be applied in the field of engineering. Some of the wastes generated are styrofoam, bagasse and eggshell. Styrofoam, bagasse and eggshell can be applied to a composite material. Styrofoam serves as a composite binder material while the bagasse and eggshells serve as a reinforcement. Volume fraction between styrofoam, bagasse and eggshell are 80%:10%:10%, 70%:15%:15%, 60%:20%:20%, and 50%:25%:25%. The aims of research are determine the mechanical properties of composite material based waste materials from styrofoam, bagasse and eggshell. Mechanical properties tested in this study are bending strength and toughness of composite materials. The results showed bending strength of composite for each volume fraction of 80%:10%:10%, 70%:15%:15%, 60%:20%:20%, and 50%:25%:25% are 5.07 MPa, 8.45 MPa, 8.68 MPa, and 11.01 MPa, respectively. Toughness of composite materials for each volume fraction of 80%:10%:10%, 70%:15%:15%, 60%:20%:20%, and 50%:25%:25% are 0.33 J/mm2, 0.42 J/mm2, 0.75 J/mm2, and 0.75 J/mm2, respectively. Composite materials based on waste materials from styrofoam, bagasse and eggshell can be used as an alternative material for drone frames.

  3. Bio-based composite pedestrian bridge. Part 2: materials and production process

    NARCIS (Netherlands)

    Lepelaar, Mark; Hoogendoorn, Alwin; Blok, Rijk; Teuffel, Patrick; Kawaguchi, K.; Ohsaki, M.; Takeuchi, T.

    2016-01-01

    The Bio-based composite bridge is a 3TU project which aims to design and realize a 14m span pedestrian bridge made from fibre-reinforced polymers (FRP) and which is introduced in part 1 of this paper. Part 2 will focus on various studies about bio-based materials, which are suitable for structural

  4. Vapor-transport of tungsten and its geologic application

    Energy Technology Data Exchange (ETDEWEB)

    Shibue, Y [Hyogo Univ. of Teacher Education, Hyogo (Japan)

    1988-11-10

    The volatility of tungsten in a hydrous system at elevated temperatures and pressures was examined, and a tentative model for the enrichment of tungsten in hydrothermal solutions for the deposits related to granitic activities was proposed. To produce vapor-saturated solution, 17 or 15ml of 20wt% NaCl solution was introduced into an autoclave. Ca(OH){sub 2} for tungsten and H{sub 2}WO{sub 4} for base metals were used as vapor-captures, and run products were identified by X-ray powder diffractometry. The results suggested that the ratio of tungsten to base metals was higher in a vapor phase than in a liquid phase, and more enrichment of tungsten in the vapor phase occurred at higher temperature and pressure under the coexistence of the vapor and liquid phase. The tentative model emphasizing the vapor-transport of tungsten could explain the presence of tungsten deposits without large mineralization of base metals. Geological schematic model for the generation of the hydrothermal solution enriched in tungsten compared with base metals was illustrated based on above mentioned results. 21 refs., 3 figs.

  5. Nature and morphology of the joints of metal matrix composites to metals

    International Nuclear Information System (INIS)

    Pietrzak, K.

    1997-01-01

    Metal matrix composites (MMCs) reinforced with short ceramic fibres (e.g. carbon or Al 2 O 3 fibres) or with other metals (such as e.g., tungsten) show numerous advantages since their properties can be programmed by modifying appropriately their composition and technology. A point of considerable importance is the possibility of joining the composites with metals or their alloys. The major problem here is to choose the appropriate joining technique, such that ensures the formation of a high quality joint resistant to the service conditions, avoids the degradation of the composite microstructure, in particular of the interface layer between the matrix and the reinforcement, and still, is not expensive (1). The paper presents the results of experiments on joining the following composites: 6061Al-based materials containing 15 vol.% of δ-alumina fibres, CuCrl-based materials containing 20 vol.% of carbon fibres (C f ), CuZrl-based materials containing 20 vol.% of C f and Cu-based materials with 10 vol.% of dispersed tungsten powder. The CuCrI-C f and CuZrl-C f composites were joined with austenitic steel, the 6061Al-Al 2 O 3 composite - with the 6061Al alloy and the CuW composite - with copper of 99.99 % purity. The material pairs were chosen so as to take into account their possible application. Several different joining techniques were examined. This paper discusses the results obtained when using diffusion bonding, vacuum brazing and gluing. The morphology and the nature of the interface layer after bonding process between the matrix and the reinforcement and between the MMCs and metal were examined by analysing the distributions of the elements, by SEM and by X-ray techniques. The degree of the degradation of the MMCs structure was taken to be described by the coefficient of the relative content of the reinforcing material RCRM = X/B, where X is the percent content of the reinforcing phase in the composite after the joining process, and B is the percent content of

  6. PEDOT-based composites as electrode materials for supercapacitors

    International Nuclear Information System (INIS)

    Zhao, Zhiheng; Richardson, Georgia F; Meng, Qingshi; Ma, Jun; Zhu, Shenmin; Kuan, Hsu-Chiang

    2016-01-01

    Poly (3, 4-ethylenedioxythiophene) (denoted PEDOT) already has a brief history of being used as an active material in supercapacitors. It has many advantages such as low-cost, flexibility, and good electrical conductivity and pseudocapacitance. However, the major drawback is low stability, which means an obvious capacitance drop after a certain number of charge–discharge cycles. Another disadvantage is its limited capacitance and this becomes an issue for industrial applications. To solve these problems, there are several approaches including the addition of conducting nanofillers to increase conductivity, and mixing or depositing metal oxide to enhance capacitance. Furthermore, expanding the surface area of PEDOT is one of the main methods to improve its performance in energy storage applications through special processes; for example using a three-dimensional substrate or preparing PEDOT aerogel through freeze drying. This paper reviews recent techniques and outcomes of PEDOT based composites for supercapacitors, as well as detailed calculations about capacitances. Finally, this paper outlines the new direction and recent challenges of PEDOT based composites for supercapacitor applications. (topical review)

  7. Cyclic saturation behavior of tungsten monofilament-reinforced monocrystalline copper matrix composites

    International Nuclear Information System (INIS)

    Zhang, J.; Laird, C.

    1999-01-01

    Studies on saturation behavior produced by cyclic deformation have been conducted on tungsten monofilament-reinforced monocrystalline copper composites. The effect of the fiber on strain localization has been investigated using interferometry. For a given applied strain amplitude, local strain and volume fraction of the persistent slip bands (PSBs) in the composite appeared no different from those observed in monolithic copper single crystals. However, the distribution of the PSBs was observed to be more uniform, and the total number of PSBs is substantially higher than that in monolithic crystals. The PSBs appeared mostly in the form of micro-PSBs or macro-PSBs with very limited width. Instead of expanding existing PSBs, new PSBs were more likely to nucleate at new locations during cyclic deformation. The volume fraction and width of the PSBs were observed to increase during saturation, which indicates that some of the PSBs become aged and new PSBs form in order to continue to carry the plastic strain. A rule of mixtures model was established to link the cyclic stress-strain response of the monocrystalline composites to the behavior of monolithic single crystals and fibers. The results calculated from the model show very good agreement with the experimental data

  8. Fracture and Residual Characterization of Tungsten Carbide Cobalt Coatings on High Strength Steel

    National Research Council Canada - National Science Library

    Parker, Donald S

    2003-01-01

    Tungsten carbide cobalt coatings applied via high velocity oxygen fuel thermal spray deposition are essentially anisotropic composite structures with aggregates of tungsten carbide particles bonded...

  9. Characterization of SiC based composite materials by the infiltration of ultra-fine SiC particles

    International Nuclear Information System (INIS)

    Lee, J.K.; Lee, S.P.; Byun, J.H.

    2010-01-01

    The fabrication route of SiC materials by the complex compound of ultra-fine SiC particles and oxide additive materials has been investigated. Especially, the effect of additive composition ratio on the characterization of SiC materials has been examined. The characterization of C/SiC composites reinforced with plain woven carbon fabrics was also investigated. The fiber preform for C/SiC composites was prepared by the infiltration of complex mixture into the carbon fabric structure. SiC based composite materials were fabricated by a pressure assisted liquid phase sintering process. SiC materials possessed a good density higher than about 3.0 Mg/m 3 , accompanying the creation of secondary phase by the chemical reaction of additive materials. C/SiC composites also represented a dense morphology in the intra-fiber bundle region, even if this material had a sintered density lower than that of monolithic SiC materials. The flexural strength of SiC materials was greatly affected by the composition ratio of additive materials.

  10. Simple preparation of tungsten supported carbon nanoreactors for specific applications: Adsorption, catalysis and electrochemical activity

    Energy Technology Data Exchange (ETDEWEB)

    Mayani, Vishal J.; Mayani, Suranjana V.; Kim, Sang Wook, E-mail: swkim@dongguk.ac.kr

    2015-08-01

    Graphical abstract: - Highlights: • Tungsten carbon composites have shown great recognition in catalysis and electrochemistry. • W-carbon composites are prepared by template replication and W-doping on carbon cage. • Nanocomposites offer enormous assurance as adsorbent, electrode and heterogeneous catalyst. - Abstract: Porous carbon supported tungsten carbide nanoreactors, two sizes (∼25 and 170 nm), were designed using economical petroleum pitch residue followed by tungsten (W) doping. X-ray diffractions showed both carbon tungsten composites (CTC-25 and CTC-170) contained tungsten subcarbide (W{sub 2}C) and monocarbide (WC) as the major and minor crystalline phases, respectively. The present study provides a multiple perspective of carbon tungsten composites (CTCs) for methanol oxidation (as an electrode), adsorption (as an adsorbent) and degradation (as a solid catalyst) of methylene blue (MB). The operational electrodes were designed from both CTCs and used as a catalyst in an electrocatalysis process. The electrocatalysts exhibited high and stable catalytic performance (CTCE-25 > CTCE-170) in methanol electro-oxidation. The newly synthesized W-doped carbon nanoreactors were used successfully as an adsorbent for MB and a heterogeneous catalyst for MB oxidation. Ordered CTC-25 and CTC-170 exhibited dynamic MB adsorption within 15 min and complete oxidation of MB in 25–40 min. A synergetic effect between tungsten carbide and the carbon cage framework was noted.

  11. Microbiological destruction of composite polymeric materials in soils

    Science.gov (United States)

    Legonkova, O. A.; Selitskaya, O. V.

    2009-01-01

    Representatives of the same species of microscopic fungi developed on composite materials with similar polymeric matrices independently from the type of soils, in which the incubation was performed. Trichoderma harzianum, Penicillium auranthiogriseum, and Clonostachys solani were isolated from the samples of polyurethane. Fusarium solani, Clonostachys rosea, and Trichoderma harzianum predominated on the surface of ultrathene samples. Ulocladium botrytis, Penicillium auranthiogriseum, and Fusarium solani predominated in the variants with polyamide. Trichoderma harzianum, Penicillium chrysogenum, Aspergillus ochraceus, and Acremonium strictum were isolated from Lentex-based composite materials. Mucor circinelloides, Trichoderma harzianum, and Penicillium auranthiogriseum were isolated from composite materials based on polyvinyl alcohol. Electron microscopy demonstrated changes in the structure of polymer surface (loosening and an increase in porosity) under the impact of fungi. The physicochemical properties of polymers, including their strength, also changed. The following substances were identified as primary products of the destruction of composite materials: stearic acid for polyurethane-based materials; imide of dithiocarbonic acid and 1-nonadecen in variants with ultrathene; and tetraaminopyrimidine and isocyanatodecan in variants with polyamide. N,N-dimethyldodecan amide, 2-methyloximundecanon and 2-nonacosane were identified for composites on the base of Lentex A4-1. Allyl methyl sulfide and imide of dithiocarbonic acid were found in variants with the samples of composites based on polyvinyl alcohol. The identified primary products of the destruction of composite materials belong to nontoxic compounds.

  12. Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.; Yan, K.; Zhou, Y. [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026 (China); Xu, L. X., E-mail: xulixin@ustc.edu.cn; Gu, C. [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026 (China); Haixi Collaborative Innovation Center for New Display Devices and Systems Integration, Fuzhou University, Fuzhou 350002 (China); Zhan, Q. W. [Electro-Optics Program, University of Dayton, Dayton, Ohio 45469 (United States)

    2015-11-09

    We proposed and demonstrated an all fiber passively Q-switching laser to generate cylindrical-vector beam, a two dimensional material, tungsten disulphide (WS{sub 2}), was adopted as a saturable absorber inside the laser cavity, while a few-mode fiber Bragg grating was used as a transverse mode-selective output coupler. The repetition rate of the Q-switching output pulses can be varied from 80 kHz to 120 kHz with a shortest duration of 958 ns. Attributed to the high damage threshold and polarization insensitivity of the WS{sub 2} based saturable absorber, the radially polarized beam and azimuthally polarized beam can be easily generated in the Q-switching fiber laser.

  13. Morphology and microstructure of composite materials

    Science.gov (United States)

    Tiwari, S. N.; Srinivansan, K.

    1991-01-01

    Lightweight continuous carbon fiber based polymeric composites are currently enjoying increasing acceptance as structural materials capable of replacing metals and alloys in load bearing applications. As with most new materials, these composites are undergoing trials with several competing processing techniques aimed at cost effectively producing void free consolidations with good mechanical properties. As metallic materials have been in use for several centuries, a considerable database exists on their morphology - microstructure; and the interrelationships between structure and properties have been well documented. Numerous studies on composites have established the crucial relationship between microstructure - morphology and properties. The various microstructural and morphological features of composite materials, particularly those accompanying different processing routes, are documented.

  14. Plasma Wall Interaction Phenomena on Tungsten Armour Materials for Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Uytdenhouwen, I. [SCK.CEN - The Belgian Nuclear Research Centre, Institute for Nuclear Materials Science, Boeretang 200, 2400 Mol (Belgium); Forschungszentrum Juelich GmbH, EURATOM-association, D-52425 Juelich (Germany); Department of Applied Physics, Ghent University, Rozier 44, 9000 Ghent (Belgium); Massaut, V. [Department of Applied Physics, Ghent University, Rozier 44, 9000 Ghent (Belgium); Linke, J. [Forschungszentrum Juelich GmbH, EURATOM-association, D-52425 Juelich (Germany); Van Oost, G. [Department of Applied Physics, Ghent University, Rozier 44, 9000 Ghent (Belgium)

    2008-07-01

    One of the most attractive future complements to present energy sources is nuclear fusion. A large progress was made throughout the last decade from both the physical as the technological area leading to the construction of the ITER machine. One of the key issues that recently received a large interest at international level is focused on the Plasma Wall Interaction (PWI). One of the promising Plasma Facing Materials (PFM) are Tungsten (W) and Tungsten alloys. However, despite the worldwide use and industrial availability of W, the database of physical and mechanical properties is very limited. Especially after fusion relevant neutron irradiation and PWI phenomena, most of the properties are still unknown. The plasma fuel consists out of deuterium (D) and tritium (T). Tritium is radio-active and therefore an issue from the safety point of view. During steady-state plasma operation of future fusion power plants, the PFM need to extract a power density of {approx}10-20 MW/m{sup 2}. On top of this heat, transient events will deposit an additional non-negligible amount of energy (Disruptions, Vertical Displacement Events, Edge Localized Modes) during short durations. These severe heat loads cause cracking and even melting of the surface resulting in a reduced lifetime and the creation of dust. A contribution to the understanding of cracking phenomena under the severe thermal loads is described as well as the properties degradation under neutron irradiation. Several W grades were irradiated in the BR2 reactor (SCK.CEN) and the thermal loads were simulated with the electron-beam facility JUDITH (FZJ). Since knowledge should be gained about the Tritium retention in the PFM for safety and licensing reasons, a unique test facility at SCK.CEN is being set-up. The plasmatron VISION-I will simulate steady state plasmas for Tritium retention studies. The formation of surface cracks and dust, the initial porosity, neutron induced traps, re-deposited material - change the Tritium

  15. Plasma Wall Interaction Phenomena on Tungsten Armour Materials for Fusion Applications

    International Nuclear Information System (INIS)

    Uytdenhouwen, I.; Massaut, V.; Linke, J.; Van Oost, G.

    2008-01-01

    One of the most attractive future complements to present energy sources is nuclear fusion. A large progress was made throughout the last decade from both the physical as the technological area leading to the construction of the ITER machine. One of the key issues that recently received a large interest at international level is focused on the Plasma Wall Interaction (PWI). One of the promising Plasma Facing Materials (PFM) are Tungsten (W) and Tungsten alloys. However, despite the worldwide use and industrial availability of W, the database of physical and mechanical properties is very limited. Especially after fusion relevant neutron irradiation and PWI phenomena, most of the properties are still unknown. The plasma fuel consists out of deuterium (D) and tritium (T). Tritium is radio-active and therefore an issue from the safety point of view. During steady-state plasma operation of future fusion power plants, the PFM need to extract a power density of ∼10-20 MW/m 2 . On top of this heat, transient events will deposit an additional non-negligible amount of energy (Disruptions, Vertical Displacement Events, Edge Localized Modes) during short durations. These severe heat loads cause cracking and even melting of the surface resulting in a reduced lifetime and the creation of dust. A contribution to the understanding of cracking phenomena under the severe thermal loads is described as well as the properties degradation under neutron irradiation. Several W grades were irradiated in the BR2 reactor (SCK.CEN) and the thermal loads were simulated with the electron-beam facility JUDITH (FZJ). Since knowledge should be gained about the Tritium retention in the PFM for safety and licensing reasons, a unique test facility at SCK.CEN is being set-up. The plasmatron VISION-I will simulate steady state plasmas for Tritium retention studies. The formation of surface cracks and dust, the initial porosity, neutron induced traps, re-deposited material - change the Tritium

  16. Development of aircraft brake materials. [evaluation of metal and ceramic materials in sliding tests simulation of aircraft braking

    Science.gov (United States)

    Ho, T. L.; Peterson, M. B.

    1974-01-01

    The requirements of brake materials were outlined and a survey made to select materials to meet the needs of high temperature brakes. A number of metals and ceramic materials were selected and evaluated in sliding tests which simulated aircraft braking. Nickel, molybdenum tungsten, Zr02, high temperature cements and carbons were tested. Additives were then incorporated into these materials to optimize their wear or strength behavior with particular emphasis on nickel and molybdenum base materials and a high temperature potassium silicate cement. Optimum materials were developed which improved wear behavior over conventional brake materials in the simulated test. The best materials are a nickel, aluminum oxide, lead tungstate composition containing graphite or molybdenum disulphite; a molybdenum base material containing LPA100 (an intermetallic compound of cobalt, molybdenum, and silicon); and a carbon material (P5).

  17. Numerical simulation of mechanical behavior of composite materials

    CERN Document Server

    Oller, Sergio

    2014-01-01

    An original mechanical formulation to treat nonlinear orthotropic behavior of composite materials is presented in this book. It also examines different formulations that allow us to evaluate the behavior of composite materials through the composition of its components, obtaining a new composite material. Also two multiple scale homogenization methods are given, one based on the analytical study of the cells (Ad-hoc homogenization), and other one, more general based on the finite element procedure applied on the macro scale (upper-scale) and in the micro scale (sub-scale). A very general formulation to simulate the mechanical behavior for traditional composite structures (plywood, reinforced concrete, masonry, etc.), as well as the new composite materials reinforced with long and short fibers, nanotubes, etc., are also shown in this work. Typical phenomena occurring in composite materials are also described in this work, including fiber-matrix debounding, local buckling of fibers and its coupling with the over...

  18. Tungsten

    International Nuclear Information System (INIS)

    Eschnauer, H.

    1978-01-01

    There is no substitute for tungsten in its main field of application so that the demand will not decrease, but there is a need for further important applications. If small variations are left out of account, a small but steady increase in the annual tungsten consumption can be expected. The amount of tungsten available will increase due to the exploritation of new deposits and the extension of existing mines. This tendency will probably be increased by the world-wide prospection. It is hard to make an assessment of the amount of tungsten are obtained in the People's Republic of china, the purchases of Eastern countries in the West, and the sales policy of the USA; pice forecasts are therefore hard to make. A rather interesting subject with regard to the tungsten cycle as a whole is the reprocessing of tungsten-containing wastes. (orig.) [de

  19. Tungsten transport in the plasma edge at ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Janzer, Michael Arthur

    2015-04-30

    The Plasma Facing Components (PFC) will play a crucial role in future deuterium-tritium magnetically confined fusion power plants, since they will be subject to high energy and particle loads, but at the same time have to ensure long lifetimes and a low tritium retention. These requirements will most probably necessitate the use of high-Z materials such as tungsten for the wall materials, since their erosion properties are very benign and, unlike carbon, capture only little tritium. The drawback with high-Z materials is, that they emit strong line radiation in the core plasma, which acts as a powerful energy loss mechanism. Thus, the concentration of these high-Z materials has to be controlled and kept at low levels in order to achieve a burning plasma. Understanding the transport processes in the plasma edge is essential for applying the proper impurity control mechanisms. This control can be exerted either by enhancing the outflux, e.g. by Edge Localized Modes (ELM), since they are known to expel impurities from the main plasma, or by reducing the influx, e.g. minimizing the tungsten erosion or increasing the shielding effect of the Scrape Off Layer (SOL). ASDEX Upgrade (AUG) has been successfully operating with a full tungsten wall for several years now and offers the possibility to investigate these edge transport processes for tungsten. This study focused on the disentanglement of the frequency of type-I ELMs and the main chamber gas injection rate, two parameters which are usually linked in H-mode discharges. Such a separation allowed for the first time the direct assessment of the impact of each parameter on the tungsten concentration. The control of the ELM frequency was performed by adjusting the shape of the plasma, i.e. the upper triangularity. The radial tungsten transport was investigated by implementing a modulated tungsten source. To create this modulated source, the linear dependence of the tungsten erosion rate at the Ion Cyclotron Resonance

  20. Low-activation W–Si–C composites for fusion application

    International Nuclear Information System (INIS)

    Iveković, A.; Galatanu, A.; Novak, S.

    2015-01-01

    Graphical abstract: - Highlights: • Effect of W fraction on pressureless densification of W–Si–C composites. • Full densification of high-W composite in a single PIP cycle. • High-W composite exhibits increase in thermal conductivity with temperature. • Low-W composites densified with six PIP cycles. • Low-W composites exhibit high mechanical and thermal properties. - Abstract: W–Si–C composites were fabricated by active filler controlled pyrolysis of W powder (high tungsten content) and W–SiC powder mixtures (low tungsten content), infiltrated by a preceramic polymer and heat treated at temperatures from 1600 to 2000 °C. Material with high volume fraction of W in initial powder–polymer mixture, formed a composite material composed of W, W_2C and W_5Si_3 with closed porosity in a single polymer infiltration and pyrolysis (PIP) cycle. After heat treatment at 1700 °C the material exhibited flexural strength above 350 MPa, hardness of 7.8 GPa and indentation modulus of 250 GPa. Room temperature thermal conductivity of the composite was rather low, 23 W m"−"1 K"−"1, however, thermal conductivity increased with increasing temperature achieving 35 W m"−"1 K"−"1 at 1000 °C. The effect of W as active filler in W–SiC powder mixtures with low volume fraction of tungsten was negligible. Therefore, six polymer infiltration and pyrolysis cycles were used to achieve significant densification with 15% porosity. The material fabricated at 1800 °C was composed of SiC, WC and WSi_2 and exhibited flexural strength of ∼400 MPa and room temperature thermal conductivity of 100 W m"−"1 K"−"1, which decreased to 32 W m"−"1 K"−"1 at 1000 °C.

  1. Tungsten determination in heat resistant nickel-base-alloys by the method of atomic absorption

    International Nuclear Information System (INIS)

    Gregorczyk, S.; Wycislik, A.

    1980-01-01

    A method of atomic absorption was developed. It allows for the tungsten to be determined in heatresistant nickel-base-alloys within the range 0.01 to 7%. It consists in precipitating tungsten acid in the presence of alkaloids with its following decomposition by hydrofluoric acid in the teflon bomb. (author)

  2. Color in 'tungsten trioxide' thin films

    International Nuclear Information System (INIS)

    Gerard, P.; Deneuville, A.; Hollinger, G.; Duc, Tran Minh

    1977-01-01

    We show that evaporated tungsten trioxide amorphous layers commonly used in electrochromic displays actually have the composition WO_2_._7H_y (0.2< y<0.5). We emphasize that coloration of virgin transparent films can be obtained without injection of any external ion into the layer, and further that around a critical substoichiometry by sputtering, namely, WO_2_._5, one can prepare blue virgin layers without any hydrogen. The effect of substoichiometry on the valence of tungsten atoms has been followed by XPS measurements of sputtered layers.

  3. Color in ''tungsten trioxide'' thin films

    International Nuclear Information System (INIS)

    Gerard, P.; Deneuville, A.; Hollinger, G.; Tran Minh Duc

    1977-01-01

    We show that evaporated tungsten trioxide amorphous layers commonly used in electrochromic displays actually have the composition WO/sub 2.7/H/sub y/ (0.2< y<0.5). We emphasize that coloration of virgin transparent films can be obtained without injection of any external ion into the layer, and further that around a critical substoichiometry by sputtering, namely, WO/sub 2.5/, one can prepare blue virgin layers without any hydrogen. The effect of substoichiometry on the valence of tungsten atoms has been followed by XPS measurements of sputtered layers

  4. Development of quantitative atomic modeling for tungsten transport study Using LHD plasma with tungsten pellet injection

    International Nuclear Information System (INIS)

    Murakami, I.; Sakaue, H.A.; Suzuki, C.; Kato, D.; Goto, M.; Tamura, N.; Sudo, S.; Morita, S.

    2014-10-01

    Quantitative tungsten study with reliable atomic modeling is important for successful achievement of ITER and fusion reactors. We have developed tungsten atomic modeling for understanding the tungsten behavior in fusion plasmas. The modeling is applied to the analysis of tungsten spectra observed from currentless plasmas of the Large Helical Device (LHD) with tungsten pellet injection. We found that extreme ultraviolet (EUV) lines of W 24+ to W 33+ ions are very sensitive to electron temperature (Te) and useful to examine the tungsten behavior in edge plasmas. Based on the first quantitative analysis of measured spatial profile of W 44+ ion, the tungsten concentration is determined to be n(W 44+ )/n e = 1.4x10 -4 and the total radiation loss is estimated as ∼4 MW, of which the value is roughly half the total NBI power. (author)

  5. Irradiation induced precipitation in tungsten based, W-Re alloys

    Science.gov (United States)

    Williams, R. K.; Wiffen, F. W.; Bentley, J.; Stiegler, J. O.

    1983-03-01

    Tungsten-base alloys containing 5, 11, and 25 pct Re were irradiated in the EBR-II reactor. Irradiation temperatures ranged from 600 to 1500 °C. All compositions were irradiated to fluences in the range 4.3 to 6.1 X 1025 n/m2 (E > 0.1 MeV), and three 25 pct Re samples were also irradiated to 3.7 X 1026 n/m2 at temperatures 700 to 900 °C. Postirradiation examination included measurement of electrical resistivity at room temperature and lower temperatures, X-ray diffraction, optical metallography, microprobe analysis, and transmission electron microscopy. Irradiation induced resistivity decreases observed in most of the samples suggested second-phase precipitation. Complete results confirmed the precipitate formation in all samples, in disagreement with existing phase diagrams for the W-Re system. Electron diffraction showed the precipitates to be consistent with the cubic, Re-rich X-phase and inconsistent with the σ-phase. Large variations in precipitate morphology and distribution were observed between the different compositions and irradiation conditions. For the 5 and 11 pct Re-alloys, spherically symmetric strain fields surrounded the equiaxed precipitate particles, and were observed even where no particles were visible. These strain fields are believed to arise from local Re enrichment. Thermoelectric data show that the precipitation can lead to decalibration of W/Re thermocouples.

  6. Composite material

    Science.gov (United States)

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  7. Study of filling material of dental composites. An analytical approach using radio-activation

    Energy Technology Data Exchange (ETDEWEB)

    Eke, Canel [Akdeniz Univ., Antalya (Turkey). Nuclear Sciences Application and Research Center; Akdeniz Univ., Antalya (Turkey). Div. of Physics Education; Er, Kursat [Akdeniz Univ., Antalya (Turkey). Dept. of Endodontics; Segebade, Christian [Akdeniz Univ., Antalya (Turkey). Nuclear Sciences Application and Research Center; Boztosun, Ismail [Akdeniz Univ., Antalya (Turkey). Nuclear Sciences Application and Research Center; Akdeniz Univ., Antalya (Turkey). Dept. of Physics

    2018-04-01

    The aim of this study is to carry out elemental analyses of dental composites acquired from different producers using photoactivation analysis (PAA). High energy electrons produced by an electron linear accelerator are absorbed by a tungsten disk (Bremsstrahlung converter) thereby producing high energy X-rays (bremsstrahlung). The dental composite materials under study were exposed to the bremsstrahlung radiation whereby radionuclides were produced through photonuclear reactions. Their radioactivities were measured using high resolution semiconductor spectrometers equipped with high purity germanium detectors (HPGe). The spectra were analysed using appropriate computer software. As a result, photonuclear reactions of 12 stable elements were detected in different dental composite species, and the elemental concentrations were calculated. For comparison, the dental composites were also investigated using scanning electron microscopy (SEM) and energy-dispersive X-ray fluorescence spectrometry (EDXRF). Various sizes and shapes of dental composites were observed using SEM. However, contents of dental composites, e.g. Mg, Ni, Ba and Sr were obtained by PAA whilst C, O, Al, S, Ba and Sr were detected by EDXRF spectrometry. The results for Ba and Sr obtained using the two techniques show considerable difference.

  8. Microhardness of resin composite materials light-cured through fiber reinforced composite.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Ray, N.J.; Creugers, N.H.J.; Kreulen, C.M.

    2009-01-01

    OBJECTIVES: To compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness. METHODS: Simulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC

  9. Study on the oxidation and reduction of tungsten surface for sub-50 nm patterning process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Kyu; Nam, Seok Woo; Cho, Sung Il; Jhon, Myung S.; Min, Kyung Suk; Kim, Chan Kyu; Jung, Ho Bum; Yeom, Geun Young [Memory Division Semiconductor Business, Samsung Electronics, San No. 16 Banwol-Ri, Taean-Eup, Hwasung-City, Gyeonggi-Do 449-711, South Korea and Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Memory Division Semiconductor Business, Samsung Electronics, San No. 16 Banwol-Ri, Taean-Eup, Hwasung-City, Gyeonggi-Do 449-711 (Korea, Republic of); Department of Chemical Engineering and Data Storage Systems Center, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2012-11-15

    The oxidation characteristics of tungsten line pattern during the carbon-based mask-layer removal process using oxygen plasmas have been investigated for sub-50 nm patterning processes, in addition to the reduction characteristics of the WO{sub x} layer formed on the tungsten line surface using hydrogen plasmas. The surface oxidation of tungsten lines during the mask layer removal process could be minimized by using low-temperature (300 K) plasma processing for the removal of the carbon-based material. Using this technique, the thickness of WO{sub x} on the tungsten line could be decreased to 25% compared to results from high-temperature processing. The WO{sub x} layer could also be completely removed at a low temperature of 300 K using a hydrogen plasma by supplying bias power to the tungsten substrate to provide a activation energy for the reduction. When this oxidation and reduction technique was applied to actual 40-nm-CD device processing, the complete removal of WO{sub x} formed on the sidewall of tungsten line could be observed.

  10. Cyclic hot firing results of tungsten-wire-reinforced, copper-lined thrust chambers

    Science.gov (United States)

    Kazaroff, John M.; Jankovsky, Robert S.

    1990-01-01

    An advanced thrust liner material for potential long life reusable rocket engines is described. This liner material was produced with the intent of improving the reusable life of high pressure thrust chambers by strengthening the chamber in the hoop direction, thus avoiding the longitudinal cracking due to low cycle fatigue that is observed in conventional homogeneous copper chambers, but yet not reducing the high thermal conductivity that is essential when operating with high heat fluxes. The liner material produced was a tungsten wire reinforced copper composite. Incorporating this composite into two hydrogen-oxygen test rocket chambers was done so that its performance as a reusable liner material could be evaluated. Testing results showed that both chambers failed prematurely, but the crack sites were perpendicular to the normal direction of cracking indicating a degree of success in containing the tremendous thermal strain associated with high temperature rocket engines. The failures, in all cases, were associated with drilled instrumentation ports and no other damages or deformations were found elsewhere in the composite liners.

  11. Fabrication and evaluation of chemically vapor deposited tungsten heat pipe.

    Science.gov (United States)

    Bacigalupi, R. J.

    1972-01-01

    A network of lithium-filled tungsten heat pipes is being considered as a method of heat extraction from high temperature nuclear reactors. The need for material purity and shape versatility in these applications dictates the use of chemically vapor deposited (CVD) tungsten. Adaptability of CVD tungsten to complex heat pipe designs is shown. Deposition and welding techniques are described. Operation of two lithium-filled CVD tungsten heat pipes above 1800 K is discussed.

  12. Mechanical Properties of Composite Materials

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2014-10-01

    Full Text Available An examination has been made of the mechanical and failure properties of several composite materials, such as a short and a long carbon fiber reinforced plastic (short- and long-CFRP and metal based composite material. The short CFRP materials were used for a recycled CFRP which fabricated by the following process: the CFRP, consisting of epoxy resin with carbon fiber, is injected to a rectangular plate cavity after mixing with acrylonitrile butadiene styrene resin with different weight fractions of CFRP. The fatigue and ultimate tensile strength (UTS increased with increasing CFRP content. These correlations, however, break down, especially for tensile strength, as the CFPR content becomes more than 70%. Influence of sample temperature on the bending strength of the long-CFRP was investigated, and it appears that the strength slightly degreases with increasing the temperature, due to the weakness in the matrix. Broken fiber and pull-out or debonding between the fiber and matrix were related to the main failure of the short- and long-CFRP samples. Mechanical properties of metal based composite materials have been also investigated, where fiber-like high hardness CuAl2 structure is formed in aluminum matrix. Excellent mechanical properties were obtained in this alloy, e.g., the higher strength and the higher ductility, compared tothe same alloy without the fiber-like structure. There are strong anisotropic effects on the mechanical properties due to the fiber-like metal composite in a soft Al based matrix.

  13. Chemical vapor deposition based tungsten disulfide (WS2) thin film transistor

    KAUST Repository

    Hussain, Aftab M.

    2013-04-01

    Tungsten disulfide (WS2) is a layered transition metal dichalcogenide with a reported band gap of 1.8 eV in bulk and 1.32-1.4 eV in its thin film form. 2D atomic layers of metal dichalcogenides have shown changes in conductivity with applied electric field. This makes them an interesting option for channel material in field effect transistors (FETs). Therefore, we show a highly manufacturable chemical vapor deposition (CVD) based simple process to grow WS2 directly on silicon oxide in a furnace and then its transistor action with back gated device with room temperature field effect mobility of 0.1003 cm2/V-s using the Schottky barrier contact model. We also show the semiconducting behavior of this WS2 thin film which is more promising than thermally unstable organic materials for thin film transistor application. Our direct growth method on silicon oxide also holds interesting opportunities for macro-electronics applications. © 2013 IEEE.

  14. Micro creep mechanisms of tungsten

    International Nuclear Information System (INIS)

    Levoy, R.; Hugon, I.; Burlet, H.; Baillin, X.; Guetaz, L.

    2000-01-01

    Due to its high melting point (3410 deg C), tungsten offers good mechanical properties at elevated temperatures for several applications in non-oxidizing environment. The creep behavior of tungsten is well known between 1200 and 2500 deg C and 10 -3 to 10 -1 strain. However, in some applications when dimensional stability of components is required, these strains are excessive and it is necessary to know the creep behavior of the material for micro-strains (between 10 -4 and 10 -6 ). Methods and devices used to measure creep micro-strains are presented, and creep equations (Norton and Chaboche laws) were developed for wrought, annealed and recrystallized tungsten. The main results obtained on tungsten under low stresses are: stress exponent 1, symmetry of micro-strains in creep-tension and creep-compression, inverse creep (threshold stress), etc. TEM, SEM and EBSD studies allow interpretation of the micro-creep mechanism of tungsten under low stresses and low temperature (∼0.3 K) like the Harper-Dorn creep. In Harper-Dorn creep, micro-strains are associated with the density and the distribution of dislocations existing in the crystals before creep. At 975 deg C, the initial dislocation structure moves differently whether or not a stress is applied. To improve the micro-creep behavior of tungsten, a heat treatment is proposed to create the optimum dislocation structure. (authors)

  15. Textile-reinforced concrete using composite binder based on new types of mineral raw materials

    Science.gov (United States)

    Lesovik, V. S.; Glagolev, E. S.; Popov, D. Y.; Lesovik, G. A.; Ageeva, M. S.

    2018-03-01

    To determine the level of development of science, it is necessary to start with a particular stage in the development of society. At present, the purpose of building materials science is to create composites, which ensure safety of buildings and structures, including their protection against certain natural and man-made impacts. A new stage in construction materials science envisages the development of a technology for creating composites comfortable for a particular person. To implement this, a new paradigm for designing and synthesizing building materials with a new raw material base is needed. The optimization of the “human-material-habitat” system is a complex task, for the solution of which transdisciplinary approaches are required.

  16. Composite materials based on high-modulus compounds for additive technology

    Science.gov (United States)

    Grigoriev, M.; Kotelnikov, N.; Buyakova, S.; Kulkov, S.

    2016-07-01

    The effect of adding nanocrystalline ZrO2 and submicron TiC to ultrafine Al2O3 on mechanical properties and the microstructure of the composites developed by hot pressing was investigated. It was shown that by means of hot pressing in argon atmosphere at the sintering temperature of 1500 °C one can obtain the composites of Al2O3-ZrO2-TiC with a fine structure and minimal porosity. It was shown that in the material a multi-scale hierarchical structure is formed, which possesses high physical and mechanical properties: the hardness and fracture toughness was 22 GPa and 5.2 MPa*m1/2, respectively. It has been shown that mechanical properties of the composite are better than those of commercial composites based on aluminum oxide (Al2O3, ZTA, Al2O3-TiC) and are comparable to those of silicon nitride.

  17. Corrosion of high-density sintered tungsten alloys

    International Nuclear Information System (INIS)

    Batten, J.J.; Moore, B.T.

    1989-01-01

    In comparative corrosion tests, the corrosion resistance of an Australian tungsten alloy (95% W, 3.5% Ni, 1.5% Fe) was found to be superior to three other tungsten alloys and, under certain conditions, even more corrosion-resistant than pure tungsten. Corrosion resistance was evaluated after immersion in both distilled water and 5% sodium chloride solutions, and in cyclic humidity and salt mist environments. For all but the Australian alloy, the rate of corrosion in sodium chloride solution was markedly less than that in distilated water. In all cases, alloys containing copper had the greatest corrosion rates. Corrosion mechanisms were investigated using a scanning electron microscope, analysis of corrosion products and galvanic corrosion studies. For the alloys, corrosion was attributed primarily to a galvanic reaction. Whether the tungsten or binder phase of the alloy became anodic, and thus was attacked preferentially, depended upon alloy composition and corrosion environment. 16 refs., 4 tabs., 4 figs

  18. Characterization of porous tungsten by microhardness

    International Nuclear Information System (INIS)

    Selcuk, C.; Wood, J.V.; Morley, N.; Bentham, R.

    2001-01-01

    One of the applications of tungsten is as high current density dispenser cathode in the form of porous tungsten. It is used as a cathode after being impregnated with an electron emissive material so pore distribution in the part is the most important parameter for its function as a uniform and controlled porosity will lead to a better performance. In this study, application of microhardness as a characterization method for uniformity of the pore distribution and homogeneity of the structure is introduced. Optical microscopy and SEM is used to relate the results and porous tungsten structure for a better understanding of the method applied. (author)

  19. Mechanical characterization and modeling of brazed tungsten and Cu-Cr-Zr alloy using stress relief interlayers

    Science.gov (United States)

    Qu, Dandan; Zhou, Zhangjian; Yum, Youngjin; Aktaa, Jarir

    2014-12-01

    A rapidly solidified foil-type Ti-Zr based amorphous filler with a melting temperature of 850 °C was used to braze tungsten to Cu-Cr-Zr alloy for water cooled divertors and plasma facing components application. Brazed joints of dissimilar materials suffer from a mismatch in coefficients of thermal expansion. In order to release the residual stress caused by the mismatch, brazed joints of tungsten and Cu-Cr-Zr alloy using different interlayers were studied. The shear strength tests of brazed W/Cu joints show that the average strength of the joint with a W70Cu30 composite plate interlayer reached 119.8 MPa, and the average strength of the joint with oxygen free high conductivity copper (OFHC Cu)/Mo multi-interlayers reached 140.8 MPa, while the joint without interlayer was only 16.6 MPa. Finite element method (FEM) has been performed to investigate the stress distribution and effect of stress relief interlayers. FEM results show that the maximum von Mises stress occurs in the tungsten/filler interface and that the filler suffers the peak residual stresses and becomes the weakest zone. And the use of OFHC Cu/Mo multi-interlayers can reduce the residual stress significantly, which agrees with the mechanical experiment data.

  20. Mechanical characterization and modeling of brazed tungsten and Cu–Cr–Zr alloy using stress relief interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Dandan, E-mail: dandan.qu@partner.kit.edu [School of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Zhou, Zhangjian, E-mail: zhouzhangjianustb@163.com [School of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Yum, Youngjin [School of Mechanical Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Aktaa, Jarir [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    A rapidly solidified foil-type Ti–Zr based amorphous filler with a melting temperature of 850 °C was used to braze tungsten to Cu–Cr–Zr alloy for water cooled divertors and plasma facing components application. Brazed joints of dissimilar materials suffer from a mismatch in coefficients of thermal expansion. In order to release the residual stress caused by the mismatch, brazed joints of tungsten and Cu–Cr–Zr alloy using different interlayers were studied. The shear strength tests of brazed W/Cu joints show that the average strength of the joint with a W70Cu30 composite plate interlayer reached 119.8 MPa, and the average strength of the joint with oxygen free high conductivity copper (OFHC Cu)/Mo multi-interlayers reached 140.8 MPa, while the joint without interlayer was only 16.6 MPa. Finite element method (FEM) has been performed to investigate the stress distribution and effect of stress relief interlayers. FEM results show that the maximum von Mises stress occurs in the tungsten/filler interface and that the filler suffers the peak residual stresses and becomes the weakest zone. And the use of OFHC Cu/Mo multi-interlayers can reduce the residual stress significantly, which agrees with the mechanical experiment data.

  1. Post-examination of helium-cooled tungsten components exposed to DEMO specific cyclic thermal loads

    International Nuclear Information System (INIS)

    Ritz, G.; Hirai, T.; Linke, J.; Norajitra, P.; Giniyatulin, R.; Singheiser, L.

    2009-01-01

    A concept of helium-cooled tungsten finger module was developed for the European DEMO divertor. The concept was realized and tested under DEMO specific cyclic thermal loads up to 10 MW/m 2 . The modules were examined carefully before and after loading by metallography and microstructural analyses. While before loading mainly discrete and shallow cracks were found on the tungsten surface due to the manufacturing process, dense crack networks were observed at the loaded surfaces due to the thermal stress. In addition, cracks occurred in the structural, heat sink part and propagated along the grains orientation of the deformed tungsten material. Facilitated by cracking, the molten brazing metal between the tungsten plasma facing material and the W-La 2 O 3 heat sink, that could not withstand the operational temperatures, infiltrated the tungsten components and, due to capillary forces, even reached the plasma facing surface through the cracks. The formed cavity in the brazed layer reduced the heat conduction and the modules were further damaged due to overheating during the applied heat loads. Based on this detailed characterization and possible improvements of the design and of the manufacturing routes are discussed.

  2. Comparison of four tungsten alloys for use as ultrasonic thermometer sensors

    International Nuclear Information System (INIS)

    Arave, A.E.

    1975-06-01

    Four tungsten alloy materials were evaluated for use as ultrasonic sensors: (a) tungsten, (b) tungsten-1 percent thoria, (c) tungsten-2 percent thoria, and (d) tungsten-26 percent rhenium. Four parameters were checked: (1) temperature sensitivity, (2) signal attenuation as a function of temperature, (3) temperature sensitivity as a function of frequency, and (4) relative signal attenuation as a function of frequency. The temperature sensors were designed for the Loss-of-Fluid Test (LOFT) and Power Burst Facility (PBF) reactors. (U.S.)

  3. Strain-Detecting Composite Materials

    Science.gov (United States)

    Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)

    2016-01-01

    A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.

  4. High Heat Load Properties of Ultra Fine Grain Tungsten

    International Nuclear Information System (INIS)

    Zhou, Z.; Du, J.; Ge, C.; Linke, J.; Pintsuk, G.; Song, S.X.

    2007-01-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 μm, 1 μm and 3 μm were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m 2 respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m 2 . Particle erosions occurred for tungsten with 3 μm size at 0.33 GW/m 2 and for tungsten with 0.2 and 1 μm size at 0.55 GW/m 2 . The weight loss of tungsten with 0.2, 1 and 3 μm size are 2,0.1,0.6 mg respectively at 0.88 GW/m 2 . The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 μm size has the best performance. (authors)

  5. High Heat Load Properties of Ultra Fine Grain Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Du, J.; Ge, C. [Lab. of Special Ceramic and P/M, University of Science and Technology, 100083 Beijing (China); Linke, J.; Pintsuk, G. [FZJ-Forschungszentrum Juelich GmbH, Association Euratom-FZJ, Institut fur Plasmaphysik, Postfach 1913, D-52425 Juelich (Germany); Song, S.X. [Research Center on Fusion Materials (RCFM), University of Science and Technology Beijing (USTB), 100083 Beijing (China)

    2007-07-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 {mu}m, 1 {mu}m and 3 {mu}m were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m{sup 2} respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m{sup 2}. Particle erosions occurred for tungsten with 3 {mu}m size at 0.33 GW/m{sup 2} and for tungsten with 0.2 and 1 {mu}m size at 0.55 GW/m{sup 2}. The weight loss of tungsten with 0.2, 1 and 3 {mu}m size are 2,0.1,0.6 mg respectively at 0.88 GW/m{sup 2}. The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 {mu}m size has

  6. Use of ion exchange during preparation of raw materials for production of molybdenum and tungsten of high purify

    International Nuclear Information System (INIS)

    Blokhin, A.A.; Rumyantsev, V.K.; Taushkanov, V.P.; Maksimkov, S.M.; Majorov, D.Yu.; Pak, V.I.

    1988-01-01

    The data on the application of selective ionites for the steep purification of ammonium molybdate and tungstate solutions, are given. It is shown that to purify molybdenum and ammonium tungstate solutions from the impuerities of alkali earth and two- and threevalent transition metals, iminodiacetate ampholites of the ANKB-35 type are the most effective sorbents. To purify from phosphorus, silicon and arsenic impurities composition ionites on the base of hydrated oxides of multivalent metals introduced in the granules of porous cationites should be used. To extract phosphorus, silicon, arsenic impurities from ammonium molybdate and tungstate solutions and tungsten from ammonium molybdate solutions the method of their coprecipitation with iron (3) hydroxide can also be used. The best results on the purification of ammonium molybdate from tungstate provides for the application of structural organomineral ionites as well as weak-basicity anionites of the AN-31 type and its different modifications containing hydroxyl groups along with aminogroups. To purity ammonium tungstate solutions from molybdate a method is developed which transforms molybdenum in the form of thiocomplexes and the following selective sorption by strong-basicity anionites. The data on the quality of molybdenum monocrystals which are taken from the raw material purified using ionites, are given

  7. Compressive Strength of EN AC-44200 Based Composite Materials Strengthened with α-Al2O3 Particles

    Directory of Open Access Journals (Sweden)

    Kurzawa A.

    2017-06-01

    Full Text Available The paper presents results of compressive strength investigations of EN AC-44200 based aluminum alloy composite materials reinforced with aluminum oxide particles at ambient and at temperatures of 100, 200 and 250°C. They were manufactured by squeeze casting of the porous preforms made of α-Al2O3 particles with liquid aluminum alloy EN AC-44200. The composite materials were reinforced with preforms characterized by the porosities of 90, 80, 70 and 60 vol. %, thus the alumina content in the composite materials was 10, 20, 30 and 40 vol.%. The results of the compressive strength of manufactured materials were presented and basing on the microscopic observations the effect of the volume content of strengthening alumina particles on the cracking mechanisms during compression at indicated temperatures were shown and discussed. The highest compressive strength of 470 MPa at ambient temperature showed composite materials strengthened with 40 vol.% of α-Al2O3 particles.

  8. The gate oxide integrity of CVD tungsten polycide

    International Nuclear Information System (INIS)

    Wu, N.W.; Su, W.D.; Chang, S.W.; Tseng, M.F.

    1988-01-01

    CVD tungsten polycide has been demonstrated as a good gate material in recent very large scale integration (VLSI) technology. CVD tungsten silicide offers advantages of low resistivity, high temperature stability and good step coverage. On the other hand, the polysilicon underlayer preserves most characteristics of the polysilicon gate and acts as a stress buffer layer to absorb part of the thermal stress origin from the large thermal expansion coefficient of tungsten silicide. Nevertheless, the gate oxide of CVD tungsten polycide is less stable or reliable than that of polysilicon gate. In this paper, the gate oxide integrity of CVD tungsten polycide with various thickness combinations and different thermal processes have been analyzed by several electrical measurements including breakdown yield, breakdown fluence, room temperature TDDB, I-V characteristics, electron traps and interface state density

  9. Design and Preparation of Carbon Based Composite Phase Change Material for Energy Piles.

    Science.gov (United States)

    Yang, Haibin; Memon, Shazim Ali; Bao, Xiaohua; Cui, Hongzhi; Li, Dongxu

    2017-04-07

    Energy piles-A fairly new renewable energy concept-Use a ground heat exchanger (GHE) in the foundation piles to supply heating and cooling loads to the supported building. Applying phase change materials (PCMs) to piles can help in maintaining a stable temperature within the piles and can then influence the axial load acting on the piles. In this study, two kinds of carbon-based composite PCMs (expanded graphite-based PCM and graphite nanoplatelet-based PCM) were prepared by vacuum impregnation for potential application in energy piles. Thereafter, a systematic study was performed and different characterization tests were carried out on two composite PCMs. The composite PCMs retained up to 93.1% of paraffin and were chemically compatible, thermally stable and reliable. The latent heat of the composite PCM was up to 152.8 J/g while the compressive strength of cement paste containing 10 wt % GNP-PCM was found to be 37 MPa. Hence, the developed composite PCM has potential for thermal energy storage applications.

  10. Design and Preparation of Carbon Based Composite Phase Change Material for Energy Piles

    Science.gov (United States)

    Yang, Haibin; Memon, Shazim Ali; Bao, Xiaohua; Cui, Hongzhi; Li, Dongxu

    2017-01-01

    Energy piles—A fairly new renewable energy concept—Use a ground heat exchanger (GHE) in the foundation piles to supply heating and cooling loads to the supported building. Applying phase change materials (PCMs) to piles can help in maintaining a stable temperature within the piles and can then influence the axial load acting on the piles. In this study, two kinds of carbon-based composite PCMs (expanded graphite-based PCM and graphite nanoplatelet-based PCM) were prepared by vacuum impregnation for potential application in energy piles. Thereafter, a systematic study was performed and different characterization tests were carried out on two composite PCMs. The composite PCMs retained up to 93.1% of paraffin and were chemically compatible, thermally stable and reliable. The latent heat of the composite PCM was up to 152.8 J/g while the compressive strength of cement paste containing 10 wt % GNP-PCM was found to be 37 MPa. Hence, the developed composite PCM has potential for thermal energy storage applications. PMID:28772752

  11. Tungsten migration studies by controlled injection of volatile compounds

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, M., E-mail: rubel@kth.se [Royal Institute of Technology (KTH), Association EURATOM-VR, Stockholm (Sweden); Coenen, J. [IEK-4, Plasma Physics, Forschungszentrum Jülich, Association EURATOM-FZJ, Jülich (Germany); Ivanova, D. [Royal Institute of Technology (KTH), Association EURATOM-VR, Stockholm (Sweden); Möller, S. [IEK-4, Plasma Physics, Forschungszentrum Jülich, Association EURATOM-FZJ, Jülich (Germany); Petersson, P. [Royal Institute of Technology (KTH), Association EURATOM-VR, Stockholm (Sweden); Brezinsek, S.; Kreter, A.; Philipps, V.; Pospieszczyk, A.; Schweer, B. [IEK-4, Plasma Physics, Forschungszentrum Jülich, Association EURATOM-FZJ, Jülich (Germany)

    2013-07-15

    Volatile tungsten hexa-fluoride was locally injected into the TEXTOR tokamak as a marker for material migration studies. The injection was accompanied by puffing N-15 rare isotope as a nitrogen tracer in discharges with edge cooling by impurity seeding. The objective was to assess material balance by qualitative and quantitative determination of a global and local deposition pattern, material mixing effects and fluorine residence in plasma-facing components. Spectroscopy and ex situ ion beam analysis techniques were used. Tungsten was detected on all types of limiter tiles and short-term probes retrieved from the vessel. Over 80% of the injected W was identified. The largest tungsten concentration, 1 × 10{sup 18} cm{sup −2}, was in the vicinity of the gas inlet. Co-deposits contained tungsten and a mix of light isotopes: H, D, He-4, B-10, B-11, C-12, C-13, N-14, N-15, O-16 and small quantities of F-19 thus showing that both He and nitrogen are trapped following wall conditioning (He glow) and edge cooling.

  12. ELASTO-PLASTIC DEFORMATION OF COMPOSITE POWDERS WITH LAYERED CARBON AND CARBIDE-FORMING ELEMENT COATING

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2012-01-01

    Full Text Available Coating structure formation under magnetron spraying of titanium and carbon cathodes and combined cathodes, namely cobalt (EP 131 – nickel, tungsten – carbon have been investigated under conditions of carbide separate synthesis within the temperature range of 650–1200 °C. Usage of cobalt and nickel particles as matrix material leads to their rapid thermal expansion under heating during sintering process in the dilatometer. Subsequent plastic deformation of sintered samples provides obtaining a composite powder material that is a composite with framing structure of cobalt, titanium and tungsten carbides in the coatings.

  13. Wear resistance and fracture mechanics of WC-Co composites

    International Nuclear Information System (INIS)

    Kaytbay, Saleh; El-Hadek, Medhat

    2014-01-01

    Manufacturing of WC-Co composites using the electroless precipitation method at different sintering temperatures of 1 100, 1 250, 1 350 and 1 500 C was successfully achieved. The chemical composition of the investigated materials was 90 wt.% WC with 10 wt.% Co, and 80 wt.% WC with 20 wt.% Co. The specific density, densification, and Vickers microhardness measurements were found to increase with increased sintering temperature for both the WC-Co compositions. The composites of tungsten carbide with 10 wt.% Co had a higher specific density and Vickers microhardness measurements than those for the composites of tungsten carbide with 20 wt.% Co. Composites with WC-10 wt.% Co had better wear resistance. The stress-strain and transverse rupture strength increased monotonically with the increase in sintering temperatures, agreeing with the material hardness and wear resistance behavior. Fractographical scanning electron microscopy analysis of the fracture surface demonstrated a rough characteristic conical shape failure in the direction of the maximum shear stress. A proposed mechanism for the formation of the conical fracture surface under compression testing is presented. (orig.)

  14. Aerogel / Polymer Composite Materials

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2017-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  15. Power loss separation in Fe-based composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Kollar, Peter, E-mail: peter.kollar@upjs.sk [Institute of Physics, Faculty of Science, Pavol Jozef Safarik University, Park Angelinum 9, 04154 Kosice (Slovakia); Bircakova, Zuzana; Fuezer, Jan [Institute of Physics, Faculty of Science, Pavol Jozef Safarik University, Park Angelinum 9, 04154 Kosice (Slovakia); Bures, Radovan; Faberova, Maria [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice (Slovakia)

    2013-02-15

    The frequency dependence of total losses measured in the frequency range from dc to 1 kHz of two Fe-based soft magnetic composites (prepared by compaction of an ASC 100.29 iron powder mixture with 10 vol% of commercial thermoset resin and of a Somaloy{sup Registered-Sign} 700 powder) was analyzed. We found out that hysteresis losses (per volume unit) are higher for the composite with lower volume concentration of iron particles (i.e. mixture of iron with resin) and consequently weaker magnetic interaction between particles. On the other hand, higher specific resistivity of the sample with lower magnetic fraction causes lower contribution of eddy current losses to the total losses. A linear dependence of the total energy losses on frequency was observed and from them the contribution of excess losses was obtained. The detailed study of the excess losses resulted in an explanation of the frequency dependence of these losses in composite materials. - Highlights: Black-Right-Pointing-Pointer It was observed that excess losses in SMC depend on the frequency linearly. Black-Right-Pointing-Pointer Two components of eddy current losses (inter- and intra-particle) were analyzed. Black-Right-Pointing-Pointer Larger amount of insulator causes the eddy current inside ferromagnetic particles.

  16. Constitutive law for thermally-activated plasticity of recrystallized tungsten

    Science.gov (United States)

    Zinovev, Aleksandr; Terentyev, Dmitry; Dubinko, Andrii; Delannay, Laurent

    2017-12-01

    A physically-based constitutive law relevant for ITER-specification tungsten grade in as-recrystallized state is proposed. The material demonstrates stages III and IV of the plastic deformation, in which hardening rate does not drop to zero with the increase of applied stress. Despite the classical Kocks-Mecking model, valid at stage III, the strain hardening asymptotically decreases resembling a hyperbolic function. The material parameters are fitted by relying on tensile test data and by requiring that the strain and stress at the onset of diffuse necking (uniform elongation and ultimate tensile strength correspondingly) as well as the yield stress be reproduced. The model is then validated in the temperature range 300-600 °C with the help of finite element analysis of tensile tests which confirms the reproducibility of the experimental engineering curves up to the onset of diffuse necking, beyond which the development of ductile damage accelerates the material failure. This temperature range represents the low temperature application window for tungsten as divertor material in fusion reactor ITER.

  17. Modeling Non-Linear Material Properties in Composite Materials

    Science.gov (United States)

    2016-06-28

    Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions

  18. High temperature brazing of reactor materials

    International Nuclear Information System (INIS)

    Orlov, A.V.; Nechaev, V.A.; Rybkin, B.V.; Ponimash, I.D.

    1990-01-01

    Application of high-temperature brazing for joining products of such materials as molybdenum, tungsten, zirconium, beryllium, magnesium, nickel and aluminium alloys, graphite ceramics etc. is described. Brazing materials composition and brazed joints properties are presented. A satisfactory strength of brazed joints is detected under reactor operation temperatures and coolant and irradiation effect

  19. Computer simulations for thorium doped tungsten crystals

    International Nuclear Information System (INIS)

    Eberhard, Bernd

    2009-01-01

    Tungsten has the highest melting point among all metals in the periodic table of elements. Furthermore, its equilibrium vapor pressure is by far the lowest at the temperature given. Thoria, ThO 2 , as a particle dopant, results in a high temperature creep resistant material. Moreover, thorium covered tungsten surfaces show a drastically reduced electronic work function. This results in a tremendous reduction of tip temperatures of cathodes in discharge lamps, and, therefore, in dramatically reduced tungsten vapor pressures. Thorium sublimates at temperatures below those of a typical operating cathode. For proper operation, a diffusional flow of thorium atoms towards the surface has to be maintained. This atomic flux responds very sensitively on the local microstructure, as grain boundaries as well as dislocation cores offer ''short circuit paths'' for thorium atoms. In this work, we address some open issues of thoriated tungsten. A molecular dynamics scheme (MD) is used to derive static as well as dynamic material properties which have their common origin in the atomistic behavior of tungsten and thorium atoms. The interatomic interactions between thorium and tungsten atoms are described within the embedded atom model (EAM). So far, in literature no W-Th interaction potentials on this basis are described. As there is no alloying system known between thorium and tungsten, we have determined material data for the fitting of these potentials using ab-initio methods. This is accomplished using the full potential augmented plane wave method (FLAPW), to get hypothetical, i.e. not occurring in nature, ''alloy'' data of W-Th. In order to circumvent the limitations of classical (NVE) MD schemes, we eventually couple our model systems to external heat baths or volume reservoirs (NVT, NPT). For the NPT ensemble, we implemented a generalization of the variable cell method in combination with the Langevin piston, which results in a set of Langevin equations, i.e. stochastic

  20. Microstructure and tensile properties of tungsten at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tielong [Laboratory for Nuclear Materials, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Dai, Yong, E-mail: yong.dai@psi.ch [Laboratory for Nuclear Materials, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Lee, Yongjoong [European Spallation Source, Tunavägen 24, 223 63 Lund (Sweden)

    2016-01-15

    In order to support the development of the 5 MW spallation target for the European Spallation Source, the effect of fabrication process on microstructure, ductile-to-brittle transition temperature (DBTT), tensile and fracture behaviour of powder-metallurgy pure tungsten materials has been investigated. A hot-rolled (HR) tungsten piece of 12 mm thickness and a hot-forged (HF) piece of about 80 mm thickness were used to simulate the thin and thick blocks in the target. The two tungsten pieces were characterized with metallography analysis, hardness measurement and tensile testing. The HR piece exhibits an anisotropic grain structure with an average size of about 330 × 140 × 40 μm in rolling, long transverse and short transverse (thickness) directions. The HF piece possesses a bimodal grain structure with about 310 × 170 × 70 μm grain size in deformed part and about 25 μm sized grains remained from sintering process. Hardness (HV0.2) of the HR piece is slightly greater than that of the HF one. The ductility of the HR tungsten specimens is greater than that of the HF tungsten. For the HF tungsten piece, specimens with small grains in gauge section manifest lower ductility but higher strength. The DBTT evaluated from the tensile results is 250–300 °C for the HR tungsten and about 350 °C for the HF tungsten. - Highlights: • This work was conducted to support the development of the 5 MW spallation target for the European Spallation Source. • The effect of fabrication process on microstructure, ductile-to-brittle transition temperature and tensile behaviour was studied with hot-rolled and hot-forged tungsten. • The tungsten materials were characterized with metallography analysis, hardness measurement and tensile test in a temperature range of 25–500 °C. • The results indicate that the HR tungsten has better mechanical properties in terms of greater ductility and lower ductile-to-brittle transition temperature.

  1. Recovery of Tungsten Surface with Fiber-Form Nanostructure by Plasmas Exposures

    International Nuclear Information System (INIS)

    Miyamoto, Takanori; Takamura, Shuichi; Kurishita, Hiroaki

    2013-01-01

    One of the serious concerns for tungsten materials in fusion devices is the radiation defects caused by helium plasma irradiation since helium is a fusion product. The fiber-formed nanostructure is thought to have a possible weakness against the plasma heat flux on the plasma-facing component and also may destroy the reflectivity of optical mirrors. In this paper an interesting method for the recovery of such tungsten surfaces is shown. The recovery process depends on the grade and manufacturing process of tungsten materials. (fusion engineering)

  2. Microstructural stability of spark-plasma-sintered W f /W composite with zirconia interface coating under high-heat-flux hydrogen beam irradiation.

    Czech Academy of Sciences Publication Activity Database

    Avello de Lama, M.; Balden, M.; Greuner, H.; Höschen, T.; Matějíček, Jiří; You, J.H.

    2017-01-01

    Roč. 13, December (2017), s. 74-80 ISSN 2352-1791 R&D Projects: GA ČR GB14-36566G EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : tungsten-fibre/tungsten composites * plasma-facing components * spark plasma sintering Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics https://www.sciencedirect.com/science/article/pii/S2352179117300273

  3. Tungsten versus depleted uranium for armour-piercing penetrators

    International Nuclear Information System (INIS)

    Johnson, P.K.

    1983-01-01

    Tungsten alloys have been widely used in the production of armour-piercing (AP) penetrators for defense purposes for the past 40 years. In recent years, however, depleted uranium (DU) has also been utilised for this application. Both materials exhibit high density and strength, two properties necessary for kinetic-energy projectiles to penetrate armour on tanks and other vehicles. The facts, however, support the view that tungsten can and should be utilised as the primary material for most armour-defeating ordnance applications. (author)

  4. Nano-composite materials

    Science.gov (United States)

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  5. Multiphysics model of thermomechanical and helium-induced damage of tungsten during plasma heat transients

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Tamer, E-mail: tcrosby@ucla.edu; Ghoniem, Nasr M., E-mail: ghoniem@ucla.edu

    2013-11-15

    A combination of transient heating and bombardment by helium and hydrogen atoms has been experimentally proven to lead to severe surface and sub-surface damage. We developed a computational model to determine the relationship between the thermomechanical loading conditions and the onset of damage and failure of tungsten surfaces. The model is based on a thermoelasticity fracture damage approach that was developed using the phase field method. The model simulates the distribution of helium bubbles inside the grains and on grain boundaries using space-dependent rate theory. In addition, the model is coupled with a transient heat conduction analysis for temperature distributions inside the material. The results show the effects of helium bubbles on reducing tungsten surface energy. Further, a temperature gradient in the material equals to 10 K/μm, resulted in deep cracks propagating from the tungsten surface.

  6. Plasma exposure behavior of re-deposited tungsten on structural materials of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yu-Ping; Wang, Jing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230031 (China); Zhou, Hai-Shan, E-mail: haishanzhou@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Liu, Feng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Zeng-De [General Research Institute for Nonferrous Metals, Beijing 100088 (China); Li, Xiao-Chun; Lu, Tao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Liu, Hao-Dong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230031 (China); Ding, Fang; Mao, Hong-Min; Zhao, Ming-Zhong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Lin, Chen-Guang [General Research Institute for Nonferrous Metals, Beijing 100088 (China); Luo, Guang-Nan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230031 (China); Hefei Center for Physical Science and Technology, Hefei 230031 (China); Hefei Science Center of Chinese Academy of Science, Hefei 230027 (China)

    2017-05-15

    To evaluate the effects of re-deposited tungsten (W) on the surface modification and hydrogen isotope retention behavior of fusion structural materials, the plasma exposure behavior of re-deposited W samples prepared by magnetron sputtering on the F82H steel, the V-5Cr-5Ti alloy as well as bare substrate samples was investigated. All the samples were exposed to 367 shots of deuterium plasmas in the 2015 spring EAST campaign. After the plasma exposure, large area of W layer was exfoliated, while big blisters were found at the interface between the remaining W layer and the substrate materials. The deuterium retention behavior of the samples with re-deposited W layer was characterized by thermal desorption spectroscopy and compared with the bare substrate samples.

  7. Novel manufacturing process of nanoparticle/Al composite filler metals of tungsten inert gas welding by accumulative roll bonding

    Energy Technology Data Exchange (ETDEWEB)

    Fattahi, M., E-mail: fattahi.put@gmail.com [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Noei Aghaei, V. [Aerospace Engineering Department, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Dabiri, A.R. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Amirkhanlou, S. [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Akhavan, S.; Fattahi, Y. [Materials Engineering Department, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2015-11-11

    In the present work, accumulative roll bonding (ARB) was used as an effective method for manufacturing nanoparticle/Al composite filler metals of tungsten inert gas (TIG) welding. After welding, the distribution of ceramic nanoparticles and mechanical properties of welds were investigated. By applying ARB, ceramic nanoparticles were uniformly dispersed in the composite filler metals. Consequently, the welds produced by these filler metals had a uniform dispersion of ceramic nanoparticles in their compositions. The test results showed that the yield strength of welds was greatly increased when using the nanoparticle/Al composite filler metals. The improvement in the yield strength was attributed to the coefficient of thermal expansion mismatch and Orowan strengthening mechanisms. Therefore, according to the results presented in this paper, it can be concluded that the nanoparticle/Al composite filler metals can serve as a novel filler metal for TIG welding of aluminum and its alloys.

  8. Design and Preparation of Carbon Based Composite Phase Change Material for Energy Piles

    Directory of Open Access Journals (Sweden)

    Haibin Yang

    2017-04-01

    Full Text Available Energy piles—A fairly new renewable energy concept—Use a ground heat exchanger (GHE in the foundation piles to supply heating and cooling loads to the supported building. Applying phase change materials (PCMs to piles can help in maintaining a stable temperature within the piles and can then influence the axial load acting on the piles. In this study, two kinds of carbon-based composite PCMs (expanded graphite-based PCM and graphite nanoplatelet-based PCM were prepared by vacuum impregnation for potential application in energy piles. Thereafter, a systematic study was performed and different characterization tests were carried out on two composite PCMs. The composite PCMs retained up to 93.1% of paraffin and were chemically compatible, thermally stable and reliable. The latent heat of the composite PCM was up to 152.8 J/g while the compressive strength of cement paste containing 10 wt % GNP-PCM was found to be 37 MPa. Hence, the developed composite PCM has potential for thermal energy storage applications.

  9. A new silver based composite material for SPA water disinfection.

    Science.gov (United States)

    Tartanson, M A; Soussan, L; Rivallin, M; Chis, C; Penaranda, D; Lapergue, R; Calmels, P; Faur, C

    2014-10-15

    A new composite material based on alumina (Al2O3) modified by two surface nanocoatings - titanium dioxide (TiO2) and silver (Ag) - was studied for spa water disinfection. Regarding the most common microorganisms in bathing waters, two non-pathogenic bacteria Escherichia coli (Gram-negative) and Staphylococcus epidermidis (Gram positive) were selected as surrogates for bacterial contamination. The bactericidal properties of the Al2O3-TiO2-Ag material were demonstrated under various operating conditions encountered in spa water (temperature: 22-37 °C, presence of salt: CaCO3 or CaCl2, high oxygen content, etc.). Total removal of 10(8) CFU mL(-1) of bacteria was obtained in less than 10 min with 16 g L(-1) of material. Best results were observed for both conditions: a temperature of 37 °C and under aerobic condition; this latest favouring Reactive Oxygen Species (ROS) generation. The CaCO3 salt had no impact on the bactericidal activity of the composite material and CaCl2 considerably stabilized the silver desorption from the material surface thanks to the formation of AgCl precipitate. Preliminary tests of the Al2O3-TiO2-Ag bactericidal behaviour in a continuous water flow confirmed that 2 g L(-1) of material eliminated more than 90% of a 2.0 × 10(8) CFU mL(-1) bacterial mixture after one water treatment recycle and reached the disinfection standard recommended by EPA (coliform removal = 6 log) within 22 h. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Textured and tungsten-bronze-niobate-doped (K,Na,Li)(Nb,Ta)O3 piezoceramic materials

    International Nuclear Information System (INIS)

    Soller, Thomas; Bathelt, Robert; Benkert, Katrin; Bodinger, Hermann; Schuh, Carsten; Schlenkrich, Falko

    2010-01-01

    In this study, the effects of an alkaline-earth niobate doping in tungsten-bronze (TB) stoichiometry on the piezoelectric properties and the phase transition temperatures of lead-free (K,Na,Li)(Nb,Ta)O 3 ceramics were investigated. In particular, the TB compounds barium niobate (BN), barium sodium niobate (BNN) and strontium calcium sodium niobate (SCNN) were investigated. The TB-modified ceramics show promising piezoelectric properties with large-signal piezo coefficients, d 33 * lose to 400 pm/V, planar coupling coefficients, k p , up to 0.45 and Curie temperatures of approximately 310 .deg. C. In addition, the effect of texturing on the undoped (K,Na,Li)(Nb,Ta)O 3 base composition via templated grain growth (TGG) with microcrystalline NaNbO 3 templates was examined. Lotgering factors up to 81% and strain enhancements by a factor 1.5 with large-signal values of d 33 * up to 550 pm/V could be achieved in the textured samples.

  11. Effect of metallic coating on the properties of copper-silicon carbide composites

    Science.gov (United States)

    Chmielewski, M.; Pietrzak, K.; Teodorczyk, M.; Nosewicz, S.; Jarząbek, D.; Zybała, R.; Bazarnik, P.; Lewandowska, M.; Strojny-Nędza, A.

    2017-11-01

    In the presented paper a coating of SiC particles with a metallic layer was used to prepare copper matrix composite materials. The role of the layer was to protect the silicon carbide from decomposition and dissolution of silicon in the copper matrix during the sintering process. The SiC particles were covered by chromium, tungsten and titanium using Plasma Vapour Deposition method. After powder mixing of components, the final densification process via Spark Plasma Sintering (SPS) method at temperature 950 °C was provided. The almost fully dense materials were obtained (>97.5%). The microstructure of obtained composites was studied using scanning electron microscopy as well as transmission electron microscopy. The microstructural analysis of composites confirmed that regardless of the type of deposited material, there is no evidence for decomposition process of silicon carbide in copper. In order to measure the strength of the interface between ceramic particles and the metal matrix, the micro tensile tests have been performed. Furthermore, thermal diffusivity was measured with the use of the laser pulse technique. In the context of performed studies, the tungsten coating seems to be the most promising solution for heat sink application. Compared to pure composites without metallic layer, Cu-SiC with W coating indicate the higher tensile strength and thermal diffusitivy, irrespective of an amount of SiC reinforcement. The improvement of the composite properties is related to advantageous condition of Cu-SiC interface characterized by well homogenity and low porosity, as well as individual properties of the tungsten coating material.

  12. Synthesis of high purity tungsten nanoparticles from tungsten heavy alloy scrap by selective precipitation and reduction route

    International Nuclear Information System (INIS)

    Kamal, S.S. Kalyan; Sahoo, P.K.; Vimala, J.; Shanker, B.; Ghosal, P.; Durai, L.

    2016-01-01

    In this paper we report synthesis of tungsten nanoparticles of high purity >99.7 wt% from heavy alloy scrap using a novel chemical route of selective precipitation and reduction. The effect of Poly(vinylpyrrolidone) polymer on controlling the particle size is established through FTIR spectra and corroborated with TEM images, wherein the average size decreased form 210 to 45 nm with increasing PVP content from zero to 2 g under different experimental conditions. This process is economical as raw material is a scrap and the efficiency of the reaction is >95%. - Highlights: • Tungsten nanoparticles were synthesized from tungsten heavy alloy scrap. • A novel chemical route of precipitation and reduction with Poly(vinylpyrrolidone) polymer as stabilizer is reported. • The average size decreased form 210 to 45 nm with increasing PVP content from zero to 2 g. • High pure tungsten nanoparticles of >99.7% purity could be synthesized using this route. • Efficiency of the reaction is >95%.

  13. Intermetallics as innovative CRM-free materials

    Science.gov (United States)

    Novák, Pavel; Jaworska, Lucyna; Cabibbo, Marcello

    2018-03-01

    Many of currently used technical materials cannot be imagined without the use of critical raw materials. They require chromium (e.g. in stainless and tool steels), tungsten and cobalt (tool materials, heat resistant alloys), niobium (steels and modern biomaterials). Therefore there is a need to find substitutes to help the European economy. A promising solution can be the application of intermetallics. These materials offer wide variety of interesting properties, such as high hardness and wear resistance or high chemical resistance. In this paper, the overview of possible substitute materials among intermetallics is presented. Intermetallics based on aluminides and silicides are shown as corrosion resistant materials, composites composed of ceramics in intermetallic matrix as possible tool materials. The manufacturing processes are being developed to minimize the disadvantages of these materials, mainly the room-temperature brittleness.

  14. Thermosetting polyimide resin matrix composites with interpenetrating polymer networks for precision foil resistor chips based on special mechanical performance requirements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.Y., E-mail: wxy@tju.edu.cn [School of Electronic Information Engineering, Tianjin University, Tianjin 300072 (China); Ma, J.X.; Li, C.G. [School of Electronic Information Engineering, Tianjin University, Tianjin 300072 (China); Wang, H.X. [ZHENGHE electronics Co., Ltd, Jining 272023 (China)

    2014-04-01

    Highlights: • Macromolecular materials were chosen to modify thermosetting polyimide (TSPI). • The formation of IPN structure in TSPI composite polymers was discussed. • The special mechanical properties required were the main study object. • The desired candidate materials should have proper hardness and toughness. • The specific mechanical data are quantitatively determined by experiments. - Abstract: Based on interpenetrating networks (IPNs) different macromolecular materials such as epoxy, phenolic, and silicone resin were chosen to modify thermosetting polyimide (TSPI) resin to solve the lack of performance when used for protecting precision foil resistor chips. Copolymerization modification, controlled at curing stage, was used to prepare TSPI composites considering both performance and process requirements. The mechanical properties related to trimming process were mainly studied due to the special requirements of the regularity of scratch edges caused by a tungsten needle. The analysis on scratch edges reveals that the generation and propagation of microcracks caused by scratching together with crack closure effect may lead to regular scratch traces. Experiments show that the elongation at break of TSPI composites is the main reason that determines the special mechanical properties. The desired candidate materials should have proper hardness and toughness, and the specific mechanical data are that the mean elongation at break and tensile strength of polymer materials are in the range of 9.2–10.4% and 100–107 MPa, respectively. Possible reasons for the effect of the modifiers chosen on TSPI polymers, the reaction mechanisms on modified TSPI resin and the IPN structure in TSPI composite polymers were discussed based on IR and TG analysis.

  15. Thermosetting polyimide resin matrix composites with interpenetrating polymer networks for precision foil resistor chips based on special mechanical performance requirements

    International Nuclear Information System (INIS)

    Wang, X.Y.; Ma, J.X.; Li, C.G.; Wang, H.X.

    2014-01-01

    Highlights: • Macromolecular materials were chosen to modify thermosetting polyimide (TSPI). • The formation of IPN structure in TSPI composite polymers was discussed. • The special mechanical properties required were the main study object. • The desired candidate materials should have proper hardness and toughness. • The specific mechanical data are quantitatively determined by experiments. - Abstract: Based on interpenetrating networks (IPNs) different macromolecular materials such as epoxy, phenolic, and silicone resin were chosen to modify thermosetting polyimide (TSPI) resin to solve the lack of performance when used for protecting precision foil resistor chips. Copolymerization modification, controlled at curing stage, was used to prepare TSPI composites considering both performance and process requirements. The mechanical properties related to trimming process were mainly studied due to the special requirements of the regularity of scratch edges caused by a tungsten needle. The analysis on scratch edges reveals that the generation and propagation of microcracks caused by scratching together with crack closure effect may lead to regular scratch traces. Experiments show that the elongation at break of TSPI composites is the main reason that determines the special mechanical properties. The desired candidate materials should have proper hardness and toughness, and the specific mechanical data are that the mean elongation at break and tensile strength of polymer materials are in the range of 9.2–10.4% and 100–107 MPa, respectively. Possible reasons for the effect of the modifiers chosen on TSPI polymers, the reaction mechanisms on modified TSPI resin and the IPN structure in TSPI composite polymers were discussed based on IR and TG analysis

  16. Technical design of a solid tungsten divertor row for the ITER-like wall in the JET tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, P.; Knaup, M.; Neubauer, O.; Sadakov, S.; Schweer, B.; Terra, A.; Samm, U. [Forschungszentrum Juelich, Association EURATOM-FZJ (DE). Inst. fuer Energieforschung IEF-4 (Plasmaphysik); Pintsuk, G. [Forschungszentrum Juelich, Association EURATOM-FZJ (DE). Inst. fuer Energieforschung IEF-2 (Werkstoffstruktur und Eigenschaften)

    2009-07-01

    ITER (originally International Thermonuclear Experimental Reactor) is now under construction in Cadarache, France. In order to investigate plasma scenarios compatible with an ITER relevant mix of materials, a new, complete inner wall will be installed in the JET tokamak vessel (Culham, UK) in 2010. The plasmafacing components in the main chamber will be made of beryllium whereas the exposed areas in the divertor shall be made of tungsten, mostly of tungsten coatings on a carbon-fibre composite substrate. A notable exception is the central row of tiles where the outer strike point is located. Fig. 1 illustrates it with a camera view during a suitable discharge which shows the emission of atomic hydrogen, hence the main interaction regions. Plasma-facing components at this position are exposed to very high particle fluxes which cause material sputtering, and to extremely high heat loads without active cooling, which is not available. It was accordingly decided to resort to solid tungsten in this particular case. An overview of the conceptual design was presented earlier. Manufacturing is just starting, so the technical design has been frozen to the largest extent as presented in the following. (orig.)

  17. Knoop hardness of ten resin composites irradiated with high-power LED and quartz-tungsten-halogen lights.

    Science.gov (United States)

    Price, Richard B T; Felix, Corey A; Andreou, Pantelis

    2005-05-01

    This study compared a high-power light-emitting-diode (LED) curing light (FreeLight 2, 3M ESPE) with a quartz-tungsten-halogen (QTH) light (TriLight, 3M ESPE) to determine which was the better at photo-polymerising 10 resin composites. Class I preparations were prepared 4-mm deep into human teeth and filled with 10 different composites. The composites were irradiated for 50% or 100% of their recommended times using the LED light, and for 100% of their recommended times with the QTH light on either the high or medium power setting. Fifteen minutes later, the Knoop hardness of the composites was measured to a depth of 3.5 mm from the surface. When irradiated by the LED light for their recommended curing times, the Knoop hardness of all 10 composites stayed above 80% of the maximum hardness of the composite to a depth of at least 1.5 mm; three composites maintained a Knoop hardness that was more than 80% of their maximum hardness to a depth of 3.5 mm. Repeated measurements analysis of variance indicated that all the two-way and three-way interactions between the curing light, depth, and composite were significant (p hardness values. The LED light, used for the composite manufacturer's recommended time, was ranked the best at curing the composites to a depth of 3mm (p power setting.

  18. Thermal oxidation of tungsten-based sputtered coatings

    International Nuclear Information System (INIS)

    Louro, C.; Cavaleiro, A.

    1997-01-01

    The effect of the addition of nickel, titanium, and nitrogen on the air oxidation behavior of W-based sputtered coatings in the temperature range 600 to 800 C was studied. In some cases these additions significantly improved the oxidation resistance of the tungsten coatings. As reported for bulk tungsten, all the coatings studied were oxidized by layers following a parabolic law. Besides WO 3 and WO x phases detected in all the oxidized coatings, TiO 2 and NiWO 4 were also detected for W-Ti and W-Ni films, respectively. WO x was present as an inner protective compact layer covered by the porous WO 3 oxide. The best oxidation resistance was found for W-Ti and W-N-Ni coatings which also presented the highest activation energies (E a = 234 and 218 kJ/mol, respectively, as opposed to E a ∼ 188 kJ/mol for the other coatings). These lower oxidation weight gains were attributed to the greater difficulty of the inward diffusion of oxygen ions for W-Ti films, owing to the formation of fine particles of TiO 2 , and the formation of the external, more protective layer of NiWO 4 for W-N-Ni coatings

  19. Computer simulations for thorium doped tungsten crystals

    Energy Technology Data Exchange (ETDEWEB)

    Eberhard, Bernd

    2009-07-17

    Tungsten has the highest melting point among all metals in the periodic table of elements. Furthermore, its equilibrium vapor pressure is by far the lowest at the temperature given. Thoria, ThO{sub 2}, as a particle dopant, results in a high temperature creep resistant material. Moreover, thorium covered tungsten surfaces show a drastically reduced electronic work function. This results in a tremendous reduction of tip temperatures of cathodes in discharge lamps, and, therefore, in dramatically reduced tungsten vapor pressures. Thorium sublimates at temperatures below those of a typical operating cathode. For proper operation, a diffusional flow of thorium atoms towards the surface has to be maintained. This atomic flux responds very sensitively on the local microstructure, as grain boundaries as well as dislocation cores offer ''short circuit paths'' for thorium atoms. In this work, we address some open issues of thoriated tungsten. A molecular dynamics scheme (MD) is used to derive static as well as dynamic material properties which have their common origin in the atomistic behavior of tungsten and thorium atoms. The interatomic interactions between thorium and tungsten atoms are described within the embedded atom model (EAM). So far, in literature no W-Th interaction potentials on this basis are described. As there is no alloying system known between thorium and tungsten, we have determined material data for the fitting of these potentials using ab-initio methods. This is accomplished using the full potential augmented plane wave method (FLAPW), to get hypothetical, i.e. not occurring in nature, ''alloy'' data of W-Th. In order to circumvent the limitations of classical (NVE) MD schemes, we eventually couple our model systems to external heat baths or volume reservoirs (NVT, NPT). For the NPT ensemble, we implemented a generalization of the variable cell method in combination with the Langevin piston, which results in a

  20. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting

    KAUST Repository

    Garcia Esparza, Angel T.

    2012-12-17

    Tungsten carbide exhibits platinum-like behavior, which makes it an interesting potential substitute for noble metals in catalytic applications. Tungsten carbide nanocrystals (≈5 nm) are directly synthesized through the reaction of tungsten precursors with mesoporous graphitic C3N 4 (mpg-C3N4) as the reactive template in a flow of inert gas at high temperatures. Systematic experiments that vary the precursor compositions and temperatures used in the synthesis selectively generate different compositions and structures for the final nanocarbide (W 2C or WC) products. Electrochemical measurements demonstrate that the WC phase with a high surface area exhibits both high activity and stability in hydrogen evolution over a wide pH range. The WC sample also shows excellent hydrogen oxidation activity, whereas its activity in oxygen reduction is poor. These tungsten carbides are successful cocatalysts for overall water splitting and give H2 and O2 in a stoichiometric ratio from H 2O decomposition when supported on a Na-doped SrTiO3 photocatalyst. Herein, we present tungsten carbide (on a small scale) as a promising and durable catalyst substitute for platinum and other scarce noble-metal catalysts in catalytic reaction systems used for renewable energy generation. Platinum replacement: The phase-controlled synthesis of tungsten carbide nanoparticles from the nanoconfinement of a mesoporous graphite C 3N4 (mpg-C3N4) reactive template is shown. The nanomaterials catalyze hydrogen evolution/oxidation reactions, but are inactive in the oxygen reduction reaction. Tungsten carbide is an effective cocatalyst for photocatalytic overall water splitting (see picture). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting

    KAUST Repository

    Garcia Esparza, Angel T.; Cha, Dong Kyu; Ou, Yiwei; Kubota, Jun; Domen, Kazunari; Takanabe, Kazuhiro

    2012-01-01

    Tungsten carbide exhibits platinum-like behavior, which makes it an interesting potential substitute for noble metals in catalytic applications. Tungsten carbide nanocrystals (≈5 nm) are directly synthesized through the reaction of tungsten precursors with mesoporous graphitic C3N 4 (mpg-C3N4) as the reactive template in a flow of inert gas at high temperatures. Systematic experiments that vary the precursor compositions and temperatures used in the synthesis selectively generate different compositions and structures for the final nanocarbide (W 2C or WC) products. Electrochemical measurements demonstrate that the WC phase with a high surface area exhibits both high activity and stability in hydrogen evolution over a wide pH range. The WC sample also shows excellent hydrogen oxidation activity, whereas its activity in oxygen reduction is poor. These tungsten carbides are successful cocatalysts for overall water splitting and give H2 and O2 in a stoichiometric ratio from H 2O decomposition when supported on a Na-doped SrTiO3 photocatalyst. Herein, we present tungsten carbide (on a small scale) as a promising and durable catalyst substitute for platinum and other scarce noble-metal catalysts in catalytic reaction systems used for renewable energy generation. Platinum replacement: The phase-controlled synthesis of tungsten carbide nanoparticles from the nanoconfinement of a mesoporous graphite C 3N4 (mpg-C3N4) reactive template is shown. The nanomaterials catalyze hydrogen evolution/oxidation reactions, but are inactive in the oxygen reduction reaction. Tungsten carbide is an effective cocatalyst for photocatalytic overall water splitting (see picture). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Developing polymer composite materials: carbon nanotubes or graphene?

    Science.gov (United States)

    Sun, Xuemei; Sun, Hao; Li, Houpu; Peng, Huisheng

    2013-10-04

    The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Rapid determination of main components by means of flame-atomic-absorption spectrometry for chromium, silicon and tungsten in CrSiW materials

    International Nuclear Information System (INIS)

    Mueller, E.; Stahlberg, R.

    1985-01-01

    The application of Flame-Atomic-Absorption Spectrometry (FAAS) for determining chromium, silicon and tungsten in CrSiW materials is described. The FAAS determinations of the main components are shown under optimum conditions. Sufficient precision and reliability have been achieved for routine analysis. The application of a mixture of acids for preparing CrSiW solutions is proposed. The preparation of samples is discussed in detail. Optimum conditions are recommended for determining chromium, silicon and tungsten using one solution only. (orig.) [de

  4. Effect of mixing on the rheology and particle characteristics of tungsten-based powder injection molding feedstock

    International Nuclear Information System (INIS)

    Suri, Pavan; Atre, Sundar V.; German, Randall M.; Souza, Jupiter P. de

    2003-01-01

    This study investigates the effect of mixing technique and particle characteristics on the rheology and agglomerate dispersion of tungsten-based powder injection molding (PIM) feedstock. Experiments were conducted with as-received (agglomerated) and rod-milled (deagglomerated) tungsten powder mixed in a paraffin wax-polypropylene binder. Increase in the mixing shear rate decreased the agglomerate size of the agglomerated tungsten powder, decreased the viscosity, and improved the flow stability of the feedstock, interpreted as increased homogeneity of the feedstock. Higher solids volume fraction, lower mixing torques, and improved homogeneity were observed with deagglomerated tungsten powder, emphasizing the importance of particle characteristics and mixing procedures in the PIM process. Hydrodynamic stress due to mixing and the cohesive strength of the tungsten agglomerate were calculated to understand the mechanism of deagglomeration and quantify the effect of mixing. It was concluded that deagglomeration occurs due to a combination of rupture and erosion with the local hydrodynamic stresses exceeding the cohesive strength of the agglomerate

  5. Spectral properties of Er3+/Yb3+ codoped tungsten-tellurite glasses.

    Science.gov (United States)

    Shen, Xiang; Nie, QiuHua; Xu, TieFeng; Gao, Yuan

    2005-07-01

    The spectral properties of Er3+/Yb3+ codoped tungsten-tellurite (WT) glasses have been investigated. The measured absorption spectra are analyzed by Judd-Ofelt theory. The compositional change of intensity parameter omega2 is attributed to the change in the covalency between the Er3+ and oxygen ions, the asymmetry in the local structures around the Er3+ ions can be neglected. The lifetimes of 4I(13/2) level of Er3+ in WT glasses are measured and comparable with other TeO2-based glasses. The stimulated emission cross-section is calculated based on McCumber theory. The fluorescence full width at half maximum (FWHM) and the emission cross-section (sigma(peak)) of the 4I(13/2) --> 4I(15/2) transition of Er3+ in different glass hosts have been compared. The suitability of such WT glasses as host materials for 1.5 microm broadband amplification is discussed.

  6. Effect of different light curing units on Knoop hardness and temperature of resin composite

    OpenAIRE

    Guiraldo Ricardo; Consani Simonides; Xediek Consani Rafael; Mendes Wilson; Lympius Thais; Coelho Sinhoreti Mario

    2009-01-01

    Aim: To evaluate the influence of quartz tungsten halogen and plasma arc curing (PAC) lights on Knoop hardness and change in polymerization temperature of resin composite. Materials and Methods: Filtek Z250 and Esthet X composites were used in the shade A3. The temperature increase was registered with Type-k thermocouple connected to a digital thermometer (Iopetherm 46). A self-cured polymerized acrylic resin base was built in order to guide the thermocouple and to support the dentin disk ...

  7. Selective CVD tungsten on silicon implanted SiO/sub 2/

    International Nuclear Information System (INIS)

    Hennessy, W.A.; Ghezzo, M.; Wilson, R.H.; Bakhru, H.

    1988-01-01

    The application range of selective CVD tungsten is extended by its coupling to the ion implantation of insulating materials. This article documents the results of selective CVD tungsten using silicon implanted into SiO/sub 2/ to nucleate the tungsten growth. The role of implant does, energy, and surface preparation in achieving nucleation are described. SEM micrographs are presented to demonstrate the selectivity of this process. Measurements of the tungsten film thickness and sheet resistance are provided for each of the experimental variants corresponding to successful deposition. RBS and XPS analysis are discussed in terms of characterizing the tungsten/oxide interface and to evaluate the role of the silicon implant in the CVD tungsten mechanism. Utilizing this method a desired metallization pattern can be readily defined with lithography and ion implantation, and accurately replicated with a layer of CVD tungsten. This approach avoids problems usually associated with blanket deposition and pattern transfer, which are particularly troublesome for submicron VLSI technology

  8. Development of advanced high heat flux and plasma-facing materials

    Science.gov (United States)

    Linsmeier, Ch.; Rieth, M.; Aktaa, J.; Chikada, T.; Hoffmann, A.; Hoffmann, J.; Houben, A.; Kurishita, H.; Jin, X.; Li, M.; Litnovsky, A.; Matsuo, S.; von Müller, A.; Nikolic, V.; Palacios, T.; Pippan, R.; Qu, D.; Reiser, J.; Riesch, J.; Shikama, T.; Stieglitz, R.; Weber, T.; Wurster, S.; You, J.-H.; Zhou, Z.

    2017-09-01

    Plasma-facing materials and components in a fusion reactor are the interface between the plasma and the material part. The operational conditions in this environment are probably the most challenging parameters for any material: high power loads and large particle and neutron fluxes are simultaneously impinging at their surfaces. To realize fusion in a tokamak or stellarator reactor, given the proven geometries and technological solutions, requires an improvement of the thermo-mechanical capabilities of currently available materials. In its first part this article describes the requirements and needs for new, advanced materials for the plasma-facing components. Starting points are capabilities and limitations of tungsten-based alloys and structurally stabilized materials. Furthermore, material requirements from the fusion-specific loading scenarios of a divertor in a water-cooled configuration are described, defining directions for the material development. Finally, safety requirements for a fusion reactor with its specific accident scenarios and their potential environmental impact lead to the definition of inherently passive materials, avoiding release of radioactive material through intrinsic material properties. The second part of this article demonstrates current material development lines answering the fusion-specific requirements for high heat flux materials. New composite materials, in particular fiber-reinforced and laminated structures, as well as mechanically alloyed tungsten materials, allow the extension of the thermo-mechanical operation space towards regions of extreme steady-state and transient loads. Self-passivating tungsten alloys, demonstrating favorable tungsten-like plasma-wall interaction behavior under normal operation conditions, are an intrinsic solution to otherwise catastrophic consequences of loss-of-coolant and air ingress events in a fusion reactor. Permeation barrier layers avoid the escape of tritium into structural and cooling

  9. Dense Pure Tungsten Fabricated by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Dianzheng Wang

    2017-04-01

    Full Text Available Additive manufacturing using tungsten, a brittle material, is difficult because of its high melting point, thermal conductivity, and oxidation tendency. In this study, pure tungsten parts with densities of up to 18.53 g/cm3 (i.e., 96.0% of the theoretical density were fabricated by selective laser melting. In order to minimize balling effects, the raw polyhedral tungsten powders underwent a spheroidization process before laser consolidation. Compared with polyhedral powders, the spherical powders showed increased laser absorptivity and packing density, which helped in the formation of a continuous molten track and promoted densification.

  10. W/Cu composites produced by low temperature Pulse Plasma Sintering

    International Nuclear Information System (INIS)

    Rosinski, M.S.; Fortuna, E.; Michalski, A.J.; Kurzydlowski, K.J.

    2006-01-01

    The plasma facing components (PFCs) must withstand the thermal, mechanical and neutron loads under cyclic mode of operation and vacuum. Despite that PFCs of ITER and demonstration reactors must assure reliability and long in service lifetime. For that reason PFCs are designed to be made of beryllium, tungsten or carbon fibre composites armours and copper based heat sink material. Such design concepts can only be used if joining methods of these dissimilar materials are resolved. Several techniques have been developed for joining W and Cu e. g. casting of pure Cu onto W, high temperature brazing, direct diffusion bonding or CVDs of W onto Cu. The main problem in the development of such joints is the large difference in the coefficients of thermal expansion, CTE (alpha Cu > 4 alpha W) and elastic modula (ECu > 0.2 EW). These differences result in large stresses at the W/Cu interfaces during manufacturing and/or during operation, which may lead to cracking or delamination reducing lifetime of the components. Possible solution to this problem is the use of W-Cu composites (FGM). W-Cu composites are widely used for spark erosion electrodes, in heavy duty circuit breakers and as heat sinks of microelectronic devices. They are commonly produced by infiltration of a porous sintered tungsten by liquid copper. Other technological route is powder metallurgy. Coatings can be produced by low pressure plasma spraying. All these methods, however, are known to have some disadvantages. For infiltration there is a 30 wt.% limit of Cu content while for powder metallurgy and plasma spraying techniques porosity is of concern. In our work the W-Cu composites of different composition were produced by pulse plasma sintering (PPS). This new method utilizes pulsed high electric discharges to heat the powders under uniaxial load. The arc discharges clean surface of powder particles and intensify diffusion. The total sintering time is reduced to several minutes. In our investigations various

  11. Modeling of hydrogen desorption from tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Guterl, J., E-mail: jguterl@ucsd.edu [University of California, San Diego, La Jolla, CA 92093 (United States); Smirnov, R.D. [University of California, San Diego, La Jolla, CA 92093 (United States); Krasheninnikov, S.I. [University of California, San Diego, La Jolla, CA 92093 (United States); Nuclear Research National University MEPhI, Moscow 115409 (Russian Federation); Uberuaga, B.; Voter, A.F.; Perez, D. [Los Alamos National Laboratory, Los Alamos, NM 8754 (United States)

    2015-08-15

    Hydrogen retention in metallic plasma-facing components is among key-issues for future fusion devices. For tungsten, which has been chosen as divertor material in ITER, hydrogen desorption parameters experimentally measured for fusion-related conditions show large discrepancies. In this paper, we therefore investigate hydrogen recombination and desorption on tungsten surfaces using molecular dynamics simulations and accelerated molecular dynamics simulations to analyze adsorption states, diffusion, hydrogen recombination into molecules, and clustering of hydrogen on tungsten surfaces. The quality of tungsten hydrogen interatomic potential is discussed in the light of MD simulations results, showing that three body interactions in current interatomic potential do not allow to reproduce hydrogen molecular recombination and desorption. Effects of surface hydrogen clustering on hydrogen desorption are analyzed by introducing a kinetic model describing the competition between surface diffusion, clustering and recombination. Different desorption regimes are identified and reproduce some aspects of desorption regimes experimentally observed.

  12. Molecular dynamics study of grain boundary diffusion of hydrogen in tungsten

    International Nuclear Information System (INIS)

    Von Toussaint, U; Gori, S; Manhard, A; Höschen, T; Höschen, C

    2011-01-01

    Understanding the influence of the microstructure of tungsten on hydrogen transport is crucial for the use of tungsten as first-wall material in fusion reactors. Here, we report the results of molecular dynamics and transition state studies on the influence of grain boundaries in tungsten on the transport of hydrogen. An exhaustive mapping of possible minimum activation energy migration trajectories for hydrogen as the trace impurity reveals a strongly modified activation energy distribution in the neighborhood of grain boundaries together with an altered connectivity matrix. The results indicate that grain boundaries in polycrystalline tungsten may provide an important transport channel, especially for neutron-damaged tungsten.

  13. Quantum-Accurate Molecular Dynamics Potential for Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Mitchell; Thompson, Aidan P.

    2017-03-01

    The purpose of this short contribution is to report on the development of a Spectral Neighbor Analysis Potential (SNAP) for tungsten. We have focused on the characterization of elastic and defect properties of the pure material in order to support molecular dynamics simulations of plasma-facing materials in fusion reactors. A parallel genetic algorithm approach was used to efficiently search for fitting parameters optimized against a large number of objective functions. In addition, we have shown that this many-body tungsten potential can be used in conjunction with a simple helium pair potential1 to produce accurate defect formation energies for the W-He binary system.

  14. The chemical composition and parameters of production processes influence on structure and properties of W-Ni-Fe alloys

    International Nuclear Information System (INIS)

    Majewski, T.; Przetakiewicz, W.

    2000-01-01

    Tungsten heavy alloys, i.e. tungsten based metal-matrix composites are characterized by unique properties, because except their high hardness, strength and density, they also possess excellent ductility, impact strength, machinability and corrosion resistance. This combination of properties makes these alloys suitable for wide range of engineering applications, e.g. in the mechanical engineering, in the mining, sport and medicine and also in the armament and aviation. Production process of these materials consists of many phases and it is very difficult to accomplish, because properties of heavy alloys are extremely sensitive to processing history. In this article dependence of chemical composition of mixture of powders on structure and mechanical properties of W-Ni-Fe alloys was determined. It was found that increase of tungsten contents and Ni/Fe ratio causes reduction of ductility and increase of growth rate of tungsten particle. There is the maximum ultimate tensile strength of W-Ni-Fe alloys with content of tungsten 93%. The study also presents relationship between these properties and succeeding parameters of production process: composition of sintering atmosphere, time and temperature following heat treatment and plastic working. Using a wet hydrogen atmosphere (with high dew point) causes reduction of porosity and improvement of mechanical properties. With sintering temperature above 1500 o C these parameters decrease. If the sintering time is elongated above 1 h also density and mechanical properties of heavy alloys decrease. Tungsten heavy alloys are also used for production of kinetic energy penetrators and so properties for different range of strain rates were compared. It was found that yield and failure strengths increase with increasing strain rate, failure strain decreases with increasing strain rate. This information can help in optimization the production process of such composites. (author)

  15. High strength tungsten heavy alloys with molybdenum additions

    International Nuclear Information System (INIS)

    Bose, A.; Sims, D.M.; German, R.M.

    1987-01-01

    Tungsten heavy alloys are candidates for numerous applications based on the unique combination of high density, high strength, and high ductility coupled with excellent machinability. Though there has been considerable research on heavy alloys, the primary focus has been on the ductility. These alloys are well suited for ballistic uses due to their high densities and it is expected that for superior ballistic performance, a high hardness, high strength and moderate ductility alloy would be ideal. The major goal of this investigation was to obtain heavy alloys with hardness greater than HRA 72. It is evident from the phase diagrams that molybdenum, which goes into solution in tungsten, nickel and iron, could act as a potential strengthening addition. With this in view, tungsten heavy alloys with molybdenum additions were fabricated from mixed elemental powders. A baseline composition of 90W-7Ni-3Fe was chosen to its good elongation and moderate strength. The molybdenum additions were made by replacing the tungsten. Compared to the baseline properties with no molybdenum addition, the strength and hardness showed a continuous increase with molybdenum addition. The ductility of the alloy continued to decrease with increasing molybdenum content, but even with 16% wt. % molybdenum of the elongation was still around 6%. An interesting facet of these alloying additions is the grain refinement that is brought about by adding to molybdenum to the system. The grain refinement is related to the lower solubility of tunbsten in the matrix due to partial displacement by molybdenum

  16. High-performance thermoelectric materials based on ternary TiO2/CNT/PANI composites.

    Science.gov (United States)

    Erden, Fuat; Li, Hui; Wang, Xizu; Wang, FuKe; He, Chaobin

    2018-04-04

    In the present work, we report the fabrication of high-performance thermoelectric materials using TiO2/CNT/PANI ternary composites. We showed that a conductivity of ∼2730 S cm-1 can be achieved for the binary CNT (70%)/PANI (30%) composite, which is the highest recorded value for the reported CNT/PANI composites. We further demonstrated that the Seebeck coefficient of CNT/PANI composites could be enhanced by incorporating TiO2 nanoparticles into the binary CNT/PANI composites, which could be attributed to lower carrier density and the energy scattering of low-energy carriers at the interfaces of TiO2/a-CNT and TiO2/PANI. The resulting TiO2/a-CNT/PANI ternary system exhibits a higher Seebeck coefficient and enhanced thermoelectric power. Further optimization of the thermoelectric power was achieved by water treatment and by tuning the processing temperature. A high thermoelectric power factor of 114.5 μW mK-2 was obtained for the ternary composite of 30% TiO2/70% (a-CNT (70%)/PANI (30%)), which is the highest reported value among the reported PANI based ternary composites. The improvement of thermoelectric performance by incorporation of TiO2 suggests a promising approach to enhance power factor of organic thermoelectric materials by judicial tuning of the carrier concentration and electrical conductivity.

  17. Material attractiveness of plutonium composition on doping minor actinide of large FBR

    International Nuclear Information System (INIS)

    Permana, Sidik; Suzuki, Mitsutoshi; Kuno, Yusuke

    2011-01-01

    Material attractiveness analysis on isotopic plutonium compositions of fast breeder reactors (FBR) has been investigated based on figure of merit (FOM) formulas as key parameters as well as decay heat (DH) and spontaneous fission neutron (SFN) compositions. Increasing minor actinide (MA) doping gives the significant effect to increase Pu-238 composition. However, the compositions of Pu-240 and Pu-242 become less with increasing MA doping. DH and SFN compositions in the core regions similar to the DH and SFN compositions of MOX-grade. Material attractiveness based on FOM1 formula shows all isotopic plutonium compositions in the blanket regions as well as in the core regions are categorized as high attractive material. Adopted FOM2 formula can distinguishes the material attractiveness levels which show the plutonium compositions in blanket regions as high attractiveness level and its composition in the core regions as low level of material attractiveness. MA doping is effective to reduce the material attractiveness level of blanket regions from high to medium and it requires much more MA doping rate to achieve low level of attractiveness (FOM<1) based on adopted FOM1 formula. Low material attractiveness level can be obtained by 4 % or more doping MA based on adopted FOM2 formula which considers not only DH composition effect, but also SFN composition effect that gives relatively higher contribution to material barrier of plutonium isotopes. (author)

  18. Fuel Retention Improvement at High Temperatures in Tungsten-Uranium Dioxide Dispersion Fuel Elements by Plasma-Spray Cladding

    Science.gov (United States)

    Grisaffe, Salvatore J.; Caves, Robert M.

    1964-01-01

    An investigation was undertaken to determine the feasibility of depositing integrally bonded plasma-sprayed tungsten coatings onto 80-volume-percent tungsten - 20-volume-percent uranium dioxide composites. These composites were face clad with thin tungsten foil to inhibit uranium dioxide loss at elevated temperatures, but loss at the unclad edges was still significant. By preheating the composite substrates to approximately 3700 degrees F in a nitrogen environment, metallurgically bonded tungsten coatings could be obtained directly by plasma spraying. Furthermore, even though these coatings were thin and somewhat porous, they greatly inhibited the loss of uranium dioxide. For example, a specimen that was face clad but had no edge cladding lost 5.8 percent uranium dioxide after 2 hours at 4750 dgrees F in flowing hydrogen. A similar specimen with plasma-spray-coated edges, however, lost only 0.75 percent uranium dioxide under the same testing conditions.

  19. Superconducting composites materials. Materiaux composites supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Kerjouan, P; Boterel, F; Lostec, J; Bertot, J P; Haussonne, J M [Centre National d' Etudes des Telecommunications (CNET), 22 - Lannion (FR)

    1991-11-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developed in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} material. We first realized a composite material glass/YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. 8 refs.; 14 figs.; 9 tabs.

  20. Synthesis of the cactus-like silicon nanowires/tungsten oxide nanowires composite for room-temperature NO{sub 2} gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiyi, E-mail: zhangweiyi@tju.edu.cn [School of Electronic Information Engineering, Tianjin University, Tianjin, 300072 (China); Hu, Ming [School of Electronic Information Engineering, Tianjin University, Tianjin, 300072 (China); Key Laboratory for Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Xing; Wei, Yulong; Li, Na [School of Electronic Information Engineering, Tianjin University, Tianjin, 300072 (China); Qin, Yuxiang, E-mail: qinyuxiang@tju.edu.cn [School of Electronic Information Engineering, Tianjin University, Tianjin, 300072 (China); Key Laboratory for Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-09-15

    In the present work, the tungsten oxide (WO{sub 3}) nanowires functionalized silicon nanowires (SiNWs) with cactus-like structure has been successfully synthesized for room-temperature NO{sub 2} detection. The novel nanocomposite was fabricated by metal-assisted chemical etching (MACE) and thermal annealing of tungsten film. The WO{sub 3} nanowires were evenly distributed from the upper to the lower part of the SiNWs, indicating excellent uniformity which is conducive to adsorption and desorption of gas molecules. The gas-sensing properties have been examined by measuring the resistance change towards 0.25–5 ppm NO{sub 2} gas. At room temperature, which is the optimum working temperature, the SiNWs/WO{sub 3} nanowires composite showed two-times higher NO{sub 2} response than that of the bare SiNWs at 2 ppm NO{sub 2}. On the contrary, the responses of composite sensors to high concentrations of other reducing gases were very low, indicating excellent selectivity. Simultaneously, the composite sensors exhibited good sensing repeatability and stability. The enhancement in gas sensing properties may be attributed to the change in width of the space charge region, which is similar to the behavior of p-n junctions under forward bias, in the high-density p-n heterojunction structure formed between SiNWs and WO{sub 3} nanowires. - Highlights: • SiNWs/WO{sub 3} nanowires composite with cactus-like structure is synthesized. • The morphology of WO{sub 3} nanowires depends on the thermal annealing temperature. • The nanocomposite sensor exhibit better gas response than that of bare SiNWs. • The gas sensing mechanism is discussed using p-n heterojunction theory.

  1. Superconducting composites materials

    International Nuclear Information System (INIS)

    Kerjouan, P.; Boterel, F.; Lostec, J.; Bertot, J.P.; Haussonne, J.M.

    1991-01-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developed in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa 2 Cu 3 O 7-δ material. We first realized a composite material glass/YBa 2 Cu 3 O 7-δ , by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa 2 Cu 3 O 7-δ material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. 8 refs.; 14 figs.; 9 tabs [fr

  2. Structure and property evaluation of a vacuum plasma sprayed nanostructured tungsten-hafnium carbide bulk composite

    NARCIS (Netherlands)

    Rea, K. E.; Viswanathan, V.; Kruize, A.; De Hosson, J. Th. M.; O'Dell, S.; McKechnie, T.; Rajagopalan, S.; Vaidyanathan, R.; Seal, S.; O’Dell, S.

    2008-01-01

    Vacuum plasma spray (VPS) forming of tungsten-based metal matrix nanocomposites (MMCs) has shown to be a cost effective and time saving method for the formation of bulk monolithic nanostructured then no-mechanical components. Spray drying of powder feedstock appears to have a significant effect on

  3. Experimental and numerical studies on laser-based powder deposition of slurry erosion resistant materials

    Science.gov (United States)

    Balu, Prabu

    Slurry erosion (the removal of material caused by the randomly moving high velocity liquid-solid particle mixture) is a serious issue in crude oil drilling, mining, turbines, rocket nozzles, pumps, and boiler tubes that causes excessive downtime and high operating costs as a result of premature part failure. The goal of this research is to enhance the service life of high-value components subjected to slurry erosion by utilizing the concept of functionally graded metal-ceramic composite material (FGMCCM) in which the favorable properties of metal (toughness, ductility, etc.) and ceramic (hardness) are tailored smoothly to improve erosion resistance. Among the potential manufacturing processes, such as the laser-based powder deposition (LBPD), the plasma transferred arc (PTA), and the thermal spray the LBPD process offers good composition and microstructure control with a high deposition rate in producing the FGMCCM. This research focuses on the development of nickel-tungsten carbide (Ni-WC) based FGMCCM using the LBPD process for applications the above mentioned. The LBPD of Ni-WC involves the introduction of Ni and WC powder particle by an inert gas into the laser-formed molten pool at the substrate via nozzles. The LBPD of Ni-WC includes complex multi-physical interactions between the laser beam, Ni-WC powder, substrate, and carrier and shielding gases that are governed by a number of process variables such as laser power, scanning speed, and powder flow rate. In order to develop the best Ni-WC based slurry erosion resistant material using the LBPD process, the following challenges associated with the fabrication and the performance evaluation need to be addressed: 1) flow behavior of the Ni-WC powder and its interaction with the laser, 2) the effect of the process variables, the material compositions, and the thermo-physical properties on thermal cycles, temperature gradient, cooling rate, and residual stress formation within the material and the subsequent

  4. Evidences of trapping in tungsten and implications for plasma-facing components

    Science.gov (United States)

    Longhurst, G. R.; Anderl, R. A.; Holland, D. F.

    Trapping effects that include significant delays in permeation saturation, abrupt changes in permeation rate associated with temperature changes, and larger than expected inventories of hydrogen isotopes in the material, were seen in implantation-driven permeation experiments using 25- and 50-micron thick tungsten foils at temperatures of 638 to 825 K. Computer models that simulate permeation transients reproduce the steady-state permeation and reemission behavior of these experiments with expected values of material parameters. However, the transient time characteristics were not successfully simulated without the assumption of traps of substantial trap energy and concentration. An analytical model based on the assumptions of thermodynamic equilibrium between trapped hydrogen atoms and a comparatively low mobile atom concentration successfully accounts for the observed behavior. Using steady-state and transient permeation data from experiments at different temperatures, the effective trap binding energy may be inferred. We analyze a tungsten coated divertor plate design representative of those proposed for ITER and ARIES and consider the implications for tritium permeation and retention if the same trapping we observed was present in that tungsten. Inventory increases of several orders of magnitude may result.

  5. Mesoporous WN/WO3-Composite Nanosheets for the Chemiresistive Detection of NO2 at Room Temperature

    OpenAIRE

    Fengdong Qu; Bo He; Rohiverth Guarecuco; Minghui Yang

    2016-01-01

    Composite materials, which can optimally use the advantages of different materials, have been studied extensively. Herein, hybrid tungsten nitride and oxide (WN/WO3) composites were prepared through a simple aqueous solution route followed by nitriding in NH3, for application as novel sensing materials. We found that the introduction of WN can improve the electrical properties of the composites, thus improving the gas sensing properties of the composites when compared with bare WO3. The highe...

  6. New superhard boride composite materials. Part 1; Neue superharte Borid-Verbundwerkstoffe. Teil 1

    Energy Technology Data Exchange (ETDEWEB)

    Zachariev, Z.

    2001-07-01

    Contents: Investigations of diffusion coupling between steels and borides (ZrB{sub 2}, TiB{sub 2}, CrB, MoB); Diffusion saturation of armco iron inpowdered borides; Gaseous phase transport intensivation of the transition metal using suitable activators (vapour phase process); boron circonisation of steels; High-temperature oxidation studies on boride composite coatings on iron and steel; Corrosion resistance of boride coated iron base composites; Superhard boride coatings on hard metals and on cermet plates with reduced tungsten contents. [German] Dieser Beitrag ist wie folgt gegliedert: Untersuchung der Diffusionskopplung zwischen Staehlen und den Boriden (ZrB{sub 2}, TiB{sub 2}, CrB, MoB); Diffusionssaettigung von Armcoeisen in Pulverboride; Gasphasentransport-Intensivierung des Uebergangsmetalls mittels geeigneter Akivatoren (vapour phase process); Borzirkonieren von Staehlen; Hochtemperaturoxidationuntersuchungen von Borid-Composite-Schichten auf Eisen und Stahl; Korrosionsbestaendigkeit der boridbeschichteten Verbundwerkstoffe auf Eisenbasis; Superharte Boridbeschichtungen auf Hartmetall und auf Metallkeramikplatten mit reduziertem Wolframgehalt.

  7. Magnetic losses in composite materials

    International Nuclear Information System (INIS)

    Ramprecht, J; Sjoeberg, D

    2008-01-01

    We discuss some of the problems involved in homogenization of a composite material built from ferromagnetic inclusions in a nonmagnetic background material. The small signal permeability for a ferromagnetic spherical particle is combined with a homogenization formula to give an effective permeability for the composite material. The composite material inherits the gyrotropic structure and resonant behaviour of the single particle. The resonance frequency of the composite material is found to be independent of the volume fraction, unlike dielectric composite materials. The magnetic losses are described by a magnetic conductivity which can be made independent of frequency and proportional to the volume fraction by choosing a certain bias. Finally, some concerns regarding particles of small size, i.e. nanoparticles, are treated and the possibility of exciting exchange modes are discussed. These exchange modes may be an interesting way to increase losses in composite materials

  8. Studies on the pressed yttrium oxide-tungsten matrix as a possible dispenser cathode material

    International Nuclear Information System (INIS)

    Yang, Fan; Wang, Jinshu; Liu, Wei; Liu, Xiang; Zhou, Meiling

    2015-01-01

    Yttrium oxide was chosen as the secondary emission substance based on calculation results through first principle theory method. A new kind of pressed yttrium oxide-tungsten matrix dispenser cathodes are prepared by a sol–gel method combined with high temperature sintering in dry hydrogen atmosphere. The results show that the growth of the grains is hampered by the pinning effect of Y 2 O 3 distributing uniformly between the tungsten particles, resulting in the formation of small grain size. It is found that Y 2 O 3 improves the secondary electron emission property, i.e., the secondary emission yield increases with the increase of Y 2 O 3 content in the samples. The maximum secondary emission yield δ max of the cathode with 15% amount of Y 2 O 3 can reach 2.92. Furthermore, the cathode shows a certain thermionic emission performance. The zero field emission current density J 0 of 4.18A/cm 2 has reached at 1050 °C b for this kind of cathode after being activated at 1200 °C b , which are much higher than that of rare earth oxide doped molybdenum (REO-Mo) cathode reported in the previous work. - Highlights: • Yttrium oxide was chosen as the secondary emission substance based on first principle calculation result. • A new kind of cathode has been successfully obtained. • Pressed yttrium oxide-tungsten matrix dispenser cathode exhibits good emission properties. • The improvement of the cathode emission can be well explained by the surface analysis results presented in this work

  9. The Effect of Ion Energy and Substrate Temperature on Deuterium Trapping in Tungsten

    Science.gov (United States)

    Roszell, John Patrick Town

    Tungsten is a candidate plasma facing material for next generation magnetic fusion devices such as ITER and there are major operational and safety issues associated with hydrogen (tritium) retention in plasma facing components. An ion gun was used to simulate plasma-material interactions under various conditions in order to study hydrogen retention characteristics of tungsten thus enabling better predictions of hydrogen retention in ITER. Thermal Desorption Spectroscopy (TDS) was used to measure deuterium retention from ion irradiation while modelling of TDS spectra with the Tritium Migration Analysis Program (TMAP) was used to provide information about the trapping mechanisms involved in deuterium retention in tungsten. X-ray Photoelectron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS) were used to determine the depth resolved composition of specimens used for irradiation experiments. Carbon and oxygen atoms will be among the most common contaminants within ITER. C and O contamination in polycrystalline tungsten (PCW) specimens even at low levels (˜0.1%) was shown to reduce deuterium retention by preventing diffusion of deuterium into the bulk of the specimen. This diffusion barrier was also responsible for the inhibition of blister formation during irradiations at 500 K. These observations may provide possible mitigation techniques for problems associated with tritium retention and mechanical damage to plasma facing components caused by hydrogen implantation. Deuterium trapping in PCW and single crystal tungsten (SCW) was studied as a function of ion energy and substrate temperature. Deuterium retention was shown to decrease with decreasing ion energy below 100 eV/D+. Irradiation of tungsten specimens with 10 eV/D+ ions was shown to retain up to an order of magnitude less deuterium than irradiation with 500 eV/D+ ions. Furthermore, the retention mechanism for deuterium was shown to be consistent across the entire energy range studied (10-500 e

  10. Mechanics in Composite Materials and Process

    International Nuclear Information System (INIS)

    Lee, Dae Gil

    1993-03-01

    This book includes introduction of composite materials, stress, in-plane stiffness of laminates strain rate, ply stress, failure criterion and bending, composite materials micromechanics, composite plates and micromechanics of composite materials. It also deals with process of composite materials such as autoclave vacuum bag degassing process, connection of composite materials, filament winding process, resin transfer molding, sheet molding compound and compression molding.

  11. Analytical expression for initial magnetization curve of Fe-based soft magnetic composite material

    Energy Technology Data Exchange (ETDEWEB)

    Birčáková, Zuzana, E-mail: zuzana.bircakova@upjs.sk [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 04154 Košice (Slovakia); Kollár, Peter; Füzer, Ján [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 04154 Košice (Slovakia); Bureš, Radovan; Fáberová, Mária [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Košice (Slovakia)

    2017-02-01

    The analytical expression for the initial magnetization curve for Fe-phenolphormaldehyde resin composite material was derived based on the already proposed ideas of the magnetization vector deviation function and the domain wall annihilation function, characterizing the reversible magnetization processes through the extent of deviation of magnetization vectors from magnetic field direction and the irreversible processes through the effective numbers of movable domain walls, respectively. As for composite materials the specific dependences of these functions were observed, the ideas were extended meeting the composites special features, which are principally the much higher inner demagnetizing fields produced by magnetic poles on ferromagnetic particle surfaces. The proposed analytical expression enables us to find the relative extent of each type of magnetization processes when magnetizing a specimen along the initial curve. - Highlights: • Analytical expression of the initial curve derived for SMC. • Initial curve described by elementary magnetization processes. • Influence of inner demagnetizing fields on magnetization process in SMC.

  12. Composite materials design and applications

    CERN Document Server

    Gay, Daniel; Tsai, Stephen W

    2002-01-01

    PART ONE. PRINCIPLES OF CONSTRUCTIONCOMPOSITE MATERIALS, INTEREST AND PROPERTIESWhat is Composite Material Fibers and MatrixWhat can be Made Using Composite Materials?Typical Examples of Interest on the Use of Composite MaterialsExamples on Replacing Conventional Solutions with CompositesPrincipal Physical PropertiesFABRICATION PROCESSESMolding ProcessesOther Forming ProcessesPractical Hints in the Manufacturing ProcessesPLY PROPERTIESIsotropy and AnisotropyCharacteristics of the Reinforcement-Matrix MixtureUnidirectional PlyWoven FabricsMats and Reinforced MatricesMultidimensional FabricsMetal Matrix CompositesTestsSANDWICH STRUCTURES:What is a Sandwich Structure?Simplified FlexureA Few Special AspectsFabrication and Design ProblemsNondestructive Quality ControlCONCEPTION AND DESIGNDesign of a Composite PieceThe LaminateFailure of LaminatesSizing of LaminatesJOINING AND ASSEMBLYRiveting and BoltingBondingInsertsCOMPOSITE MATERIALS AND AEROSPACE CONSTRUCTIONAircraftHelicoptersPropeller Blades for AirplanesTur...

  13. Self Passivating W-based Alloys as Plasma Facing Material

    International Nuclear Information System (INIS)

    Koch, F.; Koeppl, S.; Bolt, H.

    2007-01-01

    Full text of publication follows: Tungsten (W) is presently the main candidate material for the plasma-facing protection of future fusion power reactors due to the low sputter erosion under bombardment by energetic D, T and He ions. Thus a W-based protection material may provide a wall erosion lifetime of the order of five years which is a pre-requisite for economic fusion reactor operation. A potential problem with the use of pure W in a fusion reactor is the formation of radioactive and highly volatile WO 3 compounds and their potential release under accidental conditions. A loss-of-coolant event in a He-cooled reactor would lead to a temperature rise to 1100 deg. C after approx. 10 to 30 days due to the nuclear decay heat of the in-vessel components. In such a situation additional accidental intense air ingress into the reactor vessel would lead to the formation of WO 3 and subsequent evaporation of radioactive (WO 3 ) x -clusters. The use of self passivating W alloys either as bulk material or as thick coating on the steel wall may be a passively safe alternative for the plasma-facing protection. The use of this material would eliminate the above mentioned concern related to pure W. To enable the formation of a protective film in oxidizing atmosphere which seals the tungsten surface from further oxidation, different elements have been investigated as corrosion protection additives. Therefore binary and ternary tungsten alloys were synthesised using magnetron sputtering. The oxidation behaviour of films deposited on inert substrates was measured with a thermo-balance set up under synthetic air at temperatures up to 1000 deg. C. Binary alloys of W-Si showed good self passivation properties by forming a SiO 2 film at the surface. The oxidation rate of a compound containing 11 wt.% Si was reduced by a factor of 10 2 compared to pure tungsten between 800 deg. C and 1000 deg. C. Using ternary alloys the oxidation behaviour could be further improved. A compound of W

  14. The influence of cobalt, tantalum, and tungsten on the elevated temperature mechanical properties of single crystal nickel-base superalloys

    Science.gov (United States)

    Nathal, M. V.; Ebert, L. J.

    1985-01-01

    The influence of composition on the tensile and creep strength of 001-line oriented nickel-base superalloy single crystals at temperatures near 1000 C was investigated. Cobalt, tantalum, and tungsten concentrations were varied according to a matrix of compositions based on the single crystal version of MAR-M247. For alloys with the baseline refractory metal level of 3 wt pct Ta and 10 wt pct W, decreases in Co level from 10 to 0 wt pct resulted in increased tensile and creep strength. Substitution of 2 wt pct W for 3 wt pct Ta resulted in decreased creep life at high stresses, but improved life at low stresses. Substitution of Ni for Ta caused large reductions in tensile strength and creep resistance, and corresponding increases in ductility. For these alloys with low Ta-plus-W totals, strength was independent of Co level. The effects of composition on properties were related to the microstructural features of the alloys. In general, high creep strength was associated with high levels of gamma-prime volume fraction, gamma-gamma-prime lattice mismatch, and solid solution hardening.

  15. Tungsten and optics

    International Nuclear Information System (INIS)

    Reglero, V.; Velasco, T.; Rodrigo, J.; Gasent, L.J.; Alamo, J.; Chato, R.; Ruiz Urien, I.; Santos, I.; Zarauz, J.

    2001-01-01

    High energy astronomy research requires accurate location to perform multiwavelength studies of the cosmic gamma-ray emitters. New technologies have been developed to achieve this goal, the use of large spatial signal multiplexing systems (Masks). The optical system based on the use of coded Masks together with solid stated pixelated planes provide a point source location capability of 1 arc min, that is 3600 times better than of the last NASA CGRO mission. Different materials were considered to modulate the high energy signals, tungsten was selected for implementing the codes due to both its high density and large atomic number that provide the required stooping power. An overview of the programme carried out to design and manufacture the coded Masks is provided. (nevyjel)

  16. Processing and characterization of bio-based composites

    Science.gov (United States)

    Lu, Hong

    Much research has focused on bio-based composites as a potential material to replace petroleum-based plastics. Considering the high price of Polyhydroxyalkanoates (PHAs), PHA/ Distiller's Dried Grains with Solubles (DDGS) composite is a promising economical and high-performance biodegradable material. In this paper, we discuss the effect of DDGS on PHA composites in balancing cost with material performance. Poly (lactic acid) PLA/DDGS composite is another excellent biodegradable composite, although as a bio-based polymer its degradation time is relatively long. The goal of this research is therefore to accelerate the degradation process for this material. Both bio-based composites were extruded through a twin-screw microcompounder, and the two materials were uniformly mixed. The morphology of the samples was examined using a Scanning Electron Microscope (SEM); thermal stability was determined with a Thermal Gravimetric Analyzer (TGA); other thermal properties were studied using Differential Scanning Calorimetry (DSC) and a Dynamic Mechanical Analyzer (DMA). Viscoelastic properties were also evaluated using a Rheometer.

  17. Effect of neutron irradiation on the microstructure of tungsten

    Directory of Open Access Journals (Sweden)

    M. Klimenkov

    2016-12-01

    Full Text Available Two grades of pure tungsten, single and polycrystalline, were irradiated for 282 days in the HFR reactor, Petten, at 900 °C to an average damage level of 1.6dpa. Each grade of tungsten was investigated using the transmission electron microscope (TEM to assess the effect of neutron irradiation on tungsten microstructure. Investigations revealed the formation of faceted cavities, whose diameter varies from 4 to 14nm in both materials. The cavities are homogeneously distributed only inside single crystalline tungsten. The local distribution of cavities in polycrystalline tungsten is strongly influenced by grain boundaries. The number densities of cavities were measured to be 4×1021 m−3 for polycrystalline and 2.5×1021 m−3 for single crystalline tungsten. This corresponds to volumetric densities of 0.45% and 0.33% respectively. High-resolution transmission electron microscopy (HRTEM revealed that faces of cavities are oriented in (110 plane. Analytical investigations showed precipitation of rhenium and osmium produced by a transmutation reaction around cavities and at grain boundaries.

  18. Composite Materials Based on Hemp and Flax for Low-Energy Buildings

    Science.gov (United States)

    Brzyski, Przemysław; Barnat-Hunek, Danuta; Suchorab, Zbigniew; Łagód, Grzegorz

    2017-01-01

    The article presents the results obtained in the course of a study on prospective application of flax/hemp wastes as a filling material of lime-based composites in the construction of low-energy buildings. The utilized filler comprised the hydrated lime with clay and Portland cement used as additives. The analysis involved evaluation of such properties as porosity, density, thermal conductivity, absorptivity, permeability, as well as compressive and flexural strength. Depending on the quantity of the filler, the properties of the composite changed. This, in turn, enabled to evaluate whether the utilized composite met the thermal requirements established for low-energy buildings. Afterwards, the obtained data were cross-referenced with the results gathered in the case of a room built of autoclaved aerated concrete. In order to prevent reaching the critical surface humidity, the internal surface temperature had to be calculated. Moreover, the chances of interstitial condensation occurring in the wall made of the analyzed lime–flax–hemp composite were determined as well. The study showed that the composite exhibits low strength, low density, low thermal conductivity, and high absorptivity. The external walls made of the lime–flax–hemp composite receive a limited exposure to condensation, but not significant enough to constitute any threat. The requirements established for low-energy buildings can be met by using the analyzed composite. PMID:28772871

  19. Experimental setup for producing tungsten coated graphite tiles using plasma enhanced chemical vapor deposition technique for fusion plasma applications

    International Nuclear Information System (INIS)

    Chauhan, Sachin Singh; Sharma, Uttam; Choudhary, K.K.; Sanyasi, A.K.; Ghosh, J.; Sharma, Jayshree

    2013-01-01

    Plasma wall interaction (PWI) in fusion grade machines puts stringent demands on the choice of materials in terms of high heat load handling capabilities and low sputtering yields. Choice of suitable material still remains a challenge and open topic of research for the PWI community. Carbon fibre composites (CFC), Beryllium (Be), and Tungsten (W) are now being considered as first runners for the first wall components of future fusion machines. Tungsten is considered to be one of the suitable materials for the job because of its superior properties than carbon like low physical sputtering yield and high sputter energy threshold, high melting point, fairly high re-crystallization temperature, low fuel retention capabilities, low chemical sputtering with hydrogen and its isotopes and most importantly the reparability with various plasma techniques both ex-situ and in-situ. Plasma assisted chemical vapour deposition is considered among various techniques as the most preferable technique for fabricating tungsten coated graphite tiles to be used as tokamak first wall and target components. These coated tiles are more favourable compared to pure tungsten due to their light weight and easier machining. A system has been designed, fabricated and installed at SVITS, Indore for producing tungsten coated graphite tiles using Plasma Enhanced Chemical Vapor Deposition (PE-CVD) technique for Fusion plasma applications. The system contains a vacuum chamber, a turbo-molecular pump, two electrodes, vacuum gauges, mass analyzer, mass flow controllers and a RF power supply for producing the plasma using hydrogen gas. The graphite tiles will be put on one of the electrodes and WF6 gas will be inserted in a controlled manner in the hydrogen plasma to achieve the tungsten-coating with WF6 dissociation. The system is integrated at SVITS, Indore and a vacuum of the order of 3*10 -6 is achieved and glow discharge plasma has been created to test all the sub-systems. The system design with

  20. Process for reclaiming tungsten from a hazardous waste

    International Nuclear Information System (INIS)

    Scheithauer, R.A.; MacInnis, M.B.; Miller, M.J.; Vanderpool, C.D.

    1984-01-01

    A process is disclosed wherein tungsten is recovered from hazardous waste material containing said tungsten, arsenic, and other impurities which can consist of magnesium, phosphorus, and silicon and the resulting waste is treated to render it nonhazardous according to EPA standards for arsenic. Said process involves digesting said hazardous waste material in an aqueous solution of an alkali metal hydroxide, adjusting the pH of the resulting solution to about 11.0 to about 13.0 with NaOH to precipitate essentially all of the magnesium and silicon species, filtering the digestion mix to remove the solids from said resulting solution which contains about 80 to about 100% of said tungsten and essentially none of said magnesium and said silicon, slurrying the hazardous solids in hot water, and adding to the slurry a ferric salt solution to precipitate ferric hydroxide, filtering this mixture to give a solid which passes the EPA standard test for solids with respect to arsenic

  1. Superhard Rhenium/Tungsten Diboride Solid Solutions.

    Science.gov (United States)

    Lech, Andrew T; Turner, Christopher L; Lei, Jialin; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B

    2016-11-02

    Rhenium diboride (ReB 2 ), containing corrugated layers of covalently bonded boron, is a superhard metallic compound with a microhardness reaching as high as 40.5 GPa (under an applied load of 0.49 N). Tungsten diboride (WB 2 ), which takes a structural hybrid between that of ReB 2 and AlB 2 , where half of the boron layers are planar (as in AlB 2 ) and half are corrugated (as in ReB 2 ), has been shown not to be superhard. Here, we demonstrate that the ReB 2 -type structure can be maintained for solid solutions of tungsten in ReB 2 with tungsten content up to a surprisingly large limit of nearly 50 atom %. The lattice parameters for the solid solutions linearly increase along both the a- and c-axes with increasing tungsten content, as evaluated by powder X-ray and neutron diffraction. From micro- and nanoindentation hardness testing, all of the compositions within the range of 0-48 atom % W are superhard, and the bulk modulus of the 48 atom % solid solution is nearly identical to that of pure ReB 2 . These results further indicate that ReB 2 -structured compounds are superhard, as has been predicted from first-principles calculations, and may warrant further studies into additional solid solutions or ternary compounds taking this structure type.

  2. Material model of pelvic bone based on modal analysis: a study on the composite bone.

    Science.gov (United States)

    Henyš, Petr; Čapek, Lukáš

    2017-02-01

    Digital models based on finite element (FE) analysis are widely used in orthopaedics to predict the stress or strain in the bone due to bone-implant interaction. The usability of the model depends strongly on the bone material description. The material model that is most commonly used is based on a constant Young's modulus or on the apparent density of bone obtained from computer tomography (CT) data. The Young's modulus of bone is described in many experimental works with large variations in the results. The concept of measuring and validating the material model of the pelvic bone based on modal analysis is introduced in this pilot study. The modal frequencies, damping, and shapes of the composite bone were measured precisely by an impact hammer at 239 points. An FE model was built using the data pertaining to the geometry and apparent density obtained from the CT of the composite bone. The isotropic homogeneous Young's modulus and Poisson's ratio of the cortical and trabecular bone were estimated from the optimisation procedure including Gaussian statistical properties. The performance of the updated model was investigated through the sensitivity analysis of the natural frequencies with respect to the material parameters. The maximal error between the numerical and experimental natural frequencies of the bone reached 1.74 % in the first modal shape. Finally, the optimised parameters were matched with the data sheets of the composite bone. The maximal difference between the calibrated material properties and that obtained from the data sheet was 34 %. The optimisation scheme of the FE model based on the modal analysis data provides extremely useful calibration of the FE models with the uncertainty bounds and without the influence of the boundary conditions.

  3. Advanced Electrochemical Machining (ECM) for tungsten surface micro-structuring in blanket applications

    International Nuclear Information System (INIS)

    Holstein, Nils; Krauss, Wolfgang; Konys, Jürgen; Heuer, Simon; Weber, Thomas

    2016-01-01

    Highlights: • Electrochemical Machining is an appropriate tool for tungsten shaping. • Progress in shaping achieved by combination of ECM with advanced micro-lithography. • Application in First Wall for connection of plasma facing material to breeder blanket. • Successful development of adhesion promotors by ECM for plasma spraying interlayers. • Microstructure electrochemical manufacturing of tungsten in sizes of 100 μm achieved. - Abstract: Plasma facing components for fusion applications must have to exhibit long-term stability under extreme physical conditions, and therefore any material imperfections caused by mechanical and/or thermal stresses in the shaping processes cannot be tolerated due to a high risk of possible technical failures under fusion conditions. To avoid such defects, the method of Electrochemical Machining (ECM) enables a complete defect-free processing of removal of tungsten material during the desired shaping, also for high penetration depths. Furthermore, supported by lithographic mask pretreatment, three-dimensional distinct geometric structures can be positive-imaged via the directional galvanic dissolution applying M-ECM process into the tungsten bulk material. New required applications for tungsten components, e.g. as adhesion promotors in W-surfaces to enable sure grip and bonding of thick plasma-spraying layers for blanket components, will define the way of further miniaturization of well-established millimeter dimensioned M-ECM shaping processes to dimensions of 100 μm and furthermore down to 50 μm. Besides current M-ECM limits the article describes inevitable needs of further developments for mask resists, mask materials and the resulting ECM parameters, to reach the needed accuracy in tungsten microstructure. The achieved progress and observed correlations of processing parameters will be manifested by produced demonstrators made by the new “μM”-ECM process.

  4. Advanced Electrochemical Machining (ECM) for tungsten surface micro-structuring in blanket applications

    Energy Technology Data Exchange (ETDEWEB)

    Holstein, Nils, E-mail: nils.holstein@kit.edu [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Baden-Württemberg (Germany); Krauss, Wolfgang; Konys, Jürgen [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Baden-Württemberg (Germany); Heuer, Simon; Weber, Thomas [Research Center Jülich, Institute of Energy- and Climate Research – Plasma Physics (IEK-4), D-52425 Jülich (Germany)

    2016-11-01

    Highlights: • Electrochemical Machining is an appropriate tool for tungsten shaping. • Progress in shaping achieved by combination of ECM with advanced micro-lithography. • Application in First Wall for connection of plasma facing material to breeder blanket. • Successful development of adhesion promotors by ECM for plasma spraying interlayers. • Microstructure electrochemical manufacturing of tungsten in sizes of 100 μm achieved. - Abstract: Plasma facing components for fusion applications must have to exhibit long-term stability under extreme physical conditions, and therefore any material imperfections caused by mechanical and/or thermal stresses in the shaping processes cannot be tolerated due to a high risk of possible technical failures under fusion conditions. To avoid such defects, the method of Electrochemical Machining (ECM) enables a complete defect-free processing of removal of tungsten material during the desired shaping, also for high penetration depths. Furthermore, supported by lithographic mask pretreatment, three-dimensional distinct geometric structures can be positive-imaged via the directional galvanic dissolution applying M-ECM process into the tungsten bulk material. New required applications for tungsten components, e.g. as adhesion promotors in W-surfaces to enable sure grip and bonding of thick plasma-spraying layers for blanket components, will define the way of further miniaturization of well-established millimeter dimensioned M-ECM shaping processes to dimensions of 100 μm and furthermore down to 50 μm. Besides current M-ECM limits the article describes inevitable needs of further developments for mask resists, mask materials and the resulting ECM parameters, to reach the needed accuracy in tungsten microstructure. The achieved progress and observed correlations of processing parameters will be manifested by produced demonstrators made by the new “μM”-ECM process.

  5. Microstructural study of tungsten influence on Co-Cr alloys

    International Nuclear Information System (INIS)

    Karaali, A.; Mirouh, K.; Hamamda, S.; Guiraldenq, P.

    2005-01-01

    Alloying elements, such as W, Mo, Mn,..., are of a great importance in the preoxidation of dental alloys and, consequently, on the ceramic/metal bond quality. This study deals with the effect of tungsten addition on the microstructural state of Co-Cr dental alloys, before the ceramisation process. These materials were prepared by unidirectional solidification. Their characterization has been carried out, using transmission electron microscopy (TEM) and X-ray diffraction. It shows that the addition of tungsten up to 8 wt.% induces structural transformations, which are believed to be linked to the added amount of tungsten

  6. Uncertainty on Fatigue Damage Accumulation for Composite Materials

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented.......In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented....

  7. Preparation and electrocatalytic property of WC/carbon nanotube composite

    International Nuclear Information System (INIS)

    Li Guohua; Ma Chunan; Tang Junyan; Sheng Jiangfeng

    2007-01-01

    Tungsten carbide/carbon nanotube composite was prepared by surface decoration and in situ reduction-carbonization. The samples were characterized by XRD, SEM, EDS, TEM, HRTEM and BET, respectively. The XRD results show that the sample is composed of carbon nanotube, tungsten carbide and tungsten oxide. The EDS results show that the distribution of tungsten oxide is consistent with that of tungsten carbide. SEM, TEM and HRTEM results show that the tungsten carbide nanoparticle with irregular granule grows on the outside surface of carbon nanotube homogenously. The electrocatalytic activity of the sample for p-nitrophenol reduction was tested by a powder microelectrode in a basic solution. The results show that the electrocatalytic activity of the sample is higher than that of granular tungsten carbide, hollow globe tungsten carbide with mesoporosity and carbon nanotube purified. The improvement of the electrocatalytic activity of the sample can be attributed to its components and composite structure. These results indicate that tungsten carbide/carbon nanotube composite is one of the effective ways to improve the electrocatalytic activity of tungsten carbide

  8. Studies on the pressed yttrium oxide-tungsten matrix as a possible dispenser cathode material

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan; Wang, Jinshu, E-mail: wangjsh@bjut.edu.cn; Liu, Wei; Liu, Xiang; Zhou, Meiling

    2015-01-15

    Yttrium oxide was chosen as the secondary emission substance based on calculation results through first principle theory method. A new kind of pressed yttrium oxide-tungsten matrix dispenser cathodes are prepared by a sol–gel method combined with high temperature sintering in dry hydrogen atmosphere. The results show that the growth of the grains is hampered by the pinning effect of Y{sub 2}O{sub 3} distributing uniformly between the tungsten particles, resulting in the formation of small grain size. It is found that Y{sub 2}O{sub 3} improves the secondary electron emission property, i.e., the secondary emission yield increases with the increase of Y{sub 2}O{sub 3} content in the samples. The maximum secondary emission yield δ{sub max} of the cathode with 15% amount of Y{sub 2}O{sub 3} can reach 2.92. Furthermore, the cathode shows a certain thermionic emission performance. The zero field emission current density J{sub 0} of 4.18A/cm{sup 2} has reached at 1050 °C{sub b} for this kind of cathode after being activated at 1200 °C{sub b}, which are much higher than that of rare earth oxide doped molybdenum (REO-Mo) cathode reported in the previous work. - Highlights: • Yttrium oxide was chosen as the secondary emission substance based on first principle calculation result. • A new kind of cathode has been successfully obtained. • Pressed yttrium oxide-tungsten matrix dispenser cathode exhibits good emission properties. • The improvement of the cathode emission can be well explained by the surface analysis results presented in this work.

  9. Vegetable Fibers for Composite Materials In Constructive Sector

    Science.gov (United States)

    Giglio, Francesca; Savoja, Giulia

    2017-08-01

    The aim of the research is to study and to test bio-mixture for laminas to use in construction field components. Composite materials are becoming more common in different sectors, but their embodied energy is an environmental problem. For this, in recent years, the researchers investigate new mixtures for composites, in particular with vegetable fibers and bio-based epoxy resin. The research carried out different laboratory tests for material and mechanical characterization, starting from the analysis of vegetable fibers, and arriving to test different kind of laminas with sundry fabrics and bio-based epoxy resin. In the most general organization of the theme, the research has the overall objective to contribute to reduce composites environmental impacts, with the promotion of local production chains about innovative materials from renewable and sustainable sources.

  10. High temperature material characterization and advanced materials development

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H. and others

    2005-03-01

    The study is to characterize the structural materials under the high temperature, one of the most significant environmental factors in nuclear systems. And advanced materials are developed for high temperature and/or low activation in neutron irradiation. Tensile, fatigue and creep properties have been carried out at high temperature to evaluate the mechanical degradation. Irradiation tests were performed using the HANARO. The optimum chemical composition and heat treatment condition were determined for nuclear grade 316NG stainless steel. Nitrogen, aluminum, and tungsten were added for increasing the creep rupture strength of FMS steel. The new heat treatment method was developed to form more stable precipitates. By applying the novel whiskering process, high density SiC/SiC composites with relative density above 90% could be obtained even in a shorter processing time than the conventional CVI process. Material integrated databases are established using data sheets. The databases of 6 kinds of material properties are accessible through the home page of KAERI material division

  11. Radiative capture of slow electrons by tungsten surface

    International Nuclear Information System (INIS)

    Artamonov, O.M.; Belkina, G.M.; Samarin, S.N.; Yakovlev, I.I.

    1987-01-01

    Isochromatic spectra of radiation capture of slow electrons by the surface of mono- and polycrystal tungsten recorded on 322 and 405 nm wave lengths are presented. The effect of oxygen adsorption on isochromates of the (110) face of tungsten monocrystal is investigated. The obtained isochromatic spectra are compared with energy band structure of tungsten. Based on the analysis of the obtained experimental results it is assumed that optical transition to the final state at the energy of 7.3 eV relatively to Fermi level is conditioned by surface states of the tungsten face (110)

  12. A fracture mechanics study of tungsten failure under high heat flux loads

    International Nuclear Information System (INIS)

    Li, Muyuan

    2015-01-01

    The performance of fusion devices is highly dependent on plasma-facing components. Tungsten is the most promising candidate material for armors in plasma-facing components in ITER and DEMO. However, the brittleness of tungsten below the ductile-to-brittle transition temperature is very critical to the reliability of plasma-facing components. In this work, thermo-mechanical and fracture behaviors of tungsten are predicted numerically under fusion relevant thermal loadings.

  13. Multifunctional materials and composites

    Science.gov (United States)

    Seo, Dong-Kyun; Jeon, Ki-Wan

    2017-08-22

    Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.

  14. Research status and issues of tungsten plasma facing materials for ITER and beyond

    International Nuclear Information System (INIS)

    Ueda, Y.; Coenen, J.W.; De Temmerman, G.; Doerner, R.P.; Linke, J.; Philipps, V.; Tsitrone, E.

    2014-01-01

    This review summarizes surface morphology changes of tungsten caused by heat and particle loadings from edge plasmas, and their effects on enhanced erosion and material lifetime in ITER and beyond. Pulsed heat loadings by transients (disruption and ELM) are the largest concerns due to surface melting, cracking, and dust formation. Hydrogen induced blistering is unlikely to be an issue of ITER. Helium bombardment would cause surface morphology changes such as W fuzz, He holes, and nanometric bubble layers, which could lead to enhanced erosion (e.g. unipolar arcing of W fuzz). Particle loadings could enhance pulsed heat effects (cracking and erosion) due to surface layer embrittlement by nanometric bubbles and solute atoms. But pulsed heat loadings alleviate surfaces morphology changes in some cases (He holes by ELM-like heat pulses). Effects of extremely high fluence (∼10 30 m −2 ), mixed materials, and neutron irradiation are important issues to be pursued for ITER and beyond. In addition, surface refurbishment to prolong material lifetime is also an important issue

  15. Surface energy anisotropy of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R; Grenga, H E [Georgia Inst. of Tech., Atlanta (USA). School of Chemical Engineering

    1976-10-01

    Field-ion microscopy was used to study the faceting behavior and/or surface energy anisotropy of tungsten in vacuum and in hydrogen. In vacuum below 1700 K the activation energy for (110) facet growth agreed with values previously reported for surface diffusion on tungsten. The observed anisotropy values at 0.5 Tsub(m), where Tsub(m) is the absolute melting temperature of tungsten (approximately 3680 K), were different from those previously reported at higher temperatures and more nearly agreed with broken bond calculations based on Mie potential using m=5, n=8, and a 1.5% lattice expansion. Hydrogen appeared to have a negligible effect on surface energy anisotropy, but did preferentially increase surface diffusion rates on (310) regions.

  16. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    Science.gov (United States)

    Sharafat, Shahram; Ghoniem, Nasr M.; Anderson, Michael; Williams, Brian; Blanchard, Jake; Snead, Lance; HAPL Team

    2005-12-01

    The high average power laser program is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first wall (FW) will be subject to high energy density radiation and high doses of high energy helium implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed operation and exfoliation due to the retention of implanted helium. Even if a solid tungsten armor coating would survive the high temperature cyclic operation with minimal failure, the high helium implantation and retention would result in unacceptable material loss rates. Micro-engineered materials, such as castellated structures, plasma sprayed nano-porous coatings and refractory foams are suggested as a first wall armor material to address these fundamental concerns. A micro-engineered FW armor would have to be designed with specific geometric features that tolerate high cyclic heating loads and recycle most of the implanted helium without any significant failure. Micro-engineered materials are briefly reviewed. In particular, plasma-sprayed nano-porous tungsten and tungsten foams are assessed for their potential to accommodate inertial fusion specific loads. Tests show that nano-porous plasma spray coatings can be manufactured with high permeability to helium gas, while retaining relatively high thermal conductivities. Tungsten foams where shown to be able to overcome thermo-mechanical loads by cell rotation and deformation. Helium implantation tests have shown, that pulsed implantation and heating releases significant levels of implanted helium. Helium implantation and release from tungsten was modeled using an expanded kinetic rate theory, to include the effects of pulsed implantations and thermal cycles. Although, significant challenges remain micro-engineered materials are shown to constitute potential

  17. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    International Nuclear Information System (INIS)

    Sharafat, Shahram; Ghoniem, Nasr M.; Anderson, Michael; Williams, Brian; Blanchard, Jake; Snead, Lance

    2005-01-01

    The high average power laser program is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first wall (FW) will be subject to high energy density radiation and high doses of high energy helium implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed operation and exfoliation due to the retention of implanted helium. Even if a solid tungsten armor coating would survive the high temperature cyclic operation with minimal failure, the high helium implantation and retention would result in unacceptable material loss rates. Micro-engineered materials, such as castellated structures, plasma sprayed nano-porous coatings and refractory foams are suggested as a first wall armor material to address these fundamental concerns. A micro-engineered FW armor would have to be designed with specific geometric features that tolerate high cyclic heating loads and recycle most of the implanted helium without any significant failure. Micro-engineered materials are briefly reviewed. In particular, plasma-sprayed nano-porous tungsten and tungsten foams are assessed for their potential to accommodate inertial fusion specific loads. Tests show that nano-porous plasma spray coatings can be manufactured with high permeability to helium gas, while retaining relatively high thermal conductivities. Tungsten foams where shown to be able to overcome thermo-mechanical loads by cell rotation and deformation. Helium implantation tests have shown, that pulsed implantation and heating releases significant levels of implanted helium. Helium implantation and release from tungsten was modeled using an expanded kinetic rate theory, to include the effects of pulsed implantations and thermal cycles. Although, significant challenges remain micro-engineered materials are shown to constitute potential

  18. THE EFFECT OF PREPARATION CONDITIONS OF RAPIDLY SOLIDIFIED IRON BASED GRANULES ON PROPERTIES OF COMPOSITE MATERIAL FORMED BY CASTING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2017-01-01

    Full Text Available The variety of requirements for friction pairs requires the development of different technologies for the production of tribological materials with reference to the operation modes. Composite materials obtained by the casting technology have been successfully applied for the normalization of the thermomechanical state of the steam turbines. These composites consist of the matrix based on copper alloys reinforced with cast iron granules. Because the structure and properties of cast iron are determined by the conditions of their production studies have been conducted on determination of preparation conditions on grain structure and properties of the synthesized composite material. Using an upgraded unit for production of granules technological regimes were determined providing narrow fractional composition. It has been found that granules formed are characterized with typical microstructure of white cast iron containing perlite and ledeburite. Microhardness of pilot cast iron granules is characterized by high values (from 7450 up to 9450 MPa and depends on the size of the fraction. Composite materials obtained using experimental granules had a microhardness of the reinforcing cast iron granules about 3500 MPa, and a bronze matrix – 1220 MPa, which is higher than the hardness of the composite material obtained by using the annealed DCL-1granules (2250 MPa. Metal base of experimental granules in the composite material has the structure of perlitic ductile iron with inclusions of ferrite not exceeding 10–15% and set around a flocculent graphite. As a result, the increase of physical-mechanical properties of finished products made of composite material is observed. 

  19. Advanced materials for space nuclear power systems

    International Nuclear Information System (INIS)

    Titran, R.H.; Grobstein, T.L.

    1991-01-01

    Research on monolithic refractory metal alloys and on metal matrix composites is being conducted at the NASA Lewis Research Center, Cleveland, Ohio, in support of advanced space power systems. The overall philosophy of the research is to develop and characterize new high-temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites (Gr/Cu) for heat rejection fins, and tungsten fiber reinforced niobium matrix composites (W/NB) for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications

  20. Reinforced concrete treatment as composite material

    International Nuclear Information System (INIS)

    Oller, S.; Onate, E.; Miguel, J.

    1995-01-01

    This paper presents the general mixing theory applied to the numerical simulation of multiphase composite material behaviour as reinforced concrete materials. This theory is based on the mixture of that composite basic substances and allows to evaluate the inter-dependence behaviour between the different compounding constitutive models. If it would be necessary to consider the initial anisotropy of each compound it could be done by mean of the mapped isotropic plastic formulation. The approach is a generalization of the classic isotropic plasticity theory to be applied to either ortho tropic or anisotropic materials such as reinforced concrete. The existence of a stress and strain real anisotropic spaces, and the respective fictitious isotropic spaces are assumed, where a mapped fictitious problem is solved. Those spaces are relating by means of two fourth order transformation tensors. Both formulation are joined establishing a powerful work tool for the treatment of bulk-fiber composite materials. The induced anisotropy behaviour is take into account by each compounding constitutive formulation. (author). 24 refs., 3 figs

  1. Influence of recrystallization on thermal shock resistance of various tungsten grades

    International Nuclear Information System (INIS)

    Uytdenhouwen, I.; Decreton, M.; Hirai, T.; Linke, J.; Pintsuk, G.; Oost, G. van

    2007-01-01

    Thermal shock resistance of various tungsten grades (different manufacturing technologies and heat treatments) was examined under plasma disruption conditions, especially in the cracking regime, i.e. below the melting threshold. The tests have been simulated with the electron beam test facility JUDITH. The comparison of the thermal shock resistance showed that sintered tungsten appeared to be better than the deformed tungsten material and clear degradation after recrystallization was found. Damage processes linked to the mechanical properties of W are discussed

  2. Industry to Education Technical Transfer Program & Composite Materials. Composite Materials Course. Fabrication I Course. Fabrication II Course. Composite Materials Testing Course. Final Report.

    Science.gov (United States)

    Massuda, Rachel

    These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…

  3. Tasmanian tin and tungsten granites - their radiometric characteristics

    International Nuclear Information System (INIS)

    Yeates, A.N.

    1982-01-01

    A radiometric survey of Tasmanian granites has shown, with one exception, that tin and tungsten-bearing granites have high radioactivity, largely owing to increased uranium. Many have a high uranium/thorium ratio as well. Radiometric measurements can also delineate different granite types within composite bodies

  4. High strain and strain-rate behaviour of PTFE/aluminium/tungsten mixtures

    International Nuclear Information System (INIS)

    Addiss, John; Walley, Stephen; Proud, William; Cai Jing; Nesterenko, Vitali

    2007-01-01

    Conventional drop-weight techniques were modified to accommodate low-amplitude force transducer signals from low-strength, cold isostatically pressed 'heavy' composites of polytetrafluoroethylene, aluminum and tungsten (W). The failure strength, strain and the post-critical behavior of failed samples were measured for samples of different porosity and tungsten grain size. Unusual phenomenon of significantly higher strength (55 MPa) of porous composites (density 5.9 g/cm 3 ) with small W particles ( 3 ) with larger W particles (44 μm) at the same volume content of components was observed. This is attributed to force chains created by a network of small W particles. Interrupted tests at different levels of strain revealed the mechanisms of fracture under dynamic compression

  5. Tungsten carbide and tungsten-molybdenum carbides as automobile exhaust catalysts

    International Nuclear Information System (INIS)

    Leclercq, L.; Daubrege, F.; Gengembre, L.; Leclercq, G.; Prigent, M.

    1987-01-01

    Several catalyst samples of tungsten carbide and W, Mo mixed carbides with different Mo/W atom ratios, have been prepared to test their ability to remove carbon monoxide, nitric oxide and propane from a synthetic exhaust gas simulating automobile emissions. Surface characterization of the catalysts has been performed by X-ray photoelectron spectroscopy (XPS) and selective chemisorption of hydrogen and carbon monoxide. Tungsten carbide exhibits good activity for CO and NO conversion, compared to a standard three-way catalyst based on Pt and Rh. However, this W carbide is ineffective in the oxidation of propane. The Mo,W mixed carbides are markedly different having only a very low activity. 9 refs.; 10 figs.; 5 tabs

  6. Development of Cu-Hf-Al ternary systems and tungsten wire/particle reinforced Cu48Hf43Al9 bulk metallic glass composites for strengthening

    International Nuclear Information System (INIS)

    Park, Joyoung; An, Jihye; Choi-Yim, Haein

    2010-01-01

    Stable bulk glass forming alloys can be developed over a wide range of compositions in Cu-Hf-Al ternary systems starting from the Cu 49 Hf 42 Al 9 bulk metallic glass. Ternary Cu-Hf-Al alloys can be cast directly from the melt into copper molds to form fully amorphous strips with thicknesses of 1 to 6 mm. The maximum critical diameter of the new Cu-Hf-Al ternary alloy was 6 mm. X-ray diffraction patterns were used to confirm the amorphous nature of the ternary Cu-Hf-Al alloys. To increase the toughness of these metallic glasses, we reinforced the Cu 48 Hf 43 Al 9 bulk metallic glass-forming liquid with a 50% volume fraction of tungsten particles and an 80% volume fraction of tungsten wires with diameters of 242.4 μm. Composites with a critical diameter of 7 mm and length 70 mm were synthesized. The structure of the composites was confirmed by using X-ray diffraction (XRD), and the scanning electron microscopy (SEM). The mechanical properties of the composites were studied in compression tests. The thermal stability and the crystallization processes of the Cu-Hf-Al alloys and composites were investigated by using differential scanning calorimetry (DSC). Values of the glass transition temperature (T g ), the crystallization temperature (T x ), and the supercooled liquid region (ΔT = T x - T g ) are given in this paper.

  7. Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie; Chen, Jinwei, E-mail: jwchen@scu.edu.cn; Jiang, Yiwu; Zhou, Feilong; Wang, Gang; Wang, Ruilin, E-mail: rl.wang@scu.edu.cn

    2016-12-15

    Graphical abstract: A hybrid catalyst was prepared via a quite green and simple method to achieve an one-pot synthesis of the N-doping carbon, tungsten carbides, and iron/cobalt carbides. It exhibited comparable electrocatalytic activity, higher durability and ability to methanol tolerance compared with commercial Pt/C to ORR. - Highlights: • A novel type of hybrid Fe/Co/WC@NC catalysts have been successfully synthesized. • The hybrid catalyst also exhibited better durability and methanol tolerance. • Multiple effective active sites of Fe{sub 3}C, Co{sub 3}C, WC, and NC help to improve catalytic performance. - Abstract: This work presents a type of hybrid catalyst prepared through an environmental and simple method, combining a pyrolysis of transition metal precursors, a nitrogen-containing material, and a tungsten source to achieve a one-pot synthesis of N-doping carbon, tungsten carbides, and iron/cobalt carbides (Fe/Co/WC@NC). The obtained Fe/Co/WC@NC consists of uniform Fe{sub 3}C and Co{sub 3}C nanoparticles encapsulated in graphitized carbon with surface nitrogen doping, closely wrapped around a plate-like tungsten carbide (WC) that functions as an efficient oxygen reduction reaction (ORR) catalyst. The introduction of WC is found to promote the ORR activity of Fe/Co-based carbide electrocatalysts, which is attributed to the synergistic catalysts of WC, Fe{sub 3}C, and Co{sub 3}C. Results suggest that the composite exhibits comparable electrocatalytic activity, higher durability, and ability for methanol tolerance compared with commercial Pt/C for ORR in alkaline electrolyte. These advantages make Fe/Co/WC@NC a promising ORR electrocatalyst and a cost-effective alternative to Pt/C for practical application as fuel cell.

  8. Ab initio and DFT benchmarking of tungsten nanoclusters and tungsten hydrides

    International Nuclear Information System (INIS)

    Skoviera, J.; Novotny, M.; Cernusak, I.; Oda, T.; Louis, F.

    2015-01-01

    We present several benchmark calculations comparing wave-function based methods and density functional theory for model systems containing tungsten. They include W 4 cluster as well as W 2 , WH and WH 2 molecules. (authors)

  9. Detonation wear-resistant coatings, alloy powders based on Cr-Si

    Directory of Open Access Journals (Sweden)

    А.Г. Довгаль

    2009-03-01

    Full Text Available  Coatings from composition material Cr-Si-B on steel by detonation spraying method are obtained. Composition, structure and tribotechnical characteristics of coatings in comparison with traditional materials on the basis of Ni-Cr and alloy of tungsten and cobalt are investigated.

  10. Leaching of the potentially toxic pollutants from composites based on waste raw material

    Directory of Open Access Journals (Sweden)

    Terzić Anja

    2012-01-01

    Full Text Available The disposal of the fly ash generated in coal based power-plants may pose a significant risk to the environment due to the possible leaching of hazardous pollutants, such as toxic metals. Also, there is a risk of leaching even when fly ash is built-in the construction composites. Fly ashes from various landfills were applied in several composite samples (mortar, concrete and brick without any physical or thermal pre-treatment. The leachability of the potentially toxic pollutants from the fly ash based products was investigated. The leaching behavior and potential environmental impact of the 11 potentially hazardous elements was tracked: Pb, Cd, Zn, Cu, Ni, Cr, Hg, As, Ba, Sb and Se. A detailed study of physico-chemical characteristics of the fly ash, with accent on trace elements and the chemical composition investigation is included. Physico/chemical properties of fly ash were investigated by means of X-ray fluorescence, differential thermal analysis and X-ray diffraction methods. Scanning electron microscope was used in microstructural analysis. The results show that most of the elements are more easily leachable from the fly ash in comparison with the fly ash based composites. The leaching of investigated pollutants is within allowed range thus investigated fly ashes can be reused in construction materials production.

  11. Composite material dosimeters

    Science.gov (United States)

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  12. Serrated flow behavior in tungsten heavy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Das, Jiten, E-mail: das.jiten@gmail.com; Sankaranarayana, M.; Nandy, T.K.

    2015-10-14

    Flow behavior of a tungsten heavy alloy of composition, 90.5 wt% W–7.1 wt% Ni–1.65 wt% Fe–0.5 wt% Co–0.25 wt% Mo was investigated in a temperature range of 223–973 K and strain rate range of 10{sup −5}–10{sup −2} s{sup −1}. In the temperature range of 773–873 K, the stress strain curves were characterized by jerky flow pointing towards Dynamic Strain Ageing (DSA)/Portevin Le-Chatelier's (PLC) effect. Characteristics of DSA were analyzed in detail. Based on the value of activation energy determined from the critical strain method, diffusion of interstitials (carbon, oxygen, nitrogen and hydrogen) were thought to be responsible for the DSA effect. The results were discussed in relation to information existing in this area in tungsten heavy alloys. The study of fracture surface of tensile tested samples (in the range of 823–973 K) showed that the fractographic features, mostly intergranular, predominantly govern the overall ductility of the alloy and do not change except for surface oxidation at relatively higher temperatures.

  13. Dynamic control of low-Z material deposition and tungsten erosion by strike point sweeping on DIII-D

    Directory of Open Access Journals (Sweden)

    J. Guterl

    2017-08-01

    Full Text Available Carbon deposition on tungsten between ELMs was investigated in DIII-D in semi-attached/detached H-mode plasma conditions using fixed outer strike point (OSP positions. Carbon deposition during plasma exposure of tungsten was monitored in-situ by measuring the reflectivity of the tungsten sample surface. No significant carbon deposition, i.e., without strong variations of the reflectivity, was observed during these experiments including discharges at high densities. In contrast, ERO modeling predicts a significant carbon deposition on the tungsten surface for those high density plasma conditions. The surface reflectivity decreases with methane injection, consistent with increased carbon coverage, as expected. The sweeping of OSP leads to a pronounced increase of the surface reflectivity, suggesting that the strike point sweeping may provide an effective means to remove carbon coating from tungsten surface. The ERO modeling however predicts again a regime of carbon deposition for these experiments. The discrepancies between carbon deposition regime predicted by the ERO model and the experimental observations suggest that carbon erosion during ELMs may significantly affect carbon deposition on tungsten.

  14. The dynamical mechanical properties of tungsten under compression at working temperature range of divertors

    International Nuclear Information System (INIS)

    Zhu, C.C.; Song, Y.T.; Peng, X.B.; Wei, Y.P.; Mao, X.; Li, W.X.; Qian, X.Y.

    2016-01-01

    In the divertor structure of ITER and EAST with mono-block module, tungsten plays not only a role of armor material but also a role of structural material, because electromagnetic (EM) impact will be exerted on tungsten components in VDEs or CQ. The EM loads can reach to 100 MN, which would cause high strain rates. In addition, directly exposed to high-temperature plasma, the temperature regime of divertor components is complex. Aiming at studying dynamical response of tungsten divertors under EM loads, an experiment on tungsten employed in EAST divertors was performed using a Kolsky bar system. The testing strain rates and temperatures is derived from actual working conditions, which makes the constitutive equation concluded by using John-Cook model and testing data very accurate and practical. The work would give a guidance to estimate the dynamical response, fatigue life and damage evolution of tungsten divertor components under EM impact loads. - Graphical abstract: From the comparison between the experimental curves and the predicted curves calculated by adopting the corrected m, it is very clear that the new model is of great capability to explain the deformation behavior of the tungsten material under dynamic compression at high temperatures. (EC, PC and PCM refers to experimental curve, predicted curve and predicted curve with a corrected m. Different colors represent different scenarios.). - Highlights: • Test research on dynamic properties of tungsten at working temperature range and strain rate range of divertors. • Constitutive equation descrbing strain hardening, strain rate hardening and temperature softening. • A guidance to estimate dynamical response and damage evolution of tungsten divertor components under impact.

  15. RF induction plasma spheroidization of tungsten powders

    International Nuclear Information System (INIS)

    Gu Zhogntao; Ye Gaoying; Liu Chuandong; Tong Honghui

    2009-01-01

    Irregularly-shaped tungsten powders (average granular sizes of 512 μm) have been spheroidized by radio frequency (RF)induction plasma. The effects of feed rate, mode of material dispersion, particle size on spheroidization efficiency are investigated. Experimental results show that the spheroidization efficiency decreases rapidly when the feed rate increases to more than 95 g/min. Only 30% spheroidization efficiency is gained at the feed rate of 135.75 g/min. The spheroidization efficiency is also affected by the flow rate of carrier gas. When the flow rate of carrier gas is 0.12 m 3 /h, the dispersion effect is the best, and the spheroidization efficiency is almost 100%. The apparent density of tungsten powders increases a bit with the increase of spheroidization efficiency. And the particle size uniformity of spheroidized tungsten powders is in accordance with that of original powders. (authors)

  16. Nanostructured composites based on carbon nanotubes and epoxy resin for use as radar absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Valdirene Aparecida [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil); Folgueras, Luiza de Castro; Candido, Geraldo Mauricio; Paula, Adriano Luiz de; Rezende, Mirabel Cerqueira, E-mail: mirabelmcr@iae.cta.br [Instituto de Aeronautica e Espaco (IAE), Sao Jose dos Campos, SP (Brazil). Div. de Materiais; Costa, Michelle Leali [Universidade Estadual Paulista Julio de Mesquita Filho (DMT/UNESP), Guaratingueta, SP (Brazil). Dept. de Materiais e Tecnologia

    2013-07-01

    Nanostructured polymer composites have opened up new perspectives for multifunctional materials. In particular, carbon nanotubes (CNTs) present potential applications in order to improve mechanical and electrical performance in composites with aerospace application. The combination of epoxy resin with multi walled carbon nanotubes results in a new functional material with enhanced electromagnetic properties. The objective of this work was the processing of radar absorbing materials based on formulations containing different quantities of carbon nanotubes in an epoxy resin matrix. To reach this objective the adequate concentration of CNTs in the resin matrix was determined. The processed structures were characterized by scanning electron microscopy, rheology, thermal and reflectivity in the frequency range of 8.2 to 12.4 GHz analyses. The microwave attenuation was up to 99.7%, using only 0.5% (w/w) of CNT, showing that these materials present advantages in performance associated with low additive concentrations (author)

  17. A novel composite electrode based on tungsten oxide nanoparticles and carbon nanotubes for the electrochemical determination of paracetamol

    International Nuclear Information System (INIS)

    Baytak, Aysegul Kutluay; Duzmen, Sehriban; Teker, Tugce; Aslanoglu, Mehmet

    2015-01-01

    An electrochemical sensor was prepared by the modification of a glassy carbon electrode (GCE) with a composite of nanoparticles of tungsten oxide (WO 3 ) and carbon nanotubes (CNTs) for the quantification of paracetamol (PR). Energy dispersive X-ray analysis (EDX) and scanning electron microscopy (SEM) were performed for the characterization of the nanocomposite layer. Compared with a bare GCE and a GCE modified with CNTs, the proposed electrode (WO 3 NPs/CNTs/GCE) exhibited a well-defined redox couple for PR and a marked enhancement of the current response. The experimental results also showed that ascorbic acid (AA) did not interfere with the selective determination of PR. The proposed electrode was used for the determination of PR in 0.1 M phosphate buffer solution (PBS) at pH 7.0 using square wave voltammetry (SWV). The peak current increased linearly with the concentration of PR in the range of 1.0 × 10 −9 –2.0 × 10 −7 M. The detection limit (LOD) was 5.54 × 10 −11 M (based on 3 S b /m). The proposed voltammetric sensor provided long-time stability, improved voltammetric behavior and good reproducibility for PR. The selective, accurate and precise determination of PR makes the proposed electrode of great interest for monitoring its therapeutic use. - Highlights: • A voltammetric nanosensor was prepared using nanoparticles of WO 3 and CNTs. • A selective quantification of paracetamol was carried out in the presence of AA. • A linear plot was obtained for current responses versus concentrations over the range from 1.0 × 10 −9 to 2.0 × 10 −7 M. • A detection limit of 554 pM was obtained for paracetamol using the proposed nanosensor. • An accurate quantification makes the proposed nanosensor of great interest for public health

  18. Advanced ceramic matrix composites for high energy x-ray generation

    International Nuclear Information System (INIS)

    Khan, Amir Azam; Labbe, Jean Claude

    2011-01-01

    High energy x-ray targets are the anodes used in high performance tubes, designed to work for long operating times and at high power. Such tubes are used in computed tomography (CT) scan machines. Usually the tubes used in CT scanners have to continuously work at high temperatures and for longer scan durations in order to get maximum information during a single scan. These anodes are composed of a refractory substrate which supports a refractory metallic coating. The present work is a review of the development of a ceramic metal composite based on aluminium nitride (AlN) and molybdenum for potential application as the substrate. This composite is surface engineered by coating with tungsten, the most popular material for high energy x-ray targets. To spray metallic coatings on the surface of ceramic matrix composites dc blown arc plasma is employed. The objective is to increase the performance and the life of an x-ray tube. Aluminium nitride-molybdenum ceramic matrix composites were produced by uniaxial hotpressing mixtures of AlN and Mo powders. These composites were characterized for their mechanical, thermal, electrical and micro-structural properties. An optimized composition was selected which contained 25 vol.% of metallic phase dispersed in the AlN matrix. These composites were produced in the actual size of an anode and coated with tungsten through dc blown arc plasma spraying. The results have shown that sintering of large size anodes is possible through uniaxial pressing, using a modified sintering cycle

  19. A supercritical carbon dioxide plasma process for preparing tungsten oxide nanowires

    International Nuclear Information System (INIS)

    Kawashima, Ayato; Nomura, Shinfuku; Toyota, Hiromichi; Takemori, Toshihiko; Mukasa, Shinobu; Maehara, Tsunehiro

    2007-01-01

    A supercritical carbon dioxide (CO 2 ) plasma process for fabricating one-dimensional tungsten oxide nanowires coated with amorphous carbon is presented. High-frequency plasma was generated in supercritical carbon dioxide at 20 MPa by using tungsten electrodes mounted in a supercritical cell, and subsequently an organic solvent was introduced with supercritical carbon dioxide into the plasma. Electron microscopy and Raman spectroscopy investigations of the deposited materials showed the production of tungsten oxide nanowires with or without an outer layer. The nanowires with an outer layer exhibited a coaxial structure with an outer concentric layer of amorphous carbon and an inner layer of tungsten oxide with a thickness and diameter of 20-30 and 10-20 nm, respectively

  20. Molecular complexes of tungsten oxotetrachloride with azomethins

    International Nuclear Information System (INIS)

    Abramenko, Yu.V.; Garnovskij, A.D.; Abramenko, V.A.; Medvedeva, T.E.

    1992-01-01

    Series of new molecular complexes of tungsten oxotetrachloride with benza- and salicylalimines of equimolar compositions obtained. Substances are studied using element analysis, IR spectroscopy and conductometry. Octahedral structure of complexes with central atom coordination of benzalaniline molecules via azomethin nitrogen atom, and salicylalimines - via carbonyl oxygen atom of quinoid tantometric form of ligand is assumed

  1. Substitution of thoriated tungsten electrodes in Switzerland

    International Nuclear Information System (INIS)

    Kunz, H.; Piller, G.

    2006-01-01

    Thoriated tungsten electrodes are frequently used for inert gas welding (TIG/WIG). The use of these electrodes can lead to doses which are well above the limit for the general population (1mSv/year). This has been shown by different investigations, for example from the ''Berufsgenossenschaft''. With these findings in mind, the regulatory authorities (Swiss Federal Office of Public Health (SFOPH) and Swiss National Accident Insurance Association (Suva)) started in 1999 to examine the justification of thoriated tungsten electrodes and a possible substitution with products containing no radioactive material. Up to this time, the use of thoriated tungsten electrodes could be justified since no thorium-free products leading to comparable results were available on the market. This was also the reason why the SFOPH approved several types of these electrodes. Discussions with formation centers for welding and inquiries made at welding shops, trading companies and producers showed that in the mean-time thorium-free products with comparable welding specifications and results became available on the market. Since the 1 January 2004, thoriated tungsten electrodes can only be used if the user has obtained the corresponding license from the SFOPH. The use of thoriated tungsten electrodes is thus not completely forbidden, but very strict conditions have to be fulfilled. Up to now and due to the involvement of the relevant partners, the substitution process has not met any problem. Neither trading companies nor users made any opposition and no request for obtaining a license for thoriated tungsten electrodes was made. (orig.)

  2. Conceptual Design for a Bulk Tungsten Divertor Tile in JET

    International Nuclear Information System (INIS)

    Mertens, P.; Neubauer, O.; Philipps, V.; Schweer, B.; Samm, U.; Hirai, T.; Sadakov, S.

    2006-01-01

    With ITER on the verge of being build, the ITER-like Wall project (ILW) for JET aims at providing the plasma chamber of the tokamak with an environment of mixed materials which will be relevant to the support of decisions to the first wall construction and, from the point of view of plasma physics, to the corresponding investigations of possible plasma configuration and plasma-wall interaction. In both respects, tungsten plays a key role in the divertor cladding whereas beryllium will be used for the vessel's first wall. For the central tile, also called LB-SRP for '' Load-Bearing Septum Replacement Plate '', resort to bulk tungsten is envisaged in order to cope with the high loads expected (up to 10 MW/m 2 for about 10 s). This is indeed the preferred plasma-facing component for positioning the outer strike-point in the divertor. Forschungszentrum Juelich has developed a conceptual design for this tile, based on an assembly of tungsten blades or lamellae. It was selected in the frame of an extensive R-and-D study in search of a suitable, inertially cooled component(T. Hirai et al., R-and-D on full tungsten divertor and beryllium wall for JET ITER-like Wall Project: this conference). As reported elsewhere, the design is actually driven by electromagnetic considerations in the first place(S. Sadakov et al., Detailed electromagnetic analysis for optimisation of a tungsten divertor plate for JET: this conference). The lamellae are grouped in four stacks per tile which are independently attached to an equally re-designed supporting structure. A so-called adapter plate, also a new design, takes care of an appropriate interface to the base carrier of JET, onto which modules of two tiles are positioned and screwed by remote handling (RH) procedures. The compatibility of the design on the whole with RH requirements is another essential ingredient which was duly taken into account throughout. The concept and the underlying philosophy will be presented along with important

  3. Dependence of mechanical characteristics from composition and structure and optimization of mechanical fracture energy of polymer composite material based on high-molecular rubbers

    Directory of Open Access Journals (Sweden)

    E. Nurullaev

    2017-07-01

    Full Text Available By means of numerical experiment the authors investigate dependence of conventional rupturing stress and mechanical fracture energy at uniaxial tension from fractional composition of dispersed filler, plasticizer volume fraction in polymer binder, effective density of transverse bonds, applied to development of covering for different purposes and with advanced service life in temperature range from 223 to 323 K. They compare mechanical characteristics of polymer composite materials (PCMs based on high- and low-molecular rubbers. It was shown that rupturing stress of high-molecular rubber-based PCM is of a higher magnitude than the stress of low-molecular rubber-based one at almost invariable rupturing deformation. Numerical simulation by variation of composition parameters and molecular structure enables evaluation of its maximum fracture energy which is 1000 times higher than mechanical fracture energy of similar composites based on low-molecular rubbers.

  4. The choice of iron-containing filling for composite radioprotective material

    Science.gov (United States)

    Matyukhin, P. V.

    2018-03-01

    The paper presents the data the composition of modern composite building materials including materials which in addition to high physical-mechanical have radio-protective properties. The article presents infrared researches and differential thermal data of fine-grained magnetite and hematite beneficiated iron-ore concentrates. The choice of the most suitable filling for new composite radio-protective building material engineering and development was made basing on the magnetite and hematite data presented in the paper.

  5. Macro-Fiber Composite Based Transduction

    Science.gov (United States)

    2016-03-01

    substrate Material properties of single crystal macro fiber composite actuators for active twist rotor blades Park, Jae-Sang (Seoul National...Passive Smart Structures and Integrated Systems 2007 Material properties of single crystal macro fiber composite actuators for active twist rotor ...19b. TELEPHONE NUMBER (Include area code) 10-03-20 16 Final Report 01 Jan 2013 - 31 Dec 2015 Macro-Fiber Composite Based Transduction N000-14-13-1-0212

  6. The dynamical mechanical properties of tungsten under compression at working temperature range of divertors

    Science.gov (United States)

    Zhu, C. C.; Song, Y. T.; Peng, X. B.; Wei, Y. P.; Mao, X.; Li, W. X.; Qian, X. Y.

    2016-02-01

    In the divertor structure of ITER and EAST with mono-block module, tungsten plays not only a role of armor material but also a role of structural material, because electromagnetic (EM) impact will be exerted on tungsten components in VDEs or CQ. The EM loads can reach to 100 MN, which would cause high strain rates. In addition, directly exposed to high-temperature plasma, the temperature regime of divertor components is complex. Aiming at studying dynamical response of tungsten divertors under EM loads, an experiment on tungsten employed in EAST divertors was performed using a Kolsky bar system. The testing strain rates and temperatures is derived from actual working conditions, which makes the constitutive equation concluded by using John-Cook model and testing data very accurate and practical. The work would give a guidance to estimate the dynamical response, fatigue life and damage evolution of tungsten divertor components under EM impact loads.

  7. Tribological wear behavior of diamond reinforced composite coating

    International Nuclear Information System (INIS)

    Venkateswarlu, K.; Ray, Ajoy Kumar; Gunjan, Manoj Kumar; Mondal, D.P.; Pathak, L.C.

    2006-01-01

    In the present study, diamond reinforced composite (DRC) coating has been applied on mild steel substrate using thermal spray coating technique. The composite powder consists of diamond, tungsten carbide, and bronze, which was mixed in a ball mill prior deposition by thermal spray. The microstructure and the distribution of diamond and tungsten carbide particle in the bronze matrix were studied. The DRC-coated mild steel substrates were assessed in terms of their high stress abrasive wear and compared with that of uncoated mild steel substrates. It was observed that when sliding against steel, the DRC-coated sample initially gains weight, but then loses the transferred counter surface material. In case of abrasive wear, the wear rate was greatly reduced due to the coating; wherein the wear rate decreased with increase in diamond content

  8. Manufacturing Technology of Composite Materials-Principles of Modification of Polymer Composite Materials Technology Based on Polytetrafluoroethylene.

    Science.gov (United States)

    Panda, Anton; Dyadyura, Kostiantyn; Valíček, Jan; Harničárová, Marta; Zajac, Jozef; Modrák, Vladimír; Pandová, Iveta; Vrábel, Peter; Nováková-Marcinčínová, Ema; Pavelek, Zdeněk

    2017-03-31

    The results of the investigations into the technological formation of new wear-resistant polymer composites based on polytetrafluoroethylene (PTFE) filled with disperse synthetic and natural compounds are presented. The efficiency of using PTFE composites reinforced with carbon fibers depends on many factors, which influence the significant improvement of physicomechanical characteristics. The results of this research allow stating that interfacial and surface phenomena of the polymer-solid interface and composition play a decisive role in PTFE composites properties. Fillers hinder the relative movement of the PTFE molecules past one another and, in this way, reduce creep or deformation of the parts, reducing the wear rate of parts used in dynamic applications as well as the coefficient of thermal expansion. The necessary structural parameters of such polymer composites are provided by regimes of process equipment.

  9. Mechanism of the electrochemical hydrogen reaction on smooth tungsten carbide and tungsten electrodes

    International Nuclear Information System (INIS)

    Wiesener, K.; Winkler, E.; Schneider, W.

    1985-01-01

    The course of the electrochemical hydrogen reaction on smooth tungsten-carbide electrodes in hydrogen saturated 2.25 M H 2 SO 4 follows a electrochemical sorption-desorption mechanism in the potential range of -0.4 to +0.1 V. At potentials greater than +0.1 V the hydrogen oxidation is controlled by a preliminary chemical sorption step. Concluding from the similar behaviour of tungsten-carbide and tungsten electrodes after cathodic pretreatment, different tungsten oxides should be involved in the course of the hydrogen reaction on tungsten carbide electrodes. (author)

  10. Carbon and tungsten effect on characteristics of sputtered and re-deposited beryllium target layers under deuteron bombardment

    International Nuclear Information System (INIS)

    Danelyan, L.S.; Gureev, V.M.; Elistratov, N.G.

    2004-01-01

    The behavior of the plasma facing Be-elements in the International Thermonuclear Experimental Reactor ITER will be affected by the re-deposition of other eroded plasma facing materials. The effect of carbon- and tungsten-additions on the microstructure, chemical composition and hydrogen isotope accumulation in the sputtered and re-deposited layers of beryllium TGP-56 at its interaction with 200 - 300 eV hydrogen isotope ions was studied in the MAGRAS facility equipped with a magnetron sputtering system. (author)

  11. Physical mechanisms related to the degradation of LPCVD tungsten contacts at elevated temperatures

    International Nuclear Information System (INIS)

    Shenai, K.; Lewis, N.; Smith, G.A.; McConnell, M.D.; Burrell, M.

    1990-01-01

    The thermal stability of LPCVD (low pressure chemical vapor deposition) tungsten contacts to n-type silicon is studied at elevated temperatures in excess of 650 degrees C. The process variants studied include silicon doping, tungsten thickness, and post tungsten deposition dielectric stress temperatures. Detailed measurements of Kelvin contact resistance were made at room temperature as well as at elevated temperatures up to 165 degrees C. The tungsten contact resistance degradation at elevated stress temperatures is correlated with worm hole formation in silicon and the formation and diffusion of tungsten silicide. Extensive analytical measurements were used to characterize the material transformation at elevated stress temperatures to understand the physical mechanisms causing contact degradation

  12. Tungsten Alloy Outgassing Measurements

    CERN Document Server

    Rutherfoord, John P; Shaver, L

    1999-01-01

    Tungsten alloys have not seen extensive use in liquid argon calorimeters so far. Because the manufacturing process for tungsten is different from the more common metals used in liquid argon there is concern that tungsten could poison the argon thereby creating difficulties for precision calorimetry. In this paper we report measurements of outgassing from the tungsten alloy slugs proposed for use in the ATLAS FCal module and estimate limits on potential poisoning with reasonable assumptions. This estimate gives an upper limit poisoning rate of tungsten slugs.

  13. Electrically conductive composite material

    Science.gov (United States)

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  14. First-principles study on migration of vacancy in tungsten

    International Nuclear Information System (INIS)

    Oda, Yasuhiro; Ito, Atsushi M.; Takayama, Arimichi; Nakamura, Hiroaki

    2014-03-01

    We calculated di-vacancy binding energies and migration energies of mono-vacancy and di-vacancy in tungsten material using DFT calculation. The mono-vacancy diffuses in [111] direction easily rather than in [001] direction. The migration energies of di-vacancies are almost the same value of the mono-vacancy. The migration of di-vacancy is approximately the same as the migration of mono-vacancy. The di-vacancy binding energies are almost zero or negative. The interactions between two vacancies in tungsten material are repulsive from the second to fifth nearest-neighbor. The vacancies are difficult to aggregate since di-vacancy is less stable than mono-vacancy. (author)

  15. Interaction of plasma-facing materials with air and steam

    International Nuclear Information System (INIS)

    Druyts, F.; Fays, J.; Wu, C.H.

    2002-01-01

    In the design of ITER-FEAT, several candidate materials are foreseen for plasma-facing components of the divertor (tungsten, carbon fibre-reinforced composites (CFC), molybdenum) and the first wall (beryllium). In the view of accidental scenarios such as a loss of coolant accident or a loss of vacuum accident the reaction between these materials and steam or air remains a safety concern. To provide kinetic data, describing the chemical reactivity of plasma-facing materials in air and steam, we used coupled thermogravimetry/quadrupole mass spectrometry. In this paper we present the results of a screening investigation that compares the oxidation rates of tungsten, molybdenum, CFC and beryllium in the temperature range 300-700 deg. C. From the thermogravimetry and mass spectrometry results we obtained the reaction rates as a function of temperature. For the metals tungsten, molybdenum and beryllium, a transition is observed between protective oxidation at lower temperatures and non-protective oxidation at higher temperatures. This transition temperature lies in the range 500-550 deg. C for tungsten and molybdenum, which is lower than for beryllium. At above temperatures 550 deg. C, the oxides formed on molybdenum and tungsten volatilise. This increases the oxidation rate dramatically and can lead to mobilisation of activation products in a fusion reactor. We also performed experiments on both undoped CFC and CFC doped with 8-10% silicon. The influence of silicon doping on the chemical reactivity of CFC's in air is discussed

  16. Pitfalls of tungsten multileaf collimator in proton beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Moskvin, Vadim; Cheng, Chee-Wai; Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States) and Indiana University Health Proton Therapy Center (Formerly Midwest Proton Radiotherapy Institute), Bloomington, Indiana 47408 (United States)

    2011-12-15

    due to {sup 179}Ta with a half-life of 1.82 yr and thus require prolonged storage for activity cooling. The H*(10) near the patient side of the tungsten block is about 100 {mu}Sv/h and is 27 times higher at the upstream side of the block. This would lead to an accumulated dose for therapists in a year that may exceed occupational maximum permissible dose (50 mSv/yr). The value of H*(10) at the upstream surface of the tungsten block is about 220 times higher than that of the brass. Conclusions: MLC is an efficient way for beam shaping and overall cost reduction device in proton therapy. However, based on this study, tungsten seems to be not an optimal material for MLC in proton beam therapy. Usage of tungsten MLC in clinic may create unnecessary risks associated with the secondary neutrons and induced radioactivity for patients and staff depending on the patient load. A careful selection of material for manufacturing of an optimal MLC for proton therapy is thus desired.

  17. In vitro pulp chamber temperature rise from irradiation and exotherm of flowable composites.

    Science.gov (United States)

    Baroudi, Kusai; Silikas, Nick; Watts, David C

    2009-01-01

    The aim of this study was to investigate the pulpal temperature rise induced during the polymerization of flowable and non-flowable composites using light-emitting diode (LED) and halogen (quartz-tungsten-halogen) light-curing units (LCUs). Five flowable and three non-flowable composites were examined. Pulpal temperature changes were recorded over 10 min in a sample primary tooth by a thermocouple. A conventional quartz-tungsten-halogen source and two LEDs, one of which was programmable, were used for light curing the resin composites. Three repetitions per material were made for each LCU. There was a wide range of temperature rises among the materials (P < 0.05). Temperature rises ranged between 1.3 degrees C for Filtek Supreme irradiated by low-power LED and 4.5 degrees C for Grandio Flow irradiated by high-power LED. The highest temperature rises were observed with both the LED high-power and soft-start LCUs. The time to reach the exothermic peak varied significantly between the materials (P < 0.05). Pulpal temperature rise is related to both the radiant energy output from LCUs and the polymerization exotherm of resin composites. A greater potential risk for heat-induced pulp damage might be associated with high-power LED sources. Flowable composites exhibited higher temperature rises than non-flowable materials, because of higher resin contents.

  18. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Prado, J. de, E-mail: javier.deprado@urjc.es; Sánchez, M.; Ureña, A.

    2017-07-15

    80Cu-20Ti powders were evaluated for their use as filler alloy for high temperature brazing of tungsten to a reduced activation ferritic/martensitic steel (Eurofer), and its application for the first wall of the DEMO fusion reactor. The use of alloyed powders has not been widely considered for brazing purposes and could improve the operational brazeability of the studied system due to its narrower melting range, determined by DTA analysis, which enhances the spreading capabilities of the filler. Ti contained in the filler composition acts as an activator element, reacting and forming several interfacial layers at the Eurofer-braze, which enhances the wettability properties and chemical interaction at the brazing interface. Brazing thermal cycle also activated the diffusion phenomena, which mainly affected to the Eurofer alloying elements causing in it a softening band of approximately 400 μm of thickness. However, this softening effect did not degrade the shear strength of the brazed joints (94 ± 23 MPa), because failure during testing was always located at the tungsten-braze interface. - Highlights: •W-Eurofer brazed joints, manufactured using Cu-based mechanically alloyed powders as filler is proposed. •The benefits derivate from the alloyed composition could improve the operational brazeability of the studied system. •Tested pre-alloyed fillers have a more homogeneous melting stage which enhances its spreading and flowing capabilities. •This behaviour could lead to work with higher heating rates and lower brazing temperatures.

  19. Chemically vapor-deposited tungsten: its high temperature strength and ductility

    International Nuclear Information System (INIS)

    Bryant, W.A.

    1977-01-01

    The high temperature tensile ductility (as measured by total elongation normal to the growth direction) of chemically vapor-deposited tungsten was found to be significantly greater than previously reported. A correlation was found between ductility and void content. However, voids were found to have essentially no effect on the high temperature strength of this material, which is considerably weaker than powder metallurgy tungsten. (Auth.)

  20. Friction Material Composites Materials Perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2012-01-01

    Friction Material Composites is the first of the five volumes which strongly educates and updates engineers and other professionals in braking industries, research and test labs. It explains besides the formulation of design processes and its complete manufacturing input. This book gives an idea of mechanisms of friction and how to control them by designing .The book is  useful for designers  of automotive, rail and aero industries for designing the brake systems effectively with the integration of friction material composite design which is critical. It clearly  emphasizes the driving  safety and how serious designers should  select the design input. The significance of friction material component like brake pad or a liner as an integral part of the brake system of vehicles is explained. AFM pictures at nanolevel illustrate broadly the explanations given.

  1. Compressive Strength of EN AC-44200 Based Composite Materials Strengthened with α-Al2O3 Particles

    OpenAIRE

    Kurzawa A.; Kaczmar J. W.

    2017-01-01

    The paper presents results of compressive strength investigations of EN AC-44200 based aluminum alloy composite materials reinforced with aluminum oxide particles at ambient and at temperatures of 100, 200 and 250°C. They were manufactured by squeeze casting of the porous preforms made of α-Al2O3 particles with liquid aluminum alloy EN AC-44200. The composite materials were reinforced with preforms characterized by the porosities of 90, 80, 70 and 60 vol. %, thus the alumina content in the co...

  2. Dynamic material properties of refractory metals: tantalum and tantalum/tungsten alloys

    International Nuclear Information System (INIS)

    Furnish, M.D.; Lassila, D.H.; Chhabildas, L.C.; Steinberg, D.J.

    1996-01-01

    We have made a careful set of impact wave-profile measurements (16 profiles) on tantalum and tantalum-tungsten alloys at relatively low stresses (to 15 GPa). Alloys used were Ta 96.5 W 3.5 and Ta 86.5 W 13.5 (wt%) with oxygen contents of 30 endash 70 ppm. Information available from these experiments includes Hugoniot, elastic limits, loading rates, spall strength, unloading paths, reshock structure and specimen thickness effects. Hugoniot and spall properties are illustrated, and are consistent with expectations from earlier work. Modeling the tests with the Steinberg-Guinan-Lund rate-dependent material model provides for an excellent match of the shape of the plastic loading wave. The release wave is not well modeled due to the absence of the dynamic Bauschinger effect. There is also a discrepancy between experiments and calculations regarding the relative timing of the elastic and plastic waves that may be due to texture effects. copyright 1996 American Institute of Physics

  3. High density tungsten-nickel-iron-cobalt alloys having improved hardness and method for making same

    International Nuclear Information System (INIS)

    Penrice, T.W.; Bost, J.

    1988-01-01

    This patent describes the process of making high density alloy containing about 85 to 98 weight percent tungsten and the balance of the alloy being essentially a binder of nickel, iron and cobalt, and wherein the cobalt is present in an amount within the range of about 5 to 47.5 weight percent of the binder, comprising: blending powders of the tungsten, nickel, iron and cobalt into a homogeneous composition, compacting the homogeneous composition into a shaped article, heating the shaped article to a temperature and for a time sufficient to sinter the article, subjecting the sintered article to a temperature sufficient to enable the intermetallic phase formed at the matrix to tungsten interface to diffuse into the gamma austenitic phase whereby the alpha tungsten/gamma austenite boundaries are essentially free of such intermetallic phase, quenching the article, and swaging the article to a reduction in area of about 5 to 40 percent, the article having improved mechanical properties, including improved tensile strength and hardness while maintaining suitable ductility for subsequent working thereof

  4. Automatic kinetic Monte-Carlo modeling for impurity atom diffusion in grain boundary structure of tungsten material

    Directory of Open Access Journals (Sweden)

    Atsushi M. Ito

    2017-08-01

    Full Text Available The diffusion process of hydrogen and helium in plasma-facing material depends on the grain boundary structures. Whether a grain boundary accelerates or limits the diffusion speed of these impurity atoms is not well understood. In the present work, we proposed the automatic modeling of a kinetic Monte-Carlo (KMC simulation to treat an asymmetric grain boundary structure that corresponds to target samples used in fusion material experiments for retention and permeation. In this method, local minimum energy sites and migration paths for impurity atoms in the grain boundary structure are automatically found using localized molecular dynamics. The grain boundary structure was generated with the Voronoi diagram. Consequently, we demonstrate that the KMC simulation for the diffusion process of impurity atoms in the generated grain boundary structure of tungsten material can be performed.

  5. Composite materials processing, applications, characterizations

    CERN Document Server

    2017-01-01

    Composite materials are used as substitutions of metals/traditional materials in aerospace, automotive, civil, mechanical and other industries. The present book collects the current knowledge and recent developments in the characterization and application of composite materials. To this purpose the volume describes the outstanding properties of this class of advanced material which recommend it for various industrial applications.

  6. A Novel FCC Catalyst Based on a Porous Composite Material Synthesized via an In Situ Technique

    Directory of Open Access Journals (Sweden)

    Shu-Qin Zheng

    2015-11-01

    Full Text Available To overcome diffusion limitations and improve transport in microporous zeolite, the materials with a wide-pore structure have been developed. In this paper, composite microspheres with hierarchical porous structure were synthesized by an in situ technique using sepiolite, kaolin and pseudoboehmite as raw material. A novel fluid catalytic cracking (FCC catalyst for maximizing light oil yield was prepared based on the composite materials. The catalyst was characterized by XRD, FT-IR, SEM, nitrogen adsorption-desorption techniques and tested in a bench FCC unit. The results indicated that the catalyst had more meso- and macropores and more acid sites than the reference catalyst, and thus can increase light oil yield by 1.31 %, while exhibiting better gasoline and coke selectivity.

  7. Effect of some structural parameters on high-temperature crack resistance of tungsten

    International Nuclear Information System (INIS)

    Babak, A.V.; Uskov, E.I.

    1984-01-01

    The paper presents results of physicomechanical studied in high-temperature crack resistance of tungsten produced by powder metallurgy methods. It is shown that at high temperatures (>2000 deg C) a structure is formed in the material and fails at stresses independent of temperature. It is found that high-temperature tungsten crack resistance is affected neighter by changes in the effictive grain size, nor by appearance of grain-boundary microcraks in the material under high-temperature action

  8. Zirconia-hydroxyapatite composite material with micro porous structure.

    Science.gov (United States)

    Matsumoto, Takuya Junior; An, Sang-Hyun; Ishimoto, Takuya; Nakano, Takayoshi; Matsumoto, Takuya; Imazato, Satoshi

    2011-11-01

    Titanium plates and apatite blocks are commonly used for restoring large osseous defects in dental and orthopedic surgery. However, several cases of allergies against titanium have been recently reported. Also, sintered apatite block does not possess sufficient mechanical strength. In this study, we attempted to fabricate a composite material that has mechanical properties similar to biocortical bone and high bioaffinity by compounding hydroxyapatite (HAp) with the base material zirconia (ZrO(2)), which possesses high mechanical properties and low toxicity toward living organisms. After mixing the raw material powders at several different ZrO(2)/HAp mixing ratios, the material was compressed in a metal mold (8 mm in diameter) at 5 MPa. Subsequently, it was sintered for 5 h at 1500°C to obtain the ZrO(2)/HAp composite. The mechanical property and biocompatibility of materials were investigated. Furthermore, osteoconductivity of materials was investigated by animal studies. A composite material with a minute porous structure was successfully created using ZrO(2)/HAp powders, having different particle sizes, as the starting material. The material also showed high protein adsorption and a favorable cellular affinity. When the mixing ratio was ZrO(2)/HAp=70/30, the strength was equal to cortical bone. Furthermore, in vivo experiments confirmed its high osteoconductivity. The composite material had strength similar to biocortical bones with high cell and tissue affinities by compounding ZrO(2) and HAp. The ZrO(2)/HAp composite material having micro porous structure would be a promising bone restorative material. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires.

    Science.gov (United States)

    Fattahi, M; Gholami, A R; Eynalvandpour, A; Ahmadi, E; Fattahi, Y; Akhavan, S

    2014-09-01

    In the present study, different amounts of graphene nanosheets (GNSs) were added to the 4043 aluminum alloy powders by using the mechanical alloying method to produce the composite filler wires. With each of the produced composite filler wires, one all-weld metal coupon was welded using the gas tungsten arc (GTA) welding process. The microstructure, mechanical properties and fracture surface morphology of the weld metals have been evaluated and the results are compared. As the amount of GNSs in the composition of filler wire is increased, the microstructure of weld metal was changed from the dendritic structure to fine equiaxed grains. Furthermore, the tensile strength and microhardness of weld metal was improved, and is attributed to the augmented nucleation and retarded growth. From the results, it was seen that the GNSs/Al composite filler wire can be used to improve the microstructure and mechanical properties of GTA weld metals of aluminum and its alloys. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Comparative evaluation of particle properties, formation of reactive oxygen species and genotoxic potential of tungsten carbide based nanoparticles in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kuehnel, Dana, E-mail: dana.kuehnel@ufz.de [Department of Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research Leipzig - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Scheffler, Katja [Department of Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research Leipzig - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Department of Cell Techniques and Applied Stem Cell Biology, University of Leipzig, Deutscher Platz 5, 04103 Leipzig (Germany); Wellner, Peggy [Department of Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research Leipzig - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Meissner, Tobias; Potthoff, Annegret [Fraunhofer-Institute for Ceramic Technologies and Systems (IKTS), Winterbergstr. 28, 01277 Dresden (Germany); Busch, Wibke [Department of Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research Leipzig - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Springer, Armin [Centre for Translational Bone, Cartilage and Soft Tissue Research, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden (Germany); Schirmer, Kristin [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Duebendorf (Switzerland); EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne (Switzerland); ETH Zuerich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zuerich (Switzerland)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Assessment of toxic potential of tungsten carbide-based nanoparticles. Black-Right-Pointing-Pointer Evaluation of ROS and micronuclei induction of three hard metal nanomaterials. Black-Right-Pointing-Pointer Dependency of observed toxic effects on the materials physical-chemical properties. Black-Right-Pointing-Pointer Differences in several particle properties seem to modulate the biological response. - Abstract: Tungsten carbide (WC) and cobalt (Co) are constituents of hard metals and are used for the production of extremely hard tools. Previous studies have identified greater cytotoxic potential of WC-based nanoparticles if particles contained Co. The aim of this study was to investigate whether the formation of reactive oxygen species (ROS) and micronuclei would help explain the impact on cultured mammalian cells by three different tungsten-based nanoparticles (WC{sub S}, WC{sub L}, WC{sub L}-Co (S: small; L: large)). The selection of particles allowed us to study the influence of particle properties, e.g. surface area, and the presence of Co on the toxicological results. WC{sub S} and WC{sub L}/WC{sub L}-Co differed in their crystalline structure and surface area, whereas WC{sub S}/WC{sub L} and WC{sub L}-Co differed in their cobalt content. WC{sub L} and WC{sub L}-Co showed neither a genotoxic potential nor ROS induction. Contrary to that, WC{sub S} nanoparticles induced the formation of both ROS and micronuclei. CoCl{sub 2} was tested in relevant concentrations and induced no ROS formation, but increased the rate of micronuclei at concentrations exceeding those present in WC{sub L}-Co. In conclusion, ROS and micronuclei formation could not be associated with the presence of Co in the WC-based particles. The contrasting responses elicited by WC{sub S} vs. WC{sub L} appear to be due to large differences in crystalline structure.

  11. Stiffness Analysis of the Sarafix External Fixator based on Stainless Steel and Composite Material

    Directory of Open Access Journals (Sweden)

    Nedim Pervan

    2015-11-01

    Full Text Available This paper describes a structural analysis of the CAD model three versions fixators Sarafix which is to explore the possibility of introducing composite materials in the construction of the connecting rod fixators comparing values of displacement and stiffness at characteristic structure points. Namely, we have investigated the constructional performance of fixators Sarafix with a connecting rod formed from three different composite materials, the same matrix (epoxy resin with three different types of fibers (E glass, kevlar 49 and carbonM55J. The results of the structural analysis fixators Sarafix with a connecting rod made of composite materials are compared with the results of tubular connecting rod fixators made of stainless steel. After comparing the results, from the aspect of stiffness, we gave the final considerations about composite material which provides an adequate substitution for the existing material.

  12. Future perspectives of resin-based dental materials.

    Science.gov (United States)

    Jandt, Klaus D; Sigusch, Bernd W

    2009-08-01

    This concise review and outlook paper gives a view of selected potential future developments in the area of resin-based biomaterials with an emphasis on dental composites. A selection of key publications (1 book, 35 scientific original publications and 1 website source) covering the areas nanotechnology, antimicrobial materials, stimuli responsive materials, self-repairing materials and materials for tissue engineering with direct or indirect relations and/or implications to resin-based dental materials is critically reviewed and discussed. Connections between these fields and their potential for resin-based dental materials are highlighted and put in perspective. The need to improve shrinkage properties and wear resistance is obvious for dental composites, and a vast number of attempts have been made to accomplish these aims. Future resin-based materials may be further improved in this respect if, for example nanotechnology is applied. Dental composites may, however, reach a completely new quality by utilizing new trends from materials science, such as introducing nanostructures, antimicrobial properties, stimuli responsive capabilities, the ability to promote tissue regeneration or repair of dental tissues if the composites were able to repair themselves. This paper shows selected potential future developments in the area of resin-based dental materials, gives basic and industrial researchers in dental materials science, and dental practitioners a glance into the potential future of these materials, and should stimulate discussion about needs and future developments in the area.

  13. Studies of selected synthesis procedures of the conducting LiFePO{sub 4}-based composite cathode materials for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ojczyk, W.; Marzec, J.; Swierczek, K.; Zajac, W.; Molenda, J. [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Molenda, M.; Dziembaj, R. [Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow (Poland)

    2007-11-15

    In this paper technological aspects of a synthesis of phospho-olivine LiFePO{sub 4} based composite cathode materials for lithium batteries are presented. An effective synthesis route yielding a highly conductive composite cathode material was developed. The structural, electrical and electrochemical properties of these materials were investigated. It was shown that the enhanced conductivity of the cathode material is due to the presence of a thin layer of the reduced material which has metallic properties, which is formed on the grain surfaces of the phospho-olivine. We propose a synthesis route yielding LiFePO{sub 4}/Fe{sub 2}P composite material. (author)

  14. A hierarchical lattice spring model to simulate the mechanics of 2-D materials-based composites

    Directory of Open Access Journals (Sweden)

    Lucas eBrely

    2015-07-01

    Full Text Available In the field of engineering materials, strength and toughness are typically two mutually exclusive properties. Structural biological materials such as bone, tendon or dentin have resolved this conflict and show unprecedented damage tolerance, toughness and strength levels. The common feature of these materials is their hierarchical heterogeneous structure, which contributes to increased energy dissipation before failure occurring at different scale levels. These structural properties are the key to exceptional bioinspired material mechanical properties, in particular for nanocomposites. Here, we develop a numerical model in order to simulate the mechanisms involved in damage progression and energy dissipation at different size scales in nano- and macro-composites, which depend both on the heterogeneity of the material and on the type of hierarchical structure. Both these aspects have been incorporated into a 2-dimensional model based on a Lattice Spring Model, accounting for geometrical nonlinearities and including statistically-based fracture phenomena. The model has been validated by comparing numerical results to continuum and fracture mechanics results as well as finite elements simulations, and then employed to study how structural aspects impact on hierarchical composite material properties. Results obtained with the numerical code highlight the dependence of stress distributions on matrix properties and reinforcement dispersion, geometry and properties, and how failure of sacrificial elements is directly involved in the damage tolerance of the material. Thanks to the rapidly developing field of nanocomposite manufacture, it is already possible to artificially create materials with multi-scale hierarchical reinforcements. The developed code could be a valuable support in the design and optimization of these advanced materials, drawing inspiration and going beyond biological materials with exceptional mechanical properties.

  15. Composites materials: the technology of future

    International Nuclear Information System (INIS)

    Ahmed, M.N.; Memon, I.R.; Ahmad, F.; Zafar, N.

    2001-01-01

    Composite materials have a long history of usage. Their precise beginnings are not known; however all recorded history contains references to some form of composite material. e.g. straw was used by man to strengthen mud bricks thousands of years ago. This article presents the use of advanced composites materials in aircraft and space industry. Its brief history, use in military and civil aviation, use in space program, future usage, advantages in terms of cost, weight and strength. Use of composites in unmanned aerial vehicles and problems associated with usage of composites materials are also discussed. (author)

  16. Thermodynamics of the hydrogen-carbon-oxygen-tungsten system, as applied to the manufacture of tungsten and tungsten carbide

    International Nuclear Information System (INIS)

    Schwenke, G.K.

    2001-01-01

    The thermodynamics of the quaternary hydrogen-carbon oxygen-tungsten system and its binary and ternary sub-systems are reviewed. Published thermodynamic data are evaluated, and expression for free energies of formation are chosen. These expressions are integrated with and equilibrium-calculating algorithm, producing a powerful tool for understanding and improving the manufacture of tungsten and tungsten carbide. Three examples are presented: reduction/carburization of tungstic oxide with hydrogen, carbon, and methane. (author)

  17. Conceptual design and development of GEM based detecting system for tomographic tungsten focused transport monitoring

    Science.gov (United States)

    Chernyshova, M.; Czarski, T.; Malinowski, K.; Kowalska-Strzęciwilk, E.; Poźniak, K.; Kasprowicz, G.; Zabołotny, W.; Wojeński, A.; Kolasiński, P.; Mazon, D.; Malard, P.

    2015-10-01

    Implementing tungsten as a plasma facing material in ITER and future fusion reactors will require effective monitoring of not just its level in the plasma but also its distribution. That can be successfully achieved using detectors based on Gas Electron Multiplier (GEM) technology. This work presents the conceptual design of the detecting unit for poloidal tomography to be tested at the WEST project tokamak. The current stage of the development is discussed covering aspects which include detector's spatial dimensions, gas mixtures, window materials and arrangements inside and outside the tokamak ports, details of detector's structure itself and details of the detecting module electronics. It is expected that the detecting unit under development, when implemented, will add to the safe operation of tokamak bringing the creation of sustainable nuclear fusion reactors a step closer. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  18. Colorimetric humidity sensor based on liquid composite materials for the monitoring of food and pharmaceuticals.

    Science.gov (United States)

    Bridgeman, Devon; Corral, Javier; Quach, Ashley; Xian, Xiaojun; Forzani, Erica

    2014-09-09

    Using supported ionic-liquid membrane (SILM)-inspired methodologies, we have synthesized, characterized, and developed a humidity sensor by coating a liquid composite material onto a hygroscopic, porous substrate. Similar to pH paper, the sensor responds to the environment's relative humidity and changes color accordingly. The humidity indicator is prepared by casting a few microliters of low-toxicity reagents on a nontoxic substrate. The sensing material is a newly synthesized liquid composite that comprises a hygroscopic medium for environmental humidity capture and a color indicator that translates the humidity level into a distinct color change. Sodium borohydride was used to form a liquid composite medium, and DenimBlu30 dye was used as a redox indicator. The liquid composite medium provides a hygroscopic response to the relative humidity, and DenimBlu30 translates the chemical changes into a visual change from yellow to blue. The borate-redox dye-based humidity sensor was prepared, and then Fourier transform infrared spectroscopy, differential scanning calorimetry, and image analysis methods were used to characterize the chemical composition, optimize synthesis, and gain insight into the sensor reactivity. Test results indicated that this new sensing material can detect relative humidity in the range of 5-100% in an irreversible manner with good reproducibility and high accuracy. The sensor is a low-cost, highly sensitive, easy-to-use humidity indicator. More importantly, it can be easily packaged with products to monitor humidity levels in pharmaceutical and food packaging.

  19. Ceramic matrix composites -- Advanced high-temperature structural materials

    International Nuclear Information System (INIS)

    Lowden, R.A.; Ferber, M.K.; DiPietro, S.G.

    1995-01-01

    This symposium on Ceramic Matrix Composites: Advanced High-Temperature Structural Materials was held at the 1994 MRS Fall Meeting in Boston, Massachusetts on November 28--December 2. The symposium was sponsored by the Department of Energy's Office of Industrial Technology's Continuous Fiber Ceramic Composites Program, the Air Force Office of Scientific Research, and NASA Lewis Research Center. Among the competing materials for advanced, high-temperature applications, ceramic matrix composites are leading candidates. The symposium was organized such that papers concerning constituents--fibers and matrices--were presented first, followed by composite processing, modeling of mechanical behavior, and thermomechanical testing. More stable reinforcements are necessary to enhance the performance and life of fiber-reinforced ceramic composites, and to ensure final acceptance of these materials for high-temperature applications. Encouraging results in the areas of polymer-derived SiC fibers and single crystal oxide filaments were given, suggesting composites with improved thermomechanical properties and stability will be realized in the near future. The significance of the fiber-matrix interface in the design and performance of these materials is evident. Numerous mechanical models to relate interface properties to composite behavior, and interpret test methods and data, were enthusiastically discussed. One issue of great concern for any advanced material for use in extreme environments is stability. This theme arose frequently throughout the symposium and was the topic of focus on the final day. Fifty nine papers have been processed separately for inclusion on the data base

  20. Erosion and migration of tungsten employed at the central column heat shield of ASDEX Upgrade

    International Nuclear Information System (INIS)

    Krieger, K.; Gong, X.; Balden, M.; Hildebrandt, D.; Maier, H.; Rohde, V.; Roth, J.; Schneider, W.

    2002-01-01

    In ASDEX Upgrade, tungsten was employed as plasma facing material at the central column heat shield in the plasma main chamber. The campaign averaged tungsten erosion flux was determined by measuring the difference of the W-layer thickness before and after the experimental campaign using ion beam analysis methods. The observed lateral variation and the total amount of eroded tungsten are attributed to erosion by impact of ions from the scrape-off layer plasma. Migration and redeposition of eroded tungsten were investigated by quantitative analysis of deposited tungsten on collector probes and wall samples. The obtained results, as well as the spectroscopically observed low tungsten plasma penetration probability, indicate that a major fraction of the eroded tungsten migrates predominantly through direct transport channels in the outer plasma scrape-off layer without entering the confined plasma

  1. Research and development of tungsten electrodes added with rare earth oxides

    International Nuclear Information System (INIS)

    Zuoren Nie; Ying Chen; Meiling Zhou; Tieyong Zuo

    2001-01-01

    The recent research and development of tungsten electrodes used in TIG and Plasma technologies are introduced, and the tungsten materials as well as the effects of rare earth oxides are specially discussed. in W-La 2 O 3 , W-CeO 2 , W-Y 2 O 3 and W-ThO 2 electrode materials, the W-2.2mass%La 2 O 3 electrode exhibited the best properties when the current is of little or middle volume, and when the electrodes are used in large current, the W-Y 2 O 3 electrode is the best. By a comparative study between the tungsten electrodes activated with single metal oxides, as above-mentioned, and those containing two or three rare earth oxides, namely La 2 O 3 , CeO 2 and Y 2 O 3 , it was indicated that the welding arc properties of the tungsten electrodes activated with combined rare earth oxides additions is superior than that of the electrodes containing single oxides as above mentioned. It was also shown that the operating properties of tungsten electrodes depend intensively on the rare earth oxides contained in the electrodes, and the actions of rare earth oxides during arcing are the most important factors to the electrodes' operating properties, temperature, work function as well as the arc stability. (author)

  2. Hydrogen and helium trapping in tungsten deposition layers formed by RF plasma sputtering

    International Nuclear Information System (INIS)

    Kazunari Katayama; Kazumi Imaoka; Takayuki Okamura; Masabumi Nishikawa

    2006-01-01

    Understanding of tritium behavior in plasma facing materials is an important issue for fusion reactor from viewpoints of fuel control and radiation safety. Tungsten is used as a plasma facing material in the divertor region of ITER. However, investigation of hydrogen isotope behavior in tungsten deposition layer is not sufficient so far. It is also necessary to evaluate an effect of helium on a formation of deposition layer and an accumulation of hydrogen isotopes because helium generated by fusion reaction exists in fusion plasma. In this study, tungsten deposition layers were formed by sputtering method using hydrogen and helium RF plasma. An erosion rate and a deposition rate of tungsten were estimated by weight measurement. Hydrogen and helium retention were investigated by thermal desorption method. Tungsten deposition was performed using a capacitively-coupled RF plasma device equipped with parallel-plate electrodes. A tungsten target was mounted on one electrode which is supplied with RF power at 200 W. Tungsten substrates were mounted on the other electrode which is at ground potential. The plasma discharge was continued for 120 hours where pressure of hydrogen or helium was controlled to be 10 Pa. The amounts of hydrogen and helium released from deposition layers was quantified by a gas chromatograph. The erosion rate of target tungsten under helium plasma was estimated to be 1.8 times larger than that under hydrogen plasma. The deposition rate on tungsten substrate under helium plasma was estimated to be 4.1 times larger than that under hydrogen plasma. Atomic ratio of hydrogen to tungsten in a deposition layer formed by hydrogen plasma was estimated to be 0.17 by heating to 600 o C. From a deposition layer formed by helium plasma, not only helium but also hydrogen was released by heating to 500 o C. Atomic ratios of helium and hydrogen to tungsten were estimated to be 0.080 and 0.075, respectively. The trapped hydrogen is probably impurity hydrogen

  3. Tungsten Targets the Tumor Microenvironment to Enhance Breast Cancer Metastasis

    Science.gov (United States)

    Bolt, Alicia M.; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M.; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K.

    2015-01-01

    The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients’ years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans. PMID:25324207

  4. Tape cast isotropic, fine-grained tungsten for thermo-cyclic loading applications

    Energy Technology Data Exchange (ETDEWEB)

    Sommerer, Mathias, E-mail: Mathias.Sommerer@tum.de [Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, Technische Universität München, Boltzmannstr. 15, 85748 Garching (Germany); Li, Muyuan [Max-Planck-Institut für Plasma Physik, Boltzmannstraße 2, 85748 Garching (Germany); Werner, Ewald [Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, Technische Universität München, Boltzmannstr. 15, 85748 Garching (Germany); Dewitz, Hubertus von; Walter, Steffen; Lampenscherf, Stefan [Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, 81730 München (Germany); Arnold, Thomas [Siemens Healthcare GmbH, Henkestr. 127, 91052 Erlangen (Germany)

    2016-04-15

    Highlights: • The tape casting process for tungsten is described. • A set-up of a HHF test facility for standing anodes is presented. • The thermo-cyclic behavior of tape cast tungsten and a reference is investigated. • The evolution of crack patterns is described in dependency of HHF-loadings. • The surface roughness of X-ray anodes is related to the microstructural evolution. - Abstract: This paper introduces tape casting as a new route for the production of isotropic and fine-grained tungsten components. Microstructural and thermal properties of tape cast tungsten samples are determined. Thermal shock behavior according to the thermo-cyclic loading of standing X-ray anodes is investigated and compared to the behavior of a rolled tungsten grade. The development of surface roughness during the thermal shock loading is discussed in relation to the development of the grain structure and crack pattern. The fine-grained and stable microstructure of the tape cast material exhibits less roughening under such test conditions.

  5. How to determine composite material properties using numerical homogenization

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe

    2014-01-01

    Numerical homogenization is an efficient way to determine effective macroscopic properties, such as the elasticity tensor, of a periodic composite material. In this paper an educational description of the method is provided based on a short, self-contained Matlab implementation. It is shown how...... the basic code, which computes the effective elasticity tensor of a two material composite, where one material could be void, is easily extended to include more materials. Furthermore, extensions to homogenization of conductivity, thermal expansion, and fluid permeability are described in detail. The unit...

  6. Controlled nanostructuration of polycrystalline tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    Girault, B. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), LUNAM Universite, Universite de Nantes, Centrale Nantes, CRTT, 37 Bd de l' Universite, BP 406, 44602 Saint-Nazaire Cedex (France); Eyidi, D.; Goudeau, P.; Guerin, P.; Bourhis, E. Le; Renault, P.-O. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Sauvage, T. [CEMHTI/CNRS (UPR 3079 CNRS), Universite d' Orleans, 3A rue de la Ferollerie, 45071 Orleans Cedex 2 (France)

    2013-05-07

    Nanostructured tungsten thin films have been obtained by ion beam sputtering technique stopping periodically the growing. The total thickness was maintained constant while nanostructure control was obtained using different stopping periods in order to induce film stratification. The effect of tungsten sublayers' thicknesses on film composition, residual stresses, and crystalline texture evolution has been established. Our study reveals that tungsten crystallizes in both stable {alpha}- and metastable {beta}-phases and that volume proportions evolve with deposited sublayers' thicknesses. {alpha}-W phase shows original fiber texture development with two major preferential crystallographic orientations, namely, {alpha}-W<110> and unexpectedly {alpha}-W<111> texture components. The partial pressure of oxygen and presence of carbon have been identified as critical parameters for the growth of metastable {beta}-W phase. Moreover, the texture development of {alpha}-W phase with two texture components is shown to be the result of a competition between crystallographic planes energy minimization and crystallographic orientation channeling effect maximization. Controlled grain size can be achieved for the {alpha}-W phase structure over 3 nm stratification step. Below, the {beta}-W phase structure becomes predominant.

  7. High temperature diffusion of hafnium in tungsten and a tungsten-hafnium carbide alloy

    International Nuclear Information System (INIS)

    Ozaki, Y.; Zee, R.H.

    1994-01-01

    Refractory metals and ceramics are used extensively in energy systems due to their high temperature properties. This is particularly important in direct conversion systems where thermal to electric conversion efficiency is a direct function of temperature. Tungsten, which has the highest melting temperature among elemental metals, does not possess sufficient creep resistance at temperature above 1,600 K. Different dispersion strengthened tungsten alloys have been developed to extend the usefulness of tungsten to higher temperatures. One of these alloys, tungsten with 0.4 mole percent of finely dispersed HfC particles (W-HfC), has the optimum properties for high temperature applications. Hafnium carbide is used as the strengthening agent due to its high chemical stability and its compatibility with tungsten. The presence of HfC particles retards the rate of grain growth as well as restricting dislocation motion. Both of which are beneficial for creep resistance. The long term behavior of this alloy depends largely on the evolution of its microstructure which is governed by the diffusion of its constituents. Data on the diffusion of carbon in tungsten and tungsten self-diffusion are available, but no direct measurements have been made on the diffusion of hafnium in tungsten. The only diffusion data available are estimated from a coarsening study and these data are highly unreliable. In this study, the diffusion behavior of hafnium in pure tungsten and in a W-HfC alloy was directly measured by means of Secondary Ion Mass Spectroscopy (SIMS). The selection of the W-HfC alloy is due to its importance in high temperature engineering applications, and its higher recrystallization temperature. The presence of HfC particles in tungsten restricts grain growth resulting in better high temperature creep resistance. The higher recrystallization temperature allows measurements to be made over a wider range of temperatures at a relatively constant grain size

  8. Composite materials

    International Nuclear Information System (INIS)

    Sambrook, D.J.

    1976-01-01

    A superconductor composite is described comprising at least one longitudinally extending superconductor filament or bundle of sub-filaments, each filament or bundle of sub-filaments being surrounded by and in good electrical contact with a matrix material, the matrix material comprising a plurality of longitudinally extending cells of a metal of high electrical conductivity surrounded by a material of lower electrical conductivity. The high electrical conductivity material surrounding the superconducting filament or bundle of sub-filaments is interrupted by a radially extending wall of the material of the lower electrical conductivity, the arrangement being such that at least two superconductor filaments or sub-filaments are circumferentially circumscribed by a single annulus of the material of high electrical conductivity. The annulus is electrically interrupted by a radially extending wall of the material of low electrical conductivity

  9. Development and Testing of Dispersion-Strengthened Tungsten Alloys via Spark Plasma Sinterin

    Science.gov (United States)

    Lang, Eric; Madden, Nathan; Smith, Charles; Krogstad, Jessica; Allain, Jean Paul

    2017-10-01

    Tungsten (W) is a common plasma-facing component (PFC) material in the divertor region of tokamak fusion devices due to its high melting point and high sputter threshold. However, W is intrinsically brittle and is further embrittled under neutron irradiation, and the low recrystallization temperature pose complications in fusion environments. More ductile W alloys, such as dispersion-strengthened tungsten are being developed. In this work, W samples are processed via spark plasma sintering (SPS) with TiC, ZrC, and TaC dispersoids alloyed from 0.5 to 10 weight %. SPS is a powder compaction technique that provides high pressure and heating rates via electrical current, allowing for a lower final temperature and hold time for compaction. Initial testing of material properties, smicrostructure, and composition of specimens will be presented. Deuterium and helium irradiations have been performed in IGNIS, a multi-functional, in-situ irradiation and characterization facility at the University of Illinois. High-flux, low-energy exposures at the Magnum-PSI facility at DIFFER exposed samples to a D fluence of 1×1026 cm-2 and He fluence of 1x1025-1x1026 cm-2 at temperatures of 300-1000 C. In-situ chemistry changes via XPS and ex-situ morphology changes via SEM will be studied. Work supported by US DOE Contract DE-SC0014267.

  10. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    Science.gov (United States)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan; Velikokhatnyi, Oleg

    2017-02-07

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VII of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.

  11. Tailoring nanomaterial products through electrode material and oxygen partial pressure in a mini-arc plasma reactor

    International Nuclear Information System (INIS)

    Cui Shumao; Mattson, Eric C.; Lu, Ganhua; Hirschmugl, Carol; Gajdardziska-Josifovska, Marija; Chen Junhong

    2012-01-01

    Nanomaterials with controllable morphology and composition are synthesized by a simple one-step vapor condensation process using a mini-arc plasma source. Through systematic investigation of mini-arc reactor parameters, the roles of carrier gas, electrode material, and precursor on producing diverse nanomaterial products are revealed. Desired nanomaterial products, including tungsten oxide nanoparticles (NPs), tungsten oxide nanorods (NRs), tungsten oxide and tin oxide NP mixtures and pure tin dioxide NPs can thus be obtained by tailoring reaction conditions. The amount of oxygen in the reactor is critical to determining the final nanomaterial product. Without any precursor material present, a lower level of oxygen in the reactor favors the production of W 18 O 49 NRs with tungsten as cathode, while a high level of oxygen produces more round WO 3 NPs. With the presence of a precursor material, amorphous particles are favored with a high ratio of argon:oxygen. Oxygen is also found to affect tin oxide crystallization from its amorphous phase in the thermal annealing. Results from this study can be used for guiding gas phase nanomaterial synthesis in the future.

  12. Plasma etching of patterned tungsten

    International Nuclear Information System (INIS)

    Franssila, S.

    1993-01-01

    Plasma etching of tungsten is discussed from the viewpoint of thin film structure and integrated circuit process engineering. The emphasis is on patterned tungsten etching for silicon device and X-ray mask fabrication. After introducing tungsten etch chemistries and mechanisms, microstructural aspects of tungsten films (crystal structure, grain size, film density, defects, impurities) in relation to etching are discussed. Approaches to etch process optimization are presented, and the current state-of-the-art of patterned tungsten etching is reviewed. (orig.)

  13. International conference on composite materials and energy: Proceedings. Enercomp 95

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    World demand for composite materials is continuously increasing. High strength and rigidity, associated with light weight, are the key factors for composites' success. These materials find numerous applications in all sectors of industry. Presently, a sector of particular interest in terms of demand for composite materials is the energy industry. More and more applications are found in the field of the forms of energy: electrical, petroleum, gas, nuclear, solar and wind. The topics addressed in various sessions of the conference cover potential applications of the entire range of polymer, metal and ceramic composites in all sectors of energy. Papers are divided into sessions covering the following topics: properties; design and analysis; fracture; fatigue and long-term performance; new materials; innovative processing; liquid molding; joining and repairs; radiation curing; recycling; development in ceramic materials; innovations in metallic materials; metal-matrix composites; nondestructive evaluation; energy savings in transportation; pressure vessels and piping; wind energy applications; electrical components; concrete applications; power plant applications; and new materials in the energy field. Most of the papers have been processed separately for inclusion on the data base

  14. Photometric investigation of tungsten (6) reaction with monoazo compound based on pyrogallol

    International Nuclear Information System (INIS)

    Gambarov, D.G.; Gusejnov, A.G.

    1980-01-01

    The possibility has been studied to use a new monoazo compound 2,3,4-trihydroxy-4'-sulfoazobenzene (TSAB) for the photometric determination of tungsten in steels. The maximum yield of W(6) complex is observed in the interval from 0.3 NHCl to pH2. The maximum absorption of the complex is observed at 460 nm and that of reagent - at 380 nm. The complex coloring immediately develops and in stable for more than one day. Molar coefficient of complex extinctior equals 43000+-300. Tungsten concentration interval being determined in 0.3 N HCl is 10-140 μg/25 ml. Tungsten determination technique in chromium-nickel-tungsten and chromium-silicon-nickel steels is given. If steel samples contain Mo > 0.1 mg, Y > 0.2 mg, Zr > 1.0 mg, Fe > 0.03 mg and Si > 0.3 mg then it is necessary to separate Mo, Y and Zr beforehand. Fe and Si are respectively well camouflaged by ascorbic acid and EDTA

  15. Influence of Heavy Metal Powders on Rheological Properties of Poly(Lactic Acid)

    Science.gov (United States)

    Lebedev, S. M.; Gefle, O. S.; Amitov, E. T.; Berchuk, D. Yu.; Zhuravlev, D. V.

    2017-08-01

    Main properties of poly(lactic acid) (PLA) and composite materials on its basis filled with tungsten and lead powders are investigated. An anomalous decrease of the viscosity of melts of poly(lactic acid)/tungsten and poly(lactic acid)/lead composites is detected. The methods of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and IR spectroscopy are used for investigation. It is shown that the temperature at which the composites filled with tungsten and lead begin to melt decreases by more than 8 and 3°C in comparison with neat PLA. Our investigations show impossibility of preparing radiation resistant polymer composites based on PLA filled with tungsten and lead powders.

  16. Fabrication of free-standing pure carbon-based composite material with the combination of sp2–sp3 hybridizations

    International Nuclear Information System (INIS)

    Varga, M.; Vretenar, V.; Kotlar, M.; Skakalova, V.; Kromka, A.

    2014-01-01

    Composite structures have been in a center of interest for many decades. Carbon–carbon composites combine different carbon-based allotropes. Combining different carbon structures each with its unique property results in a new composite material with designed properties. In this contribution we present a technological procedure for preparation of a new flexible material consisting of single-wall carbon nanotubes (SWNTs) and nanocrystalline diamond (NCD). The fabrication process starts from the preparation of a paper made of SWNTs bundles followed by the CVD-growth of NCD in the interior of the SWNT paper. Keeping balance between the two competing processes during the CVD, i.e. growth of diamond particles versus etching SWNTs, is found as a key factor for the formation of a compact SWNT/NCD composite material. From a technological point of view, both processes are influenced mainly by the CVD conditions (temperature, gas composition, etc.) and/or substrate pretreatment. The essential idea of the diamond integration into the SWNT paper is demonstrated and discussed in more details. The morphology and structural aspects of the prepared composite material are further characterized by scanning electron microscopy and Raman spectroscopy.

  17. Problems of tungsten crack resistance optimization

    International Nuclear Information System (INIS)

    Babak, A.V.; Uskov, E.I.

    1986-01-01

    Technically pure and precipitation-hardening tungsten is studied for its crack resistance in the initial and hardened states at the temperatures of 20...2000 deg C. Results of the study are presented. It is shown that hardening of tungsten base alloys in oil from the temperature corresponding to the upper boundary of the temperature region of ductile-brittle transition increases a crack propagation resistance of the studied materias at elevated and high temperatures

  18. Progress of research on plasma facing materials in University of Science and Technology Beijing

    International Nuclear Information System (INIS)

    Ge, Chang-Chun; Zhou, Zhang-Jian; Song, Shu-Xiang; Du, Juan; Zhong, Zhi-Hong

    2007-01-01

    In this paper, we report some new progress on plasma facing materials in University of Science and Technology Beijing (USTB), China. They include fabrication of tungsten coating with ultra-fine grain size by atmosphere plasma spraying; fabrication of tungsten with ultra-fine grain size by a newly developed method named as resistance sintering under ultra-high pressure; using the concept of functionally graded materials to join tungsten to copper based heat sink; joining silicon doped carbon to copper by brazing using a Ti based amorphous filler and direct casting

  19. Cementitious composite materials with improved self-healing potential

    Directory of Open Access Journals (Sweden)

    Cornelia BAERA

    2015-12-01

    Full Text Available Cement-based composites have proved, over the time, certain abilities of self-healing the damages (cracks and especially microcracs that occur within their structure. Depending on the level of damage and of the composite type in which this occurs, the self - healing process (SH can range from crack closing or crack sealing to the stage of partial or even complete recovery of material physical - mechanical properties. The aim of this paper is to present the general concept of Engineered Cementitious Composites (ECCs with their unique properties including their self-healing (SH capacity, as an innovative direction for a global sustainable infrastructure. The experimental steps initiated for the development in Romania of this unique category of materials, using materials available on the local market, are also presented.

  20. Influence of structures on fracture and fracture toughness of cemented tungsten carbides

    International Nuclear Information System (INIS)

    Zhao, W.; Zhang, X.

    1987-01-01

    A study was made of the influence of structures on fracture and fracture toughness of cemented tungsten carbides with different compositions and grain sizes. The measurement of the fracture toughness of cemented tungsten carbide was carried out using single edge notched beam. The microstructural parameters and the proportion for each fracture mode on the fracture surface were obtained. The brittle fracture of the alloy is mainly due to the interfacial decohesion fracture following the interface of the carbide crystals. It has been observed that there are localized fractures region ahead of the crack tip. The morphology of the crack propagation path as well as the slip structure in the cobalt phase of the deformed region have been investigated. In addition, a study of the correlation between the plane strain fracture toughness and microstructural parameters, such as mean free path of the cobalt phase, tungsten carbide grain size and the contiguity of tungsten carbide crystals was also made