WorldWideScience

Sample records for tungsten outer divertor

  1. Tungsten erosion and redeposition in the all-tungsten divertor of ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M; Krieger, K; Matern, G; Neu, R; Rasinski, M; Rohde, V; Sugiyama, K; Wiltner, A [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Andrzejczuk, M; Fortuna-Zalesna, E; Kurzydlowski, K J; Zielinski, W [Faculty of Materials Science and Engineering, Warsaw University of Technology, Association EURATOM-IPPLM, 02-507 Warsaw (Poland); Hakola, A; Koivuranta, S; Likonen, J [VTT Materials for Power Engineering, EURATOM Association, PO Box 1000, FI-02044 VTT (Finland); Ramos, G [CICATA-Qro, Instituto Politecnico Nacional, Queretaro (Mexico); Dux, R, E-mail: matej.mayer@ipp.mpg.de

    2009-12-15

    Net erosion and deposition of tungsten (W) in the ASDEX Upgrade divertor were determined after the 2007 campaign by using thin W marker stripes. ASDEX Upgrade had full-W plasma-facing components during this campaign. The inner divertor and the roof baffle were net W deposition areas with a maximum deposition of about 1x10{sup 18} W-atoms cm{sup -2} in the private flux region below the inner strike point. Net erosion of W was observed in the whole outer divertor, with the largest erosion close to the outer strike point. Only a small fraction of the W eroded in the main chamber and in the outer divertor was found in redeposits in the inner divertor, while a large fraction was either redeposited at unidentified places in the main chamber or has formed dust.

  2. Tungsten nano-tendril growth in the Alcator C-Mod divertor

    International Nuclear Information System (INIS)

    Wright, G.M.; Brunner, D.; Labombard, B.; Lipschultz, B.; Terry, J.L.; Whyte, D.G.; Baldwin, M.J.; Doerner, R.P.

    2012-01-01

    Growth of tungsten nano-tendrils (‘fuzz’) has been observed for the first time in the divertor region of a high-power density tokamak experiment. After 14 consecutive helium L-mode discharges in Alcator C-Mod, the tip of a tungsten Langmuir probe at the outer strike point was fully covered with a layer of nano-tendrils. The thickness of the individual nano-tendrils (50–100 nm) and the depth of the layer (600 ± 150 nm) are consistent with observations from experiments on linear plasma devices. The observation of tungsten fuzz in a tokamak may have important implications for material erosion, dust formation, divertor lifetime and tokamak operations in next-step devices. (letter)

  3. ITER tungsten divertor design development and qualification program

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, T., E-mail: takeshi.hirai@iter.org [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint Paul lez Durance (France); Escourbiac, F.; Carpentier-Chouchana, S.; Fedosov, A.; Ferrand, L.; Jokinen, T.; Komarov, V.; Kukushkin, A.; Merola, M.; Mitteau, R.; Pitts, R.A.; Shu, W.; Sugihara, M. [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint Paul lez Durance (France); Riccardi, B. [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Suzuki, S. [JAEA, Fusion Research and Development Directorate JAEA, 801-1 Mukouyama, Naka, Ibaragi 311-0193 (Japan); Villari, R. [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, I-00044 Frascati, Rome (Italy)

    2013-10-15

    Highlights: • Detailed design development plan for the ITER tungsten divertor. • Latest status of the ITER tungsten divertor design. • Brief overview of qualification program for the ITER tungsten divertor and status of R and D activity. -- Abstract: In November 2011, the ITER Council has endorsed the recommendation that a period of up to 2 years be set to develop a full-tungsten divertor design and accelerate technology qualification in view of a possible decision to start operation with a divertor having a full-tungsten plasma-facing surface. To ensure a solid foundation for such a decision, a full tungsten divertor design, together with a demonstration of the necessary high performance tungsten monoblock technology should be completed within the required timescale. The status of both the design and technology R and D activity is summarized in this paper.

  4. Induced tungsten melting events in the divertor of ASDEX Upgrade and their influence on plasma performance

    International Nuclear Information System (INIS)

    Krieger, K.; Lunt, T.; Dux, R.; Janzer, A.; Kallenbach, A.; Mueller, H.W.; Neu, R.; Puetterich, T.; Rohde, V.

    2011-01-01

    Tungsten rods of 1 x 1 x 3 mm were exposed at the outer divertor plate of ASDEX Upgrade using a manipulator system. Controlled melting of the W-rod in H-mode discharges was induced by moving the outer strike point towards the W-rod position. Visible light emission of ejected W droplets was recorded by fast camera systems. The resulting increase of tungsten concentration in the confined plasma was compared to that induced by W laser ablation into the outer main chamber boundary plasma. The resulting divertor retention expressed as ratio of tungsten core penetration probability from a divertor source to that of a main chamber source is ∼100. Ejected droplets are found to move always in general direction of the plasma flow. The measured magnitude of droplet acceleration shows that droplets are mainly subject to rocket forces and friction forces. Typical initial droplet size can be inferred from the time evolution of the droplet light emission to be ≥100μm.

  5. A solid tungsten divertor for ASDEX Upgrade

    International Nuclear Information System (INIS)

    Herrmann, A; Greuner, H; Jaksic, N; Böswirth, B; Maier, H; Neu, R; Vorbrugg, S

    2011-01-01

    The conceptual design of a solid tungsten divertor for ASDEX Upgrade (AUG) is presented. The Div-III design is compatible with the existing divertor structure. It re-establishes the energy and heat receiving capability of a graphite divertor and overcomes the limitations of tungsten coatings. In addition, a solid tungsten divertor allows us to investigate erosion and bulk deuterium retention as well as test castellation and target tilting. The design criteria as well as calculations of forces due to halo and eddy currents are presented. The thermal properties of the proposed sandwich structure are calculated with finite element method models. After extensive testing of a target tile in the high heat flux test facility GLADIS, two solid tungsten tiles were installed in AUG for in-situ testing.

  6. Design, R&D and commissioning of EAST tungsten divertor

    Science.gov (United States)

    Yao, D. M.; Luo, G. N.; Zhou, Z. B.; Cao, L.; Li, Q.; Wang, W. J.; Li, L.; Qin, S. G.; Shi, Y. L.; Liu, G. H.; Li, J. G.

    2016-02-01

    After commissioning in 2005, the EAST superconducting tokamak had been operated with its water cooled divertors for eight campaigns up to 2012, employing graphite as plasma facing material. With increase in heating power over 20 MW in recent years, the heat flux going to the divertors rises rapidly over 10 MW m-2 for steady state operation. To accommodate the rapid increasing heat load in EAST, the bolting graphite tile divertor must be upgraded. An ITER-like tungsten (W) divertor has been designed and developed; and firstly used for the upper divertor of EAST. The EAST upper W divertor is modular structure with 80 modules in total. Eighty sets of W/Cu plasma-facing components (PFC) with each set consisting of an outer vertical target (OVT), an inner vertical target (IVT) and a DOME, are attached to 80 stainless steel cassette bodies (CB) by pins. The monoblock W/Cu-PFCs have been developed for the strike points of both OVT and IVT, and the flat type W/Cu-PFCs for the DOME and the baffle parts of both OVT and IVT, employing so-called hot isostatic pressing (HIP) technology for tungsten to CuCrZr heat sink bonding, and electron beam welding for CuCrZr to CuCrZr and CuCrZr to other material bonding. Both monoblock and flat type PFC mockups passed high heat flux (HHF) testing by means of electron beam facilities. The 80 divertor modules were installed in EAST in 2014 and results of the first commissioning are presented in this paper.

  7. Conceptual design for a bulk tungsten divertor tile in JET

    International Nuclear Information System (INIS)

    Mertens, Ph.; Hirai, T.; Linke, J.; Neubauer, O.; Pintsuk, G.; Philipps, V.; Sadakov, S.; Samm, U.; Schweer, B.

    2007-01-01

    The ITER-like Wall project (ILW) for JET aims at providing the plasma chamber of the tokamak with an environment of mixed materials which will be relevant for the actual first wall construction on ITER. Tungsten plays a key role in the divertor cladding. For the central tile, also called LB-SRP for 'load-bearing septum replacement plate', bulk tungsten is envisaged in order to cope with the high heat loads expected (up to 10 MW/m 2 for 10 s). The outer strike-point in the divertor will be positioned on this tile for the most relevant configurations. Forschungszentrum Juelich (FZJ) has developed a conceptual design based on an assembly of tungsten blades or lamellae. An appropriate interface with the base carrier of JET, on which modules of two tiles are positioned and fixed by remote handling procedures, is a substantial part of the integral design. Important issues are the electromagnetic forces and expected temperature distributions. Material choices combine tungsten, TZM TM , Inconel and ceramic parts. The completed design has been finalised in a proposal to the ILW project, with utmost ITER-relevance

  8. Detailed electromagnetic analysis for optimization of a tungsten divertor plate for JET

    International Nuclear Information System (INIS)

    Sadakov, S.; Bondarchuk, E.; Doinikov, N.; Kitaev, B.; Kozhukhovskaya, N.; Maximiva, I.; Hirai, T.; Mertens, P.; Neubauer, O.; Obidenko, T.

    2006-01-01

    . Each stack consists of 22 or 24 tungsten lamellae interleaved with insulated and non-insulated spacers. The insulated spacers cut the largest loops of eddy currents. Non-insulated spacers have extrusions used for the tile attachment. The tree-shaped design compensates the drawback of high electrical conductivity and becomes Halo-defined. This means that eddy-current related loads become smaller than Halo-current related loads, which depend mostly on divertor height and thus cannot be reduced much. Further main design features justified by this study are: (1) equal widths of all tiles; (2) fifth pair of wings; (3) multiple elastic attachment links; (4) avoidance of thick outer lamellae; (5) location of all feet on a span of ∼ 58% of a gross toroidal size. (author)

  9. Exposures of tungsten nanostructures to divertor plasmas in DIII-D

    International Nuclear Information System (INIS)

    Rudakov, D L; Doerner, R P; Baldwin, M J; Boedo, J A; Hollmann, E M; Moyer, R A; Wong, C P C; Chrobak, C P; Guo, H Y; Leonard, A W; Pace, D C; Thomas, D M; Wright, G M; Abrams, T; Briesemeister, A R; McLean, A G; Fenstermacher, M E; Lasnier, C J; Watkins, J G

    2016-01-01

    Tungsten nanostructures (W-fuzz) prepared in the PISCES-A linear device have been found to survive direct exposure to divertor plasmas in DIII-D. W-fuzz was exposed in the lower divertor of DIII-D using the divertor material evaluation system. Two samples were exposed in lower single null (LSN) deuterium H-mode plasmas. The first sample was exposed in three discharges terminated by vertical displacement event disruptions, and the second in two discharges near the lowered X-point. More recently, three samples were exposed near the lower outer strike point in predominantly helium H-mode LSN plasmas. In all cases, the W-fuzz survived plasma exposure with little obvious damage except in the areas where unipolar arcing occurred. Arcing is effective in W-fuzz removal, and it appears that surfaces covered with W-fuzz can be more prone to arcing than smooth W surfaces. (paper)

  10. The WEST project: Current status of the ITER-like tungsten divertor

    International Nuclear Information System (INIS)

    Missirlian, M.; Bucalossi, J.; Corre, Y.; Ferlay, F.; Firdaouss, M.; Garin, P.; Grosman, A.; Guilhem, D.; Gunn, J.; Languille, P.; Lipa, M.; Richou, M.; Tsitrone, E.

    2014-01-01

    Highlights: • We presented the ITER-like W components occurred for the WEST divertor. • The main features including key elements of the design were detailed. • The main results of studies investigating the integration constraints or issues were reported. • The WEST ITER-like divertor design reached a mature stage to enable the launching of the procurement phase. - Abstract: The WEST (W – for tungsten – Environment in Steady-state Tokamak) project is an upgrade of Tore Supra from a limiter based tokamak with carbon PFCs into an X-point divertor tokamak with full-tungsten armour while keeping its long discharge capability. The WEST project will primarily offer the key capability of testing for the first time the ITER technology in real plasma environment. In particular, the main divertor (i.e. the lower divertor) of the WEST project will be based on actively cooled tungsten monoblock components and will follow as closely as possible the design and the assembling technology, foreseen for the ITER divertor units. The current design of WEST ITER-like tungsten divertor has now reached a mature stage following the 2013 WEST Final Design Review. This paper presents the key elements of the design, reports the technological requirements and reviews the main design and integration issues

  11. The WEST project: Current status of the ITER-like tungsten divertor

    Energy Technology Data Exchange (ETDEWEB)

    Missirlian, M., E-mail: marc.missirlian@cea.fr; Bucalossi, J.; Corre, Y.; Ferlay, F.; Firdaouss, M.; Garin, P.; Grosman, A.; Guilhem, D.; Gunn, J.; Languille, P.; Lipa, M.; Richou, M.; Tsitrone, E.

    2014-10-15

    Highlights: • We presented the ITER-like W components occurred for the WEST divertor. • The main features including key elements of the design were detailed. • The main results of studies investigating the integration constraints or issues were reported. • The WEST ITER-like divertor design reached a mature stage to enable the launching of the procurement phase. - Abstract: The WEST (W – for tungsten – Environment in Steady-state Tokamak) project is an upgrade of Tore Supra from a limiter based tokamak with carbon PFCs into an X-point divertor tokamak with full-tungsten armour while keeping its long discharge capability. The WEST project will primarily offer the key capability of testing for the first time the ITER technology in real plasma environment. In particular, the main divertor (i.e. the lower divertor) of the WEST project will be based on actively cooled tungsten monoblock components and will follow as closely as possible the design and the assembling technology, foreseen for the ITER divertor units. The current design of WEST ITER-like tungsten divertor has now reached a mature stage following the 2013 WEST Final Design Review. This paper presents the key elements of the design, reports the technological requirements and reviews the main design and integration issues.

  12. Molecular deuterium behaviour in tungsten divertor on JET

    Energy Technology Data Exchange (ETDEWEB)

    Sergienko, G., E-mail: g.sergienko@fz-juelich.de [Institute of Energy and Climate Research –Plasma Physics, Forschungszentrum Jülich, EURATOM Association, Trilateral Euregio Cluster, D-52425 Jülich (Germany); Arnoux, G. [Euratom-CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Brezinsek, S.; Clever, M.; Huber, A.; Kruezi, U. [Institute of Energy and Climate Research –Plasma Physics, Forschungszentrum Jülich, EURATOM Association, Trilateral Euregio Cluster, D-52425 Jülich (Germany); Meigs, A.G. [Euratom-CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Mertens, Ph.; Samm, U. [Institute of Energy and Climate Research –Plasma Physics, Forschungszentrum Jülich, EURATOM Association, Trilateral Euregio Cluster, D-52425 Jülich (Germany); Stamp, M. [Euratom-CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2013-07-15

    Molecular spectroscopy was used to observe molecular deuterium at the outer strike point of the new bulk tungsten JET divertor. The rotational and vibrational populations of the deuterium molecules in the ground state were determined from the deuterium Q-branches of Fulcher-α band emission (d{sup 3}Π{sub u}{sup -}→a{sup 3}Σ{sub g}{sup +}) in the 600–640 nm spectral range. For L-mode plasmas in the low recycling regime the molecular emission maximum is located in the vicinity of the strike point. The spatial profile of the emission was strongly modified during plasma detachment in both L- and H-mode plasmas. The rotational temperature of excited molecules reached 2760 K in L-mode. The vibrational population has a peculiarity: a remarkably high population of the d{sup 3}Π{sub u}{sup -}(v = 0) vibrational level indicating a non-Boltzmann vibrational distribution of D{sub 2} in tungsten environment.

  13. Conceptual Design for a Bulk Tungsten Divertor Tile in JET

    International Nuclear Information System (INIS)

    Mertens, P.; Neubauer, O.; Philipps, V.; Schweer, B.; Samm, U.; Hirai, T.; Sadakov, S.

    2006-01-01

    With ITER on the verge of being build, the ITER-like Wall project (ILW) for JET aims at providing the plasma chamber of the tokamak with an environment of mixed materials which will be relevant to the support of decisions to the first wall construction and, from the point of view of plasma physics, to the corresponding investigations of possible plasma configuration and plasma-wall interaction. In both respects, tungsten plays a key role in the divertor cladding whereas beryllium will be used for the vessel's first wall. For the central tile, also called LB-SRP for '' Load-Bearing Septum Replacement Plate '', resort to bulk tungsten is envisaged in order to cope with the high loads expected (up to 10 MW/m 2 for about 10 s). This is indeed the preferred plasma-facing component for positioning the outer strike-point in the divertor. Forschungszentrum Juelich has developed a conceptual design for this tile, based on an assembly of tungsten blades or lamellae. It was selected in the frame of an extensive R-and-D study in search of a suitable, inertially cooled component(T. Hirai et al., R-and-D on full tungsten divertor and beryllium wall for JET ITER-like Wall Project: this conference). As reported elsewhere, the design is actually driven by electromagnetic considerations in the first place(S. Sadakov et al., Detailed electromagnetic analysis for optimisation of a tungsten divertor plate for JET: this conference). The lamellae are grouped in four stacks per tile which are independently attached to an equally re-designed supporting structure. A so-called adapter plate, also a new design, takes care of an appropriate interface to the base carrier of JET, onto which modules of two tiles are positioned and screwed by remote handling (RH) procedures. The compatibility of the design on the whole with RH requirements is another essential ingredient which was duly taken into account throughout. The concept and the underlying philosophy will be presented along with important

  14. Surface studies of tungsten erosion and deposition in JT-60U

    International Nuclear Information System (INIS)

    Ueda, Y.; Fukumoto, M.; Nishikawa, M.; Tanabe, T.; Miya, N.; Arai, T.; Masaki, K.; Ishimoto, Y.; Tsuzuki, K.; Asakura, N.

    2007-01-01

    In order to study tungsten erosion and migration in JT-60U, 13 W tiles have been installed in the outer divertor region and tungsten deposition on graphite tiles was measured. Dense local tungsten deposition was observed on a CFC tile toroidally adjacent to the W tiles, which resulted from prompt ionization and short range migration of tungsten along field lines. Tungsten deposition with relatively high surface density was found on an inner divertor tile around standard inner strike positions and on an outer wing tile of a dome. On the outer wing tile, tungsten deposition was relatively high compared with carbon deposition. In addition, roughly uniform tungsten depth distribution near the upper edge of the inner divertor tile was observed. This could be due to lift-up of strike point positions in selected 25 shots and tungsten flow in the SOL plasma

  15. The dynamical mechanical properties of tungsten under compression at working temperature range of divertors

    Science.gov (United States)

    Zhu, C. C.; Song, Y. T.; Peng, X. B.; Wei, Y. P.; Mao, X.; Li, W. X.; Qian, X. Y.

    2016-02-01

    In the divertor structure of ITER and EAST with mono-block module, tungsten plays not only a role of armor material but also a role of structural material, because electromagnetic (EM) impact will be exerted on tungsten components in VDEs or CQ. The EM loads can reach to 100 MN, which would cause high strain rates. In addition, directly exposed to high-temperature plasma, the temperature regime of divertor components is complex. Aiming at studying dynamical response of tungsten divertors under EM loads, an experiment on tungsten employed in EAST divertors was performed using a Kolsky bar system. The testing strain rates and temperatures is derived from actual working conditions, which makes the constitutive equation concluded by using John-Cook model and testing data very accurate and practical. The work would give a guidance to estimate the dynamical response, fatigue life and damage evolution of tungsten divertor components under EM impact loads.

  16. The dynamical mechanical properties of tungsten under compression at working temperature range of divertors

    International Nuclear Information System (INIS)

    Zhu, C.C.; Song, Y.T.; Peng, X.B.; Wei, Y.P.; Mao, X.; Li, W.X.; Qian, X.Y.

    2016-01-01

    In the divertor structure of ITER and EAST with mono-block module, tungsten plays not only a role of armor material but also a role of structural material, because electromagnetic (EM) impact will be exerted on tungsten components in VDEs or CQ. The EM loads can reach to 100 MN, which would cause high strain rates. In addition, directly exposed to high-temperature plasma, the temperature regime of divertor components is complex. Aiming at studying dynamical response of tungsten divertors under EM loads, an experiment on tungsten employed in EAST divertors was performed using a Kolsky bar system. The testing strain rates and temperatures is derived from actual working conditions, which makes the constitutive equation concluded by using John-Cook model and testing data very accurate and practical. The work would give a guidance to estimate the dynamical response, fatigue life and damage evolution of tungsten divertor components under EM impact loads. - Graphical abstract: From the comparison between the experimental curves and the predicted curves calculated by adopting the corrected m, it is very clear that the new model is of great capability to explain the deformation behavior of the tungsten material under dynamic compression at high temperatures. (EC, PC and PCM refers to experimental curve, predicted curve and predicted curve with a corrected m. Different colors represent different scenarios.). - Highlights: • Test research on dynamic properties of tungsten at working temperature range and strain rate range of divertors. • Constitutive equation descrbing strain hardening, strain rate hardening and temperature softening. • A guidance to estimate dynamical response and damage evolution of tungsten divertor components under impact.

  17. Numerical analysis of tungsten erosion and deposition processes under a DEMO divertor plasma

    Directory of Open Access Journals (Sweden)

    Yuki Homma

    2017-08-01

    Full Text Available Erosion reduction of tungsten (W divertor target is one of the most important research subjects for the DEMO fusion reactor design, because the divertor target has to sustain large fluence of incident particles, composed mainly of fuel ions and seeded impurities, during year-long operation period. Rate of net erosion and deposition on outer divertor target has been studied by using the integrated SOL/divertor plasma code SONIC and the kinetic full-orbit impurity transport code IMPGYRO. Two background plasmas have been used: one is lower density ni and higher temperature case and the other is higher ni and lower temperature case. Net erosion has been seen in the lower ni case. But in the higher ni case, the net erosion has been almost suppressed due to increased return rate and reduced self-sputtering yield. Following two factors are important to understand the net erosion formation: (i ratio of the 1st ionization length of sputtered W atom to the Larmor gyro radius of W+ ion, (ii balance between the friction force and the thermal force exerted on W ions. DEMO divertor design should take into account these factors to prevent target erosion.

  18. FEM investigation and thermo-mechanic tests of the new solid tungsten divertor tile for ASDEX Upgrade

    International Nuclear Information System (INIS)

    Jaksic, Nikola; Greuner, Henri; Herrmann, Albrecht

    2013-01-01

    Highlights: • New solid tungsten divertor for fusion experiment ASDEX Upgrade. • Design validation in the high heat flux (HHF) test facility GLADIS (Garching Large Divertor Sample Test Facility). • FEA simulation. -- Abstract: A new solid tungsten divertor for the fusion experiment ASDEX Upgrade is under construction at present. A new divertor tile design has been developed to improve the thermal performance of the current divertor made of tungsten coated fine grain graphite. Compared to thin tungsten coatings, divertor tiles made of massive tungsten allow to extend the operational range and to study the plasma material interaction of tungsten in more detail. The improved design for the solid tungsten divertor was tested on different full scale prototypes with a hydrogen ion beam. The influence of a possible material degradation due to thermal cracking or recrystallization can be studied. Furthermore, intensive Finite Element Method (FEM) numerical analysis with the respective test parameters has been performed. The elastic–plastic calculation was applied to analyze thermal stress and the observed elastic and plastic deformation during the heat loading. Additionally, the knowledge gained by the tests and especially by the numerical analysis has been used to optimize the shape of the divertor tiles and the accompanying divertor support structure. This paper discusses the main results of the high heat flux tests and their numerical simulations. In addition, results from some special structural mechanic analysis by means of FEM tools are presented. Finally, first results from the numerical lifecycle analysis of the current tungsten tiles will be reported

  19. He-cooled divertor for DEMO. Fabrication technology for tungsten cooling fingers

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, J.; Norajitra, P.; Widak, V.; Krauss, W. [Forschungszentrum Karlsruhe GmbH (Germany)

    2008-07-01

    A modular helium-cooled divertor design based on the multi-jet impingement concept (HEMJ) has been developed for the ''post-ITER'' demonstration reactor (DEMO) at the Forschungszentrum Karlsruhe [1, 2]. The main function of the divertor is to keep the plasma free from impurities by catching particles, such as fusion ash and eroded particles from the first wall. From the divertor surface, a maximum heat load of 10 MW/m{sup 2} at least has to be removed. The whole divertor is split up into a number of cassettes (48 according to the latest design studies [3]). Each cassette is cooled separately. The target plates are provided with several cooling fingers to keep the thermal stresses low. Each cooling finger consists of a tungsten tile which is brazed to a thimble-like cap made of a tungsten alloy W-1%La2O3 (WL10) underneath. The thimble has to be connected to the ODS EUROFER steel structure, which is accomplished by brazing again. The tungsten/tungsten brazing is exposed to 1200 C operation temperature while the tungsten/steel brazing joint must withstand 700 C operating temperature. Cooling of the finger is achieved by multi-jet impingement with helium. The inlet temperature of helium is 600 C and rises up to 700 C at the outlet. With this kind of cooling, a mean heat transfer coefficient of 35.000 W/(m{sup 2*}K) can be reached. This compact report will focus on the manufacturing of such a cooling finger unit at FZK. It will cover the machining of the tungsten tile as well as of the thimble and, the brazing of the parts. The major aim of this activity is, on the one hand, to obtain functioning mock-ups with high quality and high reliability, in particular in terms of minimising the surface roughness, cracks, and micro-cracks. On the other hand, effort should also be laid on realising the mass production from economic point of view. (orig.)

  20. Development and qualification of a bulk tungsten divertor row for JET

    Science.gov (United States)

    Mertens, Ph.; Altmann, H.; Hirai, T.; Philipps, V.; Pintsuk, G.; Rapp, J.; Riccardo, V.; Schweer, B.; Uytdenhouwen, I.; Samm, U.

    2009-06-01

    A bulk tungsten divertor row has been developed in the frame of the ITER-like Wall project at JET. It consists of 96 tiles grouped in 48 modules around the torus. The outer strike point is located on those tiles for most of the ITER-relevant, high triangularity plasmas. High power loads (locally up to 10-20 MW/m 2) and erosion rates are expected, even a risk of melting, especially with the transients or ELM loads. These are demanding conditions for an inertially cooled design as prescribed. A lamella design has been selected for the tungsten, arranged to control the eddy and halo current flows. The lamellae must also withstand high temperature gradients (2200 to 220 °C over 40 mm height), without overheating the supporting carrier (600-700 °C maximum). As a consequence of the tungsten emissivity, the radiative cooling drops appreciably in comparison with the current CFC tiles, calling for interleaved plasma scenarios in terms of performance. The compromise between shadowing and power handling is discussed, as well as the consequences for operation. Prototypes have been exposed in TEXTOR and in an electron beam facility (JUDITH-2) to the nominal power density of 7 MW/m 2 for 10 s and, in addition, to higher loads leading to surface temperatures above 2000 °C.

  1. The Design and Use of Tungsten Coated TZM Molybdenum Tile Inserts in the DIII-D Tokamak Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Christopher [General Atomics, San Diego; Nygren, R. E. [Sandia National Laboratories (SNL); Chrobak, C P. [General Atomics, San Diego; Buchenauer, Dean [Sandia National Laboratories (SNL); Holtrop, Kurt [General Atomics, San Diego; Unterberg, Ezekial A. [ORNL; Zach, Mike P. [ORNL

    2017-08-01

    Future tokamak devices are envisioned to utilize a high-Z metal divertor with tungsten as theleading candidate. However, tokamak experiments with tungsten divertors have seen significantdetrimental effects on plasma performance. The DIII-D tokamak presently has carbon as theplasma facing surface but to study the effect of tungsten on the plasma and its migration aroundthe vessel, two toroidal rows of carbon tiles in the divertor region were modified with high-Zmetal inserts, composed of a molybdenum alloy (TZM) coated with tungsten. A dedicated twoweek experimental campaign was run with the high-Z metal inserts. One row was coated withtungsten containing naturally occurring levels of isotopes. The second row was coated withtungsten where the isotope 182W was enhanced from the natural level of 26% up to greater than90%. The different isotopic concentrations enabled the experiment to differentiate between thetwo different sources of metal migration from the divertor. Various coating methods wereexplored for the deposition of the tungsten coating, including chemical vapor deposition,electroplating, vacuum plasma spray, and electron beam physical vapor deposition. The coatingswere tested to see if they were robust enough to act as a divertor target for the experiment. Testsincluded cyclic thermal heating using a high power laser and high-fluence deuterium plasmabombardment. The issues associate with the design of the inserts (tile installation, thermal stress,arcing, leading edges, surface preparation, etc.), are reviewed. The results of the tests used toselect the coating method and preliminary experimental observations are presented.

  2. Simulation of tungsten erosion and transport near the divertor plate during ELMs by a kinetic method

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhenyue; Sang, Chaofeng; Hu, Wanpeng; Du, Hailong; Wang, Dezhen, E-mail: wangdez@dlut.edu.cn

    2016-11-01

    Highlights: • A kinetic method is used to simulate tungsten erosion and transport during ELMs. • The erosion of tungsten plate by different species (deuterium and carbon ions) is shown. • The charge states of sputtered tungsten particles are given statistically. - Abstract: Tungsten (W) is fore seen as one of the most important candidates of the plasma-facing materials (PFM) for future fusion devices, due to its beneficial properties. However, the high-Z characteristic makes it a potential contamination to the core plasma. Divertor is the main component that directly contacts the plasma, therefore, it is very important to understand the erosion of W divertor plate and the corresponding transport of the eroded wall impurity, especially during edge localized modes (ELMs). In this work, a one-dimension-in-space and three-dimensions-in-velocity particle-in-cell code (EPPIC1D) is used to simulate the erosion of W divertor plate, and the transport of eroded W impurity near the divertor plate is studied by a Monte Carlo code. Benefiting from the kinetic simulation, energy/particle flux to the target could be calculated accurately, and the erosion of W plate by different species is simulated during ELMs. The trajectories and distributions of eroded W impurity particles are demonstrated, which shows us a basic idea of how these impurity particles are generated and transported. It is found that C{sup 3+} plays a dominated role on the erosion of W divertor plate during ELMs even when its concentration is low. Both W atoms and ions distribute mainly near the divertor plate, indicating only a very small fraction of W impurity particles could escape from divertor region and penetrate into the core plasma.

  3. ELM elimination with Li powder injection in EAST discharges using the tungsten upper divertor

    Science.gov (United States)

    Maingi, R.; Hu, J. S.; Sun, Z.; Tritz, K.; Zuo, G. Z.; Xu, W.; Huang, M.; Meng, X. C.; Canik, J. M.; Diallo, A.; Lunsford, R.; Mansfield, D. K.; Osborne, T. H.; Gong, X. Z.; Wang, Y. F.; Li, Y. Y.; EAST Team

    2018-02-01

    We report the first successful use of lithium (Li) to eliminate edge-localized modes (ELMs) with tungsten divertor plasma-facing components in the EAST device. Li powder injected into the scrape-off layer of the tungsten upper divertor successfully eliminated ELMs for 3-5 s in EAST. The ELM elimination became progressively more effective in consecutive discharges at constant lithium delivery rates, and the divertor D α baseline emission was reduced, both signatures of improved wall conditioning. A modest decrease in stored energy and normalized energy confinement was also observed, but the confinement relative to H98 remained well above 1, extending the previous ELM elimination results via Li injection into the lower carbon divertor in EAST (Hu et al 2015 Phys. Rev. Lett. 114 055001). These results can be compared with recent observations with lithium pellets in ASDEX-Upgrade that failed to mitigate ELMs (Lang et al 2017 Nucl. Fusion 57 016030), highlighting one comparative advantage of continuous powder injection for real-time ELM elimination.

  4. THERMAL HYDRAULIC ANALYSIS OF FIRE DIVERTOR

    International Nuclear Information System (INIS)

    C.B. bAXI; M.A. ULRICKSON; D.E. DRIMEYER; P. HEITZENROEDER

    2000-01-01

    The Fusion Ignition Research Experiment (FIRE) is being designed as a next step in the US magnetic fusion program. The FIRE tokamak has a major radius of 2 m, a minor radius of 0.525 m, and liquid nitrogen cooled copper coils. The aim is to produce a pulse length of 20 s with a plasma current of 6.6 MA and with alpha dominated heating. The outer divertor and baffle of FIRE are water cooled. The worst thermal condition for the outer divertor and baffle is the baseline D-T operating mode (10 T, 6.6 MA, 20 s) with a plasma exhaust power of 67 MW and a peak heat flux of 20 MW/m 2 . A swirl tape (ST) heat transfer enhancement method is used in the outer divertor cooling channels to increase the heat transfer coefficient and the critical heat flux (CHF). The plasma-facing surface consists of tungsten brush. The finite element (FE) analysis shows that for an inlet water temperature of 30 C, inlet pressure of 1.5 MPa and a flow velocity of 10 m/s, the incident critical heat flux is greater than 30 MW/m 2 . The peak copper temperature is 490 C, peak tungsten temperature is 1560 C, and the pressure drop is less than 0.5 MPa. All these results fulfill the design requirements

  5. L-H power threshold studies with tungsten/carbon divertor on the EAST tokamak

    DEFF Research Database (Denmark)

    Chen, L.; Xu, G. S.; Gao, W.

    2016-01-01

    The power threshold for low (L) to high (H) confinement mode transition achieved by radio-frequency heating and molybdenum first wall with lithium coating has been experimentally investigated on the EAST tokamak for two sets of divertor geometries and materials: tungsten/carbon divertor and full...... carbon divertor. For both sets of divertors, the power threshold was found to decrease with gradual accumulation of the lithium wall coating, suggesting the important role played by the low Z impurities and/or the edge neutral density on the L-H power threshold. When operating in the upper single null...

  6. OEDGE Modeling of Collector Probe measurements in L-mode from the DIII-D tungsten ring campaign

    Science.gov (United States)

    Elder, J. D.; Stangeby, P. C.; Unterberg, Z.; Donovan, D.; Wampler, W. R.; Watkins, J.; Abrams, T.; McLean, A. G.

    2017-10-01

    During the tungsten ring campaign on DIII-D, a collector probe system with multiple diameter, dual-facing collector rods was inserted into the far scrape off layer (SOL) near the outer midplane to measure the plasma tungsten content. For most probes more tungsten was observed on the side connected along field lines to the inner divertor, with the larger probes showing largest divertor-facing asymmetries The OEDGE code is used to model the tungsten erosion, transport and deposition. It has been enhanced with (i) a peripheral particle transport and deposition model to record the impurity content in the peripheral region outside the regular mesh, and (ii) a collector probe model. The OEDGE results approximately reproduce both the divertor-facing asymmetries and the radial decay of each collector probe profile. The effect of changing impurity transport assumptions and wall location are examined. The measured divertor-facing asymmetries imply a higher tungsten density in the plasma upstream of the probe; this was expected theoretically from the effect of the parallel ion temperature gradient force driving upstream transport of tungsten from the outer divertor and was also found in the code analysis. Work supported by the US Department of Energy under DE-FC02-04ER54698, DE-NA0003525, DE-AC05-00OR22725, and DE-AC52-07NA27344.

  7. Results of the H-mode experiments with JT-60 outer and lower divertors

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Tsuji, Shunji; Nagami, Masayuki

    1989-08-01

    In JT-60, hydrogen H-mode experiments with outer and lower divertors were performed. In the outer divertor, H-mode were obtained, similar to the ones observed in the other lower/upper divertors. Its threshold absorbed power and electron density were 16 MW and 1.8 x 10 19 m -3 . In the two combined heatings with NB+ICRF and NB+LHRF, H-mode discharges are also obtained. Moreover, in new configuration of lower divertor, H-mode phases without and with ELM are obtained. Typical results of the lower divertor are shown to compare the H-mode characteristics between the two configurations. Improvement of the energy confinement time in the two divertors was limited to 10 %. Analyses on ballooning/interchange instabilities were carried out with precise equlibria of JT-60. These results showed that the both modes were enough stable. (author)

  8. Development and optimisation of tungsten armour geometry for ITER divertor

    International Nuclear Information System (INIS)

    Makhankov, A.; Mazul, I.; Safronov, V.; Yablokov, N.

    1998-01-01

    The plasma facing components (PFC) of the future thermonuclear reactor in great extend determine the time of non-stop operation of the reactor. In current ITER project the most of the divertor PFC surfaces are covered by tungsten armour. Therefore selection of tungsten grade and attachment scheme for joining the tungsten armour to heat sink is a matter of great importance. Two attachment schemes for highly loaded components (up to 20 MW/m 2 ) are described in this paper. The small size mock-ups were manufactured and successfully tested at heat fluxes up to 30 MW/m 2 in screening test and up to 20 MW/m 2 at thermal fatigue test. One mock-up with four different tungsten grades was tested by consequent thermal shock (15 MJ/m 2 at 50 μs) and thermal cycling loading (15 MW/m 2 ). The damages that could lead to mock-up failure were not found but the behaviour of tungsten grades was quite different. (author)

  9. Divertor tungsten tiles erosion in the region of the castellated gaps

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wanpeng, E-mail: wangdez@dlut.edu.cn; Sang, Chaofeng; Sun, Zhenyue; Wang, Dezhen

    2016-11-01

    Highlights: • Simulation of the tungsten tiles erosion by different impurities in the divertor gap region is done by using a 2d3v Particle-In-Cell code. • High-Z impurity causes the largest erosion rate on W tile. • The peak physical sputtering erosion rate locates at the plasma-facing corners. - Abstract: Erosion of tungsten (W) is a very important issue for the future fusion device. The castellated divertor makes it more complicated due to complex geometry of the gap between the tiles. In this work, the plasma behaviors and resulting W tile erosion in the divertor tile gap region are studied by using a two dimension-in-space and three dimension-in-velocity (2d3 v) Particle-In-Cell (PIC) code. Deuterium ions (D{sup +}) and electrons are traced self-consistently in the simulation to provide the plasma background. Since there are lots of impurities, which may make a great impact on the tile erosion, in the divertor region to radiate the power, the erosion of W tile by different species are thus considered. The contributions of deuterium and impurities: Li, C, Ne, and Ar, to the W erosion, are studied under EAST conditions to show a straightforward insight. It is observed that the physical sputtering of W tile by impurities is much higher than that by the D ions, and the peak erosion region locates at the plasma-facing corners.

  10. Status of technology R&D for the ITER tungsten divertor monoblock

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, T., E-mail: takeshi.hirai@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Escourbiac, F.; Barabash, V.; Durocher, A.; Fedosov, A.; Ferrand, L.; Jokinen, T.; Komarov, V.; Merola, M.; Carpentier-Chouchana, S. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Arkhipov, N. [Project Center ITER, 1, Building 3, Kurchatov Sq., 123182 Moscow (Russian Federation); Kuznetcov, V.; Volodin, A. [NIIEFA, 3 doroga na Metallostroy, Metallostroy, St. Petersburg 196641 (Russian Federation); Suzuki, S.; Ezato, K.; Seki, Y. [JAEA, Fusion Research and Development Directorate JAEA, 801-1 Mukouyama, Naka, Ibaragi 311-0193 (Japan); Riccardi, B.; Bednarek, M.; Gavila, P. [F4E, c/Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain)

    2015-08-15

    In order to develop and validate the high performance tungsten monoblock technology, the full-tungsten divertor qualification program was defined. As the first step, small-scale mock-ups were manufactured and successfully tested under the required high heat flux loads. The test results demonstrated that the technology is available in Japan and Europe. Post-tests observation of the loaded W monoblocks showed generation of self-castellation – a crack along coolant tube axis. The cause of the self-castellation was discussed and a tungsten material characterization program is being developed with the objective to understand mechanical properties that influence the occurrence of the self-castellation.

  11. Failure study of helium-cooled tungsten divertor plasma-facing units tested at DEMO relevant steady-state heat loads

    International Nuclear Information System (INIS)

    Ritz, G; Pintsuk, G; Linke, J; Hirai, T; Norajitra, P; Reiser, J; Giniyatulin, R; Makhankov, A; Mazul, I

    2009-01-01

    Tungsten was selected as armor material for the helium-cooled divertor in future DEMO-type fusion reactors and fusion power plants. After realizing the design and testing of them under cyclic thermal loads of up to ∼14 MW m -2 , the tungsten divertor plasma-facing units were examined by metallography; they revealed failures such as cracks at the thermal loaded and as-machined surfaces, as well as degradation of the brazing layers. Furthermore, in order to optimize the machining processes, the quality of tungsten surfaces prepared by turning, milling and using a diamond cutting wheel were examined. This paper presents a metallographic examination of the tungsten plasma-facing units as well as technical studies and the characterization on machining of tungsten and alternative brazing joints.

  12. Failure study of helium-cooled tungsten divertor plasma-facing units tested at DEMO relevant steady-state heat loads

    Science.gov (United States)

    Ritz, G.; Hirai, T.; Norajitra, P.; Reiser, J.; Giniyatulin, R.; Makhankov, A.; Mazul, I.; Pintsuk, G.; Linke, J.

    2009-12-01

    Tungsten was selected as armor material for the helium-cooled divertor in future DEMO-type fusion reactors and fusion power plants. After realizing the design and testing of them under cyclic thermal loads of up to ~14 MW m-2, the tungsten divertor plasma-facing units were examined by metallography; they revealed failures such as cracks at the thermal loaded and as-machined surfaces, as well as degradation of the brazing layers. Furthermore, in order to optimize the machining processes, the quality of tungsten surfaces prepared by turning, milling and using a diamond cutting wheel were examined. This paper presents a metallographic examination of the tungsten plasma-facing units as well as technical studies and the characterization on machining of tungsten and alternative brazing joints.

  13. ELM-induced transient tungsten melting in the JET divertor

    Science.gov (United States)

    Coenen, J. W.; Arnoux, G.; Bazylev, B.; Matthews, G. F.; Autricque, A.; Balboa, I.; Clever, M.; Dejarnac, R.; Coffey, I.; Corre, Y.; Devaux, S.; Frassinetti, L.; Gauthier, E.; Horacek, J.; Jachmich, S.; Komm, M.; Knaup, M.; Krieger, K.; Marsen, S.; Meigs, A.; Mertens, Ph.; Pitts, R. A.; Puetterich, T.; Rack, M.; Stamp, M.; Sergienko, G.; Tamain, P.; Thompson, V.; Contributors, JET-EFDA

    2015-02-01

    The original goals of the JET ITER-like wall included the study of the impact of an all W divertor on plasma operation (Coenen et al 2013 Nucl. Fusion 53 073043) and fuel retention (Brezinsek et al 2013 Nucl. Fusion 53 083023). ITER has recently decided to install a full-tungsten (W) divertor from the start of operations. One of the key inputs required in support of this decision was the study of the possibility of W melting and melt splashing during transients. Damage of this type can lead to modifications of surface topology which could lead to higher disruption frequency or compromise subsequent plasma operation. Although every effort will be made to avoid leading edges, ITER plasma stored energies are sufficient that transients can drive shallow melting on the top surfaces of components. JET is able to produce ELMs large enough to allow access to transient melting in a regime of relevance to ITER. Transient W melt experiments were performed in JET using a dedicated divertor module and a sequence of IP = 3.0 MA/BT = 2.9 T H-mode pulses with an input power of PIN = 23 MW, a stored energy of ˜6 MJ and regular type I ELMs at ΔWELM = 0.3 MJ and fELM ˜ 30 Hz. By moving the outer strike point onto a dedicated leading edge in the W divertor the base temperature was raised within ˜1 s to a level allowing transient, ELM-driven melting during the subsequent 0.5 s. Such ELMs (δW ˜ 300 kJ per ELM) are comparable to mitigated ELMs expected in ITER (Pitts et al 2011 J. Nucl. Mater. 415 (Suppl.) S957-64). Although significant material losses in terms of ejections into the plasma were not observed, there is indirect evidence that some small droplets (˜80 µm) were released. Almost 1 mm (˜6 mm3) of W was moved by ˜150 ELMs within 7 subsequent discharges. The impact on the main plasma parameters was minor and no disruptions occurred. The W-melt gradually moved along the leading edge towards the high-field side, driven by j × B forces. The evaporation rate determined

  14. A new fully automatic PIM tool to replicate two component tungsten DEMO divertor parts

    International Nuclear Information System (INIS)

    Antusch, Steffen; Commin, Lorelei; Heneka, Jochen; Piotter, Volker; Plewa, Klaus; Walter, Heinz

    2013-01-01

    Highlights: • Development of a fully automatic 2C-PIM tool. • Replicate fusion relevant components in one step without additional brazing. • No cracks or gaps in the seam of the joining zone visible. • For both material combinations a solid bond of the material interface was achieved. • PIM is a powerful process for mass production as well as for joining even complex shaped parts. -- Abstract: At Karlsruhe Institute of Technology (KIT), divertor design concepts for future nuclear fusion power plants beyond ITER are intensively investigated. One promising KIT divertor design concept for the future DEMO power reactor is based on modular He-cooled finger units. The manufacturing of such parts by mechanical machining such as milling and turning, however, is extremely cost and time intensive because tungsten is very hard and brittle. Powder Injection Molding (PIM) has been adapted to tungsten processing at KIT since a couple of years. This production method is deemed promising in view of large-scale production of tungsten parts with high near-net-shape precision, hence, offering an advantage of cost-saving process compared to conventional machining. The properties of the effectively and successfully manufactured divertor part tile consisting only of pure tungsten are a microstructure without cracks and a high density (>98% T.D.). Based on the achieved results a new fully automatic multicomponent PIM tool was developed and allows the replication and joining without brazing of fusion relevant components of different materials in one step and the creation of composite materials. This contribution describes the process route to design and engineer a new fully automatic 2C-PIM tool, including the filling simulation and the implementing of the tool. The complete technological fabrication process of tungsten 2C-PIM, including material and feedstock (powder and binder) development, injection molding, and heat-treatment of real DEMO divertor parts is outlined

  15. Technical design of a solid tungsten divertor row for the ITER-like wall in the JET tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, P.; Knaup, M.; Neubauer, O.; Sadakov, S.; Schweer, B.; Terra, A.; Samm, U. [Forschungszentrum Juelich, Association EURATOM-FZJ (DE). Inst. fuer Energieforschung IEF-4 (Plasmaphysik); Pintsuk, G. [Forschungszentrum Juelich, Association EURATOM-FZJ (DE). Inst. fuer Energieforschung IEF-2 (Werkstoffstruktur und Eigenschaften)

    2009-07-01

    ITER (originally International Thermonuclear Experimental Reactor) is now under construction in Cadarache, France. In order to investigate plasma scenarios compatible with an ITER relevant mix of materials, a new, complete inner wall will be installed in the JET tokamak vessel (Culham, UK) in 2010. The plasmafacing components in the main chamber will be made of beryllium whereas the exposed areas in the divertor shall be made of tungsten, mostly of tungsten coatings on a carbon-fibre composite substrate. A notable exception is the central row of tiles where the outer strike point is located. Fig. 1 illustrates it with a camera view during a suitable discharge which shows the emission of atomic hydrogen, hence the main interaction regions. Plasma-facing components at this position are exposed to very high particle fluxes which cause material sputtering, and to extremely high heat loads without active cooling, which is not available. It was accordingly decided to resort to solid tungsten in this particular case. An overview of the conceptual design was presented earlier. Manufacturing is just starting, so the technical design has been frozen to the largest extent as presented in the following. (orig.)

  16. The WEST programme: Minimizing technology and operational risks of a full actively cooled tungsten divertor on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Grosman, André, E-mail: andre.grosman@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Bucalossi, Jérôme; Doceul, Louis [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Escourbiac, Frédéric [ITER Organization, Cadarache, 13115 St. Paul-lez-Durance (France); Lipa, Manfred [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Merola, Mario [ITER Organization, Cadarache, 13115 St. Paul-lez-Durance (France); Missirlian, Marc [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Pitts, Richard A. [ITER Organization, Cadarache, 13115 St. Paul-lez-Durance (France); Samaille, Franck; Tsitrone, Emmanuelle [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France)

    2013-10-15

    Highlights: ► The WEST programme is a unique opportunity to experience the industrial scale manufacture of tungsten plasma-facing components similar to the ITER divertor ones. ► In Tore Supra, it will bring important know how for actively cooled W divertor operation. ► This can be done by a reasonable modification of the Tore Supra tokamak. ► A fast implementation of the project would make this information available in due time. ► This allows a significant contribution to the W ITER divertor risk minimization in its manufacturing and operation phase. -- Abstract: The WEST programme consists in transforming the Tore Supra tokamak into an X point divertor device, while taking advantage of its long discharge capability. This is obtained by inserting in vessel coils to create the X point while adapting the in-vessel elements to this new geometry. This will allow the full tungsten divertor technology to be used on ITER to be tested in anticipation of its use on ITER under relevant heat loading conditions and pulse duration. The early manufacturing of a significant industrial series of ITER-similar W plasma-facing units will contribute to the ITER divertor manufacturing risk mitigation and to that associated with early W divertor plasma operation on ITER.

  17. ELM-induced transient tungsten melting in the JET divertor

    International Nuclear Information System (INIS)

    Coenen, J.W.; Clever, M.; Knaup, M.; Arnoux, G.; Matthews, G.F.; Balboa, I.; Meigs, A.; Bazylev, B.; Autricque, A.; Dejarnac, R.; Horacek, J.; Komm, M.; Coffey, I.; Corre, Y.; Gauthier, E.; Devaux, S.; Krieger, K.; Frassinetti, L.; Jachmich, S.; Marsen, S.

    2015-01-01

    The original goals of the JET ITER-like wall included the study of the impact of an all W divertor on plasma operation (Coenen et al 2013 Nucl. Fusion 53 073043) and fuel retention (Brezinsek et al 2013 Nucl. Fusion 53 083023). ITER has recently decided to install a full-tungsten (W) divertor from the start of operations. One of the key inputs required in support of this decision was the study of the possibility of W melting and melt splashing during transients. Damage of this type can lead to modifications of surface topology which could lead to higher disruption frequency or compromise subsequent plasma operation. Although every effort will be made to avoid leading edges, ITER plasma stored energies are sufficient that transients can drive shallow melting on the top surfaces of components. JET is able to produce ELMs large enough to allow access to transient melting in a regime of relevance to ITER. Transient W melt experiments were performed in JET using a dedicated divertor module and a sequence of I P  = 3.0 MA/B T  = 2.9 T H-mode pulses with an input power of P IN  = 23 MW, a stored energy of ∼6 MJ and regular type I ELMs at ΔW ELM  = 0.3 MJ and f ELM  ∼ 30 Hz. By moving the outer strike point onto a dedicated leading edge in the W divertor the base temperature was raised within ∼1 s to a level allowing transient, ELM-driven melting during the subsequent 0.5 s. Such ELMs (δW ∼ 300 kJ per ELM) are comparable to mitigated ELMs expected in ITER (Pitts et al 2011 J. Nucl. Mater. 415 (Suppl.) S957–64). Although significant material losses in terms of ejections into the plasma were not observed, there is indirect evidence that some small droplets (∼80 µm) were released. Almost 1 mm (∼6 mm 3 ) of W was moved by ∼150 ELMs within 7 subsequent discharges. The impact on the main plasma parameters was minor and no disruptions occurred. The W-melt gradually moved along the leading edge towards the high-field side, driven by j

  18. Structural impact of creep in tungsten monoblock divertor target at 20 MW/m2

    Directory of Open Access Journals (Sweden)

    Muyuan Li

    2018-01-01

    Full Text Available In order to increase erosion lifetime of the divertor target, in the 2nd design phase of R&D work package ‘Divertor’ for European DEMO, armor thickness of tungsten monoblock divertor target is increased from 5 mm to 8 mm. By increasing armor thickness, surface temperature increases nearly linearly, which makes effect of creep no longer negligible at slow transients of 20 MW/m2. In this work, structural impact of creep in tungsten monoblock divertor target is for the first time quantitatively analyzed with the aid of finite element method. The numerical simulations have revealed that creep results in an increase of inelastic strain accumulation. With increasing armor thickness, tensile surface stress along x-axis (the longer edge at the plasma-facing surface of tungsten monoblock reduces, while surface stress along z-axis (axial direction of the cooling tube changes from tensile to compressive. Creep will accelerate this change. With increasing grain size, creep strain accumulation at loading surface increases due to higher creep rates, while plastic strain accumulation decreases. Creep can mitigate the risk of deep cracking by reducing the driving force for crack opening, and has a positive impact for preventing the contact between the upper parts of neighboring monoblocks in high heat flux tests.

  19. Controlled tungsten melting and droplet ejection studies in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Krieger, K; Lunt, T; Dux, R; Janzer, A; Müller, H W; Potzel, S; Pütterich, T; Yang, Z

    2011-01-01

    Tungsten rods of 1×1×3 mm 3 were exposed in single H-mode discharges at the outer divertor target plate of ASDEX Upgrade using the divertor manipulator system. Melting of the W rod at a pre-defined time was induced by moving the initially far away outer strike point close to the W-rod position. Visible light emissions of both the W pin and consecutively ejected W droplets were recorded by two fast cameras with crossed viewing cones. The time evolution of the local W source at the pin location was measured by spectroscopic observation of the WI line emission at 400.9 nm and compared to the subsequent increase of tungsten concentration in the confined plasma derived from tungsten vacuum UV line emission. Combining these measurements with the total amount of released tungsten due to the pin melt events and ejected droplets allowed us to derive an estimate of the screening factor for this type of tungsten source. The resulting values of the tungsten divertor retention in the range 10-20 agree with those found in previous studies using a W source of sublimated W(CO) 6 vapour at the same exposure location. Ejected droplets were found to be always accelerated in the general direction of the plasma flow, attributed to friction forces and to rocket forces. Furthermore, the vertically inclined target plates cause the droplets, which are repelled by the target plate surface potential due to their electric charge, to move upwards against gravity due to the centrifugal force component parallel to the target plate.

  20. R(and)D on full tungsten divertor and beryllium wall for JET ITER-like Wall Project

    International Nuclear Information System (INIS)

    Hirai, T.; Maier, H.; Rubel, M.

    2006-01-01

    The ITER-like Wall Project was initiated at JET, with the goal of testing the reference material combination chosen for ITER: beryllium (Be) in the main chamber (wall and limiters) and tungsten (W) in the divertor. The major aims are to study the tritium retention, material mixing, melt layer behavior and to optimize plasma operation scenarios with a full metal wall. The project requires major design and engineering efforts in R(and)D: (i) bulk W tile, (ii) W coatings on carbon fibre composites (CFC) (iii) Be coatings on Inconel, (iv) Be marker tiles. For the W divertor, two R(and)D tasks were initiated: (1) development of a conceptual design for a bulk W tile as the main outer divertor target plate, and (2) W coating selection from 14 different samples produced by various techniques for the other divertor plates and neutral beam shine. The bulk W tile must withstand power loads of 7 MW/m 2 for 10 s. JET divertor plates are not actively cooled, therefore, heat capacity of the tiles is an important design parameter. In addition to power handling, mechanical structural stability under electromagnetic forces and compatibility with remote handling are the key requirements in the design. The design has been completed. The test-tile survived 100 pulses at 7 MW/m 2 for 10 s in the electron beam facility, JUDITH. The W coatings with different thickness, thin ( 2 and 200 pulses at 10 MW/m 2 for 5 s. In all tested samples cracks developed perpendicularly to the fiber bundles in CFC because of contraction of the coating in the cooling phase. Coatings were also exposed to 1000 ELM-like loading pulses. The thin coatings showed fatigue leading to delamination, whereas for thick coatings better resistance in ELM-like loading. As a result of R(and)D a full W divertor was decided: bulk metal at the outer divertor and W coating at other areas. Be-related R(and)D activities are in two areas. Production of 8-9 μm layers on inner wall cladding Inconel tiles ensures the full coating of

  1. Numerical simulation of CFC and tungsten target erosion in ITER-FEAT divertor

    International Nuclear Information System (INIS)

    Filatov, V.

    2003-01-01

    Physical, chemical and thermal surface erosion for water-cooled target armoured by CFC and tungsten is simulated by numerical code ERosion OF Immolated Layer (EROFIL-1). Some calculation results on the CFC and tungsten vertical target (VT) erosion in the ITER-FEAT divertor are presented for various operation modes (normal operations, slow transients, ELMs and disruptions). The main erosion mechanisms of CFC armour are the chemical and sublimation ones. Maximum erosion depth per 3000 cycles during normal operations and slow transients is of 2.7 mm at H phase and of 13.5 mm at DT phase. An evaluation of VT tungsten armour erosion per 3000 cycles of H and DT operations shows that no physical or chemical erosion as well as no melting are expected for tungsten armour at normal operations and slow transients. The tungsten armour melting at 2x10 6 ELMs is not allowable. The 300 disruptions are not dangerous in view of evaporation

  2. Fracture mechanical analysis of tungsten armor failure of a water-cooled divertor target

    Energy Technology Data Exchange (ETDEWEB)

    Li, Muyuan; Werner, Ewald [Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, Technische Universität München, Boltzmannstr. 15, 85748 Garching (Germany); You, Jeong-Ha, E-mail: you@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2014-11-15

    Highlights: • The FEM-based VCE method and XFEM were employed for computing K{sub I} (or J-integral) and predicting progressive cracking, respectively. • The most probable pattern of crack formation is radial cracking in the tungsten armor block. • The most probable site of cracking is the upper interfacial region of the tungsten armor block adjacent to the top position of the copper interlayer. • The initiation of a major crack becomes likely, only when the strength of tungsten armor block is significantly reduced from its original strength. - Abstract: The inherent brittleness of tungsten at low temperature and the embrittlement by neutron irradiation are its most critical weaknesses for fusion applications. In the current design of the ITER and DEMO divertor, the high heat flux loads during the operation impose a strong constraint on the structure–mechanical performance of the divertor. Thus, the combination of brittleness and the thermally induced stress fields due to the high heat flux loads raises a serious reliability issue in terms of the structural integrity of tungsten armor. In this study, quantitative estimates of the vulnerability of the tungsten monoblock armor cracking under stationary high heat flux loads are presented. A comparative fracture mechanical investigation has been carried out by means of two different types of computational approaches, namely, the extended finite element method (XFEM) and the finite element method (FEM)-based virtual crack tip extension (VCE) method. The fracture analysis indicates that the most probable pattern of crack formation is radial cracking in the tungsten armor starting from the interface to tube and the most probable site of cracking is the upper interfacial region of the tungsten armor adjacent to the top position of the copper interlayer. The strength threshold for crack initiation and the high heat flux load threshold for crack propagation are evaluated based on XFEM simulations and computations

  3. Results of high heat flux tests of tungsten divertor targets under plasma heat loads expected in ITER and tokamaks (review)

    Energy Technology Data Exchange (ETDEWEB)

    Budaev, V. P., E-mail: budaev@mail.ru [National Research Centre Kurchatov Institute (Russian Federation)

    2016-12-15

    Heat loads on the tungsten divertor targets in the ITER and the tokamak power reactors reach ~10MW m{sup −2} in the steady state of DT discharges, increasing to ~0.6–3.5 GW m{sup −2} under disruptions and ELMs. The results of high heat flux tests (HHFTs) of tungsten under such transient plasma heat loads are reviewed in the paper. The main attention is paid to description of the surface microstructure, recrystallization, and the morphology of the cracks on the target. Effects of melting, cracking of tungsten, drop erosion of the surface, and formation of corrugated and porous layers are observed. Production of submicron-sized tungsten dust and the effects of the inhomogeneous surface of tungsten on the plasma–wall interaction are discussed. In conclusion, the necessity of further HHFTs and investigations of the durability of tungsten under high pulsed plasma loads on the ITER divertor plates, including disruptions and ELMs, is stressed.

  4. Status of the ITER full-tungsten divertor shaping and heat load distribution analysis

    International Nuclear Information System (INIS)

    Carpentier-Chouchana, S; Hirai, T; Escourbiac, F; Durocher, A; Fedosov, A; Ferrand, L; Kocan, M; Kukushkin, A S; Jokinen, T; Komarov, V; Lehnen, M; Merola, M; Mitteau, R; Pitts, R A; Sugihara, M; Firdaouss, M; Stangeby, P C

    2014-01-01

    In September 2011, the ITER Organization (IO) proposed to begin operation with a full-tungsten (W) armoured divertor, with the objective of taking a decision on the final target material (carbon fibre composite or W) by the end of 2013. This period of 2 years would enable the development of a full-W divertor design compatible with nuclear operations, the investigation of further several physics R and D aspects associated with the use of W targets and the completion of technology qualification. Beginning with a brief overview of the reference heat load specifications which have been defined for the full-W engineering activity, this paper will report on the current status of the ITER divertor shaping and will summarize the results of related three-dimensional heat load distribution analysis performed as part of the design validation. (paper)

  5. Divertor radiation in the ASDEX upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Sehmer, Till; Bernert, Matthias; Koll, Juergen; Meister, Hans; Wischmeier, Marco; Fantz, Ursel [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, 85748 Garching (Germany); Reimold, Felix [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik, 52425 Juelich (Germany); Collaboration: The ASDEX Upgrade Team

    2016-07-01

    To reduce in ITER the expected power flux density onto the divertor target, the plasma-wall interaction in the divertor needs to be strongly reduced. The fundamental path to achieve this is using radiation from seeded impurities, whereas the localization of this radiation (e.g. inside/outside confined region), which could have an impact onto the power balance, is a key challenge. The absolute radiated power distribution can be measured by foil bolometers. To study at the ASDEX Upgrade tungsten divertor the localization and quantification of radiation, the respective line of sight density of the bolometers has been improved by two additional cameras. The divertor radiation enhanced by nitrogen (N{sub 2}) seeding has been investigated, using variations of (1) the external heating power or (2) the N{sub 2} seeding rate. While in both cases the inner divertor stays fully detached, measurements indicate that the region of dominant radiation moves from the inner divertor through the X-Point into the confined region. In the outer divertor however, the measurements indicate either an immediate upwards shift or a continuous movement of the radiation away from the target, depending on experimental conditions.

  6. Technology R&D Activities for the ITER Full-tungsten Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzetto, P.; Bednarek, M.; Gavila, P.; Riccardi, B.; Saibene, G., E-mail: patrick.lorenzetto@f4e.europa.eu [Fusion for Energy, Barcelona (Spain); Escourbiac, F.; Hirai, T.; Merola, M.; Pitts, R. [ITER Organization, St Paul-lez-Durance (France); Suzuki, S. [JAEA, Ibaraki (Japan); Mazul, I. [Efremov Institute, St.Petersburg (Russian Federation)

    2012-09-15

    Full text: The current ITER Baseline foresees the use of carbon fibre composite (CFC) as armour material in the high heat flux strike point regions and tungsten (W) elsewhere in the divertor for the initial non-active phase of operation with hydrogen and helium plasmas. This divertor would then be replaced with a full-W divertor for the nuclear phase with deuterium and deuterium- tritium plasmas. To reduce costs the ITER Organization (IO) has proposed to install a full-W divertor from start of operations and to implement a work programme to develop a full-W divertor design, qualify the corresponding fabrication technology and investigate critical physics and operational issues with support from the R&D fusion community. An extensive R&D programme has been implemented over more than 15 years to develop fabrication technologies for the procurement of ITER divertor components. Significant effort has been devoted to the development of reliable armour/heat sink joining techniques such as Hot Isostatic Pressing (Europe), Hot Radial Pressing (Europe) or brazing (Japan, Russia). In this development programme, established for the CFC/W divertor variant, the design solution for W-armoured components was optimized for the divertor baffle and dome regions, namely for steady state operation conditions at heat flux values of typically 5 MW/m{sup 2} and for slow transient events at heat flux values up to 10 MW/m{sup 2}. A very positive outcome of this R&D work has been that some fabrication technologies mentioned above can achieve much higher performances, close to the expected slow transient conditions for the strike point region (20 MW/m{sup 2} for 10 s). To prepare for the procurement of a full-W divertor, a development work programme has been launched including in particular the manufacturing and high heat flux testing of small-scale mock-ups with improved monoblock geometries and full-W pre-qualification prototypes, and the manufacturing and testing of qualification full

  7. Chemically deposited tungsten fibre-reinforced tungsten – The way to a mock-up for divertor applications

    Directory of Open Access Journals (Sweden)

    J. Riesch

    2016-12-01

    Full Text Available The development of advanced materials is essential for sophisticated energy systems like a future fusion reactor. Tungsten fibre-reinforced tungsten composites (Wf/W utilize extrinsic toughening mechanisms and therefore overcome the intrinsic brittleness of tungsten at low temperature and its sensitivity to operational embrittlement. This material has been successfully produced and tested during the last years and the focus is now put on the technological realisation for the use in plasma facing components of fusion devices. In this contribution, we present a way to utilize Wf/W composites for divertor applications by a fabrication route based on the chemical vapour deposition (CVD of tungsten. Mock-ups based on the ITER typical design can be realized by the implementation of Wf/W tiles. A concept based on a layered deposition approach allows the production of such tiles in the required geometry. One fibre layer after the other is positioned and ingrown into the W-matrix until the final sample size is reached. Charpy impact tests on these samples showed an increased fracture energy mainly due to the ductile deformation of the tungsten fibres. The use of Wf/W could broaden the operation temperature window of tungsten significantly and mitigate problems of deep cracking occurring typically in cyclic high heat flux loading. Textile techniques are utilized to optimise the tungsten wire positioning and process speed of preform production. A new device dedicated to the chemical deposition of W enhances significantly, the available machine time for processing and optimisation. Modelling shows that good deposition results are achievable by the use of a convectional flow and a directed temperature profile in an infiltration process.

  8. Experiences with tungsten coatings in high heat flux tests and under plasma load in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Herrmann, A; Greuner, H; Fuchs, J C; Marne, P de; Neu, R

    2009-01-01

    ASDEX Upgrade was operated with about 6400 s plasma discharge during the scientific program in 2007/2008 exploring tungsten as a first wall material in tokamaks. In the first phase, the heating power was restricted to 10 MW. It was increased to 15 MW in the second phase. During this operational period, a delamination of the 200 μm W-VPS coating happened at 2 out of 128 tiles of the outer divertor and an unscheduled opening was required. In the third phase, ASDEX Upgrade was operated with partly predamaged tiles and up to 15 MW heating power. The target load was actively controlled by N 2 -seeding. This paper presents the screening test of target tiles in the high heat flux test facility GLADIS, experiences with operation and detected damages of the outer divertor as well as the heat load to the outer divertor and the reasons for the toroidal asymmetry of the divertor load.

  9. Progress of ITER full tungsten divertor technology qualification in Japan: Manufacturing full-scale plasma-facing unit prototypes

    International Nuclear Information System (INIS)

    Ezato, Koichiro; Suzuki, Satoshi; Seki, Yohji; Yamada, Hirokazu; Hirayama, Tomoyuki; Yokoyama, Kenji; Escourbiac, Frederic; Hirai, Takeshi

    2016-01-01

    Highlights: • JADA has demonstrated the feasibility of manufacturing the full-W plasma-facing units (W-PFU). • The surface profiles of the W monoblocks of the W-PFU prototypes on the test frame to mimic the support structure of the ITER OVT were examined by using an optical three-dimensional measurement system. The results show the most W monoblock surface in the target part locates within + 0.25 mm from the CAD data. • The strict profile control with the profile tolerance of ±0.3 mm is imposed on the OVT to prevent the leading edges of the W monoblocks from over-heating. • The present full-scale prototyping demonstrates to satisfy this requirement on the surface profile. • It can be concluded that the technical maturities of JADA and its suppliers are as high as to start series manufacturing the ITER divertor components. - Abstract: Japan Atomic Energy Agency (JAEA) is in progress for technology demonstration toward Full-tungsten (W) ITER divertor outer vertical target (OVT), especially, W monoblock technology that needs to withstand the repetitive heat load as high as 20 MW/m 2 for 10 s. Under the framework of the W divertor qualification program developed ITER organization, JAEA as Japanese Domestic Agency (JADA) manufactured seven full-scale plasma-facing unit (PFU) prototypes with the Japanese industries. Four prototypes that have 146 W monoblock joint with casted copper (Cu) interlayer passed successfully the ultrasonic testing. In the other three prototypes that have the different W/Cu interlayer joint, joint defects were found. The dimension measurements reveal the requirements of the gap between W monoblocks and the surface profile of PFU are feasible.

  10. Progress of ITER full tungsten divertor technology qualification in Japan: Manufacturing full-scale plasma-facing unit prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Ezato, Koichiro, E-mail: ezato.koichiro@jaea.go.jp [Department of ITER Project, Naka Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan); Suzuki, Satoshi; Seki, Yohji; Yamada, Hirokazu; Hirayama, Tomoyuki; Yokoyama, Kenji [Department of ITER Project, Naka Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan); Escourbiac, Frederic; Hirai, Takeshi [ITER Organization, route de vinon sur Verdon, 13067 St Paul lez Durance (France)

    2016-11-01

    Highlights: • JADA has demonstrated the feasibility of manufacturing the full-W plasma-facing units (W-PFU). • The surface profiles of the W monoblocks of the W-PFU prototypes on the test frame to mimic the support structure of the ITER OVT were examined by using an optical three-dimensional measurement system. The results show the most W monoblock surface in the target part locates within + 0.25 mm from the CAD data. • The strict profile control with the profile tolerance of ±0.3 mm is imposed on the OVT to prevent the leading edges of the W monoblocks from over-heating. • The present full-scale prototyping demonstrates to satisfy this requirement on the surface profile. • It can be concluded that the technical maturities of JADA and its suppliers are as high as to start series manufacturing the ITER divertor components. - Abstract: Japan Atomic Energy Agency (JAEA) is in progress for technology demonstration toward Full-tungsten (W) ITER divertor outer vertical target (OVT), especially, W monoblock technology that needs to withstand the repetitive heat load as high as 20 MW/m{sup 2} for 10 s. Under the framework of the W divertor qualification program developed ITER organization, JAEA as Japanese Domestic Agency (JADA) manufactured seven full-scale plasma-facing unit (PFU) prototypes with the Japanese industries. Four prototypes that have 146 W monoblock joint with casted copper (Cu) interlayer passed successfully the ultrasonic testing. In the other three prototypes that have the different W/Cu interlayer joint, joint defects were found. The dimension measurements reveal the requirements of the gap between W monoblocks and the surface profile of PFU are feasible.

  11. Manufacturing and joining technologies for helium cooled divertors

    International Nuclear Information System (INIS)

    Aktaa, J.; Basuki, W.W.; Weber, T.; Norajitra, P.; Krauss, W.; Konys, J.

    2014-01-01

    Highlights: • The manufacturing and joining technologies developed at KIT for helium cooled divertors are reviewed and critically discussed. • Various technologies have been pursued and further developed aiming divertor components with very high quality and sufficient reliability. • Very promising routes have been found for which however still R and D works are necessary. • Technologies developed are also useful for other divertor and even blanket concepts, particularly those with tungsten armor. - Abstract: In the helium cooled (HC) divertor, developed at KIT for a fusion power plant, tungsten has been selected as armor as well as structural material due to its crucial properties: high melting point, very low sputtering yield, good thermal conductivity, high temperature strength, low thermal expansion and low activation. Thereby the armor tungsten is attached to the structural tungsten by thermally conductive joint. Due to the brittleness of tungsten at low temperatures its use as structural material is limited to the high temperature part of the component and a structural joint to the reduced activation ferritic martensitic steel EUROFER97 is foreseen. Hence, to realize the selected hybrid material concept reliable tungsten–steel and tungsten–tungsten joints have been developed and will be reported in this paper. In addition, the modular design of the HC divertor requires tungsten armor tiles and tungsten structural thimbles to be manufactured in high numbers with very high quality. Due to the high strength and low temperature brittleness of tungsten special manufacturing techniques need to be developed for the production of parts with no cavities inside and/or surface flaws. The main achievement in developing the respective manufacturing technologies will be presented and discussed. To achieve the objectives mentioned above various manufacturing and joining technologies are pursued. Their later applicability depends on the level of development

  12. Comparative studies of inner and outer divertor discharges and a fueling study in QUEST

    Energy Technology Data Exchange (ETDEWEB)

    Mitarai, O., E-mail: omitarai@ktmail.tokai-u.jp [Kumamoto Liberal Arts Education Center, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto 862-8652 (Japan); Nakamura, K.; Hasegawa, M.; Onchi, T.; Idei, H.; Fujisawa, A.; Hanada, K.; Zushi, H.; Higashijima, A.; Nakashima, H.; Kawasaki, S. [Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasugakoen, Kasuga 816-8580 Japan (Japan); Matsuoka, K. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Koike, S.; Takahashi, T. [Division of Electronics and Informatics, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Tsutsui, H. [Research Laboratory for Nuclear Reactors, Tokyo Inst. Tech, 2-12-1 Ookayama, Tokyo 152-8550 (Japan)

    2016-11-01

    Highlights: • Central solenoid has a small flux in QUEST. • Large plasma current is obtained when the position is shifted to the inboard side. • Two types of divertor operation are compared. • Novel merging fueling methods are proposed. • Coaxial helicity injection (CHI) fueling was examined in QUEST divertor configuration. - Abstract: As QUEST has a small central solenoid (CS), a larger Ohmic discharge current has been obtained when the plasma shifts to the inboard side. This tendency restricts a divertor operation to the smaller plasma current regime. As the inner divertor coil has a smaller mutual inductance, it would be expected that its utilization seems to be better for easier plasma current ramp-up for a divertor operation. In this work, we made comparative studies on the plasma current ramp-up for two divertor coils. It is found that while the inner divertor coil with smaller mutual inductance needs a larger coil current, the outer divertor coil with larger mutual inductance needs a smaller coil current for divertor operation. Thus we have found that the plasma current ramp-up characteristics are almost similar for both configurations. We also propose a new fueling method for spherical tokamak (ST) using the coaxial helicity injection (CHI). The main plasma current would be generated at first, and then the CHI plasma current is created between bottom two electrode plates and merged into the main plasma current for fueling.

  13. A large divertor manipulator for ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Albrecht, E-mail: albrecht.herrmann@ipp.mpg.de; Jaksic, Nikola; Leitenstern, Peter; Greuner, Henri; Krieger, Karl; Marné, Pascal de; Oberkofler, Martin; Rohde, Volker; Schall, Gerd

    2015-10-15

    Highlights: • A large divertor manipulator for ASDEX Upgrade is developed and tested. • It allows replacing a relevant part of the divertor by dedicated targets and probes. • Modified solid standard targets. • Electrical and mechanical probes for dedicated investigations. • Test of actively cooled component. - Abstract: In 2013 a new bulk tungsten divertor, Div-III, was installed in ASDEX Upgrade (AUG). During the concept and design phase of Div-III the option of adaptable divertor instrumentation and divertor modification as contribution for divertor investigations in preparation of ITER was given a high priority. To gain flexibility for the test of divertor modifications without affecting the operational space of AUG, the large divertor manipulator, DIM-II, was designed and installed. DIM-II allows to retract 2 out of 128 outer divertor target tiles including the water cooled support structure into a target exchange box and to replace these targets without breaking the vacuum of the AUG vessel. DIM-II is based on a carriage-rail system with a driving rod pushing a front-end with the target module into the divertor position for plasma operation. Three types of front-ends are foreseen for physics investigations: (i) modified standard targets clamped to the standard cooling structure, (ii) dedicated front-ends making use of the whole available volume of about 230 × 160 × 80 mm{sup 3} and (iii) actively cooled/heated targets for cooling water temperatures up to 230 °C. This paper presents the DIM-II design including the FEM calculations for the modified divertor support structure and the front-end options, as well as the test procedure and operation mode.

  14. Exfoliation of the tungsten fibreform nanostructure by unipolar arcing in the LHD divertor plasma

    Science.gov (United States)

    Tokitani, M.; Kajita, S.; Masuzaki, S.; Hirahata, Y.; Ohno, N.; Tanabe, T.; LHD Experiment Group

    2011-10-01

    The tungsten nanostructure (W-fuzz) created in the linear divertor simulator (NAGDIS) was exposed to the Large Helical Device (LHD) divertor plasma for only 2 s (1 shot) to study exfoliation/erosion and microscopic modifications due to the high heat/particle loading under high magnetic field conditions. Very fine and randomly moved unipolar arc trails were clearly observed on about half of the W-fuzz area (6 × 10 mm2). The fuzzy surface was exfoliated by continuously moving arc spots even for the very short exposure time. This is the first observation of unipolar arcing and exfoliation of some areas of the W-fuzz structure itself in a large plasma confinement device with a high magnetic field. The typical width and depth of each arc trail were about 8 µm and 1 µm, respectively, and the arc spots moved randomly on the micrometre scale. The fractality of the arc trails was analysed using a box-counting method, and the fractal dimension (D) of the arc trails was estimated to be D ≈ 1.922. This value indicated that the arc spots moved in Brownian motion, and were scarcely influenced by the magnetic field. One should note that such a large scale exfoliation due to unipolar arcing may enhance the surface erosion of the tungsten armour and act as a serious impurity source for fusion plasmas.

  15. Exfoliation of the tungsten fibreform nanostructure by unipolar arcing in the LHD divertor plasma

    International Nuclear Information System (INIS)

    Tokitani, M.; Masuzaki, S.; Kajita, S.; Hirahata, Y.; Ohno, N.; Tanabe, T.

    2011-01-01

    The tungsten nanostructure (W-fuzz) created in the linear divertor simulator (NAGDIS) was exposed to the Large Helical Device (LHD) divertor plasma for only 2 s (1 shot) to study exfoliation/erosion and microscopic modifications due to the high heat/particle loading under high magnetic field conditions. Very fine and randomly moved unipolar arc trails were clearly observed on about half of the W-fuzz area (6 x 10 mm 2 ). The fuzzy surface was exfoliated by continuously moving arc spots even for the very short exposure time. This is the first observation of unipolar arcing and exfoliation of some areas of the W-fuzz structure itself in a large plasma confinement device with a high magnetic field. The typical width and depth of each arc trail were about 8 μm and 1 μm, respectively, and the arc spots moved randomly on the micrometre scale. The fractality of the arc trails was analysed using a box-counting method, and the fractal dimension (D) of the arc trails was estimated to be D ∼ 1.922. This value indicated that the arc spots moved in Brownian motion, and were scarcely influenced by the magnetic field. One should note that such a large scale exfoliation due to unipolar arcing may enhance the surface erosion of the tungsten armour and act as a serious impurity source for fusion plasmas. (letter)

  16. Physics design and experimental study of tokamak divertor

    International Nuclear Information System (INIS)

    Yan Jiancheng; Gao Qingdi; Yan Longwen; Wang Mingxu; Deng Baiquan; Zhang Fu; Zhang Nianman; Ran Hong; Cheng Fayin; Tang Yiwu; Chen Xiaoping

    2007-06-01

    The divertor configuration of HL-2A tokamak is optimized, and the plasma performance in divertor is simulated with B2-code. The effects of collisionality on plasma-wall transition in the scrape-off layer of divertor are investigated, high performances of the divertor plasma in HL-2A are simulated, and a quasi- stationary RS operation mode is established with the plasma controlled by LHCD and NBI. HL-2A tokamak has been successfully operated in divertor configuration. The major parameters: plasma current I p =320 kA, toroidal field B t =2.2 T, plasma discharger duration T d =1580 ms ware achieved at the end of 2004. The preliminary experimental researches of advanced diverter have been carried out. Design studies of divertor target plate for high power density fusion reactor have been carried out, especially, the physical processes on the surface of flowing liquid lithium target plate. The exploration research of improving divertor ash removal efficiency and reducing tritium inventory resulting from applying the RF ponderomotive force potential is studied. The optimization structure design studies of FEB-E reactor divertor are performed. High flux thermal shock experiments were carried on tungsten and carbon based materials. Hot Isostatic Press (HIP) method was employed to bond tungsten to copper alloys. Electron beam simulated thermal fatigue tests were also carried out to W/Cu bondings. Thermal desorption and surface modification of He + implanted into tungsten have been studied. (authors)

  17. Latest status of manufacturing activity of ITER divertor and engineering issues on tungsten divertor

    International Nuclear Information System (INIS)

    Suzuki, Satoshi

    2011-01-01

    Divertors for ITER are now in construction. In the present chapter, the specification and the latest status of manufacturing of ITER divertors are presented. In addition, issues in the development of divertors for the fusion demo reactor are given on the basis of experiences on the ITER divertor development. (J.P.N.)

  18. Investigation of transient melting of tungsten by ELMs in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Krieger, K; Sieglin, B; Balden, M; De Marne, P; Nille, D; Rohde, V; Faitsch, M; Giannone, L; Herrmann, A; Coenen, J W; Göths, B; Laggner, F; Matthews, G F; Dejarnac, R; Horacek, J; Komm, M; Pitts, R A; Ratynskaia, S; Thoren, E; Tolias, P

    2017-01-01

    Repetitive melting of tungsten by power transients originating from edge localized modes (ELMs) has been studied in the tokamak experiment ASDEX Upgrade. Tungsten samples were exposed to H-mode discharges at the outer divertor target plate using the Divertor Manipulator II system. The exposed sample was designed with an elevated sloped surface inclined against the incident magnetic field to increase the projected parallel power flux to a level were transient melting by ELMs would occur. Sample exposure was controlled by moving the outer strike point to the sample location. As extension to previous melt studies in the new experiment both the current flow from the sample to vessel potential and the local surface temperature were measured with sufficient time resolution to resolve individual ELMs. The experiment provided for the first time a direct link of current flow and surface temperature during transient ELM events. This allows to further constrain the MEMOS melt motion code predictions and to improve the validation of its underlying model assumptions. Post exposure ex situ analysis of the retrieved samples confirms the decreased melt motion observed at shallower magnetic field line to surface angles compared to that at leading edges exposed to the parallel power flux. (paper)

  19. High heat flux testing of EU tungsten monoblock mock-ups for the ITER divertor

    International Nuclear Information System (INIS)

    Gavila, P.; Riccardi, B.; Pintsuk, G.; Ritz, G.; Kuznetsov, V.; Durocher, A.

    2015-01-01

    Highlights: • All the tested items sustained the ITER Full W divertor qualification program requirements. This confirms that the technology for the manufacturing of the first set of the ITER Divertor is available in Europe. • The surface roughening and local melting of the W surface under high heat flux was proven to be significantly reduced for an armour thickness lower or equal to 6 mm. • However, this campaign highlighted some specific areas of improvement to be implemented ideally before the upcoming ITER Divertor IVT serial production. • The issue of the self-castellation of the W monoblocks, which typically appears after a few tenths of cycles at 20 MW/m"2, is critical because it generates some uncontrolled defects at the amour to heat sink joints. Besides, they create a gap which exposure is almost perpendicular to the magnetic field lines and which might lead to local W melting in the strike point region. • This campaign also evidenced that the minimum IO requirements on the CuCrZr ductility could be revised to avoid the occurrence of rather early fatigue failures. Although the W material characterization program has been set up by the IO, the strategy on the CuCrZr still needs to be defined. - Abstract: With the aim to assess the option to start the ITER operation with a full tungsten divertor, an R&D program was launched in order to evaluate the performances of tungsten (W) armoured plasma facing components (PFCs) under high heat flux. The F4E program consisted in the manufacturing and high heat flux (HHF) testing of W monoblock mock-ups and medium scale prototypes up to 20 MW/m"2. During the test campaign, 26 W mock-ups and two medium scale prototypes manufactured by Plansee SE (Austria) and by Ansaldo Nucleare (Italy) have been tested at the FE200 (AREVA, Le Creusot, France) and ITER Divertor Test Facility (IDTF) (Efremov Institute Saint Petersburg, Russian Federation) electron beam test facilities. The high heat flux (HHF) testing program

  20. High heat flux testing of EU tungsten monoblock mock-ups for the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Gavila, P., E-mail: pierre.gavila@f4e.europa.eu [Fusion for Energy, 08019 Barcelona (Spain); Riccardi, B. [Fusion for Energy, 08019 Barcelona (Spain); Pintsuk, G. [Forschungszentrum Juelich, 52425 Juelich (Germany); Ritz, G. [AREVA NP, Centre Technique France, 71205 Le Creusot (France); Kuznetsov, V. [JCS “Efremov Institute”, Doroga na Metallostroy 3, Metallostroy, Saint-Petersburg 196641 (Russian Federation); Durocher, A. [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 Saint Paul-lez-Durance (France)

    2015-10-15

    Highlights: • All the tested items sustained the ITER Full W divertor qualification program requirements. This confirms that the technology for the manufacturing of the first set of the ITER Divertor is available in Europe. • The surface roughening and local melting of the W surface under high heat flux was proven to be significantly reduced for an armour thickness lower or equal to 6 mm. • However, this campaign highlighted some specific areas of improvement to be implemented ideally before the upcoming ITER Divertor IVT serial production. • The issue of the self-castellation of the W monoblocks, which typically appears after a few tenths of cycles at 20 MW/m{sup 2}, is critical because it generates some uncontrolled defects at the amour to heat sink joints. Besides, they create a gap which exposure is almost perpendicular to the magnetic field lines and which might lead to local W melting in the strike point region. • This campaign also evidenced that the minimum IO requirements on the CuCrZr ductility could be revised to avoid the occurrence of rather early fatigue failures. Although the W material characterization program has been set up by the IO, the strategy on the CuCrZr still needs to be defined. - Abstract: With the aim to assess the option to start the ITER operation with a full tungsten divertor, an R&D program was launched in order to evaluate the performances of tungsten (W) armoured plasma facing components (PFCs) under high heat flux. The F4E program consisted in the manufacturing and high heat flux (HHF) testing of W monoblock mock-ups and medium scale prototypes up to 20 MW/m{sup 2}. During the test campaign, 26 W mock-ups and two medium scale prototypes manufactured by Plansee SE (Austria) and by Ansaldo Nucleare (Italy) have been tested at the FE200 (AREVA, Le Creusot, France) and ITER Divertor Test Facility (IDTF) (Efremov Institute Saint Petersburg, Russian Federation) electron beam test facilities. The high heat flux (HHF) testing

  1. Current state-of-the-art manufacturing technology for He-cooled divertor finger

    Science.gov (United States)

    Norajitra, P.; Antusch, S.; Giniyatulin, R.; Mazul, I.; Ritz, G.; Ritzhaupt-Kleissl, H.-J.; Spatafora, L.

    2011-10-01

    A divertor concept for DEMO has been investigated at Karlsruhe Institute of Technology (KIT) which has to withstand a heat flux of 10 MW/m 2. The design utilizes small finger module composed of a small tungsten tile brazed on a thimble made from tungsten alloy. The divertor finger is cooled by helium jet impingement at 10 MPa and 600 °C. The subject of this paper is technological studies on machining and braze joining the divertor components. Goal of this task, which is considered an important R&D issue, is to find out appropriate manufacturing methods to ensure high functionality and high reliability of the divertor as well as to meet the economic aspect. One of the major requirements for manufacturing is micro-crack-free surface of tungsten parts, since crack propagations in tungsten were observed in the previous high-heat-flux tests at Efremov. Different manufacturing methods and the corresponding results are discussed in the following report.

  2. Experimental tests concerning the use of the tungsten-copper couple design concept on the divertor system

    International Nuclear Information System (INIS)

    Brossa, F.; Ghiselli, P.; Tommei, G.; Piatti, G.; Schiller, P.

    1983-01-01

    The technique of brazing tungsten armour to the Cu heat sink to form divertor plates for the INTOR fusion reactor raises fabrication problems to bypass thermal stresses produced by the high thermal flux and the differences in the thermal expansion of the two components. To demonstrate that Cu-W structures are able to withstand the anticipated operating conditions, large Cu-W samples have been prepared by means of different techniques. Samples have been studied before and after thermal cycling (10 4 cycles). (author)

  3. The effect of density on divertor conditions in ASDEX-Upgrade

    International Nuclear Information System (INIS)

    Pitcher, C.S.; Bosch, H.-S.; Buechl, K.; Field, A.; Fuchs, C.; Haas, G.; Junker, W.; Neu, R.; Neuhauser, J.; Wenzel, U.

    1995-01-01

    Detailed experimental divertor data are presented on the profiles of density and temperature in the inner and outer divertor fans, the radiated power distribution, the gas pressure and the spectroscopically derived particle fluxes, all as a function of the discharge density. At low and medium density, the inner divertor is cold and dense compared to the outer divertor. At high density, strong X-point MARFE and separatrix radiation partially detaches the inner divertor. Probe measurements which penetrate into the X-point MARFE at the outer divertor are presented. ((orig.))

  4. Tungsten transport and sources control in JET ITER-like wall H-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fedorczak, N., E-mail: nicolas.fedorczak@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Monier-Garbet, P. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Pütterich, T. [MPI für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Brezinsek, S. [Institute of Energy and Climate Research, Forschungszentrum Jlich, Assoc EURATOM-FZJ, Jlich (Germany); Devynck, P.; Dumont, R.; Goniche, M.; Joffrin, E. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Lerche, E. [Association EURATOM-Belgian State, LPP-ERM-KMS, TEC partner, Brussels (Belgium); Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Lipschultz, B. [York Plasma Institute, University of York, Heslington, York YO10 5DD (United Kingdom); Luna, E. de la [Laboratorio Nacional de Fusin, Asociacin EURATOM/CIEMAT, 28040 Madrid (Spain); Maddison, G. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Maggi, C. [MPI für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Matthews, G. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Nunes, I. [Istituto de plasmas e fusao nuclear, Lisboa (Portugal); Rimini, F. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Solano, E.R. [Laboratorio Nacional de Fusin, Asociacin EURATOM/CIEMAT, 28040 Madrid (Spain); Tamain, P. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Tsalas, M. [Association EURATOM-Hellenic Republic, NCSR Demokritos 153 10, Attica (Greece); Vries, P. de [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-08-15

    A set of discharges performed with the JET ITER-like wall is investigated with respect to control capabilities on tungsten sources and transport. In attached divertor regimes, increasing fueling by gas puff results in higher divertor recycling ion flux, lower divertor tungsten source, higher ELM frequency and lower core plasma radiation, dominated by tungsten ions. Both pedestal flushing by ELMs and divertor screening (including redeposition) are possibly responsible. For specific scenarios, kicks in plasma vertical position can be employed to increase the ELM frequency, which results in slightly lower core radiation. The application of ion cyclotron radio frequency heating at the very center of the plasma is efficient to increase the core electron temperature gradient and flatten electron density profile, resulting in a significantly lower central tungsten peaking. Beryllium evaporation in the main chamber did not reduce the local divertor tungsten source whereas core radiation was reduced by approximately 50%.

  5. Tungsten foil laminate for structural divertor applications - Joining of tungsten foils

    Science.gov (United States)

    Reiser, Jens; Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan; Mrotzek, Tobias; Hoffmann, Andreas; Armstrong, D. E. J.; Yi, Xiaoou

    2013-05-01

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  6. Thermomechanical simulation of WEST actively cooled upper divertor

    International Nuclear Information System (INIS)

    Batal, T.; Richou, M.; Guilhem, D.; Firdaouss, M.; Larroque, S.; Ferlay, F.; Missirlian, M.; Bucalossi, J.

    2016-01-01

    The Tore Supra tokamak is being transformed in an x-point divertor fusion device in the frame of the WEST (W-for tungsten-Environment in Steady-state Tokamak) project, launched in support to the ITER tungsten divertor strategy. The WEST project aims to test ITER-like W monoblock Plasma Facing Units (PFU). This ITER-like divertor will be tested under long plasma discharge up to 1000 s, with high heat flux density up to 20 MW/m 2 . This paper presents the results of ANSYS thermal-structural simulations of the WEST upper divertor. The upper divertor is made of twelve 30° sectors, each one composed of 38 PFU. The PFUs are actively cooled CuCrZr heat sinks and the incidence surface is coated with a thin tungsten layer. The fixing system is made of pins engaged in slotted holes. Besides, the fixing system of the sector assembly is the same as WEST lower divertor, so one upper divertor sector can be used indifferently in upper or Lower position during transitional operation phases in WEST. The total surface of the upper divertor is 8 m 2 , and it has to be able to extract up to 4 MW in steady-state, with peak heat flux values up to 8 MW/m 2 . The fixing system was designed to handle structural loads such as forces and torques resulting from halo and eddy current, respectively, especially during disruptions and Vertical Displacement Event (VDE). The torque resulting from eddy current is first calculated thanks to an internal CEA ANSYS APDL routine. Then the ANSYS structural and thermal-structural simulations of the PFU are presented, and its design is validated thanks to A-level RCC-MRx criteria. Finally, the most conservative load case is determined in order to validate the design of the pins and the support structure.

  7. Thermomechanical simulation of WEST actively cooled upper divertor

    Energy Technology Data Exchange (ETDEWEB)

    Batal, T., E-mail: tristan.batal@cea.fr; Richou, M.; Guilhem, D.; Firdaouss, M.; Larroque, S.; Ferlay, F.; Missirlian, M.; Bucalossi, J.

    2016-11-15

    The Tore Supra tokamak is being transformed in an x-point divertor fusion device in the frame of the WEST (W-for tungsten-Environment in Steady-state Tokamak) project, launched in support to the ITER tungsten divertor strategy. The WEST project aims to test ITER-like W monoblock Plasma Facing Units (PFU). This ITER-like divertor will be tested under long plasma discharge up to 1000 s, with high heat flux density up to 20 MW/m{sup 2}. This paper presents the results of ANSYS thermal-structural simulations of the WEST upper divertor. The upper divertor is made of twelve 30° sectors, each one composed of 38 PFU. The PFUs are actively cooled CuCrZr heat sinks and the incidence surface is coated with a thin tungsten layer. The fixing system is made of pins engaged in slotted holes. Besides, the fixing system of the sector assembly is the same as WEST lower divertor, so one upper divertor sector can be used indifferently in upper or Lower position during transitional operation phases in WEST. The total surface of the upper divertor is 8 m{sup 2}, and it has to be able to extract up to 4 MW in steady-state, with peak heat flux values up to 8 MW/m{sup 2}. The fixing system was designed to handle structural loads such as forces and torques resulting from halo and eddy current, respectively, especially during disruptions and Vertical Displacement Event (VDE). The torque resulting from eddy current is first calculated thanks to an internal CEA ANSYS APDL routine. Then the ANSYS structural and thermal-structural simulations of the PFU are presented, and its design is validated thanks to A-level RCC-MRx criteria. Finally, the most conservative load case is determined in order to validate the design of the pins and the support structure.

  8. Tungsten foil laminate for structural divertor applications – Joining of tungsten foils

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Jens, E-mail: jens.reiser@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Mrotzek, Tobias; Hoffmann, Andreas [PLANSEE SE, Reutte (Austria); Armstrong, D.E.J.; Yi, Xiaoou [University of Oxford, Department of Materials (United Kingdom)

    2013-05-15

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  9. The isotope effect on divertor conditions and neutral pumping in horizontal divertor configurations in JET-ILW Ohmic plasmas

    Directory of Open Access Journals (Sweden)

    J. Uljanovs

    2017-08-01

    Full Text Available Understanding the impact of isotope mass and divertor configuration on the divertor conditions and neutral pressures is critical for predicting the performance of the ITER divertor in DT operation. To address this need, ohmically heated hydrogen and deuterium plasma experiments were conducted in JET with the ITER-like wall in varying divertor configurations. In this study, these plasmas are simulated with EDGE2D-EIRENE outfitted with a sub-divertor model, to predict the neutral pressures in the plenum with similar fashion to the experiments. EDGE2D-EIRENE predictions show that the increased isotope mass results in up to a 25% increase in peak electron densities and 15% increase in peak ion saturation current at the outer target in deuterium when compared to hydrogen for all horizontal divertor configurations. Indicating that a change from hydrogen to deuterium as main fuel decreases the neutral mean free path, leading to higher neutral density in the divertor. Consequently, this mechanism also leads to higher neutral pressures in the sub-divertor. The experimental data provided by the hydrogen and deuterium ohmic discharges shows that closer proximity of the outer strike point to the pumping plenum results in a higher neutral pressure in the sub-divertor. The diaphragm capacitance gauge pressure measurements show that a two to three-fold increase in sub-divertor pressure was achieved in the corner and nearby horizontal configurations compared to the far-horizontal configurations, likely due to ballistic transport (with respect to the plasma facing components of the neutrals into the sub-divertor. The corner divertor configuration also indicates that a neutral expansion occurs during detachment, resulting in a sub-divertor neutral density plateau as a function of upstream density at the outer-mid plane.

  10. Tungsten: An option for divertor and main chamber plasma facing components in future fusion devices

    International Nuclear Information System (INIS)

    Neu, R.; Dux, R.; Kallenbach, A.; Maggi, C.F.; Puetterich, T.; Balden, M.; Eich, T.; Fuchs, J.C.; Gruber, O.; Herrmann, A.; Maier, H.; Mueller, H.W.; Pugno, R.; Radivojevic, I.; Rohde, V.; Sips, A.C.C.; Suttrop, W.; Ye, M.Y.; O'Mullane, M.; Whiteford, A.

    2005-01-01

    The tungsten programme in ASDEX Upgrade is pursued towards a full high-Z device. The spectroscopic diagnostic and the cooling factor of W have been extended and refined. The W-coated surfaces represent now a fraction of 65% (24.8 m2). The only two major components which are not yet coated are the strikepoint region of the lower divertor as well as the limiters at the low field side. While extending the W surfaces, the W concentration and the discharge behaviour have changed gradually pointing to critical issues when operating with a W wall: anomalous transport in the plasma centre should not be too low, otherwise neoclassical accumulation can occur. A very successful remedy is the addition of central RF heating at the 20-30% level. Regimes with low ELM activity show increased impurity concentration over the whole plasma radius. These discharges can be cured by increasing the ELM frequency through pellet ELM pacemaking or by higher heating power. Moderate gas puffing also mitigates the impurity influx and penetration, however at the expense of lower confinement. The erosion yield at the low field side guard limiter can be as high as 10 -3 and fast particle losses from NBI were identified to contribute a significant part to the W sputtering. Discharges run in the upper, W coated divertor do not show higher W concentrations than comparable discharges in the lower C-based divertor. (author)

  11. ARIES-III divertor engineering design

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Schultz, K.R.; Cheng, E.T.; Grotz, S.; Hasan, M.A.; Najmabadi, F.; Sharafat, S.; Herring, J.S.; Valenti, M.; Steiner, D.

    1992-01-01

    This paper reports the engineering design of the ARIES-III double- null divertor. The divertor coolant tubes are made from W-3Re alloy and cooled by subcooled flow boiling of organic coolant. A coating of 4 mm thick tungsten is plasma sprayed onto the divertor surface. This W layer can withstand the thermal deposition of a few disruptions. At a maximum surface heat flux of 5.4 MW/m 2 , a conventional divertor design can be used. The divertor surface is contoured to have a constant heat flux of 5.4 MW/m 2 . The net erosion of the W-surface was found to be negligible at about 0.1 mm/year. After 3 years of operation, the W-3Re alloy ARIES-III divertor can be disposed of as Class A waste. In order to control the prompt dose release at site boundary to less than 200 Rem, isotopic tailoring of the W-alloy will be needed

  12. ARIES-III divertor engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C.; Schultz, K.R. [General Atomics, San Diego, CA (United States); Cheng, E.T. [TSI Research, Solana Beach, CA (United States); Grotz, S.; Hasan, M.A.; Najmabadi, F.; Sharafat, S. [California Univ., Los Angeles, CA (United States). Dept. of Mechanical, Aerospace and Nuclear Engineering; Brooks, J.N.; Ehst, D.A.; Sze, D.K. [Argonne National Lab., IL (United States); Herring, J.S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Valenti, M.; Steiner, D. [Rensselaer Polytechnic Inst., Troy, NY (United States). Plasma Dynamics Lab.

    1992-01-01

    This paper reports the engineering design of the ARIES-III double- null divertor. The divertor coolant tubes are made from W-3Re alloy and cooled by subcooled flow boiling of organic coolant. A coating of 4 mm thick tungsten is plasma sprayed onto the divertor surface. This W layer can withstand the thermal deposition of a few disruptions. At a maximum surface heat flux of 5.4 MW/m{sup 2}, a conventional divertor design can be used. The divertor surface is contoured to have a constant heat flux of 5.4 MW/m{sup 2}. The net erosion of the W-surface was found to be negligible at about 0.1 mm/year. After 3 years of operation, the W-3Re alloy ARIES-III divertor can be disposed of as Class A waste. In order to control the prompt dose release at site boundary to less than 200 Rem, isotopic tailoring of the W-alloy will be needed.

  13. Experiments on transient melting of tungsten by ELMs in ASDEX Upgrade

    Science.gov (United States)

    Krieger, K.; Balden, M.; Coenen, J. W.; Laggner, F.; Matthews, G. F.; Nille, D.; Rohde, V.; Sieglin, B.; Giannone, L.; Göths, B.; Herrmann, A.; de Marne, P.; Pitts, R. A.; Potzel, S.; Vondracek, P.; ASDEX-Upgrade Team; EUROfusion MST1 Team

    2018-02-01

    Repetitive melting of tungsten by power transients originating from edge localized modes (ELMs) has been studied in ASDEX Upgrade. Tungsten samples were exposed to H-mode discharges at the outer divertor target plate using the divertor manipulator II (DIM-II) system (Herrmann et al 2015 Fusion Eng. Des. 98-9 1496-9). Designed as near replicas of the geometries used also in separate experiments on the JET tokamak (Coenen et al 2015 J. Nucl. Mater. 463 78-84 Coenen et al 2015 Nucl. Fusion 55 023010; Matthews et al 2016 Phys. Scr. T167 7), the samples featured a misaligned leading edge and a sloped ridge respectively. Both structures protrude above the default target plate surface thus receiving an increased fraction of the parallel power flux. Transient melting by ELMs was induced by moving the outer strike point to the sample location. The temporal evolution of the measured current flow from the samples to vessel potential confirmed transient melting. Current magnitude and dependency from surface temperature provided strong evidence for thermionic electron emission as main origin of the replacement current driving the melt motion. The different melt patterns observed after exposures at the two sample geometries support the thermionic electron emission model used in the MEMOS melt motion code, which assumes a strong decrease of the thermionic net current at shallow magnetic field to surface angles (Pitts et al 2017 Nucl. Mater. Energy 12 60-74). Post exposure ex situ analysis of the retrieved samples show recrystallization of tungsten at the exposed surface areas to a depth of up to several mm. The melt layer transport to less exposed surface areas leads to ratcheting pile up of re-solidified debris with zonal growth extending from the already enlarged grains at the surface.

  14. Design of DIII-D advanced divertor

    International Nuclear Information System (INIS)

    Smith, J.P.; Baxi, C.B.; Reis, E.; Schaffer, M.; Thruston, G.

    1989-01-01

    The Advanced Divertor is a modification being designed for the plasma chamber of the DIII-D tokamak in order to optimize the divertor configuration and allow a broader range of experiments to be carried out. The Advanced Divertor will enable two classes of physics experiments to be run in DIII-D: Divertor biasing and Divertor baffing. The Advanced Divertor has two principal components: ( 1) a toroidally symmetric baffle; and (2) a continuous ring electrode. The tokamak can be run in baffle, bias, or standard DIII-D divertor modes by accurate positioning of the outer divertor strike point through the use of the DIII-D plasma control system. The baffle will contain approximately 50,000 l/s pumping for particle removal in the outer bottom corner of the vacuum vessel. The strike point will be positioned at the entrance aperture for the baffle mode. The aperture geometry is designed to facilitate a large particle influx plus a high probability that backstreaming particles will be reionized and redirected to the aperture. Where the baffling plates meet, gas sealing is required to prevent recycling of neutrals back into the plasma. The electrode is a continuous water-cooled ring, armored with graphite. The ring is electrically isolated from the vessel wall and is biasable to 1 kV and 20 kA. The outer leg of the divertor will be positioned on the graphite covered ring during biasing experiments. The supports for the ring are radially flexible to handle the differential thermal growth between the ring and the vessel wall but stiff in the vertical direction to restrain the ring against large disruption forces. The coolant and electrical feeds are designed in a similar manner. 2 refs., 4 figs

  15. Design of DIII-D Advanced Divertor

    International Nuclear Information System (INIS)

    Smith, J.P.; Baxi, C.B.; Reis, E.; Schaffer, M.; Thurston, G.

    1989-11-01

    The Advanced Divertor is a modification being designed for the plasma chamber of the DIII-D tokamak in order to optimize the divertor configuration and allow a broader range of experiments to be carried out. The Advanced Divertor will enable two classes of physics experiments to be run in DIII-D: Divertor biasing and Divertor baffling. The Advanced Divertor has two principal components: a toroidally symmetric baffle; and a continuous ring electrode. The tokamak can be run in baffle, bias, or standard DIII-D divertor modes by accurate positioning of the outer divertor strike point through the use of the DIII-D plasma control system. The baffle will contain approximately 50,000 l/s pumping for particle removal in the outer bottom corner of the vacuum vessel. The strike point will be positioned at the entrance aperture for the baffle mode. The aperture geometry is designed to facilitate a large particle influx plus a high probability that backstreaming particles will be reionized and redirected to the aperture. Where the baffling plates meet, gas sealing is required to prevent recycling of neutrals back into the plasma. The electrode is a continuous water-cooled ring, armored with graphite. The ring is electrically isolated from the vessel wall and is biasable to 1 kV and 20 kA. The outer leg of the divertor will be positioned on the graphite covered ring during biasing experiments. The supports for the ring are radially flexible to handle the differential thermal growth between the ring and the vessel wall but stiff in the vertical direction to restrain the ring against large disruption forces. The coolant and electrical feeds are designed in a similar manner. All the feeds are supported from and maintain a 5 kV isolation to the vessel wall. 2 refs., 4 figs

  16. Numerical simulation in a subcooled water flow boiling for one-sided high heat flux in reactor divertor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, P., E-mail: pinliu@aust.edu.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001 (China); Peng, X.B., E-mail: pengxb@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Song, Y.T. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Fang, X.D. [Institute of Air Conditioning and Refrigeration, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Huang, S.H. [University of Science and Technology of China, Hefei 230026 (China); Mao, X. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • The Eulerian multiphase models coupled with Non-equilibrium Boiling model can effectively simulate the subcooled water flow boiling. • ONB and FDB appear earlier and earlier with the increase of heat fluxes. • The void fraction increases gradually along the flow direction. • The inner CuCrZr tube deteriorates earlier than the outer tungsten layer and the middle OFHC copper layer. - Abstract: In order to remove high heat fluxes for plasma facing components in International Thermonuclear Experimental Reactor (ITER) divertor, a numerical simulation of subcooled water flow boiling heat transfer in a vertically upward smooth tube was conducted in this paper on the condition of one-sided high heat fluxes. The Eulerian multiphase model coupled with Non-equilibrium Boiling model was adopted in numerical simulation of the subcooled boiling two-phase flow. The heat transfer regions, thermodynamic vapor quality (x{sub th}), void fraction and temperatures of three components on the condition of the different heat fluxes were analyzed. Numerical results indicate that the onset of nucleate boiling (ONB) and fully developed boiling (FDB) appear earlier and earlier with increasing heat flux. With the increase of heat fluxes, the inner CuCrZr tube will deteriorate earlier than the outer tungsten layer and the middle oxygen-free high-conductivity (OFHC) copper layer. These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor.

  17. Modelling of the material transport and layer formation in the divertor of JET: Comparison of ITER-like wall with full carbon wall conditions

    International Nuclear Information System (INIS)

    Kirschner, A.; Matveev, D.; Borodin, D.; Airila, M.; Brezinsek, S.; Groth, M.; Wiesen, S.; Widdowson, A.; Beal, J.; Esser, H.G.; Likonen, J.; Bekris, N.; Ding, R.

    2015-01-01

    Impurity transport within the inner JET divertor has been modelled with ERO to estimate the transport to and the resulting deposition at remote areas. Various parametric studies involving divertor plasma conditions and strike point position have been performed. In JET-ILW (beryllium main chamber and tungsten divertor) beryllium, flowing from the main chamber into the divertor and then effectively reflected at the tungsten divertor tiles, is transported to remote areas. The tungsten flux to remote areas in L-Mode is in comparison to the beryllium flux negligible due to small sputtering. However, tungsten is sputtered during ELMs in H-Mode conditions. Nevertheless, depending on the plasma conditions, strike point position and the location of the remote area, the maximum resulting tungsten flux to remote areas is at least ∼3 times lower than the corresponding beryllium flux. Modelled beryllium and tungsten deposition on a rotating collector probe located below tile 5 is in good agreement with measurements if the beryllium influx into the inner divertor is assumed to be in the range of 0.1% relative to the deuterium ion flux and erosion due to fast charge exchange neutrals is considered. Comparison between JET-ILW and JET-C is presented

  18. Modelling of the material transport and layer formation in the divertor of JET: Comparison of ITER-like wall with full carbon wall conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, A., E-mail: a.kirschner@fz-juelich.de [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, Trilateral Euregio Cluster, 52425 Jülich (Germany); Matveev, D.; Borodin, D. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, Trilateral Euregio Cluster, 52425 Jülich (Germany); Airila, M. [VTT Technical Research Centre of Finland, 02044 VTT (Finland); Brezinsek, S. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, Trilateral Euregio Cluster, 52425 Jülich (Germany); Groth, M. [Aalto University, Otakaari 4, 02015 Espoo (Finland); Wiesen, S. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, Trilateral Euregio Cluster, 52425 Jülich (Germany); Widdowson, A. [Culham Centre for Fusion Energy, Abingdon OX14 3DB (United Kingdom); Beal, J. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Esser, H.G. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, Trilateral Euregio Cluster, 52425 Jülich (Germany); Likonen, J. [VTT Technical Research Centre of Finland, 02044 VTT (Finland); Bekris, N. [Karlsruhe Institute of Technology, Institute for Technical Physics, Hermann-von-Helmholtz-Platz 1, Bau 451, 76344 Eggenstein-Leopoldshafen (Germany); Ding, R. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China)

    2015-08-15

    Impurity transport within the inner JET divertor has been modelled with ERO to estimate the transport to and the resulting deposition at remote areas. Various parametric studies involving divertor plasma conditions and strike point position have been performed. In JET-ILW (beryllium main chamber and tungsten divertor) beryllium, flowing from the main chamber into the divertor and then effectively reflected at the tungsten divertor tiles, is transported to remote areas. The tungsten flux to remote areas in L-Mode is in comparison to the beryllium flux negligible due to small sputtering. However, tungsten is sputtered during ELMs in H-Mode conditions. Nevertheless, depending on the plasma conditions, strike point position and the location of the remote area, the maximum resulting tungsten flux to remote areas is at least ∼3 times lower than the corresponding beryllium flux. Modelled beryllium and tungsten deposition on a rotating collector probe located below tile 5 is in good agreement with measurements if the beryllium influx into the inner divertor is assumed to be in the range of 0.1% relative to the deuterium ion flux and erosion due to fast charge exchange neutrals is considered. Comparison between JET-ILW and JET-C is presented.

  19. Design of ITER divertor VUV spectrometer and prototype test at KSTAR tokamak

    Science.gov (United States)

    Seon, Changrae; Hong, Joohwan; Song, Inwoo; Jang, Juhyeok; Lee, Hyeonyong; An, Younghwa; Kim, Bosung; Jeon, Taemin; Park, Jaesun; Choe, Wonho; Lee, Hyeongon; Pak, Sunil; Cheon, MunSeong; Choi, Jihyeon; Kim, Hyeonseok; Biel, Wolfgang; Bernascolle, Philippe; Barnsley, Robin; O'Mullane, Martin

    2017-12-01

    Design and development of the ITER divertor VUV spectrometer have been performed from the year 1998, and it is planned to be installed in the year 2027. Currently, the design of the ITER divertor VUV spectrometer is in the phase of detail design. It is optimized for monitoring of chord-integrated VUV signals from divertor plasmas, chosen to contain representative lines emission from the tungsten as the divertor material, and other impurities. Impurity emission from overall divertor plasmas is collimated through the relay optics onto the entrance slit of a VUV spectrometer with working wavelength range of 14.6-32 nm. To validate the design of the ITER divertor VUV spectrometer, two sets of VUV spectrometers have been developed and tested at KSTAR tokamak. One set of spectrometer without the field mirror employs a survey spectrometer with the wavelength ranging from 14.6 nm to 32 nm, and it provides the same optical specification as the spectrometer part of the ITER divertor VUV spectrometer system. The other spectrometer with the wavelength range of 5-25 nm consists of a commercial spectrometer with a concave grating, and the relay mirrors with the same geometry as the relay mirrors of the ITER divertor VUV spectrometer. From test of these prototypes, alignment method using backward laser illumination could be verified. To validate the feasibility of tungsten emission measurement, furthermore, the tungsten powder was injected in KSTAR plasmas, and the preliminary result could be obtained successfully with regard to the evaluation of photon throughput. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  20. Divertor design for the TITAN reversed-field-pinch reactor

    International Nuclear Information System (INIS)

    Cooke, P.I.H.; Bathke, C.G.; Blanchard, J.P.; Creedon, R.L.; Grotz, S.P.; Hasan, M.Z.; Orient, G.; Sharafat, S.; Werley, K.A.

    1987-01-01

    The design of the toroidal-field divertor for the TITAN high-power-density reversed-field-pinch reactor is described. The heat flux on the divertor target is limited to acceptable levels (≤ 10 MW/m 2 ) for liquid-lithium cooling by use of an open divertor geometry, strong radiation from the core and edge plasma, and careful shaping of the target surface. The divertor coils are based on the Integrated-Blanket-Coil approach to minimize the loss in breeding-blanket coverage due to the divertor. A tungsten-rhenium armour plate, chosen for reasons of sputtering resistance, and good thermal and mechanical properties, protects the vanadium-alloy coolant tubes

  1. T-12 divertor experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bortnikov, A V; Brevnov, N N; Gerasimov, S N; Zhukovskii, V G; Kuznetsov, N V; Naftulin, S M; Pergament, V I; Khimchenko, L N [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii

    1981-01-01

    In designing tokamak devices and reactors, in the last few years, the use of elongated-cross-section plasma discharges has been proposed to improve the economic and physical parameters. Application of a quadrupole poloidal magnetic field necessary for sustaining the elongated discharge cross-section serves, in this case, to create the magnetic configuration of an axisymmetric poloidal divertor. To-day, the creation of such a combination, including an elongated plasma cross-section and a divertor and using the outer poloidal magnetic field coils, seems to be the most reasonable approach, from the point of view of design and technology. Such a divertor was produced and studied at the T-12 tokamak. A stable equilibrium configuration of a finger-ring tokamak with a divertor has been produced by superposing the magnetic fields of the plasma current, the external quadrupole coils and the copper shell currents; the reactor blanket can fulfil the function of the latter. It is shown that both a symmetric magnetic configuration with two divertors and a droplet configuration with a single divertor may be realized by controlling the plasma column position with respect to the equatorial plane. The stability of the plasma column against vertical displacement depends on this position and the distance between the separatrix points. Vertical instability stabilization has been observed. The divertor layer efficiently screens the plasma from the impurity influx from the wall and unloads the wall from particle and energy fluxes. The results obtained from the tokamak T-12 experiment have demonstrated the capability of a system with outer poloidal field coils and a copper shell providing an elongated-cross-section plasma column with poloidal divertors.

  2. Powder Injection Molding for mass production of He-cooled divertor parts

    International Nuclear Information System (INIS)

    Antusch, S.; Norajitra, P.; Piotter, V.; Ritzhaupt-Kleissl, H.-J.

    2011-01-01

    A He-cooled divertor for future fusion power plants has been developed at KIT. Tungsten and tungsten alloys are presently considered the most promising materials for functional and structural divertor components. The advantages of tungsten materials lie, e.g. in the high melting point, and low activation, the disadvantages are high hardness and brittleness. The machinig of tungsten, e.g. milling, is very complex and cost-intensive. Powder Injection Molding (PIM) is a method for cost effective mass production of near-net-shape parts with high precision. The complete W-PIM process route is outlined and, results of product examination discussed. A binary tungsten powder feedstock with a grain size distribution in the range 0.7-1.7 μm FSSS, and a solid load of 50 vol.% was developed. After heat treatment, the successfully finished samples showed promising results, i.e. 97.6% theoretical density, a grain size of approximately 5 μm, and a hardness of 457 HV0.1.

  3. High heat flux test of tungsten brazed mock-ups developed for KSTAR divertor

    Energy Technology Data Exchange (ETDEWEB)

    Song, J.H. [National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, K.M., E-mail: kyungmin@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Hong, S.H.; Kim, H.T.; Park, S.H.; Park, H.K.; Ahn, H.J. [National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, S.K.; Lee, D.W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    The tungsten (W) brazed flat type mock-up which consists of W, OFHC-Cu (oxygen-free high conductive copper) and CuCrZr alloy has been designed for KSTAR divertor in preparation for KSTAR upgrade with 17 MW heating power. For verification of the W brazed mock-up, the high heat flux test is performed at KoHLT-EB (Korea High Heat Load Test Facility-Electron Beam) in KAERI (Korea Atomic Energy Research Institute). Three mock-ups are tested for several thousand thermal cycles with absorbed heat flux up to 5 MW/m{sup 2} for 20 s duration. There is no evidence of the failure at the bonding joints of all mock-ups after HHF test. Finite element analysis (FEA) is performed to interpret the result of the test. As a result, it is considered that the local area in the water is in the subcooled boiling regime.

  4. Snowflake Divertor Configuration in NSTX

    International Nuclear Information System (INIS)

    Soukhanovskii, V.A.; Ahn, Joonwook; Bell, R.E.; Gates, D.A.; Gerhardt, S.; Kaita, R.; Kolemen, E.; Kugel, H.W.; LeBlanc, B.; Maingi, Rajesh; Maqueda, R.J.; McLean, Adam G.; Menard, J.E.; Mueller, D.; Paul, S.F.; Raman, R.; Roquemore, L.; Ryutov, D.D.; Scott, H.A.

    2011-01-01

    Steady-state handling of divertor heat flux is a critical issue for present and future conventional and spherical tokamaks with compact high power density divertors. A novel 'snowflake' divertor (SFD) configuration that takes advantage of magnetic properties of a second-order poloidal null has been predicted to have a larger plasma-wetted area and a larger divertor volume, in comparison with a standard first-order poloidal X-point divertor configuration. The SFD was obtained in 0.8 MA, 4-6 MW NBI-heated H-mode discharges in NSTX using two divertor magnetic coils. The SFD led to a partial detachment of the outer strike point even in low-collisionality scrape-off layer plasma obtained with lithium coatings in NSTX. Significant divertor peak heat flux reduction and impurity screening have been achieved simultaneously with good core confinement and MHD properties.

  5. 'Snowflake' divertor configuration in NSTX

    International Nuclear Information System (INIS)

    Soukhanovskii, V.A.; Ahn, J.-W.; Bell, R.E.; Gates, D.A.; Gerhardt, S.; Kaita, R.; Kolemen, E.; Kugel, H.W.; LeBlanc, B.P.; Maingi, R.; Maqueda, R.; McLean, A.; Menard, J.E.; Mueller, D.M.; Paul, S.F.; Raman, R.; Roquemore, A.L.; Ryutov, D.D.; Scott, H.A.

    2011-01-01

    Steady-state handling of divertor heat flux is a critical issue for present and future conventional and spherical tokamaks with compact high power density divertors. A novel 'snowflake' divertor (SFD) configuration that takes advantage of magnetic properties of a second-order poloidal null has been predicted to have a larger plasma-wetted area and a larger divertor volume, in comparison with a standard first-order poloidal X-point divertor configuration. The SFD was obtained in 0.8 MA, 4-6 MW NBI-heated H-mode discharges in NSTX using two divertor magnetic coils. The SFD led to a partial detachment of the outer strike point even in low-collisionality scrape-off layer plasma obtained with lithium coatings in NSTX. Significant divertor peak heat flux reduction and impurity screening have been achieved simultaneously with good core confinement and MHD properties.

  6. "Snowflake" divertor configuration in NSTX

    Science.gov (United States)

    Soukhanovskii, V. A.; Ahn, J.-W.; Bell, R. E.; Gates, D. A.; Gerhardt, S.; Kaita, R.; Kolemen, E.; Kugel, H. W.; Leblanc, B. P.; Maingi, R.; Maqueda, R.; McLean, A.; Menard, J. E.; Mueller, D. M.; Paul, S. F.; Raman, R.; Roquemore, A. L.; Ryutov, D. D.; Scott, H. A.

    2011-08-01

    Steady-state handling of divertor heat flux is a critical issue for present and future conventional and spherical tokamaks with compact high power density divertors. A novel "snowflake" divertor (SFD) configuration that takes advantage of magnetic properties of a second-order poloidal null has been predicted to have a larger plasma-wetted area and a larger divertor volume, in comparison with a standard first-order poloidal X-point divertor configuration. The SFD was obtained in 0.8 MA, 4-6 MW NBI-heated H-mode discharges in NSTX using two divertor magnetic coils. The SFD led to a partial detachment of the outer strike point even in low-collisionality scrape-off layer plasma obtained with lithium coatings in NSTX. Significant divertor peak heat flux reduction and impurity screening have been achieved simultaneously with good core confinement and MHD properties.

  7. Plasma facing components integration studies for the WEST divertor

    Energy Technology Data Exchange (ETDEWEB)

    Ferlay, Fabien, E-mail: fabien.ferlay@cea.fr; Missirlian, Marc; Guilhem, Dominique; Firdaouss, Mehdi; Richou, Marianne; Doceul, Louis; Faisse, Frédéric; Languille, Pascal; Larroque, Sébastien; Martinez, André; Proust, Maxime; Louison, Céphise; Jeanne, Florian; Saille, Alain; Samaille, Frank; Verger, Jean-Marc; Bucalossi, Jérôme

    2015-10-15

    Highlights: • The divertor PFU integration has been studied regarding existing environment. • Magnetic, electric, thermal, hydraulic, mechanical loads and assembly are considered. - Abstract: In the context of the Tokamak Tore-Supra evolution, the CEA aims at transforming it into a test bench for ITER actively cooled tungsten (ACW) plasma facing components (PFC). This project named WEST (Tungsten Environment in Steady state Tokamak) is especially focused on the divertor target. The modification of the machine, by adding two axisymmetric divertors will make feasible an H-mode with an X-point close to the lower divertor. This environment will allow exposing the divertor ACW components up to 20 MW/m{sup 2} heat flux during long pulse. These specifications are well suited to test the ITER-like ACW target elements, respecting the ITER design. One challenge in such machine evolution is to integrate components in an existing vacuum vessel in order to obtain the best achievable performance. This paper deals with the design integration of ITER ACW target elements into the WEST environment considering magnetic, electric, thermal and mechanical loads. The feasibility of installation and maintenance has to be strongly considered as these PFC could be replaced several times. The ports size allows entering a 30° sector of pre-installed tungsten targets which will be plugged as quickly and easily as possible. The main feature of steady state operation is the active cooling, which leads to have many embedded cooling channels and bulky pipes on the PFC module including many connections and sealings between vacuum and water channels. The 30° sector design is now finalized regarding the ITER ACW elements specifications. No major modifications are expected.

  8. Powder Injection Molding - An innovative manufacturing method for He-cooled DEMO divertor components

    International Nuclear Information System (INIS)

    Antusch, Steffen; Norajitra, Prachai; Piotter, Volker; Ritzhaupt-Kleissl, Hans-Joachim; Spatafora, Luigi

    2011-01-01

    At Karlsruhe Institute of Technology (KIT), a He-cooled divertor design for future fusion power plants has been developed. This concept is based on the use of modular cooling fingers made from tungsten and tungsten alloy, which are presently considered the most promising divertor materials to withstand the specific heat load of 10 MW/m 2 . Since a large number of the finger modules (n > 250,000) are needed for the whole reactor, developing a mass-oriented manufacturing method is indispensable. In this regard, an innovative manufacturing technology, Powder Injection Molding (PIM), has been adapted to W processing at KIT since a couple of years. This production method is deemed promising in view of large-scale production of tungsten parts with high near-net-shape precision, hence, offering an advantage of cost-saving process compared to conventional machining. The complete technological PIM process for tungsten materials and its application on manufacturing of real divertor components, including the design of a new PIM tool is outlined and, results of the examination of the finished product after heat-treatment are discussed. A binary tungsten powder feedstock with a solid load of 50 vol.% was developed and successfully tested in molding experiments. After design, simulation and manufacturing of a new PIM tool, real divertor parts are produced. After heat-treatment (pre-sintering and HIP) the successful finished samples showed a sintered density of approximately 99%, a hardness of 457 HV0.1, a grain size of approximately 5 μm and a microstructure without cracks and porosity.

  9. Comparison of 2D simulations of detached divertor plasmas with divertor Thomson measurements in the DIII-D tokamak

    Directory of Open Access Journals (Sweden)

    T.D. Rognlien

    2017-08-01

    Full Text Available A modeling study is reported using new 2D data from DIII-D tokamak divertor plasmas and improved 2D transport model that includes large cross-field drifts for the numerically difficult low anomalous transport regime associated with the H-mode. The data set, which spans a range of plasma densities for both forward and reverse toroidal magnetic field (Bt, is provided by divertor Thomson scattering (DTS. Measurements utilizing X-point sweeping give corresponding 2D profiles of electron temperature (Te and density (ne across both divertor legs for individual discharges. The simulations focus on the open magnetic field-line regions, though they also include a small region of closed field lines. The calculations show the same features of in/out divertor plasma asymmetries as measured in the experiment, with the normal Bt direction (ion ∇B drift toward the X-point having higher ne and lower Te in the inner divertor leg than outer. Corresponding emission data for total radiated power shows a strong inner-divertor/outer-divertor asymmetry that is reproduced by the simulations. These 2D UEDGE transport simulations are enabled for steep-gradient H-mode conditions by newly implemented algorithms to control isolated grid-scale irregularities.

  10. Divertor detachment

    Science.gov (United States)

    Krasheninnikov, Sergei

    2015-11-01

    The heat exhaust is one of the main conceptual issues of magnetic fusion reactor. In a standard operational regime the large heat flux onto divertor target reaches unacceptable level in any foreseeable reactor design. However, about two decades ago so-called ``detached divertor'' regimes were found. They are characterized by reduced power and plasma flux on divertor targets and look as a promising solution for heat exhaust in future reactors. In particular, it is envisioned that ITER will operate in a partly detached divertor regime. However, even though divertor detachment was studied extensively for two decades, still there are some issues requiring a new look. Among them is the compatibility of detached divertor regime with a good core confinement. For example, ELMy H-mode exhibits a very good core confinement, but large ELMs can ``burn through'' detached divertor and release large amounts of energy on the targets. In addition, detached divertor regimes can be subject to thermal instabilities resulting in the MARFE formation, which, potentially, can cause disruption of the discharge. Finally, often inner and outer divertors detach at different plasma conditions, which can lead to core confinement degradation. Here we discuss basic physics of divertor detachment including different mechanisms of power and momentum loss (ionization, impurity and hydrogen radiation loss, ion-neutral collisions, recombination, and their synergistic effects) and evaluate the roles of different plasma processes in the reduction of the plasma flux; detachment stability; and an impact of ELMs on detachment. We also evaluate an impact of different magnetic and divertor geometries on detachment onset, stability, in- out- asymmetry, and tolerance to the ELMs. Supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award Number DE-DE-FG02-04ER54739 at UCSD.

  11. Conceptual design of CFETR divertor remote handling compatible structure

    International Nuclear Information System (INIS)

    Dai, Huaichu; Yao, Damao; Cao, Lei; Zhou, Zibo; Li, Lei

    2016-01-01

    Highlights: • Conceptual design for the CFETR divertor have been proposed, especially the divertor remote handling compatible structure. • The degrees of freedom of the divertor are analyzed in order to validate the design the divertor supports structure. • Besides the ITER-like scheme, a new scheme for the divertor remote handling compatible supports is proposed, that is the rack and pinion mechanism. • The installation/removel process is verified through simulation in Delmia in order to check design quality for remote handling requirements. - Abstract: Divertor is one of key components of tokamak fusion reactor. The CFETR is China Fusion Engineering Test Reactor. Its divertor will expose to tritium environment and neutron radiation. Materials of the divertor will be radioactived, and cannot be handled by personnel directly. To develop structure which compatible with robots handle for installation, maintenance and removing is required. This paper introduces a conceptual design of CFETR divertor module which compatible with remote handling end-effectors. The divertor module is confined by inner and outer support. The inner support is only confined divertor module radial, toroidal and vertical moving freedom degrees, but not confined rotating freedom degrees. The outer support is the structure that can confine rotating freedom degrees and should also be compatible with remote handling end-effectors.

  12. Conceptual design of CFETR divertor remote handling compatible structure

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Huaichu, E-mail: yaodm@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei (China); Yao, Damao; Cao, Lei; Zhou, Zibo; Li, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • Conceptual design for the CFETR divertor have been proposed, especially the divertor remote handling compatible structure. • The degrees of freedom of the divertor are analyzed in order to validate the design the divertor supports structure. • Besides the ITER-like scheme, a new scheme for the divertor remote handling compatible supports is proposed, that is the rack and pinion mechanism. • The installation/removel process is verified through simulation in Delmia in order to check design quality for remote handling requirements. - Abstract: Divertor is one of key components of tokamak fusion reactor. The CFETR is China Fusion Engineering Test Reactor. Its divertor will expose to tritium environment and neutron radiation. Materials of the divertor will be radioactived, and cannot be handled by personnel directly. To develop structure which compatible with robots handle for installation, maintenance and removing is required. This paper introduces a conceptual design of CFETR divertor module which compatible with remote handling end-effectors. The divertor module is confined by inner and outer support. The inner support is only confined divertor module radial, toroidal and vertical moving freedom degrees, but not confined rotating freedom degrees. The outer support is the structure that can confine rotating freedom degrees and should also be compatible with remote handling end-effectors.

  13. Tungsten foil laminate for structural divertor applications – Analyses and characterisation of tungsten foil

    International Nuclear Information System (INIS)

    Reiser, Jens; Rieth, Michael; Dafferner, Bernhard; Hoffmann, Andreas; Yi Xiaoou; Armstrong, David E.J.

    2012-01-01

    It has been attempted for several years to synthesise a tungsten material with a low brittle-to-ductile transition temperature and a high fracture toughness that can be used for structural parts. It was shown in our previous work that tungsten foil is ductile at room temperature and that this ductility can be transformed to bulk by synthesising a tungsten laminate. In this work we want to focus on tungsten foil and assess the microstructure as well as the mechanical properties of the foil. The assessment of the microstructure of 0.1 mm tungsten foil will be performed using electron microscopy. It will be shown that the grains of the tungsten foil have a dimension of 0.5 μm × 3 μm × 15 μm and a clear texture in (1 0 0) 〈0 1 1〉. This texture becomes even more pronounced by annealing. Three-point-bending tests with tungsten foil, as-received, will define the barriers: ductile at room temperature and brittle in liquid nitrogen (−196 °C). This shows that the ductility is a thermally activated process. Recrystallised tungsten foil (annealed for 1 h/2700 °C) shows ductile material behaviour at 200 °C. The paper closes with a discussion on the reasons of the ductility of 0.1 mm tungsten foil. These might be the ultra fine grained (UFG) microstructure or, in other words, a nano microstructure (see tungsten foil as-received), the high amount of mobile edge dislocations, and/or the foil effect, which means that dislocations can move to the surface and are annihilated (see tungsten foil recrystallised).

  14. Innovative design for FAST divertor compatible with remote handling, electromagnetic and mechanical analyses

    Energy Technology Data Exchange (ETDEWEB)

    Di Gironimo, Giuseppe, E-mail: giuseppe.digironimo@unina.it [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Cacace, Maurizio [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Crescenzi, Fabio [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Labate, Carmelenzo [CREATE, University of Naples Parthenope, Via Acton 38, 80133 Napoli (Italy); Lanzotti, Antonio [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Lucca, Flavio [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Marzullo, Domenico; Mozzillo, Rocco [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Pagani, Irene [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy); Ramogida, Giuseppe; Roccella, Selanna [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Viganò, Fabio [LT Calcoli srl, Piazza Prinetti 26/B, 23807 Merate, LC (Italy)

    2015-10-15

    Highlights: • The conceptual design of FAST divertor has been carried out through a continuous process of requirements refinement and design optimization (V-model approach), in order to achieve a design suited to the needs, RH compatible and ITER-like. • Thermal, structural and electromagnetic analyses have been performed, resulting in requirements refinement. • FAST divertor is now characterized by more realistic, reliable and functional features, satisfying thermo-mechanical capabilities and the remote handling (RH) compatibility. - Abstract: Divertor is a crucial component in Tokamaks, aiming to exhaust the heat power and particles fluxes coming from the plasma during discharges. This paper focuses on the optimization process of FAST divertor, aimed at achieving required thermo-mechanical capabilities and the remote handling (RH) compatibility. Divertor RH system final layout has been chosen between different concept solutions proposed and analyzed within the principles of Theory of Inventive Problem Solving (TRIZ). The design was aided by kinematic simulations performed using Digital Mock-Up capabilities of Catia software. Considerable electromagnetic (EM) analysis efforts and top-down CAD approach enabled the design of a final and consistent concept, starting from a very first dimensioning for EM loads. In the final version here presented, the divertor cassette supports a set of tungsten (W) actively cooled tiles which compose the inner and outer vertical targets, facing the plasma and exhausting the main part of heat flux. W-tiles are assembled together considering a minimum gap tolerance (0.1–0.5 mm) to be mandatorily respected. Cooling channels have been re-dimensioned to optimize the geometry and the layout of coolant volume inside the cassette has been modified as well to enhance the general efficiency.

  15. Engineering design of the Aries-IV gaseous divertor

    International Nuclear Information System (INIS)

    Hasan, M.Z.; Najmabadi, F.; Sharafat, S.

    1994-01-01

    ARIES-IV is a conceptual, D-T burning, steady-state tokamak fusion reactor producing 1000 MWe net. It operates in the second plasma stability regime. The structural material is SiC composite and the primary coolant is helium at 10MPa base pressure. ARIES-IV uses double-null divertors for particle control. Total thermal power recovered from the divertors is 425MW, which is 16% of the total reactor thermal power. Among the desirable goals of divertor design were to avoid the use of tungsten and to use the same structural material and primary coolant as in the blanket design. In order to reduce peak heat flux, the innovative gaseous divertor has been used in ARIES-IV. A gaseous divertor reduces peak heat flux by increasing the surface area and by distributing particle and radiation energy more uniformly. Another benefit of gaseous divertor is the reduction of plasma temperature in the divertor chamber, so that material erosion due to sputtering, can be diminished. This makes the use of low-Z material possible in a gaseous divertor

  16. He-cooled divertor for DEMO: Experimental verification of the conceptual modular design

    International Nuclear Information System (INIS)

    Norajitra, P.; Gervash, A.; Giniyatulin, R.; Ihli, T.; Krauss, W.; Kruessmann, R.; Kuznetsov, V.; Makhankov, A.; Mazul, I.; Ovchinnikov, I.

    2006-01-01

    A modular He-cooled divertor concept is being developed at the Forschungszentrum Karlsruhe. The design goal is to withstand a high heat flux of 10 MW/m 2 at least. The work programme of 2004 focused on experiments to verify the design and thermohydraulics layout. In cooperation with the Efremov Institute, experimental investigations were performed for the joining of tungsten parts and/or tungsten parts with steel and the fabrication of divertor components from tungsten. Moreover, gas puffing experiments were carried out with a stationary approach to measuring pressure loss and heat transfer for the purpose of screening the design options and verifying the computational fluid dynamics (CFD) calculations. The status and results of the technological and helium experiments shall be outlined in this report

  17. Thermographic studies of outer target heat fluxes on KSTAR

    Directory of Open Access Journals (Sweden)

    H.H. Lee

    2017-08-01

    Full Text Available A new infra-red (IR thermography system with high spatial resolution has been installed on KSTAR and is now mainly applied to measure the outer divertor heat load profile. The first measurement results of the outer divertor heat load profiles between ELMs have been applied to characterize the inter-ELMs outer divertor heat loads in KSTAR H-mode plasmas. In particular, the power decay length (λq of the divertor heat load profile has been determined by fitting the profile to a convolution of an exponential decay and a Gaussian function. The analysis on the power decay length shows a good agreement with the recent multi-machine λq scaling, which predicts λq of the inter-ELMs divertor heat load to be ∼1 mm under the standard H-mode scenario in ITER. The divertor IR thermography system has also successfully measured the strike point splitting of the outer divertor heat flux during the application of resonant magnetic perturbation (RMP fields. In addition, it has provided a clear evidence that the strike point splitting pattern depends on the RMP fields configuration.

  18. Non-destructive examination of the bonding interface in DEMO divertor fingers

    International Nuclear Information System (INIS)

    Richou, Marianne; Missirlian, Marc; Vignal, Nicolas; Cantone, Vincent; Hernandez, Caroline; Norajitra, Prachai; Spatafora, Luigi

    2013-01-01

    Highlights: • SATIR tests on DEMO divertor fingers (integrating or not He cooling system). • Millimeter size artificial defects were manufactured. • Detectability of millimeter size artificial defects was evaluated. • SATIR can detect defect in DEMO divertor fingers. • Simulations are well correlated to SATIR tests. -- Abstract: Plasma facing components (PFCs) with tungsten (W) armor materials for DEMO divertor require a high heat flux removal capability (at least 10 MW/m 2 in steady-state conditions). The reference divertor PFC concept is a finger with a tungsten tile as a protection and sacrificial layer brazed to a thimble made of tungsten alloy W – 1% La 2 O 3 (WL10). Defects may be located at the W thimble to W tile interface. As the number of fingers is considerable (>250,000), it is then a major issue to develop a reliable control procedure in order to control with a non-destructive examination the fabrication processes. The feasibility for detecting defect with infrared thermography SATIR test bed is presented. SATIR is based on the heat transient method and is used as an inspection tool in order to assess component heat transfer capability. SATIR tests were performed on fingers integrating or not the complex He cooling system (steel cartridge with jet holes). Millimeter size artificial defects were manufactured and their detectability was evaluated. Results of this study demonstrate that the SATIR method can be considered as a relevant non-destructive technique examination for the defect detection of DEMO divertor fingers

  19. The ITER Divertor Cassette Project meeting

    International Nuclear Information System (INIS)

    Akiba, M.; Tivey, R.

    2000-01-01

    The Divertor Cassette Project topical meeting took place on April 5-7, 2000 at the JAERI Naka site in Japan. The meeting focused on the progress made by the three parties under task agreements on the development of carbon-fibre composite and tungsten armored high flux plasma-facing components

  20. Development and fabrication aspects regarding tungsten components for a He-cooled divertor

    International Nuclear Information System (INIS)

    Krauss, W.; Holstein, N.; Konys, J.

    2005-01-01

    Under the EU framework of power plant conceptual study (PPCS), a modular He-cooled divertor concept is investigated, which is projected to remove high heat loads of up to 15 MW/m 2 . This design is based on a modular arrangement of cooling fingers consisting of a tile acting as sacrificial layer, a thimble through-flowed by high pressurized He and special micro-structured components for enhanced heat transfer. The success of this design is strongly correlated to the availability of special tungsten alloys and for the pin/slot option efficient micro-structuring of W or W-1% La 2 O 3 arrays. An evaluation of shaping technologies for array manufacturing under consideration of applicability, degree of development status, expected effectiveness and economy was performed and the most promising methods were tested. Based on the today's knowledge, electrical discharge machining (EDM) and laser etching (LE) allow the shaping of slot arrays; however, an impact on microstructure was detected. Technologies like powder injection moulding (PIM) or electro-chemically assisted machining processes (ECM) need further development and testing to be applied as reliable fabrication processes in structuring of W-alloys

  1. Divertor armour issues: lifetime, safety and influence on ITER performance

    International Nuclear Information System (INIS)

    Pestchanyi, S.

    2009-01-01

    Comprehensive simulations of the ITER divertor armour vaporization and brittle destruction under ELMs of different sizes have revealed that the erosion rate of CFC armour is intolerable for an industrial reactor, but it can be considerably reduced by the armour fibre structure optimization. The ITER core contamination with carbon is tolerable for medium size ELMs, but large type I ELM can run the confinement into the disruption. Erosion of tungsten, an alternative armour material, under ELMs influence is satisfactory, but the danger of the core plasma contamination with tungsten is still not enough understood and potentially it could be very dangerous. Vaporization of tungsten, its cracking and dust production during ELMs are rather urgent issues to be investigated for proper choice of the divertor armour material for ITER. However, the erosion rate under action of the disruptive heat loads is tolerable for both armour materials assuming few hundred disruptions falls out during ITER lifetime

  2. Engineering challenges and development of the ITER Blanket System and Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Merola, Mario, E-mail: mario.merola@iter.org; Escourbiac, Frederic; Raffray, Alphonse Rene; Chappuis, Philippe; Hirai, Takeshi; Gicquel, Stefan

    2015-10-15

    The ITER Blanket System and the Divertor are the main components which directly face the plasma. Being the first physical barrier to the plasma, they have very demanding design requirements, which include accommodating: (1) surface heat flux and neutronic volumetric heating, (2) electromagnetic loads, (3) nuclear shielding function, (4) capability of being assembled and remote-handled, (5) interfaces with other in-vessel components, and (6) high heat flux technologies and complex welded structures in the design. The main functions of the Blanket System have been substantially expanded and it has now also to provide limiting surfaces that define the plasma boundary during startup and shutdown. As regards the Divertor, the ITER Council decided in November 2013 to start the ITER operation with a full-tungsten armour in order to minimize costs and already gain operational experience with tungsten during the non-active phase of the machine. This paper gives an overview of the design and technology qualification of the Blanket System and the Divertor.

  3. High heat flux tests of mock-ups for ITER divertor application

    International Nuclear Information System (INIS)

    Giniatulin, R.; Gervash, A.; Komarov, V.L.; Makhankov, A.; Mazul, I.; Litunovsky, N.; Yablokov, N.

    1998-01-01

    One of the most difficult tasks in fusion reactor development is the designing, fabrication and high heat flux testing of actively cooled plasma facing components (PFCs). At present, for the ITER divertor project it is necessary to design and test components by using mock-ups which reflect the real design and fabrication technology. The cause of failure of the PFCs is likely to be through thermo-cycling of the surface with heat loads in the range 1-15 MW m -2 . Beryllium, tungsten and graphite are considered as the most suitable armour materials for the ITER divertor application. This work presents the results of the tests carried out with divertor mock-ups clad with beryllium and tungsten armour materials. The tests were carried out in an electron beam facility. The results of high heat flux screening tests and thermo-cycling tests in the heat load range 1-9 MW m -2 are presented along with the results of metallographic analysis carried out after the tests. (orig.)

  4. Two component tungsten powder injection molding – An effective mass production process

    International Nuclear Information System (INIS)

    Antusch, Steffen; Commin, Lorelei; Mueller, Marcus; Piotter, Volker; Weingaertner, Tobias

    2014-01-01

    Tungsten and tungsten-alloys are presently considered to be the most promising materials for plasma facing components for future fusion power plants. The Karlsruhe Institute of Technology (KIT) divertor design concept for the future DEMO power plant is based on modular He-cooled finger units and the development of suitable mass production methods for such parts was needed. A time and cost effective near-net-shape forming process with the advantage of shape complexity, material utilization and high final density is Powder Injection Molding (PIM). This process allows also the joining of two different materials e.g. tungsten with a doped tungsten alloy, without brazing. The complete technological process of 2-Component powder injection molding for tungsten materials and its application on producing real DEMO divertor parts, characterization results of the finished parts e.g. microstructure, hardness, density and joining zone quality are discussed in this contribution

  5. Divertor erosion in DIII-D

    International Nuclear Information System (INIS)

    Whyte, D.G.; Bastasz, R.; Wampler, W.R.; Brooks, J.N.; West, W.P.; Wong, C.P.C.

    1998-05-01

    Net erosion rates of carbon target plates have been measured in situ for the DIII-D lower divertor. The principal method of obtaining this data is the DiMES sample probe. Recent experiments have focused on erosion at the outer strike-point of two divertor plasma conditions: (1) attached (Te > 40 eV) ELMing plasmas and (2) detached (Te 10 cm/year, even with incident heat flux 2 . In this case, measurements and modeling agree for both gross and net carbon erosion, showing the near-surface transport and redeposition of the carbon is well understood and that effective sputtering yields are > 10%. In ELM-free discharges, this erosion rate can account for the rate of carbon accumulation in the core plasma. Divertor plasma detachment eliminates physical sputtering, while spectroscopically measured chemical erosion yields are also found to be low (Y(C/D + ) ≤ 2.0 x 10 -3 ). This leads to suppression of net erosion at the outer strike-point, which becomes a region of net redeposition (∼ 4 cm/year). The private flux wall is measured to be a region of net redeposition with dense, high neutral pressure, attached divertor plasmas. Leading edges intercepting parallel heat flux (∼ 50 MW/m 2 ) have very high net erosion rates (∼ 10 microm/s) at the OSP of an attached plasma. Leading edge erosion, and subsequent carbon redeposition, caused by tile gaps can account for half of the deuterium codeposition in the DIII-D divertor

  6. Impact of arcing on carbon and tungsten. From the observations in JT-60U, LHD, and NAGDIS-II

    International Nuclear Information System (INIS)

    Kajita, Shin; Fukumoto, Masakatsu; Nakano, Tomohide; Tokitani, Masayuki; Masuzaki, Suguru; Ohno, Noriyasu; Takamura, Shuichi; Yoshida, Naoaki; Ueda, Yoshio

    2012-11-01

    This paper assesses the impact of arcing in fusion devices based on the observations in JT-60U, LHD, and the linear divertor simulator NAGDIS-II. In NAGDIS-II, the demonstration experiments of arcing/unipolar arcing have been conducted by simulating the transient heat load using a pulsed laser; it was found that the arcing can be easily initiated on the helium irradiated nanostructured tungsten. By measuring the field emission current property from the helium irradiated tungsten surface, the initiation conditions are discussed. From the detailed analysis of JT-60U tiles, it is found that arcing phenomena occurred on carbon baffle plates. From the observation of the arc trails recorded on the baffle plate, the amount of the eroded materials is discussed. The arcing seemed to occur frequently on inner baffles rather than the outer baffles. From LHD, it is shown that the arcing can be initiated on nanostructured tungsten even without transient events. The erosion of tungsten by arcing will become an important issue in a fusion reactor, where helium fluence is significantly increased. (author)

  7. Long-term erosion and re-deposition of carbon in the divertor region of JT-60U

    International Nuclear Information System (INIS)

    Gotoh, Y.; Tanabe, T.; Ishimoto, Y.; Masaki, K.; Arai, T.; Kubo, H.; Tsuzuki, K.; Miya, N.

    2006-01-01

    Erosion and redeposition profiles of carbon tiles used in the W-shaped divertor of JT-60U with all carbon plasma facing wall are studied. The inner divertor is mostly covered by carbon redeposited layers, while the outer divertor mostly eroded. In the dome region, the erosion dominates on the inner dome-wing, while redeposited on the outer dome-wing. The redeposited layers on the outer dome-wing show very clear columnar structures indicating local carbon transport form the outer divertor to the outer dome-wing. The weight gain by the redeposition extrapolated to the whole divertor area is 0.55 kg. Since the extrapolated total erosion is about 0.33 kg, the remaining 0.22 kg must be originated from the main chamber erosion. Significant amount of the redeposition is caused locally by multiple processes of erosion, ionization and prompt redeposition toward inboard direction owing to gyration along magnetic filed line. This inboard transport is one of the reasons for small redeposition on the plasma shadowed area of the W shaped divertor of JT-60U with pumping slots placed at the bottoms side

  8. Tritium permeation evaluation through vertical target of divertor based on recent tritium transport properties

    International Nuclear Information System (INIS)

    Nakamura, Hirofumi; Nishi, Masataka

    2003-11-01

    Re-evaluation of tritium permeation through vertical target of divertor under the ITER operation condition was carried out using tritium properties in the candidate materials such as the diffusion coefficient and the trapping factors in tungsten for armor, and the surface recombination coefficient on copper for the heat sink obtained by authours' recent investigation (authors' data), which simulated the plasma-facing conditions of ITER. Evaluation with the data set of previous evaluation was also carried out for comparison (previous data). The permeation analysis was carried out individually by classifying into the armor region (Carbon Fiber Composites and tungsten) and the slit region without armor (3% of armor surface area) assuming the incident flux and temperature for each region. As the results of the permeation analysis, estimated permeation amount with the authors' data was one order less than that with the previous data at the end of lifetime of the divertor due to authors' small diffusion coefficient of tritium in tungsten. It also indicated the possibility that permeation through the slit region of the armor tiles could dominate total permeation through the vertical target, since tritium permeation amount through tungsten armor with the authors' data was estimated to be reduced drastically smaller than that with the previous evaluation data. The result of a little tritium permeation amount through the vertical target with the authors' data ensured the conservatism of the current evaluation of tritium concentration in the primary cooling water in ITER divertor, as it indicated the possibility of direct drainage of the divertor primary cooling water. (author)

  9. Divertor power load studies for attached L-mode single-null plasmas in TCV

    NARCIS (Netherlands)

    Maurizio, R.; Elmore, S.; Fedorczak, N.; Gallo, A.; Reimerdes, H.; Labit, B.; Theiler, C.; Tsui, C. K.; Vijvers, W. A. J.; TCV team,; MST1 Team,

    2018-01-01

    This paper investigates the power loads at the inner and outer divertor targets of attached, Ohmic L-mode, deuterium plasmas in the TCV tokamak, in various experimental situations using an Infrared thermography system. The study comprises variations of the outer divertor leg length and target flux

  10. The influence of plasma-surface interaction on the performance of tungsten at the ITER divertor vertical targets

    Science.gov (United States)

    De Temmerman, G.; Hirai, T.; Pitts, R. A.

    2018-04-01

    The tungsten (W) material in the high heat flux regions of the ITER divertor will be exposed to high fluxes of low-energy particles (e.g. H, D, T, He, Ne and/or N). Combined with long-pulse operations, this implies fluences well in excess of the highest values reached in today’s tokamak experiments. Shaping of the individual monoblock top surface and tilting of the vertical targets for leading-edge protection lead to an increased surface heat flux, and thus increased surface temperature and a reduced margin to remain below the temperature at which recrystallization and grain growth begin. Significant morphology changes are known to occur on W after exposure to high fluences of low-energy particles, be it H or He. An analysis of the formation conditions of these morphology changes is made in relation to the conditions expected at the vertical targets during different phases of operations. It is concluded that both H and He-related effects can occur in ITER. In particular, the case of He-induced nanostructure (also known as ‘fuzz’) is reviewed. Fuzz formation appears possible over a limited region of the outer vertical target, the inner target being generally a net Be deposition area. A simple analysis of the fuzz growth rate including the effect of edge-localized modes (ELMs) and the reduced thermal conductivity of fuzz shows that the fuzz thickness is likely to be limited by the occurrence of annealing during ELM-induced thermal excursions. Not only the morphology, but the material mechanical and thermal properties can be modified by plasma exposure. A review of the existing literature is made, but the existing data are insufficient to conclude quantitatively on the importance and extent of these effects for ITER. As a consequence of the high surface temperatures in ITER, W recrystallization is an important effect to consider, since it leads to a decrease in material strength. An approach is proposed here to develop an operational budget for the W material, i

  11. Heat loads to divertor nearby components from secondary radiation evolved during plasma instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Sizyuk, V., E-mail: vsizyuk@purdue.edu; Hassanein, A., E-mail: hassanein@purdue.edu [Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2015-01-15

    A fundamental issue in tokamak operation related to power exhaust during plasma instabilities is the understanding of heat and particle transport from the core plasma into the scrape-off layer and to plasma-facing materials. During abnormal and disruptive operation in tokamaks, radiation transport processes play a critical role in divertor/edge-generated plasma dynamics and are very important in determining overall lifetimes of the divertor and nearby components. This is equivalent to or greater than the effect of the direct impact of escaped core plasma on the divertor plate. We have developed and implemented comprehensive enhanced physical and numerical models in the upgraded HEIGHTS package for simulating detailed photon and particle transport in the evolved edge plasma during various instabilities. The paper describes details of a newly developed 3D Monte Carlo radiation transport model, including optimization methods of generated plasma opacities in the full range of expected photon spectra. Response of the ITER divertor's nearby surfaces due to radiation from the divertor-developed plasma was simulated by using actual full 3D reactor design and magnetic configurations. We analyzed in detail the radiation emission spectra and compared the emission of both carbon and tungsten as divertor plate materials. The integrated 3D simulation predicted unexpectedly high damage risk to the open stainless steel legs of the dome structure in the current ITER design from the intense radiation during a disruption on the tungsten divertor plate.

  12. The ITER divertor cassette project

    International Nuclear Information System (INIS)

    Ulrickson, M.; Tivey, R.; Akiba, M.

    2001-01-01

    The divertor ''Large Project'' was conceived with the aim of demonstrating the feasibility of meeting the lifetime requirements by employing the candidate armor materials of beryllium, tungsten (W) and carbon-fiber-composite (CFC). At the start, there existed only limited experience with constructing water-cooled high heat flux armored components for tokamaks. To this was added the complication posed by the need to use a silver-free joining technique that avoids the transmutation of n-irradiated silver to cadmium. The research project involving the four Home Teams (HTs) has focused on the design, development, manufacture and testing of full-scale Plasma Facing Components (PFCs) suitable for ITER. The task addressed all the issues facing ITER divertor design, such as providing adequate armor erosion lifetime, meeting the required armor-heat sink joint lifetime and heat sink fatigue life, sustaining thermal-hydraulic and electromechanical loads, and seeking to identify the most cost-effective manufacturing options. This paper will report the results of the divertor large project. (author)

  13. The ITER divertor cassette project

    International Nuclear Information System (INIS)

    Ulrickson, M.; Tivey, R.; Akiba, M.

    1999-01-01

    The divertor 'Large Project' was conceived with the aim of demonstrating the feasibility of meeting the lifetime requirements by employing the candidate armor materials of beryllium, tungsten (W) and carbon-fiber-composite (CFC). At the start, there existed only limited experience with constructing water-cooled high heat flux armored components for tokamaks. To this was added the complication posed by the need to use a silver-free joining technique that avoids the transmutation of n-irradiated silver to cadmium. The research project involving the four Home Teams (HTs) has focused on the design, development, manufacture and testing of full-scale Plasma Facing Components (PFCs) suitable for ITER. The task addressed all the issues facing ITER divertor design, such as providing adequate armor erosion lifetime, meeting the required armor-heat sink joint lifetime and heat sink fatigue life, sustaining thermal-hydraulic and electromechanical loads, and seeking to identify the most cost-effective manufacturing options. This paper will report the results of the divertor large project. (author)

  14. Variation of particle exhaust with changes in divertor magnetic balance

    International Nuclear Information System (INIS)

    Petrie, T.W.; Allen, S.L.; Brooks, N.H.

    2006-01-01

    Recent experiments on DIII-D point to the importance of two factors in determining how effectively the deuterium particle inventory in a tokamak plasma can be controlled through pumping at the divertor target(s): (1) the divertor magnetic balance, i.e. the degree to which the divertor topology is single-null or double-null (DN) and (2) the direction of the of B x ∇B ion drift with respect to the X-point(s). Changes in divertor magnetic balance near the DN shape have a much stronger effect on the particle exhaust rate at the inner divertor target(s) than on the particle exhaust rate at the outer divertor target(s). The particle exhaust rate for the DN shape is strongest at the outer strike point opposite the B x ∇B ion particle drift direction. Our data suggests that the presence of B x ∇B and E x B ion particle drifts in the scrape-off layer and divertor(s) play an important role in the particle exhaust rates of DN and near-DN plasmas. Particle exhaust rates are shown to depend strongly on the edge (pedestal) density. These results have implications for particle control in ITER and other future tokamaks

  15. Estimation of the tritium retention in ITER tungsten divertor target using macroscopic rate equations simulations

    Science.gov (United States)

    Hodille, E. A.; Bernard, E.; Markelj, S.; Mougenot, J.; Becquart, C. S.; Bisson, R.; Grisolia, C.

    2017-12-01

    Based on macroscopic rate equation simulations of tritium migration in an actively cooled tungsten (W) plasma facing component (PFC) using the code MHIMS (migration of hydrogen isotopes in metals), an estimation has been made of the tritium retention in ITER W divertor target during a non-uniform exponential distribution of particle fluxes. Two grades of materials are considered to be exposed to tritium ions: an undamaged W and a damaged W exposed to fast fusion neutrons. Due to strong temperature gradient in the PFC, Soret effect’s impacts on tritium retention is also evaluated for both cases. Thanks to the simulation, the evolutions of the tritium retention and the tritium migration depth are obtained as a function of the implanted flux and the number of cycles. From these evolutions, extrapolation laws are built to estimate the number of cycles needed for tritium to permeate from the implantation zone to the cooled surface and to quantify the corresponding retention of tritium throughout the W PFC.

  16. Divertor heat flux mitigation in the National Spherical Torus Experimenta)

    Science.gov (United States)

    Soukhanovskii, V. A.; Maingi, R.; Gates, D. A.; Menard, J. E.; Paul, S. F.; Raman, R.; Roquemore, A. L.; Bell, M. G.; Bell, R. E.; Boedo, J. A.; Bush, C. E.; Kaita, R.; Kugel, H. W.; Leblanc, B. P.; Mueller, D.; NSTX Team

    2009-02-01

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6MWm-2to0.5-2MWm-2 in small-ELM 0.8-1.0MA, 4-6MW neutral beam injection-heated H-mode discharges. A self-consistent picture of the outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  17. Fabrication of divertor cassette for ITER

    International Nuclear Information System (INIS)

    Sanguinetti, G.P.

    2008-01-01

    The Divertor is the component located on the bottom of the ITER vacuum vessel, whose main function is to adsorb the high thermal flux generated by the plasma whilst keeping the plasma impurity at a reasonable low level. The divertor consist of 54 units, each comprising outer components, facing the plasma and a component supporting the plasma facing components (PFC) and providing coolant distribution to them (divertor cassette). The divertor cassette is a box structure, butt welded and machined, made from plates and forgins of austenitic stainless steels. The cassette fabrication, which is in detail described, includes manufacturing of the attachments of the PFC to the cassette, the coolant distribution channels, and the cassette to vacuum vessel locking system. The divertor cassette is a pressure component (the cooling water runs at 40 bar) and therefore divertor cassette design, fabrication and service shall comply with the European PED and the applicable French law for the ITER. (orig.)

  18. Thermomechanical characterization of joints for blanket and divertor application processed by electrochemical plating

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Wolfgang; Lorenz, Julia; Konys, Jürgen; Basuki, Widodo; Aktaa, Jarir

    2016-11-01

    Highlights: • Electroplating is a relevant technology for brazing of blanket and divertor parts. • Tungsten, Eurofer and steel joints successfully fabricated. • Reactive interlayers improve adherence and reduce failure risks. • Qualification of joints performed by thermo-mechanical testing and aging. • Shear strength of joints comparable with conventionally brazing of steels. - Abstract: Fusion technology requires in the fields of first wall and divertor development reliable and adjusted joining processes of plasma facing tungsten to heat sinks or blanket structures. The components to be bonded will be fabricated from tungsten, steel or other alloys like copper. The parts have to be joined under functional and structural aspects considering the metallurgical interactions of alloys to be assembled and the filler materials. Application of conventional brazing showed lacks ranging from bad wetting of tungsten up to embrittlement of fillers and brazing zones. Thus, the deposition of reactive interlayers and filler components, e.g. Ni, Pd or Cu was initiated to overcome these metallurgical restrictions and to fabricate joints with aligned mechanical behavior. This paper presents results concerning the joining of tungsten, Eurofer and stainless steel for blanket and divertor application by applying electroplating technology. Metallurgical and mechanical characterization by shear testing were performed to analyze the joints quality and application limits in dependence on testing temperature between room temperature and 873 K and after thermal aging of up to 2000 h. The tested interlayers Ni and Pd enhanced wetting and enabled the processing of reliable joints with a shear strength of more than 200 MPa at RT.

  19. Development of liquid lithium divertor for fusion reactor

    International Nuclear Information System (INIS)

    Evtihkin, V. A.; Lyublinskij, I. E.; Vertkov, A.V.; Chumanov, A.V.; Shpolyanskij, V.N.

    2000-01-01

    Development of divertor is one of the most acute problems of the tokamak fusion reactor. The use of such materials as tungsten, beryllium, graphite and CFC's enabled to solve the problem to a certain extent fulfilling the need of the ITER project. The problem still rests unsolved for the DEMO-type reactors. Lithium if used as a material for high heat flux components may provide a successful solution of the problem. A concept of Li divertor based on the use of capillary-pore structures (CPS) is proposed and is being validated by a complex of experimental research and engineering developments. An optional concept of Li divertor for power removal at 400 MW in steady-state (DEMO-S project) is presented. The complex of experimental research is under way to prove the serviceability of the Li CPS in different conditions that would be realized in divertor

  20. Engineering studies for the installation of an axi-symmetric metallic divertor in Tore Supra

    International Nuclear Information System (INIS)

    Doceul, L.; Portafaix, C.; Bucalossi, J.; Saille, A.; Bertrand, B.; Lipa, M.; Missirlian, M.; Jiolat, G.; Samaille, F.; Soler, B.

    2011-01-01

    Tore Supra (TS) has been designed to operate using technologies that allow long plasma operation (a few minutes), by means of superconducting magnets and actively-cooled high heat flux plasma facing components (PFCs). Actively cooled tungsten PFC will be used in the baffle area of the first ITER divertor. In order to validate such a technology fully (industrial manufacturing, operation with long plasma duration), the implementation of a tungsten axi-symmetric divertor in the tokamak Tore Supra has been studied . With this second major upgrade, Tore Supra should be able to address the problematic of long plasma discharges with a metallic divertor. The proposed divertor is made up of two stainless steel casings containing a copper coil winding located at the top and bottom area of the vacuum vessel. These casings are firmly maintained by connection beams and protected by PFC. This paper describes the mechanical design of this major component and its integration in TS, the associated electromagnetic and thermomechanical analysis, the manufacturing issues and finally the integration of ITER representative PFCs.

  1. A study of plasma facing tungsten components with electrical discharge machined surface exposed to cyclic thermal loads

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Yohji, E-mail: seki.yohji@jaea.go.jp; Ezato, Koichiro; Suzuki, Satoshi; Yokoyama, Kenji; Yamada, Hirokazu; Hirayama, Tomoyuki

    2016-11-01

    Through R&D for a plasma facing units (PFUs) in an outer vertical target of an ITER full-tungsten (W) divertor, Japan Atomic Energy Agency succeeded in demonstrating the durability of the W divertor shaped by an electrical discharge machining (EDM). To prevent melting of W armors in the PFUs, an adequate technology to meet requirements of a geometrical shape and a tolerance is one of the most important key issues in a manufacturing process. From the necessity, the EDM has been evaluated to control the final shape of the W armor. Though the EDM was known to be advantages such as an easy workability, a potential disadvantage of presence of micro-cracks on the W surface appeared. In order to examine a potential effect of the micro-crack on a heat removal durability, a high heat flux testing was carried out for the W divertor mock-up with the polish and the EDM. As the result, all of the W armors endured the repetitive heat load of 1000 cycles at an absorbed heat flux of more than 20 MW/m{sup 2}, which strongly encourages the realization of the PFUs of the ITER full-W divertor with the various geometrical shape and the high accuracy tolerance.

  2. A study of plasma facing tungsten components with electrical discharge machined surface exposed to cyclic thermal loads

    International Nuclear Information System (INIS)

    Seki, Yohji; Ezato, Koichiro; Suzuki, Satoshi; Yokoyama, Kenji; Yamada, Hirokazu; Hirayama, Tomoyuki

    2016-01-01

    Through R&D for a plasma facing units (PFUs) in an outer vertical target of an ITER full-tungsten (W) divertor, Japan Atomic Energy Agency succeeded in demonstrating the durability of the W divertor shaped by an electrical discharge machining (EDM). To prevent melting of W armors in the PFUs, an adequate technology to meet requirements of a geometrical shape and a tolerance is one of the most important key issues in a manufacturing process. From the necessity, the EDM has been evaluated to control the final shape of the W armor. Though the EDM was known to be advantages such as an easy workability, a potential disadvantage of presence of micro-cracks on the W surface appeared. In order to examine a potential effect of the micro-crack on a heat removal durability, a high heat flux testing was carried out for the W divertor mock-up with the polish and the EDM. As the result, all of the W armors endured the repetitive heat load of 1000 cycles at an absorbed heat flux of more than 20 MW/m"2, which strongly encourages the realization of the PFUs of the ITER full-W divertor with the various geometrical shape and the high accuracy tolerance.

  3. Dissipative divertor operation in the Alcator C-Mod tokamak

    International Nuclear Information System (INIS)

    Lipschultz, B.; Goetz, J.; LaBombard, B.; McCracken, G.M.; Terry, J.L.; Graf, M.; Granetz, R.S.; Jablonski, D.; Kurz, C.; Niemczewski, A.; Snipes, J.

    1995-01-01

    The achievement of large volumetric power losses (dissipation) in the Alcator C-Mod divertor region is demonstrated in two operational modes: radiative divertor and detached divertor. During radiative divertor operation, the fraction of SOL power lost by radiation is P R /P SOL ∼0.8 with single null plasmas, n e 20 m -3 and I p e,div ≤6x10 20 m -3 . As the divertor radiation and density increase, the plasma eventually detaches abruptly from the divertor plates: I SAT drops at the target and the divertor radiation peak moves to the X-point region. Probe measurements at the divertor plate show that the transition occurs when T e ∼5 eV. The critical n e for detachment depends linearly on the input power. This abrupt divertor detachment is preceded by a comparatively long period ( similar 1-200 ms) where a partial detachment is observed to grow at the outer divertor plate. ((orig.))

  4. Simulation of cracks in tungsten under ITER specific heat loads

    International Nuclear Information System (INIS)

    Peschany, S.

    2006-01-01

    The problem of high tritium retention in co-deposited carbon layers on the walls of ITER vacuum chamber motivates investigation of materials for the divertor armour others than carbon fibre composite (CFC). Tungsten is most probable material for CFC replacement as the divertor armour because of high vaporisation temperature and heat conductivity. In the modern ITER design tungsten is a reference material for the divertor cover, except for the separatrix strike point armoured with CFC. As divertor armour, tungsten should withstand severe heat loads at off-normal ITER events like disruptions, ELMs and vertical displacement events. Experiments on tungsten heating with plasma streams and e-beams have shown an intense crack formation at the surface of irradiated sample [ V.I. Tereshin, A.N. Bandura, O.V. Byrka et al. Repetitive plasma loads typical for ITER type-I ELMs: Simulation at QSPA Kh-50.PLASMA 2005. ed. By Sadowski M.J., AIP Conference Proceedings, American Institute of Physics, 2006, V 812, p. 128-135., J. Linke. Private communications.]. The reason for tungsten cracking under severe heat loads is thermo stress. It appears as due to temperature gradient in solid tungsten as in resolidified layer after cooling down. Both thermo stresses are of the same value, but the gradiental stress is compressive and the stress in the resolidified layer is tensile. The last one is most dangerous for crack formation and it was investigated in this work. The thermo stress in tungsten that develops during cooling from the melting temperature down to room temperature is ∼ 8-16 GPa. Tensile strength of tungsten is much lower, < 1 GPa at room temperature, and at high temperatures it drops at least for one order of magnitude. As a consequence, various cracks of different characteristic scales appear at the heated surface of the resolidified layer. For simulation of the cracks in tungsten the numeric code PEGASUS-3D [Pestchanyi and I. Landman. Improvement of the CFC structure to

  5. Comparison of tungsten nano-tendrils grown in Alcator C-Mod and linear plasma devices

    International Nuclear Information System (INIS)

    Wright, G.M.; Brunner, D.; Baldwin, M.J.; Bystrov, K.; Doerner, R.P.; Labombard, B.; Lipschultz, B.; De Temmerman, G.; Terry, J.L.; Whyte, D.G.; Woller, K.B.

    2013-01-01

    Growth of tungsten nano-tendrils (“fuzz”) has been observed for the first time in the divertor region of a high-power density tokamak experiment. After 14 consecutive helium L-mode discharges in Alcator C-Mod, the tip of a tungsten Langmuir probe at the outer strike point was fully covered with a layer of nano-tendrils. The depth of the W fuzz layer (600 ± 150 nm) is consistent with an empirical growth formula from the PISCES experiment. Re-creating the C-Mod exposures as closely as possible in Pilot-PSI experiment can produce nearly-identical nano-tendril morphology and layer thickness at surface temperatures that agree with uncertainties with the C-Mod W probe temperature data. Helium concentrations in W fuzz layers are measured at 1–4 at.%, which is lower than expected for the observed sub-surface voids to be filled with several GPa of helium pressure. This possibly indicates that the void formation is not pressure driven

  6. Divertor erosion in DIII-D

    International Nuclear Information System (INIS)

    Whyte, D.G.; Bastasz, R.; Wampler, W.R.; Brooks, J.N.; West, W.P.; Wong, C.P.C.; Buzhinskij, O.I.; Opimach, I.V.

    1998-08-01

    Net erosion rates of carbon target plates have been measured in situ for the DIII-D lower divertor. The principal method of obtaining this data is the DiMES sample probe. Recent experiments have focused on erosion at the outer strike-point (OSP) of two divertor plasma conditions: attached (T e > 40 eV) ELMing plasmas, and detached (T e 2 . In this case, measurements and modeling agree for both gross and net carbon erosion, showing the near-surface transport and redeposition of the carbon is well understood. In the attached cases, physical sputtering (with enhancement from self-sputtering and oblique incidence) is dominant, and the effective sputtering yield, Y, is greater than 10%. In ELM-free discharges, the total OSP net erosion rate is equal to the rate of carbon accumulation in the core plasma. For the detached divertor cases, the cold incident plasma eliminates physical sputtering. Attempts to measure chemically eroded hydrocarbon molecules spectroscopically indicate an upper limit of Y ≤ 0.1% for the chemical sputtering yield. Net erosion is suppressed at the outer strike-point, which becomes a region of net redeposition (∼ 4 cm/exposure-year). The private flux wall is measured to be a region of net redeposition with dense, high neutral pressure, attached divertor plasmas. Leading edges intercepting parallel heat flux (∼ 50 MW/m 2 ) have very high net erosion rates at the OSP of an attached plasma (∼ 10 microm/s > 1,000x erosion rate of aligned surfaces). Leading edge erosion, and subsequent carbon redeposition, caused by tile gaps can account for half of the deuterium codeposition in the DIII-D divertor

  7. Divertor materials for ITER - Tungsten and carbon/carbon composite behavior under coupled ionic irradiation and high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Raunier, S.; Balat-Pichelin, M.; Sans, J.L.; Hernandez, D. [Laboratoire PROMES-CNRS, Laboratoire Procedes, Materiaux et Energie Solaire, 7 rue du Four Solaire, 66120 Font-Romeu Odeillo (France)

    2007-07-01

    Full text of publication follows: In the frame of the International Thermonuclear Experimental Reactor ITER, the physical-chemical characterization of plasma-facing components (divertor and structural materials) is essential because they are subjected to simultaneous high thermal and ionic fluxes. In this paper, an experimental and theoretical study of the physical-chemical behavior of carbon/carbon composite and tungsten (materials for ITER divertor) under extreme conditions is performed. The simulation of the interaction of hydrogen ions with the material, the theoretical study of physical erosion (TRIM and TRIDYN codes) and the chemical erosion (GEMINI code) are carried out. The conditions of nominal or accidental mode that can occur during the operation of the reactor (high temperature 1300 - 2500 K, high vacuum, H{sup +} ionic flux with different energies) are experimentally simulated. In this work, we have studied the material degradation, the mass loss kinetics, the characterization of the emitted neutral and charged species of heated and both heated and irradiated materials, and the determination of the thermo-radiative properties versus time. This study, done in collaboration with CEA Cadarache, is realized using the MEDIASE experimental device (Moyen d'Essai et de Diagnostic en Ambiance Solaire Extreme) located at the focus of the 1000 kW solar furnace of PROMES-CNRS laboratory in Odeillo. Material characterization pre- and post-processing is performed with classical techniques as SEM, XRD and XPS and also by measuring the BRDF (Bidirectional Reflectivity Diffusion Function). (authors)

  8. Divertor materials for ITER - Tungsten and carbon/carbon composite behavior under coupled ionic irradiation and high temperature

    International Nuclear Information System (INIS)

    Raunier, S.; Balat-Pichelin, M.; Sans, J.L.; Hernandez, D.

    2007-01-01

    Full text of publication follows: In the frame of the International Thermonuclear Experimental Reactor ITER, the physical-chemical characterization of plasma-facing components (divertor and structural materials) is essential because they are subjected to simultaneous high thermal and ionic fluxes. In this paper, an experimental and theoretical study of the physical-chemical behavior of carbon/carbon composite and tungsten (materials for ITER divertor) under extreme conditions is performed. The simulation of the interaction of hydrogen ions with the material, the theoretical study of physical erosion (TRIM and TRIDYN codes) and the chemical erosion (GEMINI code) are carried out. The conditions of nominal or accidental mode that can occur during the operation of the reactor (high temperature 1300 - 2500 K, high vacuum, H + ionic flux with different energies) are experimentally simulated. In this work, we have studied the material degradation, the mass loss kinetics, the characterization of the emitted neutral and charged species of heated and both heated and irradiated materials, and the determination of the thermo-radiative properties versus time. This study, done in collaboration with CEA Cadarache, is realized using the MEDIASE experimental device (Moyen d'Essai et de Diagnostic en Ambiance Solaire Extreme) located at the focus of the 1000 kW solar furnace of PROMES-CNRS laboratory in Odeillo. Material characterization pre- and post-processing is performed with classical techniques as SEM, XRD and XPS and also by measuring the BRDF (Bidirectional Reflectivity Diffusion Function). (authors)

  9. Variation of Particle Control with Changes in Divertor Geometry

    International Nuclear Information System (INIS)

    Petrie, T W; Allen, S L; Brooks, N H; Fenstermacher, M E; Ferron, J R; Greenfield, C M; Groth, M; Hyatt, A W; Leonard, A W; Luce, T C; Mahdavi, M A; Murakami, M; Porter, G D; Rensink, M E; Schaffer, M J; Wade, M R; Watkins, J G; West, W P; Wolf, N S

    2004-01-01

    Recent experiments on DIII-D point to the importance of two factors in determining how effectively the deuterium particle inventory in a tokamak plasma can be controlled through pumping at the divertor target(s): (1) the divertor magnetic balance, i.e., the degree to which the divertor topology is single-null (SN) or double-null (DN), and (2) the direction of the of Bx(divergent)B ion drift with respect to the X-point(s). Changes in divertor magnetic balance near the DN shape have a much stronger effect on the particle exhaust rate at the inner divertor target(s) than on the particle exhaust rate at the outer divertor target(s). The particle exhaust rate for the DN shape is strongest at the outer strike point opposite the Bx(divergent)B ion particle drift direction. Our data suggests that the presence of Bx(divergent)B and ExB ion particle drifts in the scrapeoff layer (SOL) and divertors play an important role in the particle exhaust rates of DN and near-DN plasmas. Particle exhaust rates are shown to depend strongly on the edge (pedestal) density n e,PED . In the lower range of densities considered in this study, i.e., n e,PED / n GREENWALD <0.4, particle exhaust rates are also found to be approximately proportional to the deuterium recycling intensity in front of the respective plenum entrance. Our results are shown to have implications for particle control in ITER and other future tokamaks

  10. Variation of particle control with changes in divertor geometry

    International Nuclear Information System (INIS)

    Petrie, T.W.; Allen, S.L.; Brooks, N.H.; Fenstermacher, M.E.; Groth, M.; Porter, G.D.; Rensink, M.E.; Wolf, N.S.; Ferron, J.R.; Greenfield, C.M.; Hyatt, A.W.; Leonard, A.W.; Luce, T.C.; Mahdavi, M.A.; Schaffer, M.J.; West, W.P.; Murakami, M.; Wade, M.R.; Watkins, J.G.

    2005-01-01

    Recent experiments on DIII-D point to the importance of two factors in determining how effectively the deuterium particle inventory in a tokamak plasma can be controlled through pumping at the divertor target(s): (1) the divertor magnetic balance, i.e., the degree to which the divertor topology is single-null (SN) or double-null (DN), and (2) the direction of the of Bx∇B ion drift with respect to the X-point(s). Changes in divertor magnetic balance near the DN shape have a much stronger effect on the particle exhaust rate at the inner divertor target(s) than on the particle exhaust rate at the outer divertor target(s). The particle exhaust rate for the DN shape is strongest at the outer strike point opposite the Bx∇B ion particle drift direction. Our data suggests that the presence of Bx∇B and ExB ion particle drifts in the scrapeoff layer (SOL) and divertors play an important role in the particle exhaust rates of DN and near-DN plasmas. Particle exhaust rates are shown to depend strongly on the edge (pedestal) density n e,PED . In the lower range of densities considered in this study, i.e., n e,PED /n GREENWALD <0.4, particle exhaust rates are also found to be approximately proportional to the deuterium recycling intensity in front of the respective plenum entrance. Our results are shown to have implications for particle control in ITER and other future tokamaks. (author)

  11. Model-based radiation scalings for the ITER-like divertors of JET and ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Aho-Mantila, L., E-mail: leena.aho-mantila@vtt.fi [VTT Technical Research Centre of Finland, FI-02044 VTT (Finland); Bonnin, X. [LSPM – CNRS, Université Paris 13, Sorbonne Paris Cité, F-93430 Villetaneuse (France); Coster, D.P. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Lowry, C. [EFDA JET CSU, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Wischmeier, M. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Brezinsek, S. [Forschungszentrum Jülich, Institut für Energie- und Klimaforschung Plasmaphysik, 52425 Jülich (Germany); Federici, G. [EFDA PPP& T Department, D-85748 Garching (Germany)

    2015-08-15

    Effects of N-seeding in L-mode experiments in ASDEX Upgrade and JET are analysed numerically with the SOLPS5.0 code package. The modelling yields 3 qualitatively different radiative regimes with increasing N concentration, when initially attached outer divertor conditions are studied. The radiation pattern is observed to evolve asymmetrically, with radiation increasing first in the inner divertor, then in the outer divertor, and finally on closed field lines above the X-point. The properties of these radiative regimes are observed to be sensitive to cross-field drifts and they differ between the two devices. The modelled scaling of the divertor radiated power with the divertor neutral pressure is similar to an experimental scaling law for H-mode radiation. The same parametric dependencies are not observed in simulations without drifts.

  12. FLP: a field line plotting code for bundle divertor design

    International Nuclear Information System (INIS)

    Ruchti, C.

    1981-01-01

    A computer code was developed to aid in the design of bundle divertors. The code can handle discrete toroidal field coils and various divertor coil configurations. All coils must be composed of straight line segments. The code runs on the PDP-10 and displays plots of the configuration, field lines, and field ripple. It automatically chooses the coil currents to connect the separatrix produced by the divertor to the outer edge of the plasma and calculates the required coil cross sections. Several divertor designs are illustrated to show how the code works

  13. He-cooled divertor development for DEMO

    International Nuclear Information System (INIS)

    Norajitra, P.; Giniyatulin, R.; Ihli, T.; Janeschitz, G.; Krauss, W.; Kruessmann, R.; Kuznetsov, V.; Mazul, I.; Widak, V.; Ovchinnikov, I.; Ruprecht, R.; Zeep, B.

    2007-01-01

    Goal of the He-cooled divertor development for future fusion power plants is to resist a high heat flux of at least 10 MW/m 2 . The development includes the fields of design, analyses, and experiments. A helium-cooled modular jet concept (HEMJ) has been defined as reference solution, which is based on jet impingement cooling. In cooperation with the Efremov Institute, work was aimed at construction and high heat flux tests of prototypical tungsten mockups to demonstrate their manufacturability and their performances. A helium loop was built for this purpose to simulate the realistic thermo-hydraulics conditions close to those of DEMO (10 MPa He, 600 deg. C). The first high heat flux test results confirm the feasibility and the performance of the divertor design

  14. Surface mechanical attrition treatment of tungsten and its behavior under low energy deuterium plasma implantation relevant to ITER divertor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.Y.; Yuan, Y.; Fu, B.Q.; Godfrey, A.; Liu, W. [Tsinghua Univ.. Lab. of Advanced Materials, Beijing (China); Zhang, Y.B. [Technical Univ. og Denmark. DTU Risoe Campus, Roskilde (Denmark); Tao, N.R. [Chinese Academy of Sciences, Shenyang (China)

    2012-11-01

    In the light of a foreseen application for tungsten (W) as an ITER divertor material samples have been plastically deformed by a surface mechanical attrition treatment (SMAT) and by cold rolling. The resistance to blister formation by low energy deuterium implantation in these samples has been examined, with the result that the structure is significantly improved as the structural scale is reduced to the nanometer range in the SMAT sample. The distribution of blisters in this sample is however bimodal, due to the formation of several very large blisters, which are heterogeneously distributed. The observations suggest that process optimization must be a next step in the development with a view to the application of plastically deformed W in a fusion reactor. (Author)

  15. Design and tests of a simplified divertor dummy coil structure for the WEST project

    International Nuclear Information System (INIS)

    Doceul, L.; Bucalossi, J.; Dougnac, H.; Ferlay, F.; Gargiulo, L.; Keller, D.; Larroque, S.; Lipa, M.; Pilia, A.; Saille, A.; Samaille, F.; Soler, B.; Thouvenin, D.; Verger, J.M.; Zago, B.; Portafaix, C.; Salami, M.

    2015-01-01

    Full text of publication follows. In order to fully validate actively cooled tungsten plasma facing components (industrial fabrication, operation with long plasma duration), the implementation of a tungsten axisymmetric divertor structure in the tokamak Tore-Supra is studied. With this major upgrade, so called WEST (Tungsten Environment in Steady state Tokamak), Tore-Supra will be able to address the problematic of long plasma discharges with a metallic divertor target. To do so, it is planned to install two symmetric divertor coils inside the vacuum vessel. This assembly, called divertor structure, is made up of two stainless steel casings containing a copper winding pack cooled by a pressurized hot water circuit (up to 200 Celsius degrees, 4 MPa) and is designed to perform steady state plasma operation (up to 1000 s). The divertor structure will be a complex assembly of 4 meter diameter and 4 meter height representing a total weight of around 20 tonnes. The technical challenge of this component will be the implementation of angular sectors inside the vacuum vessel environment (TIG welding of the coil casing, induction brazing and electrical insulation of the copper winding). Moreover, this complex assembly must sustain harsh environmental conditions in terms of ultra high vacuum conditions, mechanical loads (induced by disruptions) and electrical isolation (13 kV test) under high temperature. In order to fully validate the feasibility, the mounting and the performance of this complex component, the production of a scale one dummy coil is in progress. The paper will illustrate, the technical developments performed during 2012 in order to finalise the design for the call for tender phase. The progress and the first results of the simplified dummy coils will be also addressed. (authors)

  16. Comment on “Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake” [Phys. Plasmas 20, 102507 (2013)

    International Nuclear Information System (INIS)

    Ryutov, D. D.; Cohen, R. H.; Rognlien, T. D.; Soukhanovskii, V. A.; Umansky, M. V.

    2014-01-01

    In the recently published paper “Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake” [Phys. Plasmas 20, 102507 (2013)], the authors raise interesting and important issues concerning divertor physics and design. However, the paper contains significant errors: (a) The conceptual framework used in it for the evaluation of divertor “quality” is reduced to the assessment of the magnetic field structure in the outer Scrape-Off Layer. This framework is incorrect because processes affecting the pedestal, the private flux region and all of the divertor legs (four, in the case of a snowflake) are an inseparable part of divertor operation. (b) The concept of the divertor index focuses on only one feature of the magnetic field structure and can be quite misleading when applied to divertor design. (c) The suggestion to rename the divertor configurations experimentally realized on NSTX (National Spherical Torus Experiment) and DIII-D (Doublet III-D) from snowflakes to X-divertors is not justified: it is not based on comparison of these configurations with the prototypical X-divertor, and it ignores the fact that the NSTX and DIII-D poloidal magnetic field geometries fit very well into the snowflake “two-null” prescription

  17. Magnetic field models and their application in optimal magnetic divertor design

    Energy Technology Data Exchange (ETDEWEB)

    Blommaert, M.; Reiter, D. [Institute of Energy and Climate Research (IEK-4), FZ Juelich GmbH, Juelich (Germany); Baelmans, M. [KU Leuven, Department of Mechanical Engineering, Leuven (Belgium); Heumann, H. [TEAM CASTOR, INRIA Sophia Antipolis (France); Marandet, Y.; Bufferand, H. [Aix-Marseille Universite, CNRS, PIIM, Marseille (France); Gauger, N.R. [TU Kaiserslautern, Chair for Scientific Computing, Kaiserslautern (Germany)

    2016-08-15

    In recent automated design studies, optimal design methods were introduced to successfully reduce the often excessive heat loads that threaten the divertor target surface. To this end, divertor coils were controlled to improve the magnetic configuration. The divertor performance was then evaluated using a plasma edge transport code and a ''vacuum approach'' for magnetic field perturbations. Recent integration of a free boundary equilibrium (FBE) solver allows to assess the validity of the vacuum approach. It is found that the absence of plasma response currents significantly limits the accuracy of the vacuum approach. Therefore, the optimal magnetic divertor design procedure is extended to incorporate full FBE solutions. The novel procedure is applied to obtain first results for the new WEST (Tungsten Environment in Steady-state Tokamak) divertor currently under construction in the Tore Supra tokamak at CEA (Commissariat a l'Energie Atomique, France). The sensitivities and the related divertor optimization paths are strongly affected by the extension of the magnetic model. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Modeling detachment physics in the NSTX snowflake divertor

    Energy Technology Data Exchange (ETDEWEB)

    Meier, E.T., E-mail: emeier@wm.edu [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Bell, R.E.; Diallo, A.; Kaita, R.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, Princeton, NJ 08540 (United States); McLean, A.G. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Podestà, M. [Princeton Plasma Physics Laboratory, Princeton, NJ 08540 (United States); Rognlien, T.D.; Scotti, F. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2015-08-15

    The snowflake divertor is a proposed technique for coping with the tokamak power exhaust problem in next-step experiments and eventually reactors, where extreme power fluxes to material surfaces represent a leading technological and physics challenge. In lithium-conditioned National Spherical Torus Experiment (NSTX) discharges, application of the snowflake divertor typically induced partial outer divertor detachment and severalfold heat flux reduction. UEDGE is used to analyze and compare conventional and snowflake divertor configurations in NSTX. Matching experimental upstream profiles and divertor measurements in the snowflake requires target recycling of 0.97 vs. 0.91 in the conventional case, implying partial saturation of the lithium-based pumping mechanism. Density scans are performed to analyze the mechanisms that facilitate detachment in the snowflake, revealing that increased divertor volume provides most of the parallel heat flux reduction. Also, neutral gas power loss is magnified by the increased wetted area in the snowflake, and plays a key role in generating volumetric recombination.

  19. Multi-Fluid Modeling of Low-Recycling Divertor Regimes

    International Nuclear Information System (INIS)

    Smirnov, R.D.; Pigarov, A.Y.; Krasheninnikov, S.I.; Rognlien, T.D.; Soukhanovskii, V.A.; Rensink, M.E.; Maingi, R.; Skinner, C.H.; Stotler, D.P.; Bell, R.E.; Kugel, H.W.

    2010-01-01

    The low-recycling regimes of divertor operation in a single-null NSTX magnetic configuration are studied using computer simulations with the edge plasma transport code UEDGE. The edge plasma transport properties pertinent to the low-recycling regimes are demonstrated. These include the flux-limited character of the parallel heat transport and the high plasma temperatures with the flattened profiles in the scrape-off-layer. It is shown that to maintain the balance of particle fluxes at the core interface the deuterium gas puffing rate should increase as the divertor recycling coefficient decreases. The radial profiles of the heat load to the outer divertor plate, the upstream radial plasma profiles, and the effects of the cross-field plasma transport in the low-recycling regimes are discussed. It is also shown that recycling of lithium impurities evaporating from the divertor plate at high surface temperatures can reverse the low-recycling divertor operational regime to the high-recycling one and may cause thermal instability of the divertor plate.

  20. Particle control in the DIII-D advanced divertor

    International Nuclear Information System (INIS)

    Schaffer, M.J.; Lippmann, S.I.; Mahdavi, M.A.; Petrie, T.W.; Stambaugh, R.D.; Hogan, J.; Klepper, C.C.; Mioduszewski, P.; Owen, L.; Hill, D.N.; Rensink, M.; Buchenauer, D.

    1991-11-01

    A new, electrically biasable, semi-closed divertor was installed and operated in the D3-D lower outside divertor location. The semi-closed divertor has yielded static gas pressure buildups in the pumping plenum in excess of 10 mtorr. (The planned cryogenic pumping is not yet installed). Electrical bias controls the distribution of particle recycle between the inner and outer divertors by rvec E x rvec B drifts. Depending on sign, bias increases or decreases the plenum gas pressure. Bias greatly reduce the sensitivity of plenum pressure to separatrix position. In particular, rvec E x rvec B drifts in the D3-D geometry can direct plasma across a divertor target and then optimally into the pumping aperture. Bias, even without active pumping, has also demonstrated a limited control of ELMing H-mode plasma density. 5 refs., 8 figs

  1. Developing physics basis for the snowflake divertor in the DIII-D tokamak

    Science.gov (United States)

    Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.; Lasnier, C. J.; Makowski, M. A.; McLean, A. G.; Meyer, W. H.; Ryutov, D. D.; Kolemen, E.; Groebner, R. J.; Hyatt, A. W.; Leonard, A. W.; Osborne, T. H.; Petrie, T. W.; Watkins, J.

    2018-03-01

    Recent DIII-D results demonstrate that the snowflake (SF) divertor geometry (see standard divertor) enables significant manipulation of divertor heat transport for heat spreading and reduction in attached and radiative divertor regimes, between and during edge localized modes (ELMs), while maintaining good H-mode confinement. Snowflake divertor configurations have been realized in the DIII-D tokamak for several seconds in H-mode discharges with heating power P_NBI ≤slant 4 -5 MW and a range of plasma currents I_p=0.8-1.2 MA. In this work, inter-ELM transport and radiative SF divertor properties are studied. Significant impact of geometric properties on SOL and divertor plasma parameters, including increased poloidal magnetic flux expansion, divertor magnetic field line length and divertor volume, is confirmed. In the SF-minus configuration, heat deposition is affected by the geometry, and peak divertor heat fluxes are significantly reduced. In the SF-plus and near-exact SF configurations, divertor peak heat flux reduction and outer strike point heat flux profile broadening are observed. Inter-ELM sharing of power and particle fluxes between the main and additional snowflake divertor strike points has been demonstrated. The additional strike points typically receive up to 10-15% of total outer divertor power. Measurements of electron pressure and poloidal beta βp support the theoretically proposed churning mode that is driven by toroidal curvature and vertical pressure gradient in the weak poloidal field region. A comparison of the 4-4.5 MW NBI-heated H-mode plasmas with radiative SF divertor and the standard radiative divertor (both induced with additional gas puffing) shows a nearly complete power detachment and broader divertor radiated power distribution in the SF, as compared to a partial detachment and peaked localized radiation in the standard divertor. However, insignificant difference in the detachment onset w.r.t. density between the SF and the standard

  2. Design and test program of a simplified divertor dummy coil structure for the WEST project

    Energy Technology Data Exchange (ETDEWEB)

    Doceul, L., E-mail: louis.doceul@cea.fr [CEA, IRFM, Saint-Paul-Lez-Durance Cedex F-13108 (France); Bucalossi, J.; Dougnac, H.; Ferlay, F.; Gargiulo, L.; Keller, D.; Larroque, S.; Lipa, M.; Pilia, A. [CEA, IRFM, Saint-Paul-Lez-Durance Cedex F-13108 (France); Portafaix, C. [ITER Organization, Route de Vinon-sur-Verdon 13115, St. Paul-lez-Durance (France); Saille, A. [CEA, IRFM, Saint-Paul-Lez-Durance Cedex F-13108 (France); Salami, M. [AVANTIS Engineering Groupe, ZI de l’Aiguille 46100, Figeac (France); Samaille, F.; Soler, B.; Thouvenin, D.; Verger, J.M.; Zago, B. [CEA, IRFM, Saint-Paul-Lez-Durance Cedex F-13108 (France)

    2013-12-15

    Highlights: • The mechanical design and integration of the divertor structure has been performed. • The design of the casing and the winding-pack has been finalized. • The coil assembly process has been validated. • The realization of a coil mock-up scale one is in progress. -- Abstract: In order to fully validate actively cooled tungsten plasma facing components (industrial fabrication, operation with long plasma duration), the implementation of a tungsten axisymmetric divertor structure in the tokamak Tore-Supra is studied. With this major upgrade, so-called WEST (Tungsten Environment in Steady state Tokamak), Tore-Supra will be able to address the problematic of long plasma discharges with a metallic divertor target. To do so, it is planned to install two symmetric divertor coils inside the vacuum vessel. This assembly, called divertor structure, is made up of two stainless steel casings containing a copper winding pack cooled by a pressurized hot water circuit (up to 180 °C, 4 MPa) and is designed to perform steady state plasma operation (up to 1000 s). The divertor structure will be a complex assembly ring of 4 m diameter representing a total weight of around 20 tons. The technical challenge of this component will be the implementation of angular sectors inside the vacuum vessel environment (TIG welding of the coil casing, induction brazing and electrical insulation of the copper winding). Moreover, this complex assembly must sustain harsh environmental conditions in terms of ultra high vacuum conditions, electromagnetical loads and electrical isolation (13 kV ground voltage) under high temperature. In order to fully validate the assembly and the performance of this complex component, the production of a scale one dummy coil is in progress. The paper will illustrate, the technical developments performed in order to finalize the design for the call for tender for fabrication. The progress and the first results of the simplified dummy coils will be also

  3. Design and test program of a simplified divertor dummy coil structure for the WEST project

    International Nuclear Information System (INIS)

    Doceul, L.; Bucalossi, J.; Dougnac, H.; Ferlay, F.; Gargiulo, L.; Keller, D.; Larroque, S.; Lipa, M.; Pilia, A.; Portafaix, C.; Saille, A.; Salami, M.; Samaille, F.; Soler, B.; Thouvenin, D.; Verger, J.M.; Zago, B.

    2013-01-01

    Highlights: • The mechanical design and integration of the divertor structure has been performed. • The design of the casing and the winding-pack has been finalized. • The coil assembly process has been validated. • The realization of a coil mock-up scale one is in progress. -- Abstract: In order to fully validate actively cooled tungsten plasma facing components (industrial fabrication, operation with long plasma duration), the implementation of a tungsten axisymmetric divertor structure in the tokamak Tore-Supra is studied. With this major upgrade, so-called WEST (Tungsten Environment in Steady state Tokamak), Tore-Supra will be able to address the problematic of long plasma discharges with a metallic divertor target. To do so, it is planned to install two symmetric divertor coils inside the vacuum vessel. This assembly, called divertor structure, is made up of two stainless steel casings containing a copper winding pack cooled by a pressurized hot water circuit (up to 180 °C, 4 MPa) and is designed to perform steady state plasma operation (up to 1000 s). The divertor structure will be a complex assembly ring of 4 m diameter representing a total weight of around 20 tons. The technical challenge of this component will be the implementation of angular sectors inside the vacuum vessel environment (TIG welding of the coil casing, induction brazing and electrical insulation of the copper winding). Moreover, this complex assembly must sustain harsh environmental conditions in terms of ultra high vacuum conditions, electromagnetical loads and electrical isolation (13 kV ground voltage) under high temperature. In order to fully validate the assembly and the performance of this complex component, the production of a scale one dummy coil is in progress. The paper will illustrate, the technical developments performed in order to finalize the design for the call for tender for fabrication. The progress and the first results of the simplified dummy coils will be also

  4. Advanced divertor configurations with large flux expansion

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V.A., E-mail: vlad@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA (United States); Bell, R.E.; Diallo, A.; Gerhardt, S.; Kaye, S.; Kolemen, E.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); McLean, A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Menard, J.E.; Paul, S.F.; Podesta, M. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Raman, R. [University of Washington, Seattle, WA (United States); Ryutov, D.D. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Scotti, F.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mueller, D.M.; Roquemore, A.L. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Reimerdes, H.; Canal, G.P. [Ecole Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas, Association Euratom Confédération Suisse, Lausanne (Switzerland); and others

    2013-07-15

    Experimental studies of the novel snowflake divertor concept (D. Ryutov, Phys. Plasmas 14 (2007) 064502) performed in the NSTX and TCV tokamaks are reviewed in this paper. The snowflake divertor enables power sharing between divertor strike points, as well as the divertor plasma-wetted area, effective connection length and divertor volumetric power loss to increase beyond those in the standard divertor, potentially reducing heat flux and plasma temperature at the target. It also enables higher magnetic shear inside the separatrix, potentially affecting pedestal MHD stability. Experimental results from NSTX and TCV confirm the predicted properties of the snowflake divertor. In the NSTX, a large spherical tokamak with a compact divertor and lithium-coated graphite plasma-facing components (PFCs), the snowflake divertor operation led to reduced core and pedestal impurity concentration, as well as re-appearance of Type I ELMs that were suppressed in standard divertor H-mode discharges. In the divertor, an otherwise inaccessible partial detachment of the outer strike point with an up to 50% increase in divertor radiation and a peak divertor heat flux reduction from 3–7 MW/m{sup 2} to 0.5–1 MW/m{sup 2} was achieved. Impulsive heat fluxes due to Type-I ELMs were significantly dissipated in the high magnetic flux expansion region. In the TCV, a medium-size tokamak with graphite PFCs, several advantageous snowflake divertor features (cf. the standard divertor) have been demonstrated: an unchanged L–H power threshold, enhanced stability of the peeling–ballooning modes in the pedestal region (and generally an extended second stability region), as well as an H-mode pedestal regime with reduced (×2–3) Type I ELM frequency and slightly increased (20–30%) normalized ELM energy, resulting in a favorable average energy loss comparison to the standard divertor. In the divertor, ELM power partitioning between snowflake divertor strike points was demonstrated. The NSTX

  5. Divertor development for a future fusion power plant

    International Nuclear Information System (INIS)

    Norajitra, Prachai

    2011-01-01

    Nuclear fusion is considered as a future source of sustainable energy supply. In the first chapter, the physical principle of magnetic plasma confinement, and the function of a tokamak are described. Since the discovery of the H-mode in ASDEX experiment ''Divertor I'' in 1982, the divertor has been an integral part of all modern tokamaks and stellarators, not least the ITER machine. The goal of this work is to develop a feasible divertor design for a fusion power plant to be built after ITER. This task is particularly challenging because a fusion power plant formulates much greater demands on the structural material and the design than ITER in terms of neutron wall load and radiation. First several divertor concepts proposed in the literature e.g. the Power Plant Conceptual Study (PPCS) using different coolants are reviewed and analyzed with respect to their performance. As a result helium cooled divertor concept exhibited the best potential to come up to the highest safety requirements and therefore has been chosen for the design process. From the third chapter the necessary steps towards this goal are described. First, the boundary conditions for the arrangement of a divertor with respect to the fusion plasma are discussed, as this determines the main thermal and neutronic load parameters. Based on the loads material selection criteria are inherently formulated. In the next step, the reference design is defined in accordance with the established functional design specifications. The developed concept is of modular nature and consists of cooling fingers of tungsten using an impingement cooling in order to achieve a heat dissipation of 10 MW/m 2 . In the next step, the design was subjected to the thermal-hydraulic and thermo-mechanical calculations in order to analyze and improve the performance and the manufacturing technologies. Based on these results, a prototype was produced and experimentally tested on their cooling capacity, their thermo-cyclic loading

  6. Studies of impurity deposition/implantation in JET divertor tiles using SIMS and ion beam techniques

    International Nuclear Information System (INIS)

    Likonen, J.; Lehto, S.; Coad, J.P.; Renvall, T.; Sajavaara, T.; Ahlgren, T.; Hole, D.E.; Matthews, G.F.; Keinonen, J.

    2003-01-01

    At the end of C4 campaign at JET, a 1% SiH 4 /99% D 2 mixture and pure 13 CH 4 were injected into the torus from the outer divertor wall and from the top of the vessel, respectively, in order to study material transport and scrape-off layer (SOL) flows. A set of MkIIGB tiles was removed during the 2001 shutdown for surface analysis. The tiles were analysed with secondary ion mass spectrometry (SIMS) and time-of-flight elastic recoil detection analysis (TOF-ERDA). 13 C was detected in the inner divertor wall tiles implying material transport from the top of the vessel. Silicon was detected mainly at the outer divertor wall tiles and very small amounts were found in the inner divertor wall tiles. Si amounts in the inner divertor wall tiles were so low that rigorous conclusions about material transport from divertor outboard to inboard cannot be made

  7. Analysis of noble gas recycling at a fusion plasma divertor

    International Nuclear Information System (INIS)

    Brooks, J.N.

    1996-01-01

    Near-surface recycling of neon and argon atoms and ions at a divertor has been studied using impurity transport and surface interaction codes. A fixed background deuterium endash tritium plasma model is used corresponding to the International Thermonuclear Experimental Reactor (ITER) [ITER EDA Agreement and Protocol 2, ITER EDA Documentation Series No. 5 (International Atomic Energy Agency, Vienna, 1994)] radiative plasma conditions (T e ≤10 eV). The noble gas transport depends critically on the divertor surface material. For low-Z materials (Be and C) both neon and argon recycle many (e.g., ∼100) times before leaving the near-surface region. This is also true for an argon on tungsten combination. For neon on tungsten, however, there is low recycling. These variations are due to differences in particle and energy reflection coefficients, mass, and ionization rates. In some cases a high flux of recycling atoms is ionized within the magnetic sheath and this can change local sheath parameters. Due to inhibited backflow, high recycling, and possibly high sputtering, noble gas seeding (for purposes of enhancing radiation) may be incompatible with Be or C surfaces, for fusion reactor conditions. On the other hand, neon use appears compatible with tungsten. copyright 1996 American Institute of Physics

  8. Engineering, installation, testing, and initial operation of the DIII-D Advanced Divertor

    International Nuclear Information System (INIS)

    Andersen, P.M.; Baxi, C.B.; Reis, E.E.; Schaffer, M.J.; Smith, J.P.

    1990-09-01

    The Advanced Divertor (AD) for General Atomics tokamak, DIII-D, was installed in the summer of 1990. The AD has enabled two classes of physics experiments to be run: divertor biasing and divertor baffling. Both are new experiments for DIII-D. The AD has two principal components: (1) a continuous ring electrode; and (2) a toroidally symmetric baffle. The tokamak can be run in bias baffle or standard DIII-D divertor modes by accurate positioning of the outer divertor strike point through the use of the DIII-D control system. The paper covers design, analysis, fabrication, installation, instrumentation, testing, initial operation, and future plans for the Advanced Divertor from an engineering viewpoint. 2 refs., 5 figs

  9. Tungsten covered graphite and copper elements and ITER-like actively cooled tungsten divertor plasma facing units for the WEST project

    International Nuclear Information System (INIS)

    Guilhem, D; Bucalossi, J; Burles, S; Corre, Y; Ferlay, F; Firdaouss, M; Languille, P; Lipa, M; Martinez, A; Missirlian, M; Proust, M; Richou, M; Samaille, F; Tsitrone, E

    2016-01-01

    After a brief introduction giving some insight of the WEST project, we present the three types of plasma facing units (PFUs) developed for the WEST project taking into account the envisaged main scenarios: (1) high power short pulse scenario (a few seconds) where the objective is to maximize the power handling of the PFUs, up to 20 MW m −2 , (2) high fluence scenario (a few 100 s) on actively cooled ITER-like tungsten (W) PFUs, up to 10 MW m −2 during 1000 s. For the graphite PFUs, the high heat flux tests have been done at GLADIS (ion beam test facility), and for the CuCrZr PFUs on the JUDITH (electron beam test facility). The tests were successful, as no damage occurred for the different load cases. This confirms that the modelling done during the design phase is appropriate to describe these PFUs. Series productions are expected to be achieved by the end of 2015 for the graphite and CuCrZr PFUs, and few ITER-like W PFUs are expected at the beginning of 2016. The lower divertor will be complemented with ITER-like W PFUs as soon as available from our partners so that different fabrication procedures could be evaluated in a real industrial process and a real tokamak environment. (paper)

  10. Tungsten Filament Fire

    Science.gov (United States)

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  11. Integration of a functionally graded W/Cu transition for divertor components of fusion facilities

    International Nuclear Information System (INIS)

    Pintsuk, G.

    2004-01-01

    One of the most difficult topics in the design and development of future fusion devices, e.g. ITER (Latin for ''the way'') is the field of plasma facing components for the divertor. In steady-state mode these will be exposed to heat fluxes up to 20 MW/m 2 . The favored design-option is a component made out of tungsten and copper-alloys. Since these materials differ in their thermal expansion coefficient and their elastic modulus a temperature gradient within the component, caused by thermal loads, results in stresses at the interface. An alternative design-option for divertor-components deals with the insertion of a functionally graded material (FGM) between tungsten and copper. This establishes a continuous change of material properties and therefore minimize the stresses and optimize the thermal behavior of the component. Low pressure plasma-spraying and direct laser-sintering are introduced as possible production-methods of graded W/Cu-composites. Based on preliminary investigations both are used for fabricating W/Cu-composite materials with different mixing ratios. Thermo-mechanical and thermo-physical material properties will be determined on these composites and extrapolated to all mixing ratios. For laser-sintering these are limited to Cu-contents of ∝20 to 100 Vol%. Therefore the plasma-spraying process is favored. In finite-element-analyses the graded material and its material properties will be implemented into a 2-D simulation-model of a divertor component. The composition and the design of the graded W/Cu-composite will be optimized. Best results are obtained by high contents of tungsten within the graded layer, which are still improved by a macro-brush design with dimensions of 4.5 x 4.5 mm 2 . This results in a transfer of critical stresses from the mechanical bonded interface between the plasma facing and the graded material to the diffusion bonded interface between the graded material and copper. The joining of tungsten, a plasma-sprayed graded W

  12. Multi-fluid modeling of low-recycling divertor regimes

    International Nuclear Information System (INIS)

    Smirnov, R.D.; Pigarov, A.Yu.; Krasheninnikov, S.I.; Rognlien, T.D.; Soukhanovskii, V.A.; Rensink, M.E.; Maingi, R.; Skinner, C.H.; Stotler, D.P.; Bell, R.E.; Kugel, H.W.

    2010-01-01

    The low-recycling regimes of divertor operation in a single-null NSTX magnetic configuration are studied using computer simulations with the edge plasma transport code UEDGE. The edge plasma transport properties pertinent to the low-recycling regimes are demonstrated. These include the flux-limited character of the parallel heat transport and the high plasma temperatures with the flattened profiles in the scrape-off-layer. It is shown that to maintain the balance of particle fluxes at the core interface the deuterium gas puffing rate should increase as the divertor recycling coefficient decreases. The radial profiles of the heat load to the outer divertor plate, the upstream radial plasma profiles, and the effects of the cross-field plasma transport in the low-recycling regimes are discussed. It is also shown that recycling of lithium impurities evaporating from the divertor plate at high surface temperatures can reverse the low-recycling divertor operational regime to the high-recycling one and may cause thermal instability of the divertor plate (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Modular He-cooled divertor for power plant application

    International Nuclear Information System (INIS)

    Diegele, Eberhard; Kruessmann, R.; Malang, S.; Norajitra, P.; Rizzi, G.

    2003-01-01

    Gas cooled divertor concepts are regarded as a suitable option for fusion power plants because of an increased thermal efficiency for power conversion systems and the use of a coolant compatible with all blanket systems. A modular helium cooled divertor concept is proposed with an improved heat transfer. The concept employs small tiles made of tungsten and brazed to a finger-like structure made of Mo-alloy (TZM). Design goal was a heat flux of at least 15 MW/m 2 and a minimum temperature of the structure of 600 deg.C. The divertor has to survive a number of cycles (100-1000) between operating temperature and room temperature even for the steady state operation assumed. Thermo-hydraulic design requirements for the concepts include to keep the pumping power below 10% of the thermal power to the divertor plates, and simultaneously achieving a heat transfer coefficient in excess of 60 kW/m 2 K. Inelastic stress analysis indicates that design allowable stress limits on primary and secondary (thermal) stresses as required by the ITER structural design criteria are met even under conservative assumptions. Finally, critical issues for future development are addressed

  14. Structural analysis of the ITER Divertor toroidal rails

    Energy Technology Data Exchange (ETDEWEB)

    Viganò, F., E-mail: Fabio.Vigano@LTCalcoli.it [L.T. Calcoli SaS, Piazza Prinetti 26/B, 23807 Merate (Italy); Escourbiac, F.; Gicquel, S.; Komarov, V. [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul lez Durance (France); Lucca, F. [L.T. Calcoli SaS, Piazza Prinetti 26/B, 23807 Merate (Italy); Merola, M. [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul lez Durance (France); Ngnitewe, R. [L.T. Calcoli SaS, Piazza Prinetti 26/B, 23807 Merate (Italy)

    2013-10-15

    The Divertor is one of the most technically challenging components of the ITER machine, which has the main function of extracting the power conducted in the scrape-off layer while maintaining the plasma purity. There are 54 Divertor cassettes installed in the vacuum vessel (VV). Each cassette body (CB) is fastened on the inner and outer concentric Divertor toroidal rails. The comprehensive assessment (in accordance with the Structural Design Criteria for ITER In-vessel Components: ITER SDC-IC) of the Divertor toroidal rails has been performed during design activity based on performing of thermal and stress analyses at operating conditions of neutron stage of ITER operation. This paper outlines the engineering aspects of the ITER Divertor toroidal rails and focuses on some critical regions of the present design highlighted by the performed structural assessment. The structural assessment has been performed with help of using Finite Element (FE) Abaqus code and based on criteria given by ITER SDC-IC.

  15. Integrated simulations of H-mode operation in ITER including core fuelling, divertor detachment and ELM control

    Science.gov (United States)

    Polevoi, A. R.; Loarte, A.; Dux, R.; Eich, T.; Fable, E.; Coster, D.; Maruyama, S.; Medvedev, S. Yu.; Köchl, F.; Zhogolev, V. E.

    2018-05-01

    ELM mitigation to avoid melting of the tungsten (W) divertor is one of the main factors affecting plasma fuelling and detachment control at full current for high Q operation in ITER. Here we derive the ITER operational space, where ELM mitigation to avoid melting of the W divertor monoblocks top surface is not required and appropriate control of W sources and radiation in the main plasma can be ensured through ELM control by pellet pacing. We apply the experimental scaling that relates the maximum ELM energy density deposited at the divertor with the pedestal parameters and this eliminates the uncertainty related with the ELM wetted area for energy deposition at the divertor and enables the definition of the ITER operating space through global plasma parameters. Our evaluation is thus based on this empirical scaling for ELM power loads together with the scaling for the pedestal pressure limit based on predictions from stability codes. In particular, our analysis has revealed that for the pedestal pressure predicted by the EPED1  +  SOLPS scaling, ELM mitigation to avoid melting of the W divertor monoblocks top surface may not be required for 2.65 T H-modes with normalized pedestal densities (to the Greenwald limit) larger than 0.5 to a level of current of 6.5–7.5 MA, which depends on assumptions on the divertor power flux during ELMs and between ELMs that expand the range of experimental uncertainties. The pellet and gas fuelling requirements compatible with control of plasma detachment, core plasma tungsten accumulation and H-mode operation (including post-ELM W transient radiation) have been assessed by 1.5D transport simulations for a range of assumptions regarding W re-deposition at the divertor including the most conservative assumption of zero prompt re-deposition. With such conservative assumptions, the post-ELM W transient radiation imposes a very stringent limit on ELM energy losses and the associated minimum required ELM frequency. Depending on

  16. Numerical Study of High Heat Flux Performances of Flat-Tile Divertor Mock-ups with Hypervapotron Cooling Concept

    International Nuclear Information System (INIS)

    Chen Lei; Liu Xiang; Lian Youyun; Cai Laizhong

    2015-01-01

    The hypervapotron (HV), as an enhanced heat transfer technique, will be used for ITER divertor components in the dome region as well as the enhanced heat flux first wall panels. W-Cu brazing technology has been developed at SWIP (Southwestern Institute of Physics), and one W/CuCrZr/316LN component of 450 mm×52 mm×166 mm with HV cooling channels will be fabricated for high heat flux (HHF) tests. Before that a relevant analysis was carried out to optimize the structure of divertor component elements. ANSYS-CFX was used in CFD analysis and ABAQUS was adopted for thermal–mechanical calculations. Commercial code FE-SAFE was adopted to compute the fatigue life of the component. The tile size, thickness of tungsten tiles and the slit width among tungsten tiles were optimized and its HHF performances under International Thermonuclear Experimental Reactor (ITER) loading conditions were simulated. One brand new tokamak HL-2M with advanced divertor configuration is under construction in SWIP, where ITER-like flat-tile divertor components are adopted. This optimized design is expected to supply valuable data for HL-2M tokamak. (paper)

  17. COMPARISON OF ELM PULSE PROPAGATION IN THE DIII-D SOL AND DIVERTORS WITH AN ION CONVECTION MODEL

    International Nuclear Information System (INIS)

    FENSTERMACHER, ME; PORTER, GD; LEONARD, AW; BROOKS, NH; BOEDO, JA; COLCHIN, RJ; GRAY, DS; GROEBNER, RJ; GROTH, M; HOGAN, JT; HOLLMANN, EM; LASNIER, CJ; OSBORNE, TH; PETRIE, TW; RUDAKOV, DL; SNYDER, PB; TAKAHASHI, H; WATKINS, JG; ZENG, L; DIII-D TEAM

    2003-01-01

    OAK-B135 Results from dedicated ELM experiments, performed in DIII-D with fast diagnostics to measure the evolution of Type-I ELM effects in the SOL and divertor, are compared with a simple ion convection model and with initial time-dependent UEDGE simulations. Delays between ELM effects observed in the inner versus the outer divertor regions in the experiments scale, as a function of density, with the difference in ion convection time along field lines from the outer midplane to the divertor targets. The ELM perturbation was modeled as an instantaneous radially uniform increase of diffusion coefficients from the top of the pedestal to the outer SOL. The perturbation was confined to a low field side poloidal zone ± 40 o from the outer midplane. The delays in the simulations are similar to those observed in the experiments

  18. Divertor design for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    Hill, D.N.; Braams, B.

    1994-05-01

    In this paper we discuss the present divertor design for the planned TPX tokamak, which will explore the physics and technology of steady-state (1000s pulses) heat and particle removal in high confinement (2--4x L-mode), high beta (β N ≥ 3) divertor plasmas sustained by non-inductive current drive. The TPX device will operate in the double-null divertor configuration, with actively cooled graphite targets forming a deep (0.5 m) slot at the outer strike point. The peak heat flux on, the highly tilted (74 degrees from normal) re-entrant (to recycle ions back toward the separatrix) will be in the range of 4--6 MW/m 2 with 18 MW of neutral beams and RF heating power. The combination of active pumping and gas puffing (deuterium plus impurities), along with higher heating power (45 MW maximum) will allow testing of radiative divertor concepts at ITER-like power densities

  19. Module of lithium divertor for KTM tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lyublinski, I., E-mail: yublinski@yandex.ru [FSUE ' Red Star' , Moscow (Russian Federation); Vertkov, A.; Evtikhin, V.; Balakirev, V.; Ionov, D.; Zharkov, M. [FSUE ' Red Star' , Moscow (Russian Federation); Tazhibayeva, I. [IAE NNC RK, Kurchatov (Kazakhstan); Mirnov, S. [TRINITI, Troitsk, Moscow Region (Russian Federation); Khomiakov, S.; Mitin, D. [OJSC Dollezhal Institute, Moscow (Russian Federation); Mazzitelli, G. [ENEA RC Frascati (Italy); Agostini, P. [ENEA RC Brasimone (Italy)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Black-Right-Pointing-Pointer Capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. Black-Right-Pointing-Pointer Lithium divertor module for KTM tokamak is under development. Black-Right-Pointing-Pointer Lithium filled tungsten felt is offered as the base plasma facing material of divertor. Black-Right-Pointing-Pointer Results of this project addresses to the progress in the field of fusion neutrons source and fusion energy source creation. - Abstract: Activity on projects of ITER and DEMO reactors has shown that solution of problems of divertor target plates and other plasma facing elements (PFEs) based on the solid plasma facing materials cause serious difficulties. Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Application of lithium will allow to create a self-renewal and MHD stable liquid metal surface of the in-vessel devices possessing practically unlimited service life; to reduce power flux due to intensive re-irradiation on lithium atoms in plasma periphery that will essentially facilitate a problem of heat removal from PFE; to reduce Z{sub eff} of plasma to minimally possible level close to 1; to exclude tritium accumulation, that is provided with absence of dust products and an opportunity of the active control of the tritium contents in liquid lithium. Realization of these advantages is based on use of so-called lithium capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. The progress in development of lithium technology and also activity in lithium experiments in the tokamaks TFTR, T-11M, T-10, FTU, NSTX, HT-7 and stellarator TJ II permits of solving the problems in development of

  20. Estimation of peak heat flux onto the targets for CFETR with extended divertor leg

    International Nuclear Information System (INIS)

    Zhang, Chuanjia; Chen, Bin; Xing, Zhe; Wu, Haosheng; Mao, Shifeng; Luo, Zhengping; Peng, Xuebing; Ye, Minyou

    2016-01-01

    Highlights: • A hypothetical geometry is assumed to extend the outer divertor leg in CFETR. • Density scan SOLPS simulation is done to study the peak heat flux onto target. • Attached–detached regime transition in out divertor occurs at lower puffing rate. • Unexpected delay of attached–detached regime transition occurs in inner divertor. - Abstract: China Fusion Engineering Test Reactor (CFETR) is now in conceptual design phase. CFETR is proposed as a good complement to ITER for demonstrating of fusion energy. Divertor is a crucial component which faces the plasmas and handles huge heat power for CFETR and future fusion reactor. To explore an effective way for heat exhaust, various methods to reduce the heat flux to divertor target should be considered for CFETR. In this work, the effect of extended out divertor leg on the peak heat flux is studied. The magnetic configuration of the long leg divertor is obtained by EFIT and Tokamak Simulation Code (TSC), while a hypothetical geometry is assumed to extend the out divertor leg as long as possible inside vacuum vessel. A SOLPS simulation is performed to study peak heat flux of the long leg divertor for CFETR. D 2 gas puffing is used and increasing of the puffing rate means increase of plasma density. Both peak heat flux onto inner and outer targets are below 10 MW/m 2 is achieved. A comparison between the peak heat flux between long leg and conventional divertor shows that an attached–detached regime transition of out divertor occurs at lower gas puffing gas puffing rate for long leg divertor. While for the inner divertor, even the configuration is almost the same, the situation is opposite.

  1. Estimation of peak heat flux onto the targets for CFETR with extended divertor leg

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chuanjia; Chen, Bin [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Xing, Zhe [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Wu, Haosheng [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Mao, Shifeng, E-mail: sfmao@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Luo, Zhengping; Peng, Xuebing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2016-11-01

    Highlights: • A hypothetical geometry is assumed to extend the outer divertor leg in CFETR. • Density scan SOLPS simulation is done to study the peak heat flux onto target. • Attached–detached regime transition in out divertor occurs at lower puffing rate. • Unexpected delay of attached–detached regime transition occurs in inner divertor. - Abstract: China Fusion Engineering Test Reactor (CFETR) is now in conceptual design phase. CFETR is proposed as a good complement to ITER for demonstrating of fusion energy. Divertor is a crucial component which faces the plasmas and handles huge heat power for CFETR and future fusion reactor. To explore an effective way for heat exhaust, various methods to reduce the heat flux to divertor target should be considered for CFETR. In this work, the effect of extended out divertor leg on the peak heat flux is studied. The magnetic configuration of the long leg divertor is obtained by EFIT and Tokamak Simulation Code (TSC), while a hypothetical geometry is assumed to extend the out divertor leg as long as possible inside vacuum vessel. A SOLPS simulation is performed to study peak heat flux of the long leg divertor for CFETR. D{sub 2} gas puffing is used and increasing of the puffing rate means increase of plasma density. Both peak heat flux onto inner and outer targets are below 10 MW/m{sup 2} is achieved. A comparison between the peak heat flux between long leg and conventional divertor shows that an attached–detached regime transition of out divertor occurs at lower gas puffing gas puffing rate for long leg divertor. While for the inner divertor, even the configuration is almost the same, the situation is opposite.

  2. Tungsten as First Wall Material in Fusion Devices

    International Nuclear Information System (INIS)

    Kaufmann, M.

    2006-01-01

    In the PLT tokamak with a tungsten limiter strong cooling of the central plasma was observed. Since then mostly graphite has been used as limiter or target plate material. Only a few tokamaks (limiter: FTU, TEXTOR; divertor: Alcator C-Mod, ASDEX Upgrade) gained experience with high-Z-materials. With the observed strong co- deposition of tritium together with carbon in JET and as a result of design studies of fusion reactors, it became clear that in the long run tungsten is the favourite for the first-wall material. Tungsten as a plasma facing material requires intensive research in all areas, i.e. in plasma physics, plasma wall-interaction and material development. Tungsten as an impurity in the confined plasma reveals considerable differences to carbon. Strong radiation at high temperatures, in connection with mostly a pronounced inward drift forms a particular challenge. Turbulent transport plays a beneficial role in this regard. The inward drift is an additional problem in the pedestal region of H-mode plasmas in ITER-like configurations. The erosion by low energy hydrogen atoms is in contrast to carbon small. However, erosion by fast particles from heating measures and impurity ions, accelerated in the sheath potential, play an important role in the case of tungsten. Radiation by carbon in the plasma boundary reduces the load to the target plates. Neon or Argon as substitutes will increase the erosion of tungsten. So far experiments have demonstrated that in most scenarios the tungsten content in the central plasma can be kept sufficiently small. The material development is directed to the specific needs of existing or future devices. In ASDEX Upgrade, which will soon be a divertor experiment with a complete tungsten first-wall, graphite tiles are coated with tungsten layers. In ITER, the solid tungsten armour of the target plates has to be castellated because of its difference in thermal expansion compared to the cooling structure. In a reactor the technical

  3. Gas-driven permeation of deuterium through tungsten and tungsten alloys

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, Dean A., E-mail: dabuche@sandia.gov [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States); Karnesky, Richard A. [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States); Fang, Zhigang Zak; Ren, Chai [University of Utah, Department of Metallurgical Engineering, Salt Lake City, UT 84112 (United States); Oya, Yasuhisa [Shizuoka University, Graduate School of Science, Shizuoka (Japan); Otsuka, Teppei [Kyushu University, Department of Advanced Energy Engineering Science, Fukuoka (Japan); Yamauchi, Yuji [Hokkaido University, Third Division of Quantum Science and Engineering, Faculty of Engineering, Sapporo (Japan); Whaley, Josh A. [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States)

    2016-11-01

    Highlights: • We have designed and performed initial studies on a high temperature gas-driven permeation cell capable of operating at temperatures up to 1150 °C and at pressures between 0.1–1 atm. • Permeation measurements on ITER grade tungsten compare well with past studies by Frauenfelder and Zahkarov in the temperature range from 500 to 1000 °C. • First permeation measurements on Ti dispersoid-strengthened ultra-fine grained tungsten show higher permeation at 500 °C, but very similar permeation with ITER tungsten at 1000 °C. Diffusion along grain boundaries may be playing a role for this type of material. - Abstract: To address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150 °C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungsten being developed in the US. Experiments were performed at 500–1000 °C and 0.1–1.0 atm D{sub 2} pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (< 10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000 °C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation

  4. Development of the armoring technique for ITER Divertor Dome

    Energy Technology Data Exchange (ETDEWEB)

    Litunovsky, Nikolay, E-mail: nlitunovsky@sintez.niiefa.spb.su [D.V. Efremov Reseasch Institute, 3, Doroga na Metallostroy, Saint Petersburg (Russian Federation); Alekseenko, Evgeny; Makhankov, Alexey; Mazul, Igor [D.V. Efremov Reseasch Institute, 3, Doroga na Metallostroy, Saint Petersburg (Russian Federation)

    2011-10-15

    This paper describes the current status of the technique for armoring of Plasma Facing Units (PFUs) of the ITER Divertor Dome with flat tungsten tiles planned for application at the procurement stage. Application of high-temperature vacuum brazing for armoring of High Heat Flux (HHF) plasma facing components was traditionally developed at the Efremov Institute and successfully tried out at the ITER R and D stage by manufacturing and HHF testing of a number of W- and Be-armored mock-ups . Nevertheless, the so-called 'fast brazing' technique successfully applied in the past was abandoned at the stage of manufacturing of the Dome Qualification Prototypes (Dome QPs), as it failed to retain the mechanical properties of CuCrZr heat sink of the substrate. Another problem was a substantially increased number of armoring tiles brazed onto one substrate. Severe ITER requirements for the joints quality have forced us to refuse from production of W/Cu joints by brazing in favor of casting. These modifications have allowed us to produce ITER Divertor Dome QPs with high-quality tungsten armor, which then passed successfully the HHF testing. Further preparation to the procurement stage is in progress.

  5. Challenges and opportunities of modeling plasma–surface interactions in tungsten using high-performance computing

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, Brian D., E-mail: bdwirth@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Nuclear Science and Engineering Directorate, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Hammond, K.D. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Krasheninnikov, S.I. [University of California, San Diego, La Jolla, CA (United States); Maroudas, D. [University of Massachusetts, Amherst, Amherst, MA 01003 (United States)

    2015-08-15

    The performance of plasma facing components (PFCs) is critical for ITER and future magnetic fusion reactors. The ITER divertor will be tungsten, which is the primary candidate material for future reactors. Recent experiments involving tungsten exposure to low-energy helium plasmas reveal significant surface modification, including the growth of nanometer-scale tendrils of “fuzz” and formation of nanometer-sized bubbles in the near-surface region. The large span of spatial and temporal scales governing plasma surface interactions are among the challenges to modeling divertor performance. Fortunately, recent innovations in computational modeling, increasingly powerful high-performance computers, and improved experimental characterization tools provide a path toward self-consistent, experimentally validated models of PFC and divertor performance. Recent advances in understanding tungsten–helium interactions are reviewed, including such processes as helium clustering, which serve as nuclei for gas bubbles; and trap mutation, dislocation loop punching and bubble bursting; which together initiate surface morphological modification.

  6. Challenges and opportunities of modeling plasma–surface interactions in tungsten using high-performance computing

    International Nuclear Information System (INIS)

    Wirth, Brian D.; Hammond, K.D.; Krasheninnikov, S.I.; Maroudas, D.

    2015-01-01

    The performance of plasma facing components (PFCs) is critical for ITER and future magnetic fusion reactors. The ITER divertor will be tungsten, which is the primary candidate material for future reactors. Recent experiments involving tungsten exposure to low-energy helium plasmas reveal significant surface modification, including the growth of nanometer-scale tendrils of “fuzz” and formation of nanometer-sized bubbles in the near-surface region. The large span of spatial and temporal scales governing plasma surface interactions are among the challenges to modeling divertor performance. Fortunately, recent innovations in computational modeling, increasingly powerful high-performance computers, and improved experimental characterization tools provide a path toward self-consistent, experimentally validated models of PFC and divertor performance. Recent advances in understanding tungsten–helium interactions are reviewed, including such processes as helium clustering, which serve as nuclei for gas bubbles; and trap mutation, dislocation loop punching and bubble bursting; which together initiate surface morphological modification

  7. Analysis of sweeping heat loads on divertor plate materials

    International Nuclear Information System (INIS)

    Hassanein, A.

    1991-01-01

    The heat flux on the divertor plate of a fusion reactor is probably one of the most limiting constraints on its lifetime. The current heat flux profile on the outer divertor plate of a device like ITER is highly peaked with narrow profile. The peak heat flux can be as high as 30--40 MW/m 2 with full width at half maximum (FWHM) is in the order of a few centimeters. Sweeping the separatrix along the divertor plate is one of the options proposed to reduce the thermomechanical effects of this highly peaked narrow profile distribution. The effectiveness of the sweeping process is investigated parametrically for various design values. The optimum sweeping parameters of a particular heat load will depend on the design of the divertor plate as well as on the profile of such a heat load. In general, moving a highly peaked heat load results in substantial reduction of the thermomechanical effects on the divertor plate. 3 refs., 8 figs

  8. Modeling of hydrogen desorption from tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Guterl, J., E-mail: jguterl@ucsd.edu [University of California, San Diego, La Jolla, CA 92093 (United States); Smirnov, R.D. [University of California, San Diego, La Jolla, CA 92093 (United States); Krasheninnikov, S.I. [University of California, San Diego, La Jolla, CA 92093 (United States); Nuclear Research National University MEPhI, Moscow 115409 (Russian Federation); Uberuaga, B.; Voter, A.F.; Perez, D. [Los Alamos National Laboratory, Los Alamos, NM 8754 (United States)

    2015-08-15

    Hydrogen retention in metallic plasma-facing components is among key-issues for future fusion devices. For tungsten, which has been chosen as divertor material in ITER, hydrogen desorption parameters experimentally measured for fusion-related conditions show large discrepancies. In this paper, we therefore investigate hydrogen recombination and desorption on tungsten surfaces using molecular dynamics simulations and accelerated molecular dynamics simulations to analyze adsorption states, diffusion, hydrogen recombination into molecules, and clustering of hydrogen on tungsten surfaces. The quality of tungsten hydrogen interatomic potential is discussed in the light of MD simulations results, showing that three body interactions in current interatomic potential do not allow to reproduce hydrogen molecular recombination and desorption. Effects of surface hydrogen clustering on hydrogen desorption are analyzed by introducing a kinetic model describing the competition between surface diffusion, clustering and recombination. Different desorption regimes are identified and reproduce some aspects of desorption regimes experimentally observed.

  9. OEDGE modeling for the planned tungsten ring experiment on DIII-D

    Directory of Open Access Journals (Sweden)

    J.D. Elder

    2017-08-01

    Full Text Available The OEDGE code is used to model tungsten erosion and transport for experiments with toroidal rings of high-Z metal tiles in the DIII-D tokamak. Such modeling is needed for both experimental and diagnostic design to have estimates of the expected core and edge tungsten density and to understand the various factors contributing to the uncertainties in these calculations. OEDGE simulations are performed using the planned experimental magnetic geometries and plasma conditions typical of both L-mode and inter-ELM H-mode discharges in DIII-D. OEDGE plasma reconstruction based on specific representative discharges for similar geometries is used to determine the plasma conditions applied to tungsten plasma impurity simulations. A new model for tungsten erosion in OEDGE was developed which imports charge-state resolved carbon impurity fluxes and impact energies from a separate OEDGE run which models the carbon production, transport and deposition for the same plasma conditions as the tungsten simulations. These values are then used to calculate the gross tungsten physical sputtering due to carbon plasma impurities which is then added to any sputtering by deuterium ions; tungsten self-sputtering is also included. The code results are found to be dependent on the following factors: divertor geometry and closure, the choice of cross-field anomalous transport coefficients, divertor plasma conditions (affecting both tungsten source strength and transport, the choice of tungsten atomic physics data used in the model (in particular ionization rate for W-atoms, and the model of the carbon flux and energy used for calculating the tungsten source due to sputtering. Core tungsten density is found to be of order 1015m−3 (excluding effects of any core transport barrier and with significant variability depending on the other factors mentioned with density decaying into the scrape off layer. For the typical core density in the plasma conditions examined of 2 to 4

  10. Erosion and deposition on JET divertor and limiter tiles during the experimental campaigns 2005–2009

    International Nuclear Information System (INIS)

    Krat, S.; Coad, J.P.; Gasparyan, Yu.; Hakola, A.; Likonen, J.; Mayer, M.; Pisarev, A.; Widdowson, A.

    2013-01-01

    Erosion from and deposition on JET divertor tiles used during the 2007–2009 campaign and on inner wall guard limiter (IWGL) tiles used during 2005–2009 are studied. The tungsten coating on the divertor tiles was mostly intact with the largest erosion ∼30% in a small local area. Locally high erosion areas were observed on the load bearing divertor tile 5 and on the horizontal surface of the divertor tile 8. The IWGL tiles show a complicated distribution of erosion and deposition areas. The total amount of carbon deposited on the all IWGL tiles during the campaign 2005–2009 is estimated to be 65 g. The density of carbon deposits is estimated to be 0.67–0.83 g/cm 3

  11. Erosion of ITER divertor armour and contamination of sol after transient events erosion products

    International Nuclear Information System (INIS)

    Bazylev, B.N.; Landman, I.S.; Pestchanyi, S.E.

    2005-01-01

    Plasma impact to the divertor expected in the tokamak ITER during ELMs or disruptions can result in a significant surface damage to CFC- and tungsten armours (brittle destruction and melting respectively) as well as in contamination of SOL by evaporated impurities. Numerical investigations for tungsten and CFC targets provide important details of the material erosion process. The simulations carried out in FZK on the material damage, carbon plasma expansion and the radiation fluxes from the carbon impurity are surveyed

  12. SOLPS-ITER Study of neutral leakage and drift effects on the alcator C-Mod divertor plasma

    Directory of Open Access Journals (Sweden)

    W. Dekeyser

    2017-08-01

    Full Text Available As part of an effort to validate the edge plasma model in the SOLPS-ITER code suite under ITER-relevant divertor plasma and neutral conditions, we report on progress in the modeling of the Alcator C-Mod divertor plasma with the new code. We perform simulations with a complete drifts model and kinetic neutrals, including effects of neutral viscosity, ion-molecule collisions and Lyα-opaque conditions, but assuming a pure deuterium plasma. Through a series of simulations with varying divertor geometries, we show the importance of including neutal leakage paths through the divertor substructure on the divertor plasma solution. Moreover, the impact of drifts on inner-outer target asymmetries is assessed. Including both effects, we achieve excellent agreement between simulations and upstream and outer target Langmuir Probe data. In absence of strong volumetric losses due to e.g. impurity radiation in our simulations, the strong inner target detachment observed experimentally remains elusive in our modeling at present.

  13. The MAST improved divertor

    International Nuclear Information System (INIS)

    Darke, A.C.; Hayward, R.J.; Counsell, G.F.; Hawkins, K.

    2005-01-01

    The Mega Amp Spherical Tokamak (MAST) at Culham is one of the leading world machines studying the spherical tokamak (ST) concept. At the time of the initial construction in 1998 little was known about the sort of divertor structures that would be required in an ST. The machine was therefore provided with relatively rudimentary structures that were designed mostly to protect important components from the hot plasma. While these have served the machine well it was accepted that they might not be suitable when operating MAST to its full potential. The years of experience of operating MAST have led to the design, manufacture and now installation of a new divertor, the MAST improved divertor (MID), that should be able to cope with the full performance of the machine. The design is based on imbricated (fan-shaped) disks of tiles at the top and bottom of the machine for the outer strike points, giving an excellent compromise between power handling and diagnostic access, with substantial new centre column strike point armour and a shaped plate in between. High purity graphite is chosen as the plasma facing material in preference to CFC since in this case it has a better balance of performance and cost. The lower imbricated disk is insulated in alternate sectors for studies of divertor biasing and extensive diagnostics and additional inboard gas injection are included

  14. Surface heat loads on the ITER divertor vertical targets

    Czech Academy of Sciences Publication Activity Database

    Gunn, J. P.; Carpentier-Chouchana, S.; Escourbiac, F.; Hirai, T.; Panayotis, S.; Pitts, R.A.; Corre, Y.; Dejarnac, Renaud; Firdaouss, M.; Kočan, M.; Komm, Michael; Kukushkin, A.; Languille, P.; Missirlian, M.; Zhao, W.; Zhong, G.

    2017-01-01

    Roč. 57, č. 4 (2017), č. článku 046025. ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : ITER * divertor * ELM heat load * inter-ELM heat load * tungsten Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa5e2a

  15. Enhancing the DEMO divertor target by interlayer engineering

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, T.R., E-mail: tom.barrett@ccfe.ac.uk [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); McIntosh, S.C.; Fursdon, M.; Hancock, D.; Timmis, W.; Coleman, M. [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Rieth, M.; Reiser, J. [Karlsruhe Institute for Technology, IMF-I, D-7602 Karlsruhe (Germany)

    2015-10-15

    Highlights: • The European ‘near-term’ DEMO forsees a water-cooled divertor. • Divertor targets typically use an interlayer between the armour and structure. • Engineering the properties of the interlayer can yield large gains in performance. • A response surface based design search and optimisation method is used. • A new design passes linear-elastic code rules up to applied heat flux of 18 MW/m{sup 2}. - Abstract: A robust water-cooled divertor target plate solution for DEMO has to date remained elusive. Common to all contemporary concepts is an interlayer at the boundary between the tungsten armour and the cooling structure. In this paper we show by design optimisation that an effectively designed interlayer can produce dramatic gains in power handling. By engineering the interlayer as part of the design study, it is found that divertor performance is enhanced by either a low conductivity ‘Thermal Break’ interlayer or an ‘Ultra-Compliant’ interlayer. For a 10 MW/m{sup 2} surface heat flux we find that a thermal conductivity of 15 W/mK and elastic modulus of 1 GPa are effective. A design is proposed which passes linear-elastic code rules up to an applied heat flux of 18 MW/m{sup 2}.

  16. Enhancing the DEMO divertor target by interlayer engineering

    International Nuclear Information System (INIS)

    Barrett, T.R.; McIntosh, S.C.; Fursdon, M.; Hancock, D.; Timmis, W.; Coleman, M.; Rieth, M.; Reiser, J.

    2015-01-01

    Highlights: • The European ‘near-term’ DEMO forsees a water-cooled divertor. • Divertor targets typically use an interlayer between the armour and structure. • Engineering the properties of the interlayer can yield large gains in performance. • A response surface based design search and optimisation method is used. • A new design passes linear-elastic code rules up to applied heat flux of 18 MW/m"2. - Abstract: A robust water-cooled divertor target plate solution for DEMO has to date remained elusive. Common to all contemporary concepts is an interlayer at the boundary between the tungsten armour and the cooling structure. In this paper we show by design optimisation that an effectively designed interlayer can produce dramatic gains in power handling. By engineering the interlayer as part of the design study, it is found that divertor performance is enhanced by either a low conductivity ‘Thermal Break’ interlayer or an ‘Ultra-Compliant’ interlayer. For a 10 MW/m"2 surface heat flux we find that a thermal conductivity of 15 W/mK and elastic modulus of 1 GPa are effective. A design is proposed which passes linear-elastic code rules up to an applied heat flux of 18 MW/m"2.

  17. Status of R and D of the plasma facing components for the ITER divertor

    International Nuclear Information System (INIS)

    Mazul, I.V.; Akiba, M.; Arkhipov, I.

    2001-01-01

    The paper reports the progress made by the ITER Home Teams in the development of robust carbon and tungsten armoured plasma facing components for the ITER divertor. The activities on the development and study of armour materials, joining technologies, non-destructive evaluation techniques, high heat flux testing of manufactured components and neutron irradiation resistance studies are presented. The results of these activities confirm the feasibility of the main divertor components. Examples of the fruitful collaboration between Parties and future R and D needs are also described. (author)

  18. Erosion of macrobrush tungsten armor after multiple intense transient events in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B.N. [Forschungszentrum Karlsruhe Institute for Pulsed Power and Microwave Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany)]. E-mail: bazylev@ihm.fzk.de; Janeschitz, G. [Forschungszentrum Karlsruhe, Fusion, P.O. Box 3640, 76021 Karlsruhe (Germany); Landman, I.S. [Forschungszentrum Karlsruhe Institute for Pulsed Power and Microwave Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany); Pestchanyi, S.E. [Forschungszentrum Karlsruhe Institute for Pulsed Power and Microwave Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany)

    2005-11-15

    The tungsten macrobrushes are foreseen as a perspective ITER divertor armour. Macroscopic erosion by melt motion is the dominating damage mechanism for tungsten armour under high heat loads above 1 MJ/m{sup 2} slower than 0.1 ms. In the paper further development of the code MEMOS is presented to describe geometric peculiarities of W-macrobrush armour. The modified code MEMOS is validated against experiments on erosion of W-macrobrush armour in the plasma gun QSPA facility for repetitive plasma loads. A rather good agreement in melt layer erosion was demonstrated. For ITER divertor W-macrobrush armour the results of fluid dynamics simulation of the melt motion erosion under giant ELMs are presented. The heat loads as input for MEMOS for particular single ELM are numerically simulated using the two-dimensional MHD code FOREV.

  19. Erosion of macrobrush tungsten armor after multiple intense transient events in ITER

    International Nuclear Information System (INIS)

    Bazylev, B.N.; Janeschitz, G.; Landman, I.S.; Pestchanyi, S.E.

    2005-01-01

    The tungsten macrobrushes are foreseen as a perspective ITER divertor armour. Macroscopic erosion by melt motion is the dominating damage mechanism for tungsten armour under high heat loads above 1 MJ/m 2 slower than 0.1 ms. In the paper further development of the code MEMOS is presented to describe geometric peculiarities of W-macrobrush armour. The modified code MEMOS is validated against experiments on erosion of W-macrobrush armour in the plasma gun QSPA facility for repetitive plasma loads. A rather good agreement in melt layer erosion was demonstrated. For ITER divertor W-macrobrush armour the results of fluid dynamics simulation of the melt motion erosion under giant ELMs are presented. The heat loads as input for MEMOS for particular single ELM are numerically simulated using the two-dimensional MHD code FOREV

  20. Effect of separatrix magnetic geometry on divertor behavior in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, T.W., E-mail: petrie@fusion.gat.com [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Canik, J.M. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Lasnier, C.J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Leonard, A.W.; Mahdavi, M.A. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Watkins, J.G. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States); Fenstermacher, M.E. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Ferron, J.R.; Groebner, R.J. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Hill, D.N. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Hyatt, A.W. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Holcomb, C.T. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Luce, T.C. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Moyer, R.A. [University of California–San Diego, La Jolla, CA 92093-0417 (United States); Stangeby, P.C. [University of Toronto Institute of Aerospace Studies, Toronto (Canada)

    2013-07-15

    We report on recent experiments on DIII-D that examined the effects that variations in the parallel connection length in the scrape-off layer (SOL), L{sub ||}, and the radial location of the outer divertor target, R{sub TAR}, have on divertor plasma properties. Two-point modeling of the SOL plasma predicts that larger values of L{sub ||} and R{sub TAR} should lower temperature and raise density at the outer divertor target for fixed upstream separatrix density and temperature, i.e., n{sub TAR} ∝ [R{sub TAR}]{sup 2}[L{sub ||}]{sup 6/7} and T{sub TAR} ∝ [R{sub TAR}]{sup −2}[L{sub ||}]{sup −4/7}. The dependence of n{sub TAR} and T{sub TAR} on L{sub ||} was consistent with our data, but the dependence of n{sub TAR} and T{sub TAR} on R{sub TAR} was not. The surprising result that the divertor plasma parameters did not depend on R{sub TAR} in the predicted way may be due to convected heat flux, driven by escaping neutrals, in the more open configuration of the larger R{sub TAR} cases. Modeling results using the SOLPS code support this postulate.

  1. Numerical Study of High Heat Flux Performances of Flat-Tile Divertor Mock-ups with Hypervapotron Cooling Concept

    Science.gov (United States)

    Chen, Lei; Liu, Xiang; Lian, Youyun; Cai, Laizhong

    2015-09-01

    The hypervapotron (HV), as an enhanced heat transfer technique, will be used for ITER divertor components in the dome region as well as the enhanced heat flux first wall panels. W-Cu brazing technology has been developed at SWIP (Southwestern Institute of Physics), and one W/CuCrZr/316LN component of 450 mm×52 mm×166 mm with HV cooling channels will be fabricated for high heat flux (HHF) tests. Before that a relevant analysis was carried out to optimize the structure of divertor component elements. ANSYS-CFX was used in CFD analysis and ABAQUS was adopted for thermal-mechanical calculations. Commercial code FE-SAFE was adopted to compute the fatigue life of the component. The tile size, thickness of tungsten tiles and the slit width among tungsten tiles were optimized and its HHF performances under International Thermonuclear Experimental Reactor (ITER) loading conditions were simulated. One brand new tokamak HL-2M with advanced divertor configuration is under construction in SWIP, where ITER-like flat-tile divertor components are adopted. This optimized design is expected to supply valuable data for HL-2M tokamak. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2011GB110001 and 2011GB110004)

  2. Self-castellation of tungsten monoblock under high heat flux loading and impact of material properties

    OpenAIRE

    Panayotis, S.; Hirai, T.; Wirtz, Marius; Barabash, V.; Durocher, A.; Escourbiac, F.; Linke, J.; Loewenhoff, Th.; Merola, M.; Pintsuk, G.; Uytdenhouwen, I.

    2017-01-01

    In the full-tungsten divertor qualification program at ITER Organization, macro-cracks, so called self-castellation were found in a fraction of tungsten monoblocks during cyclic high heat flux loading at 20MW/m2. The number of monoblocks with macro-cracks varied with the tungsten products used as armour material. In order to understand correlation between the macro-crack appearance and W properties, an activity to characterize W monoblock materials was launched at the IO. The outcome highligh...

  3. Structural impact of armor monoblock dimensions on the failure behavior of ITER-type divertor target components: Size matters

    Energy Technology Data Exchange (ETDEWEB)

    Li, Muyuan; You, Jeong-Ha, E-mail: you@ipp.mpg.de

    2016-12-15

    Highlights: • Quantitative assessment of size effects was conducted numerically for W monoblock. • Decreasing the width of W monoblock leads to a lower risk of failure. • The Cu interlayer was not affected significantly by varying armor thickness. • The predicted trends were in line with the experimental observations. - Abstract: Plenty of high-heat-flux tests conducted on tungsten monoblock type divertor target mock-ups showed that the threshold heat flux density for cracking and fracture of tungsten armor seems to be related to the dimension of the monoblocks. Thus, quantitative assessment of such size effects is of practical importance for divertor target design. In this paper, a computational study about the thermal and structural impact of monoblock size on the plastic fatigue and fracture behavior of an ITER-type tungsten divertor target is reported. As dimensional parameters, the width and thickness of monoblock, the thickness of sacrificial armor, and the inner diameter of cooling tube were varied. Plastic fatigue lifetime was estimated for the loading surface of tungsten armor and the copper interlayer by use of a cyclic-plastic constitutive model. The driving force of brittle crack growth through the tungsten armor was assessed in terms of J-integral at the crack tip. Decrease of the monoblock width effectively reduced accumulation of plastic strain at the armor surface and the driving force of brittle cracking. Decrease of sacrificial armor thickness led to decrease of plastic deformation at the loading surface due to lower surface temperature, but the thermal and mechanical response of the copper interlayer was not affected by the variation of armor thickness. Monoblock with a smaller tube diameter but with the same armor thickness and shoulder thickness experienced lower fatigue load. The predicted trends were in line with the experimental observations.

  4. Deuterium transport and trapping in polycrystalline tungsten

    International Nuclear Information System (INIS)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R.; Pawelko, R.J.; Trybus, C.L.; Sellers, C.H.

    1992-01-01

    This paper reports that deuterium permeation studies for polycrystalline tungsten foil have been conducted to provide data for estimating tritium transport and trapping in tungsten-clad divertors proposed for advanced fusion-reactor concepts. Based on a detailed transmission electron microscopy (TEM) microstructural characterization of the specimen material and on analyses of permeation data measured at temperatures ranging form 610 to 823 K for unannealed and annealed tungsten foil (25 μm thick), the authors note the following key results: deuterium transport in tungsten foil is dominated by extensive trapping that varies inversely with prior anneal temperatures of the foil material, the reduction in the trapped fraction correlates with a corresponding elimination of a high density of dislocations in cell-wall structures introduced during the foil fabrication process, trapping behavior in these foils can be modelled using trap energies between 1.3 eV and 1.5 eV and trap densities ranging from 1 x 10 -5 atom fraction

  5. A supercritical carbon dioxide plasma process for preparing tungsten oxide nanowires

    International Nuclear Information System (INIS)

    Kawashima, Ayato; Nomura, Shinfuku; Toyota, Hiromichi; Takemori, Toshihiko; Mukasa, Shinobu; Maehara, Tsunehiro

    2007-01-01

    A supercritical carbon dioxide (CO 2 ) plasma process for fabricating one-dimensional tungsten oxide nanowires coated with amorphous carbon is presented. High-frequency plasma was generated in supercritical carbon dioxide at 20 MPa by using tungsten electrodes mounted in a supercritical cell, and subsequently an organic solvent was introduced with supercritical carbon dioxide into the plasma. Electron microscopy and Raman spectroscopy investigations of the deposited materials showed the production of tungsten oxide nanowires with or without an outer layer. The nanowires with an outer layer exhibited a coaxial structure with an outer concentric layer of amorphous carbon and an inner layer of tungsten oxide with a thickness and diameter of 20-30 and 10-20 nm, respectively

  6. Physics conclusions in support of ITER W divertor monoblock shaping

    Czech Academy of Sciences Publication Activity Database

    Pitts, R.A.; Bardin, S.; Bazylev, B.; van den Berg, M.A.; Bunting, P.; Carpentier-Chouchana, S.; Coenen, J.W.; Corre, Y.; Dejarnac, Renaud; Escourbiac, F.; Gaspar, J.; Gunn, J. P.; Hirai, T.; Hong, S.-H.; Horáček, Jan; Iglesias, D.; Komm, Michael; Krieger, K.; Lasnier, C.; Matthews, G.F.; Morgan, T.W.; Panayotis, S.; Pestchanyi, S.; Podolník, Aleš; Nygren, R.E.; Rudakov, D.L.; De Temmerman, G.; Vondráček, Petr; Watkins, J.G.

    2017-01-01

    Roč. 12, August (2017), s. 60-74 ISSN 2352-1791. [International Conference on Plasma Surface Interactions 2016, PSI2016 /22./. Roma, 30.05.2016-03.06.2016] Institutional support: RVO:61389021 Keywords : ITER * Tungsten * Divertor * Shaping * Melting * MEMOS Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) http://www.sciencedirect.com/science/ article /pii/S2352179116302885

  7. OEDGE modeling of plasma contamination efficiency of Ar puffing from different divertor locations in EAST

    Science.gov (United States)

    Pengfei, ZHANG; Ling, ZHANG; Zhenwei, WU; Zong, XU; Wei, GAO; Liang, WANG; Qingquan, YANG; Jichan, XU; Jianbin, LIU; Hao, QU; Yong, LIU; Juan, HUANG; Chengrui, WU; Yumei, HOU; Zhao, JIN; J, D. ELDER; Houyang, GUO

    2018-04-01

    Modeling with OEDGE was carried out to assess the initial and long-term plasma contamination efficiency of Ar puffing from different divertor locations, i.e. the inner divertor, the outer divertor and the dome, in the EAST superconducting tokamak for typical ohmic plasma conditions. It was found that the initial Ar contamination efficiency is dependent on the local plasma conditions at the different gas puff locations. However, it quickly approaches a similar steady state value for Ar recycling efficiency >0.9. OEDGE modeling shows that the final equilibrium Ar contamination efficiency is significantly lower for the more closed lower divertor than that for the upper divertor.

  8. Engineering design of a Radiative Divertor for DIII-D

    International Nuclear Information System (INIS)

    Smith, J.P.; Allen, S.L.; Anderson, P.M.; Baxi, C.B.; Chin, E.; Fenstermacher, M.E.; Hill, D.N.; Hollerbach, M.A.; Hyatt, A.W.; Junge, R.; Mahdavi, M.A.; Porter, G.D.; Redler, K.; Reis, E.E.; Schaffer, M.J.; Sevier, D.L.; Stambaugh, R.D.

    1995-01-01

    A new divertor called the Radiative Divertor is presently being designed for the DIII-D tokamak. Input from tokamak experiments and modeling form the basis for the new design. The Radiative Divertor is intended to reduce the heat flux on the divertor plates by dispersing the power with radiation. Gas puffing experiments in the current open divertor have shown a reduction of the divertor heat flux with either deuterium or impurity puffing. However, either the plasma density (D 2 ) or the core Z eff (impurities) increases in these experiments. The radiative divertor uses a slot structure to isolate the divertor plasma region from the area surrounding the core plasma. Modeling has shown that the Radiative Divertor hardware will provide better baffling and particle control and thereby minimize the effect of the gas puffing in the divertor region on the plasma core. In addition, the Radiative Divertor structure will allow density control in plasma shapes with high triangularity (>0.8) required for advanced tokamak operation. The divertor structure allows for operation in either double or single-null plasma configurations. Four independently controlled divertor cryopumps will enable pumping at either the inboard (upper and lower) or the outboard (upper and lower) divertor plates. Biasing is an integral part of the design and is based on experience at the Tokamak de Varennes (TdeV) and DIII-D. Boron nitride tiles electrically insulate the inner and outer strike points and a low current electrode is used to apply a radial electric field to the scrape-off layer. TdeV has shown that biasing can provide particle and impurity control. The design is extremely flexible, and will allow physics studies of the effect of slot width and height. This is extremely important, as the amount of chamber volume needed for the divertor in future machines such as International Thermonuclear Experiment Reactor (ITER) and Tokamak Physics Experiment (TPX) must be determined. (orig./WL)

  9. Study of high-Z target plate materials in the divertor of ASDEX-Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, S; Asmussen, K; Engelhardt, W; Field, A R; Fussmann, G; Lieder, G; Naujoks, D; Neu, R; Radtke, R; Wenzel, U [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1994-12-31

    The reduction of divertor tile erosion is a challenging problem in present and future tokamaks. Until now, graphite has almost exclusively been used for divertor plates, and it is estimated that unacceptable amounts of material would be eroded under reactor relevant conditions where power fluxes to the target plates as high as 20 MW/m{sup 2} are expected. In a high-recycling divertor with relatively low temperature (5 eVtungsten, offer a possible solution to the target erosion problem. The reason is that the sputtering rates for these materials are extremely low under low temperature conditions. In addition, at high density the ionization lengths can be smaller than the gyro-radius leading to a high probability for prompt redeposition of the eroded ions. To provide a test of the suitability of high-Z materials for the divertor plates, in-situ studies of the erosion of various divertor target materials have been performed by means of passive spectroscopy. From our spectroscopic observations we infer that under high density divertor conditions the advantages of high-Z materials become fully efficient. (author) 6 refs., 2 figs.

  10. Status of National Spherical Torus Experiment Liquid Lithium Divertor

    Science.gov (United States)

    Kugel, H. W.; Viola, M.; Ellis, R.; Bell, M.; Gerhardt, S.; Kaita, R.; Kallman, J.; Majeski, R.; Mansfield, D.; Roquemore, A. L.; Schneider, H.; Timberlake, J.; Zakharov, L.; Nygren, R. E.; Allain, J. P.; Maingi, R.; Soukhanovskii, V.

    2009-11-01

    Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on plasma facing components to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is the 2009 installation of a Liquid Lithium Divertor (LLD). The 20 cm wide LLD located on the lower outer divertor, consists of four, 80 degree sections; each section is separated by a row of graphite diagnostic tiles. The temperature controlled LLD structure consists of a 0.01cm layer of vacuum flame-sprayed, 50 percent porous molybdenum, on top of 0.02 cm, 316-SS brazed to a 1.9 cm Cu base. The physics design of the LLD encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.

  11. Turbulent Simulations of Divertor Detachment Based On BOUT + + Framework

    Science.gov (United States)

    Chen, Bin; Xu, Xueqiao; Xia, Tianyang; Ye, Minyou

    2015-11-01

    China Fusion Engineering Testing Reactor is under conceptual design, acting as a bridge between ITER and DEMO. The detached divertor operation offers great promise for a reduction of heat flux onto divertor target plates for acceptable erosion. Therefore, a density scan is performed via an increase of D2 gas puffing rates in the range of 0 . 0 ~ 5 . 0 ×1023s-1 by using the B2-Eirene/SOLPS 5.0 code package to study the heat flux control and impurity screening property. As the density increases, it shows a gradually change of the divertor operation status, from low-recycling regime to high-recycling regime and finally to detachment. Significant radiation loss inside the confined plasma in the divertor region during detachment leads to strong parallel density and temperature gradients. Based on the SOLPS simulations, BOUT + + simulations will be presented to investigate the stability and turbulent transport under divertor plasma detachment, particularly the strong parallel gradient driven instabilities and enhanced plasma turbulence to spread heat flux over larger surface areas. The correlation between outer mid-plane and divertor turbulence and the related transport will be analyzed. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-675075.

  12. Preliminary test results on tungsten tile with castellation structures in KSTAR

    NARCIS (Netherlands)

    Hong, S. H.; Bang, E. N.; Lim, S. T.; Lee, J. Y.; Yang, S. J.; Litnovsky, A.; Hellwig, M.; Matveev, D.; Komm, M.; van den Berg, M. A.; Lho, T.; Park, C. R.; Kim, G. H.

    2014-01-01

    A bulk tungsten tile with conventional and shaped castellation structures was exposed to various plasmas in KSTAR during 2012 campaign, in order to verify the functions of the shaped castellation designed for ITER divertor. The thermal response of the tile during the campaign was measured by

  13. Two-dimensional numerical study of ELMs-induced erosion of tungsten divertor target tiles with different edge shapes

    International Nuclear Information System (INIS)

    Huang, Yan; Sun, Jizhong; Hu, Wanpeng; Sang, Chaofeng; Wang, Dezhen

    2016-01-01

    Highlights: • Thermal performance of three edge-shaped divertor tiles was assessed numerically. • All the divertor tiles exposed to type-I ELMs like ITER's will melt. • The rounded edge tile thermally performs the best in all tiles of interest. • The incident energy flux density was evaluated with structural effects considered. - Abstract: Thermal performance of the divertor tile with different edge shapes was assessed numerically along the poloidal direction by a two-dimensional heat conduction model with considering the geometrical effects of castellated divertor tiles on the properties of its adjacent plasma. The energy flux density distribution arriving at the castellated divertor tile surface was evaluated by a two-dimension-in-space and three-dimension-in-velocity particle-in-cell plus Monte Carlo Collisions code and then the obtained energy flux distribution was used as input for the heat conduction model. The simulation results showed that the divertor tiles with any edge shape of interest (rectangular edge, slanted edge, and rounded edge) would melt, especially, in the edge surface region of facing plasma poloidally under typical heat flux density of a transient event of type-I ELMs for ITER, deposition energy of 1 MJ/m"2 in a duration of 600 μs. In comparison with uniform energy deposition, the vaporizing erosion was reduced greatly but the melting erosion was aggravated noticeably in the edge area of plasma facing diveror tile. Of three studied edge shapes, the simulation results indicated that the divertor plate with rounded edge was the most resistant to the thermal erosion.

  14. Limiter and divertor systems - conceptual and mechanical design for Aditya Tokamak upgrade

    International Nuclear Information System (INIS)

    Patel, Kaushal; Rathod, Kulav; Jadeja, Kumarpalsinh A.

    2015-01-01

    Existing Aditya tokamak with limiter configuration is being upgraded into a machine to have both the limiter and divertor configurations. Necessary modifications have been carried out to accommodate divertor coils by replacing the old vacuum vessel with a new circular section vacuum vessel. The upgraded Aditya tokamak will have different set of limiters and divertors, such as Safety limiter, Toroidal Inner limiter, outer limiter of smaller toroidal extent, Upper and lower divertor plates. The limiter and divertor locations inside the Aditya tokamak upgrade are decided based on the numerical simulation of the plasma equilibrium profiles. Initially graphite will be used as plasma facing material (PFM) in all the limiter and divertor plates. The dimensions of the limiter and divertor tiles are decided based on their installation inside the vacuum vessel as well as on the total plasma heat loads (∼ 1 MW) falling on them. Depending upon the heat loads; the thickness of graphite tiles for limiter and divertor plates is estimated. Shaped graphite tiles will be fixed on specially designed support structures made out of SS-304L inside the torus shaped vacuum vessel. In this paper mechanical structural design of limiter and divertor of Aditya Upgrade Tokamak is presented. (author)

  15. Tungsten-microdiamond composites for plasma facing components

    International Nuclear Information System (INIS)

    Livramento, V.; Nunes, D.; Correia, J.B.; Carvalho, P.A.; Mardolcar, U.; Mateus, R.; Hanada, K.; Shohoji, N.; Fernandes, H.; Silva, C.; Alves, E.

    2011-01-01

    Tungsten is considered as one of promising candidate materials for plasma facing component in nuclear fusion reactors due to its resistance to sputtering and high melting point. High thermal conductivity is also a prerequisite for plasma facing components under the unique service environment of fusion reactor characterised by the massive heat load, especially in the divertor area. The feasibility of mechanical alloying of nanodiamond and tungsten, and the consolidation of the composite powders with Spark Plasma Sintering (SPS) was previously demonstrated. In the present research we report on the use of microdiamond instead of nanodiamond in such composites. Microdiamond is more favourable than nanodiamond in view of phonon transport performance leading to better thermal conductivity. However, there is a trade off between densification and thermal conductivity as the SPS temperature increases tungsten carbide formation from microdiamond is accelerated inevitably while the consolidation density would rise.

  16. NSTX plasma operation with a Liquid Lithium Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, H.W., E-mail: hkugel@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Allain, J.P. [Purdue University, West Lafayette, IN 47907 (United States); Bell, M.G.; Bell, R.E.; Diallo, A.; Ellis, R.; Gerhardt, S.P. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Heim, B. [Purdue University, West Lafayette, IN 47907 (United States); Jaworski, M.A.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Maingi, R.; McLean, A. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Menard, J.; Mueller, D. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Nygren, R. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Ono, M.; Paul, S.F. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); and others

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer NSTX 2010 experiments tested the effectiveness of maintaining the deuterium retention properties of a static liquid lithium molybdenum divertor surface when refreshed by lithium evaporation as an approximation to a flowing liquid lithium surface. Black-Right-Pointing-Pointer Noteworthy improvements in plasma performance with the plasma strike point on the liquid lithium molybdenum divertor were obtained similar to those obtained previously with lithiated graphite. The role of lithium impurities in this result is discussed. Black-Right-Pointing-Pointer Inspection of the liquid lithium molybdenum divertor after the Campaign indicated mechanical damage to supports, and other hardware resulting from forces following plasma current disruptions. - Abstract: NSTX 2010 experiments were conducted using a molybdenum Liquid Lithium Divertor (LLD) surface installed on the outer part of the lower divertor. This tested the effectiveness of maintaining the deuterium retention properties of a static liquid lithium surface when refreshed by lithium evaporation as an approximation to a flowing liquid lithium surface. The LLD molybdenum front face has a 45% porosity to provide sufficient wetting to spread 37 g of lithium, and to retain it in the presence of magnetic forces. Lithium Evaporators were used to deposit lithium on the LLD surface. At the beginning of discharges, the LLD lithium surface ranged from solid to liquefied depending on the amount of applied and plasma heating. Noteworthy improvements in plasma performance were obtained similar to those obtained previously with lithiated graphite, e.g., ELM-free, quiescent edge, H-modes. During these experiments with the plasma outer strike point on the LLD, the rate of deuterium retention in the LLD, as indicated by the fueling needed to achieve and maintain stable plasma conditions, was the about the same as that for solid lithium coatings on the graphite prior to the installation of the

  17. Testing candidate interlayers for an enhanced water-cooled divertor target

    International Nuclear Information System (INIS)

    Hancock, David; Barrett, Tom; Foster, James; Fursdon, Mike; Keech, Gregory; McIntosh, Simon; Timmis, William; Rieth, Michael; Reiser, Jens

    2015-01-01

    Highlights: • We introduce an optimised divertor target concept: the “Thermal Break”. • We suggest a candidate interlayer material for this concept: FeltMetal. • We describe a bespoke rig for testing the thermal conductivity of this material. • We present preliminary results for a number of samples. - Abstract: The design of a divertor target for DEMO remains one of the most challenging engineering tasks to be overcome on the path to fusion power. Under the European DEMO programme, a promising concept known as Thermal Break has been developed at CCFE. This concept is a variation of the ITER tungsten divertor in which the pure Copper interlayer between Copper Chrome Zirconium coolant pipe and Tungsten monoblock armour is replaced with a low thermal conductivity compliant interlayer, with the aim of reducing the thermal mismatch stress between the armour and structure. One candidate material for this interlayer is FeltMetal™ (Technetics Group, USA). This material consists of an amorphous matrix of fine copper wires which are sintered onto a thin copper foil, creating a sheet of approximately 1 mm thickness. FeltMetal has been successfully used for many years to provide compliant sliding electrical contacts for the MAST TF coils and on ALCATOR C-Mod and extensive material testing has therefore been undertaken to quantify thermal and mechanical properties. These tests, however, have not been performed under vacuum or DEMO-relevant conditions. A bespoke experimental test rig has therefore been designed and constructed with which to measure the interlayer thermal conductance as a function of temperature and pressure under vacuum conditions. The design of this apparatus and the results of experiments on FeltMetal as well as other candidate interlayers are presented here. In parallel, joint mockups using the candidate interlayers have been prepared and Thermal Break divertor target mockups have been manufactured, requiring the development of a dedicated

  18. Testing candidate interlayers for an enhanced water-cooled divertor target

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, David, E-mail: david.hancock@ccfe.ac.uk [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Barrett, Tom; Foster, James; Fursdon, Mike; Keech, Gregory; McIntosh, Simon; Timmis, William [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Rieth, Michael; Reiser, Jens [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2015-10-15

    Highlights: • We introduce an optimised divertor target concept: the “Thermal Break”. • We suggest a candidate interlayer material for this concept: FeltMetal. • We describe a bespoke rig for testing the thermal conductivity of this material. • We present preliminary results for a number of samples. - Abstract: The design of a divertor target for DEMO remains one of the most challenging engineering tasks to be overcome on the path to fusion power. Under the European DEMO programme, a promising concept known as Thermal Break has been developed at CCFE. This concept is a variation of the ITER tungsten divertor in which the pure Copper interlayer between Copper Chrome Zirconium coolant pipe and Tungsten monoblock armour is replaced with a low thermal conductivity compliant interlayer, with the aim of reducing the thermal mismatch stress between the armour and structure. One candidate material for this interlayer is FeltMetal™ (Technetics Group, USA). This material consists of an amorphous matrix of fine copper wires which are sintered onto a thin copper foil, creating a sheet of approximately 1 mm thickness. FeltMetal has been successfully used for many years to provide compliant sliding electrical contacts for the MAST TF coils and on ALCATOR C-Mod and extensive material testing has therefore been undertaken to quantify thermal and mechanical properties. These tests, however, have not been performed under vacuum or DEMO-relevant conditions. A bespoke experimental test rig has therefore been designed and constructed with which to measure the interlayer thermal conductance as a function of temperature and pressure under vacuum conditions. The design of this apparatus and the results of experiments on FeltMetal as well as other candidate interlayers are presented here. In parallel, joint mockups using the candidate interlayers have been prepared and Thermal Break divertor target mockups have been manufactured, requiring the development of a dedicated

  19. Statistical characterization of surface features from tungsten-coated divertor inserts in the DIII-D Metal Rings Campaign

    Science.gov (United States)

    Adams, Jacob; Unterberg, Ezekial; Chrobak, Christopher; Stahl, Brian; Abrams, Tyler

    2017-10-01

    Continuing analysis of tungsten-coated inserts from the recent DIII-D Metal Rings Campaign utilizes a statistical approach to study carbon migration and deposition on W surfaces and to characterize the pre- versus post-exposure surface morphology. A TZM base was coated with W using both CVD and PVD and allowed for comparison between the two coating methods. The W inserts were positioned in the lower DIII-D divertor in both the upper (shelf) region and lower (floor) region and subjected to multiple plasma shots, primarily in H-mode. Currently, the post-exposure W inserts are being characterized using SEM/EDX to qualify the surface morphology and to quantify the surface chemical composition. In addition, profilometry is being used to measure the surface roughness of the inserts both before and after plasma exposure. Preliminary results suggest a correlation between the pre-exposure surface roughness and the level of carbon deposited on the surface. Furthermore, ongoing in-depth analysis may reveal insights into the formation mechanism of nanoscale bumps found in the carbon-rich regions of the W surfaces that have not yet been explained. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.

  20. Migration and deposition of 13C in the full-tungsten ASDEX Upgrade tokamak

    International Nuclear Information System (INIS)

    Hakola, A; Aho-Mantila, L; Groth, M; Kurki-Suonio, T; Makkonen, T; Likonen, J; Koivuranta, S; Krieger, K; Mayer, M; Mueller, H W; Neu, R; Rohde, V

    2010-01-01

    The migration of carbon in low-density, low-confinement plasmas of ASDEX Upgrade was studied by injecting 13 C into the main chamber of the torus at the end of the 2007 experimental campaign. A selection of standard tungsten-coated lower-divertor and main-chamber tiles as well as a complete set of lower-divertor tiles with an uncoated poloidal marker stripe were removed from one poloidal cross section and analysed using secondary ion mass spectrometry. The poloidal deposition profiles of 13 C on both the tungsten-coated tiles and on the uncoated graphite areas of the marker tiles were measured and compared. For the W-coated lower-divertor tiles, 13 C was deposited mainly on the high-field side tiles, while barely detectable amounts of 13 C were observed on low-field side samples. In contrast, on the uncoated marker stripes the deposition was equally pronounced in the high-field and low-field side divertor. The marker-tile results are in agreement with those obtained from graphite tiles after the 2003 and 2005 13 C experiments in ASDEX Upgrade. In the case of W-coated tiles, the 13 C measurements were complemented by determining the total amount of deposited carbon ( 12 C) on the tiles, which also shows strong deposition at the inner parts of the lower divertor. The estimated deposition of 13 C on W at the divertor areas was less than 1.5% of the injected amount of 13 C atoms. The 13 C analyses of the main-chamber tiles and small silicon samples mounted in remote areas revealed significant deposition in the upper divertor, in upper parts of the heat shield, in the limiter region close to the injection valve, and below the roof baffle. Approximately 8% of the injected 13 C is estimated to have accumulated in these regions. Possible reasons for the different deposition patterns on W and on graphite in different regions of the torus are discussed.

  1. Effect of noble gas ion pre-irradiation on deuterium retention in tungsten

    NARCIS (Netherlands)

    Cheng, L.; Zhao, Z. H.; De Temmerman, G.; Yuan, Y.; Morgan, T. W.; Guo, L. P.; Wang, B.; Zhang, Y.; Wang, B. Y.; Zhang, P.; Cao, X. Z.; Lu, G. H.

    2016-01-01

    Impurity seeding of noble gases is an effective way of decreasing the heat loads onto the divertor targets in fusion devices. To investigate the effect of noble gases on deuterium retention, tungsten targets have been implanted by different noble gas ions and subsequently exposed to deuterium

  2. Divertor power and particle fluxes between and during type-I ELMs in the ASDEX Upgrade

    Science.gov (United States)

    Kallenbach, A.; Dux, R.; Eich, T.; Fischer, R.; Giannone, L.; Harhausen, J.; Herrmann, A.; Müller, H. W.; Pautasso, G.; Wischmeier, M.; ASDEX Upgrade Team

    2008-08-01

    Particle, electric charge and power fluxes for type-I ELMy H-modes are measured in the divertor of the ASDEX Upgrade tokamak by triple Langmuir probes, shunts, infrared (IR) thermography and spectroscopy. The discharges are in the medium to high density range, resulting in predominantly convective edge localized modes (ELMs) with moderate fractional stored energy losses of 2% or below. Time resolved data over ELM cycles are obtained by coherent averaging of typically one hundred similar ELMs, spatial profiles from the flush-mounted Langmuir probes are obtained by strike point sweeps. The application of simple physics models is used to compare different diagnostics and to make consistency checks, e.g. the standard sheath model applied to the Langmuir probes yields power fluxes which are compared with the thermographic measurements. In between ELMs, Langmuir probe and thermography power loads appear consistent in the outer divertor, taking into account additional load due to radiation and charge exchange neutrals measured by thermography. The inner divertor is completely detached and no significant power flow by charged particles is measured. During ELMs, quite similar power flux profiles are found in the outer divertor by thermography and probes, albeit larger uncertainties in Langmuir probe evaluation during ELMs have to be taken into account. In the inner divertor, ELM power fluxes from thermography are a factor 10 larger than those derived from probes using the standard sheath model. This deviation is too large to be caused by deficiencies of probe analysis. The total ELM energy deposition from IR is about a factor 2 higher in the inner divertor compared with the outer divertor. Spectroscopic measurements suggest a quite moderate contribution of radiation to the target power load. Shunt measurements reveal a significant positive charge flow into the inner target during ELMs. The net number of elementary charges correlates well with the total core particle loss

  3. Divertor ‘death-ray’ explained: An artifact of a Langmuir probe operating at negative bias in a high-recycling divertor

    International Nuclear Information System (INIS)

    Brunner, D.; Umansky, M.V.; LaBombard, B.; Rognlien, T.D.

    2013-01-01

    The divertor ‘death-ray’, enhanced plasma pressure near the outer strike-point relative to ‘upstream’ values, was thought to correspond to axisymmetric increased divertor heat flux. Recent measurements on Alcator C-Mod show that the ‘death-ray’ is localized to biased Langmuir probes. Heat fluxes deduced from plasma-sheath theory and surface thermocouples agree in sheath-limited and moderate-recycling regimes. They diverge in high-recycling and detached regimes; surface thermocouples measure reduced heat flux while a ‘death-ray’ appears on Langmuir probes. The ‘death-ray’ is caused by the probe’s negative bias affecting the local flux tube. With the bias, electron heat flux to the probe surface is reduced. Thus, the local electron temperature is raised, enhancing neutral ionization and increasing the ion flux to the probe. The plasma fluid code UEDGE is used to simulate and reproduce many of the features of this integrated biased probe/divertor system

  4. Tritium analysis of divertor tiles used in JET ITER-like wall campaigns by means of β-ray induced x-ray spectrometry

    Science.gov (United States)

    Hatano, Y.; Yumizuru, K.; Koivuranta, S.; Likonen, J.; Hara, M.; Matsuyama, M.; Masuzaki, S.; Tokitani, M.; Asakura, N.; Isobe, K.; Hayashi, T.; Baron-Wiechec, A.; Widdowson, A.; contributors, JET

    2017-12-01

    Energy spectra of β-ray induced x-rays from divertor tiles used in ITER-like wall campaigns of the Joint European Torus were measured to examine tritium (T) penetration into tungsten (W) layers. The penetration depth of T evaluated from the intensity ratio of W(Lα) x-rays to W(Mα) x-rays showed clear correlation with poloidal position; the penetration depth at the upper divertor region reached several micrometers, while that at the lower divertor region was less than 500 nm. The deep penetration at the upper part was ascribed to the implantation of high energy T produced by DD fusion reactions. The poloidal distribution of total x-ray intensity indicated higher T retention in the inboard side than the outboard side of the divertor region.

  5. Thermal effects of divertor sweeping in ITER

    International Nuclear Information System (INIS)

    Wesley, J.C.

    1992-01-01

    In this paper, thermal effects of magnetically sweeping the separatrix strike point on the outer divertor target of the International Thermonuclear Fusion Reactor (ITER) are calculated. For the 0. 2 Hz x ± 12 cm sweep scenario proposed for ITER operations, the thermal capability of a generic target design is found to be slightly inadequate (by ∼ 5%) to accommodate the full degree of plasma scrape-off peaking postulated as a design basis. The principal problem identified is that the 5 s sweep period is long relative to the 1. 4 s thermal time constant of the divertor target. An increase of the sweep frequency to ∼ 1 Hz is suggested: this increase would provide a power handling margin of ∼ 25% relative to present operational criteria

  6. Analyses of microstructure, composition and retention of hydrogen isotopes in divertor tiles of JET with the ITER-like wall

    Science.gov (United States)

    Masuzaki, S.; Tokitani, M.; Otsuka, T.; Oya, Y.; Hatano, Y.; Miyamoto, M.; Sakamoto, R.; Ashikawa, N.; Sakurada, S.; Uemura, Y.; Azuma, K.; Yumizuru, K.; Oyaizu, M.; Suzuki, T.; Kurotaki, H.; Hamaguchi, D.; Isobe, K.; Asakura, N.; Widdowson, A.; Heinola, K.; Jachmich, S.; Rubel, M.; contributors, JET

    2017-12-01

    Results of the comprehensive surface analyses of divertor tiles and dusts retrieved from JET after the first ITER-like wall campaign (2011-2012) are presented. The samples cored from the divertor tiles were analyzed. Numerous nano-size bubble-like structures were observed in the deposition layer on the apron of the inner divertor tile, and a beryllium dust with the same structures were found in the matter collected from the inner divertor after the campaign. This suggests that the nano-size bubble-like structures can make the deposition layer to become brittle and may lead to cracking followed by dust generation. X-ray photoelectron spectroscopy analyses of chemical states of species in the deposition layers identified the formation of beryllium-tungsten intermetallic compounds on an inner vertical tile. Different tritium retention profiles along the divertor tiles were observed at the top surfaces and at deeper regions of the tiles by using the imaging plate technique.

  7. Controlling marginally detached divertor plasmas

    Science.gov (United States)

    Eldon, D.; Kolemen, E.; Barton, J. L.; Briesemeister, A. R.; Humphreys, D. A.; Leonard, A. W.; Maingi, R.; Makowski, M. A.; McLean, A. G.; Moser, A. L.; Stangeby, P. C.

    2017-06-01

    A new control system at DIII-D has stabilized the inter-ELM detached divertor plasma state for H-mode in close proximity to the threshold for reattachment, thus demonstrating the ability to maintain detachment with minimal gas puffing. When the same control system was instead ordered to hold the plasma at the threshold (here defined as T e  =  5 eV near the divertor target plate), the resulting T e profiles separated into two groups with one group consistent with marginal detachment, and the other with marginal attachment. The plasma dithers between the attached and detached states when the control system attempts to hold at the threshold. The control system is upgraded from the one described in Kolemen et al (2015 J. Nucl. Mater. 463 1186) and it handles ELMing plasmas by using real time D α measurements to remove during-ELM slices from real time T e measurements derived from divertor Thomson scattering. The difference between measured and requested inter-ELM T e is passed to a PID (proportional-integral-derivative) controller to determine gas puff commands. While some degree of detachment is essential for the health of ITER’s divertor, more deeply detached plasmas have greater radiative losses and, at the extreme, confinement degradation, making it desirable to limit detachment to the minimum level needed to protect the target plate (Kolemen et al 2015 J. Nucl. Mater. 463 1186). However, the observed bifurcation in plasma conditions at the outer strike point with the ion B   ×  \

  8. On tungsten technologies and qualification for DEMO

    International Nuclear Information System (INIS)

    Laan, J. van der; Hegeman, H.; Wouters, O.; Luzginova, N.; Jonker, B.; Van der Marck, S.; Opschoor, J.; Wang, J.; Dowling, G.; Stuivenga, M.; Carton, E.

    2009-01-01

    Tungsten alloys are considered prime candidates for the in-vessel components directly facing the plasma. For example, in the HEMJ helium cooled divertor design tiles may be operated at temperatures up to 1700 deg. C, supported by a structure partially consisting of tungsten at temperatures from 600 to 1000 deg. C, and connected to a HT steel structure. The tungsten armoured primary wall is operated at 500-900 deg. C. Irradiation doses will be few tens dpa at minimum, but FPR requirements for plants availability will stretch these targets. Recently injection moulding technology was developed for pure tungsten and representative parts were manufactured for ITER monobloc divertors and DEMO HEMJ thimbles. The major advantages for this technology are the efficient use of material feedstock/resources and the intrinsic possibility to produce near-finished product, avoiding machining processes that are costly and may introduce surface defects deteriorating the component in service performance. It is well suited for mass-manufacturing of components as well known in e.g. lighting industries. To further qualify this material technology various specimen types were produced with processing parameters identical to the components, and tested successfully, showing the high potential for implementation in (fusion) devices. Furthermore, the engineering approach can clearly be tailored away from conventional design and manufacturing technologies based on bulk materials. The technology is suitable for shaping of new W-alloys and W-ODS variants as well. Basically this technology allows a particular qualification trajectory. There is no need to produce large batches of material during the material development and optimization stage. For the verification of irradiation behaviour in the specific neutron spectra, there is a further attractive feature to use e.g. isotope tailored powders to adjust to available irradiation facilities like MTR's. In addition the ingrowth of transmutation

  9. OEDGE modeling of outer wall erosion in NSTX and the effect of changes in neutral pressure

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, J.H., E-mail: jnichols@pppl.gov; Jaworski, M.A.; Kaita, R.; Abrams, T.; Skinner, C.H.; Stotler, D.P.

    2015-08-15

    Gross erosion from the outer wall is expected to be a major source of impurities for high power fusion devices due to the low redeposition fraction. Scaling studies of sputtering from the all-carbon outer wall of NSTX are reported. It is found that wall erosion decreases with divertor plasma pressure in low/mid temperature regimes, due to increasing divertor neutral opacity. Wall erosion is found to consistently decrease with reduced recycling coefficient, with outer target recycling providing the largest contribution. Upper and lower bounds are calculated for the increase in wall erosion due to a low-field-side gas puff.

  10. Hybrid simulation research on formation mechanism of tungsten nanostructure induced by helium plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Atsushi M., E-mail: ito.atsushi@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Takayama, Arimichi; Oda, Yasuhiro [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Tamura, Tomoyuki; Kobayashi, Ryo; Hattori, Tatsunori; Ogata, Shuji [Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Ohno, Noriyasu; Kajita, Shin [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yajima, Miyuki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Noiri, Yasuyuki [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yoshimoto, Yoshihide [University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Saito, Seiki [Kushiro National College of Technology, Kushiro, Hokkaido 084-0916 (Japan); Takamura, Shuichi [Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392 (Japan); Murashima, Takahiro [Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-Ward, Sendai 980-8578 (Japan); Miyamoto, Mitsutaka [Shimane University, Matsue, Shimane 690-8504 (Japan); Nakamura, Hiroaki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-08-15

    The generation of tungsten fuzzy nanostructure by exposure to helium plasma is one of the important problems for the use of tungsten material as divertor plates in nuclear fusion reactors. In the present paper, the formation mechanisms of the helium bubble and the tungsten fuzzy nanostructure were investigated by using several simulation methods. We proposed the four-step process which is composed of penetration step, diffusion and agglomeration step, helium bubble growth step, and fuzzy nanostructure formation step. As the fourth step, the formation of the tungsten fuzzy nanostructure was successfully reproduced by newly developed hybrid simulation combining between molecular dynamics and Monte-Carlo method. The formation mechanism of tungsten fuzzy nanostructure observed by the hybrid simulation is that concavity and convexity of the surface are enhanced by the bursting of helium bubbles in the region around the concavity.

  11. A program to evaluate the erosion on the CFC tiles of the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    D' Agata, E. [ITER International Team, ITER Joint Work Site, Boltzmannstr 2, 85748 Garching (Germany)], E-mail: elio.dagata@iter.org; Ogorodnikova, O.V. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint-Paul-Lez-Durance (France); Tivey, R. [ITER International Team, ITER Joint Work Site, Boltzmannstr 2, 85748 Garching (Germany); Lowry, C.; Schlosser, J. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

    2007-10-15

    The plasma-facing surfaces of the ITER divertor are armoured with tungsten in the upper part of the inner and outer vertical targets, and carbon fibre composite (CFC) in the lower part, the region where the scrape-off layer intercepts the divertor. The CFC in the form of a monoblock in the vertical target is the most loaded part of the plasma-facing surfaces, and hence it is subjected to high erosion and has a significant risk of failure. A program has been developed with the aim of understanding the impact on the erosion lifetime due to a combination of two main effects: the material property variations (particularly pronounced in CFC) and the presence of joining defects. The software allows the evolution of the surface profile of the armour to be predicted and the margin on critical heat flux at the heat-sink-to-coolant interface to be estimated for a range of postulated defects, from start-of-life through to end-of-life of the component. In assessing erosion, the code takes account of geometry and sublimation, and physical and chemical erosion of the CFC armour. The incident angle (a glancing angle of a few degrees) of the particle and heat flux onto the target is taken into account. The program has been validated by comparison with analytical approximations very well validated against experimental data. The code has been developed in the APDL language to operate inside a commercial and certificated finite element program such as ANSYS.

  12. A program to evaluate the erosion on the CFC tiles of the ITER divertor

    International Nuclear Information System (INIS)

    D'Agata, E.; Ogorodnikova, O.V.; Tivey, R.; Lowry, C.; Schlosser, J.

    2007-01-01

    The plasma-facing surfaces of the ITER divertor are armoured with tungsten in the upper part of the inner and outer vertical targets, and carbon fibre composite (CFC) in the lower part, the region where the scrape-off layer intercepts the divertor. The CFC in the form of a monoblock in the vertical target is the most loaded part of the plasma-facing surfaces, and hence it is subjected to high erosion and has a significant risk of failure. A program has been developed with the aim of understanding the impact on the erosion lifetime due to a combination of two main effects: the material property variations (particularly pronounced in CFC) and the presence of joining defects. The software allows the evolution of the surface profile of the armour to be predicted and the margin on critical heat flux at the heat-sink-to-coolant interface to be estimated for a range of postulated defects, from start-of-life through to end-of-life of the component. In assessing erosion, the code takes account of geometry and sublimation, and physical and chemical erosion of the CFC armour. The incident angle (a glancing angle of a few degrees) of the particle and heat flux onto the target is taken into account. The program has been validated by comparison with analytical approximations very well validated against experimental data. The code has been developed in the APDL language to operate inside a commercial and certificated finite element program such as ANSYS

  13. Divertor modelling for conceptual studies of tokamak fusion reactor FDS-III

    International Nuclear Information System (INIS)

    Chen Yiping; Liu Songlin

    2010-01-01

    Divertor modelling for the conceptual studies of tokamak fusion reactor FDS-III was carried out by using the edge plasma code package B2.5-Eirene (SOLPS5.0). The modelling was performed by taking real MHD equilibrium and divertor geometry of the reactor into account. The profiles of plasma temperature, density and heat fluxes in the computational region and at the target plates have been obtained. The modelling results show that, with the fusion power P fu =2.6 GW and the edge density N edge =6.0x10 19 l/m 3 , the peak values of electron and ion heat fluxes at the outer target plate of divertor are respectively 93.92 MW/m 2 and 58.50 MW/m 2 . According to the modelling results it is suggested that some methods for reducing the heat fluxes at the target plates should be used in order to get acceptable level of power flux at the target plates for the divertor design of the reactor.

  14. Development of a compact W-shaped pumped divertor in JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, S.; Hosogane, N.; Masaki, K.; Kodama, K.; Sasajima, T.; Kishiya, K.; Takahashi, S.; Shimizu, K.; Akino, N.; Miyo, Y.; Hiratsuka, H.; Saidoh, M. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Inoue, M.; Umakoshi, T.; Onozuka, M.; Morimoto, M. [Mitsubishi Heavy Industries, Wadasaki-cho, Hyogo-ku, Kobe-shi, 642 (Japan)

    1998-09-01

    In JT-60U, the modification to a W-shaped pumped divertor will be completed in May 1997, aiming to realize sufficient reduction in heat flux to the targets and good H-mode confinement simultaneously. W-shaped geometry is optimized not only for forming radiative divertor plasmas and reducing the back flow of neutral particles but also for allowing various experimental configurations. Toroidally and poloidally segmented divertor plates, dome and baffles are arranged in a W-shaped poloidal configuration. The pumping speed can be changed during a shot by variable shutter valves in the three pumping ports under the outer baffle. The net throughput is enough for particle control in the steady radiative operations with high power NBI heating. Carbon fiber composite (CFC) tiles are used for the divertor targets and the divertor throat where large heat flux is expected. Gaps between two adjacent segments are carefully sealed to suppress the leak of neutral gas from the exhaust duct below the divertor and baffles. The strength of the whole structure is confirmed by an electromagnetic force analysis and structural analysis carried out for disruptions of 3 MA discharges with a halo current. (orig.) 11 refs.

  15. Divertor experiment for impurity control in DIVA

    International Nuclear Information System (INIS)

    Nagami, Masayuki

    1979-04-01

    Divertor actions of controlling the impurities and the transport of impurity ions in the plasma have been investigated in the DIVA device. Following are the results: (1) The radial transport of impurity ions is not described only by neoclassical theory, but it is strongly influenced by anomalous process. Radial diffusion of impurity ions across the whole minor radius is well described by a neoclassical diffusion superposed by the anomalous diffusion for protons. Due to this anomalous process, which spreads the radial density profile of impurity ions, 80 to 90% of the impurity flux in the plasma outer edge is shielded even in a nondiverted discharge. (2) The divertor reduces the impurity flux entering the main plasma by a factor of 2 to 4. The impurity ions shielded by the scrape-off plasma are rapidly guided into the burial chamber with a poloidal excursion time roughly equal to that of the scrape-off plasma. (3) The divertor reduces the impurity ion flux onto the main vacuum chamber by guiding the impurity ions diffusing from the main plasma into the burial chamber, thereby reducing the plasma-wall interaction caused by diffusing impurity ions at the main vacuum chamber. The impurity ions produced in the burial chamber may flow back to the main plasma through the scrape-off layer. However, roughly only 0.3% of the impurity flux into the scrape-off plasma in the burial chamber penetrates into the main plasma due to the impurity backflow. (4) A slight cooling of the scrape-off plasma with light-impurity injection effectively reduces the metal impurity production at the first wall by reducing the potential difference between the plasma and the wall, thereby reducing the accumulation of the metal impurity in the discharge. Radiation cooling by low-Z impurities in the plasma outer edge, which may become an important feature in future large tokamaks both with and without divertor, is numerically evaluated for carbon, oxygen and neon. (author)

  16. Simulation of residual thermostress in tungsten after repetitive ELM-like heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Pestchanyi, S., E-mail: serguei.pestchanyi@kit.edu [Karlsruhe Institute of Technology, IHM (Germany); Garkusha, I. [Institute of Plasma Physics of the NSC KIPT, Kharkov (Ukraine); Landman, I. [Karlsruhe Institute of Technology, IHM (Germany)

    2011-10-15

    Brittle destruction of tungsten armour under action of edge localised modes of plasma instabilities (ELMs) in ITER is an important issue determining the lifetime of the divertor. Besides, cracking of the armour produces tungsten dust with characteristic size of 1-10 {mu}m flying from the armour surface with velocities up to 10 m/s. Influx of the tungsten dust into the ITER confinement decreases the temperature of the plasma, reduces the thermonuclear gain and even may run the confinement into disruption. This paper describes experiments in QSPA-Kh50 plasma gun and modeling, which has been performed for providing more insight into the physics of tungsten cracking under action of ELMs and for confirmation of the important result on stabilization of the crack development at the tungsten armour surface, predicted in our previous paper - the same authors, 2010. The threshold value of energy density deposition for start of tungsten cracking has been measured as 0.3 MJ/m{sup 2} after 5-10 shots. From analytical considerations three times smaller threshold value has been predicted with increasing number of shots.

  17. Simulation of residual thermostress in tungsten after repetitive ELM-like heat loads

    International Nuclear Information System (INIS)

    Pestchanyi, S.; Garkusha, I.; Landman, I.

    2011-01-01

    Brittle destruction of tungsten armour under action of edge localised modes of plasma instabilities (ELMs) in ITER is an important issue determining the lifetime of the divertor. Besides, cracking of the armour produces tungsten dust with characteristic size of 1-10 μm flying from the armour surface with velocities up to 10 m/s. Influx of the tungsten dust into the ITER confinement decreases the temperature of the plasma, reduces the thermonuclear gain and even may run the confinement into disruption. This paper describes experiments in QSPA-Kh50 plasma gun and modeling, which has been performed for providing more insight into the physics of tungsten cracking under action of ELMs and for confirmation of the important result on stabilization of the crack development at the tungsten armour surface, predicted in our previous paper - the same authors, 2010. The threshold value of energy density deposition for start of tungsten cracking has been measured as 0.3 MJ/m 2 after 5-10 shots. From analytical considerations three times smaller threshold value has been predicted with increasing number of shots.

  18. The effects of particle recycling on the divertor plasma: A particle-in-cell with Monte Carlo collision simulation

    Science.gov (United States)

    Chang, Mingyu; Sang, Chaofeng; Sun, Zhenyue; Hu, Wanpeng; Wang, Dezhen

    2018-05-01

    A Particle-In-Cell (PIC) with Monte Carlo Collision (MCC) model is applied to study the effects of particle recycling on divertor plasma in the present work. The simulation domain is the scrape-off layer of the tokamak in one-dimension along the magnetic field line. At the divertor plate, the reflected deuterium atoms (D) and thermally released deuterium molecules (D2) are considered. The collisions between the plasma particles (e and D+) and recycled neutral particles (D and D2) are described by the MCC method. It is found that the recycled neutral particles have a great impact on divertor plasma. The effects of different collisions on the plasma are simulated and discussed. Moreover, the impacts of target materials on the plasma are simulated by comparing the divertor with Carbon (C) and Tungsten (W) targets. The simulation results show that the energy and momentum losses of the C target are larger than those of the W target in the divertor region even without considering the impurity particles, whereas the W target has a more remarkable influence on the core plasma.

  19. Elastic–plastic adhesive impacts of tungsten dust with metal surfaces in plasma environments

    Energy Technology Data Exchange (ETDEWEB)

    Ratynskaia, S., E-mail: svetlana.ratynskaia@ee.kth.se [KTH Royal Institute of Technology, Association EUROfusion-VR, Stockholm (Sweden); Tolias, P. [KTH Royal Institute of Technology, Association EUROfusion-VR, Stockholm (Sweden); Shalpegin, A. [Université de Lorraine, Institut Jean Lamour, Vandoeuvre-lès-Nancy (France); Vignitchouk, L. [KTH Royal Institute of Technology, Association EUROfusion-VR, Stockholm (Sweden); De Angeli, M. [Istituto di Fisica del Plasma – Consiglio Nazionale delle Ricerche, Milan (Italy); Bykov, I. [KTH Royal Institute of Technology, Association EUROfusion-VR, Stockholm (Sweden); Bystrov, K.; Bardin, S. [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Edisonbaan 14, 3439MN Nieuwegein (Netherlands); Brochard, F. [Université de Lorraine, Institut Jean Lamour, Vandoeuvre-lès-Nancy (France); Ripamonti, D. [Istituto per l’Energetica e le Interfasi – Consiglio Nazionale delle Ricerche, Milan (Italy); Harder, N. den; De Temmerman, G. [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Edisonbaan 14, 3439MN Nieuwegein (Netherlands)

    2015-08-15

    Dust-surface collisions impose size selectivity on the ability of dust grains to migrate in scrape-off layer and divertor plasmas and to adhere to plasma-facing components. Here, we report first experimental evidence of dust impact phenomena in plasma environments concerning low-speed collisions of tungsten dust with tungsten surfaces: re-bouncing, adhesion, sliding and rolling. The results comply with the predictions of the model of elastic-perfectly plastic adhesive spheres employed in the dust dynamics code MIGRAINe for sub- to several meters per second impacts of micrometer-range metal dust.

  20. Mechanical Design of the NSTX Liquid Lithium Divertor

    Energy Technology Data Exchange (ETDEWEB)

    R. Ellis, R. Kaita, H. Kugel, G. Paluzzi, M. Viola and R. Nygren

    2009-02-19

    The Liquid Lithium Divertor (LLD) on NSTX will be the first test of a fully-toroidal liquid lithium divertor in a high-power magnetic confinement device. It will replace part of the lower outboard divertor between a specified inside and outside radius, and ultimately provide a lithium surface exposed to the plasma with enough depth to absorb a significant particle flux. There are numerous technical challenges involved in the design. The lithium layer must be as thin as possible, and maintained at a temperature between 200 and 400 degrees Celsius to minimize lithium evaporation. This requirement leads to the use of a thick copper substrate, with a thin stainless steel layer bonded to the plasma-facing surface. A porous molybdenum layer is then plasma-sprayed onto the stainless steel, to provide a coating that facilitates full wetting of the surface by the liquid lithium. Other challenges include the design of a robust, vacuumcompatible heating and cooling system for the LLD. Replacement graphite tiles that provided the proper interface between the existing outer divertor and the LLD also had to be designed, as well as accommodation for special LLD diagnostics. This paper describes the mechanical design of the LLD, and presents analyses showing the performance limits of the LLD.

  1. Mechanical Design of the NSTX Liquid Lithium Divertor

    International Nuclear Information System (INIS)

    Ellis, R.; Kaita, R.; Kugel, H.; Paluzzi, G.; Viola, M.; Nygren, R.

    2009-01-01

    The Liquid Lithium Divertor (LLD) on NSTX will be the first test of a fully-toroidal liquid lithium divertor in a high-power magnetic confinement device. It will replace part of the lower outboard divertor between a specified inside and outside radius, and ultimately provide a lithium surface exposed to the plasma with enough depth to absorb a significant particle flux. There are numerous technical challenges involved in the design. The lithium layer must be as thin as possible, and maintained at a temperature between 200 and 400 degrees Celsius to minimize lithium evaporation. This requirement leads to the use of a thick copper substrate, with a thin stainless steel layer bonded to the plasma-facing surface. A porous molybdenum layer is then plasma-sprayed onto the stainless steel, to provide a coating that facilitates full wetting of the surface by the liquid lithium. Other challenges include the design of a robust, vacuum compatible heating and cooling system for the LLD. Replacement graphite tiles that provided the proper interface between the existing outer divertor and the LLD also had to be designed, as well as accommodation for special LLD diagnostics. This paper describes the mechanical design of the LLD, and presents analyses showing the performance limits of the LLD.

  2. Estimation of the contribution of gaps to tritium retention in the divertor of ITER

    International Nuclear Information System (INIS)

    Matveev, D; Kirschner, A; Litnovsky, A; Borodin, D; Samm, U; Schmid, K; Komm, M; Van Oost, G

    2014-01-01

    An estimation of the contribution of gaps to beryllium deposition and resulting tritium retention in the divertor of ITER is presented. Deposition of beryllium layers in gaps of the full tungsten divertor is simulated with the 3D-GAPS code. For gaps aligned along the poloidal direction, non-shaped and shaped solutions are compared. Plasma and impurity ion fluxes from Schmid (2008 Nucl. Fusion 48 105004) are used as input. Ion penetration into gaps is considered to be geometrical along magnetic field lines. The effect of realistic ion penetration into gaps is discussed. In total, gaps in the divertor are estimated to contribute about 0.3 mgT s −1 to the overall tritium retention dominated by toroidal gaps, which are not shaped. This amount corresponds to about 7800 ITER discharges up to the safety limit of 1 kg in-vessel tritium; excluding, however, tritium release during wall baking and retention at plasma-wetted and remote areas. (paper)

  3. Surface erosion issues and analysis for dissipative divertors

    International Nuclear Information System (INIS)

    Brooks, J.N.; Ruzic, D.N.; Hayden, D.B.; Turkot, R.B. Jr.

    1994-05-01

    Erosion/redeposition is examined for the sidewall of a dissipative divertor using coupled impurity transport, charge exchange, and sputtering codes, applied to a plasma solution for the ITER design. A key issue for this regime is possible runaway self-sputtering, due to the effect of a low boundary density and nearly parallel field geometry on redeposition parameters. Net erosion rates, assuming finite self-sputtering, vary with wall location, boundary conditions, and plasma solution, and are roughly of the following order: 200--2000 angstrom/s for beryllium, 10--100 angstrom/s for vanadium, and 0.3--3 angstrom/s for tungsten

  4. Towards the procurement of the ITER divertor

    International Nuclear Information System (INIS)

    Merola, M.; Tivey, R.; Martin, A.; Pick, M.

    2006-01-01

    The procurement of the ITER divertor is planned to start in 2009. On the basis of the present common understanding of the sharing of the ITER components, the Japanese Participating Team (JAPT) will supply the outer vertical target, the Russian Federation (RF) PT the dome liner and will perform the high heat flux testing, the EU PT will supply the inner vertical targets and the cassette bodies, including final assembly of the divertor plasma-facing components (PFCs). The manufacturing of the PFCs of the ITER divertor represents a challenging endeavor due to the high technologies which are involved, and due to the unprecedented series production. To mitigate the associated risks, special arrangements need to be put in place prior to and during procurement to ensure quality and to keep to the time schedule. Before procurement can start, an ITER review of the qualification and production capability of each candidate PT is planned. Well in advance of the assumed start of the procurement, each PT which would like to contribute to the divertor PFC procurement, should first demonstrate its technical qualification to carry out the procurement with the required quality, and in an efficient and timely manner. Appropriate precautions, like subdivision of the procurement into stages, are also to be adopted during the procurement phase to mitigate the consequences of possible unexpected manufacturing problems. In preparation for writing the procurement specification for the vertical targets, the topic of setting acceptance criteria is also being addressed. This activity has the objective of defining workable acceptance criteria for the PFC armour joints. A complete set of analyses is also in progress to assess the latest design modifications against the design requirements. This task includes neutronic, shielding, thermo-mechanical and electromagnetic analyses. More than half of the ITER plasma parameters that must be measured and the related diagnostics are located in the

  5. Retention of Hydrogen Isotopes in Divertor Tiles Used in JT-60U

    International Nuclear Information System (INIS)

    Hirohata, Y.; Shibahara, T.; Tanabe, T.; Oya, Y.; Arai, T.; Gotoh, Y.; Masaki, K.; Yagyu, J.; Oyaidzu, M.; Okuno, K.; Nishikawa, M.; Miya, N.

    2005-01-01

    Retention characteristics of deuterium and hydrogen retained in graphite tiles placed in the divertor region of JT-60U were investigated by thermal desorption spectroscopy (TDS). The deuterium retained in the near surface of all graphite tiles was mostly replaced by hydrogen due to exposure to hydrogen plasma at the final stage operations, resulting in main deuterium retention in the deeper region. The dominant species desorbed from the divertor tiles were H 2 , HD, D 2 and CH 4 . The smallest retention of hydrogen isotopes (H+D) was observed in the outer divertor tile which was eroded with maximum of 20 μm depth. The amount of H+D retained in the inner divertor tiles covered by the re-deposited layers increased with the thickness of the re-deposited layers. Hydrogen isotopes concentration ((H+D)/C) in the re-deposited layers was ∼0.02, which was much smaller than those observed in JET and other devices

  6. A bulk tungsten tile for JET: Heat flux tests in the MARION facility on the power-handling performance and validation of the thermal model

    International Nuclear Information System (INIS)

    Mertens, Ph.; Altmann, H.; Chaumet, P.; Joffrin, E.; Knaup, M.; Matthews, G.F.; Neubauer, O.; Nicolai, D.; Riccardo, V.; Tanchuk, V.; Thompson, V.; Uhlemann, R.; Samm, U.

    2011-01-01

    In the frame of the ITER-like Wall (ILW) for the JET tokamak, a divertor row made of bulk tungsten material has been developed for the position where the outer strike point is located in most of the foreseen plasma configurations. In the absence of active cooling, this represents a formidable challenge when one considers the temperature reached by tungsten (T W,surf > 2000 deg. C) and the vertical gradient ∂T/∂z = 5 x 10 4 K/m. As the development is drawing to an end and most components are in production, actual 1:1 prototypes are exposed to an ion beam with a power density around 7 MW/m 2 on the plasma-facing surface. Advantage is taken of the flexibility of the MARION facility to bombard the tungsten stack under shallow angles of incidence (∼6 o ) with a powerful beam of ions and neutrals (>70 MW/m 2 on axis). The shallow angles are important, with respect to the toroidal wetted surface, for properly simulating the expected performance under actual tokamak conditions. The MARION tests have been used to validate for a few typical cases the thermal calculations that were steadily developed along with the tungsten tile and, at the same time, to gather information on the actual temperatures of individual components. The latter is an important factor to a finer estimation of the power handling capabilities.

  7. Sequential and simultaneous thermal and particle exposure of tungsten

    International Nuclear Information System (INIS)

    Steudel, I; Huber, A; Kreter, A; Linke, J; Sergienko, G; Unterberg, B; Wirtz, M

    2016-01-01

    The broad array of expected loading conditions in a fusion reactor such as ITER necessitates high requirements on the plasma facing materials (PFMs). Tungsten, the PFM for the divertor region, the most affected part of the in-vessel components, must thus sustain severe, distinct exposure conditions. Accordingly, comprehensive experiments investigating sequential and simultaneous thermal and particle loads were performed on double forged pure tungsten, not only to investigate whether the thermal and particle loads cause damage but also if the sequence of exposure maintains an influence. The exposed specimens showed various kinds of damage such as roughening, blistering, and cracking at a base temperature where tungsten could be ductile enough to compensate the induced stresses exclusively by plastic deformation (Pintsuk et al 2011 J. Nucl. Mater. 417 481–6). It was found out that hydrogen has an adverse effect on the material performance and the loading sequence on the surface modification. (paper)

  8. Tungsten recrystallization and cracking under ITER-relevant heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Budaev, V.P., E-mail: Budaev@mail.ru [NRC «Kurchatov Institute», Akademika Kurchatova pl., Moscow (Russian Federation); Martynenko, Yu.V. [NRC «Kurchatov Institute», Akademika Kurchatova pl., Moscow (Russian Federation); National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow (Russian Federation); Karpov, A.V.; Belova, N.E. [NRC «Kurchatov Institute», Akademika Kurchatova pl., Moscow (Russian Federation); Zhitlukhin, A.M. [SRC RF TRINITI, Moscow Region (Russian Federation); Klimov, N.S., E-mail: klimov@triniti.ru [SRC RF TRINITI, Moscow Region (Russian Federation); National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow (Russian Federation); Podkovyrov, V.L.; Barsuk, V.A.; Putrik, A.B.; Yaroshevskaya, A.D. [SRC RF TRINITI, Moscow Region (Russian Federation); Giniyatulin, R.N. [Efremov Institute, St. Petersburg (Russian Federation); Safronov, V.M. [Institution «Project Center ITER», Moscow (Russian Federation); SRC RF TRINITI, Moscow Region (Russian Federation); Khimchenko, L.N. [Institution «Project Center ITER», Moscow (Russian Federation)

    2015-08-15

    The tungsten surface structure was analyzed after the test in the QSPA-T under heat loads relevant to those expected in the ITER during disruptions. Repeated pulses lead to the melting and the resolidification of the tungsten surface layer of ∼50 μm thickness. There is ∼50 μm thickness intermediate layer between the original structure and the resolidified layer. The intermediate layer is recrystallized and has a random grains’ orientation whereas the resolidified layer and basic structure have texture with preferable orientation 〈1 0 0〉 normal to the surface. The cracks which were normal to the surface were observed in the resolidified layer as well as the cracks which were parallel to the surface at the depth up to 300 μm. Such cracks can result in the brittle destruction which is a hazard for the full tungsten divertor of the ITER. The theoretical analysis of the crack formation reasons and a possible consequence for the ITER are given.

  9. Definition of acceptance criteria for the ITER divertor plasma-facing components through systematic experimental analysis

    International Nuclear Information System (INIS)

    Escourbiac, F; Richou, M; Guigon, R; Durocher, A; Schlosser, J; Grosman, A; Constans, S; Merola, M; Riccardi, B

    2009-01-01

    Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.

  10. Definition of acceptance criteria for the ITER divertor plasma-facing components through systematic experimental analysis

    Science.gov (United States)

    Escourbiac, F.; Richou, M.; Guigon, R.; Constans, S.; Durocher, A.; Merola, M.; Schlosser, J.; Riccardi, B.; Grosman, A.

    2009-12-01

    Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.

  11. Definition of acceptance criteria for the ITER divertor plasma-facing components through systematic experimental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Escourbiac, F; Richou, M; Guigon, R; Durocher, A; Schlosser, J; Grosman, A [CEA/IRFM, F-13108, Saint-Paul-lez-Durance (France); Constans, S [AREVA-NP, Le Creusot (France); Merola, M [ITER Organization, Cadarache (France); Riccardi, B [Fusion For Energy, Barcelona (Spain)], E-mail: frederic.escourbiac@cea.fr

    2009-12-15

    Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.

  12. Advanced divertor concepts

    International Nuclear Information System (INIS)

    Ohyabu, N.; Komori, A.; Sagara, A.; Suzuki, H.; Morisaki, T.; Masuzaki, S.; Watanabe, T.; Noda, N.; Motojima, O.

    1996-01-01

    LHD divertor development program has generated various innovative divertor concepts and technologies which will help to improve the plasma performance in both helical and tokamak devices. They are two divertor operational scenarios (confinement improvement by generating high temperature divertor plasma and simultaneous achievement of radiative cooling and H-mode-like confinement improvement). Local island divertor geometry has also been proposed. This new divertor has been successfully tested in the CHS device and is planned to be installed in the LHD device. In addition, technological development of new efficient hydrogen pumping schemes (carbon sheet pump and membrane pump) are being pursued for enhancement of the divertor control capability. 17 refs., 8 figs

  13. Supply of a prototype component for the ITER divertor baffle

    International Nuclear Information System (INIS)

    Bobin-Vastra, I.; Febvre, M.; Schedler, B.; Ploechl, L.; Bouveret, Y.; Cauvin, D.; Raisson, G.; Merola, M.

    2001-01-01

    The ITER divertor baffle is one of the Plasma facing components which are developed in the frame of the ITER concept. The supply consisted in the manufacturing of four panels with four First Wall geometries using macroblock or heat sink+armour concepts. DS-Copper, and CuCrZr were the materials for the heat sink, and CFC or Tungsten Plasma spray were the armour. The panels included two Copper-based tubes each. The final purpose is the comparison of the fabricability of each type and the performances of each panel under heat fluxes

  14. Design and Test of Wendelstein 7-X Water-Cooled Divertor Scraper

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J. [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, Garching, Germany; Greuner, Henri [Max Planck Institute for Plasma Physics, Garching, Germany; Ehrke, Gunnar [Max Planck Institute of Plasma Physics, Greifswald, Germany; Boeswirth, Bernd [Max Planck Institute for Plasma Physics, Garching, Germany; Wang, Zhongwei [Max Planck Institute for Plasma Physics, Garching, Germany; Clark, Emily [The University of Tennessee, Knoxville; Lumsdaine, Arnold [ORNL; Tretter, Jorg [Max Planck Institute for Plasma Physics, Garching, Germany; Junghanns, Patrick [Max Planck Institute for Plasma Physics, Garching, Germany; Stadler, Reinhold [Max Planck Institute for Plasma Physics, Garching, Germany; McGinnis, William Dean [ORNL; Lore, Jeremy D. [ORNL; Team, W7-X [Max-Planck-Institut fur Plasmaphysik, Griefswald, Germany

    2018-04-01

    Heat load calculations have indicated the possible overloading of the ends of the water-cooled divertor facing the pumping gap beyond their technological limit. The intention of the scraper is the interception of some of the plasma fluxes both upstream and downstream before they reach the divertor surface. The scraper is divided into six modules of four plasma facing components (PFCs); each module has four PFCs hydraulically connected in series by two water boxes (inlet and outlet). A full-scale prototype of one module has been manufactured. Development activities have been carried out to connect the water boxes to the cooling pipes of the PFCs by tungsten inert gas internal orbital welding. This prototype was successfully tested in the GLADIS facility with 17 MW/m2 for 500 cycles. The results of these activities have confirmed the possible technological basis for a fabrication of the water-cooled scraper.

  15. A program to Evaluate the Erosion on the CFC tiles of the ITER Divertor

    International Nuclear Information System (INIS)

    DAgata, E.; Tivey, R.; Ogorodnikova, O.; Lowry, Ch.; Schlosser, J.

    2006-01-01

    The plasma-facing surfaces of the ITER divertor are armoured with tungsten in the upper part of the inner and outer vertical targets and carbon-fibre composite (CFC) in the lower part, the region where the scrape-off layer intercepts the divertor. The CFC in the form of a monoblock in the vertical target is the most loaded part of the plasma-facing surfaces, and hence it is subjected to high erosion and has a significant risk of failure. A program has been developed with the aim of understanding the impact on the erosion lifetime and on the probability of a critical heat flux event in the heat sink of a combination of two main effects: the material property variations (particularly pronounced in CFC) and the presence of joining defects. The software allows the evolution of the surface profile of the armour to be predicted and the margin on critical heat flux at the heat-sink-to-coolant interface to be estimated for a range of postulated defects, for start-of-life through to end-of-life of the component. In assessing erosion, the code takes account of geometry and sublimation, and physical and chemical erosion of the CFC armour. The code allows the computation of the effect of normal and off-normal (ELMs, etc.) operation. The incident angle (a glancing angle of a few degrees) of the particle and heat flux onto the target is taken into account. The program has been validated by comparison with analytical approximations and experimental data. The code has been developed in APDL language to operate inside a commercial and certificate finite element program such as ANSYS. (author)

  16. Development of a full-size divertor cassette prototype for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ulrickson, M.A. [Sandia National Labs., Albuquerque, NM (United States); Vieider, G.; Pacher, H.D. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany). NET Design Team] [and others

    1996-10-01

    Production of a full-size divertor cassette involves eight major components. All of the components are mounted on the cassette body. Inner divertor channel components for the vertical target design are being provided by the Japan Home Team. Outer divertor channel components for the vertical target design are being provided by the European and United States Home Teams. Gas box liners are being provided by the Russian Home Team. The full-size components manufactured by the four parties will be shipped to the US Home Team for assembly into a full size divertor cassette. The techniques for assembly and maintenance of the cassette will be demonstrated during this process. The assembled cassette will be tested for proper flow distribution and proof of the filling and draining procedures. The testing will include vacuum leak tightness at full temperature and pressure, cyclic heating to 150 {degrees}C, verification of dimensional accuracy of the assembled components, and application of thermal gradients to measure dimensional stability. The development of the divertor for the International Thermonuclear Experimental Reactor (ITER) depends on successful R&D efforts on materials, joining, and plasma materials interactions. Results of the development program are presented. The scale-up of the processes developed in the basic research and development tasks is accomplished by producing and high-heat-flux testing medium and full-scale mock- ups. The design of the mock-ups is discussed.

  17. Micro-powder injection moulding of tungsten

    International Nuclear Information System (INIS)

    Zeep, B.

    2007-12-01

    For He-cooled Divertors as integral components of future fusion power plants, about 300000 complex shaped tungsten components are to be fabricated. Tungsten is the favoured material because of its excellent properties (high melting point, high hardness, high sputtering resistance, high thermal conductivity). However, the material's properties cause major problems for large scale production of complex shaped components. Due to the resistance of tungsten to mechanical machining, new fabrication technologies have to be developed. Powder injection moulding as a well established shaping technology for a large scale production of complex or even micro structured parts might be a suitable method to produce tungsten components for fusion applications but is not yet commercially available. The present thesis is dealing with the development of a powder injection moulding process for micro structured tungsten components. To develop a suitable feedstock, the powder particle properties, the binder formulation and the solid load were optimised. To meet the requirements for a replication of micro patterned cavities, a special target was to define the smallest powder particle size applicable for micro-powder injection moulding. To investigate the injection moulding performance of the developed feedstocks, experiments were successfully carried out applying diverse cavities with structural details in micro dimension. For debinding of the green bodies, a combination of solvent debinding and thermal debinding has been adopted for injection moulded tungsten components. To develop a suitable debinding strategy, a variation of the solvent debinding time, the heating rate and the binder formulation was performed. For investigating the thermal consolidation behaviour of tungsten components, sinter experiments were carried out applying tungsten powders suitable for micro-powder injection moulding. First mechanical tests of the sintered samples showed promising material properties such as a

  18. Assessment of X-point target divertor configuration for power handling and detachment front control

    Directory of Open Access Journals (Sweden)

    M.V. Umansky

    2017-08-01

    Full Text Available A study of long-legged tokamak divertor configurations is performed with the edge transport code UEDGE (Rognlien et al., J. Nucl. Mater. 196, 347, 1992. The model parameters are based on the ADX tokamak concept design (LaBombard et al., Nucl. Fusion 55, 053020, 2015. Several long-legged divertor configurations are considered, in particular the X-point target configuration proposed for ADX, and compared with a standard divertor. For otherwise identical conditions, a scan of the input power from the core plasma is performed. It is found that as the power is reduced to a threshold value, the plasma in the outer leg transitions to a fully detached state which defines the upper limit on the power for detached divertor operation. Reducing the power further results in the detachment front shifting upstream but remaining stable. At low power the detachment front eventually moves to the primary X-point, which is usually associated with degradation of the core plasma, and this defines the lower limit on the power for the detached divertor operation. For the studied parameters, the operation window for a detached divertor in the standard divertor configuration is very small, or even non-existent; under the same conditions for long-legged divertors the detached operation window is quite large, in particular for the X-point target configuration, allowing a factor of 5–10 variation in the input power. These modeling results point to possibility of stable fully detached divertor operation for a tokamak with extended divertor legs.

  19. LHD helical divertor

    International Nuclear Information System (INIS)

    Ohyabu, N.; Watanabe, T.; Ji Hantao

    1993-07-01

    The Large Helical Device (LHD) now under construction is a heliotron/torsatron device with a closed divertor system. The edge LHD magnetic structure has been studied in detail. A peculiar feature of the configuration is existence of edge surface layers, a complicated three dimensional magnetic structure which does not, however, seem to hamper the expected divertor functions. Two divertor operational modes are being considered for the LHD experiment, high density, cold radiative divertor operation as a safe heat removal scheme and high temperature divertor plasma operation. In the latter operation, a divertor plasma with temperature of a few kev, generated by efficient pumping, expects to lead to significant improvement in core plasma confinement. Conceptual designs of the LHD divertor components are under way. (author)

  20. Soft X-ray radiation parameters of nested tungsten wire array

    International Nuclear Information System (INIS)

    Ning Jiamin; Jiang Shilun; Xu Rongkun; Xu Zeping; Li Zhenghong; Yang Jianlun

    2011-01-01

    Implosions with nested tungsten wire array were performed at the Angara-5-1 facility in Russian Research Centre. The experimental results of nested tungsten wire array are compared with those of single array. Radiation parameters of nested array are discussed based on four different dynamic models. When the implosions of outer and inner wire arrays are synchronized,the relatively uniform distribution of inner layer plasma will improve the uniformity of outer layer plasma. As compared with single array, nested array has an increase of 32% in X-ray radiation power. (authors)

  1. Fabrication and installation of the DIII-D radiative divertor structures

    International Nuclear Information System (INIS)

    Hollerbach, M.A.; Smith, J.P.

    1997-11-01

    Phase 1A of the Radiative Divertor Program (RDP) is now installed in the DIII-D tokamak located at General Atomics. This hardware was added to enhance both the Divertor and Advanced Tokamak research elements of the DIII-D program. This installation consists of a divertor baffle enveloping a cryocondensation pump at the upper outer divertor target of DIII-D. The divertor baffle consists of two toroidally continuous Inconel 625 water-cooled rings and a toroidal array of discontinuous radiatively-cooled plates. The water-cooled rings are each comprised of four quadrants, mechanically formed, chem.-milled, and resistance and TIG welded Inconel 625 panels. The supports attaching the panels to the vessel wall are designed to accommodate the differential thermal expansion between the rings and vessel during bake and to react the electromagnetic loads induced during disruptions. They are made from either Inconel 625 or Inconel 718 depending on the stress levels predicted in Finite Element Analysis. Gas seals are designed to limit the leakage from the baffle chamber back to the core plasma to 2,500 ell/s and incorporate plasma sprayed alumina to minimize currents flowing through them. The bulk of the water-cooled ring fabrication was performed by a vendor, however, the final machining of penetrations in the conical ring for diagnostic access was performed in-house using a unique machining configuration. This configuration, and the machining of the diagnostic cutouts is described. Graphite tiles were machined from ATJ graphite to form a smooth plasma-facing surface. The installation of all divertor components required only four weeks

  2. Divertor Design and Physics Issues of Huge Power Handling for SlimCS Demo Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Asakura, N.; Hoshino, K.; Tobita, K.; Someya, Y.; Utoh, H.; Nakamura, M., E-mail: asakura.nobuyuki@jaea.go.jp [Japan Atomic Energy Agency, Rokkasho (Japan); Shimizu, K. [Japan Atomic Energy Agency, Naka (Japan); Takizuka, T. [Osaka University, Osaka (Japan)

    2012-09-15

    Full text: Power exhaust scenario for a 3 GW class fusion reactor with the ITER-size plasma has been developed with enhancing the radiation loss from seeding impurity. Transport of plasma, impurity and neutrals was simulated self-consistently, for the first time, under the Demo divertor condition using an integrated divertor simulation code SONIC. The total heat load, q{sub target}, was evaluated including radiation power load and neutral load, in addition to the plasma heat load. It was found that heat and particle diffusion coefficients significantly affect the plasma detachment. For the case of increasing the coefficients by the factor of two, peak q{sub target} is reduced from 18 MW/m{sup 2} to below the engineering design level of 10 MW/m{sup 2}, while the characteristic width of the heat flux at the midplane SOL increases slightly from 2.2 to 2.7 mm. It was also found that that enhancement of the local {chi} and D at the outer SOL affects a reduction in the peak q{sub target} near the separatrix. Effects of the divertor geometry such as the divertor leg were investigated. Outer divertor leg length was extended to 2.7 m, while the magnetic flux expansion at the target is reduced to a half compared to the reference case of 1.8 m. Large radiation volume is shifted further upstream from the target due to a reduction in T{sub e}. The peak q{sub target} decreases to 10 MW/m{sup 2} due to reduction in both the plasma heat load and the radiation power load. (author)

  3. Plasma parameters in the COMPASS divertor during Ohmic plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrova, M. [Institute of Plasma Physics, Academy of Sciences of the Czech Republic v.v.i., Prague (Czech Republic); Emil Djakov Institute of Electronics, Bulgarian Academy of Sciences, Sofia (Bulgaria); Dejarnac, R.; Stoeckel, J.; Havlicek, J.; Janky, F.; Panek, R. [Institute of Plasma Physics, Academy of Sciences of the Czech Republic v.v.i., Prague (Czech Republic); Popov, Ts.K. [Faculty of Physics, St. Kl. Ohridski University of Sofia (Bulgaria); Ivanova, P.; Vasileva, E. [Emil Djakov Institute of Electronics, Bulgarian Academy of Sciences, Sofia (Bulgaria); Kovacic, J. [Jozef Stefan Institute, Ljubljana (Slovenia)

    2014-04-15

    This paper reports on probe measurements of the electron energy distribution function and plasma potential in the divertor region of the COMPASS tokamak during D-shaped plasmas. The probe data have been processed using the novel first-derivative technique. A comparison with the results obtained by processing the same data with the classical probe technique, which assumes Maxwellian electron energy distribution functions is presented and discussed. In the vicinity of the inner and outer strike points of the divertor the electron energy distribution function can be approximated by a bi-Maxwellian, with a dominating low-energy electron population (4-7 eV) and a minority of higher energy electrons (12-25 eV). In the private flux region between the two strike points the electron energy distribution function is found to be Maxwellian with temperatures in the range of 7-10 eV. The comparative analysis using both techniques has allowed a better insight into the underlying physical processes at the divertor region of the COMPASS tokamak. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Self-castellation of tungsten monoblock under high heat flux loading and impact of material properties

    Directory of Open Access Journals (Sweden)

    S. Panayotis

    2017-08-01

    Full Text Available In the full-tungsten divertor qualification program at ITER Organization, macro-cracks, so called self-castellation were found in a fraction of tungsten monoblocks during cyclic high heat flux loading at 20MW/m2. The number of monoblocks with macro-cracks varied with the tungsten products used as armour material. In order to understand correlation between the macro-crack appearance and W properties, an activity to characterize W monoblock materials was launched at the IO. The outcome highlighted that the higher the recrystallization resistance, the lower the number of cracks detected during high heat flux tests. Thermo-mechanical finite element modelling demonstrated that the maximum surface temperature ranges from 1800 °C to 2200 °C and in this range recrystallization of tungsten occurred. Furthermore, it indicated that loss of strength due to recrystallization is responsible for the development of macro-cracks in the tungsten monoblock.

  5. Effects of ELMs on ITER divertor armour materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhitlukhin, A. [SRC RF TRINITI, Troitsk, 142190, Moscow Region (Russian Federation)]. E-mail: zhitlukh@triniti.ru; Klimov, N. [SRC RF TRINITI, Troitsk, 142190, Moscow Region (Russian Federation); Landman, I. [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany); Linke, J. [Forschungszentrum Juelich, EURATOM-Association, Juelich (Germany)]. E-mail: j.linke@fz-juelich.de; Loarte, A. [EFDA, Boltzmannstr. 2, 85748 Garching (Germany); Merola, M. [EFDA, Boltzmannstr. 2, 85748 Garching (Germany); Podkovyrov, V. [SRC RF TRINITI, Troitsk, 142190, Moscow Region (Russian Federation); Federici, G. [ITER JWS Garching, Boltzmannstr. 2, 85748 Garching (Germany); Bazylev, B. [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany); Pestchanyi, S. [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany); Safronov, V. [SRC RF TRINITI, Troitsk, 142190, Moscow Region (Russian Federation); Hirai, T. [Forschungszentrum Juelich, EURATOM-Association, Juelich (Germany); Maynashev, V. [SRC RF TRINITI, Troitsk, 142190, Moscow Region (Russian Federation); Levashov, V. [SRC RF TRINITI, Troitsk, 142190, Moscow Region (Russian Federation); Muzichenko, A. [SRC RF TRINITI, Troitsk, 142190, Moscow Region (Russian Federation)

    2007-06-15

    This paper is concerned with investigation of an erosion of the ITER-like divertor plasma facing components under plasma heat loads expected during the Type I ELMs in ITER. These experiments were carried out on plasma accelerator QSPA at the SRC RF TRINITI under EU/RF collaboration. Targets were exposed by series repeated plasma pulses with heat loads in a range of 0.5-1.5 MJ/m{sup 2} and pulse duration 0.5 ms. Erosion of CFC macrobrushes was determined mainly by sublimation of PAN-fibres that was less than 2.5 {mu}m per pulse. The CFC erosion was negligible at the energy density less than 0.5 MJ/m{sup 2} and was increased to the average value 0.3 {mu}m per pulse at 1.5 MJ/m{sup 2}. The pure tungsten macrobrushes erosion was small in the energy range of 0.5-1.3 MJ/m{sup 2}. The sharp growth of tungsten erosion and the intense droplet ejection were observed at the energy density of 1.5 MJ/m{sup 2}.

  6. Effects of ELMs on ITER divertor armour materials

    Science.gov (United States)

    Zhitlukhin, A.; Klimov, N.; Landman, I.; Linke, J.; Loarte, A.; Merola, M.; Podkovyrov, V.; Federici, G.; Bazylev, B.; Pestchanyi, S.; Safronov, V.; Hirai, T.; Maynashev, V.; Levashov, V.; Muzichenko, A.

    2007-06-01

    This paper is concerned with investigation of an erosion of the ITER-like divertor plasma facing components under plasma heat loads expected during the Type I ELMs in ITER. These experiments were carried out on plasma accelerator QSPA at the SRC RF TRINITI under EU/RF collaboration. Targets were exposed by series repeated plasma pulses with heat loads in a range of 0.5-1.5 MJ/m2 and pulse duration 0.5 ms. Erosion of CFC macrobrushes was determined mainly by sublimation of PAN-fibres that was less than 2.5 μm per pulse. The CFC erosion was negligible at the energy density less than 0.5 MJ/m2 and was increased to the average value 0.3 μm per pulse at 1.5 MJ/m2. The pure tungsten macrobrushes erosion was small in the energy range of 0.5-1.3 MJ/m2. The sharp growth of tungsten erosion and the intense droplet ejection were observed at the energy density of 1.5 MJ/m2.

  7. Study of particle pumping characteristics for different pumping geometries in JT-60U and DIII-D divertors

    International Nuclear Information System (INIS)

    Takenaga, H.; Sakasai, A.; Kubo, H.

    2001-01-01

    Particle pumping characteristics were compared between pumping from the inner side private flux region (IPP) and pumping from both sides of the private flux region (BPP) in the JT-60U W shaped divertor, and between JT-60U IPP and pumping in the DIII-D lower baffled divertor. The pumping flux for BPP is smaller than that for IPP by about a factor of 2 with weak in-out asymmetry of recycling neutral flux and by a factor of 3.5-6.5 with strong in-out asymmetry. The reduction of the pumping flux for BPP is consistent with Monte Carlo simulations, where backflow at the outer pumping slot is observed due to in-out recycling asymmetry. The pumping flux in DIII-D at I p =0.8 MA and B T =1.6 T is comparable to or smaller than that for JT-60U IPP at I p =1.0 MA, B T =3.8 T and I p =1.5 MA, B T =3.5 T in the same density regime. In the DIII-D divertor with pumping from the private flux region, the pumping flux decreases with increasing in-out asymmetry. The pumping flux normalized by the integrated D α emission over the whole plasma exhibits a similar dependence on the distance between the pumping slot and the strike point in JT-60U IPP and the DIII-D lower divertor with pumping through the outer divertor plasma region. (author)

  8. Tritium permeation evaluation through vertical target of divertor based on recent tritium transport properties

    OpenAIRE

    中村 博文; 西 正孝

    2003-01-01

    Re-evaluation of tritium permeation through vertical target of divertor under the ITER operation condition was carried out using tritium transport properties in the candidate materials such as the diffusion coefficient and the trapping factors in tungsten for armor, and the surface recombination coefficient on copper for the heat sink obtained by authors' recent investigation (authors' data), which simulated the plasma-facing conditions of ITER. Evaluation with the data set of previous evalua...

  9. Progress in ergodic divertor operation on Tore Supra

    International Nuclear Information System (INIS)

    Ghendrih, Ph.; Becoulet, M.; Colas, L.; Grosman, A.; Guirlet, R.; Gunn, J.; Loarer, T.; Azeroual, A.; Basiuk, V.; Beaumont, B.; Becoulet, A.; Bremond, S.; Bucalossi, J.; Capes, H.; Corre, Y.; Costanzo, L.; Michelis, C. de; Devynck, P.; Feron, S.; Friant, C.; Garbet, X.; Giannella, R.; Grisolia, C.; Hess, W.; Hogan, J.; Ladurelle, L.; Laugier, F.; Martin, G.; Mattioli, M.; Meslin, B.; Monier-Garbet, P.; Moulin, D.; Nguyen, F.; Pascal, J.Y.; Pecquet, A.L.; Pegourie, B.; Reichle, R.; Saint-Laurent, F.; Vallet, J.C.; Zabiego, M.

    1999-09-01

    Upgrade of the Tore ergodic divertor has led to significant progress in ergodic divertor physics. The disruptive limit governed by the stochastization of the outer magnetic surfaces is found to occur for a value of the Chirikov parameter reaching 2 on the magnetic surface q = 2 + 3 / 12. This experimentally observed robustness allows one to operate at very low safety factor on the separatrix (q ∼ 2). Numerical analysis of ballooning turbulence in a stochastic layer indicates that the decay of the density fluctuations is in associated with an increase of the fluctuating electric drift velocity. The bottom line is then an enhanced cross-field transport in the vicinity of the target plates. This lowering of confinement appears to be compensated by an intrinsic transport barrier on the electron temperature. The 3-D response of the temperature field is computed with a fluid code. The intrinsic transport barrier at the separatrix, reported experimentally, can be recovered together with small amplitude temperature modulations in the divertor volume. Experimental evidence of the 3 density regimes (linear, high recycling and detachment) is reported. The low critical density values for these transitions indicate that similar parallel physics govern the axisymmetric and ergodic divertor, despite the open configuration of the latter. Measurement and understanding of these density regimes provide a means for feedback control of plasma density and an improvement in ICRH coupling scenarios. Experimental data also indicated that particle control with the vented target plates is effective. Increase of impurity control and radiation efficiency are recalled. Global power balance has been analysed. These results confirm the enhanced radiation capacity of the ergodic divertor. (author)

  10. Manufacturing and testing of a prototypical divertor vertical target for ITER

    Science.gov (United States)

    Merola, M.; Plöchl, L.; Chappuis, Ph; Escourbiac, F.; Grattarola, M.; Smid, I.; Tivey, R.; Vieider, G.

    2000-12-01

    After an extensive R&D activity, a medium-scale divertor vertical target prototype has been manufactured by the EU Home Team. This component contains all the main features of the corresponding ITER divertor design and consists of two units with one cooling channel each, assembled together and having an overall length and width of about 600 and 50 mm, respectively. The upper part of the prototype has a tungsten macro-brush armour, whereas the lower part is covered by CFC monoblocks. A number of joining techniques were required to manufacture this component as well as an appreciable effort in the development of suitable non-destructive testing methods. The component was high heat flux tested in FE200 electron beam facility at Le Creusot, France. It endured 100 cycles at 5 MW/m 2, 1000 cycles at 10 MW/m 2 and more then 1000 cycles at 15-20 MW/m 2. The final critical heat flux test reached a value in excess of 30 MW/m 2.

  11. Development of a full-size divertor cassette prototype for ITER

    International Nuclear Information System (INIS)

    Ulrickson, M.A.; Vieider, G.; Pacher, H.D.

    1996-01-01

    Production of a full-size divertor cassette involves eight major components. All of the components are mounted on the cassette body. Inner divertor channel components for the vertical target design are being provided by the Japan Home Team. Outer divertor channel components for the vertical target design are being provided by the European and United States Home Teams. Gas box liners are being provided by the Russian Home Team. The full-size components manufactured by the four parties will be shipped to the US Home Team for assembly into a full size divertor cassette. The techniques for assembly and maintenance of the cassette will be demonstrated during this process. The assembled cassette will be tested for proper flow distribution and proof of the filling and draining procedures. The testing will include vacuum leak tightness at full temperature and pressure, cyclic heating to 150 degrees C, verification of dimensional accuracy of the assembled components, and application of thermal gradients to measure dimensional stability. The development of the divertor for the International Thermonuclear Experimental Reactor (ITER) depends on successful R ampersand D efforts on materials, joining, and plasma materials interactions. Results of the development program are presented. The scale-up of the processes developed in the basic research and development tasks is accomplished by producing and high-heat-flux testing medium and full-scale mock- ups. The design of the mock-ups is discussed

  12. Application of the radiating divertor approach to innovative tokamak divertor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, T.W., E-mail: petrie@fusion.gat.com [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Allen, S.L.; Fenstermacher, M.E. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States); Groebner, R.J. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Holcomb, C.T. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States); Kolemen, E. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543-0451 (United States); La Haye, R.J. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Lasnier, C.J. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States); Leonard, A.W.; Luce, T.C. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); McLean, A.G. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States); Maingi, R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543-0451 (United States); Moyer, R.A. [University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0417 (United States); Solomon, W.M. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543-0451 (United States); Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States); Turco, F. [Columbia University, 2960 Broadway, New York, NY 10027 (United States); Watkins, J.G. [Sandia National Laboratory, PO Box 5800, Albuquerque, NM 87185 (United States)

    2015-08-15

    We survey the results of recent DIII-D experiments that tested the effectiveness of three innovative tokamak divertor concepts in reducing divertor heat flux while still maintaining acceptable energy confinement under neon/deuterium-based radiating divertor (RD) conditions: (1) magnetically unbalanced high performance double-null divertor (DND) plasmas, (2) high performance double-null “Snowflake” (SF-DN) plasmas, and (3) single-null H-mode plasmas having different isolation from their divertor targets. In general, all three concepts adapt well to RD conditions, achieving significant reduction in divertor heat flux (q{sub ⊥p}) and maintaining high performance metrics, e.g., 50–70% reduction in peak divertor heat flux for DND and SF-DN plasmas that are characterized by β{sub N} ≅ 3.0 and H{sub 98(y,2)} ≈ 1.35. It is also demonstrated that q{sub ⊥p} could be reduced ≈50% by extending the parallel connection length (L{sub ||-XPT}) in the scrape-off layer between the X-point and divertor targets over a variety of the RD and non-RD environments tested.

  13. Some problems of brazing technology for the divertor plate manufacturing

    International Nuclear Information System (INIS)

    Prokofiev, Yu.G.; Barabash, V.R.; Gervash, A.A.; Khorunov, V.F.; Maksimova, S.V.; Vinokurov, V.F.; Fabritsiev, S.A.

    1992-01-01

    Among the different design options of the ITER reactor divertor, the joints of the carbon-based materials and molybdenum alloys and joints of tungsten and copper alloys are considered. High-temperature brazing is one of the most promising joining methods for the plasma facing and heat sink materials. The use of brazing for creation of W-Cu and graphite-Mo joints are given here. In addition, the investigation results of microstructure, microhardness and mechanical properties of the joints are presented. For W-Cu samples an influence of the neutron irradiation on the joining strength was studied. (orig.)

  14. Some problems of brazing technology for the divertor plate manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Prokofiev, Yu.G.; Barabash, V.R.; Gervash, A.A. (D.V. Efremov Scientific Research Inst. of Electrophysical Apparatus, St. Petersburg (Russia)); Khorunov, V.F.; Maksimova, S.V. (E.O. Paton Inst. of Electronwelding, Kiev (Ukraine)); Vinokurov, V.F. (Central Scientific Research Inst. of Structural Materials ' Prometey' , St. Petersburg (Russia)); Fabritsiev, S.A.

    1992-09-01

    Among the different design options of the ITER reactor divertor, the joints of the carbon-based materials and molybdenum alloys and joints of tungsten and copper alloys are considered. High-temperature brazing is one of the most promising joining methods for the plasma facing and heat sink materials. The use of brazing for creation of W-Cu and graphite-Mo joints are given here. In addition, the investigation results of microstructure, microhardness and mechanical properties of the joints are presented. For W-Cu samples an influence of the neutron irradiation on the joining strength was studied. (orig.).

  15. Some problems of brazing technology for the divertor plate manufacturing

    Science.gov (United States)

    Prokofiev, Yu. G.; Barabash, V. R.; Khorunov, V. F.; Maksimova, S. V.; Gervash, A. A.; Fabritsiev, S. A.; Vinokurov, V. F.

    1992-09-01

    Among the different design options of the ITER reactor divertor, the joints of the carbon-based materials and molybdenum alloys and joints of tungsten and copper alloys are considered. High-temperature brazing is one of the most promising joining methods for the plasma facing and heat sink materials. The use of brazing for creation of W-Cu and graphite-Mo joints are given here. In addition, the investigation results of microstructure, microhardness and mechanical properties of the joints are presented. For W-Cu samples an influence of the neutron irradiation on the joining strength was studied.

  16. The WEST project mechanical analysis of the divertor structure according to the nuclear construction code

    Energy Technology Data Exchange (ETDEWEB)

    Larroque, S., E-mail: sebastien.larroque@cea.fr [CEA Cadarache, IRFM, F-13108 Saint-Paul-lez-Durance (France); Portafaix, C. [ITER Organization, 13108 Saint-Paul-lez-Durance (France); Saille, A.; Doceul, L.; Bucalossi, J.; Samaille, F.; Freslon, S. de [CEA Cadarache, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2014-10-15

    Highlights: • Divertor structure is mainly loaded by electromagnetical forces. • A simplified FEM analysis give the stresses in the structure. • RCCM criteria are required for the sizing. • Refined finite element models are used for local overstresses. - Abstract: The Tore Supra tokamak is being transformed in an x-point divertor fusion device in the frame of the WEST project, launched in support to the ITER tungsten divertor strategy. The installation of coils inside the vacuum vessel led to the design of a divertor supporting platform able to meet the project requirements and the associated electromagnetic loads. This paper illustrates the design, the method and the results of the thermomechanical elastic stress analyses performed in 2012. The validation of the integrity of the structure is based on the compliance with RCCMR design criteria (even though these Design and Construction rules for Mechanical Components of nuclear installations are not required for such experimental fusion device). Several 3D analyses are performed with the ANSYS code. The major one is a global analysis of half structure which determinates the stresses in the main part of the components. It gives an idea of the areas which needs local analyses. It also provides the interface loads for junction studies or simplified local model.

  17. D III-D divertor target heat flux measurements during Ohmic and neutral beam heating

    International Nuclear Information System (INIS)

    Hill, D.N.; Petrie, T.; Mahdavi, M.A.; Lao, L.; Howl, W.

    1988-01-01

    Time resolved power deposition profiles on the D III-D divertor target plates have been measured for Ohmic and neutral beam injection heated plasmas using fast response infrared thermography (τ ≤ 150 μs). Giant Edge Localized Modes have been observed which punctuate quiescent periods of good H-mode confinement and deposit more than 5% of the stored energy of the core plasma on the divertor armour tiles on millisecond time-scales. The heat pulse associated with these events arrives approximately 0.5 ms earlier on the outer leg of the divertor relative to the inner leg. The measured power deposition profiles are displaced relative to the separatrix intercepts on the target plates, and the peak heat fluxes are a function of core plasma density. (author). Letter-to-the-editor. 11 refs, 7 figs

  18. Features and Initial Results of the DIII-D Advanced Tokamak Radiative Divertor

    International Nuclear Information System (INIS)

    R.C. O'Neill; A.S. Bozek; M.E. Friend; C.B. Baxi; E.E. Reis; M.A. Mahdavi; D.G. Nilson; S.L. Allen; W.P. West

    1999-01-01

    The Radiative Divertor Program of DIII-D is in its final phase with the installation of the cryopump and baffle structure (Phase 1B Divertor) in the upper inner radius of the DIII-D vacuum vessel at the end of this calendar year. This divertor, in conjunction with the Advanced Divertor and the Phase 1A Divertor, located in the lower and upper outer radius of the DIII-D vacuum vessel respectively, provides pumping for density control of the plasma while minimizing the effects on the core confinement. Each divertor consists of a cryobelium cooling ring and a shielded protective structure. The cryo/helium-cooled pumps of all three diverters exhaust helium from the plasma. The protective shielded structure or baffle structure, in the case of the diverters located at the top of the vacuum vessel, provides baffling of neutral charged particles and minimize the flow of impurities back into the core of the plasma. The baffles, which consist of water-cooled panels that allow for the attachment of tiles of various sizes and shapes, house gas puff systems. The intent of the puffing systems is to inject gas in and around the divertor to minimize the heat flux on specific areas on the divertor and its components. The reduction of the heat flux on the divertor minimizes the impurities that are generated from excess heat on divertor components, specifically tiles. Experiments involving the gas puff systems and the divertor structures have shown the heat flux can be spread over a large area of the divertor, reducing the peak heat flux in specific areas. The three diverters also incorporate a variety of diagnostic tools such as halo current monitors, magnetic probes and thermocouples to monitor certain plasma characteristics as well as determine the effectiveness of the cryopumps and baffle configurations. The diverters were designed to optimize pumping performance and to withstand the electromagnetic loads from both halo currents and toroidal induced currents. Incorporated also

  19. Divertor Heat Flux Reduction and Detachment in the National Spherical Torus eXperiment.

    Science.gov (United States)

    Soukhanovskii, Vsevolod

    2007-11-01

    Steady-state handling of the heat flux is a critical divertor issue for both the International Thermonuclear Experimental Reactor and spherical torus (ST) devices. Because of an inherently compact divertor, it was thought that ST-based devices might not be able to fully utilize radiative and dissipative divertor techniques based on induced power and momentum loss. However, initial experiments conducted in the National Spherical Torus Experiment in an open geometry horizontal carbon plate divertor using 0.8 MA 2-6 MW NBI-heated lower single null H-mode plasmas at the lower end of elongations κ=1.8-2.4 and triangularities δ=0.45-0.75 demonstrated that high divertor peak heat fluxes, up to 6-10 MW/ m^2, could be reduced by 50-75% using a high-recycling radiative divertor regime with D2 injection. Furthermore, similar reduction was obtained with a partially detached divertor (PDD) at high D2 injection rates, however, it was accompanied by an X-point MARFE that quickly led to confinement degradation. Another approach takes advantage of the ST relation between strong shaping and high performance, and utilizes the poloidal magnetic flux expansion in the divertor region. Up to 60 % reduction in divertor peak heat flux was achieved at similar levels of scrape-off layer power by varying plasma shaping and thereby increasing the outer strike point (OSP) poloidal flux expansion from 4-6 to 18-22. In recent experiments conducted in highly-shaped 1.0-1.2 MA 6 MW NBI heated H-mode plasmas with divertor D2 injection at rates up to 10^22 s-1, a PDD regime with OSP peak heat flux 0.5-1.5 MW/m^2 was obtained without noticeable confinement degradation. Calculations based on a two point scrape-off layer model with parameterized power and momentum losses show that the short parallel connection length at the OSP sets the upper limit on the radiative exhaust channel, and both the impurity radiation and large momentum sink achievable only at high divertor neutral pressures are required

  20. Erosion of tungsten armor after multiple intense transient events in ITER

    International Nuclear Information System (INIS)

    Bazylev, B.N.; Janeschitz, G.; Landman, I.S.; Pestchanyi, S.E.

    2005-01-01

    Macroscopic erosion by melt motion is the dominating damage mechanism for tungsten armour under high-heat loads with energy deposition W > 1 MJ/m 2 and τ > 0.1 ms. For ITER divertor armour the results of a fluid dynamics simulation of the melt motion erosion after repetitive stochastically varying plasma heat loads of consecutive disruptions interspaced by ELMs are presented. The heat loads for particular single transient events are numerically simulated using the two-dimensional MHD code FOREV-2D. The whole melt motion is calculated by the fluid dynamics code MEMOS-1.5D. In addition for the ITER dome melt motion erosion of tungsten armour caused by the lateral radiation impact from the plasma shield at the disruption and ELM heat loads is estimated

  1. Erosion of tungsten armor after multiple intense transient events in ITER

    Science.gov (United States)

    Bazylev, B. N.; Janeschitz, G.; Landman, I. S.; Pestchanyi, S. E.

    2005-03-01

    Macroscopic erosion by melt motion is the dominating damage mechanism for tungsten armour under high-heat loads with energy deposition W > 1 MJ/m 2 and τ > 0.1 ms. For ITER divertor armour the results of a fluid dynamics simulation of the melt motion erosion after repetitive stochastically varying plasma heat loads of consecutive disruptions interspaced by ELMs are presented. The heat loads for particular single transient events are numerically simulated using the two-dimensional MHD code FOREV-2D. The whole melt motion is calculated by the fluid dynamics code MEMOS-1.5D. In addition for the ITER dome melt motion erosion of tungsten armour caused by the lateral radiation impact from the plasma shield at the disruption and ELM heat loads is estimated.

  2. Recent progress in R and D on tungsten alloys for divertor structural and plasma facing materials

    Energy Technology Data Exchange (ETDEWEB)

    Wurster, S., E-mail: stefan.wurster@oeaw.ac.at [Erich Schmid Institute of Materials Science, Austria and Association EURATOM-ÖAW, Jahnstrasse 12, A-8700 Leoben (Austria); Baluc, N.; Battabyal, M. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Villigen PSI (Switzerland); Crosby, T. [University of California, Mechanical and Aerospace Engineering Department, Los Angeles, CA (United States); Du, J. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); García-Rosales, C. [Centro de Estudios e Investigaciones Técnicas de Gipuzkoa (CEIT), San Sebastián (Spain); Hasegawa, A. [Department of Quantum Science and Energy Engineering, Faculty of Engineering, Tohoku University (Japan); Hoffmann, A. [Plansee Metall GmbH, Reutte (Austria); Kimura, A. [Institute of Advanced Energy, Kyoto University (Japan); Kurishita, H. [International Research Center for Nuclear Material Science, Institute for Materials Research, Tohoku University (Japan); Kurtz, R.J. [Pacific Northwest National Laboratory, Richland, WA (United States); Li, H. [Erich Schmid Institute of Materials Science, Austria and Association EURATOM-ÖAW, Jahnstrasse 12, A-8700 Leoben (Austria); Chair of Atomistic Modelling and Design of Materials, University of Leoben, Leoben (Austria); Noh, S.; Reiser, J. [Karlsruhe Institute of Technology, Karlsruhe (Germany); Riesch, J. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Rieth, M. [Karlsruhe Institute of Technology, Karlsruhe (Germany); Setyawan, W. [Pacific Northwest National Laboratory, Richland, WA (United States); Walter, M. [Karlsruhe Institute of Technology, Karlsruhe (Germany); You, J.-H. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); and others

    2013-11-15

    Tungsten materials are candidates for plasma-facing components for the International Thermonuclear Experimental Reactor and the DEMOnstration power plant because of their superior thermophysical properties. Because these materials are not common structural materials like steels, knowledge and strategies to improve the properties are still under development. These strategies discussed here, include new alloying approaches and microstructural stabilization by oxide dispersion strengthened as well as TiC stabilized tungsten based materials. The fracture behavior is improved by using tungsten laminated and tungsten wire reinforced materials. Material development is accompanied by neutron irradiation campaigns. Self-passivation, which is essential in case of loss-of-coolant accidents for plasma facing materials, can be achieved by certain amounts of chromium and titanium. Furthermore, modeling and computer simulation on the influence of alloying elements and heat loading and helium bombardment will be presented.

  3. Thermal desorption and surface modification of He+ implanted into tungsten

    International Nuclear Information System (INIS)

    Fu Zhang; Yoshida, N.; Iwakiri, H.; Xu Zengyu

    2004-01-01

    Tungsten divertor plates in fusion reactors will be subject to helium bombardment. Helium retention and thermal desorption is a concerned issue in controlling helium ash. In the present study, fluence dependence of thermal desorption behavior of helium in tungsten was studied at different irradiation temperatures and ion energies. Results showed that helium desorption could start at ∼400 K with increasing fluence, while no noticeable peaks were detected at low fluence. Total helium desorption reached a saturation value at high fluence range, which was not sensitive to irradiation temperature or ion energy for the conditions evaluated. Surface modifications caused by either ion irradiation or thermal desorption were observed by SEM. The relationship of surface modifications and helium desorption behavior was discussed. Some special features of elevated irradiation temperature and lower ion energy were also indicated

  4. Divertor plasma modification by divertor biasing and edge ergodization in JFT-2M

    International Nuclear Information System (INIS)

    Shoji, T.; Nagashima, K.; Tamai, H.; Ohdachi, S.; Miura, Y.; Ohasa, K.; Maeda, H.; Ohyabu, N.; Leonard, A.W.; Aikawa, H.; Fujita, T.; Hoshino, K.; Kawashima, H.; Matsuda, T.; Maeno, M.; Mori, M.; Ogawa, H.; Shimada, M.; Uehara, K.; Yamauchi, T.

    1995-01-01

    The effects of divertor biasing and edge ergodization on the divertor plasma have been investigated in the JFT-2M tokamak. Experimental results show; (1) The differential divertor biasing can change the in/out asymmetry of the divertor plasma. It especially changes the density on the ion side divertor plasma. The in/out electron pressure difference has a good correlation with the biasing current. (2) The unipolar divertor biasing can change the density profile of divertor plasma. The radial electric field and shear flow are the cause for this change. (3) The electron temperature of the divertor plasma in the H-mode with frequent ELMs induced by edge ergodization is lower than that of usual H-mode. That is due to the enhancement of the radial particle flux by frequent ELMs, ((orig.))

  5. A new divertor plates design concept for the double null NET configuration

    International Nuclear Information System (INIS)

    Farfaletti-Casali, F.; Renda, V.; Federici, G.; Papa, L.

    1986-01-01

    A new divertor plate design concept for the Double Null NET configuration (NET-DN) is presented. This concept applies to the plasma configuration of NET and takes advantage by the maintenance scheme of the internal components adopted in NET. According to this maintenance approach, which uses the top loading of the internal segments, 48 inboard removable segments, 3 for each of the 16 reactor sectors, act as simple protective panels, gathering together in only one piece the plates of both the upper and lower divertor regions and the intermediate portion of the inboard first wall. They are cooled by water flowing inside a set of hairpin-shaped, stainless steel tubes, arranged in poloidal direction inside a copper heat sink, and fed by supply lines at the top of the reactor. The surface facing the plasma is covered by a tungsten alloy layer. In such a way, the maintenance of the two divertor regions and of the inboard first wall can be easily achieved by removing the inboard panels from the top of the reactor. The layout of the cooling system and preliminary thermohydraulics and thermomechanical calculations, carried out for assessing the feasibility of the proposed system for the NET reference configuration, are reported in this paper. (author)

  6. A new divertor plates design concept for the double null net configuration

    International Nuclear Information System (INIS)

    Farfaletti-Casali, F.; Iop, O.; Renda, V.; Federici, G.; Papa, L.

    1987-01-01

    A new divertor plate design concept for the Double Null NET configuration (NET-DN) is presented in this paper. This concept applies to the plasma configuration of NET and takes advantage by the maintenance scheme of the internal components adopted in NET. According to this maintenance approach, which uses the top loading of the internal segments, 48 inboard removable segments, 3 for each of the 16 reactor sectors, act as simple protective panels, gathering together in only one piece the plates of both the upper and lower divertor regions and the intermediate portion of the inboard first wall. They are cooled by water flowing inside a set of hairpin-shaped, stainless steel tubes, arranged in poloidal direction inside a copper heat sink, and fed by supply lines at the top of the reactor. The surface facing the plasma is covered by a tungsten alloy layer. In such a way, the maintenance of the two divertor regions and of the inboard first wall can be easily achieved by removing the inboard panels from the top of the reactor. The layout of the cooling system and preliminary thermohydraulics and thermomechanical calculations, carried out for assessing the feasibility of the proposed system for the NET reference configuration, are reported in this paper

  7. Characterization of dust particles produced in an all-tungsten wall tokamak and potentially mobilized by airflow

    Energy Technology Data Exchange (ETDEWEB)

    Rondeau, A., E-mail: anthony.rondeau@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, SCA, 91192 Gif-sur-Yvette (France); Peillon, S.; Roynette, A.; Sabroux, J.-C.; Gelain, T.; Gensdarmes, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, SCA, 91192 Gif-sur-Yvette (France); Rohde, V. [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Grisolia, C. [CEA, IRFM, 13108 Saint-Paul-lez-Durance (France); Chassefière, E. [Laboratoire Géosciences Paris Sud (GEOPS), UMR 8148, Université Paris Sud, 91403 Orsay Cedex (France)

    2015-08-15

    At the starting of the shutdown of the AUG (ASDEX Upgrade: Axially Symmetric Divertor EXperiment) German tokamak, we collected particles deposited on the divertor surfaces by means of a dedicated device called “Duster Box”. This device allows to collect the particles using a controlled airflow with a defined shear stress. Consequently, the particles collected correspond to a potentially mobilizable fraction, by an airflow, of deposited dust. A total of more than 70,000 tungsten particles was, analysed showing a bimodal particle size distribution with a mode composed of flakes at 0.6 μm and a mode composed of spherical particles at 1.8 μm.

  8. Tungsten coatings electro-deposited on CFC substrates from oxide molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ningbo; Zhang, Yingchun, E-mail: zycustb@163.com; Lang, Shaoting; Jiang, Fan; Wang, Lili

    2014-12-15

    Tungsten is considered as plasma facing material in fusion devices because of its high melting point, its good thermal conductivity, its low erosion rate and its benign neutron activation properties. On the other hand, carbon based materials like C/C fiber composites (CFC) have been used for plasma facing materials (PFMs) due to their high thermal shock resistance, light weight and high strength. Tungsten coatings on CFC substrates are used in the JET divertor in the frame of the JET ITER-like wall project, and have been prepared by plasma spray (PS) and other techniques. In this study, tungsten coatings were electro-deposited on CFC from Na{sub 2}WO{sub 4}–WO{sub 3} molten salt under various deposition parameters at 900 °C in air. In order to obtain tungsten coatings with excellent performance, the effects of pulse duration ratio and pulse current density on microstructures and crystal structures of tungsten coatings were investigated by X-ray diffraction (XRD, Rigaku Industrial Co., Ltd., D/MAX-RB) and a scanning electron microscope (SEM, JSM 6480LV). It is found that the pulsed duration ratio and pulse current density had a significant influence on tungsten nucleation and electro-crystallization phenomena. SEM observation revealed that intact, uniform and dense tungsten coatings formed on the CFC substrates. Both the average grain size and thickness of the coating increased with the pulsed current density. The XRD results showed that the coatings consisted of a single phase of tungsten with the body centered cubic (BCC) structure. The oxygen content of electro-deposited tungsten coatings was lower than 0.05%, and the micro-hardness was about 400 HV.

  9. H-mode WEST tungsten divertor operation: deuterium and nitrogen seeded simulations with SOLEDGE2D-EIRENE

    Directory of Open Access Journals (Sweden)

    G. Ciraolo

    2017-08-01

    Full Text Available Simulations of WEST H-mode divertor scenarios have been performed with SOLEDGE2D-EIRENE edge plasma transport code, both for pure deuterium and nitrogen seeded discharge. In the pure deuterium case, a target heat flux of 8 MW/m2 is reached, but misalignment between heat and the particle outflux yields 50 eV plasma temperature at the target plates. With nitrogen seeding, the heat and particle outflux are observed to be aligned so that lower plasma temperatures at the target plates are achieved together with the required high heat fluxes. This change in heat and particle outflux alignment is analysed with respect to the role of divertor geometry and the impact of vertical vs horizontal target plates on neutrals spreading.

  10. Final steps to an all tungsten divertor tokamak

    International Nuclear Information System (INIS)

    Neu, R.; Bobkov, V.; Dux, R.; Kallenbach, A.; Puetterich, Th.; Greuner, H.; Gruber, O.; Herrmann, A.; Hopf, Ch.; Krieger, K.; Maggi, C.F.; Maier, H.; Mayer, M.; Rohde, V.; Schmid, K.; Suttrop, W.

    2007-01-01

    Currently 85% of the plasma facing components of ASDEX Upgrade are tungsten coated. Carbon influx from W PFCs is still observed but a reduction of the C content is found in plasma discharges and a lower C fraction is measured in deposited layers in agreement with modelling. W sputtering from the low field side guard and ICRF limiters is mainly due to fast particles from NBI as well as from ions accelerated in the rectified sheath during ICRF operation. The increase of the W source area is reflected in increased W concentrations. For medium to high density discharges the techniques developed so far, namely central heating and ELM pace-making, allow keeping the W concentration in the range of 10 -5 . Boronisation strongly reduces the W influxes and similarly the W content especially during ICRF operation, but this reduction is only temporary and equilibrium is reached already after about 100 discharges

  11. Dirac R -matrix calculations for the electron-impact excitation of neutral tungsten providing noninvasive diagnostics for magnetic confinement fusion

    Science.gov (United States)

    Smyth, R. T.; Ballance, C. P.; Ramsbottom, C. A.; Johnson, C. A.; Ennis, D. A.; Loch, S. D.

    2018-05-01

    Neutral tungsten is the primary candidate as a wall material in the divertor region of the International Thermonuclear Experimental Reactor (ITER). The efficient operation of ITER depends heavily on precise atomic physics calculations for the determination of reliable erosion diagnostics, helping to characterize the influx of tungsten impurities into the core plasma. The following paper presents detailed calculations of the atomic structure of neutral tungsten using the multiconfigurational Dirac-Fock method, drawing comparisons with experimental measurements where available, and includes a critical assessment of existing atomic structure data. We investigate the electron-impact excitation of neutral tungsten using the Dirac R -matrix method, and by employing collisional-radiative models, we benchmark our results with recent Compact Toroidal Hybrid measurements. The resulting comparisons highlight alternative diagnostic lines to the widely used 400.88-nm line.

  12. Tungsten and beryllium armour development for the JET ITER-like wall project

    International Nuclear Information System (INIS)

    Maier, H.; Hirai, T.; Rubel, M.; Neu, R.; Mertens, Ph.; Greuner, H.; Hopf, Ch.; Matthews, G.F.; Neubauer, O.; Piazza, G.; Gauthier, E.; Likonen, J.; Mitteau, R.; Maddaluno, G.; Riccardi, B.; Philipps, V.; Ruset, C.; Lungu, C.P.; Uytdenhouwen, I.

    2007-01-01

    For the ITER-like wall project at JET the present main chamber CFC tiles will be exchanged with Be tiles and in parallel a fully tungsten-clad divertor will be prepared. Therefore three R and D programmes were initiated: Be coatings on Inconel as well as Be erosion markers were developed for the first wall of the main chamber. High heat flux screening and cyclic loading tests carried out on the Be coatings on Inconel showed excellent performance, above the required power and energy density. For the divertor a conceptual design for a bulk W horizontal target plate was investigated, with the emphasis on minimizing electromagnetic forces. The design consisted of stacks of W lamellae of 6 mm width that were insulated in the toroidal direction. High heat flux tests of a test module were performed with an electron beam at an absorbed power density up to 9 MW m -2 for more than 150 pulses and finally with increasing power loads leading to surface temperatures in excess of 3000 0 C. No macroscopic failure occurred during the test while SEM showed the development of micro-cracks on the loaded surface. For all other divertor parts R and D was performed to provide the technology to coat the 2-directional CFC material used at JET with thin tungsten coatings. The W-coated CFC tiles were subjected to heat loads with power densities ranging up to 23.5 MW m -2 and exposed to cyclic heat loading for 200 pulses at 10.5 MW m -2 . All coatings developed cracks perpendicular to the CFC fibres due to the stronger contraction of the coating upon cool-down after the heat pulses

  13. Tungsten and beryllium armour development for the JET ITER-like wall project

    Science.gov (United States)

    Maier, H.; Hirai, T.; Rubel, M.; Neu, R.; Mertens, Ph.; Greuner, H.; Hopf, Ch.; Matthews, G. F.; Neubauer, O.; Piazza, G.; Gauthier, E.; Likonen, J.; Mitteau, R.; Maddaluno, G.; Riccardi, B.; Philipps, V.; Ruset, C.; Lungu, C. P.; Uytdenhouwen, I.; EFDA contributors, JET

    2007-03-01

    For the ITER-like wall project at JET the present main chamber CFC tiles will be exchanged with Be tiles and in parallel a fully tungsten-clad divertor will be prepared. Therefore three R&D programmes were initiated: Be coatings on Inconel as well as Be erosion markers were developed for the first wall of the main chamber. High heat flux screening and cyclic loading tests carried out on the Be coatings on Inconel showed excellent performance, above the required power and energy density. For the divertor a conceptual design for a bulk W horizontal target plate was investigated, with the emphasis on minimizing electromagnetic forces. The design consisted of stacks of W lamellae of 6 mm width that were insulated in the toroidal direction. High heat flux tests of a test module were performed with an electron beam at an absorbed power density up to 9 MW m-2 for more than 150 pulses and finally with increasing power loads leading to surface temperatures in excess of 3000 °C. No macroscopic failure occurred during the test while SEM showed the development of micro-cracks on the loaded surface. For all other divertor parts R&D was performed to provide the technology to coat the 2-directional CFC material used at JET with thin tungsten coatings. The W-coated CFC tiles were subjected to heat loads with power densities ranging up to 23.5 MW m-2 and exposed to cyclic heat loading for 200 pulses at 10.5 MW m-2. All coatings developed cracks perpendicular to the CFC fibres due to the stronger contraction of the coating upon cool-down after the heat pulses.

  14. Electro-chemically-based technologies for processing of tungsten components in fusion technology

    International Nuclear Information System (INIS)

    Holstein, N.; Konys, J.; Krauss, W.; Lorenz, J.

    2010-01-01

    In fusion technology layers and bulk components fabricated from tungsten and W-alloys are used as functional materials, e.g. as coatings of blanket modules or T-permeation barriers and also as structural components in a He-cooled divertor. Their application under high heat loads and temperatures is besides manufacturing, also challenging regarding joining, caused e.g. by expansion mismatches in combination with steel or other diffusion issues. Driven by these needs, electro-chemically-based technologies were analyzed concerning their advantages in processing in the fields of soft structuring of tungsten alloys and in deposition of functional scales. The Electro-Chemistry (EC) of tungsten is characterized by its affection to build up passivation layers in aqueous media during the initial oxidation, which is the result of an unavoidable basic electrochemical reaction with water (W + 3H 2 O → WO 3 + 3H 2 ), although the element standard potential is situated between common EC material like iron and copper. (orig.)

  15. Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake

    International Nuclear Information System (INIS)

    Kotschenreuther, Mike; Valanju, Prashant; Covele, Brent; Mahajan, Swadesh

    2013-01-01

    Advanced divertors are magnetic geometries where a second X-point is added in the divertor region to address the serious challenges of burning plasma power exhaust. Invoking physical arguments, numerical work, and detailed model magnetic field analysis, we investigate the magnetic field structure of advanced divertors in the physically relevant region for power exhaust—the scrape-off layer. A primary result of our analysis is the emergence of a physical “metric,” the Divertor Index DI, which quantifies the flux expansion increase as one goes from the main X-point to the strike point. It clearly separates three geometries with distinct consequences for divertor physics—the Standard Divertor (DI = 1), and two advanced geometries—the X-Divertor (XD, DI > 1) and the Snowflake (DI < 1). The XD, therefore, cannot be classified as one variant of the Snowflake. By this measure, recent National Spherical Torus Experiment and DIIID experiments are X-Divertors, not Snowflakes

  16. Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake

    Energy Technology Data Exchange (ETDEWEB)

    Kotschenreuther, Mike; Valanju, Prashant; Covele, Brent; Mahajan, Swadesh [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2013-10-15

    Advanced divertors are magnetic geometries where a second X-point is added in the divertor region to address the serious challenges of burning plasma power exhaust. Invoking physical arguments, numerical work, and detailed model magnetic field analysis, we investigate the magnetic field structure of advanced divertors in the physically relevant region for power exhaust—the scrape-off layer. A primary result of our analysis is the emergence of a physical “metric,” the Divertor Index DI, which quantifies the flux expansion increase as one goes from the main X-point to the strike point. It clearly separates three geometries with distinct consequences for divertor physics—the Standard Divertor (DI = 1), and two advanced geometries—the X-Divertor (XD, DI > 1) and the Snowflake (DI < 1). The XD, therefore, cannot be classified as one variant of the Snowflake. By this measure, recent National Spherical Torus Experiment and DIIID experiments are X-Divertors, not Snowflakes.

  17. Automated magnetic divertor design for optimal power exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Blommaert, Maarten

    2017-07-01

    . These flaws in the magnetic model are then overcome by elaborating a strategy to include the full FBE code into the optimal design approach. Using the full model, results are then presented in application to the novel WEST (tungsten (W) Environment in Steady-state Tokamak) divertor. Finally, one-shot optimization methods are considered for further ac- celeration of the optimal design procedure. Instead of fully solving state and adjoint equations in each optimization iteration, one-shot methods perform only a single iteration of state and adjoint solver in each optimization iteration. To reduce the cost of design updates, a grid deformation method is derived for strictly flux-aligned grids. Starting from a literature review, a novel one-shot strategy is then elaborated that features the globalization approach of state-of-the-art one-shot methods while yielding increased efficiency and practical usability. On an unconstrained test case, the novel method shows stable convergence.

  18. Automated magnetic divertor design for optimal power exhaust

    International Nuclear Information System (INIS)

    Blommaert, Maarten

    2017-01-01

    in the magnetic model are then overcome by elaborating a strategy to include the full FBE code into the optimal design approach. Using the full model, results are then presented in application to the novel WEST (tungsten (W) Environment in Steady-state Tokamak) divertor. Finally, one-shot optimization methods are considered for further ac- celeration of the optimal design procedure. Instead of fully solving state and adjoint equations in each optimization iteration, one-shot methods perform only a single iteration of state and adjoint solver in each optimization iteration. To reduce the cost of design updates, a grid deformation method is derived for strictly flux-aligned grids. Starting from a literature review, a novel one-shot strategy is then elaborated that features the globalization approach of state-of-the-art one-shot methods while yielding increased efficiency and practical usability. On an unconstrained test case, the novel method shows stable convergence.

  19. Hydrogen retention studies on lithiated tungsten exposed to glow discharge plasmas under varying lithiation environments using Thermal Desorption Spectroscopy and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A. de, E-mail: alfonso.decastro@ciemat.es [Fusion National Laboratory-CIEMAT, Av Complutense 40, 28040 Madrid (Spain); Valson, P. [Max-Planck-Institut für Plasmaphysik, Wendelsteinstraße 1, 17491 Greifswald (Germany); Tabarés, F.L. [Fusion National Laboratory-CIEMAT, Av Complutense 40, 28040 Madrid (Spain)

    2017-04-15

    For the design of a Fusion Reactor based on a liquid lithium divertor target and a tungsten first wall at high temperature, the interaction of the wall material with plasmas of significant lithium content must be assessed, as issues like fuel retention, tungsten embrittlement and enhanced sputtering may represent a showstopper for the selection of the first wall material compatible with the presence of liquid metal divertor. In this work we address this topic for the first time at the laboratory level, hot W samples (100 °C) have been exposed to Glow Discharges of H{sub 2} or Li-seeded H{sub 2} followed by in situ thermal desorption studies (TDS) of the uptake of H{sub 2} on the samples. Pure and pre-lithiated tungsten was investigated in order to evaluate the differential effect of Li ion implantation on H retention. Global particle balance was also used for the determination of trapped H into the full W wall of the plasma chamber. A factor of 3-4 lower retention was deduced for samples and main W wall exposed to H/Li plasma than that measured on pre-lithiated W.

  20. Design feasibility study of a divertor component reinforced with fibrous metal matrix composite laminate

    International Nuclear Information System (INIS)

    You, J.-H.

    2005-01-01

    Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated

  1. Design feasibility study of a divertor component reinforced with fibrous metal matrix composite laminate

    Energy Technology Data Exchange (ETDEWEB)

    You, J.-H. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching (Germany)]. E-mail: j.h.you@ipp.mpg.de

    2005-01-01

    Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated.

  2. Manufacturing and testing of a prototypical divertor vertical target for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Merola, M. E-mail: merolam@ipp.mpg.de; Ploechl, L.; Chappuis, Ph.; Escourbiac, F.; Grattarola, M.; Smid, I.; Tivey, R.; Vieider, G

    2000-12-01

    After an extensive R and D activity, a medium-scale divertor vertical target prototype has been manufactured by the EU Home Team. This component contains all the main features of the corresponding ITER divertor design and consists of two units with one cooling channel each, assembled together and having an overall length and width of about 600 and 50 mm, respectively. The upper part of the prototype has a tungsten macro-brush armour, whereas the lower part is covered by CFC monoblocks. A number of joining techniques were required to manufacture this component as well as an appreciable effort in the development of suitable non-destructive testing methods. The component was high heat flux tested in FE200 electron beam facility at Le Creusot, France. It endured 100 cycles at 5 MW/m{sup 2}, 1000 cycles at 10 MW/m{sup 2} and more then 1000 cycles at 15-20 MW/m{sup 2}. The final critical heat flux test reached a value in excess of 30 MW/m{sup 2}.

  3. Plans of LHD divertor experiment

    International Nuclear Information System (INIS)

    Ohyabu, Nobuyoshi; Komori, Akio; Sagara, Akio; Noda, Nobuaki; Motojima, Osamu

    1996-01-01

    Scenarios of the LHD divertor experiment are presented. In the LHD divertor experimental program, various innovative divertor concepts and technologies, developed during its design phase will be utilized to improve the plasma performance. Two divertor operational scenarios (confinement improvement by generating high temperature divertor plasma and simultaneous achievement of radiative cooling and H-mode-like confinement improvement) are among them. Local island divertor geometry has also been proposed. This new divertor has been successfully tested in the CHS device and is planned to be installed in the LHD device. In addition, technological development of new efficient hydrogen pumping schemes (carbon sheet pump and membrane pump) are being pursued for enhancement of the divertor control capability. (author)

  4. Simulation of divertor targets shielding during transients in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Pestchanyi, Sergey, E-mail: serguei.pestchanyi@kit.edu [KIT, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen (Germany); Pitts, Richard; Lehnen, Michael [ITER Organization,Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-01

    Highlights: • We simulated plasma shielding effect during disruption in ITER using the TOKES code. • It has been found that vaporization is unavoidable under action of ITER transients, but plasma shielding drastically reduces the divertor target damage: the melt pool and the vaporization region widths reduced 10–15 times. • A simplified 1D model describing the melt pool depth and the shielded heat flux to the divertor targets have been developed. • The results of the TOKES simulations have been compared with the analytic model when the model is valid. - Abstract: Direct extrapolation of the disruptive heat flux on ITER conditions predicts severe melting and vaporization of the divertor targets causing their intolerable damage. However, tungsten vaporized from the target at initial stage of the disruption can create plasma shield in front of the target, which effectively protects the target surface from the rest of the heat flux. Estimation of this shielding efficiency has been performed using the TOKES code. The shielding effect under ITER conditions is found to be very strong: the maximal depth of the melt layer reduced 4 times, the melt layer width—more than 10 times and vaporization region shrinks 10–15 times due to shielding for unmitigated disruption of 350 MJ discharge. The simulation results show complex, 2D plasma dynamics of the shield under ITER conditions. However, a simplified analytic model, valid for rough estimation of the maximum value for the shielded flux to the target and for the melt depth at the target surface has been developed.

  5. Post-examination of helium-cooled tungsten components exposed to DEMO specific cyclic thermal loads

    International Nuclear Information System (INIS)

    Ritz, G.; Hirai, T.; Linke, J.; Norajitra, P.; Giniyatulin, R.; Singheiser, L.

    2009-01-01

    A concept of helium-cooled tungsten finger module was developed for the European DEMO divertor. The concept was realized and tested under DEMO specific cyclic thermal loads up to 10 MW/m 2 . The modules were examined carefully before and after loading by metallography and microstructural analyses. While before loading mainly discrete and shallow cracks were found on the tungsten surface due to the manufacturing process, dense crack networks were observed at the loaded surfaces due to the thermal stress. In addition, cracks occurred in the structural, heat sink part and propagated along the grains orientation of the deformed tungsten material. Facilitated by cracking, the molten brazing metal between the tungsten plasma facing material and the W-La 2 O 3 heat sink, that could not withstand the operational temperatures, infiltrated the tungsten components and, due to capillary forces, even reached the plasma facing surface through the cracks. The formed cavity in the brazed layer reduced the heat conduction and the modules were further damaged due to overheating during the applied heat loads. Based on this detailed characterization and possible improvements of the design and of the manufacturing routes are discussed.

  6. Thermal analysis of an exposed tungsten edge in the JET divertor

    Czech Academy of Sciences Publication Activity Database

    Arnoux, G.; Coenen, J.; Bazylev, B.; Corre, Y.; Matthews, G. F.; Balboa, I.; Clever, M.; Dejarnac, Renaud; Devaux, S.; Eich, E.; Gauthier, E.; Frassinetti, L.; Horáček, Jan; Jachmich, S.; Kinna, D.; Marsen, S.; Mertens, Ph.; Pitts, R.A.; Rack, M.; Sergienko, G.; Sieglin, B.; Stamp, M.; Thompson, V.

    2015-01-01

    Roč. 463, August (2015), s. 415-419 ISSN 0022-3115. [PLASMA-SURFACE INTERACTIONS 21: International Conference on Plasma-Surface Interactions in Controlled Fusion Devices. Kanazawa, 26.05.2014-30.05.2014] Institutional support: RVO:61389021 Keywords : Heat loads * IR thermography * misalignment * JET * tungsten Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 2.199, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022311514007867#

  7. ERATO-code analysis of vacuum magnetic field oscillations in JT-60 divertor configuration

    International Nuclear Information System (INIS)

    Ozeki, Takahisa; Tokuda, Shinji; Tsunematsu, Toshihide; Ishida, Shinichi; Neyatani, Yuzuru; Itami, Kiyoshi; Azumi, Masafumi

    1989-07-01

    Magnetic field oscillations caused by external kink instabilities are numerically studied by using the ideal MHD stability code ERATO-J. Dependence of a spatial distribution of their amplitude and phase on aspect-ratio, beta-poloidal, shaping of conducting shell and divertor/limiter configurations is examined in detail. In the low aspect ratio plasma, the amplitude of magnetic oscillations in the inner side of the torus is larger than that in the outer. On the contrary, as the poloidal beta increases, the amplitude in the outer side of the torus becomes larger than that in the inner. In the divertor configuration, the amplitude of oscillations reduces near the X-point and the phase is locally modulated. The coherent magnetic oscillations observed in JT-60 agree well with the theoretical results, where the vacuum vessel is assumed to be an ideal conducting shell. The non-uniformity of the poloidal distribution observed in JT-60 can be explained by the combined effects of the finite beta, the X-point and the shape of shell. (author)

  8. Model of divertor biasing and control of scrape-off layer and divertor plasmas

    International Nuclear Information System (INIS)

    Nagasaki, K.; Itoh, K.; Itoh, S.

    1991-02-01

    Analytic model of the divertor biasing is described. For the given plasma and energy sources from the core plasma, the heat and particle flux densities on the divertor plate as well as scrape-off-layer (SOL)/divertor plasmas are analyzed in a slab model. Using a two-dimensional model, the effects of the divertor biasing and SOL current are studied. The conditions to balance the plasma temperature or sheath potential on different divertor plates are obtained. Effect of the SOL current on the heat channel width is also discussed. (author)

  9. Thermal Spray Coating of Tungsten for Tokamak Device

    International Nuclear Information System (INIS)

    Jiang Xianliang; Gitzhofer, F; Boulos, M I

    2006-01-01

    Thermal spray, such as direct current (d.c.) plasma spray or radio frequency induced plasma spray, was used to deposit tungsten coatings on the copper electrodes of a tokamak device. The tungsten coating on the outer surface of one copper electrode was formed directly through d.c. plasma spraying of fine tungsten powder. The tungsten coating/lining on the inner surface of another copper electrode could be formed indirectly through induced plasma spraying of coarse tungsten powder. Scanning electron microscopy (SEM) was used to examine the cross section and the interface of the tungsten coating. Energy Dispersive Analysis of X-ray (EDAX) was used to analyze the metallic elements attached to a separated interface. The influence of the particle size of the tungsten powder on the density, cracking behavior and adhesion of the coating is discussed. It is found that the coarse tungsten powder with the particle size of 45 ∼ 75 μm can be melted and the coating can be formed only by using induced plasma. The coating deposited from the coarse powder has much higher cohesive strength, adhesive strength and crack resistance than the coating made from the fine powder with a particle size of 5 μm

  10. Implementation of an Outer Can Welding System for Savannah River Site FB-Line

    International Nuclear Information System (INIS)

    Howard, S.R.

    2003-01-01

    This paper details three phases of testing to confirm use of a Gas Tungsten Arc (GTA) system for closure welding the 3013 outer container used for stabilization/storage of plutonium metals and oxides. The outer container/lid closure joint was originally designed for laser welding, but for this application, the gas tungsten arc (GTA) welding process has been adapted. The testing progressed in three phases: (1) system checkout to evaluate system components for operational readiness, (2) troubleshooting to evaluate high weld failure rates and develop corrective techniques, and (3) pre-installation acceptance testing

  11. A tangentially viewing visible TV system for the DIII-D divertor

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Meyer, W.H.; Wood, R.D.; Nilson, D.G.; Ellis, R.; Brooks, N.H.

    1997-01-01

    A video camera system has been installed on the DIII-D tokamak for two-dimensional spatial studies of line emission in the lower divertor region. The system views the divertor tangentially at approximately the height of the X point through an outer port. At the tangency plane, the entire divertor from the inner wall to outside the DIII-D bias ring is viewed with spatial resolution of ∼1 cm. The image contains information from ∼90 deg of toroidal angle. In a recent upgrade, remotely controllable filter changers were added which have produced images from nominally identical discharges using different spectral lines. Software was developed to calculate the response function matrix of the optical system using distributed computing techniques and assuming toroidal symmetry. Standard sparse matrix algorithms are then used to invert the three-dimensional images onto a poloidal plane. Spatial resolution of the inverted images is 2 cm; higher resolution simply increases the size of the response function matrix. Initial results from a series of experiments with multiple identical discharges show that the emission from CII and CIII, which appears along the inner scrape-off layer above and below the X point during ELMing H mode, moves outward and becomes localized near the X point in radiative divertor operation induced by deuterium injection. copyright 1997 American Institute of Physics

  12. Thermal Performance of a Dual-Channel, Helium-Cooled, Tungsten Heat Exchanger

    International Nuclear Information System (INIS)

    Youchison, Dennis L.; North, Mart T.

    2000-01-01

    Helium-cooled, refractory heat exchangers are now under consideration for first wall and divertor applications. These refractory devices take advantage of high temperature operation with large delta-Ts to effectively handle high heat fluxes. The high temperature helium can then be used in a gas turbine for high-efficiency power conversion. Over the last five years, heat removal with helium was shown to increase dramatically by using porous metal to provide a very large effective surface area for heat transfer in a small volume. Last year, the thermal performance of a bare-copper, dual-channel, helium-cooled, porous metal divertor mock-up was evaluated on the 30 kW Electron Beam Test System at Sandia National Laboratories. The module survived a maximum absorbed heat flux of 34.6 MW/m 2 and reached a maximum surface temperature of 593 C for uniform power loading of 3 kW absorbed on a 2-cm 2 area. An impressive 10 kW of power was absorbed on an area of 24 cm 2 . Recently, a similar dual-module, helium-cooled heat exchanger made almost entirely of tungsten was designed and fabricated by Thermacore, Inc. and tested at Sandia. A complete flow test of each channel was performed to determine the actual pressure drop characteristics. Each channel was equipped with delta-P transducers and platinum RTDs for independent calorimetry. One mass flow meter monitored the total flow to the heat exchanger, while a second monitored flow in only one of the channels. The thermal response of each tungsten module was obtained for heat fluxes in excess of 5 MW/m 2 using 50 C helium at 4 MPa. Fatigue cycles were also performed to assess the fracture toughness of the tungsten modules. A description of the module design and new results on flow instabilities are also presented

  13. Performance characteristics of the DIII-D advanced divertor cryopump

    International Nuclear Information System (INIS)

    Menon, M.M.; Maingi, R.; Wade, M.R.; Baxi, C.B.; Campbell, G.L.; Holtrop, K.L.; Hyatt, A.W.; Laughon, G.J.; Makariou, C.C.; Mahdavi, M.A.; Reis, E.E.; Schaffer, M.J.; Schaubel, K.M.; Scoville, J.T.; Smith, J.P.; Stambaugh, R.D.

    1993-10-01

    A cryocondensation pump, cooled by forced flow of two-phase helium, has been installed for particle exhaust from the divertor region of the DIII-D tokamak. The Inconel pumping surface is of coaxial geometry, 25.4 mm in outer diameter and 11.65 m in length. Because of the tokamak environment, the pump is designed to perform under relatively high pulsed heat loads (300 Wm -2 ). Results of measurements made on the pumping characteristics for D 2 , H 2 , and Ar are discussed

  14. Melt damage simulation of W-macrobrush and divertor gaps after multiple transient events in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B.N. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany)]. E-mail: bazylev@ihm.fzk.de; Janeschitz, G. [Forschungszentrum Karlsruhe, Fusion, P.O. Box 3640, 76021 Karlsruhe (Germany); Landman, I.S. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany); Loarte, A. [EFDA-CSU, Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany); Pestchanyi, S.E. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2007-06-15

    Tungsten in the form of macrobrush structure is foreseen as one of two candidate materials for the ITER divertor and dome. In ITER, even for moderate and weak ELMs when a thin shielding layer does not protect the armour surface from the dumped plasma, the main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. The melt erosion of W-macrobrush targets with different geometry of brush surface under the heat loads caused by weak ELMs is numerically investigated using the modified code MEMOS. The optimal angle of brush surface inclination that provides a minimum of surface roughness is estimated for given inclination angles of impacting plasma stream and given parameters of the macrobrush target. For multiple disruptions the damage of the dome gaps and the gaps between divertor cassettes caused by the radiation impact is estimated.

  15. Melt damage simulation of W-macrobrush and divertor gaps after multiple transient events in ITER

    Science.gov (United States)

    Bazylev, B. N.; Janeschitz, G.; Landman, I. S.; Loarte, A.; Pestchanyi, S. E.

    2007-06-01

    Tungsten in the form of macrobrush structure is foreseen as one of two candidate materials for the ITER divertor and dome. In ITER, even for moderate and weak ELMs when a thin shielding layer does not protect the armour surface from the dumped plasma, the main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. The melt erosion of W-macrobrush targets with different geometry of brush surface under the heat loads caused by weak ELMs is numerically investigated using the modified code MEMOS. The optimal angle of brush surface inclination that provides a minimum of surface roughness is estimated for given inclination angles of impacting plasma stream and given parameters of the macrobrush target. For multiple disruptions the damage of the dome gaps and the gaps between divertor cassettes caused by the radiation impact is estimated.

  16. Melt damage simulation of W-macrobrush and divertor gaps after multiple transient events in ITER

    International Nuclear Information System (INIS)

    Bazylev, B.N.; Janeschitz, G.; Landman, I.S.; Loarte, A.; Pestchanyi, S.E.

    2007-01-01

    Tungsten in the form of macrobrush structure is foreseen as one of two candidate materials for the ITER divertor and dome. In ITER, even for moderate and weak ELMs when a thin shielding layer does not protect the armour surface from the dumped plasma, the main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. The melt erosion of W-macrobrush targets with different geometry of brush surface under the heat loads caused by weak ELMs is numerically investigated using the modified code MEMOS. The optimal angle of brush surface inclination that provides a minimum of surface roughness is estimated for given inclination angles of impacting plasma stream and given parameters of the macrobrush target. For multiple disruptions the damage of the dome gaps and the gaps between divertor cassettes caused by the radiation impact is estimated

  17. Overview of the divertor design and its integration into RTO/RC-ITER

    International Nuclear Information System (INIS)

    Janeschitz, G.; Tivey, R.; Antipenkov, A.; Barabash, V.; Chiocchio, S.; Federici, G.; Heidl, H.; Ibbott, C.; Martin, E.

    2000-01-01

    The design of the divertor and its integration into the reduced technical objectives/reduced cost-international thermonuclear energy reactor (RTO/RC-ITER) is based on the experience gained from the 1998 design of international thermonuclear energy reactor (ITER) and on the research and development performed throughout the engineering design activities (EDA). This paper gives an overview of the layout and functional design of the RTO/RC-ITER divertor, including the integration into the machine and the remote replacement of the divertor cassettes. Design guidelines are presented which have allowed quick preparation of divertor layouts suitable for further study using the B2-EIRENE edge plasma code. As in the 1998 design, the divertor is segmented into cassettes, and the segmentation, which is three per sector, is driven by access through the divertor level ports. Maintaining this access and avoiding interference with poloidal field coils means that the divertor level ports need to be inclined (7 deg.). This opens up the possibility of incorporating inboard and outboard baffles into the divertor cassettes. The cassettes are transported in-vessel by making use of the toroidal rails onto which the cassettes are finally clamped in position. Significant reduction of the space available between the X-point and the vacuum vessel results in re-positioning of the toroidal rails in order to retain sufficient depth for the inner and outer divertor legs. This, in turn, requires some changes to the remote handling (RH) concept. Remote handling (RH) is now based on using a cantilevered articulated gripper during the radial movement of the cassettes inside the RH ports. However, the principle to use a cassette toroidal mover (CTM) for in vessel handling is unchanged, hence maintaining the validity of previous EDA research and development. The space previously left below the cassettes for RH was also used for pumping. Elimination of this space has led to re-siting of the pumping

  18. Narrow power deposition profiles on the JET divertor target

    International Nuclear Information System (INIS)

    Lingertat, J.; Laux, M.; Monk, R.

    2001-01-01

    One of the key unresolved issues in the design of a future fusion reactor is the power handling capability of the divertor target plates. Earlier we reported on the existence of narrow power deposition profiles in JET, obtained mainly from Langmuir probe measurements. We repeated these measurements in the MkI, MkII and MkIIGB divertor configurations with an upgraded probe system, which allowed us to study the profile shape in more detail. The main results of this study are: In NB heated discharges the electron temperature and power flux at the outer target show a distinct peak of ∼5 mm half-width near the separatrix strike point. The corresponding profiles on the inner target do not show a similar feature. The height of the narrow peak increases with NB heating power and decreases with deuterium and impurity gas puffing. Ion orbit losses are suggested as a possible explanation of the observed profile shape

  19. A high-recycle divertor for ITER [International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Werley, K.A.; Bathke, C.G.

    1988-01-01

    A coupled one-dimensional (axial/radial) edge-plasma model (SOLAR) has been used to investigate tradeoffs between collector-plate and edge-plasma conditions in a doublenull, open, high-recycle divertor (HRD) for a preliminary International Thermonuclear Experimental Reactor (ITER) design. A steady-state HRD produces in attractive high-density edge plasma (5 /times/ 10 19 m/sup /minus/3/) with sufficiently low plasma temperature (10-20eV) at a tungsten plat that the sheath-accelerated ions are below sputtering threshold energies. Manageable plate heat fluxes (3-6 MW/m 2 ) are achieved by positioning the plate poloidal cross section at a minimum angle of 15-30/degree/ with respect to flux surfaces. 6 refs., 9 figs

  20. Dynamic divertor control using resonant mixed toroidal harmonic magnetic fields during ELM suppression in DIII-D

    Science.gov (United States)

    Jia, M.; Sun, Y.; Paz-Soldan, C.; Nazikian, R.; Gu, S.; Liu, Y. Q.; Abrams, T.; Bykov, I.; Cui, L.; Evans, T.; Garofalo, A.; Guo, W.; Gong, X.; Lasnier, C.; Logan, N. C.; Makowski, M.; Orlov, D.; Wang, H. H.

    2018-05-01

    Experiments using Resonant Magnetic Perturbations (RMPs), with a rotating n = 2 toroidal harmonic combined with a stationary n = 3 toroidal harmonic, have validated predictions that divertor heat and particle flux can be dynamically controlled while maintaining Edge Localized Mode (ELM) suppression in the DIII-D tokamak. Here, n is the toroidal mode number. ELM suppression over one full cycle of a rotating n = 2 RMP that was mixed with a static n = 3 RMP field has been achieved. Prominent heat flux splitting on the outer divertor has been observed during ELM suppression by RMPs in low collisionality regime in DIII-D. Strong changes in the three dimensional heat and particle flux footprint in the divertor were observed during the application of the mixed toroidal harmonic magnetic perturbations. These results agree well with modeling of the edge magnetic field structure using the TOP2D code, which takes into account the plasma response from the MARS-F code. These results expand the potential effectiveness of the RMP ELM suppression technique for the simultaneous control of divertor heat and particle load required in ITER.

  1. Performance of tungsten-based materials and components under ITER and DEMO relevant steady-state thermal loads

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, Guillaume Henri

    2011-07-01

    In nuclear fusion devices the surfaces directly facing the plasma are irradiated with high energy fluxes. The most intense loads are deposited on the divertor located at the bottom of the plasma chamber, which has to withstand continuous heat loads with a power density of several MW . m{sup -2} as well as transient events. These are much shorter (in the millisecond and sub-millisecond regime) but deposit a higher power densities of a few GW . m{sup -2}. The search for materials that can survive to those severe loading conditions led to the choice of tungsten which possesses advantageous attributes such as a high melting point, high thermal conductivity, low thermal expansion and an acceptable activation rate. These properties made it an attractive and promising candidate as armor material for divertors of future fusion devices such as ITER and DEMO. For the DEMO divertor, conceptual studies on helium-cooled tungsten plasma-facing components were performed. The concept was realized and tested under DEMO specific cyclic thermal loads. The examination of the plasma-facing components by microstructural analyses before and after thermal loading enabled to determine the mechanisms for components failure. Among others, it clearly showed the impact of the tungsten grade and the thermal stress induced crack formation on the performance of the armor material and in general of the plasma-facing component under high heat loads. A tungsten qualification program was launched to study the behaviour of various tungsten grades, in particular the crack formation, under fusion relevant steady-state thermal loads. In total, seven commercially available materials from two industrial suppliers were investigated. As the material's thermal response is strongly related to its microstructure, this program comprised different material geometries and manufacturing technologies. It also included the utilization of an actively cooled specimen holder which has been designed to perform

  2. Performance of tungsten-based materials and components under ITER and DEMO relevant steady-state thermal loads

    International Nuclear Information System (INIS)

    Ritz, Guillaume Henri

    2011-01-01

    In nuclear fusion devices the surfaces directly facing the plasma are irradiated with high energy fluxes. The most intense loads are deposited on the divertor located at the bottom of the plasma chamber, which has to withstand continuous heat loads with a power density of several MW . m -2 as well as transient events. These are much shorter (in the millisecond and sub-millisecond regime) but deposit a higher power densities of a few GW . m -2 . The search for materials that can survive to those severe loading conditions led to the choice of tungsten which possesses advantageous attributes such as a high melting point, high thermal conductivity, low thermal expansion and an acceptable activation rate. These properties made it an attractive and promising candidate as armor material for divertors of future fusion devices such as ITER and DEMO. For the DEMO divertor, conceptual studies on helium-cooled tungsten plasma-facing components were performed. The concept was realized and tested under DEMO specific cyclic thermal loads. The examination of the plasma-facing components by microstructural analyses before and after thermal loading enabled to determine the mechanisms for components failure. Among others, it clearly showed the impact of the tungsten grade and the thermal stress induced crack formation on the performance of the armor material and in general of the plasma-facing component under high heat loads. A tungsten qualification program was launched to study the behaviour of various tungsten grades, in particular the crack formation, under fusion relevant steady-state thermal loads. In total, seven commercially available materials from two industrial suppliers were investigated. As the material's thermal response is strongly related to its microstructure, this program comprised different material geometries and manufacturing technologies. It also included the utilization of an actively cooled specimen holder which has been designed to perform sophisticated

  3. Recrystallization kinetics of warm-rolled tungsten in the temperature range 1150-1350 °C

    Science.gov (United States)

    Alfonso, A.; Juul Jensen, D.; Luo, G.-N.; Pantleon, W.

    2014-12-01

    Pure tungsten is a potential candidate material for the plasma-facing first wall and the divertor of fusion reactors. Both parts have to withstand high temperatures during service. This will alter the microstructure of the material by recovery, recrystallization and grain growth and will cause degradation in material properties as a loss in mechanical strength and embrittlement. The thermal stability of a pure tungsten plate warm-rolled to 67% thickness reduction was investigated by long-term isothermal annealing in the temperature range between 1150 °C and 1350 °C up to 2200 h. Changes in the mechanical properties during annealing are quantified by Vickers hardness measurements. They are described concisely by classical kinetic models for recovery and recrystallization. The observed time spans for recrystallization and the obtained value for the activation energy of the recrystallization process indicate a sufficient thermal stability of the tungsten plate during operation below 1075 °C.

  4. Finite element modelling of transport and drift effects in tokamak divertor and SOL

    International Nuclear Information System (INIS)

    Simard, M.; Marchand, R.; Boucher, C.; Gunn, J.P.

    1996-01-01

    A finite element code is used to simulate transport of a single-species plasma in the edge and divertor of a tokamak. The physical model is based on Braginskii's fluid equations for the conservation of particles, parallel momentum, ion and electron energy. In modelling recycling, transport of neutral density and energy is treated in the diffusion approximation. The electrostatic potential is obtained from the generalized Ohm's law. It is used to compute the electric field and the associated E x B drift. In a first approximation, transport is assumed to be ambipolar. The system of equations is discretized on an unstructured triangular mesh, thus permitting good spatial resolution near the X-point and an accurate description of divertor plates of arbitrary shape. Special care must be taken to prevent numerical corruption of the highly anisotropic thermal diffusion. Comparisons will be made between simulations and experimental results from TdeV. This will focus, in particular, on density and temperature profiles at the divertor plates, and on the plasma parallel velocity in the SOL. The asymmetry in the power deposited to the inner and outer divertors and the effect of magnetic field reversal will be considered. Comparisons with B2-Eirene simulation results will also be presented

  5. The effect of feedback-controlled divertor nitrogen seeding on the boundary plasma and power exhaust channel width in Alcator C-Mod

    Science.gov (United States)

    Labombard, B.; Brunner, D.; Kuang, A. Q.; McCarthy, W.; Terry, J. L.

    2017-10-01

    The scrape-off layer (SOL) power channel width, λq, is projected to be 0.5 mm in power reactors, based on multi-machine measurements of divertor target heat fluxes in H-mode at low levels of divertor dissipation. An important question is: does λq change with the level of divertor dissipation? We report results in which feedback controlled nitrogen seeding in the divertor was used to systematically vary divertor dissipation in a series of otherwise identical L-mode plasmas at three plasma currents: 0.55, 0.8 and 1.1 MA. Outer midplane profiles were recorded with a scanning Mirror Langmuir Probe; divertor plasma conditions were monitored with `rail' Langmuir probe and surface thermocouple arrays. Despite an order of magnitude reduction in divertor target heat fluxes (q// 400 MW m-2 to 40 MW m-2) and corresponding change in divertor regime from sheath-limited through high-recycling to near-detached, the upstream electron temperature profile is found to remain unchanged or to become slightly steeper in the near SOL and to drop significantly in the far SOL. Thus heat in the SOL appears to take advantage of this impurity radiation `heat sink' in the divertor by preferentially draining via the narrow (and perhaps an increasingly narrow) λq of the near SOL. Supported by USDoE award DE-FC02-99ER54512.

  6. Modification of preheated tungsten surface after irradiation at the GOL-3 facility

    Energy Technology Data Exchange (ETDEWEB)

    Shoshin, A.A., E-mail: shoshin@mail.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Arakcheev, A.S.; Arzhannikov, A.V. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Burdakov, A.V. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Novosibirsk 630092 (Russian Federation); Huber, A. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany); Ivanov, I.A. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Kuklin, K.N. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Polosatkin, S.V.; Postupaev, V.V.; Sinitsky, S.L. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Vasilyev, A.A. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-12-15

    Highlights: • Preheated tungsten was irradiated at the GOL-3 facility with plasma loads corresponding to the ITER type I ELMs. • The crack pattern and the quantity of bubbles depend on the initial temperatures of the target. • The orientation of major crack networks correlates with the direction of machining of the samples. • Dust impact craters were found. - Abstract: The study is devoted to tungsten surface modification after irradiation at the GOL-3 facility with plasma loads corresponding to the ITER type I ELMs. In order to emulate heating with a steady plasma flux in the ITER divertor, some of the tungsten samples were preheated up to 500 °C. It was found out that the behavior of the surface modification (the crack pattern and the number of bubbles) depends on the initial temperature of the targets. While the orientation of major crack networks correlates with the direction of machining of the samples. Afterwards we have observed the process of craters’ formation caused by dust particle impacts.

  7. ITER divertor, design issues and research and development

    International Nuclear Information System (INIS)

    Tivey, R.; Ando, T.; Antipenkov, A.; Barabash, V.; Chiocchio, S.; Federici, G.; Ibbott, C.; Jakeman, R.; Janeschitz, G.; Raffray, R.; Mazul, I.; Pacher, H.; Ulrickson, M.; Vieider, G.

    1999-01-01

    Over the period of the ITER Engineering Design Activity (EDA) the results from physics experiments, modelling, engineering analyses and R and D, have been brought together to provide a design for an ITER divertor. The design satisfies all necessary requirements for steady state and transient heat flux, nuclear shielding, pumping, tritium inventory, impurity control, armour lifetime, electromagnetic loads, diagnostics, and remote maintenance. The design consists of 60 cassettes each comprising a cassette body onto which the plasma facing components (PFCs) are mounted. Each cassette is supported by toroidal rails which are attached to the vacuum vessel. For the PFCs the final armour choice is carbon-fibre-composite (CfC) for the strike point regions and tungsten in all remaining areas. R and D has demonstrated that CfC monoblocks can routinely withstand heat loads up to 20 MW m -2 10 MW m -2 . Analysis and experiment show that a CfC armour thickness of ∝20 mm will provide sufficient lifetime for at least 1000 full power pulses. The thickness of the cassette body is sufficient to shield the vacuum vessel, so that, if necessary, rewelding is possible, and also provides sufficient stiffness against electromagnetically generated loads. The cassette design provides efficient and proven remote maintenance which should allow exchange of a complete divertor within ∝6 months. (orig.)

  8. ITER divertor, design issues and research and development

    Energy Technology Data Exchange (ETDEWEB)

    Tivey, R.; Ando, T.; Antipenkov, A.; Barabash, V.; Chiocchio, S.; Federici, G.; Ibbott, C.; Jakeman, R.; Janeschitz, G.; Raffray, R. [ITER Joint Central Team, Garching (Germany). Joint Central Work Site; Akiba, M. [Japan Atomic Energy Research Institute, Naka-machi, Ibaraki-ken (Japan); Mazul, I. [Efremov Institute, St Petersburg (Russian Federation); Pacher, H. [NET Team, Boltzmannstr. 2, D-85748, Garching (Germany); Ulrickson, M. [Sandia National Laboratories, Albuquerque, NM (United States); Vieider, G. [NET Team, Boltzmannstr. 2, D-85748, Garching (Germany)

    1999-11-01

    Over the period of the ITER Engineering Design Activity (EDA) the results from physics experiments, modelling, engineering analyses and R and D, have been brought together to provide a design for an ITER divertor. The design satisfies all necessary requirements for steady state and transient heat flux, nuclear shielding, pumping, tritium inventory, impurity control, armour lifetime, electromagnetic loads, diagnostics, and remote maintenance. The design consists of 60 cassettes each comprising a cassette body onto which the plasma facing components (PFCs) are mounted. Each cassette is supported by toroidal rails which are attached to the vacuum vessel. For the PFCs the final armour choice is carbon-fibre-composite (CfC) for the strike point regions and tungsten in all remaining areas. R and D has demonstrated that CfC monoblocks can routinely withstand heat loads up to 20 MW m{sup -2}10 MW m{sup -2}. Analysis and experiment show that a CfC armour thickness of {proportional_to}20 mm will provide sufficient lifetime for at least 1000 full power pulses. The thickness of the cassette body is sufficient to shield the vacuum vessel, so that, if necessary, rewelding is possible, and also provides sufficient stiffness against electromagnetically generated loads. The cassette design provides efficient and proven remote maintenance which should allow exchange of a complete divertor within {proportional_to}6 months. (orig.)

  9. Divertor target profiles and recycling studies in TCV single null lower standard discharges

    International Nuclear Information System (INIS)

    Pitts, R.A.; Nieswand, C.; Weisen, H.

    1996-05-01

    A 'standard', single null lower diverted discharge has been developed to enable continuous monitoring of the first wall conditions and to characterise the effectiveness and influence of wall conditioning in the TCV tokamak. Measurements over a period encompassing nearly 2000 ohmic discharges of varying configuration and input power show the global confinement time and main plasma impurity concentrations to be good general indicators of the first wall condition, whilst divertor target profiles demonstrate strikingly the short term beneficial effects of He glow. Good agreement, consistent with a reduction in recycling at the plates is found between the predictions of the fluid code UEDGE and the observed outer divertor profiles of T e and n e before and after He glow. (author) 5 figs., 7 refs

  10. ELM induced divertor heat loads on TCV

    Energy Technology Data Exchange (ETDEWEB)

    Marki, J., E-mail: janos.marki@epfl.c [Centre de Recherches en Physique des Plasmas (CRPP), Ecole Polytechnique Federale de Lausanne (EPFL), Association Euratom - Confederation Suisse, CH-1015 Lausanne (Switzerland); Pitts, R.A. [Centre de Recherches en Physique des Plasmas (CRPP), Ecole Polytechnique Federale de Lausanne (EPFL), Association Euratom - Confederation Suisse, CH-1015 Lausanne (Switzerland); Horacek, J. [Institute of Plasma Physics, Association EUROATOM-IPP.CR, Za Slovankou 3, 182 00 Prague 8 (Czech Republic); Tskhakaya, D. [Association EURATOM-OAW, Institut fuer Theoretische Physik, A-6020 Innsbruck (Austria)

    2009-06-15

    Results are presented for heat loads at the TCV outer divertor target during ELMing H-mode using a fast IR camera. Benefitting from a recent surface cleaning of the entire first wall graphite armour, a comparison of the transient thermal response of freshly cleaned and untreated tile surfaces (coated with thick co-deposited layers) has been performed. The latter routinely exhibit temperature transients exceeding those of the clean ones by a factor approx3, even if co-deposition throughout the first days of operation following the cleaning process leads to the steady regrowth of thin layers. Filaments are occasionally observed during the ELM heat flux rise phase, showing a spatial structure consistent with energy release at discrete toroidal locations in the outer midplane vicinity and with individual filaments carrying approx1% of the total ELM energy. The temporal waveform of the ELM heat load is found to be in good agreement with the collisionless free streaming particle model.

  11. ELM induced divertor heat loads on TCV

    Science.gov (United States)

    Marki, J.; Pitts, R. A.; Horacek, J.; Tskhakaya, D.; TCV Team

    2009-06-01

    Results are presented for heat loads at the TCV outer divertor target during ELMing H-mode using a fast IR camera. Benefitting from a recent surface cleaning of the entire first wall graphite armour, a comparison of the transient thermal response of freshly cleaned and untreated tile surfaces (coated with thick co-deposited layers) has been performed. The latter routinely exhibit temperature transients exceeding those of the clean ones by a factor ˜3, even if co-deposition throughout the first days of operation following the cleaning process leads to the steady regrowth of thin layers. Filaments are occasionally observed during the ELM heat flux rise phase, showing a spatial structure consistent with energy release at discrete toroidal locations in the outer midplane vicinity and with individual filaments carrying ˜1% of the total ELM energy. The temporal waveform of the ELM heat load is found to be in good agreement with the collisionless free streaming particle model.

  12. Assessment of erosion of the ITER divertor targets during type I ELMs

    Science.gov (United States)

    Federici, G.; Loarte, A.; Strohmayer, G.

    2003-09-01

    This paper presents the results of a preliminary assessment conducted to estimate the thermal response and erosion lifetime of the ITER divertor targets clad either with carbon-fibre composite or tungsten during type I ELMs. The one-dimensional thermal/erosion model, used for the analyses, is briefly described. It includes all the key surface heat transfer processes such as evaporation, melting, and radiation, and their interaction with the bulk thermal response, and it is based on an implicit finite-difference scheme, which allows for temperature-dependent material properties. The cases analysed clarify the influence of several ELM parameters on the heat transfer and erosion processes at the target (i.e. characteristic plasma ELM energy loss from the pedestal, fraction of the energy reaching the divertor, broadening of the strike-points during ELMs, duration and waveform of the ELM heat load) and design/material parameters (i.e. inclination of the target, type and thickness of the armour material, and for tungsten only, fraction of the melt layer loss). Comparison is made between cases where all ELMs are characterized by the same fixed averaged parameters, and cases where instead the characteristic parameters of each ELM are evaluated in a random fashion by using a standard Monte Carlo technique, based on distributions of some of the variables of interest derived from experiments in today's machines. Although uncertainties rule out providing firm quantitative predictions, the results of this study are useful to illustrate trends. Based on the results, the implications on the design and operation are discussed and priorities are determined for the R&D needed to reduce the remaining uncertainties.

  13. Assessment of erosion of the ITER divertor targets during type I ELMs

    International Nuclear Information System (INIS)

    Federici, G; Loarte, A; Strohmayer, G

    2003-01-01

    This paper presents the results of a preliminary assessment conducted to estimate the thermal response and erosion lifetime of the ITER divertor targets clad either with carbon-fibre composite or tungsten during type I ELMs. The one-dimensional thermal/erosion model, used for the analyses, is briefly described. It includes all the key surface heat transfer processes such as evaporation, melting, and radiation, and their interaction with the bulk thermal response, and it is based on an implicit finite-difference scheme, which allows for temperature-dependent material properties. The cases analysed clarify the influence of several ELM parameters on the heat transfer and erosion processes at the target (i.e. characteristic plasma ELM energy loss from the pedestal, fraction of the energy reaching the divertor, broadening of the strike-points during ELMs, duration and waveform of the ELM heat load) and design/material parameters (i.e. inclination of the target, type and thickness of the armour material, and for tungsten only, fraction of the melt layer loss). Comparison is made between cases where all ELMs are characterized by the same fixed averaged parameters, and cases where instead the characteristic parameters of each ELM are evaluated in a random fashion by using a standard Monte Carlo technique, based on distributions of some of the variables of interest derived from experiments in today's machines. Although uncertainties rule out providing firm quantitative predictions, the results of this study are useful to illustrate trends. Based on the results, the implications on the design and operation are discussed and priorities are determined for the R and D needed to reduce the remaining uncertainties

  14. VUV Spectroscopy in DIII-D Divertor

    International Nuclear Information System (INIS)

    Alkesh Punjabi; Nelson Jalufka

    2004-01-01

    The research carried out on this grant was motivated by the high power emission from the CIV doublet at 155 nm in the DIII-D divertor and to study the characteristics of the radiative divertor. The radiative divertor is designed to reduce the heat load to the target plates of the divertor by reducing the energy in the divertor plasma using upstream scrape-off-layer (SOL) radiation. In some cases, particularly in Partially Detached Divertor (PDD) operations, this emission accounts for more than 50% of the total radiation from the divertor. In PDD operation, produced by neutral gas injection, the particle flow to the target plate and the divertor temperature are significantly reduced. A father motivation was to study the CIV emission distribution in the lower, open divertor and the upper baffled divertor. Two Vacuum Ultra Violet Tangential viewing Television cameras (VUV TTV) were constructed and installed in the upper, baffled and the lower, open divertor. The images recorded by these cameras were then inverted to produce two-dimensional distributions of CIV in the poloidal plane. Results obtained in the project are summarized in this report

  15. MD simulations of onset of tungsten fuzz formation under helium irradiation

    International Nuclear Information System (INIS)

    Lasa, A.; Henriksson, K.O.E.; Nordlund, K.

    2013-01-01

    When helium (He) escapes a fusion reactor plasma, a tungsten (W)-based divertor may, under some conditions, form a fuzz-like nano-morphology. This is a highly undesired phenomenon for the divertor, and is not well understood. We performed molecular dynamics simulations of high fluence He and also C-seeded He (He+C) irradiation on W, focusing on the effect of the high fluence, the temperature and the impurities on the onset of the structure formation. We concluded that MD reproduces the experimentally found square root of time dependence of the surface growth. The He atomic density decreases when increasing the number of He atoms in the cell. A higher temperature causes a larger bubble growth and desorption activity, specially for the pure He irradiation cases. It also it leads to W recrystallization for the He+C irradiation cases. Carbon acts as a local He trap for small clusters or single atoms and causes a larger loss of crystallinity of the W surface

  16. Comparative study of the tungsten irradiation conditions in IFMIF and DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, S.P.; Pereslavtsev, P.; Fischer, U. [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Neutron Physics and Reactor Technology; Moeslang, A. [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Material Research I

    2010-05-15

    The International Fusion Material Irradiation Facility (IFMIF) [1] will provide an accelerator based intense neutron source with a white spectrum extending up to 55 MeV for high fluence irradiations of fusion power reactor (FPR) candidate materials. Material samples located in test modules will be subjected to a radiation load anticipated for a fusion power reactor. The highest neutron flux is expected in the High Flux Test Module, which is considered in the IFMIF design to host around 1000 compactly packed stainless steel samples - the main structure materials of power fusion reactors. Another material subjected to the highest loads in a FPR is a tungsten. It is planned to be used as armour tiles for the divertor or the first wall. It turned out that no specific effort has been undertaken so far to search for a suitable irradiation location in the IFMIF Test Cell which provides a reasonable representation of the irradiation conditions in the divertor of a fusion power reactors. (orig.)

  17. Numerical exploration of non-axisymmetric divertor closure in the small angle slot (SAS) divertor at DIII-D

    Science.gov (United States)

    Frerichs, H.; Schmitz, O.; Covele, B.; Feng, Y.; Guo, H. Y.; Hill, D.

    2018-05-01

    Numerical simulations of toroidal asymmetries in a tightly baffled small angle slot (SAS) divertor on the DIII-D tokamak show that toroidal asymmetries in divertor closure result in (non-axisymmetric) local onset of detachment within a density window of 10-15% on top of the nominal threshold separatrix density. The SAS divertor is explored at DIII-D for improving access to cold, dissipative/detached divertor conditions. The narrow width of the slot divertor coupled with a small magnetic field line-to-target angle facilitates the buildup of neutral density, thereby increasing radiative and neutrals-related (atoms and molecules) losses in the divertor. Small changes in the strike point location can be expected to have a large impact on divertor conditions. The combination of misaligned slot structure and non-axisymmetric perturbations to the magnetic field configuration causes the strike point to move along the divertor target plate, possibly leaving the divertor slot at some locations. The latter extreme case essentially introduces an opening in the divertor slot from where recycling neutrals can easily escape, and thereby degrade the performance of the slot divertor. Such a strike point dislocation is approximated by a finite gap in the divertor baffle for which 3D edge plasma and neutral gas simulations are performed with the EMC3-EIRENE code.

  18. Interferometric density measurements in the divertor and edge plasma regions for the additionally heated JT-60 plasmas

    International Nuclear Information System (INIS)

    Fukuda, T.; Yoshida, H.; Nagashima, A.; Ishida, S.; Kikuchi, M.; Yokomizo, H.

    1989-01-01

    The first divertor plasma density measurement and the interferometric edge plasma density measurement with boundary condition preserving millimeter waveguides were demonstrated to elucidate the mutual correlation among the divertor plasma, scrape-off layer plasma and the bulk plasma properties in the additionally heated JT-60 plasmas. The electron density in the divertor region exhibited a nonlinear dependence on the bulk plasma density for the joule-heated plasmas. When neutral beam heating is applied on the plasmas with the electron density above 2x10 19 /m 3 , however, the bulk plasma density is scraped off from the outer region to lead to density clamping, and the electron density in the divertor region rapidly increases over 1x10 20 /m 3 , from which we can deduce that the particle flow along the magnetic field is dominant, resulting in the apparent degradation of the particle confinement time. As for the case when neutral beam injection is applied to low-density plasmas, the bulk plasma electron density profile becomes flattened to yield a smaller density increase in the divertor region and no density clamping of the bulk plasma was observed. Simulation analysis which correlates the transport of the divertor plasma and the scrape-off layer plasma was also carried out to find the consistency with the experimental results. (orig.)

  19. Numerical simulation of the bubble growth due to hydrogen isotopes inventory processes in plasma-irradiated tungsten

    International Nuclear Information System (INIS)

    Sang, Chaofeng; Sun, Jizhong; Bonnin, Xavier; Liu, Shengguang; Wang, Dezhen

    2013-01-01

    Hydrogen isotopes (HI) inventory is a key issue for fusion devices like ITER. It is especially urgent to understand how HI are retained in tungsten since it currently is the most important candidate material for the plasma-facing wall. Bubble growth is an important experimental complication that yet prevents a full understanding of HI retention processes in tungsten walls and most critically the divertor elements. In this work, we develop a model based on rate equations, which includes the bubble growth in tungsten being exposed to a HI plasma. In the model, HI molecules can be produced through recombination processes on the inner surface of a bubble, and HI molecules can also dissociate themselves to solute atoms, and the latter diffuse into the bulk wall because of very high pressures inside the bubble. The present model is applied to simulate how HI are retained in plasma-irradiated tungsten in the form of molecules to explain the wall temperature, trap concentration, incident HI flux and fluence dependencies of bubble growth

  20. Models for poloidal divertors

    International Nuclear Information System (INIS)

    Post, D.E.; Heifetz, D.; Petravic, M.

    1982-07-01

    Recent progress in models for poloidal divertors has both helped to explain current divertor experiments and contributed significantly to design efforts for future large tokamak (INTOR, etc.) divertor systems. These models range in sophistication from zero-dimensional treatments and dimensional analysis to two-dimensional models for plasma and neutral particle transport which include a wide variety of atomic and molecular processes as well as detailed treatments of the plasma-wall interaction. This paper presents a brief review of some of these models, describing the physics and approximations involved in each model. We discuss the wide variety of physics necessary for a comprehensive description of poloidal divertors. To illustrate the progress in models for poloidal divertors, we discuss some of our recent work as typical examples of the kinds of calculations being done

  1. Models for poloidal divertors

    Energy Technology Data Exchange (ETDEWEB)

    Post, D.E.; Heifetz, D.; Petravic, M.

    1982-07-01

    Recent progress in models for poloidal divertors has both helped to explain current divertor experiments and contributed significantly to design efforts for future large tokamak (INTOR, etc.) divertor systems. These models range in sophistication from zero-dimensional treatments and dimensional analysis to two-dimensional models for plasma and neutral particle transport which include a wide variety of atomic and molecular processes as well as detailed treatments of the plasma-wall interaction. This paper presents a brief review of some of these models, describing the physics and approximations involved in each model. We discuss the wide variety of physics necessary for a comprehensive description of poloidal divertors. To illustrate the progress in models for poloidal divertors, we discuss some of our recent work as typical examples of the kinds of calculations being done.

  2. Intermittent Divertor Filaments in the National Spherical Torus Experiment and Their Relation to Midplane Blobs

    International Nuclear Information System (INIS)

    Maqueda, R.J.; Stotler, D.P.

    2010-01-01

    While intermittent filamentary structures, also known as blobs, are routinely seen in the low-field-side scrape-off layer of the National Spherical Torus Experiment (NSTX) (Ono et al 2000 Nucl. Fusion 40 557), fine structured filaments are also seen on the lower divertor target plates of NSTX. These filaments, not associated with edge localized modes, correspond to the interaction of the turbulent blobs seen near the midplane with the divertor plasma facing components. The fluctuation level of the neutral lithium light observed at the divertor, and the skewness and kurtosis of its probability distribution function, is similar to that of midplane blobs seen in D α ; e.g. increasing with increasing radii outside the outer strike point (OSP) (separatrix). In addition, their toroidal and radial movement agrees with the typical movement of midplane blobs. Furthermore, with the appropriate magnetic topology, i.e. mapping between the portion of the target plates being observed into the field of view of the midplane gas puff imaging diagnostic, very good correlation is observed between the blobs and the divertor filaments. The correlation between divertor plate filaments and midplane blobs is lost close to the OSP. This latter observation is consistent with the existence of 'magnetic shear disconnection' due to the lower X-point, as proposed by Cohen and Ryutov (1997 Nucl. Fusion 37 621).

  3. Multiscale study on hydrogen mobility in metallic fusion divertor material

    International Nuclear Information System (INIS)

    Heinola, K.

    2010-01-01

    For achieving efficient fusion energy production, the plasma-facing wall materials of the fusion reactor should ensure long time operation. In the next step fusion device, ITER, the first wall region facing the highest heat and particle load, i.e. the divertor area, will mainly consist of tiles based on tungsten. During the reactor operation, the tungsten material is slowly but inevitably saturated with tritium. Tritium is the relatively short-lived hydrogen isotope used in the fusion reaction. The amount of tritium retained in the wall materials should be minimized and its recycling back to the plasma must be unrestrained, otherwise it cannot be used for fueling the plasma. A very expensive and thus economically not viable solution is to replace the first walls quite often. A better solution is to heat the walls to temperatures where tritium is released. Unfortunately, the exact mechanisms of hydrogen release in tungsten are not known. In this thesis both experimental and computational methods have been used for studying the release and retention of hydrogen in tungsten. The experimental work consists of hydrogen implantations into pure polycrystalline tungsten, the determination of the hydrogen concentrations using ion beam analyses (IBA) and monitoring the out-diffused hydrogen gas with thermodesorption spectrometry (TDS) as the tungsten samples are heated at elevated temperatures. Combining IBA methods with TDS, the retained amount of hydrogen is obtained as well as the temperatures needed for the hydrogen release. With computational methods the hydrogen-defect interactions and implantation-induced irradiation damage can be examined at the atomic level. The method of multiscale modelling combines the results obtained from computational methodologies applicable at different length and time scales. Electron density functional theory calculations were used for determining the energetics of the elementary processes of hydrogen in tungsten, such as diffusivity and

  4. Recrystallization kinetics of warm-rolled tungsten in the temperature range 1150–1350 °C

    Energy Technology Data Exchange (ETDEWEB)

    Alfonso, A., E-mail: aalz@dtu.dk [Section of Materials and Surface Engineering, Department of Mechanical Engineering, Technical University of Denmark, 2800 Lyngby (Denmark); Sino-Danish Center for Education and Research (China); Sino-Danish Center for Education and Research (Denmark); Juul Jensen, D. [Danish-Chinese Center for Nanometals, Section of Materials Science and Advanced Characterization, Department of Wind Energy, Technical University of Denmark, Risø Campus, 4000 Roskilde (Denmark); Sino-Danish Center for Education and Research (China); Sino-Danish Center for Education and Research (Denmark); Luo, G.-N. [Fusion Reactor Materials Science and Technology Division, Institute of Plasma Physics, Chinese Academy of Sciences, 230031 Hefei, Anhui (China); Sino-Danish Center for Education and Research (China); Sino-Danish Center for Education and Research (Denmark); Pantleon, W. [Section of Materials and Surface Engineering, Department of Mechanical Engineering, Technical University of Denmark, 2800 Lyngby (Denmark); Association EURATOM-DTU (Denmark); Sino-Danish Center for Education and Research (China); Sino-Danish Center for Education and Research (Denmark)

    2014-12-15

    Pure tungsten is a potential candidate material for the plasma-facing first wall and the divertor of fusion reactors. Both parts have to withstand high temperatures during service. This will alter the microstructure of the material by recovery, recrystallization and grain growth and will cause degradation in material properties as a loss in mechanical strength and embrittlement. The thermal stability of a pure tungsten plate warm-rolled to 67% thickness reduction was investigated by long-term isothermal annealing in the temperature range between 1150 °C and 1350 °C up to 2200 h. Changes in the mechanical properties during annealing are quantified by Vickers hardness measurements. They are described concisely by classical kinetic models for recovery and recrystallization. The observed time spans for recrystallization and the obtained value for the activation energy of the recrystallization process indicate a sufficient thermal stability of the tungsten plate during operation below 1075 °C.

  5. Recrystallization kinetics of warm-rolled tungsten in the temperature range 1150–1350 °C

    International Nuclear Information System (INIS)

    Alfonso, A.; Juul Jensen, D.; Luo, G.-N.; Pantleon, W.

    2014-01-01

    Pure tungsten is a potential candidate material for the plasma-facing first wall and the divertor of fusion reactors. Both parts have to withstand high temperatures during service. This will alter the microstructure of the material by recovery, recrystallization and grain growth and will cause degradation in material properties as a loss in mechanical strength and embrittlement. The thermal stability of a pure tungsten plate warm-rolled to 67% thickness reduction was investigated by long-term isothermal annealing in the temperature range between 1150 °C and 1350 °C up to 2200 h. Changes in the mechanical properties during annealing are quantified by Vickers hardness measurements. They are described concisely by classical kinetic models for recovery and recrystallization. The observed time spans for recrystallization and the obtained value for the activation energy of the recrystallization process indicate a sufficient thermal stability of the tungsten plate during operation below 1075 °C

  6. Innovative divertor concepts for LHD

    International Nuclear Information System (INIS)

    Ohyabu, N.; Komori, A.; Akaishi, K.

    1994-07-01

    We are developing various innovative divertor concepts which improve the LHD plasma performance. These are two divertor magnetic geometries (helical and local island divertors), three operational scenarios (radiative cooling in the high density, cold boundary, confinement improvement by generating high temperature divertor plasma and simultaneous achievement of radiative cooling and H-mode like confinement improvement) and technological development of new efficient hydrogen pumping schemes. (author)

  7. Evidences of trapping in tungsten and implications for plasma-facing components

    Science.gov (United States)

    Longhurst, G. R.; Anderl, R. A.; Holland, D. F.

    Trapping effects that include significant delays in permeation saturation, abrupt changes in permeation rate associated with temperature changes, and larger than expected inventories of hydrogen isotopes in the material, were seen in implantation-driven permeation experiments using 25- and 50-micron thick tungsten foils at temperatures of 638 to 825 K. Computer models that simulate permeation transients reproduce the steady-state permeation and reemission behavior of these experiments with expected values of material parameters. However, the transient time characteristics were not successfully simulated without the assumption of traps of substantial trap energy and concentration. An analytical model based on the assumptions of thermodynamic equilibrium between trapped hydrogen atoms and a comparatively low mobile atom concentration successfully accounts for the observed behavior. Using steady-state and transient permeation data from experiments at different temperatures, the effective trap binding energy may be inferred. We analyze a tungsten coated divertor plate design representative of those proposed for ITER and ARIES and consider the implications for tritium permeation and retention if the same trapping we observed was present in that tungsten. Inventory increases of several orders of magnitude may result.

  8. Application of tungsten-fibre-reinforced copper matrix composites to a high-heat-flux component: A design study by dual scale finite element analysis

    International Nuclear Information System (INIS)

    Jeong-Ha You

    2006-01-01

    According to the European Power Plant Conceptual Study, actively cooled tungsten mono-block is one of the divertor design options for fusion reactors. In this study the coolant tube acts as a heat sink and the tungsten block as plasma-facing armour. A key material issue here is how to achieve high temperature strength and high heat conductivity of the heat sink tube simultaneously. Copper matrix composite reinforced with continuous strong fibres has been considered as a candidate material for heat sink of high-heat-flux components. Refractory tungsten wire is a promising reinforcement material due to its high strength, winding flexibility and good interfacial wetting with copper. We studied the applicability of tungsten-fibre-reinforced copper matrix composite heat sink tubes for the tungsten mono-block divertor by means of dual-scale finite element analysis. Thermo-elasto-plastic micro-mechanics homogenisation technique was applied. A heat flux of 15 MW/m 2 with cooling water temperature of 320 o C was considered. Effective stress-free temperature was assumed to be 500 o C. Between the tungsten block and the composite heat sink tube interlayer (1 mm thick) of soft Cu was inserted. The finite element analysis yields the following results: The predicted maximum temperature at steady state is 1223 o C at the surface and 562 o C at the interface between tube and copper layer. On the macroscopic scale, residual stress is generated during fabrication due to differences in thermal expansion coefficients of the materials. Strong compressive stress occurs in the tungsten block around the tube while weak tensile stress is present in the interlayer. The local and global probability of brittle failure of the tungsten block was also estimated using the probabilistic failure theories. The thermal stresses are significantly decreased upon subsequent heat flux loading. Resolving the composite stress on microscopic scale yields a maximum fibre axial stress of 3000 MPa after

  9. Hydrogen isotope inventory in the graphite divertor tiles of ASDEX Upgrade as measured by thermal desorption spectroscopy

    International Nuclear Information System (INIS)

    Franzen, P.; Behrisch, R.; Garcia-Rosales, C.; Schleussner, D.; Roesler, D.; Becker, J.; Knapp, W.; Edelmann, C.

    1997-01-01

    The hydrogen and deuterium inventories of the ASDEX Upgrade divertor tiles were measured after the experimental period from December 1994 to July 1995 by thermal desorption spectroscopy (TDS) of samples cut out of the divertor tiles. The samples were heated by electron bombardment up to 2100 K; the released gases were measured by means of a calibrated quadrupole mass spectrometer. The measured hydrogen or deuterium inventories are of the order of 10 23 m -2 . They are larger for samples of the inner divertor than of the outer divertor by a factor of about 2. The largest inventory was found at the separatrix position of the inner divertor. Most of the released hydrogen (H) can be attributed to water adsorbed in the near surface region during the air exposure prior to the TDS measurements. The total inventories measured by TDS exceed the inventories in the near surface region (< 25 μm) measured by ion beam analysis methods by a factor of up to 10. Hence, the total hydrogen retention is governed by the diffusion out of the near surface region deep into the material. The hydrogen and deuterium inventories decreased with increasing surface temperature. (author). 64 refs, 12 figs, 2 tabs

  10. Divertor scenario development for NSTX Upgrade

    Science.gov (United States)

    Soukhanovskii, V. A.; McLean, A. G.; Meier, E. T.; Rognlien, T. D.; Ryutov, D. D.; Bell, R. E.; Diallo, A.; Gerhardt, S. P.; Kaita, R.; Kolemen, E.; Leblanc, B. P.; Menard, J. E.; Podesta, M.; Scotti, F.

    2012-10-01

    In the NSTX-U tokamak, initial plans for divertor plasma-facing components (PFCs) include lithium and boron coated graphite, with a staged transition to molybdenum. Steady-state peak divertor heat fluxes are projected to reach 20-30 MW/m^2 in 2 MA, 12 MW NBI-heated discharges of up to 5 s duration, thus challenging PFC thermal limits. Based on the recent NSTX divertor experiments and modeling with edge transport code UEDGE, a favorable basis for divertor power handling in NSTX-U is developed. The snowflake divertor geometry and feedback-controlled divertor impurity seeding applied to the lower and upper divertors are presently envisioned. In the NSTX snowflake experiments with lithium-coated graphite PFCs, the peak divertor heat fluxes from Type I ELMs and between ELMs were significantly reduced due to geometry effects, increased volumetric losses and null-point convective redistribution between strike points. H-mode core confinement was maintained at H98(y,2)<=1 albeit the radiative detachment. Additional CD4 seeding demonstrated potential for a further increase of divertor radiation.

  11. 3D trajectories re-construction of droplets ejected in controlled tungsten melting studies in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Yang, Zhongshi; Krieger, K.; Lunt, T.; Brochard, F.; Briancon, J.-L.; Neu, R.; Dux, R.; Janzer, A.; Potzel, S.; Pütterich, T.

    2013-01-01

    Two fast visible range camera systems with vertically and tangentially oriented crossed viewing fields in the divertor region of ASDEX Upgrade were used to observe tungsten (W) droplets ejected from a melting W-pin into the divertor plasma. To obtain the spatial (3D) trajectories of the tungsten droplets, the trajectory of a given droplet in the (2D) camera image coordinate system was derived for each view separately. From these data, the 3D droplet position was derived by computing the shortest line segment connecting crossed viewing chords to a given droplet taking the centre coordinate of the line segment as actual coordinate. The experimental error of the derived position was estimated from the length of the connecting line segment. In the toroidal direction, the computed trajectories can be described by an analytical transport model for the droplets assuming an initial droplet diameter in the range of 60–100 μm. In the vertical direction the vertical distance droplets travelled when reaching the edge of the viewing field also agrees with the model predictions. However, discrepancies are found with respect to the time point whence a droplet reverts its initial downwards motion due to centrifugal forces exceeding gravity and plasma generated force components

  12. Versator divertor experiment: preliminary designs

    International Nuclear Information System (INIS)

    Wan, A.S.; Yang, T.F.

    1984-08-01

    The emergence of magnetic divertors as an impurity control and ash removal mechanism for future tokamak reactors bring on the need for further experimental verification of the divertor merits and their ability to operate at reactor relevant conditions, such as with auxiliary heating. This paper presents preliminary designs of a bundle and a poloidal divertor for Versator II, which can operate in conjunction with the existing 150 kW of LHRF heating or LH current drive. The bundle divertor option also features a new divertor configuration which should improve the engineering and physics results of the DITE experiment. Further design optimization in both physics and engineering designs are currently under way

  13. Snowflake divertor configuration studies for NSTX-Upgrade

    International Nuclear Information System (INIS)

    Soukhanovskii, V.A.

    2011-01-01

    Snowflake divertor experiments in NSTX provide basis for PMI development toward NSTX-Upgrade. Snowflake configuration formation was followed by radiative detachment. Significant reduction of steady-state divertor heat flux observed in snowflake divertor. Impulsive heat loads due to Type I ELMs are partially mitigated in snowflake divertor. Magnetic control of snowflake divertor configuration is being developed. Plasma material interface development is critical for NSTX-U success. Four divertor coils should enable flexibility in boundary shaping and control in NSTX-U. Snowflake divertor experiments in NSTX provide good basis for PMI development in NSTX-Upgrade. FY 2009-2010 snowflake divertor experiments in NSTX: (1) Helped understand control of magnetic properties; (2) Core H-mode confinement unchanged; (3) Core and edge carbon concentration reduced; and (4) Divertor heat flux significantly reduced - (a) Steady-state reduction due to geometry and radiative detachment, (b) Encouraging results for transient heat flux handling, (c) Combined with impurity-seeded radiative divertor. Outlook for snowflake divertor in NSTX-Upgrade: (1) 2D fluid modeling of snowflake divertor properties scaling - (a) Edge and divertor transport, radiation, detachment threshold, (b) Compatibility with cryo-pump and lithium conditioning; (2) Magnetic control development; and (3) PFC development - PFC alignment and PFC material choice.

  14. Erosion and migration of tungsten employed at the central column heat shield of ASDEX Upgrade

    International Nuclear Information System (INIS)

    Krieger, K.; Gong, X.; Balden, M.; Hildebrandt, D.; Maier, H.; Rohde, V.; Roth, J.; Schneider, W.

    2002-01-01

    In ASDEX Upgrade, tungsten was employed as plasma facing material at the central column heat shield in the plasma main chamber. The campaign averaged tungsten erosion flux was determined by measuring the difference of the W-layer thickness before and after the experimental campaign using ion beam analysis methods. The observed lateral variation and the total amount of eroded tungsten are attributed to erosion by impact of ions from the scrape-off layer plasma. Migration and redeposition of eroded tungsten were investigated by quantitative analysis of deposited tungsten on collector probes and wall samples. The obtained results, as well as the spectroscopically observed low tungsten plasma penetration probability, indicate that a major fraction of the eroded tungsten migrates predominantly through direct transport channels in the outer plasma scrape-off layer without entering the confined plasma

  15. Advanced divertor experiments on DIII-D

    International Nuclear Information System (INIS)

    Schaffer, M.J.; Mahdavi, M.A.; Osborne, T.; Petrie, T.W.; Stambaugh, R.D.; Buchenauer, D.; Hill, D.N.; Klepper, C.C.

    1991-01-01

    The poloidal divertor is presently favored for next-step, high-power tokamaks. The DIII-D Advanced Divertor Program (ADP) aims to gain increased control over the divertor plasma and tokamak boundary conditions. This paper reports experiments done in the first phase of the ADP. The DIII-D lower divertor was modified by the addition of a toroidally symmetric, graphite-armoured, water-cooled divertor-biasing ring electrode at the entrance to a gas plenum. (In the past DIII-D operated with an open divertor.) The plenum will eventually contain a He cryogenic loop for active divertor pumping. The separatrix 'strike' position is controlled by the lower poloidal field shaping coils and can be varied smoothly from the ring electrode upper surface to the divertor floor far from the entrance aperture. External power, at up to 550 V and 8 kA separately, has been applied to the electrode to date. (author) 5 refs., 5 figs

  16. Textor bundle divertor

    International Nuclear Information System (INIS)

    Yang, T.F.; Wan, A.; Gierszewski, P.; Rapperport, E.; Montgomery, D.B.

    1982-01-01

    This report presents a preliminary bundle divertor conceptual design for installation on the TEXTOR tokamak. An advanced cascade T-shaped coil configuration is used. This divertor design has the following important characteristics: (1) the current density in the conductor is less than 6 kAmp/cm 2 , and the maximum field is less than 6 Tesla; (2) the divertor can be operated at steady-state either for copper or superconducting conductors; (3) the power consumption is about 7 MW for a normal conductor; (4) the divertor can be inserted into the existing geometry of TEXTOR; (5) the ripple on axis is only 0.3% and the mirror ratio is 2 to 4; (6) the stagnation axis is concave toward the plasma, therefore q/sub D/ is smaller, the acceptance angle is larger, and the efficiency may be better than the conventional circular coil design

  17. TEXTOR bundle divertor

    International Nuclear Information System (INIS)

    Yang, T.F.; Wan, A.; Gierszewski, P.; Rapperport, E.; Montgomery, D.B.

    1982-01-01

    This report presents a preliminary bundle divertor conceptual design for installation on the TEXTOR tokamak. An advanced cascade T-shaped coil configuration is used. This divertor design has the following important characteristics: (1) the current density in the conductor is less than 6 kAmp/cm 2 , and the maximum field is less than 6 Tesla; (2) the divertor can be operated at steady-state either for copper or superconducting conductors; (3) the power consumption is about 7 MW for a normal conductor; (4) the divertor can be inserted into the existing geometry of TEXTOR; (5) the ripple on axis is only 0.3% and the mirror ratio is 2 to 4; (6) the stagnation axis is concave toward the plasma, therefore q/sub D/ is smaller, the acceptance angle is larger, and the efficiency may be better than the conventional circular coil design

  18. Divertor cooling device

    International Nuclear Information System (INIS)

    Nakayama, Tadakazu; Hayashi, Katsumi; Handa, Hiroyuki

    1993-01-01

    Cooling water for a divertor cooling system cools the divertor, thereafter, passes through pipelines connecting the exit pipelines of the divertor cooling system and the inlet pipelines of a blanket cooling system and is introduced to the blanket cooling system in a vacuum vessel. It undergoes emission of neutrons, and cooling water in the divertor cooling system containing a great amount of N-16 which is generated by radioactivation of O-16 is introduced to the blanket cooling system in the vacuum vessel by way of pipelines, and after cooling, passes through exit pipelines of the blanket cooling system and is introduced to the outside of the vacuum vessel. Radiation of N-16 in the cooling water is decayed sufficiently with passage of time during cooling of the blanket, thereby enabling to decrease the amount of shielding materials such as facilities and pipelines, and ensure spaces. (N.H.)

  19. Thermal stability of warm-rolled tungsten

    DEFF Research Database (Denmark)

    Alfonso Lopez, Angel

    to assess the effect of the processing parameters. Characterization of theannealed state reveals the effect of the degree of deformation on the recovery and recrystallizationannealing phenomena. This allowed comparing recrystallization kinetics (in terms of nucleation andgrowth) in dependence on initial......Pure tungsten is considered as armor material for the most critical parts of fusion reactors (thedivertor and the blanket first wall), mainly due to its high melting point (3422 °C). This is becauseboth the divertor and the first wall have to withstand high temperatures during service which...... mayalter the microstructure of the material by recovery, recrystallization and grain growth, and maycause degradation in material properties as a loss in mechanical strength and embrittlement.For this reason, this project aims towards establishing the temperature and time regime under whichrecovery...

  20. Suppression of tungsten accumulation during ELMy H-mode by lower hybrid wave heating in the EAST tokamak

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2017-08-01

    Full Text Available EAST tokamak has been equipped with upper tungsten divertor since 2014. The tungsten accumulation has been often observed in NBI-heated H-mode discharges suggesting deleterious tungsten confinement in the plasma core. It causes not only H-L back transition but also plasma disruption in several discharges. Suppression of the tungsten accumulation is therefore the most important issue in EAST to achieve a long pulse H-mode discharge. In order to study the tungsten behavior in the long pulse discharge, tungsten spectra have been measured at 20–140Å. The tungsten density, nw, is evaluated from the intensity of tungsten unresolved transition array (W-UTA in a wavelength range of 45–70Å which is composed of several ionization stages of tungsten, e.g. W27+-W45+ at Te0∼2.5keV. It is found that the tungsten accumulation can be suppressed when the 4.6GHz LHW with PLHW∼0.8MW is superimposed on the NBI phase (PNBI= 1.9MW. During the superimposed phase the ELM frequency, fELM, increases from ∼30Hz to ∼60Hz and the tungsten density is halved compared to the NBI-heated discharge. The H-mode discharge can be thus steadily sustained for longer period. It is found that the nw is a large function of the ratio of LHW power to the total injection power, PLHW/(PLHW+PNBI, and the nw can be reduced, at least, in an order of magnitude smaller than that in NBI-heated discharges at PLHW/(PLHW+PNBI≥0.8. The result strongly suggests a possible way toward the steady H-mode discharge.

  1. Experimental study of heating scheme effect on the inner divertor power footprint widths in EAST lower single null discharges

    Science.gov (United States)

    Deng, G. Z.; Xu, J. C.; Liu, X.; Liu, X. J.; Liu, J. B.; Zhang, H.; Liu, S. C.; Chen, L.; Yan, N.; Feng, W.; Liu, H.; Xia, T. Y.; Zhang, B.; Shao, L. M.; Ming, T. F.; Xu, G. S.; Guo, H. Y.; Xu, X. Q.; Gao, X.; Wang, L.

    2018-04-01

    A comprehensive work of the effects of plasma current and heating schemes on divertor power footprint widths is carried out in the experimental advanced superconducting tokamak (EAST). The divertor power footprint widths, i.e., the scrape-off layer heat flux decay length λ q and the heat spreading S, are crucial physical and engineering parameters for fusion reactors. Strong inverse scaling of λ q and S with plasma current have been demonstrated for both neutral beam (NB) and lower hybrid wave (LHW) heated L-mode and H-mode plasmas at the inner divertor target. For plasmas heated by the combination of the two kinds of auxiliary heating schemes (NB and LHW), the divertor power widths tend to be larger in plasmas with higher ratio of LHW power. Comparison between experimental heat flux profiles at outer mid-plane (OMP) and divertor target for NB heated and LHW heated L-mode plasmas reveals that the magnetic topology changes induced by LHW may be the main reason to the wider divertor power widths in LHW heated discharges. The effect of heating schemes on divertor peak heat flux has also been investigated, and it is found that LHW heated discharges tend to have a lower divertor peak heat flux compared with NB heated discharges under similar input power. All these findings seem to suggest that plasmas with LHW auxiliary heating scheme are better heat exhaust scenarios for fusion reactors and should be the priorities for the design of next-step fusion reactors like China Fusion Engineering Test Reactor.

  2. Innovations in the LHD divertor program

    International Nuclear Information System (INIS)

    Ohyabu, N.; Komori, A.; Noda, N.; Morisaki, T.; Sagara, A.; Suzuki, H.; Watanabe, T.; Motojima, O.; Takase, H.

    1995-01-01

    Various innovative divertor concepts have been developed to improve the LHD plasma performance. They are two divertor magnetic geometries (helical divertor configurations with and without n/m=1/1 island) and two operational scenarios (confinement improvement by generating high temperature divertor plasma and simultaneous achievement of radiative cooling and H-mode-like confinement improvement). In addition, technological development of new efficient hydrogen pumping schemes are being pursued for enhancing the divertor control capability. 16 refs., 4 figs

  3. Constitutive law for thermally-activated plasticity of recrystallized tungsten

    Science.gov (United States)

    Zinovev, Aleksandr; Terentyev, Dmitry; Dubinko, Andrii; Delannay, Laurent

    2017-12-01

    A physically-based constitutive law relevant for ITER-specification tungsten grade in as-recrystallized state is proposed. The material demonstrates stages III and IV of the plastic deformation, in which hardening rate does not drop to zero with the increase of applied stress. Despite the classical Kocks-Mecking model, valid at stage III, the strain hardening asymptotically decreases resembling a hyperbolic function. The material parameters are fitted by relying on tensile test data and by requiring that the strain and stress at the onset of diffuse necking (uniform elongation and ultimate tensile strength correspondingly) as well as the yield stress be reproduced. The model is then validated in the temperature range 300-600 °C with the help of finite element analysis of tensile tests which confirms the reproducibility of the experimental engineering curves up to the onset of diffuse necking, beyond which the development of ductile damage accelerates the material failure. This temperature range represents the low temperature application window for tungsten as divertor material in fusion reactor ITER.

  4. Advanced divertor experiments on DIII-D

    International Nuclear Information System (INIS)

    Schaffer, M.J.; Mahdavi, M.A.; Osborne, T.; Petrie, T.W.; Stambaugh, R.D.; Buchenauer, D.; Hill, D.N.; Klepper, C.C.

    1991-04-01

    The poloidal divertor is presently favored for next-step, high-power tokamaks. The DIII-D Advanced Divertor Program (ADP) aims to gain increased control over the divertor plasma and tokamak boundary conditions. This paper reports experiments done in the first phase of the ADP. The DIII-D lower divertor was modified by the addition of a toroidally symmetric, graphite-armoured, water-cooled divertor-biasing ring electrode at the entrance to a gas plenum. The plenum will eventually contain a He cryogenic loop for active divertor pumping. The separatrix ''strike'' position is controlled by the lower poloidal field shaping coils and can be varied smoothly from the ring electrode upper surface to the divertor floor far from the entrance aperture. External power, at up to 550 V and 8 kA separately, has been applied to the electrode to date. 5 refs., 5 figs

  5. Manufacturing and testing in reactor relevant conditions of brazed plasma facing components of the ITER divertor

    International Nuclear Information System (INIS)

    Bisio, M.; Branca, V.; Marco, M. Di; Federici, A.; Grattarola, M.; Gualco, G.; Guarnone, P.; Luconi, U.; Merola, M.; Ozzano, C.; Pasquale, G.; Poggi, P.; Rizzo, S.; Varone, F.

    2005-01-01

    A fabrication route based on brazing technology has been developed for the realization of the high heat flux components for the ITER vertical target and Dome-Liner. The divertor vertical target is armoured with carbon fiber reinforced carbon and tungsten in the lower straight part and in the upper curved part, respectively. The armour material is joined to heat sinks made of precipitation hardened copper-chromium-zirconium alloy. The plasma facing units of the dome component are based on a tungsten flat tile design with hypervapotron cooling. An innovative brazing technique based on the addition of carbon fibers to the active brazing alloy, developed by Ansaldo Ricerche for applications in the field of the energy production, has been used for the carbon fiber composite to copper joint to reduce residual stresses. The tungsten-copper joint has been realized by direct casting. A proper brazing thermal cycle has been studied to guarantee the required mechanical properties of the precipitation hardened alloy after brazing. The fabrication route of plasma facing components for the ITER vertical target and dome based on the brazing technology has been proved by means of thermal fatigue tests performed on mock-ups in reactor relevant conditions

  6. Properties of deposited layer formed by interaction with Be seeded D–He mixture plasma and tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, K., E-mail: tokunaga@riam.kyushu-u.ac.jp [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Baldwin, M.J.; Nishijima, D.; Doerner, R.P. [Center for Energy Research, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0417 (United States); Nagata, S. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Tsuchiya, B. [Department of General Education, Faculty of Science and Technology, Meiji University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, 468-8502 (Japan); Kurishita, H. [International Research Center for Nuclear Materials Science, IMR, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Fujiwara, T.; Araki, K.; Miyamoto, Y. [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Ohno, N. [School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Ueda, Y. [Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan)

    2013-11-15

    Be-seeded, high-flux, deuterium/helium mixture plasma exposure experiments on tungsten target materials have been performed to simulate ITER all tungsten divertor erosion/modification and deposition phenomena. The exposure conditions are kept fixed at a typical low-ion-energy of 60 eV and a flux of 3–6 × 10{sup 22}/m{sup 2}/s. Sample temperature is 1123 K and plasma exposure times spanning 1050–10,100 s are explored. The typical ratio of He/D ions is 0.2 and Be content is 0.2%. A He-induced nanostructure layer is formed on the exposure surfaces of tungsten materials and the surface of the nanostructure is covered by a thin layer of Be and O. A fraction of the re-eroded Be from the target is deposited on a glassy carbon plate with line of sight to the tungsten target. Rutherford backscattering spectrometry analyses show that the Be redeposit layer is in the form of laminae. Small amounts of Mo, W and C are also found in the redeposited Be layer. Elastic recoil detection analyses show that D, He and H are also included in the redeposited Be layer.

  7. Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention

    Energy Technology Data Exchange (ETDEWEB)

    Buzi, Luxherta [IEK - Plasmaphysik, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Juelich (Germany); FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research (Netherlands); Ghent University (Belgium); Temmerman, Greg de [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research (Netherlands); Reinhart, Michael; Matveev, Dmitry; Unterberg, Bernhard; Wienhold, Peter; Breuer, Uwe; Kreter, Arkadi [IEK - Plasmaphysik, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Juelich (Germany); Oost, Guido van [Ghent University (Belgium)

    2014-07-01

    Tungsten is to be used as plasma-facing material for the ITER divertor due to its favourable thermal properties, low erosion and fuel retention. Bombardment of tungsten by low energy ions of hydrogen isotopes, at different surface temperature, can lead to surface modifications and influence the fuel accumulation in the material. This contribution will assess the impact of material microstructure and the correlation between the particle flux, surface modifications and deuterium retention in tungsten. Tungsten samples were exposed to deuterium plasma at a surface temperature of 510 K, 670 K and 870 K, ion energy of 40 eV and ion fluence of 10{sup 26} m{sup -2}. The high and low ion flux ranges were in the order 10{sup 24} m{sup -2}s{sup -1} and 10{sup 22} m{sup -2}s{sup -1}. Depth profiling of deuterium in all the samples was done by secondary ion mass spectroscopy technique and a scanning electron microscope was used to investigate the surface modifications. Modelling of the D desorption spectra with the coupled reaction diffusion system model will be also presented.

  8. Crystal orientation effects on helium ion depth distributions and adatom formation processes in plasma-facing tungsten

    International Nuclear Information System (INIS)

    Hammond, Karl D.; Wirth, Brian D.

    2014-01-01

    We present atomistic simulations that show the effect of surface orientation on helium depth distributions and surface feature formation as a result of low-energy helium plasma exposure. We find a pronounced effect of surface orientation on the initial depth of implanted helium ions, as well as a difference in reflection and helium retention across different surface orientations. Our results indicate that single helium interstitials are sufficient to induce the formation of adatom/substitutional helium pairs under certain highly corrugated tungsten surfaces, such as (1 1 1)-orientations, leading to the formation of a relatively concentrated layer of immobile helium immediately below the surface. The energies involved for helium-induced adatom formation on (1 1 1) and (2 1 1) surfaces are exoergic for even a single adatom very close to the surface, while (0 0 1) and (0 1 1) surfaces require two or even three helium atoms in a cluster before a substitutional helium cluster and adatom will form with reasonable probability. This phenomenon results in much higher initial helium retention during helium plasma exposure to (1 1 1) and (2 1 1) tungsten surfaces than is observed for (0 0 1) or (0 1 1) surfaces and is much higher than can be attributed to differences in the initial depth distributions alone. The layer thus formed may serve as nucleation sites for further bubble formation and growth or as a source of material embrittlement or fatigue, which may have implications for the formation of tungsten “fuzz” in plasma-facing divertors for magnetic-confinement nuclear fusion reactors and/or the lifetime of such divertors.

  9. Scrape-off layer and divertor theory meeting: Proceedings

    International Nuclear Information System (INIS)

    1994-03-01

    This report contains viewgraphs on the following topics: fluid modelling of neutrals in the SOL and divertor; instabilities of gas-fueled divertors: theory and adaptive simulations; stability of ionization fronts of gaseous divertor plasmas; monte carlo calculation of heat transport; reduced charge model for edge impurity flows; thermally collapsed solutions for gaseous/radiative divertors; adaptive grid methods in transport simulation; advanced numerical solution algorithms applied to the multispecies edge plasma equations; two-dimensional edge plasma simulation using the multigrid method; neutral behavior and the effects of neutral-neutral and neutral-ion elastic scattering in the ITER gaseous divertor; particle throughput in the TPX divertor; marfes in tokamaks; a comparative study of the limiter and divertor edge plasmas in TEXT-U; issues of toroidal tokamak-type divertor simulators; ASDEX upgrade; the ITER divertor; the DIII-D divertor program and TPX divertor; DEGAS 2: a transmission/escape probabilities model for neutral particle transport: comparison with DEGAS 2; a collisional radiative model of hydrogen for high recycling divertors; comparison of fluid and non- fluid neutral models in B2.5; DIII-D radiative divertor simulations; 3-D fluid simulations of turbulence from conducting wall mode; turbulence and drifts in SOL plasmas; recent results for 1 1/2-D ITER gas target divertor modelling; evaluation of pumping and fueling in coupled core, SOL, and divertor chamber calculations; and ITER gas target divertors: comparison of volume recombination and large radial transport scenarios using DEGAS

  10. Deuterium depth profiling in JT-60U W-shaped divertor tiles by nuclear reaction analysis

    International Nuclear Information System (INIS)

    Hayashi, T.; Ochiai, K.; Masaki, K.; Gotoh, Y.; Kutsukake, C.; Arai, T.; Nishitani, T.; Miya, N.

    2006-01-01

    Deuterium concentrations and depth profiles in plasma-facing graphite tiles used in the divertor of JAERI Tokamak-60 Upgrade (JT-60U) were investigated by nuclear reaction analysis (NRA). The highest deuterium concentration of D/ 12 C of 0.053 was found in the outer dome wing tile, where the deuterium accumulated probably through the deuterium-carbon co-deposition. In the outer and inner divertor target tiles, the D/ 12 C data were lower than 0.006. Additionally, the maximum (H + D)/ 12 C in the dome top tile was estimated to be 0.023 from the results of NRA and secondary ion mass spectroscopy (SIMS). Orbit following Monte-Carlo (OFMC) simulation showed energetic deuterons caused by neutral beam injections (NBI) were implanted into the dome region with high heat flux. Furthermore, the surface temperature and conditions such as deposition and erosion significantly influenced the accumulation process of deuterium. The deuterium depth profile, scanning electron microscope (SEM) observation and OFMC simulation indicated the deuterium was considered to accumulate through three processes: the deuterium-carbon co-deposition, the implantation of energetic deuterons and the deuterium diffusion into the bulk

  11. Strategies in electro-chemical machining of tungsten for divertor application

    International Nuclear Information System (INIS)

    Krauss, W.; Holstein, N.; Konys, J.

    2007-01-01

    For future application in a fusion power system a modular structured He cooled divertor concept is investigated under the framework of EFDA which is based on the use of pure W or W alloys for the thermally highly loaded parts. Due to the underlying physico-chemical principles electro-chemical machining (ECM) is the only shaping process which will not introduce microstructural defects, e.g. microcracks into work pieces as known by example from electro-discharge machining (EDM). However, ECM processes have no industrial application in W machining up to yet due to passivation effects using standard electrolytes known from steel working. Therefore, a systematical electrochemical development program was launched, and the electrochemical behavior of W was examined and passivation effects could be eliminated, successfully. The electrochemical shaping processes can be divided into two main categories. The first one is M-ECM, which represents the lithographic route based on structured anode masks, and the other is C-ECM, working with a negatively structured cathode as tool which is copied by electro-chemical dissolution. Both ECM branches are discussed on base of first machined structured parts, showing their process depending advantages and potential enhancements are revealed by applying pulsed currents instead of DC dissolution technique

  12. Hydrogen and helium trapping in tungsten deposition layers formed by RF plasma sputtering

    International Nuclear Information System (INIS)

    Kazunari Katayama; Kazumi Imaoka; Takayuki Okamura; Masabumi Nishikawa

    2006-01-01

    Understanding of tritium behavior in plasma facing materials is an important issue for fusion reactor from viewpoints of fuel control and radiation safety. Tungsten is used as a plasma facing material in the divertor region of ITER. However, investigation of hydrogen isotope behavior in tungsten deposition layer is not sufficient so far. It is also necessary to evaluate an effect of helium on a formation of deposition layer and an accumulation of hydrogen isotopes because helium generated by fusion reaction exists in fusion plasma. In this study, tungsten deposition layers were formed by sputtering method using hydrogen and helium RF plasma. An erosion rate and a deposition rate of tungsten were estimated by weight measurement. Hydrogen and helium retention were investigated by thermal desorption method. Tungsten deposition was performed using a capacitively-coupled RF plasma device equipped with parallel-plate electrodes. A tungsten target was mounted on one electrode which is supplied with RF power at 200 W. Tungsten substrates were mounted on the other electrode which is at ground potential. The plasma discharge was continued for 120 hours where pressure of hydrogen or helium was controlled to be 10 Pa. The amounts of hydrogen and helium released from deposition layers was quantified by a gas chromatograph. The erosion rate of target tungsten under helium plasma was estimated to be 1.8 times larger than that under hydrogen plasma. The deposition rate on tungsten substrate under helium plasma was estimated to be 4.1 times larger than that under hydrogen plasma. Atomic ratio of hydrogen to tungsten in a deposition layer formed by hydrogen plasma was estimated to be 0.17 by heating to 600 o C. From a deposition layer formed by helium plasma, not only helium but also hydrogen was released by heating to 500 o C. Atomic ratios of helium and hydrogen to tungsten were estimated to be 0.080 and 0.075, respectively. The trapped hydrogen is probably impurity hydrogen

  13. Pulse current electrodeposition of tungsten coatings on V–4Cr–4Ti alloy

    International Nuclear Information System (INIS)

    Jiang, Fan; Zhang, Yingchun; Li, Xuliang

    2015-01-01

    Highlights: • Tungsten coatings were successfully electroplated on vanadium alloy substrate. • Tungsten coatings consisted of two sub-layers. • Tungsten coatings plated at lower duty cycle has a better surface quality. • High heat flux property of tungsten coatings was investigated. • Helium ion irradiation property of tungsten coatings was investigated. - Abstract: Tungsten coatings with high (2 2 0)-orientation were formed on V alloy substrate by pulse current electrodeposition in air atmosphere. The coatings’ microstructure, crystal structure and adhesive strength between coatings and substrates were investigated. It could be observed the tungsten coatings consisted of two sub-layers with the inner tooth-like layer, and the outer columnar layer. The tungsten coatings deposited at lower duty cycle have a better surface quality with a little change in the adhesive strength. The tungsten coating was exposed to electron beam with power density of 200 MW/m 2 in the thermal shock test, the tungsten crystal grain surface melt, the microcracks are found among the crystal grains. Exfoliation, flaking and dense needle-like holes were observed on the tungsten coating after irradiation with helium ions at an energy of 65 keV and an implanted dose of 22.67 × 10 18 cm −2

  14. Recrystallization kinetics of warm-rolled tungsten in the temperature range 1150-1350 °C

    DEFF Research Database (Denmark)

    Alfonso Lopez, Angel; Juul Jensen, Dorte; Luo, G.-N.

    2014-01-01

    Pure tungsten is a potential candidate material for the plasma-facing first wall and the divertor of fusion reactors. Both parts have to withstand high temperatures during service. This will alter the microstructure of the material by recovery, recrystallization and grain growth and will cause...... in the mechanical properties during annealing are quantified by Vickers hardness measurements. They are described concisely by classical kinetic models for recovery and recrystallization. The observed time spans for recrystallization and the obtained value for the activation energy of the recrystallization process...

  15. Engineering conceptual design of CFETR divertor

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xuebing, E-mail: pengxb@ipp.cas.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei Anhui (China); Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); Song, Yuntao [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei Anhui (China); Mao, Xin [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); Chen, Peiming; Qian, Xinyuan [School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei Anhui (China)

    2015-10-15

    Highlights: • Three divertor structures for two plasma configurations, ITER-like and snowflake. • Property of enlarging wet area for all three divertors is analyzed. • The divertor accommodating with both the plasma configurations is unfeasible. • Divertor cooling system is developed. - Abstract: The China Fusion Engineering Test Reactor (CFETR), which is in conceptual design phase, aims at producing fusion power of 50–200 MW with tritium breeding ratio of ∼1.2 and duty cycle time of 0.3–0.5. Its designed main parameters are major/minor radii of 5.7 m/1.6 m and plasma current of 10 MA. Although the fusion power is lower than the one of ITER, the relative smaller machine dimensions and planed much higher auxiliary heating power of 100–140 MW make that the power exhausting for the CFETR divertor is a very critical issue. To solve this issue, the divertor should be better designed with advanced physical operation mode, advanced configuration/geometry or high efficient cooling structure. In the paper, much effort was put on the divertor configuration and geometry. With designed magnet system, three divertor configurations can be realized, ITER-like, snowflake and super-X. However, considering structural design feasibility and remote handling compatibility, only the first two configurations were selected for the first step of engineering design. Three divertors were designed. They have different first wall geometries to accommodate with different plasma configurations, one for the ITER-like, one for the snowflake and the third one for both the configurations. All three divertors employ the same cassette body as the support and the cooling water manifold for the first wall. This feature simplifies the interface of the divertor to other components in the vacuum vessel. Besides, the cooling structure and the remote maintenance concept are also introduced in the paper.

  16. Results of high heat flux tests and structural analysis of the new solid tungsten divertor tile for ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Jaksic, Nikola, E-mail: nikola.jaksic@ipp.mpg.de; Greuner, Henri; Herrmann, Albrecht; Böswirth, Bernd; Vorbrugg, Stefan

    2015-10-15

    Highlights: • The main motivation for the HHF investigation of tungsten tiles was an untypical deformation of some specimens under thermal loading, observed during the previous tests in GLADIS test facility. • A nonlinear finite element (FE) model for simulations of the GLADIS tests has been built. • The unexpected plastic deformations are mainly caused by internal stresses due to the manufacturing process. The small discrepancies among the FEA investigated and measured plastic deformations are most likely caused, beside of the practical difficulties by measuring of low items, also by tile internal stresses. • The influences of the residual stresses caused by special production processes have to be taken into account by design of the structural part made of solid tungsten. - Abstract: Tungsten as plasma-facing material for fusion devices is currently the most favorable candidate. In general solid tungsten is used for shielding the plasma chamber interior against the high heat generated from the plasma. For the purposes of implementation at ASDEX Upgrade and as a contribution to ITER the thermal performance of tungsten tiles has been extensively tested in the high heat flux test facility GLADIS during the development phase and beyond. These tests have been performed on full scale tungsten tile prototypes including their clamping and cooling structure. Simulating the adiabatically thermal loading due to plasma operation in ASDEX Upgrade, the tungsten tiles have been subjected to a thermal load with central heat flux of 10–24 MW/m{sup 2} and absorbed energy between 370 and 680 kJ. This loading results in maximum surface temperatures between 1300 °C and 2800 °C. The tests in GLADIS have been accompanied by intensive numerical investigations using FEA methods. For this purpose a multiple nonlinear finite element model has been set up. This paper discusses the main results of the high heat flux final tests and their numerical simulation. Moreover, first

  17. Results of high heat flux tests and structural analysis of the new solid tungsten divertor tile for ASDEX Upgrade

    International Nuclear Information System (INIS)

    Jaksic, Nikola; Greuner, Henri; Herrmann, Albrecht; Böswirth, Bernd; Vorbrugg, Stefan

    2015-01-01

    Highlights: • The main motivation for the HHF investigation of tungsten tiles was an untypical deformation of some specimens under thermal loading, observed during the previous tests in GLADIS test facility. • A nonlinear finite element (FE) model for simulations of the GLADIS tests has been built. • The unexpected plastic deformations are mainly caused by internal stresses due to the manufacturing process. The small discrepancies among the FEA investigated and measured plastic deformations are most likely caused, beside of the practical difficulties by measuring of low items, also by tile internal stresses. • The influences of the residual stresses caused by special production processes have to be taken into account by design of the structural part made of solid tungsten. - Abstract: Tungsten as plasma-facing material for fusion devices is currently the most favorable candidate. In general solid tungsten is used for shielding the plasma chamber interior against the high heat generated from the plasma. For the purposes of implementation at ASDEX Upgrade and as a contribution to ITER the thermal performance of tungsten tiles has been extensively tested in the high heat flux test facility GLADIS during the development phase and beyond. These tests have been performed on full scale tungsten tile prototypes including their clamping and cooling structure. Simulating the adiabatically thermal loading due to plasma operation in ASDEX Upgrade, the tungsten tiles have been subjected to a thermal load with central heat flux of 10–24 MW/m"2 and absorbed energy between 370 and 680 kJ. This loading results in maximum surface temperatures between 1300 °C and 2800 °C. The tests in GLADIS have been accompanied by intensive numerical investigations using FEA methods. For this purpose a multiple nonlinear finite element model has been set up. This paper discusses the main results of the high heat flux final tests and their numerical simulation. Moreover, first results

  18. Qualification and post-mortem characterization of tungsten mock-ups exposed to cyclic high heat flux loading

    Energy Technology Data Exchange (ETDEWEB)

    Pintsuk, G., E-mail: g.pintsuk@fz-juelich.de [Forschungszentrum Jülich GmbH, Euratom Association, D-52425 Jülich (Germany); Bobin-Vastra, I.; Constans, S. [AREVA NP PTCMI-F, Centre Technique, Fusion, F-71200 Le Creusot (France); Gavila, P. [Fusion for Energy, E-08019 Barcelona (Spain); Rödig, M. [Forschungszentrum Jülich GmbH, Euratom Association, D-52425 Jülich (Germany); Riccardi, B. [Fusion for Energy, E-08019 Barcelona (Spain)

    2013-10-15

    Highlights: • We characterize tungsten mono-block components after exposure to ITER relevant heat loads. • We qualify the manufacturing technology, i.e., hot isostatic pressing and hot radial pressing, and repair technologies. • We determine the microstructural influences, i.e., rod vs. plate material, on the damage evolution. • Needle like microstructures increase the risk of deep crack formation due to a limited fracture strength. -- Abstract: In order to evaluate the option to start the ITER operation with a full tungsten (W) divertor, high heat flux tests were performed in the electron beam facility FE200, Le Creusot, France. Thereby, in total eight small-scale and three medium-scale monoblock mock-ups produced with different manufacturing technologies and different tungsten grades were exposed to cyclic steady state heat loads. The applied power density ranges from 10 to 20 MW/m{sup 2} with a maximum of 1000 cycles at each particular loading step. Finally, on a reduced number of tiles, critical heat flux tests in the range of 30 MW/m{sup 2} were performed. Besides macroscopic and microscopic images of the loaded surface areas, detailed metallographic analyses were performed in order to characterize the occurring damages, i.e., crack formation, recrystallization, and melting. Thereby, the different joining technologies, i.e., hot radial pressing (HRP) vs. hot isostatic pressing (HIP) of tungsten to the Cu-based cooling tube, were qualified showing a higher stability and reproducibility of the HIP technology also as repair technology. Finally, the material response at the loaded top surface was found to be depending on the material grade, microstructural orientation, and recrystallization state of the material. These damages might be triggered by the application of thermal shock loads during electron beam surface scanning and not by the steady state heat load only. However, the superposition of thermal fatigue loads and thermal shocks as also expected

  19. Numerical exploration of non-axisymmetric divertor closure in the small angle slot (SAS) divertor at DIII-D

    Science.gov (United States)

    Frerichs, Heinke; Schmitz, Oliver; Covele, Brent; Guo, Houyang; Hill, David; Feng, Yuhe

    2017-10-01

    In the Small Angle Slot (SAS) divertor in DIII-D, the combination of misaligned slot structure and non-axisymmetric perturbations to the magnetic field causes the strike point to vary radially along the divertor slot and even leave it at some toroidal locations. This effect essentially introduces an opening in the divertor slot from where recycling neutrals can easily escape, and thereby degrade performance of the slot divertor. This effect has been approximated by a finite gap in the divertor baffle. Simulations with EMC3-EIRENE show that a toroidally localized loss of divertor closure can result in non-axisymmetric divertor densities and temperatures. This introduces a density window of 10-15% on top of the nominal threshold separatrix density during which a non-axisymmetric onset of local detachment occurs, initially leaving the gap and up to 60 deg beyond that still attached. Conversely, the impact of such toroidally localized divertor perturbations on the toroidal symmetry of midplane separatrix conditions is small. This work has been funded by the U.S. Department of Energy under Early Career Award Grant DE-SC0013911, and Grant DE-FC02-04ER54698.

  20. ELM-induced arcing on tungsten fuzz in the COMPASS divertor region

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Weinzettl, Vladimír; Vilémová, Monika; Morgan, T.W.; De Temmerman, G.; Dimitrova, Miglena; Cavalier, Jordan; Adámek, Jiří; Seidl, Jakub; Jäger, Aleš

    2017-01-01

    Roč. 492, August (2017), s. 204-212 ISSN 0022-3115. [PSI 2016 - 22nd International Conference on Plasma Surface Interactions in Controlled Fusion Devices/22./. Roma, 30.05.2016-03.06.2016] R&D Projects: GA ČR(CZ) GA14-12837S; GA ČR(CZ) GA15-10723S; GA MŠk(CZ) LM2015045; GA MŠk(CZ) LM2011026 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : tungsten fuzz * arcing * COMPASS tokamak * plasma-material interaction Subject RIV: JF - Nuclear Energetics; JF - Nuclear Energetics (FZU-D) OBOR OECD: Nuclear related engineering ; Nuclear related engineering (FZU-D) Impact factor: 2.048, year: 2016 http://www.sciencedirect.com/science/ article /pii/S0022311517301824

  1. Numerical simulations for ITER divertor armour erosion and SOL contamination due to disruptions and ELMs

    International Nuclear Information System (INIS)

    Landman, I.S.; Pestchanyi, S.E.; Bazylev, B.N.

    2005-01-01

    The divertor armour materials for ITER are going to be tungsten (as brushe or plates) and CFC. Disruptive loads with the heat deposition Q up to 30 MJ/m 2 on the time scale τ of 3 ms or operation with ELMs at repetitive loads of Q ∼ 3 MJ/m 2 and τ ∼ 0.3 ms cause enhanced armour erosion and produce contamination of SOL. Recent numerical investigations of erosion mechanisms with the anisotropic thermomechanics code PEGASUS-3D and the surface melt motion code MEMOS-1.5D as well as hot hydrogen plasma dynamics, heat loads at the armour surface and backward propagation of material plasma in SOL with the radiation-magnetohydrodynamics code FOREV-2D are survived. For CFC targets, the local overheating model is explained and numerically demonstrated. For the tungsten targets the numerical analysis of melt motion erosion of W-brushe and bulk tungsten targets on the base of MEMOS-1.5D calculations is developed and accompanied by numerical results. For validation of the codes at the regimes relevant to ITER disruptions and ELMs, the simulation results are compared with available experiments carried out at plasma guns, electron beam test facilities and the tokamak JET. (author)

  2. Numerical modeling and experimental simulation of vapor shield formation and divertor material erosion for ITER typical plasma disruptions

    International Nuclear Information System (INIS)

    Wuerz, H.; Arkhipov, N.I.; Bakhin, V.P.; Goel, B.; Hoebel, W.; Konkashbaev, I.; Landman, I.; Piazza, G.; Safronov, V.M.; Sherbakov, A.R.; Toporkov, D.A.; Zhitlukhin, A.M.

    1994-01-01

    The high divertor heat load during a tokamak plasma disruption results in sudden evaporation of a thin layer of divertor plate material, which acts as vapor shield and protects the target from further excessive evaporation. Formation and effectiveness of the vapor shield are theoretically modeled and experimentally investigated at the 2MK-200 facility under conditions simulating the thermal quench phase of ITER tokamak plasma disruptions. In the optical wavelength range C II, C III, C IV emission lines for graphite, Cu I, Cu II lines for copper and continuum radiation for tungsten samples are observed in the target plasma. The plasma expands along the magnetic field lines with velocities of (4±1)x10 6 cm/s for graphite and 10 5 cm/s for copper. Modeling was done with a radiation hydrodynamics code in one-dimensional planar geometry. The multifrequency radiation transport is treated in flux limited diffusion and in forward reverse transport approximation. In these first modeling studies the overall shielding efficiency for carbon and tungsten defined as ratio of the incident energy and the vaporization energy for power densities of 10 MW/cm 2 exceeds a factor of 30. The vapor shield is established within 2 μs, the power fraction to the target after 10 μs is below 3% and reaches in the stationary state after about 20 μs a value of around 1.5%. ((orig.))

  3. Sputtering/redeposition analysis of alkali-based tungsten composites for limiter/divertor applications

    International Nuclear Information System (INIS)

    DeWald, A.B.; Krauss, A.R.; Gruen, D.M.; Valentine, M.G.

    1986-07-01

    Composites of porous tungsten infiltrated with alkali metal-bearing alloys have been projected as a means of reducing plasma impurities and sputter erosion in magnetic fusion devices. Self-sustaining alkali metal overlayers have been observed to inhibit erosion of the underlying structural substrate by 2X to 10X. The alkali metal itself, insofar as it sputters as a secondary ion, is trapped at the surface by sheath potential and tangential magnetic fields. Self-regeneration of the alkali metal coating is obtained by thermal and radiation-induced segregation from the bulk

  4. Studies of tungsten erosion at the inner and outer main chamber wall of the ASDEX Upgrade tokamak

    Science.gov (United States)

    Tabasso, A.; Maier, H.; Roth, J.; Krieger, K.; ASDEX Upgrade Team

    2001-03-01

    A critical issue for the choice of main chamber first wall materials in future fusion devices such as ITER is the erosion rate due to bombardment by charge-exchange (CX) neutrals. Due to the relatively small flux density of impacting particles, respective measurements are only possible using long term samples (LTS) exposed for a full experimental campaign. In ASDEX Upgrade, CX erosion has been studied extensively for tungsten on the inner heat shield by placing four W coated tiles at different poloidal positions in one toroidal sector. During the same campaign, several LTS were placed at different poloidal and toroidal positions of the outer wall. 13C and Cu coated graphite probes were also used in order to test and compare W low and medium Z alternatives. The erosion results from the probes are compared with the calculated erosion [W. Eckstein, C. Garcia-Rosales, J. Roth, W. Ottenberger IPP Report, IPP 9/82]; [H. Verbeek, J. Stober, D. Coster, W. Eckstein, R. Schneider Nucl. Fus. 38 (1998) 12] and a figure of merit (F. of M.) between several materials is proposed which also takes into account the plasma isotope effect in CX erosion.

  5. Studies of tungsten erosion at the inner and outer main chamber wall of the ASDEX Upgrade tokamak

    International Nuclear Information System (INIS)

    Tabasso, A.; Maier, H.; Roth, J.; Krieger, K.

    2001-01-01

    A critical issue for the choice of main chamber first wall materials in future fusion devices such as ITER is the erosion rate due to bombardment by charge-exchange (CX) neutrals. Due to the relatively small flux density of impacting particles, respective measurements are only possible using long term samples (LTS) exposed for a full experimental campaign. In ASDEX Upgrade, CX erosion has been studied extensively for tungsten on the inner heat shield by placing four W coated tiles at different poloidal positions in one toroidal sector. During the same campaign, several LTS were placed at different poloidal and toroidal positions of the outer wall. 13 C and Cu coated graphite probes were also used in order to test and compare W low and medium Z alternatives. The erosion results from the probes are compared with the calculated erosion [W. Eckstein, C. Garcia-Rosales, J. Roth, W. Ottenberger IPP Report, IPP 9/82]; [H. Verbeek, J. Stober, D. Coster, W. Eckstein, R. Schneider Nucl. Fus. 38 (1998) 12] and a figure of merit (F. of M.) between several materials is proposed which also takes into account the plasma isotope effect in CX erosion

  6. Study of the temperature dependent nitrogen retention in tungsten surfaces by XPS-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Plank, Ulrike [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Fakultaet fuer Physik der Ludwig-Maximilians-Universitaet Muenchen, Schellingstrasse 4, D-80799 Muenchen (Germany); Meisl, Gerd; Hoeschen, Till [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany)

    2016-07-01

    To reduce the power load on the divertor of fusion experiments, nitrogen (N) is puffed into the plasma. As a side effect, nitrogen gets implanted into the tungsten (W) walls of the reactor and forms nitride layers. Their formation and, therefore, the N accumulation in W showed an unexpected temperature dependence in previous experiments. To study the nitrogen retention, we implanted N ions with an energy of 300 eV into W and observed the evolution of the surface composition by X-ray photoelectron spectroscopy (XPS). We find that the N content does not change when the sample is annealed up to 800 K after implantation at lower temperatures. In contrast, the N concentration decreases with increasing implantation temperature. At 800 K implantation temperature, the N saturation level is about 5 times lower compared to 300 K implantation. A possible explanation for this difference is an enhanced diffusion during ion bombardment due to changes in the structure or in the chemical state of the tungsten nitride system. Ongoing tungsten nitride erosion experiments shall help to clarify whether the strong temperature dependence is the result of enhanced diffusion or of phase changes.

  7. Outer casing of the AA antiproton production target

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    The first version of the antiproton production target was a tungsten rod, 11 cm long (actually a row of 11 rods, each 1 cm long) and 3 mm in diameter. The rod was embedded in graphite, pressure-seated into an outer casing made of stainless steel. The casing had fins for forced-air cooling.

  8. TCV divertor upgrade for alternative magnetic configurations

    Directory of Open Access Journals (Sweden)

    H. Reimerdes

    2017-08-01

    Full Text Available The Swiss Plasma Center (SPC is planning a divertor upgrade for the TCV tokamak. The upgrade aims at extending the research of conventional and alternative divertor configurations to operational scenarios and divertor regimes of greater relevance for a fusion reactor. The main elements of the upgrade are the installation of an in-vessel structure to form a divertor chamber of variable closure and enhanced diagnostic capabilities, an increase of the pumping capability of the divertor chamber and the addition of new divertor poloidal field coils. The project follows a staged approach and is carried out in parallel with an upgrade of the TCV heating system. First calculations using the EMC3-Eirene code indicate that realistic baffles together with the planned heating upgrade will allow for a significantly higher compression of neutral particles in the divertor, which is a prerequisite to test the power dissipation potential of various divertor configurations.

  9. Numerical studies on divertor experiments

    International Nuclear Information System (INIS)

    Ueda, N.; Itoh, K.; Itoh, S.-I.; Tanaka, M.; Hasegawa, M.; Shoji, T.; Sugihara, M.

    1988-04-01

    Numerical analysis on the divertor experiments such as JFT-2M tokamak is made by use of the two-dimensional time-dependent simulation code. The plasma in the scrape-off layer (SOL) and divertor region is solved for the given particle and heat sources from the main plasma, Γ p and Q T . Effect of the direction of the toroidal magnetic field is studied. It is found that the heat flux which is proportional to b vector x ∇T i has influences on the divertor plasmas, but has a small effect on the parameters on the midplane in the framework of the fluid model. Parameter survey on Γ p and Q T is made. The transient response of the SOL/divertor plasma to the sudden change of Γ p and Q T is studied. Time delay in the SOL and divertor region is calculated. (author)

  10. Comparative divertor-transport study for helical devices

    International Nuclear Information System (INIS)

    Feng, Y.; Sardei, F.; Kobayashi, M.

    2008-10-01

    Using the island divertors (ID) of W7-AS and W7-X and the helical divertor (HD) of LHD as examples, the paper presents a comparative divertor transport study for three typical helical devices of different machine-size following two distinct divertor concepts, aiming at identifying common physics issues/effects for mutual validation and combined studies. Based on EMC3/EIRENE simulations supported by experimental results, the paper first reviews and compares the essential transport features of the W7-AS ID and the LHD HD in order to build a base and framework for a predictive study of W7-X. Revealed is the fundamental role of the low-order magnetic islands in both divertor concepts. Preliminary EMC3/EIRENE simulation results for W7-X are presented and discussed with respect to W7-AS and LHD in order to show how the individual field and divertor topologies affect the divertor transport and performance. For instance, a high recycling regime which is absent from W7-AS and LHD is expected for W7-X. Topics addressed are restricted to the basic function elements of a divertor such as particle flux enhancement and impurity retention. In particular, the divertor function on reducing the influx of intrinsic impurities is examined for all the three devices under different divertor plasma conditions. Special attention is paid to examining the island screening potential of intrinsic impurities which has been predicted for all the three devices under high divertor collisionality conditions. The results are discussed in conjunction with the experimental observations for high density divertor plasmas in W7-AS and LHD. (author)

  11. ELM-induced melting: assessment of shallow melt layer damage and the power handling capability of tungsten in a linear plasma device

    Czech Academy of Sciences Publication Activity Database

    Morgan, T.W.; van Eden, G.G.; de Kruif, T.M.; van den Berg, A.; Matějíček, Jiří; Chráska, Tomáš; De Temmerman, G.

    -, T159 (2014), 014022-014022 ISSN 0031-8949. [International Conference on Plasma-Facing Materials and Components for Fusion Applications/14./. Jülich, 13.05.2013-17.05.2013] Institutional support: RVO:61389021 Keywords : melting * tungsten * ELMs * divertor * ITER * DEMO Subject RIV: JG - Metallurgy Impact factor: 1.126, year: 2014 http://iopscience.iop.org/1402-4896/2014/T159/014022/pdf/1402-4896_2014_T159_014022.pdf

  12. Use of refractory-metal alloys in the Next European Torus divertor design, and comparative study of mechanical properties after disruptive heat loads or brazing and ageing treatment

    International Nuclear Information System (INIS)

    Moons, Frans; Falbriard, Patricia; Nicolas, Guy; Faron, Robert

    1990-01-01

    A limited comparative study of ten refractory metals and alloys has been made to evaluate materials for use in the divertor element of the Next European Torus (NET). Tensile tests up to 800 0 C were performed on sintered molybdenum, wrought molybdenum, Z6 (Mo-ZrO 2 ), Mo-5Re, Mo-41Re, sintered tungsten, wrought tungsten, W-5Re, and W-26Re, in delivery state and after ageing for 10 days at 600 0 C; the 10 days of ageing simulated the integrated divertor lifetime. Slow bend tests were done from room temperature to 800 0 C and 600 0 C respectively on samples of refractory metal previously brazed to graphite or to copper; the brazing process was representative of part of the manufacturing process. Finally, impact tests up to 800 0 C were carried out on samples disposed to high-energy flux deposition of 3 or 15 MJ m -2 by laser; this was to simulate the energy deposition that might occur on the material during a plasma disruption. The resulting ranking of materials is of course criteria-dependent, but generally speaking Mo-41Re scored the best as 'engineering' material, followed by TZM. (author)

  13. Examining Innovative Divertor and Main Chamber Options for a National Divertor Test Tokamak

    Science.gov (United States)

    Labombard, B.; Umansky, M.; Brunner, D.; Kuang, A. Q.; Marmar, E.; Wallace, G.; Whyte, D.; Wukitch, S.

    2016-10-01

    The US fusion community has identified a compelling need for a National Divertor Test Tokamak. The 2015 Community Planning Workshop on PMI called for a national working group to develop options. Important elements of a NDTT, adopted from the ADX concept, include the ability to explore long-leg divertor `solutions for power exhaust and particle control' (Priority Research Direction B) and to employ inside-launch RF actuators combined with double-null topologies as `plasma solution for main chamber wall components, including tools for controllable sustained operation' (PRD-C). Here we examine new information on these ideas. The projected performance of super-X and X-point target long-leg divertors is looking very promising; a stable fully-detached divertor condition handling an order-of-magnitude increase in power handling over conventional divertors may be possible. New experiments on Alcator C-Mod are addressing issues of high-field side versus low-field side heat flux sharing in double-null topologies and the screening of impurities that might originate from RF actuators placed in the high-field side - both with favorable results. Supported by USDoE Awards DE-FC02-99ER54512 and DE-AC52-07NA27344.

  14. Development of divertor remote maintenance system

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Nobukazu; Oka, Kiyoshi; Akou, Kentaro; Takiguchi, Yuji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The ITER divertor is categorized as a scheduled maintenance component because of extreme heat and particle loads it is exposed to by plasma. It is also highly activated by 14 MeV neutrons. Reliable remote handling equipment and tools are required for divertor maintenance under intense gamma radiation. To facilitate remote maintenance, the divertor is segmented into 60 cassettes, and each cassette weighing about 25 tons and maintained and replaced through four maintenance ports each 90 degrees. Divertor cassettes must be transported toroidally and radially for replacement through maintenance ports. Remote handling involving cassette movers and carriers for toroidal and radial transport has been developed. Under the ITER R and D program, technology critical to divertor cassette maintenance is being developed jointly by Japan, E.U., and U.S. home teams. This paper summarizes divertor remote maintenance design and the status of technology development by the Japan Home Team. (author)

  15. Development of divertor remote maintenance system

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Oka, Kiyoshi; Akou, Kentaro; Takiguchi, Yuji

    1998-01-01

    The ITER divertor is categorized as a scheduled maintenance component because of extreme heat and particle loads it is exposed to by plasma. It is also highly activated by 14 MeV neutrons. Reliable remote handling equipment and tools are required for divertor maintenance under intense gamma radiation. To facilitate remote maintenance, the divertor is segmented into 60 cassettes, and each cassette weighing about 25 tons and maintained and replaced through four maintenance ports each 90 degrees. Divertor cassettes must be transported toroidally and radially for replacement through maintenance ports. Remote handling involving cassette movers and carriers for toroidal and radial transport has been developed. Under the ITER R and D program, technology critical to divertor cassette maintenance is being developed jointly by Japan, E.U., and U.S. home teams. This paper summarizes divertor remote maintenance design and the status of technology development by the Japan Home Team. (author)

  16. Engineering design of a radiative divertor for DIII-D

    International Nuclear Information System (INIS)

    Smith, J.P.; Baxi, C.B.; Bozek, A.S.

    1995-10-01

    A new divertor configuration is being developed for the DIII-D tokamak. This divertor will operate in the radiative mode. Experiments and modeling form the basis for the new design. The Radiative Divertor reduces the heat flux on the divertor plates by dispersing the power with radiation in the divertor region. In addition, the Radiative Divertor structure will allow density control in plasma shapes required for advanced tokamak operation. The divertor structure allows for operation in either double-null or single-null plasma configurations. Four independently controlled divertor cryopumps will enable pumping at either the inboard (upper and lower) or the outboard (upper and lower) divertor plates. An upgrade to the DIII-D cryogenic system is part of this project. The increased capabilities of the cryogenic system will allow delivery of liquid helium and nitrogen to the three new cryopumps. The Radiative Divertor design is very flexible, and will allow physics studies of the effects of slot width and length. Radiative Divertor diagnostics are being designed in parallel to provide comprehensive measurements for diagnosing the divertor. The Radiative divertor installation is scheduled for late 1996. Engineering experience gained in the DIII-D Advanced Divertor program form a foundation for the design work on the Radiative Divertor

  17. NSTX Tangential Divertor Camera

    International Nuclear Information System (INIS)

    Roquemore, A.L.; Ted Biewer; Johnson, D.; Zweben, S.J.; Nobuhiro Nishino; Soukhanovskii, V.A.

    2004-01-01

    Strong magnetic field shear around the divertor x-point is numerically predicted to lead to strong spatial asymmetries in turbulence driven particle fluxes. To visualize the turbulence and associated impurity line emission near the lower x-point region, a new tangential observation port has been recently installed on NSTX. A reentrant sapphire window with a moveable in-vessel mirror images the divertor region from the center stack out to R 80 cm and views the x-point for most plasma configurations. A coherent fiber optic bundle transmits the image through a remotely selected filter to a fast camera, for example a 40500 frames/sec Photron CCD camera. A gas puffer located in the lower inboard divertor will localize the turbulence in the region near the x-point. Edge fluid and turbulent codes UEDGE and BOUT will be used to interpret impurity and deuterium emission fluctuation measurements in the divertor

  18. Performance of electro-plated and joined components for divertor application

    International Nuclear Information System (INIS)

    Krauss, Wolfgang; Lorenz, Julia; Konys, Jürgen

    2013-01-01

    Highlights: • Active interlayers of Ni and Pd were electroplated on W to assist joining. • Demonstrator types of W-steel and W–W joints were successfully fabricated. • Diffusion processes increase operation temperature above brazing temperature. • Ni electro-plating is less sensitive to variation of deposition parameters than Pd. • Shear tests showed values in resistance comparable to those of commercial fillers. -- Abstract: A general challenge in divertor development, independently of design type and cooling medium water or helium, is the reliable and adapted joining of components. Depending on the design variants, the characteristics of the joints will be focused on functional or structural behavior to guarantee e.g. good thermal conductivity and sufficient mechanical strength. All variants will have in common that tungsten is the plasma facing material. Thus, material combinations to be joined will range from Cu base over steel to tungsten. Especially tungsten shows lacks in adapted joining due to its metallurgical behavior ranging from immiscibility over bad wetting up to brittle intermetallic phase formation. Joining assisted by electro-chemical deposition of functional and filler layers showed that encouraging progress was achieved in wetting applying nickel interlayers. Nickel proved to be a good reference material but alternative elements (e.g. Pd, Fe) may be more attractive in fusion to manufacture suitable joints. Replacing of Ni as activator element by Pd for W/W or W/steel joints was achieved and joining with Cu-filler was successfully performed. Manufactured joints were characterized applying metallurgical testing and SEM/EDX analyses demonstrating the applicability of Pd activator. First shear tests showed that the joints exhibit mechanical stability sufficient for technical application

  19. Theory of Advanced Magnetic Divertors

    Science.gov (United States)

    Kotschenreuther, Michael; Valanju, Prashant; Mahajan, Swadesh; Covele, Brent

    2013-10-01

    The magnetic field structure in the SOL is the most important determinant of divertor physics. A comprehensive analytical and numerical methodology is developed to investigate SOL magnetic fields in the backdrop of two advanced divertor geometries- the X-divertor (XD) proposed and discussed in 2004, and the snowflake divertor (SFD) of 2007-2010. The analysis shows that XD and SFD represent very distinct and readily distinguishable magnetic geometries, epitomized through a differentiating metric, the Divertor Index (DI). In terms of this simple metric, the XD (DI > 1) and the SFD (DI XD flux surfaces are less convergent, in fact, divergent (flaring). These different SOL magnetics imply different physics, particularly with respect to detachment dynamics. It is also shown that some experiments on NSTX and DIII-D match both the prescription and the predictions of the 2004 XD paper. Work supported under US-DOE projects DE-FG02-04ER54742 and DE-FG02-04ER54754.

  20. International Thermonuclear Experimental Reactor (ITER) divertor plate performance and lifetime considerations

    International Nuclear Information System (INIS)

    Mattas, R.F.

    1990-03-01

    The ITER divertor plate performance during the technology phase of operation has been analyzed. High-Z materials, such as tungsten and tantalum, have been considered as plasma side materials, and refractory metal alloys, Ta-10W, TZM, Nb-1Zr, and V-15Cr-5Ti, plus copper alloys have been considered as the structural materials. The fatigue lifetime have been predicted for structural plates and for duplex plates with the plasma side material bonded to the structure. The results indicate that refractory alloys have a comparable or improved performance to copper alloys. Peak allowable heat fluxes for these analyses are in the range of 15--20 MW/m 2 for 2 mm thick structural plates and 7--11 MW/m 2 for 4 mm thick duplex plates. 4 refs., 55 figs., 6 tabs

  1. Investigation of electron parallel pressure balance in the scrape-off layer of deuterium-based radiative divertor discharges IN DIII-D

    International Nuclear Information System (INIS)

    Petrie, T.W.; Carlstrom, T.N.; Allen, S.L.

    1996-10-01

    Electron density, temperature, and parallel pressure measurements at several locations along field lines connecting the midplane scrapeoff layer (SOL) with the outer divertor are presented for both attached and partially-detached divertor cases: I p = 1.4 MA, q 95 = 4.2, and P input ∼ 6.7 MW under ELMing H-mode conditions. At the onset of the Partially Detached Divertor (PDD), a high density, low temperature plasma forms in the divertor SOL (divertor MARFE). The electron pressure drops by a factor of ∼ 2 between the midplane separatrix and the X-point, and then an additional ∼3--5 times between the X-point and the outboard separatrix strike point. These results are in contrast to the attached (non-PDD) case, where electron pressure in the SOL is reduced by, at most, a factor of two between the midplane and the divertor target. Divertor MARFEs generally have only marginal adverse impact on important H-mode characteristics, such as confinement time. In fact, PDD discharges at low input power maintains good H-mode characteristics until a high density, low temperature plasma abruptly forms inside the separatrix near the X-point (X-point MARFE). Concurrent with the appearance of this X-point MARFE is a degradation in both energy confinement and the plasma fueling rate, and an increase in the carbon impurity concentration inside the core plasma. The formation of the X-point MARFE is consistent with a thermal instability resulting from the temperature dependence of the carbon radiative cooling rate in the range ∼ 7--30 eV

  2. Analyses of erosion and re-deposition layers on graphite tiles used in the W-shaped divertor region of JT-60U

    International Nuclear Information System (INIS)

    Gotoh, Y.; Yagyu, J.; Masaki, K.; Kizu, K.; Kaminaga, A.; Kodama, K.; Arai, T.; Tanabe, T.; Miya, N.

    2003-01-01

    Erosion and re-deposition profiles were studied on graphite tiles used in the W-shaped divertor of JT-60U in June 1997-October 1998 periods, operated with all-carbon walls with boronizations and inner-private flux pumping. Continuous re-deposition layers were found neither on the dome top nor on the outer wing, while re-deposition layers of around 20 μm thickness were found on the inner wing, in the region close to the dome top. On the outer divertor target, erosion was found to be dominant: maximum erosion depth of around 20 μm was measured, while on the inner target, re-deposition was dominant: columnar structure layers of maximum thickness at around 30 μm on the inner zone while laminar/columnar-layered structures of maximum thickness around 60 μm were found on the outer zone. Poloidal distributions of the erosion depth/re-deposition layer thickness were well correlated with the frequency histograms of strike point position, which were weighted with total power of neutral beam injection, on both the outer and inner targets. Through X-ray photoelectron spectroscopy, composition of the re-deposition layers at a mid zone on the inner target were 3-4 at.% B and <0.6 at.% O, Fe, Cr, and Ni with remaining C. Boron atoms are mostly bound to C atoms but some may precipitated as boron

  3. A review of progress towards radiative divertor

    International Nuclear Information System (INIS)

    Zagorski, Roman

    1997-07-01

    A solution of the problem of the power and particle exhaust from the next step tokamaks, will require new techniques which redistribute the power entering the SOL onto much larger surface area than conventional divertor design permits, while maintaining good impurity retention in divertor volume and allowing for efficient helium pumping. Progress made in developing such techniques is discussed. Status of the modelling studies of dynamic gas target divertor and impurity seeded radiating divertors is presented. Recent results of experiments on radiative and gas target divertors are reviewed

  4. Exploring the engineering limit of heat flux of a W/RAFM divertor target for fusion reactors

    Science.gov (United States)

    Mao, X.; Fursdon, M.; Chang, X. B.; Zhang, J. W.; Liu, P.; Ellwood, G.; Qian, X. Y.; Qin, S. J.; Peng, X. B.; Barrett, T. R.; Liu, P.

    2018-06-01

    The design and development of a fusion reactor divertor plasma facing component (PFC) is one of the many challenging issues on the road to commercial use of fusion energy. The divertor PFC is expected to exhaust steady state heat loads in the region of 10 MW m‑2 while keeping temperatures and thermo-mechanical stresses in its structure within the allowable limits. For ITER (International Thermo-Nuclear Experimental Reactor) a water cooled W/CuCrZr divertor PFC concept has been developed. However, this concept is not necessarily assured for use in future fusion reactors mainly because the neutron radiation dose would be at least an order magnitude higher, resulting in limited thermo-mechanical performance and considerably more activated waste products. In the present study, a water cooled divertor PFC using reduced activation ferritic-martensitic (RAFM) steel as the heat sink pipe has been designed with pressurised water reactor-like cooling conditions (pressure of 15.5 MPa, velocity of 10–20 m s‑1 and temperature of 300 °C). The PFC is made up of a number of rectangular tungsten tiles, each with an inner circular hole (so-called monoblocks), joined onto a RAFM steel pipe with copper interlayers. The thermo-mechanical performance of the PFC has been studied in detail. The heat transfer coefficient between the RAFM pipe inner surface and the water was calculated using published correlations. Geometric parameters and water velocity were optimized with finite element (FE) thermal analysis, to achieve acceptable temperatures in the structure given the target exhaust heat load of 10 MW m‑2. Under this heat load and the optimised thermal design parameters, the structure of the PFC was further assessed by mechanical analysis. We find that under these conditions the RAFM steel pipe experiences cyclic plasticity, and fails the common linear elastic ratchetting (3 Sm) rule. Nevertheless, the designed W/RAFM divertor PFU can withstand 10 MW m‑2 heat load, albeit

  5. Conceptual design of a He-cooled divertor with integrated flow and heat transfer promoters (PPCS subtask TW3-TRP-001-D2). Pt. 1. Summary

    International Nuclear Information System (INIS)

    Norajitra, P.; Kruessmann, R.

    2004-04-01

    Within the framework of the EU power plant conceptual study (PPCS), helium-cooled modular divertor concepts with a flow promoter (HEMP as a pin array and HEMS as slot array version) have been investigated at the Forschungszentrum Karlsruhe since 2002. The design goal is to achieve a high heat flux performance of 15 MW/m 2 . In this summary of the detailed report, research areas related to the development of a helium-cooled divertor shall be addressed. Latest changes in thermohydraulic layout as well as current results of simulation calculations shall be presented exemplarily for the slot concept HEMS which has the crucial advantage of being easier to manufacture. The divertor construction resulting from the requirements as well as the design-related issues shall be discussed. Possible manufacturing processes for divertor components of tungsten are assessed. Chapters 7 and 8 have been completely revised comprising the latest results of the thermohydraulic layout and thermomechanical analyses. Calculation results have to be verified by experiments. For this purpose, a helium loop will be built at the Efremov Institute, St. Petersburg, Russia, in 2004. An outlook on an alternative multi-jet design (HEMJ) will be given at the end of this report. (orig.)

  6. Thermal stability of a highly-deformed warm-rolled tungsten plate in the temperature range 1100 °C to 1250 °C

    DEFF Research Database (Denmark)

    Alfonso Lopez, Angel; Juul Jensen, Dorte; Luo, G.-N.

    2015-01-01

    plastic strain by 90% thickness reduction was investigated by isothermal annealing for up to 190 h in the temperature range between 1100 °C and 1250 °C. Vickers hardness testing allowed tracking the changes in mechanical properties caused by recovery and recrystallization. The hardness evolution could......Pure tungsten is considered as armor material for the most critical parts of fusion reactors (i.e. the divertor and the first wall), among other reasons due to its high melting point (3422 °C) and recrystallization temperature. The thermal stability of a pure tungsten plate warm-rolled to a high...... suggest that large plastic deformations (e.g. applied during shaping) are only suitable to produce tungsten components to be used at relatively low temperatures (up to 900 °C for a 2 years lifespan). Higher operation temperatures will lead to fast degradation of the microstructure during operation....

  7. Snowflake divertor configuration studies in National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V. A.; McLean, A. G.; Rognlien, T. D.; Ryutov, D. D.; Umansky, M. V. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Bell, R. E.; Diallo, A.; Gerhardt, S.; Kaye, S.; Kolemen, E.; LeBlanc, B. P.; Menard, J. E.; Paul, S. F.; Podesta, M.; Roquemore, A. L.; Scotti, F.; Battaglia, D.; Bell, M. G.; Gates, D. A.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); and others

    2012-08-15

    Experimental results from NSTX indicate that the snowflake divertor (D. Ryutov, Phys. Plasmas 14, 064502 (2007)) may be a viable solution for outstanding tokamak plasma-material interface issues. Steady-state handling of divertor heat flux and divertor plate erosion remains to be critical issues for ITER and future concept devices based on conventional and spherical tokamak geometry with high power density divertors. Experiments conducted in 4-6 MW NBI-heated H-mode plasmas in NSTX demonstrated that the snowflake divertor is compatible with high-confinement core plasma operation, while being very effective in steady-state divertor heat flux mitigation and impurity reduction. A steady-state snowflake divertor was obtained in recent NSTX experiments for up to 600 ms using three divertor magnetic coils. The high magnetic flux expansion region of the scrape-off layer (SOL) spanning up to 50% of the SOL width {lambda}{sub q} was partially detached in the snowflake divertor. In the detached zone, the heat flux profile flattened and decreased to 0.5-1 MW/m{sup 2} (from 4-7 MW/m{sup 2} in the standard divertor) indicative of radiative heating. An up to 50% increase in divertor, P{sub rad} in the snowflake divertor was accompanied by broadening of the intrinsic C III and C IV radiation zones, and a nearly order of magnitude increase in divertor high-n Balmer line emission indicative of volumetric recombination onset. Magnetic reconstructions showed that the x-point connection length, divertor plasma-wetted area and divertor volume, all critical parameters for geometric reduction of deposited heat flux, and increased volumetric divertor losses were significantly increased in the snowflake divertor, as expected from theory.

  8. A tangentially viewing VUV TV system for the DIII-D divertor

    International Nuclear Information System (INIS)

    Nilson, D.G.; Ellis, R.; Fenstermacher, M.E.; Brewis, G.; Jalufka, N.

    1998-07-01

    A video camera system capable of imaging VUV emission in the 120--160 nm wavelength range, from the entire divertor region in the DIII-D tokamak, was designed. The new system has a tangential view of the divertor similar to an existing tangential camera system which has produced two dimensional maps of visible line emission (400--800 nm) from deuterium and carbon in the divertor region. However, the overwhelming fraction of the power radiated by these elements is emitted by resonance transitions in the ultraviolet, namely the C IV line at 155.0 nm and Ly-α line at 121.6 nm. To image the ultraviolet light with an angular view including the inner wall and outer bias ring in DIII-D, a 6-element optical system (f/8.9) was designed using a combination of reflective and refractive optics. This system will provide a spatial resolution of 1.2 cm in the object plane. An intermediate UV image formed in a secondary vacuum is converted to the visible by means of a phosphor plate and detected with a conventional CID camera (30 ms framing rate). A single MgF 2 lens serves as the vacuum interface between the primary and secondary vacuums; a second lens must be inserted in the secondary vacuum to correct the focus at 155 nm. Using the same tomographic inversion method employed for the visible TV, they reconstruct the poloidal distribution of the UV divertor light. The grain size of the phosphor plate and the optical system aberrations limit the best focus spot size to 60 microm at the CID plane. The optical system is designed to withstand 350 C vessel bakeout, 2 T magnetic fields, and disruption-induced accelerations of the vessel

  9. Kinetic modeling of divertor heat load fluxes in the Alcator C-Mod and DIII-D tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Pankin, A. Y. [Tech-X Corporation, Boulder, Colorado 80303 (United States); Rafiq, T.; Kritz, A. H. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Park, G. Y. [National Fusion Research Institute, Daejeon, 305-333 (Korea, Republic of); Chang, C. S.; Ku, S. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Brunner, D.; Hughes, J. W.; LaBombard, B.; Terry, J. L. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Groebner, R. J. [General Atomics, San Diego, California 92121 (United States)

    2015-09-15

    The guiding-center kinetic neoclassical transport code, XGC0 [Chang et al., Phys. Plasmas 11, 2649 (2004)], is used to compute the heat fluxes and the heat-load width in the outer divertor plates of Alcator C-Mod and DIII-D tokamaks. The dependence of the width of heat-load fluxes on neoclassical effects, neutral collisions, and anomalous transport is investigated using the XGC0 code. The XGC0 code includes realistic X-point geometry, a neutral source model, the effects of collisions, and a diffusion model for anomalous transport. It is observed that the width of the XGC0 neoclassical heat-load is approximately inversely proportional to the total plasma current I{sub p.} The scaling of the width of the divertor heat-load with plasma current is examined for an Alcator C-Mod discharge and four DIII-D discharges. The scaling of the divertor heat-load width with plasma current is found to be weaker in the Alcator C-Mod discharge compared to scaling found in the DIII-D discharges. The effect of neutral collisions on the 1/I{sub p} scaling of heat-load width is shown not to be significant. Although inclusion of poloidally uniform anomalous transport results in a deviation from the 1/I{sub p} scaling, the inclusion of the anomalous transport that is driven by ballooning-type instabilities results in recovering the neoclassical 1/I{sub p} scaling. The Bohm or gyro-Bohm scalings of anomalous transport do not strongly affect the dependence of the heat-load width on plasma current. The inclusion of anomalous transport, in general, results in widening the width of neoclassical divertor heat-load and enhances the neoclassical heat-load fluxes on the divertor plates. Understanding heat transport in the tokamak scrape-off layer plasmas is important for strengthening the basis for predicting divertor conditions in ITER.

  10. Hollow microspheres with a tungsten carbide kernel for PEMFC application.

    Science.gov (United States)

    d'Arbigny, Julien Bernard; Taillades, Gilles; Marrony, Mathieu; Jones, Deborah J; Rozière, Jacques

    2011-07-28

    Tungsten carbide microspheres comprising an outer shell and a compact kernel prepared by a simple hydrothermal method exhibit very high surface area promoting a high dispersion of platinum nanoparticles, and an exceptionally high electrochemically active surface area (EAS) stability compared to the usual Pt/C electrocatalysts used for PEMFC application.

  11. Plasma flow in the DIII-D divertor

    International Nuclear Information System (INIS)

    Boedo, J.A.; Porter, G.D.; Schaffer, M.J.

    1998-07-01

    Indications that flows in the divertor can exhibit complex behavior have been obtained from 2-D modeling but so far remain mostly unconfirmed by experiment. An important feature of flow physics is that of flow reversal. Flow reversal has been predicted analytically and it is expected when the ionization source arising from neutral or impurity ionization in the divertor region is large, creating a high pressure zone. Plasma flows arise to equilibrate the pressure. A radiative divertor regime has been proposed in order to reduce the heat and particle fluxes to the divertor target plates. In this regime, the energy and momentum of the plasma are dissipated into neutral gas introduced in the divertor region, cooling the plasma by collisional, radiative and other atomic processes so that the plasma becomes detached from the target plates. These regimes have been the subject of extensive studies in DIII-D to evaluate their energy and particle transport properties, but only recently it has been proposed that the energy transport over large regions of the divertor must be dominated by convection instead of conduction. It is therefore important to understand the role of the plasma conditions and geometry on determining the region of convection-dominated plasma in order to properly control the heat and particle fluxes to the target plates and hence, divertor performance. The authors have observed complex structures in the deuterium ion flows in the DIII-D divertor. Features observed include reverse flow, convective flow over a large volume of the divertor and stagnant flow. They have measured large gradients in the plasma potential across the separatrix in the divertor and determined that these gradients induce poloidal flows that can potentially affect the particle balance in the divertor

  12. Vacuum hot-pressed beryllium and TiC dispersion strengthened tungsten alloy developments for ITER and future fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Chen, Jiming; Lian, Youyun; Wu, Jihong; Xu, Zengyu; Zhang, Nianman; Wang, Quanming; Duan, Xuro [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Wang, Zhanhong; Zhong, Jinming [Northwest Rare Metal Material Research Institute, CNMC, Ningxia Orient Group Co. Ltd.,No.119 Yejin Road, Shizuishan City, Ningxia,753000 (China)

    2013-11-15

    Beryllium and tungsten have been selected as the plasma facing materials of the ITER first wall (FW) and divertor chamber, respectively. China, as a participant in ITER, will share the manufacturing tasks of ITER first-wall mockups with the European Union and Russia. Therefore ITER-grade beryllium has been developed in China and a kind of vacuum hot-pressed (VHP) beryllium, CN-G01, was characterized for both physical, and thermo-mechanical properties and high heat flux performance, which indicated an equivalent performance to U.S. grade S-65C beryllium, a reference grade beryllium of ITER. Consequently CN-G01 beryllium has been accepted as the armor material of ITER-FW blankets. In addition, a modification of tungsten by TiC dispersion strengthening was investigated and a W–TiC alloy with TiC content of 0.1 wt.% has been developed. Both surface hardness and recrystallization measurements indicate its re-crystallization temperature approximately at 1773 K. Deuterium retention and thermal desorption behaviors of pure tungsten and the TiC alloy were also measured by deuterium ion irradiation of 1.7 keV energy to the fluence of 0.5–5 × 10{sup 18} D/cm{sup 2}; a main desorption peak at around 573 K was found and no significant difference was observed between pure tungsten and the tungsten alloy. Further characterization of the tungsten alloy is in progress.

  13. The ITER divertor cassette project meeting

    International Nuclear Information System (INIS)

    Merola, M.; Riccardi, B.; Tivey, R.

    1999-01-01

    The Divertor Cassette Project topical meeting was held on May 26-28, 1999 at the ENEA Brasimone Research Centre in Camugnano (Bologna), Italy. Specialists from all the four Parties and the JCT participated in the meeting. It was concluded that the Divertor Cassette Project has significantly contributed to solving a large part of the critical issues of the ITER divertor design

  14. Advances in optical thermometry for the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Lott, F. [CEA, IRFM, F-13108 St Paul lez Durance (France)], E-mail: fraser.lott@gmail.com; Netchaieff, A. [Laboratoire National de Metrologie et d' Essais (LNE), ZA de Trappes-Elancourt, 29 avenue Roger Hennequin, 78197 TRAPPES Cedex (France); Escourbiac, F. [CEA, IRFM, F-13108 St Paul lez Durance (France); Jouvelot, J.-L.; Constans, S. [AREVA NP, Centre Technique-FE200, Porte Magenta BP 181, 71205 Le Creusot (France); Hernandez, D. [Procedes, Materiaux et Energie Solaire (PROMES), Centre National de la Recherche Scientifique (CNRS), B.P. 5, 66125 Font-Romeu Cedex (France)

    2010-01-15

    Thermography will be an important diagnostic on the ITER tokamak, but the inclusion of reflective materials such as tungsten in the design for ITER's first wall and divertor region presents problems for optical temperature measurement. The ongoing testing of ITER plasma facing components (PFCs) provides an excellent opportunity to resolve such problems. This has focused on the variation of PFC emissivity with temperature and time, as well as environmental influence on thermography. The sensitivity of these systems to ambient temperature, due primarily to modification of the transmission of the optical path, has been established and minimised. The accuracy of the system is then sufficient to measure the variation of emissivity in heated material samples, by comparing its front-face luminance measured with an infrared camera to the temperature given by an implanted thermocouple. Measurements on both tungsten and carbon fibre composite are in broad agreement with theory, and thus give the material's function of emissivity with temperature at the start of its life. To determine its evolution, a bicolour pyroreflectometer was then installed. This uses two lasers to measure the reflectivity in addition to the luminance at two wavelengths, and thus the true temperature can be calculated. This was validated against the instrumented sample, then used along with the camera to observe an ITER mock-up during {approx}50,000 s of 5 MW/m{sup 2} testing. Emissivity was seen to vary little in the 500 deg. C region. Higher temperature tests are ongoing.

  15. Studies of power exhaust and divertor design for a 1.5 GW-level fusion power DEMO

    Science.gov (United States)

    Asakura, N.; Hoshino, K.; Suzuki, S.; Tokunaga, S.; Someya, Y.; Utoh, H.; Kudo, H.; Sakamoto, Y.; Hiwatari, R.; Tobita, K.; Shimizu, K.; Ezato, K.; Seki, Y.; Ohno, N.; Ueda, Y.; Joint Special TeamDEMO Design

    2017-12-01

    Power exhaust to the divertor and the conceptual design have been investigated for a steady-state DEMO in Japan with 1.5 GW-level fusion power and the major radius of 8.5 m, where the plasma parameters were revised appropriate for the impurity seeding scenario. A system code survey for the Ar impurity seeding suggested the volume-averaged density, impurity concentration and exhaust power from the main plasma of {{P}sep ~ }   =  205-285 MW. The divertor plasma simulation (SONIC) was performed in the divertor leg length of 1.6 m with the fixed exhaust power to the edge of {{P}out}   =  250 MW and the total radiation fraction at the edge, SOL and divertor ({{P}rad}/{{P}out}   =  0.8), as a first step to investigate appropriate design of the divertor size and geometry. At the outer target, partial detachment was produced near the strike-point, and the peak heat load ({{q}target} ) at the attached region was reduced to ~5 MW m-2 with appropriate fuel and impurity puff rates. At the inner divertor target, full detachment of ion flux was produced and the peak {{q}target} was less than 10 MW m-2 mostly due to the surface-recombination. These results showed a power exhaust scenario and the divertor design concept. An integrated design of the water-cooling heat sink for the long leg divertor was proposed. Cu-ally (CuCrZr) cooling pipe was applicable as the heat sink to handle the high heat flux near the strike-point, where displacements per atom rate was estimated to be 0.5-1.5 per year by neutronics calculation. An arrangement of the coolant rooting for Cu-alloy and Reduced Activation Ferritic Martensitic (RAFM) steel (F82H) pipes in a divertor cassette was investigated, and the heat transport analysis of the W-monoblock and Cu-alloy pipe under the peak {{q}target} of 10 MWm-2 and nuclear heating was performed. The maximum temperatures on the W-surface and Cu-alloy pipe were 1021 and 331 °C. Heat flux of 16 MW m-2 was distributed in the major part

  16. Development of a plasma assisted ITER level controlled heat source and observation of novel micro/nanostructures produced upon exposure of tungsten targets

    Energy Technology Data Exchange (ETDEWEB)

    Aomoa, N.; Sarmah, Trinayan; Sah, Puspalata [CIMPLE-PSI Laboratory, Centre of Plasma Physics-Institute for Plasma Research, Sonapur 782 402 Assam (India); Chaudhuri, P.; Khirwarker, S.; Ghosh, J. [Institute for Plasma Research, Gandhinagar 382428 Gujarat (India); Satpati, B. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Kakati, M., E-mail: mayurkak@rediffmail.com [CIMPLE-PSI Laboratory, Centre of Plasma Physics-Institute for Plasma Research, Sonapur 782 402 Assam (India); De Temmerman, G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046 Saint Paul Lez Durance, Cedex (France)

    2016-05-15

    Highlights: • Developed a plasma assisted ITER level high heat flux device for material testing. • The beam deposits over 10 MW/m{sup 2} flux uniformly over a remote material target. • Hopper micro-crystals were growing while exposing Plansee tungsten in the device. • CIMPLE-PSI being developed for exact reproduction of Tokomak Divertor conditions. - Abstract: This paper reports on the development of a simple, low-cost, segmented plasma torch assisted high-heat flux device for material testing, which can simulate the extreme heat flux expected in future fusion devices. Calorimetric measurements confirmed uniform heat deposition by the well collimated argon plasma beam over a target surface with power fluxes in excess of 10 MW/m{sup 2} during high current, high gas flow rate operations. To understand the outcome of possible melting of first wall material in an ITER like machine, an Plansee tungsten target was exposed in this device, which witnessed growth of micrometer level Hopper crystals and their aggregation to vertical grains in central exposed region. Increase in viscosity of the metal during high under-cooling is believed to have lead to the skeletal patterns, observed for the first time for tungsten here. Transmission electron microscopy confirmed that re-solidified grains on the target actually had crystalline substructures in the nanometer level. This laboratory is in the process of developing an exact linear Tokamak Divertor simulator, where a magnetized hydrogen/helium collimated plasma jet will be produced at higher vacuum, for plasma material interaction studies with direct relevance to modern plasma fusion machines.

  17. Engineering design of a toroidal divertor for the EBT-S fusion device. Final report, Phase II. EBT-S divertor project

    International Nuclear Information System (INIS)

    Mai, L.P.; Malick, F.S.

    1981-01-01

    The mechanical, structural, thermal, electrical, and vacuum design of a magnetic toroidal divertor system for the Elmo Bumpy Torus (EBT-S) is presented. The EBT-S is a toroidal magnetic fusion device located at the ORNL that operates under steady state conditions. The engineering of the divertor was performed during the second of three phases of a program aimed at the selection, design, fabrication, and installation of a magnetic divertor for EBT-S. The magnetic analysis of the toroidal divertor was performed during Phase I of the program and has been reported in a separate document. In addition to the details of the divertor design, the modest modifications that are required to the EBT-S device and facility to accommodate the divertor system are presented

  18. A Lithium Vapor Box Divertor Similarity Experiment

    Science.gov (United States)

    Cohen, Robert A.; Emdee, Eric D.; Goldston, Robert J.; Jaworski, Michael A.; Schwartz, Jacob A.

    2017-10-01

    A lithium vapor box divertor offers an alternate means of managing the extreme power density of divertor plasmas by leveraging gaseous lithium to volumetrically extract power. The vapor box divertor is a baffled slot with liquid lithium coated walls held at temperatures which increase toward the divertor floor. The resulting vapor pressure differential drives gaseous lithium from hotter chambers into cooler ones, where the lithium condenses and returns. A similarity experiment was devised to investigate the advantages offered by a vapor box divertor design. We discuss the design, construction, and early findings of the vapor box divertor experiment including vapor can construction, power transfer calculations, joint integrity tests, and thermocouple data logging. Heat redistribution of an incident plasma-based heat flux from a typical linear plasma device is also presented. This work supported by DOE Contract No. DE-AC02-09CH11466 and The Princeton Environmental Institute.

  19. Spectroscopic Investigations of Highly Charged Tungsten Ions - Atomic Spectroscopy and Fusion Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, Joel [Lund Univ. (Sweden)

    2010-05-01

    The spectra of highly charged tungsten ions have been investigated using x-ray and extreme ultraviolet spectroscopy. These heavy ions are of interest in relativistic atomic structure theory, where high-precision wavelength measurements benchmark theoretical approaches, and in magnetic fusion research, where the ions may serve to diagnose high-temperature plasmas. The work details spectroscopic investigations of highly charged tungsten ions measured at the Livermore electron beam ion trap (EBIT) facility. Here, the EBIT-I and SuperEBIT electron beam ion traps have been employed to create, trap, and excite tungsten ions of M- and L-shell charge states. The emitted spectra have been studied in high resolution using crystal, grating, and x-ray calorimeter spectrometers. In particular, wavelengths of n = 0 M-shell transitions in K-like W55+ through Ne-like W64+, and intershell transitions in Zn-like W44+ through Co-like W47+ have been measured. Special attention is given to the Ni-like W46+ ion, which has two strong electric-dipole forbidden transitions that are of interest for plasma diagnostics. The EBIT measurements are complemented by spectral modeling using the Flexible Atomic Code (FAC), and predictions for tokamak spectra are presented. The L-shell tungsten ions have been studied at electron-beam energies of up to 122 keV and transition energies measured in Ne-like W64+ through Li-like W71+. These spectra constitute the physics basis in the design of the ion-temperature crystal spectrometer for the ITER tokamak. Tungsten particles have furthermore been introduced into the Sustained Spheromak Physics Experiment (SSPX) spheromak in Livermore in order to investigate diagnostic possibilities of extreme ultraviolet tungsten spectra for the ITER divertor. The spheromak measurement and spectral modeling using FAC suggest that tungsten ions in charge states around Er-like W6+ could be useful for

  20. Peculiarity of deuterium ions interaction with tungsten surface in the condition imitating combination of normal operation with plasma disruption in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, M.I. E-mail: martyn@nfi.kiae.ru; Vasiliev, V.I.; Gureev, V.M.; Danelyan, L.S.; Khirpunov, B.I.; Korshunov, S.N.; Kulikauskas, V.S.; Martynenko, Yu.V.; Petrov, V.B.; Strunnikov, V.N.; Stolyarova, V.G.; Zatekin, V.V.; Litnovsky, A.M

    2001-03-01

    Tungsten is a candidate material for the ITER divertor. For the simulation of ITER normal operation conditions in combination with plasma disruptions samples of various types of tungsten were exposed to both steady-state and high power pulsed deuterium plasmas. Tungsten samples were first exposed in a steady-state plasma with an ion current density {approx}10{sup 21} m{sup -2} s{sup -1} up to a dose of 10{sup 25} m{sup -2} at a temperature of 770 K. The energy of deuterium ions was 150 eV. The additional exposure of the samples to 10 pulses of deuterium plasma was performed in the electrodynamical plasma accelerator with an energy flux 0.45 MJ/m{sup 2} per pulse. Samples of four types of tungsten (W-1%La{sub 2}O{sub 3}, W-13I, monocrystalline W(1 1 1) and W-10%Re) were investigated. The least destruction of the surface was observed for W(1 1 1). The concentration of retained deuterium in tungsten decreased from 2.5x10{sup 19} m{sup -2} to 1.07x10{sup 19} m{sup -2} (for W(1 1 1)) as a result of the additional pulsed plasma irradiation. Investigation of the tungsten erosion products after the high power pulsed plasma shots was also carried out.

  1. Generation and development of damage in double forged tungsten in different combined regimes of irradiation with extreme heat loads

    Science.gov (United States)

    Paju, Jana; Väli, Berit; Laas, Tõnu; Shirokova, Veroonika; Laas, Katrin; Paduch, Marian; Gribkov, Vladimir A.; Demina, Elena V.; Prusakova, Marina D.; Pimenov, Valeri N.; Makhlaj, Vadym A.; Antonov, Maksim

    2017-11-01

    Armour materials in fusion devices, especially in the region of divertor, are exposed to a continuous heat and particle load. In addition, several off-normal events can reach the material during a work session. Calculations show that the effects of plasma and heat during such events can lead to cracking, erosion and detachment of the armour material. On the other hand, mutual and combined influences of different kinds of heat and particle loads can lead to the amplification of defects or vice versa, to the mitigation of damages. Therefore, the purpose of the study is to investigate the plasma induced damages on samples of double forged tungsten, which is considered a potential candidate for armour material of future tokamak's divertor. The combined effect of different kinds of plasma induced damages was investigated and analysed in this research. The study was conducted by irradiating the samples in various irradiation regimes twice, to observe the accumulation of the damages. Afterwards the analysis of micro-topography, scanning electron microscopy images and electrical conductivity measurements was used. Results indicate that double-forging improved the tungsten's durability to irradiation. Nevertheless, powerful pulses lead to significant damage of the sample, which will lead to further deterioration in the bulk. Although the average micro-roughness on the sample's surface does not change, the overall height/depth ratios can change.

  2. Towards a physics-integrated view on divertor pumping

    International Nuclear Information System (INIS)

    Day, Chr.; Gleason-González, C.; Hauer, V.; Igitkhanov, Y.; Kalupin, D.; Varoutis, S.

    2014-01-01

    Highlights: • Physics-integrated design approaches are to be preferred over approaches based on simple requirement lists. • A physics-integrated assessment is presented for the divertor vacuum pumping system based on detachment onset conditions for the divertor. • This approach considers density dependent pump albedo to reflect the effects of gas recycling at the divertor and the changes in flow regime with density. • A comparison with DEMO indicates that the divertor pumping system for a pulsed DEMO scales less than linearly with fusion power. - Abstract: One key requirement to design the inner fuel cycle of a divertor tokamak is defined by the torus vessel gas throughput and composition, and the sub-divertor neutral pressure at which the exhaust gas has to be pumped. This paper illustrates how divertor physics aspects can be translated to requirements on the divertor vacuum pumping system. An example workflow is presented that links the realization of detachment conditions with the sub-divertor neutral gas flow patterns in order to determine the appropriate number of torus vacuum pumps. For the example case of a fusion DEMO size machine, it was found that 7 actively pumping cryopumps (ITER-type) are necessary to handle the gas throughput that is needed to manage the heat flux and densities related to detachment onset

  3. Rapidly Moving Divertor Plates In A Tokamak

    International Nuclear Information System (INIS)

    Zweben, S.

    2011-01-01

    It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ∼10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.

  4. Role of molecular effects in divertor plasma recombination

    Directory of Open Access Journals (Sweden)

    A.S. Kukushkin

    2017-08-01

    Full Text Available Molecule-Activated Recombination (MAR effect is re-considered in view of divertor plasma conditions. A strong isotopic effect is demonstrated. In deuterium plasmas, the reaction chain through D2+ formation, usually considered dominant and included in 2D edge plasma models, is negligible. However, in this case the other branch, through D−, usually neglected in modelling, becomes relatively strong. The overall share of MAR in divertor plasma recycling stays within 20%. The operational parameters of the divertor plasmas, such as the peak power loading on the divertor targets or the pressure limit for partial detachment of the divertor plasma, are insensitive to the presence of MAR, although the latter may be important for correct interpretation of the divertor diagnostics.

  5. Bi-directional reflectance distribution function of a tungsten block for ITER divertor

    International Nuclear Information System (INIS)

    Iwamae, Atsushi; Ogawa, Hiroaki; Sugie, Tatsuo; Kusama, Yoshinori

    2012-02-01

    In order to investigate reflection properties on plasma-facing material in ITER, the bi-directional reflectance distribution function (BRDF) of a tungsten block sample has been measured. On the machining surface of the block, one-directional machining lines are engraved. Two laser diodes λ652 nm and λ473 nm were used to simulate H α and H β emissions, respectively. The reflected light is affected by the machining surface. The reflected light traces an arc when the incident light is injected in the parallel direction to the engraved line. On the other hand the reflected light traces a line shape when the incident light is injected in the perpendicular direction to the engraved lines. Ray tracing simulation qualitatively explains the experimental results. (author)

  6. Investigation of cascade effect failure for tungsten armour

    International Nuclear Information System (INIS)

    Makhankov, A.; Barabash, V.; Berkhov, N.; Divavin, V.; Giniatullin, R.; Grigoriev, S.; Ibbott, C.; Komarov, V.; Labusov, A.; Mazul, I.; McDonald, J.; Tanchuk, V.; Youchison, D.

    2001-01-01

    The glancing angle of incident power on the target of a tokamak divertor results in doubled and highly peaked heat flux onto adjacent downstream tile in the case of lost of tile event (LOTE). As a result downstream tile has higher probability to fail resulting in triple loads to the next downstream tile and so on (cascade effect). This paper devoted to analytical and experimental investigation of the cascade effect failure for the flat tile option of tungsten armoured plasma facing components. Armour geometry resistant to the cascade effect failure was selected on the base of thermal and stress analyses. Experimental investigation of the LOTE has been performed also. Small size W/Cu mock-up withstood not only LOTE simulation load, but also survived afterwards for 1500 cycles at 26-28 MW/m 2 without damage in joint

  7. Atomic and molecular processes in JT-60U divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Takenaga, H.; Shimizu, K.; Itami, K. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-01-01

    Atomic and molecular data are indispensable for the understanding of the divertor characteristics, because behavior of particles in the divertor plasma is closely related to the atomic and molecular processes. In the divertor configuration, heat and particles escaping from the main plasma flow onto the divertor plate along the magnetic field lines. In the divertor region, helium ash must be effectively exhausted, and radiation must be enhanced for the reduction of the heat load onto the divertor plate. In order to exhaust helium ash effectively, the difference between behavior of neutral hydrogen (including deuterium and tritium) and helium in the divertor plasma should be understood. Radiation from the divertor plasma generally caused by the impurities which produced by the erosion of the divertor plate and/or injected by gas-puffing. Therefore, it is important to understand impurity behavior in the divertor plasma. The ions hitting the divertor plate recycle through the processes of neutralization, reflection, absorption and desorption at the divertor plates and molecular dissociation, charge-exchange reaction and ionization in the divertor plasma. Behavior of hydrogen, helium and impurities in the divertor plasmas can not be understood without the atomic and molecular data. In this report, recent results of the divertor study related to the atomic and molecular processes in JT-60U were summarized. Behavior of neural deuterium and helium was discussed in section 2. In section 3, the comparisons between the modelling of the carbon impurity transport and the measurements of C II and C IV were discussed. In section 4, characteristics of the radiative divertor using Ne puffing were reported. The new diagnostic method for the electron density and temperature in the divertor plasmas using the intensity ratios of He I lines was described in section 5. (author)

  8. Measurements and modeling of intra-ELM tungsten sourcing and transport in DIII-D

    Science.gov (United States)

    Abrams, T.; Leonard, A. W.; Thomas, D. M.; McLean, A. G.; Makowski, M. A.; Wang, H. Q.; Unterberg, E. A.; Briesemeister, A. R.; Rudakov, D. L.; Bykov, I.; Donovan, D.

    2017-10-01

    Intra-ELM tungsten erosion profiles in the DIII-D divertor, acquired via W I spectroscopy with high temporal and spatial resolution, are consistent with SDTrim.SP sputtering modeling using measured ion saturation currents and impact energies during ELMs as input and an ad-hoc 2% C2+ impurity flux. The W sputtering profile peaks close to the OSP both during and between ELMs in the favorable BT direction. In reverse BT the W source peaks close to the OSP between ELMs but strongly broadens and shifts outboard during ELMs, heuristically consistent with radially outward ion transport via ExB drifts. Ion impact energies during ELMs (inferred taking the ratio of divertor heat flux to the ion saturation current) are found to be approximately equal to Te,ped, lower than the 4*Te,ped value predicted by the Fundamenski/Moulton free streaming model. These impact energies imply both D main ions and C impurities contribute strongly to W sputtering during ELMs on DIII-D. This work represents progress towards a predictive model to link upstream conditions (i.e., pedestal height) and SOL impurity levels to the ELM-induced W impurity source at both the strike-point and far-target regions in the ITER divertor. Correlations between ELM size/frequency and SOL W fluxes measured via a midplane deposition probe will also be presented. Work supported by US DOE under DE-FC02-04ER54698.

  9. The ITER divertor concept

    International Nuclear Information System (INIS)

    Janeschitz, G.; Borrass, K.; Federici, G.; Igitkhanov, Y.; Kukushkin, A.; Pacher, H.D.; Pacher, G.W.; Sugihara, M.

    1995-01-01

    The ITER divertor must exhaust most of the alpha particle power and the He ash at acceptable erosion rates. The high recycling regime of the ITER-CDA for present parameters would yield high power loads and erosion rates on conventional targets. Improvement by radiation in the SOL at constant pressure is limited in principle. To permit a higher radiation fraction, the plasma pressure along the field must be reduced by more than a factor 10, reducing also the target ion flux. This pressure reduction can be obtained by strong plasma-neutral interaction below the X-point. Under these conditions T e in the divertor can be reduced to <5 eV along a flame like ionisation front by impurity radiation and CX losses. Downstream of the front, neutrals undergo more CX or i-n collisions than ionisation events, resulting in significant momentum loss via neutrals to the divertor chamber wall. The pressure reduction by this mechanism depends on the along-field length for neutral-plasma interaction, the parallel power flux, the neutral density, the ratio of neutral-neutral collision length to the plasma-wall distance and on the Mach number of ions and neutrals. A supersonic transition in the main plasma-neutral interaction region, expected to occur near the ionisation front, would be beneficial for momentum removal. The momentum transfer fraction to the side walls is calculated: low Knudsen number is beneficial. The impact of the different physics effects on the chosen geometry and on the ITER divertor design and the lifetime of the various divertor components are discussed. ((orig.))

  10. Heat flux management via advanced magnetic divertor configurations and divertor detachment

    Energy Technology Data Exchange (ETDEWEB)

    Kolemen, E., E-mail: ekolemen@princeton.edu [Princeton University, Princeton, NJ 08544 (United States); Allen, S.L. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Bray, B.D. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Fenstermacher, M.E. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Humphreys, D.A.; Hyatt, A.W. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Lasnier, C.J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Leonard, A.W. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Makowski, M.A.; McLean, A.G. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Maingi, R.; Nazikian, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Petrie, T.W. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Unterberg, E.A. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States)

    2015-08-15

    The snowflake divertor (SFD) control and detachment control to manage the heat flux at the divertor are successfully demonstrated at DIII-D. Results of the development and implementation of these two heat flux reduction control methods are presented. The SFD control algorithm calculates the position of the two null-points in real-time and controls shaping coil currents to achieve and stabilize various snowflake configurations. Detachment control stabilizes the detachment front fixed at specified distance between the strike point and the X-point throughout the shot.

  11. Comparison between stellarator and tokamak divertor transport

    International Nuclear Information System (INIS)

    Feng, Y.; Lunt, T.; Kobayashi, M.; Reiter, D.

    2010-11-01

    The paper compares the essential divertor transport features of the poloidal divertor, which is well-developed for tokamaks, and the non-axisymmetric divertors currently investigated on helical devices. It aims at surveying the fundamental similarities and differences in divertor concept and geometry, and their consequences for how the divertor functions. In particular, the importance of various transport terms governing axisymmetric and helical scrape-off-layers (SOLs) is examined, with special attention being paid to energy, momentum and impurity transport. Tokamak and stellarator SOLs are compared by identifying key geometric parameters through which the governing physics can be illustrated by simple models and estimates. More quantitative assessments rely nevertheless on the modeling using EMC3-EIRENE code. Most of the theoretical results are discussed in conjunction with experimental observations. (author)

  12. The flush-mounted rail Langmuir probe array designed for the Alcator C-Mod vertical target plate divertor

    Science.gov (United States)

    Kuang, A. Q.; Brunner, D.; LaBombard, B.; Leccacorvi, R.; Vieira, R.

    2018-04-01

    An array of flush-mounted and toroidally elongated Langmuir probes (henceforth called rail probes) have been specifically designed for the Alcator C-Mod's vertical target plate divertor and operated over multiple campaigns. The "flush" geometry enables the tungsten electrodes to survive high heat flux conditions in which traditional "proud" tungsten electrodes suffer damage from melting. The toroidally elongated rail-like geometry reduces the influence of sheath expansion, which is an important effect to consider in the design and interpretation of flush-mounted Langmuir probes. The new rail probes successfully operated during C-Mod's FY2015 and FY2016 experimental campaigns with no evidence of damage, despite being regularly subjected to heat flux densities parallel to the magnetic field exceeding ˜1 GW m-2 for short periods of time. A comparison between rail and proud probe data indicates that sheath expansion effects were successfully mitigated by the rail design, extending the use of these Langmuir probes to incident magnetic field line angles as low as 0.5°.

  13. The divertor remote maintenance project

    International Nuclear Information System (INIS)

    Maisonnier, D.; Martin, E.; Akou, K.

    2001-01-01

    Remote replacement of the ITER divertor will be required several times during the life of ITER. To facilitate its regular exchange, the divertor is assembled in the ITER vacuum vessel from 60 cassettes. Radial movers transport each cassette along radial rails through the handling ports and into the vessel where a toroidal mover lifts and transports the cassette around a pair of toroidal rails. Once at its final position the cassette is locked to the toroidal rails and is accurately aligned in both poloidal and toroidal directions. A further requirement on the divertor is to minimise the amount of activated waste to be sent to a repository. To this end the cassettes have been designed to allow the remote replacement, in a hot cell, of their plasma facing components. The paper describes the two facilities built at ENEA Brasimone, Italy, whose aim is to demonstrate the reliable remote maintenance of the divertor cassettes. (author)

  14. The divertor remote maintenance project

    International Nuclear Information System (INIS)

    Maisonnier, D.; Martin, E.; Akou, K.

    1999-01-01

    Remote replacement of the ITER divertor will be required several times during the life of ITER. To facilitate its regular exchange, the divertor is assembled in the ITER vacuum vessel from 60 cassettes. Radial movers transport each cassette along radial rails through the handling ports and into the vessel where a toroidal mover lifts and transports the cassette around a pair of toroidal rails. Once at its final position the cassette is locked to the toroidal rails and is accurately aligned in both poloidal and toroidal directions. A further requirement on the divertor is to minimise the amount of activated waste to be sent to a repository. To this end the cassettes have been designed to allow the remote replacement, in a hot cell, of their plasma facing components. The paper describes the two facilities built at ENEA Brasimone, Italy, whose aim is to demonstrate the reliable remote maintenance of the divertor cassettes. (author)

  15. FINAL REPORT FOR THE DIII-D RADIATIVE DIVERTOR PROJECT

    International Nuclear Information System (INIS)

    O'NEIL, RC; STAMBAUGH, RD

    2002-01-01

    OAK A271 FINAL REPORT FOR THE DIII-D RADIATIVE DIVERTOR PROJECT. The Radiative Divertor Project originated in 1993 when the DIII-D Five Year Plan for the period 1994--1998 was prepared. The Project Information Sheet described the objective of the project as ''to demonstrate dispersal of divertor power by a factor of then with sufficient diagnostics and modeling to extend the results to ITER and TPX''. Key divertor components identified were: (1) Carbon-carbon and graphite armor tiles; (2) The divertor structure providing a gas baffle and cooling; and (3) The divertor cryopumps to pump fuel and impurities

  16. Effect of stationary high heat flux and transient ELMs-like heat loads on the divertor PFCs

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, B., E-mail: bruno.riccardi@f4e.europa.eu [Fusion for Energy, ITER Department, Josep Pla, 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Gavila, P. [Fusion for Energy, ITER Department, Josep Pla, 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Giniatulin, R. [Efremov Institute, 196641 St. Petersburg (Russian Federation); Kuznetsov, V. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, 142190 Troitsk, Moscow Region (Russian Federation); Rulev, R. [Efremov Institute, 196641 St. Petersburg (Russian Federation); Klimov, N.; Kovalenko, D.; Barsuk, V. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, 142190 Troitsk, Moscow Region (Russian Federation); Koidan, V.; Korshunov, S. [NRC “Kurchatov Institute”, Moscow (Russian Federation)

    2013-10-15

    The experimental evaluation of the divertor plasma facing components (PFCs) lifetime under transient events, such as edge localized modes (ELMs) and high heat flux (HHF) thermal fatigue expected during ITER normal operations and slow transient events is here presented. The experiments have been performed in the frame of an EU/RF collaboration. For carbon fiber composite material the erosion is caused by PAN fiber damage whilst the erosion of tungsten is determined by the melt layer movement and crack formation. The conclusion of this study is that, in addition to the structural change produced in the armor materials by ELMs-like loads, some mock ups showed also a degradation of the thermal fatigue performances.

  17. Actively convected liquid metal divertor

    International Nuclear Information System (INIS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-01-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem. (letter)

  18. Spark plasma sintering of pure and doped tungsten as plasma facing material

    Science.gov (United States)

    Autissier, E.; Richou, M.; Minier, L.; Naimi, F.; Pintsuk, G.; Bernard, F.

    2014-04-01

    In the current water cooled divertor concept, tungsten is an armour material and CuCrZr is a structural material. In this work, a fabrication route via a powder metallurgy process such as spark plasma sintering is proposed to fully control the microstructure of W and W composites. The effect of chemical composition (additives) and the powder grain size was investigated. To reduce the sintering temperature, W powders doped with a nano-oxide dispersion of Y2O3 are used. Consequently, the sintering temperature for W-oxide dispersed strengthened (1800 °C) is lower than for pure W powder. Edge localized mode tests were performed on pure W and compared to other preparation techniques and showed promising results.

  19. 'EU divertor celebration day'

    International Nuclear Information System (INIS)

    Merola, M.

    2002-01-01

    The meeting 'EU divertor celebration day' organized on 16 January 2002 at Plansee AG, Reutte, Austria was held on the occasion of the completion of manufacturing activities of a complete set of near full-scale prototypes of divertor components including the vertical target, the dome liner and the cassette body. About 30 participants attended the meeting including Dr. Robert Aymar, ITER Director, representatives from EFDA, CEA, ENEA, IPP and others

  20. Advantages and Challenges of Radiative Liquid Lithium Divertor

    Science.gov (United States)

    Ono, Masayuki

    2017-10-01

    Steady-state fusion power plant designs present major divertor technology challenges, including high divertor heat flux both in steady-state and during transients. In addition to these concerns, there are the unresolved technology issues of long term dust accumulation and associated tritium inventory and safety issues. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid Li divertor (RLLD) concept and its variant, the active liquid Li divertor concept (ARLLD), taking advantage of the enhanced Li radiation in relatively poorly confined divertor plasmas. It has been suggested that radiation-based liquid lithium (LL) divertor concepts with a modest Li-loop could provide a possible solution for the outstanding fusion reactor technology issues such as divertor heat flux mitigation and real time dust removal, while potentially improving the reactor plasma performance. Laboratory tests are also planned to investigate the Li-T recover efficiency and other relevant research topics of the RLLD. This work supported by DoE Contract No. DE-AC02-09CH11466.

  1. Efficiency of water coolant for DEMO divertor

    International Nuclear Information System (INIS)

    Fetzer, Renate; Igitkhanov, Yuri; Bazylev, Boris

    2015-01-01

    Up to now, water-cooled divertor concepts have been developed for limited incident fluxes without taking into account transient power loadings. In this paper we analyzed the efficiency of water as a coolant for the particular PFC tungsten monoblock shield with a cooling tube made from Cu alloy (Cu OFHC) as a laminate adjacent to W and a low activation martensitic steel (Eurofer) as inner tube contacting the coolant. Thermal analysis is carried out by using the code MEMOS, which simulates W armour damage under the repetitive ELM heat loads. We consider cooling conditions which allow one to keep relatively high material temperatures (in the range 300–600 °C) thus minimizing Eurofer embrittlement under neutron irradiation. Expected DEMO I and DEMO II heat loads including type I ELMs are found to cause melting of the W surface during unmitigated ELMs. By mitigation of the ELMs melting of W is avoided. DEMO I operation under these conditions is save for cooling at water pressure 15.5 MPa and temperature 325 °C, while for DEMO II with mitigated ELMs the critical heat flux is exceeded and safe operation is not provided.

  2. Efficiency of water coolant for DEMO divertor

    Energy Technology Data Exchange (ETDEWEB)

    Fetzer, Renate, E-mail: renate.fetzer@kit.edu; Igitkhanov, Yuri; Bazylev, Boris

    2015-10-15

    Up to now, water-cooled divertor concepts have been developed for limited incident fluxes without taking into account transient power loadings. In this paper we analyzed the efficiency of water as a coolant for the particular PFC tungsten monoblock shield with a cooling tube made from Cu alloy (Cu OFHC) as a laminate adjacent to W and a low activation martensitic steel (Eurofer) as inner tube contacting the coolant. Thermal analysis is carried out by using the code MEMOS, which simulates W armour damage under the repetitive ELM heat loads. We consider cooling conditions which allow one to keep relatively high material temperatures (in the range 300–600 °C) thus minimizing Eurofer embrittlement under neutron irradiation. Expected DEMO I and DEMO II heat loads including type I ELMs are found to cause melting of the W surface during unmitigated ELMs. By mitigation of the ELMs melting of W is avoided. DEMO I operation under these conditions is save for cooling at water pressure 15.5 MPa and temperature 325 °C, while for DEMO II with mitigated ELMs the critical heat flux is exceeded and safe operation is not provided.

  3. High temperature divertor plasma operation

    International Nuclear Information System (INIS)

    Ohyabu, Nobuyoshi.

    1991-02-01

    High temperature divertor plasma operation has been proposed, which is expected to enhance the core energy confinement and eliminates the heat removal problem. In this approach, the heat flux is guided through divertor channel to a remote area with a large target surface, resulting in low heat load on the target plate. This allows pumping of the particles escaping from the core and hence maintaining of the high divertor temperature, which is comparable to the core temperature. The energy confinement is then determined by the diffusion coefficient of the core plasma, which has been observed to be much lower than the thermal diffusivity. (author)

  4. Studies of high-δ (baffled) and low-δ (open) pumped divertor operation on DIII-D

    International Nuclear Information System (INIS)

    Allen, S.L.; Fenstermacher, M.E.; Greenfield, C.M.

    1998-08-01

    The authors report new experimental results with the RDP-OB (Radiative Divertor Project-outer baffle) and cryopump in both upper single-null (USN) and double-null (DN) ELMing H-mode discharges. The baffled divertor reduced the core ionization (∼2--2.5x), in reasonable agreement with predictions from UEDGE/DEGAS modeling (∼3.75x). The upper cryopump achieved density control of n e /n gw ∼ 0.22 (line density/Greenwald density) with Z eff ∼ 2 in high-δ plasmas. The measured exhaust is comparable to the lower pump, except at lower core electron densities (n e 19 m -3 ). Efficient impurity exhaust was obtained with deuterium SOL flow. Preliminary experiments with DN operation has shown that the particle exhaust to the upper pump depends on the up/down magnetic balance. Preliminary experiments indicate that the DN exhaust is roughly 40--50% of the USN exhaust at n e ∼ 4 x 10 19 m -3

  5. EMC3-EIRENE modeling of toroidally-localized divertor gas injection experiments on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Lore, J.D., E-mail: lorejd@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Reinke, M.L. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); LaBombard, B. [Plasma Science and Fusion Center, MIT, Cambridge, MA 02139 (United States); Lipschultz, B. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Churchill, R.M. [Plasma Science and Fusion Center, MIT, Cambridge, MA 02139 (United States); Pitts, R.A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Feng, Y. [Max Planck Institute for Plasma Physics, Greifswald (Germany)

    2015-08-15

    Experiments on Alcator C-Mod with toroidally and poloidally localized divertor nitrogen injection have been modeled using the three-dimensional edge transport code EMC3-EIRENE to elucidate the mechanisms driving measured toroidal asymmetries. In these experiments five toroidally distributed gas injectors in the private flux region were sequentially activated in separate discharges resulting in clear evidence of toroidal asymmetries in radiated power and nitrogen line emission as well as a ∼50% toroidal modulation in electron pressure at the divertor target. The pressure modulation is qualitatively reproduced by the modeling, with the simulation yielding a toroidal asymmetry in the heat flow to the outer strike point. Toroidal variation in impurity line emission is qualitatively matched in the scrape-off layer above the strike point, however kinetic corrections and cross-field drifts are likely required to quantitatively reproduce impurity behavior in the private flux region and electron temperatures and densities directly in front of the target.

  6. Divertor plasma studies on DIII-D: Experiment and modeling

    International Nuclear Information System (INIS)

    West, W.P.; Brooks, N.H.; Allen, S.L.

    1996-09-01

    In a magnetically diverted tokamak, the scrape-off layer (SOL) and divertor plasma provides separation between the first wall and the core plasma, intercepting impurities generated at the wall before they reach the core plasma. The divertor plasma can also serve to spread the heat and particle flux over a large area of divertor structure wall using impurity radiation and neutral charge exchange, thus reducing peak heat and particle fluxes at the divertor strike plate. Such a reduction will be required in the next generation of tokamaks, for without it, the divertor engineering requirements are very demanding. To successfully demonstrate a radiative divertor, a highly radiative condition with significant volume recombination must be achieved in the divertor, while maintaining a low impurity content in the core plasma. Divertor plasma properties are determined by a complex interaction of classical parallel transport, anomalous perpendicular transport, impurity transport and radiation, and plasma wall interaction. In this paper the authors describe a set of experiments on DIII-D designed to provide detailed two dimensional documentation of the divertor and SOL plasma. Measurements have been made in operating modes where the plasma is attached to the divertor strike plate and in highly radiating cases where the plasma is detached from the divertor strike plate. They also discuss the results of experiments designed to influence the distribution of impurities in the plasma using enhanced SOL plasma flow. Extensive modeling efforts will be described which are successfully reproducing attached plasma conditions and are helping to elucidate the important plasma and atomic physics involved in the detachment process

  7. Heat and particle transport of sol/divertor plasma in the W-shaped divertor on JT-60U

    International Nuclear Information System (INIS)

    Asakura, N.; Sakurai, S.; Hosogane, N.

    1999-01-01

    The plasma profile and parallel flow in the scrape-off layer (SOL) were systematically measured using Mach probes installed at the midplane and the divertor x-point. Quantitative evaluation of a parallel flow: naturally produced in a torus to keep the pressure constant along the field line, was consistent with the measurement. Geometry effects of the W-shaped divertor on the divertor plasma and particle recycling at the newly installed baffle plates were evaluated quantitatively using the edge plasma data. (author)

  8. Characteristics of the Secondary Divertor on DIII-D

    Science.gov (United States)

    Watkins, J. G.; Lasnier, C. J.; Leonard, A. W.; Evans, T. E.; Pitts, R.; Stangeby, P. C.; Boedo, J. A.; Moyer, R. A.; Rudakov, D. L.

    2009-11-01

    In order to address a concern that the ITER secondary divertor strike plates may be insufficiently robust to handle the incident pulses of particles and energy from ELMs, we performed dedicated studies of the secondary divertor plasma and scrape-off layer (SOL). Detailed measurements of the ELM energy and particle deposition footprint on the secondary divertor target plates were made with a fast IR camera and Langmuir probes and SOL profile and transport measurements were made with reciprocating probes. The secondary divertor and SOL conditions depended on changes in the magnetic balance and the core plasma density. Larger density resulted in smaller ELMs and the magnetic balance affected how many ELM particles coupled to the secondary SOL and divertor. Particularly striking are the images from a new fast IR camera that resolve ELM heat pulses and show spiral patterns with multiple peaks during ELMs in the secondary divertor.

  9. Divertors for helical devices: Concepts, plans, results and problems

    International Nuclear Information System (INIS)

    Koenig, R.; Grigull, P.; McCormick, K.

    2003-01-01

    With LHD and W7-X stellarator development is now taking a large leap forward on the path to a steady-state fusion reactor. Important issues that need to be settled in these machines are particle flux and heat control, and the impact of divertors on plasma performance in future continuously burning fusion plasmas. The divertor concepts that will initially be explored in these large stellarators were carefully prepared in smaller scale devices like Heliotron E, CHS and W7-AS. While advanced divertor scenarios relevant for W7-X were already studied in W7-AS, other smaller scale experiments like Heliotron-J, CHS and NCSX will be used for the further development of divertor concepts. The two divertor configurations that are presently being investigated, are the helical and the island divertor, as well as the local island divertor (LID), which was successfully demonstrated on CHS and just went into operation on LHD. Presently, on its route to a fully closed helical divertor, LHD operates in an open helical divertor configuration. W7-X will be equipped right from the start with an actively cooled discrete island divertor which will allow quasi continuous operation. The divertor design is very similar to the one explored on W7-AS. For sufficiently large island sizes and not too long field line connection lengths, this divertor gives access to a partially detached quasi steady-state operating scenario in a newly found high density H-mode operating regime, which benefits from high energy and extremely low impurity confinement times, with edge radiation levels of up to 90 % and sufficient neutral compression in the subdivertor region (> 10) for active pumping. The basic physics of the different divertor concepts and associated implementation problems, like asymmetries due to drifts, accessibility of essential operating scenarios and toroidal asymmetries due to symmetry breaking error fields, etc. will be discussed. (orig.)

  10. Divertors for Helical Devices: Concepts, Plans, Results, and Problems

    International Nuclear Information System (INIS)

    Koenig, R.; Grigull, P.; McCormick, K.

    2004-01-01

    With Large Helical Device (LHD) and Wendelstein 7-X (W7-X), the development of helical devices is now taking a large step forward on the path to a steady-state fusion reactor. Important issues that need to be settled in these machines are particle flux and heat control and the impact of divertors on plasma performance in future continuously burning fusion plasmas. The divertor concepts that will initially be explored in these large machines were prepared in smaller-scale devices like Heliotron E, Compact Helical System (CHS), and Wendelstein 7-AS (W7-AS). While advanced divertor scenarios relevant for W7-X were already studied in W7-AS, other smaller-scale experiments like Heliotron-J, CHS, and National Compact Stellarator Experiment will be used for the further development of divertor concepts. The two divertor configurations that are being investigated are the helical and the island divertor, as well as the local island divertor, which was successfully demonstrated on CHS and just went into operation on LHD. At present, on its route to a fully closed helical divertor, LHD operates in an open helical divertor configuration. W7-X will be equipped right from the start with an actively cooled discrete island divertor that will allow quasi-continuous operation. The divertor design is very similar to the one explored on W7-AS. For sufficiently large island sizes and not too long field line connection lengths, this divertor gives access to a partially detached quasi-steady-state operating scenario in a newly found high-density H-mode operating regime, which benefits from high energy and low impurity confinement times, with edge radiation levels of up to 90% and sufficient neutral compression in the subdivertor region (>10) for active pumping. The basic physics of the different divertor concepts and associated implementation problems, like asymmetries due to drifts, accessibility of essential operating scenarios, toroidal asymmetries due to symmetry breaking error fields

  11. Reactor application of an improved bundle divertor

    International Nuclear Information System (INIS)

    Yang, T.F.; Ruck, G.W.; Lee, A.Y.; Smeltzer, G.; Prevenslik, T.

    1978-11-01

    A Bundle Divertor was chosen as the impurity control and plasma exhaust system for the beam driven Demonstration Tokamak Hybrid Reactor - DTHR. In the context of a preconceptual design study of the reactor and associated facility a bundle divertor concept was developed and integrated into the reactor system. The overall system was found feasible and scalable for reactors with intermediate torodial field strengths on axis. The important design characteristics are: the overall average current density of the divertor coils is 0.73 kA for each tesla of toroidal field on axis; the divertor windings are made from super-conducting cables supported by steel structures and are designed to be maintainable; the particle collection assembly and auxiliary cryosorption vacuum pump are dual systems designed such that they can be reactivated alterntively to allow for continuous reactor operation; and the power requirement for energizing and operating the divertor is about 5 MW

  12. Tungsten

    International Nuclear Information System (INIS)

    Eschnauer, H.

    1978-01-01

    There is no substitute for tungsten in its main field of application so that the demand will not decrease, but there is a need for further important applications. If small variations are left out of account, a small but steady increase in the annual tungsten consumption can be expected. The amount of tungsten available will increase due to the exploritation of new deposits and the extension of existing mines. This tendency will probably be increased by the world-wide prospection. It is hard to make an assessment of the amount of tungsten are obtained in the People's Republic of china, the purchases of Eastern countries in the West, and the sales policy of the USA; pice forecasts are therefore hard to make. A rather interesting subject with regard to the tungsten cycle as a whole is the reprocessing of tungsten-containing wastes. (orig.) [de

  13. Physical study of experimental fusion breeder FEB divertor

    International Nuclear Information System (INIS)

    Zhu Yukun; Zhou Xiaobing; Huang Jinhua; Feng Kaiming; Deng Peizhi; Huo Tiejun

    1999-10-01

    The physical study of FEB divertor is presented. In order to improve the impurity control and increase ion-neutral interactions in the divertor, the configuration of the divertor is optimized to be the close type in the engineering design activity compared with the open type in the early conceptual activity. The operation mode of the divertor is designed to be partial detached plasma mode under conditions of combination gas-puffing with impurity injection. The position of gas-puffing is optimized to be at the torus mid-plane with NEWT1D code from the viewpoint of impurity retention and radiation in the scrape-off layer/divertor region. Boron is chosen as the injected impurity. The effect of boron impurity injection is evaluated from the reduced heat load on the divertor target. The plasma pressure drop along the scrape-off layer/divertor region is estimated with the two-point transport model and impurity radiation model in the dynamic gas target concept. The simulation results show that the plasma pressure drop factor f p is not only related to the radiation fraction f rad but also related greatly to the stagnation point density n s

  14. Development of a radiative divertor for DIII-D

    International Nuclear Information System (INIS)

    Allen, S.L.; Brooks, N.H.; Campbell, R.B.; Fenstermacher, M.E.; Hill, D.N.; Hyatt, A.W.; Knoll, D.; Lasnier, C.J.; Lazarus, E.A.; Leonard, A.W.; Lippmann, S.I.; Mahdavi, M.A.; Maingi, R.; Meyer, W.; Moyer, R.A.; Petrie, T.W.; Porter, G.D.; Rensink, M.E.; Rognlien, T.D.; Schaffer, M.J.; Smith, J.P.; Staebler, G.M.; Stambaugh, R.D.; West, W.P.; Wood, R.D.

    1995-01-01

    We have used experiments and modeling to develop a new radiative divertor configuration for DIII-D. Gas puffing experiments with the existing open divertor have shown the creation of a localized ( similar 10 cm diameter) radiation zone which results in substantial reduction (3-10) in the divertor heat flux while τ E remains similar 2 times ITER-89P scaling. However, n e increases with D 2 puffing, and Z eff increases with neon puffing. Divertor structures are required to minimize the effects on the core plasma. The UEDGE fluid code, benchmarked with DIII-D data, and the DEGAS neutrals transport code are used to estimate the effectiveness of divertor configurations; slots reduce the core ionization more than baffles. The overall divertor shape is set by confinement studies which indicate that high triangularity (δ∼0.8) is important for high τ E VH-modes. Results from engineering feasibility studies, including diagnostic access, will be presented. ((orig.))

  15. Development of a radiative divertor for DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Allen, S.L. [Lawrence Livermore National Lab., CA (United States); Brooks, N.H. [General Atomics, San Diego, CA (United States); Campbell, R.B. [Sandia National Labs., Albuquerque, NM (United States); Fenstermacher, M.E. [Lawrence Livermore National Lab., CA (United States); Hill, D.N. [Lawrence Livermore National Lab., CA (United States); Hyatt, A.W. [General Atomics, San Diego, CA (United States); Knoll, D.; Lasnier, C.J. [Lawrence Livermore National Lab., CA (United States); Lazarus, E.A. [Oak Ridge National Lab., TN (United States); Leonard, A.W. [General Atomics, San Diego, CA (United States); Lippmann, S.I. [General Atomics, San Diego, CA (United States); Mahdavi, M.A. [General Atomics, San Diego, CA (United States); Maingi, R. [Oak Ridge National Lab., TN (United States); Meyer, W. [Lawrence Livermore National Lab., CA (United States); Moyer, R.A. [California Univ., Los Angeles, CA (United States); Petrie, T.W. [General Atomics, San Diego, CA (United States); Porter, G.D. [Lawrence Livermore National Lab., CA (United States); Rensink, M.E. [Lawrence Livermore National Lab., CA (United States); Rognlien, T.D. [Lawrence Livermore National Lab., CA (United States); Schaffer, M.J. [General Atomics, San Diego, CA (United States); Smith, J.P. [General Atomics, San Diego, CA (United States); Staebler, G.M. [General Atomics, San Diego, CA (United States); Stambaugh, R.D. [General Atomics, San Diego, CA (United States); West, W.P. [General Atomics, San Diego, CA (United States); Wood, R.D. [Lawrence Livermore National Lab., CA (United States)

    1995-04-01

    We have used experiments and modeling to develop a new radiative divertor configuration for DIII-D. Gas puffing experiments with the existing open divertor have shown the creation of a localized ( similar 10 cm diameter) radiation zone which results in substantial reduction (3-10) in the divertor heat flux while {tau}{sub E} remains similar 2 times ITER-89P scaling. However, n{sub e} increases with D{sub 2} puffing, and Z{sub eff} increases with neon puffing. Divertor structures are required to minimize the effects on the core plasma. The UEDGE fluid code, benchmarked with DIII-D data, and the DEGAS neutrals transport code are used to estimate the effectiveness of divertor configurations; slots reduce the core ionization more than baffles. The overall divertor shape is set by confinement studies which indicate that high triangularity ({delta}{approx}0.8) is important for high {tau}{sub E} VH-modes. Results from engineering feasibility studies, including diagnostic access, will be presented. ((orig.)).

  16. An Asdex-type divertor for ITER

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1989-01-01

    An Asdex-type local divertor is proposed for ITER consisting of a copper poloidal field coil adjacent to the plasma. Estimates indicate that the power consumption is acceptable. Advantages would be a much reduced heat load not very sensitive to magnetic perturbations. A disadvantage is the finite lifetime under neutron bombardment that would require periodic replacement of the divertor coils in a reactor, but probably not in ITER because of its limited fluence. Another disadvantage would be poorer blanket coverage unless the divertor coil itself incorporates breeding material. 3 figs

  17. Experimental studies of the snowflake divertor in TCV

    NARCIS (Netherlands)

    Labit, B.; Canal, G. P.; Christen, N.; Duval, B. P.; Lipschultz, B.; Lunt, T.; Nespoli, F.; Reimerdes, H.; Sheikh, U.; Theiler, C.; Tsui, C. K.; Verhaegh, K.; Vijvers, W. A. J.

    2017-01-01

    To address the risk that, in a fusion reactor, the conventional single-null divertor (SND) configuration may not be able to handle the power exhaust, alternative divertor configurations, such as the Snowflake divertor (SFD), are investigated in TCV. The expected benefits of the SFD-minus in terms of

  18. Evaluating Stellarator Divertor Designs with EMC3

    Science.gov (United States)

    Bader, Aaron; Anderson, D. T.; Feng, Y.; Hegna, C. C.; Talmadge, J. N.

    2013-10-01

    In this paper various improvements of stellarator divertor design are explored. Next step stellarator devices require innovative divertor solutions to handle heat flux loads and impurity control. One avenue is to enhance magnetic flux expansion near strike points, somewhat akin to the X-Divertor concept in Tokamaks. The effect of judiciously placed external coils on flux deposition is calculated for configurations based on the HSX stellarator. In addition, we attempt to optimize divertor plate location to facilitate the external coil placement. Alternate areas of focus involve altering edge island size to elucidate the driving physics in the edge. The 3-D nature of stellarators complicates design and necessitates analysis of new divertor structures with appropriate simulation tools. We evaluate the various configurations with the coupled codes EMC3-EIRENE, allowing us to benchmark configurations based on target heat flux, impurity behavior, radiated power, and transitions to high recycling and detached regimes. Work supported by DOE-SC0006103.

  19. The detection of He in tungsten following ion implantation by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Shaw, G.; Bannister, M.; Biewer, T. M.; Martin, M. Z.; Meyer, F.; Wirth, B. D.

    2018-01-01

    Laser-induced breakdown spectroscopy (LIBS) results are presented that provide depth-resolved identification of He implanted in polycrystalline tungsten (PC-W) targets by a 200 keV He+ ion beam, with a surface temperature of approximately 900 °C and a peak fluence of 1023 m-2. He retention, and the influence of He on deuterium and tritium recycling, permeation, and retention in PC-W plasma facing components are important questions for the divertor and plasma facing components in a fusion reactor, yet are difficult to quantify. The purpose of this work is to demonstrate the ability of LIBS to identify helium in tungsten; to investigate the sensitivity of laser parameters including, laser energy and gate delay, that directly influence the sensitivity and depth resolution of LIBS; and to perform a proof-of-principle experiment using LIBS to measure relative He intensities as a function of depth. The results presented demonstrate the potential not only to identify helium but also to develop a methodology to quantify gaseous impurity concentration in PC-W as a function of depth.

  20. Divertor plasma physics experiments on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Mahdavi, M.A.; Allen, S.L.; Evans, T.E.

    1996-10-01

    In this paper we present an overview of the results and conclusions of our most recent divertor physics and development work. Using an array of new divertor diagnostics we have measured the plasma parameters over the entire divertor volume and gained new insights into several divertor physics issues. We present direct experimental evidence for momentum loss along the field lines, large heat convection, and copious volume recombination during detachment. These observations are supported by improved UEDGE modeling incorporating impurity radiation. We have demonstrated divertor exhaust enrichment of neon and argon by action of a forced scrape off layer (SOL) flow and demonstrated divertor pumping as a substitute for conventional wall conditioning. We have observed a divertor radiation zone with a parallel extent that is an order of magnitude larger than that estimated from a 1-D conduction limited model of plasma at coronal equilibrium. Using density profile control by divertor pumping and pellet injection we have attained H-mode confinement at densities above the Greenwald limit. Erosion rates of several candidate ITER plasma facing materials are measured and compared with predictions of a numerical model

  1. Two-dimensional divertor modeling and scaling laws

    International Nuclear Information System (INIS)

    Catto, P.J.; Connor, J.W.; Knoll, D.A.

    1996-01-01

    Two-dimensional numerical models of divertors contain large numbers of dimensionless parameters that must be varied to investigate all operating regimes of interest. To simplify the task and gain insight into divertor operation, we employ similarity techniques to investigate whether model systems of equations plus boundary conditions in the steady state admit scaling transformations that lead to useful divertor similarity scaling laws. A short mean free path neutral-plasma model of the divertor region below the x-point is adopted in which all perpendicular transport is due to the neutrals. We illustrate how the results can be used to benchmark large computer simulations by employing a modified version of UEDGE which contains a neutral fluid model. (orig.)

  2. Small angle slot divertor concept for long pulse advanced tokamaks

    Science.gov (United States)

    Guo, H. Y.; Sang, C. F.; Stangeby, P. C.; Lao, L. L.; Taylor, T. S.; Thomas, D. M.

    2017-04-01

    SOLPS-EIRENE edge code analysis shows that a gas-tight slot divertor geometry with a small-angle (glancing-incidence) target, named the small angle slot (SAS) divertor, can achieve cold, dissipative/detached divertor conditions at relatively low values of plasma density at the outside midplane separatrix. SAS exhibits the following key features: (1) strong enhancement of the buildup of neutral density in a localized region near the plasma strike point on the divertor target; (2) spreading of the cooling front across the divertor target with the slot gradually flaring out from the strike point, thus effectively reducing both heat flux and erosion on the entire divertor target surface. Such a divertor may potentially provide a power and particle handling solution for long pulse advanced tokamaks.

  3. Divertor cassette movers prototypes for ITER

    International Nuclear Information System (INIS)

    Bogusch, E.; Batz, R.; Bieber, O.; Gottfried, R.; Cerdan, G.

    1998-01-01

    Following competitive tendering, in October 1996 Siemens was contracted by the European Commission to design and supply an assembly of four Divertor Cassette Movers Prototypes including the control and command systems for the movers proper. The assembly consisting of one Cassette Toroidal Mover (CTM), one Radial Mover Tractor (TRC), one Second Cassette Carrier (SCC), and one Radial Cassette Carrier (RCC) represents key components of the Divertor Test Platform at Brasimone, one of the seven large R+D projects for ITER. By detailed design, high-precision manufacturing and testing of these devices, Siemens contributed to the verification of an important task within the European R and D program towards ITER construction. Replacement of the divertor cassettes is a scheduled maintenance operation throughout the life of ITER. The successful fabrication and testing of the Divertor Cassette Movers Prototypes is all important milestone to verify this delicate operation. (authors)

  4. Design integration of liquid surface divertors

    International Nuclear Information System (INIS)

    Nygren, R.E.; Cowgill, D.F.; Ulrickson, M.A.; Nelson, B.E.; Fogarty, P.J.; Rognlien, T.D.; Rensink, M.E.; Hassanein, A.; Smolentsev, S.S.; Kotschenreuther, M.

    2004-01-01

    The US Enabling Technology Program in fusion is investigating the use of free flowing liquid surfaces facing the plasma. We have been studying the issues in integrating a liquid surface divertor into a configuration based upon an advanced tokamak, specifically the ARIES-RS configuration. The simplest form of such a divertor is to extend the flow of the liquid first wall into the divertor and thereby avoid introducing additional fluid streams. In this case, one can modify the flow above the divertor to enhance thermal mixing. For divertors with flowing liquid metals (or other electrically conductive fluids) MHD (magneto-hydrodynamics) effects are a major concern and can produce forces that redirect flow and suppress turbulence. An evaluation of Flibe (a molten salt) as a working fluid was done to assess a case in which the MHD forces could be largely neglected. Initial studies indicate that, for a tokamak with high power density, an integrated Flibe first wall and divertor does not seem workable. We have continued work with molten salts and replaced Flibe with Flinabe, a mixture of lithium, sodium and beryllium fluorides, that has some potential because of its lower melting temperature. Sn and Sn-Li have also been considered, and the initial evaluations on heat removal with minimal plasma contamination show promise, although the complicated 3D MHD flows cannot yet be fully modeled. Particle pumping in these design concepts is accomplished by conventional means (ports and pumps). However, trapping of hydrogen in these flowing liquids seems plausible and novel concepts for entrapping helium are also being studied

  5. Macroscopic erosion of divertor and first wall armour in future tokamaks

    Science.gov (United States)

    Würz, H.; Bazylev, B.; Landman, I.; Pestchanyi, S.; Safronov, V.

    2002-12-01

    Sputtering, evaporation and macroscopic erosion determine the lifetime of the 'in vessel' armour materials CFC, tungsten and beryllium presently under discussion for future tokamaks. For CFC armour macroscopic erosion means brittle destruction and dust formation whereas for metallic armour melt layer erosion by melt motion and droplet splashing. Available results on macroscopic erosion from hot plasma and e-beam simulation experiments and from tokamaks are critically evaluated and a comprehensive discussion of experimental and numerical macroscopic erosion and its extrapolation to future tokamaks is given. Shielding of divertor armour materials by their own vapor exists during plasma disruptions. The evolving plasma shield protects the armour from high heat loads, absorbs the incoming energy and reradiates it volumetrically thus reducing drastically the deposited energy. As a result, vertical target erosion by vaporization turns out to be of the order of a few microns per disruption event and macroscopic erosion becomes the dominant erosion source.

  6. Macroscopic erosion of divertor and first wall armour in future tokamaks

    International Nuclear Information System (INIS)

    Wuerz, H.; Bazylev, B.; Landman, I.; Pestchanyi, S.; Safronov, V.

    2002-01-01

    Sputtering, evaporation and macroscopic erosion determine the lifetime of the 'in vessel' armour materials CFC, tungsten and beryllium presently under discussion for future tokamaks. For CFC armour macroscopic erosion means brittle destruction and dust formation whereas for metallic armour melt layer erosion by melt motion and droplet splashing. Available results on macroscopic erosion from hot plasma and e-beam simulation experiments and from tokamaks are critically evaluated and a comprehensive discussion of experimental and numerical macroscopic erosion and its extrapolation to future tokamaks is given. Shielding of divertor armour materials by their own vapor exists during plasma disruptions. The evolving plasma shield protects the armour from high heat loads, absorbs the incoming energy and reradiates it volumetrically thus reducing drastically the deposited energy. As a result, vertical target erosion by vaporization turns out to be of the order of a few microns per disruption event and macroscopic erosion becomes the dominant erosion source

  7. Mechanical characterization and modeling of brazed tungsten and Cu-Cr-Zr alloy using stress relief interlayers

    Science.gov (United States)

    Qu, Dandan; Zhou, Zhangjian; Yum, Youngjin; Aktaa, Jarir

    2014-12-01

    A rapidly solidified foil-type Ti-Zr based amorphous filler with a melting temperature of 850 °C was used to braze tungsten to Cu-Cr-Zr alloy for water cooled divertors and plasma facing components application. Brazed joints of dissimilar materials suffer from a mismatch in coefficients of thermal expansion. In order to release the residual stress caused by the mismatch, brazed joints of tungsten and Cu-Cr-Zr alloy using different interlayers were studied. The shear strength tests of brazed W/Cu joints show that the average strength of the joint with a W70Cu30 composite plate interlayer reached 119.8 MPa, and the average strength of the joint with oxygen free high conductivity copper (OFHC Cu)/Mo multi-interlayers reached 140.8 MPa, while the joint without interlayer was only 16.6 MPa. Finite element method (FEM) has been performed to investigate the stress distribution and effect of stress relief interlayers. FEM results show that the maximum von Mises stress occurs in the tungsten/filler interface and that the filler suffers the peak residual stresses and becomes the weakest zone. And the use of OFHC Cu/Mo multi-interlayers can reduce the residual stress significantly, which agrees with the mechanical experiment data.

  8. Mechanical characterization and modeling of brazed tungsten and Cu–Cr–Zr alloy using stress relief interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Dandan, E-mail: dandan.qu@partner.kit.edu [School of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Zhou, Zhangjian, E-mail: zhouzhangjianustb@163.com [School of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Yum, Youngjin [School of Mechanical Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Aktaa, Jarir [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    A rapidly solidified foil-type Ti–Zr based amorphous filler with a melting temperature of 850 °C was used to braze tungsten to Cu–Cr–Zr alloy for water cooled divertors and plasma facing components application. Brazed joints of dissimilar materials suffer from a mismatch in coefficients of thermal expansion. In order to release the residual stress caused by the mismatch, brazed joints of tungsten and Cu–Cr–Zr alloy using different interlayers were studied. The shear strength tests of brazed W/Cu joints show that the average strength of the joint with a W70Cu30 composite plate interlayer reached 119.8 MPa, and the average strength of the joint with oxygen free high conductivity copper (OFHC Cu)/Mo multi-interlayers reached 140.8 MPa, while the joint without interlayer was only 16.6 MPa. Finite element method (FEM) has been performed to investigate the stress distribution and effect of stress relief interlayers. FEM results show that the maximum von Mises stress occurs in the tungsten/filler interface and that the filler suffers the peak residual stresses and becomes the weakest zone. And the use of OFHC Cu/Mo multi-interlayers can reduce the residual stress significantly, which agrees with the mechanical experiment data.

  9. Simulation of the ASDEX divertor performance after hardening

    International Nuclear Information System (INIS)

    Schneider, W.; Lackner, K.; Neuhauser, J.; Wunderlich, R.

    1985-05-01

    Two combined computer models - a fluid description of the plasma scrape-off layer (SOLID) and a Monte-Carlo code for the neutral gas dynamics (DEGAS) - are used to assess changes in the divertor performance expected from the modifications in geometry needed for hardening the ASDEX divertor chamber for long-pulse, high-power heating. Stand-alone DEGAS calculations with assumed fixed scrape-off plasma parameters predict a doubling of the neutral escape probability, which, however, still remains so low, that achievement of the high divertor recycling regime can be expected over roughly the same operational regime as before modifications. This conclusion is also supported by fully self-consistent calculations with the combined model. Due to the reduced divertor, a significant reduction is predicted in the divertor time constant, which is expected to affect transient phenomena. (orig.)

  10. Dynamic control of low-Z material deposition and tungsten erosion by strike point sweeping on DIII-D

    Directory of Open Access Journals (Sweden)

    J. Guterl

    2017-08-01

    Full Text Available Carbon deposition on tungsten between ELMs was investigated in DIII-D in semi-attached/detached H-mode plasma conditions using fixed outer strike point (OSP positions. Carbon deposition during plasma exposure of tungsten was monitored in-situ by measuring the reflectivity of the tungsten sample surface. No significant carbon deposition, i.e., without strong variations of the reflectivity, was observed during these experiments including discharges at high densities. In contrast, ERO modeling predicts a significant carbon deposition on the tungsten surface for those high density plasma conditions. The surface reflectivity decreases with methane injection, consistent with increased carbon coverage, as expected. The sweeping of OSP leads to a pronounced increase of the surface reflectivity, suggesting that the strike point sweeping may provide an effective means to remove carbon coating from tungsten surface. The ERO modeling however predicts again a regime of carbon deposition for these experiments. The discrepancies between carbon deposition regime predicted by the ERO model and the experimental observations suggest that carbon erosion during ELMs may significantly affect carbon deposition on tungsten.

  11. Operation method for thermonuclear device and divertor for it

    International Nuclear Information System (INIS)

    Kotake, Michiko; Yoshioka, Ken; Fukumoto, Hideshi; Okazaki, Takashi; Kinoshita, Shigemi; Takeuchi, Kazuhiro.

    1992-01-01

    Divertor plates are disposed subsequently along with circumferential direction of a vacuum vessel in a region where magnetic fluxed generated from the divertor coils are injected toward a container wall. Each of the divertor plates is moved in a state that the injection position of the magnetic fluxes enter to the vacuum vessel is kept constant. Alternatively, each of the divertor plates is inclined at an angle facing the injection direction of plasma particle fluxes, or it is inclined so that the angle between the injection surface and the magnetic fluxes makes an acute angle. Since each of the divertor coils is moved in the state of keeping the injection position of the magnetic fluxes during firing of plasmas, in other words, with on change of the current of the divertor coils, the position of the magnetic fluxed is kept at a predetermined condition. Accordingly, charged particles are prevented from concentrating locally without causing eddy current in the coils and the vacuum vessel, which can contribute to the reduction of the wear of the divertor plates. (N.H.)

  12. Divertor conceptual designs for a fusion power plant

    International Nuclear Information System (INIS)

    Norajitra, P.; Ihli, T.; Janeschitz, G.; Abdel-Khalik, S.; Mazul, I.; Malang, S.

    2007-01-01

    The development of a divertor concept for post-ITER fusion power plants is deemed to be an urgent task to meet the EU Fast Track scenario. Developing a divertor is particularly challenging due to the wide range of requirements to be met including the high incident peak heat flux, the blanket design with which the divertor has to be integrated, sputtering erosion of the plasma-facing material caused by the incident a particles, radiation effects on the properties of structural materials, and efficient recovery and conversion of the divertor thermal power (∝15% of the total fusion thermal power) by maximizing the coolant operating temperature while minimizing the pumping power. In the course of the EU PPCS, three near-term (A, B and AB) and two advanced power plant models (C, D) were investigated. Model A utilizes a water-cooled lead-lithium (WCLL) blanket and a water-cooled divertor with a peak heat flux of 15 MW/m 2 . Model B uses a He-cooled ceramics/beryllium pebble bed (HCPB) blanket and a He-cooled divertor concept (10 MW/m 2 ). Model AB uses a He-cooled lithium-lead (HCLL) blanket and a He-cooled divertor concept (10 MW/m 2 ). Model C is based on a dual-coolant (DC) blanket (lead/lithium self-cooled bulk and He-cooled structures) and a He-cooled divertor (10 MW/m 2 ). Model D employs a self-cooled lead/lithium (SCLL) blanket and lead-lithiumcooled divertor (5 MW/m 2 ). The values in parenthesis correspond to the maximum peak heat fluxes required. It can be noted that the helium-cooled divertor is used in most of the EU plant models; it has also been proposed for the US ARIES-CS reactor study. Since 2002, it has been investigated extensively in Europe under the PPCS with the goal of reaching a maximum heat flux of at least 10 MW/m2. Work has covered many areas including conceptual design, analysis, material and fabrication issues, and experiments. Generally, the helium-cooled divertor is considered to be a suitable solution for fusion power plants, as it

  13. EU R and D on divertor components

    International Nuclear Information System (INIS)

    Merola, M.; Daenner, W.; Pick, M.

    2005-01-01

    Since the last SOFT conference held in Helsinki in 2002, substantial progress has been made in the EU R and D on the divertor components. A number of activities have been completed and new ones have been launched. The present paper gives an update of the works carried out by the EU Participating Team in support of the development of the divertor, which is one of the most challenging components of the next-step ITER machine. The following topics are covered: (1) the further development and consolidation of suitable technologies for the production of high heat-flux components, which culminated with the successful manufacturing and testing of a full-scale vertical target prototype; (2) the completion of the post-irradiation testing of divertor mock-ups and samples; (3) the preparation for the hydraulic and assembly tests of a complete set of full-scale divertor components; (4) the on-going R and D on the definition of workable acceptance criteria for the procurement of ITER high heat-flux components; (5) the activities in support of the divertor design

  14. Integrated core-edge-divertor modeling studies

    International Nuclear Information System (INIS)

    Stacey, W.M.

    2001-01-01

    An integrated calculation model for simulating the interaction of physics phenomena taking place in the plasma core, in the plasma edge and in the SOL and divertor of tokamaks has been developed and applied to study such interactions. The model synthesises a combination of numerical calculations (1) the power and particle balances for the core plasma, using empirical confinement scaling laws and taking into account radiation losses (2), the particle, momentum and power balances in the SOL and divertor, taking into account the effects of radiation and recycling neutrals, (3) the transport of feeling and recycling neutrals, explicitly representing divertor and pumping geometry