WorldWideScience

Sample records for tungsten molybdenum tin

  1. The determination of molybdenum, by x-ray-fluorescence spectrometry, in ores, residues, and concentrates of tin and tungsten

    International Nuclear Information System (INIS)

    Spimpolo, G.F.

    1985-01-01

    Three methods were investigated that would minimize or possibly eliminate the matrix variations in the analysis of molybdenum, and possibly simplify the existing method for the analysis of tin and tungsten, which often occur together with molybdenum. The three methods involve the use of back-scattered radiation in the determination of the mass-absorption coefficient of unknown samples, the use of a background ratio with an exponent that minimizes the effect of matrix variations, and the use of an internal standard that shows the same matrix variation as the analyte. In the first two approaches, the sample preparation and analysis are much simpler than in the third, but, for the great variety of mass absorptions encountered, the internal-standard method proved to be the most successful. The precision of analysis for molybdenum by that method ranges from a relative standard deviation of 0,06 at 50μg/g to 0,02 at 1 000 μg/g. The lower limit of detection is 4 μg/g. The recommended laboratory procedure for the method using internal standards is detailed in an appendix

  2. Process for separation of tungsten and molybdenum by extraction

    International Nuclear Information System (INIS)

    Zelikman, A.N.; Voldman, G.M.; Rumyantsev, V.K.; Ziberov, G.N.; Kagermanian, V.S.

    1976-01-01

    A process for the separation of tungsten and molybdenum by extraction involves the addition of HCl or HNO 3 to an aqueous solution containing tungsten and molybdenum to obtain a pH from 0.5 to 4.3, and introduction of a stabilizer comprising water-soluble phosphorus salts and a complexing agent, hydrogen peroxide, in an amount from 1.5 to 2 mole per 1 g-atom of the total content of tungsten and molybdenum. Then molybdenum is selectively extracted from the resulting aqueous solution with tri-n-butylphosphate with equal volumetric proportioning of the aqueous and organic solutions. Re-extraction of molybdenum and partially tungsten is carried out from the organic extracting agent with an alkali or soda solution. The process makes possible the preparation of tungsten solution containing no more than 0.001 g/l of molybdenum, and an increase in the degree of extraction of tungsten and molybdenum

  3. High strength tungsten heavy alloys with molybdenum additions

    International Nuclear Information System (INIS)

    Bose, A.; Sims, D.M.; German, R.M.

    1987-01-01

    Tungsten heavy alloys are candidates for numerous applications based on the unique combination of high density, high strength, and high ductility coupled with excellent machinability. Though there has been considerable research on heavy alloys, the primary focus has been on the ductility. These alloys are well suited for ballistic uses due to their high densities and it is expected that for superior ballistic performance, a high hardness, high strength and moderate ductility alloy would be ideal. The major goal of this investigation was to obtain heavy alloys with hardness greater than HRA 72. It is evident from the phase diagrams that molybdenum, which goes into solution in tungsten, nickel and iron, could act as a potential strengthening addition. With this in view, tungsten heavy alloys with molybdenum additions were fabricated from mixed elemental powders. A baseline composition of 90W-7Ni-3Fe was chosen to its good elongation and moderate strength. The molybdenum additions were made by replacing the tungsten. Compared to the baseline properties with no molybdenum addition, the strength and hardness showed a continuous increase with molybdenum addition. The ductility of the alloy continued to decrease with increasing molybdenum content, but even with 16% wt. % molybdenum of the elongation was still around 6%. An interesting facet of these alloying additions is the grain refinement that is brought about by adding to molybdenum to the system. The grain refinement is related to the lower solubility of tunbsten in the matrix due to partial displacement by molybdenum

  4. Recovery of Tungsten and Molybdenum from Low-Grade Scheelite

    Science.gov (United States)

    Li, Yongli; Yang, Jinhong; Zhao, Zhongwei

    2017-10-01

    With most high-quality tungsten ores being exhausted, the enhancement of low-grade scheelite concentrates processing has attracted a great deal of attention. The objective of this study is to develop a method to maximize the recovery tungsten and molybdenum from a low-grade scheelite via a new acid leaching process followed by solvent extraction. Under optimal conditions (350 g/L H2SO4, 95°C, and 2 h), approximately 99.8% of tungsten and 98% of molybdenum were leached out. In the subsequent solvent extraction process, more than 99% of the tungsten and molybdenum were extracted with a co-extraction system (50% TBP, 30% HDEHP, and 10% 2-octanol in kerosene) using a three-stage cross-flow extraction. The raffinate can be recycled for the next leaching process after replenishing the H2SO4 to the initial value (approximately 350 g/L). Based on these results, a conceptual flowsheet is presented to recover tungsten and molybdenum from the low-grade scheelite.

  5. Study of mechanoactivation of tungsten-molybdenum containing raw material in gas-jet mill

    International Nuclear Information System (INIS)

    Agnokov, T.Sh.; Gorobets, L.Zh.; Martynenko, V.P.; Fedorov, Yu.P.; Krakhmaleva, M.T.; Sokolova, L.A.

    1988-01-01

    Investigation is aimed at intensifying autoclave-soda leaching of tungsten-molybdenum-containing raw material. Connection of reactivity and physicochemical properties of crushed tungsten-molybdenum-containing products under different gas-jet crushing parameters is investigated. Optimal technological indices of hydrometallurgical reprocessing of tungsten-molybdenum-containing raw materials and products processed by gas-jet technique are given. The results obtained point out to perspectiveness of applying gas-jet technique of thermomechanical processing for intensifying and increasing the quality of tungsten- and molybdenum-containing raw materials and products of hydrometallurgical production

  6. Characterization and performances of cobalt-tungsten and molybdenum-tungsten carbides as anode catalyst for PEFC

    International Nuclear Information System (INIS)

    Izhar, Shamsul; Yoshida, Michiko; Nagai, Masatoshi

    2009-01-01

    The preparation of carbon-supported cobalt-tungsten and molybdenum-tungsten carbides and their activity as an anode catalyst for a polymer electrolyte fuel cell were investigated. The electrocatalytic activity for the hydrogen oxidation reaction over the catalysts was evaluated using a single-stack fuel cell and a rotating disk electrode. The characterization of the catalysts was performed by XRD, temperature-programmed carburization, temperature-programmed reduction and X-ray photoelectron spectroscopy. The maximum power densities of the 30 wt% 873 K-carburized cobalt-tungsten and molybdenum-tungsten mixed with Ketjen carbon (cobalt-tungsten carbide (CoWC)/Ketjen black (KB) and molybdenum-tungsten carbide (MoWC)/KB) were 15.7 and 12.0 mW cm -2 , respectively, which were 14 and 11%, compared to the in-house membrane electrode assembly (MEA) prepared from a 20 wt% Pt/C catalyst. The CoWC/KB catalyst exhibited the highest maximum power density compared to the MoWC/KB and WC/KB catalysts. The 873 K-carburized CoW/KB catalyst formed the oxycarbided and/or carbided CoW that are responsible for the excellent hydrogen oxygen reaction

  7. A review of chromium, molybdenum, and tungsten alloys

    International Nuclear Information System (INIS)

    Klopp, W.D.

    1975-01-01

    The mechanical properties of chromium, molybdenum, and tungsten alloys are reviewed, with particular emphasis on high-temperature strength and low-temperature ductility. Precipitate strengthening is highly effective at 0.4-0.8 Tsub(m) in these metals, with HfC being most effective in tungsten and molybdenum, and Ta(B,C) most effective in chromium. Low-temperature ductility can be improved by alloying to promote rhenium ductilizing or solution softening. The low-temperature mechanical properties of these alloys appear related to electronic interactions rather than to the usual metallurgical considerations. (Auth.)

  8. Determination of tungsten and tin ions after preconcentration by flotation

    International Nuclear Information System (INIS)

    Dietze, U.; Kunze, S.

    1990-01-01

    A highly sensitive and selective combined method of flotation followed by spectrophotometry/d.c. polarography for the determination of tungsten and tin ions in acid and alkaline waste waters and hydrometallurgical solutions is presented here. Both kinds of ions are coprecipitated in the analyte solution with zirconium hydroxide after addition of ZrOCl 2 solution and ammonia. Afterwards, the collector precipitate is separated from the aqueous phase and preconcentrated by flotation for which sodium oleate and a frother are added. The precipitate is dissolved in a small amount of acid, with the organic reagents being destroyed by oxidation. The enrichment factor of the proposed technique is 100, with variations possible. Recovery is 94 % for tungsten and 99 % for tin. Spectrophotometry of the thiocyanate complex and d.c. polarography are applied as determination techniques for tungsten and tin, respectively. Detection limits attainable by this technique are 6 ng.ml -1 for tungsten and 5 ng.ml -1 for tin for the initial sample. (Authors)

  9. Brazing molybdenum and tungsten for high temperature service

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Turner, W.C.; Hoffman, C.G.

    1978-01-01

    Investigations were conducted to develop vacuum brazes for molybdenum and tungsten which can be used in seal joint applications up to 1870 K (1597 C, 2907 F). Joints were attempted in molybdenum, tungsten and tungsten--molybdenum. The braze materials included: Ti--10Cr powder, Ti--30V wire, Ti--65V wire, V wire, Ni electroplate, MoB--50MoC powder mixture, V--50Mo powder mixture, Mo--15MoB 2 powder mixture and Mo--49V--15MoB 2 powder mixture. Braze temperature ranged from 1900 K (1627 C, 2961 F) to 2530 K, (2257 C, 4095 F), and leak-tight joints were made with all braze materials except Ti--10Cr. After heat treatments up to 1870 K (1597 C, 2907 F) Kirkendall voiding was found to cause leakage of some of the joints made with only substitutional alloying elements. However, adding base metal powders to the braze or narrowing the root opening eliminated this problem. Kirkendall voiding was not a problem when interstitial elements were a major ingredient in the braze material. Shear testing of Ti--65V, V, MoB--50MoC and V--50Mo brazed molybdenum at 1670 K (1397 C, 2547 F) indicated strengths equal to or better than the base metal. Ti--65V, V--50Mo and MoB--50MoC brazed joints were exposed to basalt at 1670 K (1397 C, 2547 F) for 3 h without developing leaks

  10. Chromium and molybdenum diffusion in tungsten single crystals

    International Nuclear Information System (INIS)

    Klotsman, S.M.; Koloskov, V.M.; Osetrov, S.V.; Polikarpova, I.P.; Tatarinova, G.N.; Timofeev, A.N.

    1989-01-01

    Consideration is given to results of measuring temperature dependences of diffusion coefficients of homovalent impurities of chromium and molybdenum in tungsten single crystals. It is concluded that the difference of activation energies of selfdiffusion and impurity diffusion in the system 'tungsten-homovalent impurity' is conditioned by interaction of screened potentials of impurity and vacancy with Lazarus-Le Claire model

  11. The determination of molybdenum and tungsten in resin by x-ray-fluorescence spectrometry

    International Nuclear Information System (INIS)

    Eddy, B.T.

    1985-01-01

    This report describes a method using X-ray-fluorescence spectrometry for the determination of molybdenum and tungsten in ion-exchange resins. The dried resin is milled with sand, binder, and an internal-standard mixture before being briquetted. Niobium and zinc are used as the internal standards for molybdenum and tungsten respectively. Intensity measurements are made with the gold anode tube. Corrections are made for the interference of the Mo Kα analytical line on the background intensities used for the Mo Kα and Nb Kα lines. The precision of the analysis for molybdenum ranges from a relative standard deviation 0,02 at 5 mg/g to 0.045 at 55μg/g; for tungsten, the relative standard deviation ranges from 0,04 at 5 mg/g to 0,055 at 55μg/g. The limits of determination in the original resin sample were found to be 40μg/g for molybdenum and 80μg/g for tungsten. The laboratory method is given in an appendix

  12. In-situ field-ion microscope study of the recovery behavior of heavy metal ion-irradiated tungsten, tungsten (rhenium) alloys and molybdenum

    International Nuclear Information System (INIS)

    Nielsen, C.H.

    1977-06-01

    Three field ion microscope (FIM) experiments were carried out to study the annealing behavior of heavy ion irradiated tungsten, tungsten (rhenium) alloys and molybdenum. The first experiment dealt with the stage I long-range migration of tungsten self interstitial atoms (SIAs) in high purity tungsten of resistivity ratio, R = 24,000 (R = rho 300 /rho 4 . 2 , where rho 300 and rho 4 . 2 are the room temperature and 0 0 C resistivities). The FIM specimens were irradiated in situ at 18 K with 30 keV W + ions to an average dose of 5 x 10 12 ions cm -2 and subsequently examined by the pulsed-field evaporation technique. The second experiment dealt with the phenomenon of impurity atom trapping of SIAs during long-range migration. It was shown that rhenium atoms in a tungsten matrix tend to capture tungsten SIAs and remain bound up to temperatures as high as 390 K. The final experiment was concerned with the low temperature annealing kinetics of irradiated molybdenum. High purity molybdenum of resistivity ratio R = 5700 was irradiated at 10 K with 30 keV Mo + ions to a dose of approximately 5 x 10 12 ions cm -2 . The results indicated that the electric field has only a minimal effect on the SIA annealing kinetics. This tends to strengthen the contention that the molybdenum SIA becomes mobile at 32 K

  13. The separation of tungsten and molybdenum by the formation of sulphide complexes and extraction into a weak-base resin

    International Nuclear Information System (INIS)

    Fleming, C.A.

    1985-01-01

    The separation of molybdenum from tungten can be achieved if a solution containing molybdate and tungstate ions is reacted with sulphide ions, and the molybdenum sulphide is extracted with an anion-exchangeresin. The separation between molybdenum and tungsten is influenced byfactors such as the pH value of the solution, the concentrations of sulphide and resin in the solution, and the period of contact between theresin and the metal ions in solution. A fundamental study of the interaction between sulphide ions and molybdate or tungstate ions confirmed a mechanism proposed recently in the literature: MeOsup(2-)sub(4)+nHSsup(-)+nHsup(+) is equivalent to MeO 4 sub(-n)Ssub(n)sup(2-)+nH 2 O, where Me = molybdenum or tungsten and n = 1, 2, 3, or 4. In these reaction sequences, each successive step in the reaction (sulphur being substituted for oxygen) is slower than the preceding one, and the molybdate reactions with sulphide are several orders of magnitude faster than the analogous tungsten reactions. As a result, the extent of the complexing of tungsten with sulphide is minimal compared with that of molybdenum in the time span of the extraction experiments. However, the current investigation shows that this is not the cause of the selectivity of anion-exchange resins for molybdenum in this system, and that the separation factor between molybdenum and tungsten is much the same for the precursor tungstate anion as it is for the various tungsten sulphide anions. The selectivity of the resin for molybdenum apparently originates from a thermodynamic preference of the amine functional group on the resin for molybdenum sulphide anions over tungstate or tungsten sulphide anions. It is shown that, under optimum conditions, a separation factor of about 30 between molybdenum and tungsten can be achieved in this system

  14. High heat flux testing of TiC coated molybdenum with a tungsten intermediate layer

    International Nuclear Information System (INIS)

    Fujitsuka, Masakazu; Fukutomi, Masao; Okada, Masatoshi

    1988-01-01

    The use of low atomic number (Z) material coatings for fusion reactor first-wall components has proved to be a valuable technique to reduce the plasma radiation losses. Molybdenum coated with titanium carbide is considered very promising since it has a good capability of receiving heat from the plasma. An interfacial reaction between the TiC film and the molybdenum substrate, however, causes a severe deterioration of the film at elevated temperatures. In order to solve this problem a TiC coated molybdenum with an intermediate tungsten layer was developed. High temperature properties of this material was evaluated by a newly devised electron beam heating apparatus. TiC coatings prepared on a vacuum-heat-treated molybdenum with a tungsten intermediate layer showed good high temperature stability and survived 2.0 s pulses of heating at a power density as high as 53 MW/m 2 . The melt area of the TiC coatings in high heat flux testings also markedly decreased when a tungsten intermediate layer was applied. The melting mechanism of the TiC coatings with and without a tungsten intermediate layer was discussed by EPMA measurements. (author)

  15. Electroerosion resistance of tungsten-copper and molybdenum-copper pseudoalloys

    International Nuclear Information System (INIS)

    Nerus, L.N.; Verkhoturov, A.D.; Marek, B.A.; Mukha, I.M.

    1977-01-01

    Results of the study of electroerosion resistance of W-Cu and Mo-Cu pseudoalloys in a wide range of concentrations are presented. Tungsten alloys with 10-20% copper and pure molybdenum have exhibited the best erosion resistance at electrospark machining

  16. Preparation and characterization of dimeric and tetrameric clusters of molybdenum and tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, T.R.

    1981-10-01

    The cyclo-addition of two Mo/sub 2/Cl/sub 4/(P(C/sub 6/H/sub 5/)/sub 3/)/sub 2/(CH/sub 3/OH)/sub 2/ molecules has produced a new type of tetrameric molybdenum cluster, Mo/sub 4/Cl/sub 8/L/sub 4/. Structural characterization of this dimer revealed weak molybdenum-methanol bonding which was consistent with the observed reactivity of the compound. New synthetic methods were devised for the preparation of Mo/sub 4/X/sub 8/L/sub 4/ clusters where X = Cl, Br, I and L = PR/sub 3/, Po/sub 3/, RCN, CH/sub 3/OH. A scheme for the metal-metal bonding in these clusters was presented which was in agreement with the known structural features of Mo/sub 4/Cl/sub 8/(PR/sub 3/)/sub 4/, R = C/sub 2/H/sub 5/, n-C/sub 4/H/sub 9/. The preparation of the analogous W/sub 4/Cl/sub 8/(PR/sub 3/)/sub 4/ cluster from WCl/sub 4/ was accomplished by application of techniques used in the molybdenum syntheses. The single crystal x-ray structure revealed slight differences from the molybdenum analog which were rationalized in terms of the known behavior in dimeric tungsten and molybdenum species. The attempted preparation of a tetrameric tungsten cluster from W/sub 2/(mhp)/sub 4/ was unsuccessful (mhp = anion of 2-methyl-6-hydroxypyridine). Instead, the new tungsten dimer, W/sub 2/Cl/sub 2/(mhp)/sub 3/, was isolated which possessed a metal-metal bond order of 3.5. The x-ray crystal structure of the dimer revealed that the chlorine atoms were situated cis, one bound to each tungsten. Cyclic voltammetry showed that the compound could be reversibly reduced, presumably to a W/sub 2//sup 4 +/ dimer containing a quadruple metal-metal bond.

  17. Preparation and properties of molybdenum-tungsten-carbonitrides

    International Nuclear Information System (INIS)

    Schreiner, M.; Ettmayer, P.; Kieffer, R.

    1982-01-01

    Molybdenum-tungsten-carbonitrides can be prepared by reacting prealloyed powders of Mo and W with carbon in the presence of nitrogen or ammonia. Single phase carbonitrides (Mo,W) (C,N) with the WC-type structure can be obtained. The nitrogen content of these carbonitrides increases with increasing molybdenum content. Flowing ammonia has a decarburizing effect, which has to be counterbalanced by an addition of a carbonaceous gas such as methane. Nitrogen instead of ammonia is equally effective and gives carbonitrides which have a nitrogen content only insignificantly lower than the carbonitrides obtained in flowing ammonia. The lattice parameters of the carbonitrides are found to slightly smaller than the lattice parameters of the corresponding carbides. (Author)

  18. Separation of Molybdenum from Acidic High-Phosphorus Tungsten Solution by Solvent Extraction

    Science.gov (United States)

    Li, Yongli; Zhao, Zhongwei

    2017-10-01

    A solvent-extraction process for deep separation of molybdenum from an acidic high-phosphate tungsten solution was developed using tributyl phosphate (TBP) as the extractant and hydrogen peroxide (H2O2) as a complexing agent. The common aqueous complexes of tungsten and molybdenum (PMoxW12-xO40 3-, x = 0-12) are depolymerized to {PO4[Mo(O)2(O-O)]4}3- and {PO4[W(O)2(O-O)]4}3- by H2O2. The former can be preferentially extracted by TBP. The extractant concentration, phase contact time, H2O2 dosage, and H2SO4 concentration were optimized. By employing 80% by volume TBP, O:A = 1:1, 1.0 mol/L H2SO4, 1.0 mol/L H3PO4, a contact time of 2 min, and a molar ratio of H2O2/(W + Mo) equal to 1.5, 60.2% molybdenum was extracted in a single stage, while limiting tungsten co-extraction to 3.2%. An extraction isotherm indicated that the raffinate could be reduced to <0.1 g/L Mo in six stages of continuous counter-current extraction.

  19. Tasmanian tin and tungsten granites - their radiometric characteristics

    International Nuclear Information System (INIS)

    Yeates, A.N.

    1982-01-01

    A radiometric survey of Tasmanian granites has shown, with one exception, that tin and tungsten-bearing granites have high radioactivity, largely owing to increased uranium. Many have a high uranium/thorium ratio as well. Radiometric measurements can also delineate different granite types within composite bodies

  20. Separation of tungsten from molybdenum by liquid-liquid extraction and extraction chromatography using thiocyanate and a quarternary ammonium salt

    International Nuclear Information System (INIS)

    Yonezawa, C.; Onishi, H.

    1977-01-01

    Methods were developed for the separation of tungsten from molybdenum by liquid-liquid extraction and extraction chromatography using thiocyanate and a quaternary ammonium salt, Zephiramine. Tungsten was extracted into chloroform as an ion associate of tungsten(V)-thiocyanate complex and Zephiramine cation was retained on a column of Teflon powder coated with Zephiramine, but molybdenum(III) was neither extracted nor retained. The extraction chromatographic method was succesfully applied to the determination of trace amounts of tungsten in molybdenum by neutron activation analysis. The γ-ray spectrum, observed with the Ge(Li) detector, of tungsten fraction separated from irradiated molybdenum are shown. The peaks of 99 Mo, sup(99m)Tc, and sup(99m)Nb (produced by 92 Mo(n,p)sup(99m)Nb) were seen, but these nuclides did nit interfere with the determination of tungsten using a NaI(Tl) detector. The results of the neutron activation analysis of a sample of ammonium molybdate agreed quite well with that of the spectrophotometric determination after extraction chromatographic separation. (T.G.)

  1. Hydrothermal synthesis of tungsten doped tin dioxide nanocrystals

    Science.gov (United States)

    Zhou, Cailong; Li, Yufeng; Chen, Yiwen; Lin, Jing

    2018-01-01

    Tungsten doped tin dioxide (WTO) nanocrystals were synthesized through a one-step hydrothermal method. The structure, composition and morphology of WTO nanocrystals were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, UV-vis diffuse reflectance spectra, zeta potential analysis and high-resolution transmission electron microscopy. Results show that the as-prepared WTO nanocrystals were rutile-type structure with the size near 13 nm. Compared with the undoped tin dioxide nanocrystals, the WTO nanocrystals possessed better dispersity in ethanol phase and formed transparent sol.

  2. Compton scattering of 145 keV photons from bound electrons of tin and molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Ghumman, B S; Acharya, V B; Singh, B [Punjabi Univ., Patiala (India). Dept. of Physics

    1981-10-28

    Differential cross sections for Compton scattering of 145 keV gamma rays from K-shell electrons of tin and molybdenum are measured at scattering angles in the range 30 to 150/sup 0/. Measurements are made employing NaI(Tl) detectors and a coincidence set up with resolving time approximately equal to 30 ns. The experimental results are compared with the available theoretical data. The total cross section is estimated to be about 0.43 sigmasub(F) for tin and 0.41 sigmasub(F) for molybdenum.

  3. Matrix composition effects on the tensile properties of tungsten-molybdenum heavy alloys

    International Nuclear Information System (INIS)

    Bose, A.; German, R.N.

    1990-01-01

    Tungsten-base heavy alloys are liquid-phase sintered from mixed tungsten, nickel, and iron powders. The sintered product is a composite consisting of interlaced tungsten and solidified matrix (W-Ni-Fe) phases. These alloys are most useful in applications requiring high density, strength, and toughness. The design of improved tungsten heavy alloys has been the subject of several research investigations. Much success has taken place through improved processing, but parallel compositional studies have resulted in new microstructure-property combinations. As part of these investigations, the Ni/Fe ratio has been varied, with the general conclusion that optimal strength and ductility occur with a ratio between 2 and 4. Brittle intermetallic phases can form outside of this composition range. Historically, a 7/3 Ni/Fe ratio has been selected for processing studies. Recently, others reported higher ductilities and impact energies for 90 and 93 pct W heavy alloys with the 8/2 Ni/Fe ratio. Alternatively, these alloys can be strengthened by both solid solution and grain size refinement through incorporation of molybdenum, tantalum, or rhenium. These additions are soluble in both the tungsten and matrix phases and retard solution-reprecipitation during liquid phase sintering. In this study, the alloy composition was varied in the nickel/iron ratio and molybdenum was partially substituted for tungsten. The sintered tensile properties are assessed vs these compositional variations

  4. Simultaneous spectrophotometric determination of tungsten and molybdenum with dithiol

    International Nuclear Information System (INIS)

    Navale, A.S.

    1987-01-01

    Toluene-3,4-dithiol is a very sensitive reagent for the spectrophotometric determination of tungsten and molybdenum. Since the absorption spectra of the dithiol complexes of these two elements overlap, a separation of the two elements is carried out. This leads to time consuming extraction procedures. Measuring the absorption of the mixed complexes at two wavelengths and solving a set of simultaneous equations is also not favorable because a lot of time and effort is required for solving the simultaneous equations for each sample. A faster and simpler method is described here for the simultaneous determination of the two elements. The method is based on measurement of absorbance of the mixed complexes at three pre-selected wavelengths and simple calculations involving the absorbance differences. The criteria for selecting the three wavelengths and the theory are described. Application of the method for the determination of tungsten and molybdenum in ore samples is presented. The method is applicable to any similar system consisting of two interfering components. 4 figures, 2 tables, 6 refs. (author)

  5. Hydrothermal synthesis of electrode materials pyrochlore tungsten trioxide film

    Science.gov (United States)

    Guo, Jingdong; Li, Yingjeng James; Stanley Whittingham, M.

    Hydrothermal synthesis methods have been successfully used to prepare new transition-metal oxides for cathodes in electrochemical devices such as lithium batteries and electrochromic windows. The tungsten oxides were the first studied, but the method has been extended to the oxides of molybdenum, vanadium and manganese. Sodium tungsten oxide films with the pyrochlore structure have been prepared on gold/alumina and indium-doped tin oxide substrates. These films reversibly and rapidly intercalate lithium and hydrogen ions.

  6. Effect of cathodic current density on performance of tungsten coatings on molybdenum prepared by electrodeposition in molten salt

    Science.gov (United States)

    Jiang, Fan

    2016-02-01

    Smooth tungsten coatings were prepared at current density below 70 mA cm-2 by electrodeposition on molybdenum substrate from Na2WO4-WO3 -melt at 1173 K in air atmosphere. As the current density reached up to 90 mA cm-2, many significant nodules were observed on the surface of the coating. Surface characterization, microstructure and mechanical properties were performed on the tungsten coatings. As the increasing of current density, the preferred orientation of the coatings changed to (2 0 0). All coatings exhibited columnar-grained-crystalline. There was about a 2 μm thick diffusion layer between tungsten coating and molybdenum substrate. The bending test revealed the tungsten coating had -good bonding strength with the molybdenum substrate. There is a down trend of the grain size of the coating on molybdenum as the current density increased from 30 mA cm-2 to 50 mA cm-2. The coating obtained at 50 mA cm-2 had a minimum grain size of 4.57 μm, while the microhardness of this coating reached to a maximum value of 495 HV.

  7. Yield strength of molybdenum, tantalum and tungsten at high strain rates and very high temperatures

    International Nuclear Information System (INIS)

    Škoro, G.P.; Bennett, J.R.J.; Edgecock, T.R.; Booth, C.N.

    2012-01-01

    Highlights: ► New experimental data on the yield strength of molybdenum, tantalum and tungsten. ► High strain rate effects at record high temperatures (up to 2700 K). ► Test of the consistency of the Zerilli–Armstrong model at very high temperatures. - Abstract: Recently reported results of the high strain rate, high temperature measurements of the yield strength of tantalum and tungsten have been analyzed along with new experimental results on the yield strength of molybdenum. Thin wires are subjected to high stress by passing a short, fast, high current pulse through a thin wire; the amplitude of the current governs the stress and the repetition rate of the pulses determines the temperature of the wire. The highest temperatures reached in the experiments were 2100 °C (for molybdenum), 2250 °C (for tantalum) and 2450 °C (for tungsten). The strain-rates in the tests were in the range from 500 to 1500 s −1 . The parameters for the constitutive equation developed by Zerilli and Armstrong have been determined from the experimental data and the results have been compared with the data obtained at lower temperatures. An exceptionally good fit is obtained for the deformation of tungsten.

  8. GEMAS - Tin and Tungsten: possible sources of enriched concentrations in soils in European countries

    Science.gov (United States)

    João Batista, Maria; Filipe, Augusto; Reimann, Clemens

    2014-05-01

    Tin and tungsten occur related with magmatic differentiation and can be installed in fissures and veins of magmatic rocks or in the neighbor metasediments. Generally, both elements have low chemical mobility in the superficial environment although effectively mobile in detrital media such as stream sediments and deposited in alluvial soils. The most important tin-tungsten deposits in Europe are in Variscides. From the northern Europe, 985 samples and from southern Europe 1123 samples were collected both in agricultural and grazing lands. Analysis were made of Sn , W, pH, TOC, SiO2 from the upper 20 and 10 cm of agricultural and grazing soils, respectively. The present study is part of the GEMAS project a joint project of European geochemical mapping between the EuroGeoSurvey Geochemical Expert Group and EuroMetaux. The results show that in general, at the European (continental) scale natural processes are dominant. It is clear the distinction between NE Europe and SW European tin and tungsten concentrations in soils. Tin geometric mean concentrations in the northern Europe is 0.57 mg kg-1 in agricultural soils and 0.62 mg kg-1 in grazing land; southern Europe 0.91 mg kg-1 in agricultural soils and 0.95 mg kg-1 in grazing land. Tungsten geometric mean concentrations in northern Europe is 0.067 mg kg-1 in agricultural soils and 0.073 mg kg-1 in grazing land and in southern Europe is 0.085 mg kg-1 in agricultural soils and 0.090 mg kg-1 in grazing land. Limit between north and south is the maximum extent of the last glaciation. Grazing land, undisturbed soils for a period of several years, have higher concentrations of Sn and W than agricultural soils which raises the question that if only natural processes are observed. Parent material seems to be the main source of Sn and W to soil. Sn-W rich Variscan granitic intrusions of Central Iberian Zone, Massif Central, Brittany, Cornwall and Bohemia are reflected in soil concentrations. TOC is higher in northern than in

  9. Dithiolato complexes of molybdenum and tungsten

    International Nuclear Information System (INIS)

    Nieuwpoort, A.

    1975-01-01

    The synthesis of eight-coordinated and six-coordinated tungsten and molybdenum complexes with dithioligands is described. Molecular and crystal structures are determined and bond angles, bond lengths and structural parameters tabulated. Infrared spectra of dithiocarbamato complexes are discussed more extensively. Redox reactions are studied by voltammetry and electron transfer properties derived. Properties of the d electrons of the metal ion are interpreted in the ligand field model with data from electronic and e.s.r. spectra and magnetic susceptibilities. The result of molecular orbital calculations with the extended Hueckel-LCAO method are presented for eight-coordinated d 1 and d 2 systems, the six-coordinated complexes, and the free ligands

  10. Effect of temperature on the crack resistance of a molybdenum alloy with 30% tungsten

    International Nuclear Information System (INIS)

    Uskov, E.I.; Babak, A.V.; D'yachkov, A.P.; Platonov, V.A.

    1986-01-01

    Results are presented for a study of the effect of temperature on the crack resistance of molybdenum alloy with 30% tungsten (Mo - 30% W), and data are presented for the crack resistance of commercial-purity molybdenum and tungsten obtained by power metallurgy in the temperature range 20-1800 C. It was found that the nature of failure for Mo-30% W alloy depends on test temperature; in the temperature range 20 C-T /SUP d/ /SUB br/ (upper boundary for the temperature range of the ductile to brittle transition), failure is unstable in nature, and at temperatures exceeding this transition, it occurs by steady main crack development

  11. Effect of cathodic current density on performance of tungsten coatings on molybdenum prepared by electrodeposition in molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Fan, E-mail: jiangfan1109@163.com [Department of Materials and Physics, School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, Jiangsu Province (China); School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 10083 (China)

    2016-02-15

    Graphical abstract: - Highlights: • Tungsten coatings were successfully electroplated on molybdenum substrate. • The electrodeposition was studied in the air atmosphere at 1173 K. • The coating had columnar structure with preferential growth orientation of (2 0 0). • The coating obtained at 50 mA cm{sup −2} had a maximum microhardness of 495 HV. - Abstract: Smooth tungsten coatings were prepared at current density below 70 mA cm{sup −2} by electrodeposition on molybdenum substrate from Na{sub 2}WO{sub 4}-WO{sub 3} -melt at 1173 K in air atmosphere. As the current density reached up to 90 mA cm{sup −2}, many significant nodules were observed on the surface of the coating. Surface characterization, microstructure and mechanical properties were performed on the tungsten coatings. As the increasing of current density, the preferred orientation of the coatings changed to (2 0 0). All coatings exhibited columnar-grained-crystalline. There was about a 2 μm thick diffusion layer between tungsten coating and molybdenum substrate. The bending test revealed the tungsten coating had –good bonding strength with the molybdenum substrate. There is a down trend of the grain size of the coating on molybdenum as the current density increased from 30 mA cm{sup −2} to 50 mA cm{sup −2}. The coating obtained at 50 mA cm{sup −2} had a minimum grain size of 4.57 μm, while the microhardness of this coating reached to a maximum value of 495 HV.

  12. Structure-performance relations of molybdenum- and tungsten carbide catalysts for deoxygenation

    NARCIS (Netherlands)

    Stellwagen, D.R.; Bitter, J.H.

    2015-01-01

    This work demonstrates for the first time that carbide particle size is a critical factor for the activity and stability of carbon supported tungsten- and molybdenum carbide catalysts in (hydro-)deoxygenation reactions. The stability of the catalyst was shown to increase for larger particles due to

  13. Radiation damage in molybdenum and tungsten in high neutron fluxes

    International Nuclear Information System (INIS)

    Veljkovic, S.; Milasin, N.

    1964-01-01

    The effects of radiation on molybdenum and tungsten in high neutron fluxes are presented. The changes induced, particularly defects with a high migration activation energy, are analyzed. The correlation of these changes with the basic concepts of radiation damage in solids is considered. An attempt is made to relate the defects studied with the changes in macroscopic properties (author)

  14. Radiation damage in molybdenum and tungsten in high neutron fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Veljkovic, S; Milasin, N [Institute of Nuclear Sciences Boris Kidric, Department of Reactor Materials, Vinca, Beograd (Serbia and Montenegro)

    1964-04-15

    The effects of radiation on molybdenum and tungsten in high neutron fluxes are presented. The changes induced, particularly defects with a high migration activation energy, are analyzed. The correlation of these changes with the basic concepts of radiation damage in solids is considered. An attempt is made to relate the defects studied with the changes in macroscopic properties (author)

  15. The determination, by X-ray-fluorescence spectrometry, of tin and tungsten in ores, concentrates, and residues of scheelite, wolframite, and cassiterite

    International Nuclear Information System (INIS)

    Balaes, A.M.E.; Jacobs, J.J.; Bray, A.R.; Kendrick, K.

    1983-01-01

    The method of analysis described is applicable to samples with tin and tungsten contents from 15p.p.m. to 75 per cent. For samples containing tin and tungsten in the range 2000p.p.m. to 75 per cent, the matrix variations are compensated for by the use of briquettes containing coarse river sand, the internal standard, and potassium chloride, the last of which acts as a binder, diluet, and grinding aid. For the samples containing tin and tungsten in the range 15p.p.m. to 2000p.p.m., the potassium chloride is omitted. Zinc and antimony are used as the internal standard for tungsten and tin respectively. Calibration graphs for tin and tungsten are obtained by the use of standard reference materials for cassiterite and scheelite. The precision of the analysis for tin ranges from a relative standard deviation of 0,039 at 50p.p.m. to 0,005 at 75 per cent. The values for tungsten are relatively constant at between 0,015 and 0,008 at concentrations between 50p.p.m. and 50 per cent. The lower limits of detection for tungsten and tin by the high-concentration technique of analysis are 202 and 155p.p.m. respectively, and by the low-concentration technique the corresponding limits are 4 and 2p.p.m. The overall time required for the analysis of ten samples by these techniques is approximately 3 hours. The laboratory method is detailed in an appendix

  16. Cathodic electrodeposition of mixed molybdenum tungsten oxides from peroxo-polymolybdotungstate solutions.

    Science.gov (United States)

    Kondrachova, Lilia; Hahn, Benjamin P; Vijayaraghavan, Ganesh; Williams, Ryan D; Stevenson, Keith J

    2006-12-05

    Mixed molybdenum tungsten trioxide films of varying stoichiometry (MoxW1 - xO3, 0 cathodic electrodeposition on indium tin oxide (ITO)-coated glass substrates from aqueous peroxo-polymolybdotungstate solutions. Electrochemical quartz crystal microbalance (EQCM), cyclic voltammetry, and chronocoulometry were used to gain insight into the electrodeposition mechanism. The compositional and structural properties were characterized for MoxW1 - xO3 films deposited at intermediate potentials (-0.35 V vs Ag/AgCl) and sintered at 250 degrees C using energy-dispersive spectroscopy, X-ray diffraction, and Raman spectroscopy. These studies reveal that films consist of homogeneously mixed MoxW1 - xO3, with an enriched Mo content ranging in composition from 0.4 < x < 0.7 depending upon the mol % Mo present in the deposition solution. Chronoamperometry and spectroelectrochemical measurements were conducted to estimate lithium ion diffusion coefficients and coloration efficiencies for the mixed metal oxide films in 1 M LiClO4/propylene carbonate. The subtle interplay between structural and compositional properties due to the uniform mixing of Mo and W oxide components shows that electrochromic and lithium ion transport properties are moderately enhanced relative to those of single-component WO3 and MoO3 and demonstrate improved structural stability over pure MoO3 polymorphs during electrochemical cycling.

  17. Effect of an intermediate tungsten layer on thermal properties of TiC coatings ion plated onto molybdenum

    International Nuclear Information System (INIS)

    Fukutomi, M.; Fujitsuka, M.; Shikama, T.; Okada, M.

    1985-01-01

    Among the various low-Z coating-substrate systems proposed for fusion reactor first-wall applications, molybdenum coated with titanium carbide is considered very promising since it has a good capability of receiving heat from the plasma. The thermal stabilities of TiC layers ion plated onto the molybdenum substrate are discussed with particular reference to the interfacial reaction between the TiC coating and molybdenum. The deposition of an intermediate tungsten layer was found to be very effective in suppressing the formation of reaction layers, resulting in a marked improvement in thermal stabilities of TiC--Mo systems. Thermal shock test using a pulsed electron beam showed that the TiC coatings remained adherent to the molybdenum substrates during energy depositions high enough to melt the substrates within the area of beam deposition. The melt area of the TiC coatings apparently decreased when a tungsten intermediate layer was applied

  18. Improved processes of molybdenum-99 production

    International Nuclear Information System (INIS)

    Dadachova, K.; La Riviere, K.; Anderon, P.

    1997-01-01

    Two improved processes of Molybdenum-99 production have been developed at ANSTO on laboratory scale. The first one allows to purify Mo of natural isotopic composition from tungsten impurities by using preferential adsorption of tungsten on hydrated tin(IV) oxide SnO 2 x nH 2 O before irradiation in the nuclear reactor. Mo-99 obtained via this route can be used for production of i nstant Tc-99m. As the starting material MoO 3 contains considerable amounts of tungsten impurity (W > 60 ppm), 5-7 days irradiation results in generation of W-188 in amounts sufficient to contaminate the final Tc-99m product with rhenium-188 (Re-188, 16.8 h half-life) - radioactive daughter of W-188. To overcome this problem, a method of MoO 3 purification from W, based on preferential adsorption of W by hydrated tin (IV) oxide has been developed. The contents of W in MoO 3 purified by this technique became 3 and retaining of Mo-99 on a large alumina column. Mo-99 is stripped off the column with 200 mL 1M NH 4 OH followed by loading this solution onto the AG 1x8 column. The next steps are different for each version of separation process

  19. Carbon-coated tungsten and molybdenum carbides for electrode of electrochemical capacitor

    International Nuclear Information System (INIS)

    Morishita, Takahiro; Soneda, Yasushi; Hatori, Hiroaki; Inagaki, Michio

    2007-01-01

    New electrode materials for electrochemical capacitor, tungsten carbide WC and molybdenum carbide Mo 2 C coated by porous carbon, were prepared through a simple heat treatment of the mixture of K 2 WO 4 and K 2 MoO 4 , respectively, with hydroxy propyl cellulose. Carbide changed to hydroxide during the 1st charge-discharge cycle in H 2 SO 4 aqueous electrolyte, which showed redox reaction in further charge-discharge cycles, in addition to electric double layers of the carbon formed on its surface. The carbon-coated carbide gave a high capacitance in 1 mol L -1 H 2 SO 4 electrolyte, as about 350 F cm -3 for carbon-coated WC and 550-750 F cm -3 for carbon-coated Mo 2 C. Coating of carbon inhibits the growth of carbide particles during their formation, of which the small particle size make possible to complete transformation to hydroxides during the 1st charge-discharge cycle, and also disturbs the agglomeration of tungsten and molybdenum hydroxides during charge-discharge cycles, as well as porous carbon coated act as electrode material for electric double layers of electrolyte ions

  20. Investigation of Tin and Molybdenum concentrations in the Soils in the southern part of the Silesian Upland

    Directory of Open Access Journals (Sweden)

    Bureć-Drewniak W.

    2013-04-01

    Full Text Available Majority of soils from the southern part of the Silesian Upland (Poland are highly degraded and contain elevated levels of heavy metals. Detailed studies, including dissemination, mobility and bioavailability have been conducted for most heavy metals, except tin and molybdenum. Therefore, the purpose of presented studies was evaluation of molybdenum and tin pollution and determination of their mobility and bioavailability in all soil types derived from the investigated area. A total of 9920 soil samples, including 5256 topsoil samples and 4664 subsoil samples were analyzed. Comparison of elements concentration between topsoil and subsoil allows identification of the source of pollution (natural or anthropogenic of tested elements.

  1. Direct determination of tungsten in the presence of high content of molybdenum in the form of its complex with bromopyrogallol red and hydrogen peroxide

    International Nuclear Information System (INIS)

    Andreeva, I.Yu.; Lebedeva, L.I.; Flotskaya, E.A.

    1982-01-01

    It has been shown that tungsten reacts with Bromopyrogallol Red and hydrogen peroxide to form a ternary complex. A procedure has been developed of determining tungsten(6) in the presence of 500 times molar amounts of molybdenum(6). Under the conditions chosen molybdenum forms a stable peroxide complex and does not interfere with the determination

  2. Nitrides and carbides of molybdenum and tungsten with high specific-surface area: their synthesis, structure, and catalytic properties

    International Nuclear Information System (INIS)

    Volpe, L.

    1985-01-01

    Temperature-programmed reactions between trioxides of molybdenum or tungsten and ammonia provide a new method to synthesize dimolybdenum and ditungsten nitrides with specific surface areas to two-hundred-and-twenty and ninety-one square meters per gram, respectively. These are the highest values on record for any unsupported metallic powders. They correspond to three-four nonometer particles. The reaction of molybdenum trioxide with ammonia is topotactic in the sense that one-zero-zero planes of dimolybdenum nitride are parallel to zero-one-zero planes of molybdenum trioxide. As the trioxide transforms, it passes through an oxynitride intermediate with changing bulk structure and increasing surface area and extent of reduction. The nitride product consists of platelets, pseudomorphous with the original trioxide, which can be regarded as highly porous defect single crystals. By treating small particles of dimolybdenum or ditungsten nitride with methane-dihydrogen mixtures it is possible to replace interstitial nitrogen atoms by carbon atoms, without sintering, and thus to prepare carbides of molybdenum and tungsten with very high specific surface areas. Molybdenum nitride powders catalyze ammonia synthesis. A pronounced increase in the catalytic activity with increasing particle size confirms the structure-sensitive character of this reaction

  3. The determination, by x-ray-fluorescence spectrometry, of tin and tungsten in scheelite and cassiterite ores and concentrates

    International Nuclear Information System (INIS)

    Tolmay, R.T.; Jacobs, J.J.

    1980-01-01

    A method of analysis is presented that is applicable to sample mixtures of cassiterite and scheelite in concentrations of 0,2 to 70 per cent. Matrix variations are compensated for by dilution and fine grinding with coarse river sand, potassium chloride being used as a binder. Residual matrix effects are corrected for by the use of zinc and antimony as internal standards for tungsten and tin respectively. Calibration graphs are obtained by the use of chemically analysed scheelite and cassiterite standards. For tin, the relative standard deviation at a concentration of 60 per cent is 0,0063, and, at 10 per cent, 0,028; for tungsten, it is 0,013 at a concentration of 40 per cent. The lower levels of detection for tungsten and tin are 0,26 and 0,23 per cent respectively, and the time required for the analysis of 10 samples and 5 calibration standards by this method is 5 hours. A detailed laboratory method is given in the appendix [af

  4. Direct atomic-emission determination of tungsten in molybdenum oxide in dc arc

    International Nuclear Information System (INIS)

    Zolotareva, N.I.; Grazhulene, S.S.

    2007-01-01

    A method of direct atomic-emission determination of tungsten impurity in molybdenum trioxide of high purity in dc arc is presented. Chemically active additives of elementary sulfur and gallium oxide are used to optimize W evaporation rate and residence time in the arc plasma. The procedure is easy to use and provides the limit of W determination at a level of 2x10 -4 wt. % [ru

  5. Tellurium adsorption on tungsten and molybdenum field emitters

    International Nuclear Information System (INIS)

    Collins, R.A.; Kiwanga, C.A.

    1977-01-01

    Studies of the adsorption of tellurium onto tungsten and molybdenum field emitters are described and the results obtained are compared with those obtained in previous work on the adsorption of silicon and selenium. The adsorption of Te onto W was found to be much more uniform than in the case of Se. Although Te is metallic in many of its properties its adsorptive behavior on field emitters is found to be similar to that of selenium and these adsorptive properties are basically common to all semiconductors. The most evident property of these adsorbates is that the work function and emission current decrease simultaneously at coverages of less than half a monolayer and the work function subsequently increases. (B.D.)

  6. Secondary electron emission of sapphire tungsten molybdenum and titanium for Maxwellian incident electrons

    International Nuclear Information System (INIS)

    Saussez-Hublet, M.-C.; Harbour, P.J.

    1980-06-01

    The second electron emission coefficient of various materials, namely titanium, molybdenum, tungsten and sapphire, has been calculated for a Maxwellian energy distribution from data for a normally incident monoenergetic beam of primary electrons. The most significant difference from the monoenergetic case occurs at low energies. In addition the influence of the incident angle of the electrons is discussed. (author)

  7. Tungsten and molybdenum with oxide dispersion, production and properties

    International Nuclear Information System (INIS)

    Haerdtle, S.; Schmidberger, R.

    1989-01-01

    By the reaction spray process metal powders with dispersed metal oxides can be produced in one step. The systems investigated here are tungsten and molybdenum with 0,5% resp. 5% La 2 O 3 , Y 2 O 3 and ZrO 2 . The oxides with diameters below 0,5μm are finely dispersed within the metal powder particles. The sinterability of the powders depends on the oxide content. Maximum density at an oxide content of 0,5% is about 96% at a sintering temperature of 1600 0 C. The type of oxide influences the densification versus temperature but not the final density. 5 refs., 11 figs. (Author)

  8. Performance and impedance studies of thin, porous molybdenum and tungsten electrodes for the alkali metal thermoelectric converter

    Science.gov (United States)

    Wheeler, B. L.; Williams, R. M.; Jeffries-Nakamura, B.; Lamb, J. L.; Loveland, M. E.; Bankston, C. P.; Cole, T.

    1988-01-01

    Columnar, porous, magnetron-sputtered molybdenum and tungsten films show optimum performance as alkali metal thermoelectric converter electrodes at thicknesses less than 1.0 micron when used with molybdenum or nickel current collector grids. Power densities of 0.40 W/sq cm for 0.5-micron molybdenum films at 1200 K and 0.35 W/sq cm for 0.5-micron tungsten films at 1180 K were obtained at electrode maturity after 40-90 h. Sheet resistances of magnetron sputter deposited films on sodium beta-double-prime-alumina solid electrolyte (BASE) substrates were found to increase very steeply as thickness is decreased below about 0.3-double-prime 0.4-micron. The ac impedance data for these electrodes have been interpreted in terms of contributions from the bulk BASE and the porous electrode/BASE interface. Voltage profiles of operating electrodes show that the total electrode area, of electrodes with thickness less than 2.0 microns, is not utilized efficiently unless a fairly fine (about 1 x 1 mm) current collector grid is employed.

  9. Electron accelerator-based production of molybdenum-99: Bremsstrahlung and photoneutron generation from molybdenum vs. tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Tsechanski, A. [Ben-Gurion University of the Negev, Department of Nuclear Engineering, P.O. Box 653, Beer-Sheva 84105 (Israel); Bielajew, A.F. [Department of Nuclear Engineering and Radiological Sciences, The University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Archambault, J.P.; Mainegra-Hing, E. [National Research Council of Canada, Ionizing Radiation Standards Laboratory, Ottawa, ON K1A 0R6 (Canada)

    2016-01-01

    A new “one-stage” approach for production of {sup 99}Mo and other radioisotopes by means of an electron linear accelerator is described. It is based on using a molybdenum target both as a bremsstrahlung converter and as a radioisotope producing target for the production of {sup 99}Mo via the photoneutron reaction {sup 100}Mo(γ,n){sup 99}Mo. Bremsstrahlung characteristics, such as bremsstrahlung efficiency, angular distribution, and energy deposition for molybdenum targets were obtained by means of the EGSnrc Monte Carlo simulation code system. As a result of our simulations, it is concluded that a 60 MeV electron beam incident on a thick Mo target will have greater bremsstrahlung efficiency than the same thickness (in units of r{sub 0}) W target, for target thickness z > 1.84r{sub 0}, where r{sub 0} is the electron range. A 50 MeV electron beam incident on a Mo target will result in greater bremsstrahlung efficiency than the same thickness W target (in units of r{sub 0}) for target thickness case: z ⩾ 2.0r{sub 0}. It is shown for the one-stage approach with thicknesses of (1.84–2.0)r{sub 0}, that the {sup 99}Mo-production bremsstrahlung efficiency of a molybdenum target is greater by ∼100% at 30 MeV and by ∼70% at 60 MeV compared to the values for tungsten of the same thickness (in units of the appropriate r{sub 0}) in the traditional two-stage approach (W converter and separate {sup 99}Mo producing target). This advantage of the one-stage approach arises from the fact that the bremsstrahlung produced is attenuated only once from attenuation in the molybdenum converter/target. In the traditional, two-stage approach, the bremsstrahlung generated in the W-converter/target is attenuated both in the converter in the {sup 99}Mo-producing molybdenum target. The photoneutron production yield of molybdenum and tantalum (as a substitute for tungsten) target was calculated by means of the MCNP5 transport code. On the basis of these data, the specific activity

  10. Dissolution of copper, tin, and iron from sintered tungsten-bronze spheres in a simulated avian gizzard, and an assessment of their potential toxicity to birds

    International Nuclear Information System (INIS)

    Thomas, Vernon G.; McGill, Ian R.

    2008-01-01

    The rates of dissolution of copper, tin, and iron from sintered tungsten-bronze spheres (51.1%W, 44.4%Cu, 3.9%Sn, 0.6%Fe, by mass) were measured in an in vitro simulated avian gizzard at pH 2.0, and 42C. Most of the spheres had disintegrated completely to a fine powder by day 14. Dissolution of copper, tin, and iron from the spheres was linear over time; all r > 0.974; all P < 0.001. The mean rate of release of copper, tin, and iron was 30.4 mg, 2.74 mg, and 0.38 mg per g tungsten-bronze per day, respectively. These rates of metal release were compared to those in published studies to determine whether the simultaneous ingestion of eight spheres of 3.48 mm diameter would pose a toxic risk to birds. The potential absorption rates of iron and tin (0.54 mg Fe/day, and 3.89 mg Sn/day) from eight tungsten-bronze spheres of total mass 1.42 g would not prove toxic, based on empirical studies of tin and iron ingestion in waterfowl. The release of 43.17 mg copper/day from eight tungsten-bronze spheres, while exceeding the daily copper requirements of domesticated birds, is far below the levels of copper known to cause copper toxicosis in birds. We conclude that sintered tungsten-bronze material made into gunshot, fishing weights, or wheel balance weights, would not pose a toxic risk to wild birds when ingested

  11. Process for recovering tungsten from alkaline leaching solution of tungsten ores

    International Nuclear Information System (INIS)

    Onozaki, S.; Nemoto, S.; Hazeyama, T.

    1976-01-01

    This invention relates to a process for recovering tungsten from an alkaline leaching solution of tungsten ores. This invention comprises adjusting the pH of an alkaline leaching solution which is obtained by lixiviating ore containing tungsten with an alkaline solution to 7--8 with acid to oxidize molybdic acid ions in the solution, adding a sulfide donor, then precipitating molybdenum sulfide compounds by adjusting the pH value of the solution to 2--3. Tungstic acid ions are recovered as calcium tungstate by the addition of a calcium ion donor after the molybdenum sulfide compounds are separated

  12. Mechanical properties of molybdenum alloyed liquid phase-sintered tungsten-based composites

    International Nuclear Information System (INIS)

    Kemp, P.B.; German, R.M.

    1995-01-01

    Tungsten-based composites are fabricated from mixed elemental powders using liquid phase sintering, usually with a nickel-iron matrix. During sintering, the tungsten undergoes grain growth, leading to microstructure coarsening that lowers strength but increases ductility. Often the desire is to increase strength at the sacrifice of ductility, and historically, this has been performed by postsintering deformation. There has been considerable research on alloying to adjust the as-sintered mechanical properties to match those of swaged alloys. Prior reports cover many additions, seemingly including much of the periodic table. Unfortunately, many of the modified alloys proved disappointing, largely due to degraded strength at the tungsten-matrix interface. Of these modified alloys, the molybdenum-containing systems exhibit a promising combination of properties, cost, and processing ease. For example, the 82W-8Mo-7Ni-3Fe alloy gives a yield strength that is 34% higher than the equivalent 90W-7Ni-3Fe alloy (from 535 to 715 MPa) but with a 33% decrease in fracture elongation (from 30 to 20% elongation). This article reports on experiments geared to promoting improved properties in the W-Mo-Ni-Fe alloys. However, unlike the prior research which maintained a constant Ni + Fe content and varied the W:Mo ratio, this study considers the Mo:(Ni + Fe) ratio effect for 82, 90, and 93 wt pct W

  13. Molybdenum-tin as a solar cell metallization system

    Science.gov (United States)

    Boyd, D. W.; Radics, C.

    1981-01-01

    The operations of solar cell manufacture are briefly examined. The formation of reliable, ohmic, low-loss, and low-cost metal contacts on solar cells is a critical process step in cell manufacturing. In a commonly used process, low-cost metallization is achieved by screen printing a metal powder-glass frit ink on the surface of the Si surface and the conductive metal powder. A technique utilizing a molybdenum-tin alloy for the metal contacts appears to lower the cost of materials and to reduce process complexity. The ink used in this system is formulated from MoO3 with Sn powder and a trace amount of titanium resonate. Resistive losses of the resulting contacts are low because the ink contains no frit. The MoO3 is finally melted and reduced in forming gas (N2+H2) to Mo metal. The resulting Mo is highly reactive which facilitates the Mo-Si bonding.

  14. Brazing of molybdenum- and tungsten based refractory materials with copper and graphite

    International Nuclear Information System (INIS)

    Boutes, J.; Falbriard, P.; Rochette, P.; Nicolas, G.

    1989-01-01

    Molybdenum and Tungsten base refractory metals and alloys have been brazed 1. to copper between 800 0 C and 900 0 C with silver base metal; 2. to graphite, with CVD coatings between 800 0 C and 900 0 C with silver base metal and between 1100 0 C and 1200 0 C with copper base metal; 3. to graphite between 800 0 C and 1100 0 C with silver or nickel base metal. The brazed joints have been characterized by micrographic observations before and after bending tests from room temperature to 800 0 C. 2 tabs., 9 figs. (Author)

  15. Mechanism of anodic oxidation of molybdenum and tungsten in nitrate-nitrite melts

    International Nuclear Information System (INIS)

    Yurkinskij, V.P.; Firsova, E.G.; Morachevskij, A.G.

    1987-01-01

    The mechanism of anode oxidation of tungsten and molybdenum in NaNO 3 -KNO 3 (50 mass %) nitrate-nitrite melts with NaNO 2 -KNO 2 (0.5-50 mass %) addition and in NaNO 2 -KNO 2 (35 mole %) nitrite melt in the 516-580 K temperature range is studied. It is supposed that the process of anode dissloving of the mentioned metals in nitrite melt and nitrate-nitrite mixtures is two-electron. Formation of oxide passivating film is possible under electrolysis on the anode surface, the film is then dissolved in nitrate-nitrite melt with formation of molybdates or tungstates

  16. Irradiation of steel, molybdenum and tungsten - VISA-2f; Ozracivanje celika, molibdena i volframa - VISA-2f -

    Energy Technology Data Exchange (ETDEWEB)

    Veljkovic, S; Milasin, N [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1962-12-15

    The objective of the experiment is to study the radiation damage of steel, molybdenum and tungsten after irradiation under fast neutron flux. The sample wires of steel Mo and W will be irradiated, integral fast neutron flux should be higher than 10{sup 18} neutrons/cm{sup 2}, the temperature should be as low as possible.

  17. A kinetic study of the redox reactions of complex cyanides of iron, molybdenum and tungsten with compounds of the group VI A elements

    International Nuclear Information System (INIS)

    Dennis, C.R.

    1981-01-01

    The kinetic study arises out of the fact that few is known about redox kinetics of complex cyanides of molybdenum and tungsten. The redox kinetics of the complex cyanides of iron with organic and inorganic compounds are well known in organic chemistry. This comparitive study is done to obtain more information on redox reactions of complex cyanides of molybdenum and tungsten considering its greater applicability in organic and inorganic chemistry because of the propitious reduction potential of this complex cyanide in acidic and alkaline mediums. Various redox systems are kinetically investigated regarding the influence of the oxidising agent, reducing agent hydrogen ions and alkaline-metal ions on the reaction rate. A reaction mechanism is proposed for every system

  18. A rapid method for determining tin and molybdenum in geological samples by flame atomic-absorption spectroscopy

    Science.gov (United States)

    Welsch, E.P.

    1985-01-01

    The proposed method uses a lithium metaborate fusion, dissolution of the fusion bead in 15% v v hydrochloric acid, extraction into a 4% solution of trioctylphosphine oxide in methyl isobutyl ketone, and aspiration into a nitrous oxide-acetylene flame. The limits of detection for tin and molybdenum are 1.0 and 0.5 ppm, respectively. Approximately 50 samples can be analysed per day. ?? 1985.

  19. Application of neutron activation analysis to the study of impurities in molybdenum, tungsten and nuclear graphite; Application de l'analyse par activation neutronique a l'etude des impuretes dans le molybdene, le tungstene et le graphite nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Pinte, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-10-15

    A neutron activation method is described for the analysis of a maximum number of foreign elements in molybdenum, tungsten and graphite. The various elements are isolated using a systematic separation programme; the elements are subsequently analysed qualitatively and quantitatively using {gamma}-spectrometry. By this method are dosed 27 elements in molybdenum and tungsten, and 20 elements in graphite to which can be added those elements which are already the object of routine analysis: V, Mn, Si, P, S, Cl and 14 rare earths. (author) [French] On decrit une methode d'analyse par activation neutronique permettant de doser un maximum d'elements etrangers dans le molybdene, le tungstene et le graphite. En suivant un schema de separation systematique, on isole les differents elements dont les analyses qualitatives et quantitatives sont ensuite effectuees par spectrometrie {gamma}. Par cette methode, on dose 27 elements dans le molybdene et le tungstene, 20 elements dans le graphite, auxquels on peut encore ajouter les elements doses couramment: V, Mn, Si, P, S, Cl et 14 Terres Rares. (auteur)

  20. Behavior of molybdenum in mixed-oxide fuel

    International Nuclear Information System (INIS)

    Giacchetti, G.; Sari, C.

    1976-01-01

    Metallic molybdenum, Mo--Ru--Rh--Pd alloys, barium, zirconium, and tungsten were added to uranium and uranium--plutonium oxides by coprecipitation and mechanical mixture techniques. This material was treated in a thermal gradient similar to that existing in fuel during irradiation to study the behavior of molybdenum in an oxide matrix as a function of the O/(U + Pu) ratio and some added elements. Result of ceramographic and microprobe analysis shows that when the overall O/(U + Pu) ratio is less than 2, molybdenum and Mo--Ru--Rh--Pd alloy inclusions are present in the uranium--plutonium oxide matrix. If the O/(U + Pu) ratio is greater than 2, molybdenum oxidizes to MoO 2 , which is gaseous at a temperature approximately 1000 0 C. Molybdenum oxide vapor reacts with barium oxide and forms a compound that exists as a liquid phase in the columnar grain region. Molybdenum oxide also reacts with tungsten oxide (tungsten is often present as an impurity in the fuel) and forms a compound that contains approximately 40 wt percent of actinide metals. The apparent solubility of molybdenum in uranium and uranium--plutonium oxides, determined by electron microprobe, was found to be less than 250 ppM both for hypo- and hyperstoichiometric fuels

  1. Conflict minerals in the compute sector: estimating extent of tin, tantalum, tungsten, and gold use in ICT products.

    Science.gov (United States)

    Fitzpatrick, Colin; Olivetti, Elsa; Miller, Reed; Roth, Richard; Kirchain, Randolph

    2015-01-20

    Recent legislation has focused attention on the supply chains of tin, tungsten, tantalum, and gold (3TG), specifically those originating from the eastern part of the Democratic Republic of Congo. The unique properties of these so-called “conflict minerals” lead to their use in many products, ranging from medical devices to industrial cutting tools. This paper calculates per product use of 3TG in several information, communication, and technology (ICT) products such as desktops, servers, laptops, smart phones, and tablets. By scaling up individual product estimates to global shipment figures, this work estimates the influence of the ICT sector on 3TG mining in covered countries. The model estimates the upper bound of tin, tungsten, tantalum, and gold use within ICT products to be 2%, 0.1%, 15%, and 3% of the 2013 market share, respectively. This result is projected into the future (2018) based on the anticipated increase in ICT device production.

  2. Determination of total tin in geological materials by electrothermal atomic-absorption spectrophotometry using a tungsten-impregnated graphite furnace

    Science.gov (United States)

    Zhou, L.; Chao, T.T.; Meier, A.L.

    1984-01-01

    An electrothermal atomic-absorption spectrophotometric method is described for the determination of total tin in geological materials, with use of a tungsten-impregnated graphite furnace. The sample is decomposed by fusion with lithium metaborate and the melt is dissolved in 10% hydrochloric acid. Tin is then extracted into trioctylphosphine oxide-methyl isobutyl ketone prior to atomization. Impregnation of the furnace with a sodium tungstate solution increases the sensitivity of the determination and improves the precision of the results. The limits of determination are 0.5-20 ppm of tin in the sample. Higher tin values can be determined by dilution of the extract. Replicate analyses of eighteen geological reference samples with diverse matrices gave relative standard deviations ranging from 2.0 to 10.8% with an average of 4.6%. Average tin values for reference samples were in general agreement with, but more precise than, those reported by others. Apparent recoveries of tin added to various samples ranged from 95 to 111% with an average of 102%. ?? 1984.

  3. Kinetics of carbide formation in the molybdenum-tungsten coatings used in the ITER-like Wall

    Science.gov (United States)

    Maier, H.; Rasinski, M.; von Toussaint, U.; Greuner, H.; Böswirth, B.; Balden, M.; Elgeti, S.; Ruset, C.; Matthews, G. F.

    2016-02-01

    The kinetics of tungsten carbide formation was investigated for tungsten coatings on carbon fibre composite with a molybdenum interlayer as they are used in the ITER-like Wall in JET. The coatings were produced by combined magnetron sputtering and ion implantation. The investigation was performed by preparing focused ion beam cross sections from samples after heat treatment in argon atmosphere. Baking of the samples was done at temperatures of 1100 °C, 1200 °C, and 1350 °C for hold times between 30 min and 20 h. It was found that the data can be well described by a diffusional random walk with a thermally activated diffusion process. The activation energy was determined to be (3.34 ± 0.11) eV. Predictions for the isothermal lifetime of this coating system were computed from this information.

  4. Formation of solid solution during mutual diffusion of tungsten and molybdenum in the process of sintering

    International Nuclear Information System (INIS)

    Timofeeva, A.A.; Bulat, I.B.; Voronin, Yu.V.; Fedoseev, G.K.; Karasev, V.M.

    1984-01-01

    A process of a solid solution homogenization during sintering of W-15Mo and W-5Mo alloys is studied by the methods of density measurements, analysis of the X-ray lines physical broadening and determination of crystalline lattice constant. Study of the process of solid solution formation under conditions of powder composite sintering is shown to be conducted with account of peculiarities of tungsten and molybdenum mutual diffusion in the investigated temperature range of concentrations

  5. Potentiometric determination of molybdenum

    International Nuclear Information System (INIS)

    Rusina, O.N.; Gorbatkova, B.Kh.

    1977-01-01

    Potentiometric titration by lead acetate is used to determine molybdenum in the form of molybdate ions. The behaviour of bimetallic electrode couples, i.e. tungsten-lead, platinum-lead, lead-carbon electrode, molybdenum-carbon electrode platinum-molibdenum has been investigated. The greatest jump of the potential in the finite point is observed for platinum-molybdenum electrode couple (150 mV/ml at pH 4.0-5.5). The limiting concentration of molybdenum in potentiometric titration by lead acetate is 2.8x10 -4 M. The measurements are accurate to within +-0.1%

  6. Method for palladium activating molybdenum metallized features on a ceramic substrate

    International Nuclear Information System (INIS)

    Kumar, A.H.; Schwartz, B.

    1985-01-01

    A molybdenum or tungsten metallurgical pattern is formed on or in a dielectric green sheet. Palladium, nickel, platinum or rhodium is coated on a layer of polyvinyl butyral which is carried on a polyester film. The metal layer of this assembly is laminated to a dielectric green sheet which carries the molybdenum or tungsten metallurgy. The polyester film is stripped off. The resulting assembly is sintered to a fired structure, whereby the polyvinyl butyral is volatilized off and the palladium, nickel, platinum or rhodium is alloyed with the molybdenum or tungsten metallurgy to provide a densified metallurgy whose surface is free of glass

  7. 2s 2p 3P10 → 2s21S0 intercombination line in beryllium-like krypton, molybdenum and tungsten

    International Nuclear Information System (INIS)

    Glass, R.

    1979-01-01

    Transition probabilities are evaluated for the 2s 2p 3 P 1 0 → 2s 2 1 S 0 transition in beryllium-like ions for krypton, molybdenum and tungsten, using configuration-interaction wavefunctions. The importance of the 2s 3p 1 P 1 0 configuration is considered

  8. Atomic absorption spectrometry using tungsten and molybdenum tubes as metal atomizer

    International Nuclear Information System (INIS)

    Kaneco, Satoshi; Katsumata, Hideyuki; Ohta, Kiyohisa; Suzuki, Tohru

    2007-01-01

    We have developed a metal tube atomizer for the electrothermal atomization atomic absorption spectrometry (ETA-AAS). Tungsten, molybdenum, platinum tube atomizers were used as the metal atomizer for ETA-AAS. The atomization characteristics of various metals using these metal tube atomizers were investigated. The effects of heating rate of atomizer, atomization temperature, pyrolysis temperature, argon purge gas flow rate and hydrogen addition on the atomic absorption signal were investigated for the evaluation of atomization characteristics. Moreover, ETA-AAS with metal tube atomizer has been combined with the slurry-sampling techniques. Ultrasonic slurry-sampling ETA-AAS with metal tube atomizer were effective for the determination of trace metal elements in biological materials, calcium drug samples, herbal medicine samples, vegetable samples and fish samples. Furthermore, a preconcentration method of trace metals involving adsorption on a metal wire has been applied to ETA-AAS with metal tube atomizer. (author)

  9. The Design and Use of Tungsten Coated TZM Molybdenum Tile Inserts in the DIII-D Tokamak Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Christopher [General Atomics, San Diego; Nygren, R. E. [Sandia National Laboratories (SNL); Chrobak, C P. [General Atomics, San Diego; Buchenauer, Dean [Sandia National Laboratories (SNL); Holtrop, Kurt [General Atomics, San Diego; Unterberg, Ezekial A. [ORNL; Zach, Mike P. [ORNL

    2017-08-01

    Future tokamak devices are envisioned to utilize a high-Z metal divertor with tungsten as theleading candidate. However, tokamak experiments with tungsten divertors have seen significantdetrimental effects on plasma performance. The DIII-D tokamak presently has carbon as theplasma facing surface but to study the effect of tungsten on the plasma and its migration aroundthe vessel, two toroidal rows of carbon tiles in the divertor region were modified with high-Zmetal inserts, composed of a molybdenum alloy (TZM) coated with tungsten. A dedicated twoweek experimental campaign was run with the high-Z metal inserts. One row was coated withtungsten containing naturally occurring levels of isotopes. The second row was coated withtungsten where the isotope 182W was enhanced from the natural level of 26% up to greater than90%. The different isotopic concentrations enabled the experiment to differentiate between thetwo different sources of metal migration from the divertor. Various coating methods wereexplored for the deposition of the tungsten coating, including chemical vapor deposition,electroplating, vacuum plasma spray, and electron beam physical vapor deposition. The coatingswere tested to see if they were robust enough to act as a divertor target for the experiment. Testsincluded cyclic thermal heating using a high power laser and high-fluence deuterium plasmabombardment. The issues associate with the design of the inserts (tile installation, thermal stress,arcing, leading edges, surface preparation, etc.), are reviewed. The results of the tests used toselect the coating method and preliminary experimental observations are presented.

  10. Experimental investigation of the behaviour of tungsten and molybdenum alloys at high strain-rate and temperature

    CERN Document Server

    Scapin, Martina; Carra, Federico; Peroni, Lorenzo

    2015-01-01

    The introduction in recent years of new, extremely energetic particle accelerators such as the Large Hadron Collider (LHC) gives impulse to the development and testing of refractory metals and alloys based on molybdenum and tungsten to be used as structural materials. In this perspective, in this work the experimental results of a tests campaign on Inermet® IT180 and pure Molybdenum (sintered by two different producers) are presented. The investigation of the mechanical behaviour was performed in tension varying the strain-rates, the temperatures and both of them. Overall six orders of magnitude in strain-rate (between 10−3 and 103 s−1) were covered, starting from quasi-static up to high dynamic loading conditions. The high strain-rate tests were performed using a direct Hopkinson Bar setup. Both in quasi-static and high strain-rate conditions, the heating of the specimens was obtained with an induction coil system, controlled in feedback loop, based on measurements from thermocouples directly welded on...

  11. Depressurization and boiling of a single magmatic fluid as a mechanism for tin-tungsten deposit formation

    OpenAIRE

    Maximilian Korges; Philipp Weis; Volker Lüders; Oscar Laurent

    2018-01-01

    Tin (Sn) and tungsten (W) mineralization are commonly associated with each other in relation to highly evolved granites, but economical ore grades are restricted to rare global occurrences and mineralization styles are highly variable, indicating different mechanisms for ore formation. The Sn-W Zinnwald deposit in the Erzgebirge (Germany and the Czech Republic) in the roof zone of a Variscan Li-F granite hosts two contrasting styles of mineralization: (1) cassiterite (Sn) in greisen bodies, a...

  12. Synthesis, structure and properties of oxo- and dioxochloride complexes of molybdenum(VI) and tungsten(VI) with 8-oxyquinoline

    International Nuclear Information System (INIS)

    Abramenko, V.L.; Sergienko, V.S.; Egorova, O.A.

    2005-01-01

    Complexes of oxo- and dioxochlorides of molybdenum(VI) and tungsten(VI) with 8-oxyquinoline of molecular and intracomplex type are synthesized and studied by the method of IR spectroscopy. The complexes have octahedral structure. It is proposed that 8-oxyquinoline in molecular complexes is coordinated by central atom through nitrogen atom of heterocycle, but in intracomplex compounds - through heterocyclic nitrogen atom and oxygen atom of deprotonated OH-group. Thermal stability of the complexes is studied [ru

  13. Structure of tungsten electrodeposited from oxide chloride-fluoride molten salts

    International Nuclear Information System (INIS)

    Pavlovskij, V.A.; Reznichenko, V.A.

    1998-01-01

    Investigation results on the influence of electrolysis parameters and electrolyte composition on tungsten cathode deposit structure are presented. The electrolysis was performed in NaCl-NaF-WO 3 molten salts using tungsten and tungsten coated molybdenum cathodes. Morphological and metallographic studies of tungsten crystals were carrier out. Tungsten deposits were obtained in the form of crystalline conglomerates, sponge and high dispersity powder

  14. Tungsten anode tubes with K-edge filters for mammography

    Energy Technology Data Exchange (ETDEWEB)

    Beaman, S.; Lillicrap, S.C. (Wessex Regional Medical Physics Service, Bath (UK)); Price, J.L. (Jarvis Screening Centre, Guildford (UK))

    1983-10-01

    Optimum X-ray energies for mammography have previously been calculated using the maximum signal to noise ratio (SNR) per unit dose to the breast, or the minimum exposure for constant SNR. Filters having absorption edges at appropriate energy positions have been used to modify the shape of tungsten anode spectra towards the calculated optimum. The suitability of such spectra for practical use has been assessed by comparing the film image quality and the incident breast dose obtained using a K-edge filtered tungsten anode tube with that obtained using a molybdenum anode. Image quality has been assessed by using a 'random' phantom and by comparing mammograms where one breast was radiographed using a filtered tungsten anode tube and the other using a standard molybdenum anode unit. Relative breast doses were estimated from both ionisation chamber measurements with a phantom and thermoluminescent dosimetry measurements on the breast. Film image quality assessment indicated that the filtered tungsten anode tube gave results not significantly different from those obtained with a molybdenum anode tube for a tissue thickness of about 4 cm and which were better for larger breast thicknesses. Doses could be reduced to between one-half and one-third with the filtered tungsten anode tube.

  15. Tungsten anode tubes with K-edge filters for mammography

    International Nuclear Information System (INIS)

    Beaman, S.; Lillicrap, S.C.; Price, J.L.

    1983-01-01

    Optimum X-ray energies for mammography have previously been calculated using the maximum signal to noise ratio (SNR) per unit dose to the breast, or the minimum exposure for constant SNR. Filters having absorption edges at appropriate energy positions have been used to modify the shape of tungsten anode spectra towards the calculated optimum. The suitability of such spectra for practical use has been assessed by comparing the film image quality and the incident breast dose obtained using a K-edge filtered tungsten anode tube with that obtained using a molybdenum anode. Image quality has been assessed by using a 'random' phantom and by comparing mammograms where one breast was radiographed using a filtered tungsten anode tube and the other using a standard molybdenum anode unit. Relative breast doses were estimated from both ionisation chamber measurements with a phantom and thermoluminescent dosimetry measurements on the breast. Film image quality assessment indicated that the filtered tungsten anode tube gave results not significantly different from those obtained with a molybdenum anode tube for a tissue thickness of abut 4 cm and which were better for larger breast thicknesses. Doses could be reduced to between one-half and one-third with the filtered tungsten anode tube. (U.K.)

  16. Use of ion exchange during preparation of raw materials for production of molybdenum and tungsten of high purify

    International Nuclear Information System (INIS)

    Blokhin, A.A.; Rumyantsev, V.K.; Taushkanov, V.P.; Maksimkov, S.M.; Majorov, D.Yu.; Pak, V.I.

    1988-01-01

    The data on the application of selective ionites for the steep purification of ammonium molybdate and tungstate solutions, are given. It is shown that to purify molybdenum and ammonium tungstate solutions from the impuerities of alkali earth and two- and threevalent transition metals, iminodiacetate ampholites of the ANKB-35 type are the most effective sorbents. To purify from phosphorus, silicon and arsenic impurities composition ionites on the base of hydrated oxides of multivalent metals introduced in the granules of porous cationites should be used. To extract phosphorus, silicon, arsenic impurities from ammonium molybdate and tungstate solutions and tungsten from ammonium molybdate solutions the method of their coprecipitation with iron (3) hydroxide can also be used. The best results on the purification of ammonium molybdate from tungstate provides for the application of structural organomineral ionites as well as weak-basicity anionites of the AN-31 type and its different modifications containing hydroxyl groups along with aminogroups. To purity ammonium tungstate solutions from molybdate a method is developed which transforms molybdenum in the form of thiocomplexes and the following selective sorption by strong-basicity anionites. The data on the quality of molybdenum monocrystals which are taken from the raw material purified using ionites, are given

  17. Tungsten or Wolfram: Friend or Foe?

    Science.gov (United States)

    Zoroddu, Maria A; Medici, Serenella; Peana, Massimiliano; Nurchi, Valeria M; Lachowicz, Joanna I; Laulicht-Glickc, Freda; Costa, Max

    2018-01-01

    Tungsten or wolfram was regarded for many years as an enemy within the tin smelting and mining industry, because it conferred impurity or dirtiness in tin mining. However, later it was considered an amazing metal for its strength and flexibility, together with its diamond like hardness and its melting point which is the highest of any metal. It was first believed to be relatively inert and an only slightly toxic metal. Since early 2000, the risk exerted by tungsten alloys, its dusts and particulates to induce cancer and several other adverse effects in animals as well as humans has been highlighted from in vitro and in vivo experiments. Thus, it becomes necessary to take a careful look at all the most recent data reported in the scientific literature, covering the years 2001-2016. In fact, the findings indicate that much more attention should be devoted to thoroughly investigate the toxic effects of tungsten and the involved mechanisms of tungsten metal or tungsten metal ions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Iron binary and ternary coatings with molybdenum and tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Yar-Mukhamedova, Gulmira, E-mail: gulmira-alma-ata@mail.ru [Institute Experimental and Theoretical Physics Al-Farabi Kazakh National University, 050038, Al-Farabi av., 71, Almaty (Kazakhstan); Ved, Maryna; Sakhnenko, Nikolay; Karakurkchi, Anna; Yermolenko, Iryna [National Technical University “Kharkov Polytechnic Institute”, Kharkov (Ukraine)

    2016-10-15

    Highlights: • High quality coatings of double Fe-Mo and ternary Fe-Mo-W electrolytic alloys can be produced both in a dc and a pulsed mode. • Application of unipolar pulsed current allows receiving an increased content of the alloying components and their more uniform distribution over the surface. • It is established that Fe-Mo and Fe-Mo-W coatings have an amorphous structure and exhibit improved corrosion resistance and microhardness as compared with the steel substrate due to the inclusion molybdenum and tungsten. - Abstract: Electrodeposition of Fe-Mo-W and Fe-Mo layers from a citrate solution containing iron(III) on steel and iron substrates is compared. The utilization of iron(III) compounds significantly improved the electrolyte stability eliminating side anodic redox reactions. The influence of concentration ratios and electrodeposition mode on quality, chemical composition, and functional properties of the alloys is determined. It has been found that alloys deposited in pulse mode have more uniform surface morphology and chemical composition and contain less impurities. Improvement in physical and mechanical properties as well as corrosion resistance of Fe-Mo and Fe-Mo-W deposits when compared with main alloy forming metals is driven by alloying components chemical passivity as well as by alloys amorphous structure. Indicated deposits can be considered promising materials in surface hardening technologies and repair of worn out items.

  19. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sumanta K.; Rajeswari, V. P. [Centre for Nano Science and Technology, GVP College of Engineering (Autonomous), Visakhapatnam- 530048 (India)

    2014-01-28

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn{sub 3}O{sub 4}, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  20. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    International Nuclear Information System (INIS)

    Tripathy, Sumanta K.; Rajeswari, V. P.

    2014-01-01

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn 3 O 4 , corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells

  1. A density-functional theory approach to the existence and stability of molybdenum and tungsten sesquioxide polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Nils; Dronskowski, Richard [RWTH Aachen Univ. (Germany). Inst. fuer Anorganische Chemie; RWTH Aachen Univ. (Germany). Juelich-Aachen Research Alliance; Reimann, Christoph; Bredow, Thomas [Bonn Univ. (Germany). Inst. fuer Physikalische und Theoretische Chemie; Weber, Dominik; Luedtke, Tobias; Lerch, Martin [Berlin Technische Univ. (Germany). Inst. fuer Chemie

    2017-03-01

    The sesquioxides of molybdenum and tungsten have been reported as thin films or on surfaces as early as 1971, but the preparation of bulk materials and their crystal structures are still unknown up to the present day. We present a systematic ab initio approach to their possible syntheses and crystal structures applying complementary methods and basis-set types. For both compounds, the corundum structure is the most stable and does not display any imaginary frequencies. Calculations targeted at a high-pressure synthesis starting from the stable oxides and metals predict a reaction pressure of 15 GPa for Mo{sub 2}O{sub 3} and over 60 GPa for W{sub 2}O{sub 3}.

  2. Neutron-activation determination of phosphorus and sulfur in molybdenum and tungsten with the help of a beta-spectrometer

    International Nuclear Information System (INIS)

    Usmanova, M.M.; Mukhamedshina, N.M.; Kim, R.D.; Kaganov, L.K.

    1987-01-01

    An instrumental variant of the neutron-activation determination of phosphorus and sulfur in molybdenum and tungsten was developed with the help of a β-spectrometer that makes it possible to discriminate the participation of the 99 Mo and 187 W radioisotopes in the overall activity of the sample. It was shown that simultaneous determination of P and S on the basis of the 32 P radioisotope is feasible if their contents are comparable or are not different by more than 1-1.5 orders of magnitude, and then the maximum relative standard deviation is 0.15

  3. Tungsten carbide and tungsten-molybdenum carbides as automobile exhaust catalysts

    International Nuclear Information System (INIS)

    Leclercq, L.; Daubrege, F.; Gengembre, L.; Leclercq, G.; Prigent, M.

    1987-01-01

    Several catalyst samples of tungsten carbide and W, Mo mixed carbides with different Mo/W atom ratios, have been prepared to test their ability to remove carbon monoxide, nitric oxide and propane from a synthetic exhaust gas simulating automobile emissions. Surface characterization of the catalysts has been performed by X-ray photoelectron spectroscopy (XPS) and selective chemisorption of hydrogen and carbon monoxide. Tungsten carbide exhibits good activity for CO and NO conversion, compared to a standard three-way catalyst based on Pt and Rh. However, this W carbide is ineffective in the oxidation of propane. The Mo,W mixed carbides are markedly different having only a very low activity. 9 refs.; 10 figs.; 5 tabs

  4. Implantation of titanium, chromium, yttrium, molybdenum, silver, hafnium, tantalum, tungsten and platinum ions generated by a metal vapor vacuum ion source into 440C stainless steel

    International Nuclear Information System (INIS)

    Sasaki, Jun; Hayashi, Kazunori; Sugiyama, Kenji; Ichiko, Osami; Hashiguchi, Yoshihiro

    1992-01-01

    Titanium, yttrium, molybdenum, silver, chromium, hafnium, tantalum, tungsten and platinum ions generated by a metal vapor vacuum arc (MEVVA) ion source were implanted into 440C stainless steel in the dose region 10 17 ions cm -2 with extraction voltages of up to 70 kV. Glow discharge spectroscopy (GDS), friction coefficient, and Vickers microhardness of the specimens were studied. Grooves made by friction tests were investigated by electron probe microanalysis (EPMA). GDS showed incorporation of carbon in the yttrium, hafnium, tantalum, tungsten and platinum implanted specimens, as well as titanium implanted samples. A large amount of oxygen was observed in the yttrium implanted specimen. The friction coefficient was measured by reciprocating sliding of an unimplanted 440C ball without lubricant at a load of 0.245 N. The friction decreased and achieved a stable state after implantation of titanium, hafnium and tantalum. The friction coefficient of the platinum implanted specimen showed a gradual decrease after several cycles of sliding at high friction coefficient. The yttrium implanted sample exhibited a decreased but slightly unstable friction coefficient. Results from EPMA showed that the implanted elements, which gave decreased friction, remained even after sliding of 200 cycles. Implantation of chromium, molybdenum, silver and tungsten did not provide a decrease in friction and the implants were gone from the wear grooves after the sliding tests. (orig.)

  5. A process for electrodeposition of layers of niobium, vanadium, molybdenum or tungsten, or of their alloys

    International Nuclear Information System (INIS)

    Diepers, H.; Schmidt, O.

    1977-01-01

    An improvement is proposed for the process for electrodeposition of layers of niobium, vanadium, molybdenum or tungsten or of their alloys from molten-salt electrolytes (fluorid melts) which is to increase the quality of layers in order to obtain regular thickness and smooth surfaces. According to the invention, a pre-separation is executed on an auxiliary cathode before the (preheated) cathode is immersed. The cathode is only charged for separation after the adjustment of a constant anode potential. It is an advantage that the auxiliary cathode is mechanically and electrically connected with the cathode. As an electrolyte, a mixture of niobium fluorides and a eustetic mixture of potassium fluorides, sodium fluorides and lithium fluorides are particularly suitable for the electrodeposition of miobium. (UWI) [de

  6. Peroxo complexes of molybdenum(VI), tungsten(VI), uranium(VI), zirconium(IV) and thorium(IV) ions containing tridentate Schiff bases derived from salicylaldehyde and amino acids

    International Nuclear Information System (INIS)

    Tarafder, M.T.H.; Khan, A.R.

    1997-01-01

    The synthesis of peroxo complexes of molybdenum(VI), tungsten(VI), uranium(VI), zirconium(IV), thorium(IV) and their possible oxygen transfer reactions is presented. An attempt has also been made to study the size of the metal ions and the electronic effect derived from the tridentate Schiff bases on the v 1 (O-O) mode of the complexes in their IR spectra

  7. Coupling effects of tungsten and molybdenum on microstructure and stress-rupture properties of a nickel-base cast superalloy

    Directory of Open Access Journals (Sweden)

    Tongjin Zhou

    2018-02-01

    Full Text Available In order to comprehensively understand the forming mechanism of abnormal phases solidified in a nickel-base cast superalloy with additives of tungsten and molybdenum, the coupling effects of W and Mo on the microstructure and stress-rupture properties were investigated in this paper. The results indicated that the precipitation of primary α-(W, Mo phase depended tremendously on the amount of W and Mo addition. When the total amount of W and Mo was greater than 5.79 at%, α-(W, Mo phase became easily precipitated in the alloy. With increasing of Mo/W ratio, the dendrite-like α-(W, Mo phases were apt to convert into small bars or blocky-like phases at the vicinities of γ′/γ eutectic. The morphological changes of α-(W, Mo phase can be interpreted as the non-equilibrium solidification of W and Mo in the alloy. Since the large sized α-(W, Mo phase has detrimental effects on stress-rupture properties in as-cast conditions, secondary cracks may mainly initiate at and then propagate along the interfaces of brittle phases and soft matrix. During exposing at 1100 ℃ for 1000 h, the α-(W, Mo phases transformed gradually into bigger and harder M6C carbide, which results in decreasing of stress-rupture properties of the alloy. Finally, the alloy with an addition of 14W-1Mo(wt% maintained the longest stress lives at high temperatures and therefore it revealed the best microstructure stability after 1100 ℃/1000 h thermal exposure. Keywords: Superalloy, Tungsten and molybdenum, Cast, Microstructure, Stress-rupture properties

  8. Potentiometric titration of molybdenum (6) with a cathode-polarized solid electrode

    International Nuclear Information System (INIS)

    Boeva, L.V.; Kimstach, V.A.; Bagdasarov, K.N.

    1980-01-01

    The possibility has been studied of using solid electrodes for potentiometric precipitation titration of molybdenum (6). A cathode-polarized electrode, electrochemically covered with a molybdenum blue layer, can be used as indicator electrode. The best results were obtained during deposition of molybdenum blue on a tungsten electrode. The mechanism of electrode work during titration has been investigated. A procedure has been developed of titration of molybdenum (6) in acid solutions using hydroxylamine N-aryl derivatives as titrants

  9. Elimination of the inter-element interferences of iron, gold, molybdenum, tin and antimony when determined in organic solvents by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Aneva, Zara; Arpadjan, Sonja

    1988-01-01

    The mutual interferences in the flame atomic absorption spectrometric determination of iron, gold, molybdenum, tin and antimony after their extraction - pre-concentration as chloride complexes from platinum solutions into isobutyl methyl ketone are investigated. It is suggested that the interferences are caused by chemical reactions in the flame and are influenced by the flame characteristics. The possibility of eliminating the interferences by addition of long-chain quaternary ammonium salts is discussed. (author)

  10. Liquid phase sintering of carbides using a nickel-molybdenum alloy

    International Nuclear Information System (INIS)

    Barranco, J.M.; Warenchak, R.A.

    1987-01-01

    Liquid phase vacuum sintering was used to densify four carbide groups. These were titanium carbide, tungsten carbide, vanadium carbide, and zirconium carbide. The liquid phase consisted of nickel with additions of molybdenum of from 6.25 to 50.0 weight percent at doubling increments. The liquid phase or binder comprised 10, 20, and 40 percent by weight of the pressed powders. The specimens were tested using 3 point bending. Tungsten carbide showed the greatest improvement in bend rupture strength, flexural modulus, fracture energy and hardness using 20 percent binder with lesser amounts of molybdenum (6.25 or 12.5 wt %) added to nickel compared to pure nickel. A refinement in the carbide microstructure and/or a reduction in porosity was seen for both the titanium and tungsten carbides when the alloy binder was used compared to using the nickel alone. Curves depicting the above properties are shown for increasing amounts of molybdenum in nickel for each carbide examined. Loss of binder phase due to evaporation was experienced during heating in vacuum at sintering temperatures. In an effort to reduce porosity, identical specimens were HIP processed at 15 ksi and temperatures averaging 110 C below the sintering g temperature. The tungsten carbide and titanium carbide series containing 80 and 90 weight percent carbide phase respectively showed improvement properties after HIP while properties decreased for most other compositions

  11. Hot tungsten plate based ionizer for cesium plasma in a multi-cusp field experiment

    International Nuclear Information System (INIS)

    Patel, Amitkumar D.; Sharma, Meenakshee; Ramasubramanian, Narayanan; Chattopadhyay, Prabal K.

    2015-01-01

    In a newly proposed basic experiment, contact-ionized cesium ions will be confined by a multi cups magnetic field configuration. The cesium ion will be produced by impinging collimated neutral atoms on an ionizer consisting of the hot tungsten plate. The temperature of the tungsten plate will also be made high enough (∼2700 K) such that it will contribute electrons also to the plasma. It is expected that at this configuration the cesium plasma would be really quiescent and would be free from even the normal drift waves observed in the classical Q-machines. For the ionizer a design based on F. F. Chen's design was made. This ionizer is very fine machining and exotic material like Tungsten plate, Molybdenum screws, rings, and Boron Nitride ceramics etc. The fine and careful machining of these materials was very hard. In this paper, the experience about to join the tungsten wire to molybdenum plate and alloy of tantalum and molybdenum ring is described. In addition experimental investigations have been made to measure 2D temperature distribution profile of the Tungsten hot plate using infrared camera and the uniformity of temperature distribution over the hot plate surface is discussed. (author)

  12. Development of TiC and TiN coated molybdenum limiter system and initial results of the thermal testing in neutral beam heated JFT-2 tokamak

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Sengoku, Seio; Maeno, Masaki; Yamamoto, Shin; Seki, Masahiro; Kazawa, Minoru

    1982-06-01

    This paper describes the limiter drive system for TiC and TiN coated molybdenum limiters and the thermal testing results of the TiC coated limiter in the JFT-2 tokamak using neutral beam injection (0.7 MW). To investigate the influence of TiC coated limiter on plasma behavior and adhesion property under tokamak plasma, a full scale limiter test has been performed in the JFT-2. Reproducible plasma was obtained after the plasma conditioning. Maximum heat flux to the limiter, measured by IR camera, was 1.5 -- 6.5 kW/cm 2 in 25 msec. Cracking, exfoliation and melting on TiC coated limiter were not observed, except for a number of arc tracks. Finally, the permissible heat fluxes of TiC coated molybdenum first wall are discussed. (author)

  13. Features of soldering of molybdenum a lols

    International Nuclear Information System (INIS)

    Grishin, V.L.; Rybkin, B.V.; Cherkasov, A.F.

    1980-01-01

    Soldering features of complex-alloy molybdenum alloys were investigated in comparison with alloys based on solid solutions. Soldering features of heterogeneous molybdenum base alloys were investigated using samples of 0.5-1.O mm sheets with the strain of about 95% made of ingots which had been smelted in arc vacuum furnaces. The soldering of samples was carried out in 5x1O -5 mm Hg vacuum using different sources of heating: radiation, electron-ray and contact. It was shown that heat-resisting soldered joints of heterogeneous molybdenum alloys could be produced using zirconium and niobium base solders containing the most effective hardeners of the parent material (titanum, vanadium, tantalum, molybdenum, tungsten). To preserve high mechanical properties of heterogeneous alloys it was expedient to use for welding local heating sources which permitted to decrease considerably temperature- time conditions of the process

  14. Differential reflectometry of thin film metal oxides on copper, tungsten, molybdenum and chromium

    International Nuclear Information System (INIS)

    Urban, F.K. III; Hummel, R.E.; Verink, E.D. Jr.

    1982-01-01

    A differential reflectometry study was undertaken to investigate the characteristics of thin oxide films on metal substrates. The oxides were produced by heating pure metals of copper, tungsten, molybdenum and chromium in dry oxygen. A new 'halfpolishing' technique was applied to obtain specimens with a step in oxide thickness in order to make them suitable for differential reflectometry. It was found that oxides formed this way yielded the same differential reflectograms as by electrochemical oxidation. A mathematical model involving the interaction of light with a thin corrosion product on metal substrates was applied to generate computer calculated differential reflectograms utilizing various optical constants and thicknesses of the assumed film. Three different thickness ranges have been identified. (a) For large film thicknesses, the differential reflectograms are distinguished by a sequence of interference peaks. (b) If the product of thickness and refraction index of the films is smaller than about 40 nm, no interference peaks are present. Any experimentally observed peaks in differential reflectograms of these films are caused entirely by electron interband transitions. (c) In an intermediate thickness range, superposition of interference and interband peaks are observed. (author)

  15. Principles for prevention of toxic effects from metals

    DEFF Research Database (Denmark)

    Landrigan, Philip J.; Kotelchuk, David; Grandjean, Philippe

    2007-01-01

    of the Toxic Effects of Metals Aluminum Antimony Arsenic Barium Beryllium Bismuth Cadmium Chromium Cobalt Copper Gallium and Semiconductor Compounds Germanium Indium Iron Lead Manganese Mercury Molybdenum Nickel Palladium Platinum Selenium Silver Tellurium Thallium Tin Titanium Tungsten Uranium Vanadium Zinc...

  16. Principal component analysis of NEXAFS spectra for molybdenum speciation in hydrotreating catalysts

    International Nuclear Information System (INIS)

    Faro Junior, Arnaldo da C.; Rodrigues, Victor de O.; Eon, Jean-G.; Rocha, Angela S.

    2010-01-01

    Bulk and supported molybdenum based catalysts, modified by nickel, phosphorous or tungsten were studied by NEXAFS spectroscopy at the Mo L III and L II edges. The techniques of principal component analysis (PCA) together with a linear combination analysis (LCA) allowed the detection and quantification of molybdenum atoms in two different coordination states in the oxide form of the catalysts, namely tetrahedral and octahedral coordination. (author)

  17. Oxygen-ion-migration-modulated bipolar resistive switching and complementary resistive switching in tungsten/indium tin oxide/gold memory device

    Science.gov (United States)

    Wu, Xinghui; Zhang, Qiuhui; Cui, Nana; Xu, Weiwei; Wang, Kefu; Jiang, Wei; Xu, Qixing

    2018-06-01

    In this paper, we report our investigation of room-temperature-fabricated tungsten/indium tin oxide/gold (W/ITO/Au) resistive random access memory (RRAM), which exhibits asymmetric bipolar resistive switching (BRS) behavior. The device displays good write/erase endurance and data retention properties. The device shows complementary resistive switching (CRS) characteristics after controlling the compliance current. A WO x layer electrically formed at the W/ITO in the forming process. Mobile oxygen ions within ITO migrate toward the electrode/ITO interface and produce a semiconductor-like layer that acts as a free-carrier barrier. The CRS characteristic here can be elucidated in light of the evolution of an asymmetric free-carrier blocking layer at the electrode/ITO interface.

  18. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide

    Directory of Open Access Journals (Sweden)

    Franklin Che

    Full Text Available We have experimentally measured the surface second-harmonic generation (SHG of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver. Keywords: Surface second-harmonic generation, Nonlinear optics, Metal thin films

  19. Synthesis and electrical characterization of tungsten oxide nanowires

    Institute of Scientific and Technical Information of China (English)

    Huang Rui; Zhu Jing; Yu Rong

    2009-01-01

    Tungsten oxide nanowires of diameters ranging from 7 to 200 nm are prepared on a tungsten rod substrate by using the chemical vapour deposition (CVD) method with vapour-solid (VS) mechanism. Tin powders are used to control oxygen concentration in the furnace, thereby assisting the growth of the tungsten oxide nanowires. The grown tungsten oxide nanowires are determined to be of crystalline W18O49. Ⅰ-Ⅴ curves are measured by an in situ transmission electron microscope (TEM) to investigate the electrical properties of the nanowires. All of the Ⅰ-Ⅴ curves observed are symmetric, which reveals that the tungsten oxide nanowires are semiconducting. Quantitative analyses of the experimental I V curves by using a metal-semiconductor-metal (MSM) model give some intrinsic parameters of the tungsten oxide nanowires, such as the carrier concentration, the carrier mobility and the conductivity.

  20. Precipitation and ion floatation of molybdenum, tungsten, copper, and cobalt compounds by cetyltrimethylammonium bromide and sodium diethyldithiocarbamate

    International Nuclear Information System (INIS)

    Strizhko, V.S.; Shekhirev, D.V.; Ignatkina, V.A.; Alimova, R.Eh.

    1996-01-01

    Experimental data are presented on application of ion-flotation in purification of low-concentration (less than 10 -3 M) acid solutions from molybdenum, tungsten, copper and cobalt ions. Two collectors, i.e. DEDC and CTMAB have been tested, their optimal consumption is determined. It is shown that CTMAB provides for selective purification from Mo and W ions and allows foam product with little water on flotation in a column to be obtained. But the achieved residual W and Mo concentration of 20 to 10 mg/l require deeper finishing purification in order to meet a sanitary permissible limiting concentration value employing other methods. DEDC provides for sufficient purification from nonferrous metal ions but does not possess selectivity with respect to some metals. The obtained results have shown the possibility to apply ion-flotation in concentration of metal ions in foam product in the process of waste water purification with further finishing purification up to a sanitary permissible limiting concentration value. 14 refs.; 3 figs.; 1 tab

  1. Adhesion of non-selective CVD tungsten to silicon dioxide

    International Nuclear Information System (INIS)

    Woodruff, D.W.; Wilson, R.H.; Sanchez-Martinez, R.A.

    1986-01-01

    Adhesion of non-selective, CVD tungsten to silicon dioxide is a critical issue in the development of tungsten as a metalization for VLSI circuitry. Without special adhesion promoters, tungsten deposited from WF/sub 6/ and H/sub 2/ has typically failed a standard tape test over all types of silicon oxides and nitrides. The reasons for failure of thin films, and CVD tungsten in particular are explored along with standard techniques for improving adhesion of thin films. Experiments are reported which include a number of sputtered metals as adhesion promoters, as well as chemical and plasma treatment of the oxide surface. Sputtered molybdenum is clearly the superior adhesion promoting layer from these tests. Traditional adhesion layers such as chromium or titanium failed as adhesion layers for CVD tungsten possibly due to chemical reactions between the WF/sub 6/ and Cr or Ti

  2. Structure and phase transformation behavior of electroless Ni-P alloys containing tin and tungsten

    International Nuclear Information System (INIS)

    Balaraju, J.N.; Jahan, S. Millath; Jain, Anjana; Rajam, K.S.

    2007-01-01

    Autocatalytic ternary Ni-Sn-P, Ni-W-P and quaternary Ni-W-Sn-P films were prepared using alkaline citrate-based baths and compared with binary Ni-P coatings. Energy dispersive analysis of X-ray (EDAX) showed that binary Ni-P deposit contained 11.3 wt.% of phosphorus. Codeposition of tungsten in Ni-P matrix resulted in ternary Ni-W-P with 5 wt.% P and 7.8 wt.% of tungsten. Incorporation of tin led to ternary Ni-Sn-P deposit containing 0.4 wt.% Sn and 10.3 wt.% P. Presence of both sodium tungstate and sodium stannate in the basic bath had resulted in quaternary coating with 6.9 wt.% W, traces of Sn and 6.4 wt.% P. X-ray diffraction patterns of all the deposits revealed a single, broad peak which showed the nanocrystalline nature of the deposits. For the first time in related literature, the presence of a metastable phase Ni 12 P 5 in ternary deposits is reported in the present study. Metallographic cross-sections of all the deposits revealed the banded/lamellar structure. Scanning electron microscopy (SEM) studies of the deposits showed smooth nodules for ternary deposits, but coarse and well-defined nodules for quaternary deposits. DSC studies of phase transformation behavior of the ternary Ni-Sn-P deposit revealed a single sharp exothermic peak at 365 o C. However, ternary Ni-W-P and quaternary Ni-W-Sn-P deposits exhibited a low temperature peak at 300 o C, a split type high temperature peak at 405 and 440 o C and a very high temperature peak at 550 o C. Higher activation energy values were obtained for W-based alloy deposits. Presence of W and Sn has helped to retain high microhardness values even at higher temperatures indicating an improved thermal stability

  3. Economical characteristics of base types of minerals. 1. Metallic minerals

    International Nuclear Information System (INIS)

    Khasanov, A.Kh.

    1990-01-01

    Metallic minerals is raw materials base of black and colour metallurgy. In this article of book author describes the group of black metals (iron, manganese, chromium), group of tempers (titanium, vanadium, nickel, cobalt, molybdenum, tungsten), colour metals (copper, lead, zinc, aluminium, tin, mercury, antimony, bismuth) and etc.

  4. Tungsten and molybdenum double perovskites as pinning centers in melt-textured Y123

    Energy Technology Data Exchange (ETDEWEB)

    Sawh, Ravi-Persad; Weinstein, Roy; Parks, Drew; Gandini, Alberto; Ren, Yanru; Rusakova, Irene

    2003-01-01

    Y123+30 mol% Y211 powders were doped with tungsten and platinum, and textured. Microstructure studies show the presence of profuse spherical deposits, 200-300 nm in diameter. These deposits were identified as (W{sub 0.5}Pt{sub 0.5})YBa{sub 2}O{sub 6}, a double perovskite. The size of the W-rich deposits is independent of the W doping level. There is no substitution of W into the Y123 matrix. For Pt doping >0.5 wt.%, trapped field is observed to increase monotonically up to 40% for W doping of up to 0.48 wt.%. We conservatively estimate that this corresponds to a 60% increase in J{sub c} at constant field. Thus (W{sub 0.5}Pt{sub 0.5})YBa{sub 2}O{sub 6} double perovskites deposits act as pinning centers. Similar studies of molybdenum doping indicate deposits 200-300 nm, of (Mo{sub 0.5}Pt{sub 0.5})YBa{sub 2}O{sub 6}, also a double perovskite. The (W{sub 0.5}Pt{sub 0.5})YBa{sub 2}O{sub 6} and (Mo{sub 0.5}Pt{sub 0.5})YBa{sub 2}O{sub 6} deposits are remarkably similar to the (U{sub 0.6}Pt{sub 0.4})YBa{sub 2}O{sub 6} deposits found earlier in U-doped Y123. Therefore, W and Mo are suitable non-radioactive substitutes for U.

  5. Fundamentals of and experiences with forming by rolling of sintered rods of the high-melting metals molybdenum and tungsten

    International Nuclear Information System (INIS)

    Kohlstrung, G.; Marx, H.; Bresch, J.; Leich, M.; Kalning, I.

    1986-01-01

    An efficient and economical technique for rolling sintered rods of the high-melting metals molybdenum and tungsten which comprises only a minimum of processing steps and provides crucial advantages in comparison with the conventional hammering procedure has been developed for application in medium-sized powder-metallurgical plants. The advantages are, in particular, given with the favourable structure development and the elimination of pores from the sintered bar as a result of the higher degree of deformation, increased labour productivity, savings of electrical energy and consumables, as well as a reduction of the working inconveniencies. Experiences gained in test series as well as in industrial practice indicate that final wire diameters can be obtained with a high material economy, provided that the preceding and subsequent process stages are adapted in the optimum manner dependent on the physical and chemical parameters of the starting material and the strain-hardening behaviour in the process of forming by rolling. (orig.) [de

  6. Targets for the production of neutron activated molybdenum-99

    International Nuclear Information System (INIS)

    Hetherington, E.L.R.; Boyd, R.E.

    1999-01-01

    Neutron activation of natural molybdenum is, ostensibly, the least complex route to 99m Tc. However in most commercial generators the severe limitation in 99 Mo specific activity that the route imposes has caused manufacturers to choose the alternative fission process despite its disadvantages of being more expensive and requiring a more complex waste management strategy. The development of a newer generator technology is capable of reviving the demand for neutron activated 99 Mo and might encourage the production of 99m Tc by countries possessing less developed nuclear infrastructures. The targets used in the (n,γ) production route consist of analytical grade molybdenum trioxide which has been further refined to remove both rhenium and tungsten trace impurities. The basic methods used by ANSTO to produce a molybdenum target capable of yielding 99m Tc of high radionuclidic purity are described. (author)

  7. Tin

    Science.gov (United States)

    Kamilli, Robert J.; Kimball, Bryn E.; Carlin, James F.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    , temporal, and genetic association with highly differentiated, peraluminous porphyritic granite intrusions. The intrusions form pegmatites; disseminated ore; parallel or subparallel, greisen-bordered sheeted veins that either cross-cut the intrusion or are peripheral to it; skarns; and (or) limestone replacements that contain different amounts of cassiterite, molybdenite, and wolframite.The tectonic settings of tin-bearing granites are relatively well understood and of limited variety. Tin and tungsten deposits and their associated igneous rocks are found mainly in continental settings.Historically, prospecting for tin has been carried out by the time-honored methods of panning, drilling, trenching, and assaying. Geophysical and geochemical surveys have been employed to cover large areas more rapidly, isolating areas of possible tin deposits so that drilling can be more effective and less costly. Elemental concentrations and relationships of the lithophile elements, especially barium, lithium, niobium, potassium, rubidium, and zirconium, are the most reliable chemical indicators of ore-forming processes and tin-bearing potential.The average human diet includes an intake of about 10 milligrams per day of tin. Ingestion of tin in significantly greater amounts than 10 milligrams per day may lead to a stomach ache, anemia, and liver and kidney problems. Exposure to some organo-tin compounds can interfere with brain and nervous system function and, in severe cases, can cause death. Extended inhalation of tin oxide—an issue mainly for those people who work in the tin industry—results in a higher potential to develop stannosis, which is a mild disease of the lungs caused by the inhalation of tin-bearing dust. Inorganic tin is poorly absorbed by the body, and no evidence exists for the carcinogenicity of metallic tin and tin compounds in humans.Most placer tin deposits are mined by open pit and (or) dredging methods. Mining of alluvial placers in modern streambeds and riverbeds

  8. The relationship between structural evolution and electrical percolation of the initial stages of tungsten chemical vapor deposition on polycrystalline TiN

    International Nuclear Information System (INIS)

    Rozenblat, A.; Haimson, S.; Shacham-Diamand, Y.; Horvitz, D.

    2012-01-01

    This paper presents experimental results and a geometric model of the evolution of sheet resistance and surface morphology during the transition from nucleation to percolation of tungsten chemical vapor deposition over ultrathin polycrystalline titanium nitride (TiN). We observed two mechanisms of reduction in sheet resistance. At deposition temperatures higher than 310 deg. C, percolation effect is formed at ∼35% of surface coverage, θ, and characterized with a sharp drop in resistance. At temperature below 310 deg. C, a reduction in resistance occurs in two steps. The first step occurs when θ = 35% and the second step at θ = 85%. We suggest a geometric model in which the electrical percolation pass is modulated by the thickness threshold of the islands at the instant of collision.

  9. Study of arsenopyrite weathering products in mine wastes from abandoned tungsten and tin exploitations

    Energy Technology Data Exchange (ETDEWEB)

    Murciego, A. [Department of Geology, Plza. de los Caidos s/n. Salamanca University, 37008 Salamanca (Spain); Alvarez-Ayuso, E., E-mail: esther.alvarez@irnasa.csic.es [Department of Environmental Geochemistry, IRNASA (CSIC), Apdo. 257, 37071 Salamanca (Spain); Pellitero, E. [Department of Geology, Plza. de los Caidos s/n. Salamanca University, 37008 Salamanca (Spain); Rodriguez, M.A. [Faculty of Sciences, Crystallography and Mineralogy Area, Avd. Elvas s/n. Extremadura University, 06071 Badajoz (Spain); Garcia-Sanchez, A. [Department of Environmental Geochemistry, IRNASA (CSIC), Apdo. 257, 37071 Salamanca (Spain); Tamayo, A.; Rubio, J.; Rubio, F. [Ceramic and Glass Institute (CSIC), c/Kelsen, 5, 28049 Cantoblanco, Madrid (Spain); Rubin, J. [Material Science Institute of Aragon, CSIC-Zaragoza University, c/Maria de Luna 3, 50009 Zaragoza (Spain)

    2011-02-15

    Arsenopyrite-rich wastes from abandoned tungsten and tin exploitations were studied to determine the composition and characteristics of the secondary phases formed under natural weathering conditions so as to assess their potential environmental risk. Representative weathered arsenopyrite-bearing rock wastes collected from the mine dumps were analysed using the following techniques: X-ray powder diffraction (XRD) analysis, polarizing microscopy analysis, electron microprobe analysis (EMPA) and microRaman and Moessbauer spectroscopies. Scorodite, pharmacosiderite and amorphous ferric arsenates (AFA) with Fe/As molar ratios in the range 1.2-2.5 were identified as secondary arsenic products. The former showed to be the most abundant and present in the different studied mining areas. Its chemical composition showed to vary in function of the original surrounding rock mineralogy in such a way that phosphoscorodite was found as the mineral variety present in apatite-containing geoenvirons. Other ever-present weathering phases were goethite and hydrous ferric oxides (HFO), displaying, respectively, As retained amounts about 1 and 20% (expressed as As{sub 2}O{sub 5}). The low solubility of scorodite, the relatively low content of AFA and the formation of compounds of variable charge, mostly of amorphous nature, with high capacity to adsorb As attenuate importantly the dispersion of this element into the environment from these arsenopyrite-bearing wastes.

  10. Study of arsenopyrite weathering products in mine wastes from abandoned tungsten and tin exploitations

    International Nuclear Information System (INIS)

    Murciego, A.; Alvarez-Ayuso, E.; Pellitero, E.; Rodriguez, M.A.; Garcia-Sanchez, A.; Tamayo, A.; Rubio, J.; Rubio, F.; Rubin, J.

    2011-01-01

    Arsenopyrite-rich wastes from abandoned tungsten and tin exploitations were studied to determine the composition and characteristics of the secondary phases formed under natural weathering conditions so as to assess their potential environmental risk. Representative weathered arsenopyrite-bearing rock wastes collected from the mine dumps were analysed using the following techniques: X-ray powder diffraction (XRD) analysis, polarizing microscopy analysis, electron microprobe analysis (EMPA) and microRaman and Moessbauer spectroscopies. Scorodite, pharmacosiderite and amorphous ferric arsenates (AFA) with Fe/As molar ratios in the range 1.2-2.5 were identified as secondary arsenic products. The former showed to be the most abundant and present in the different studied mining areas. Its chemical composition showed to vary in function of the original surrounding rock mineralogy in such a way that phosphoscorodite was found as the mineral variety present in apatite-containing geoenvirons. Other ever-present weathering phases were goethite and hydrous ferric oxides (HFO), displaying, respectively, As retained amounts about 1 and 20% (expressed as As 2 O 5 ). The low solubility of scorodite, the relatively low content of AFA and the formation of compounds of variable charge, mostly of amorphous nature, with high capacity to adsorb As attenuate importantly the dispersion of this element into the environment from these arsenopyrite-bearing wastes.

  11. [Study on the method for the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current arc full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES)].

    Science.gov (United States)

    Hao, Zhi-hong; Yao, Jian-zhen; Tang, Rui-ling; Zhang, Xue-mei; Li, Wen-ge; Zhang, Qin

    2015-02-01

    The method for the determmation of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current are full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES) was established. Direct current are full spectrum direct reading atomic emission spectrometer with a large area of solid-state detectors has functions of full spectrum direct reading and real-time background correction. The new electrodes and new buffer recipe were proposed in this paper, and have applied for national patent. Suitable analytical line pairs, back ground correcting points of elements and the internal standard method were selected, and Ge was used as internal standard. Multistage currents were selected in the research on current program, and each current set different holding time to ensure that each element has a good signal to noise ratio. Continuous rising current mode selected can effectively eliminate the splash of the sample. Argon as shielding gas can eliminate CN band generating and reduce spectral background, also plays a role in stabilizing the are, and argon flow 3.5 L x min(-1) was selected. Evaporation curve of each element was made, and it was concluded that the evaporation behavior of each element is consistent, and combined with the effects of different spectrographic times on the intensity and background, the spectrographic time of 35s was selected. In this paper, national standards substances were selected as a standard series, and the standard series includes different nature and different content of standard substances which meet the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples. In the optimum experimental conditions, the detection limits for B, Mo, Ag, Sn and Pb are 1.1, 0.09, 0.01, 0.41, and 0.56 microg x g(-1) respectively, and the precisions (RSD, n=12) for B, Mo, Ag, Sn and Pb are 4.57%-7.63%, 5.14%-7.75%, 5.48%-12.30%, 3.97%-10.46%, and 4.26%-9.21% respectively. The analytical accuracy was

  12. Tungsten - rhenium alloys wire: overview of thermomechanical processing and properties data

    International Nuclear Information System (INIS)

    Bryskin, B.

    2001-01-01

    The scope of this study encompasses the compositional modifications of the tungsten-rhenium dual system (W-3/5 Re up to W-27 Re) as well as some of the tungsten-molybdenum-rhenium ternary system. The alloys of interest are considered with a specific representation of powder metallurgy route based on doped or undoped tungsten vs. vacuum melted materials. This paper constitutes an in-depth review of structural and mechanical properties and systematic compilation of challenges necessary to provide the quality consistency of severely drawn filaments. The issue of thermomechanical processing trends is addressed as an important part of W-Re fabrication technology to achieve further improvement in design properties of rod and wire. (author)

  13. Calculation of the X-Ray Spectrum of a Mammography System with Various Voltages and Different Anode-Filter Combinations Using MCNP Code

    Directory of Open Access Journals (Sweden)

    Lida Gholamkar

    2016-09-01

    Full Text Available Introduction One of the best methods in the diagnosis and control of breast cancer is mammography. The importance of mammography is directly related to its value in the detection of breast cancer in the early stages, which leads to a more effective treatment. The purpose of this article was to calculate the X-ray spectrum in a mammography system with Monte Carlo codes, including MCNPX and MCNP5. Materials and Methods The device, simulated using the MCNP code, was Planmed Nuance digital mammography device (Planmed Oy, Finland, equipped with an amorphous selenium detector. Different anode/filter materials, such as molybdenum-rhodium (Mo-Rh, molybdenum-molybdenum (Mo-Mo, tungsten-tin (W-Sn, tungsten-silver (W-Ag, tungsten-palladium (W-Pd, tungsten-aluminum (W-Al, tungsten-molybdenum (W-Mo, molybdenum-aluminum (Mo-Al, tungsten-rhodium (W-Rh, rhodium-aluminum (Rh-Al, and rhodium-rhodium (Rh-Rh, were simulated in this study. The voltage range of the X-ray tube was between 24 and 34 kV with a 2 kV interval. Results The charts of changing photon flux versus energy were plotted for different types of anode-filter combinations. The comparison with the findings reported by others indicated acceptable consistency. Also, the X-ray spectra, obtained from MCNP5 and MCNPX codes for W-Ag and W-Rh combinations, were compared. We compared the present results with the reported data of MCNP4C and IPEM report No. 78 for Mo-Mo, Mo-Rh, and W-Al combinations. Conclusion The MCNPX calculation outcomes showed acceptable results in a low-energy X-ray beam range (10-35 keV. The obtained simulated spectra for different anode/filter combinations were in good conformity with the finding of previous research.

  14. Synthesis of molybdenum and tungsten modified composite systems based on bisorbent from rice husk

    Directory of Open Access Journals (Sweden)

    Duisek Haisagalievich Kamysbaev

    2017-12-01

    Full Text Available The article presents results of the synthesis of a new composite material modified with polyvalent metals. Rice husk was chosen as a raw material for obtaining a carrier – a bisorbent consisting of carbon and amorphous silicon oxide. The sorption material was obtained from the products of thermal decomposition of rice husks. Further it was modified with ammonium salts of molybdenum and tungsten: (NH46Mo7O24·4H2O and (NH42O·12WO3·5H2O in Mo/W ratios: 5/5 wt. %, 10/5 wt. % and reducted by heating in a stream of hydrogen. The registration of the voltammetric curves in the medium of 1-methyl-4-piperidone was carried out in various background electrolytes: 0.2 M Li2SO4, pH = 6.36 and 0.1 M KOH, pH = 13, 2,5·10–2 M K2HPO4 + 2,5·10–2 M NaH2PO4, pH = 6.86. Differential voltammetric curves were analyzed. The electrochemical activity of the obtained modified composites in the potential range from -1.2 V to 0.5 V was determinated. The mechanism of the proceeding electrochemical processes on these modified electrode materials has been studied. The possibility of further use of synthesized composite systems based on bisorbents from the rice husk for the electrochemical reduction of 1-methyl-4-piperidone was shown.

  15. Elaboration, physical and electrochemical characterizations of CO tolerant PEMFC anode materials. Study of platinum-molybdenum and platinum-tungsten alloys and composites; Elaborations et caracterisations electrochimiques et physiques de materiaux d'anode de PEMFC peu sensibles a l'empoisonnement par CO: etude d'alliages et de composites a base de platine-molybdene et de platine-tungstene

    Energy Technology Data Exchange (ETDEWEB)

    Peyrelade, E.

    2005-06-15

    PEMFC development is hindered by the CO poisoning ability of the anode platinum catalyst. It has been previously shown that the oxidation potential of carbon monoxide adsorbed on the platinum atoms can be lowered using specific Pt based catalysts, either metallic alloys or composites. The objective is then to realize a catalyst for which the CO oxidation is compatible with the working potential of a PEMFC anode. In our approach, to enhance the CO tolerance of platinum based catalyst supported on carbon, we studied platinum-tungsten and platinum-molybdenum alloys and platinum-metal oxide materials (Pt-WO{sub x} and Pt-MoO{sub x}). The platinum based alloys demonstrate a small effect of the second metal towards the oxidation of carbon monoxide. The platinum composites show a better tolerance to carbon monoxide. Electrochemical studies on both Pt-MoO{sub x} and Pt-WO{sub x} demonstrate the ability of the metal-oxides to promote the ability of Pt to oxidize CO at low potentials. However, chrono-amperometric tests reveal a bigger influence of the tungsten oxide. Complex chemistry reactions on the molybdenum oxide surface make it more difficult to observe. (author)

  16. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

  17. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

  18. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

  19. Tungsten and refractory metals 3, proceedings

    International Nuclear Information System (INIS)

    Bose, A.; Dowding, R.J.

    1996-01-01

    The Third International Conference on Tungsten and Refractory Metals was held in Greater Washington DC at the McLean Hilton, McLean Virginia, on November 15--16, 1995. This meeting was the third in a series of conferences held in the Washington DC area. The first meeting was in 1992 and was entitled ''International Conference on Tungsten and Tungsten Alloys.'' In 1994, the scope of the meeting was expanded to include other refractory metals such as molybdenum, iridium, rhenium, tantalum and niobium. The tremendous success of that meeting was the primary motivation for this Conference. The broader scope (the inclusion of other refractory metals and alloys) of the Conference was kept intact for this meeting. In fact, it was felt that the developments in the technology of these materials required a common forum for the interchange of current research information. The papers presented in this meeting examined the rapid advancements in the technology of refractory metals, with special emphasis on the processing, structure, and properties. Among the properties there was emphasis on both quasi-static and dynamic rates. Another topic that received considerable interest was the area of refractory carbides and tungsten-copper composites. One day of concurrent session was necessary to accommodate all of the presentations

  20. Oxidation of cyclic amines by molybdenum(II and tungsten(II halocarbonyls, [M(CO4X2]2 (M = Mo, W; X = Cl, Br

    Directory of Open Access Journals (Sweden)

    H.M. Mbuvi

    2013-05-01

    Full Text Available The molybdenum(II and tungsten(II halocarbonyls, [M(CO4X2]2 (M = Mo, W; X = Cl, Br react with a large excess of the nitrogen bases, 1-methylpyrrolidine, 1-methylpiperidine, 1-ethylpiperidine and 2-ethylpiperidine to give aminecarbonyl complexes of the type M(CO3L3 (L= alkylamine. Excess piperidine reacts with the tungsten halocarbonyls, [W(CO4X2]2 (X = Cl, Br, to give the trans isomer of the complex, W(CO3(C5H11N3. The halogens were recovered as the amminium salts, amine, HX. The oxidized amine dimerized to form a yellow product which was recovered as an oily liquid but in very small amounts. However, in the reaction between Mo(CO4Br2 and 1-ethylpiperidine, a yellow crystalline solid, with a melting point of 224 oC was recovered in sufficient amounts for elemental analysis, melting point and spectral data. Its mass spectrum showed a molecular ion peak at m+/z = 222, a clear evidence that the oxidized amine dimerizes. The cyclic dibasic amine piperazine, C4H10N2 is not, however, oxidized by these halocarbonyls but rather it reacts by substituting some CO groups to form products of the type, M(CO3(C4H10N22X2 (M = Mo, W; X = Cl, Br. Products were characterized by elemental analysis, IR, UV, 1H NMR and mass spectrometry.

  1. Spectrophotometric determination of tungsten with salicylic acid

    International Nuclear Information System (INIS)

    Goncalves, Z.C.

    1976-10-01

    The method comprises the complexation of tungsten with salicylic acid in concentrated sulphuric acid yielding a reddish color. The maximum absorbance of the complex lies within 410-420 nm, 420 nm being the chosen wavelenght. The final concentration of salicylic acid is 0,080 g/ml. The sensitivity is 0,13 μg W(%T) -1 ml -1 . Titanium, vanadium, rhenium, niobium and molybdenum interferes and must be separated, titanium being the strongest interferent. The separation procedures, advantages of the process, stoichiometric relations and equilibrium constant are discussed. (Author) [pt

  2. Composites having an intermetallic containing matrix

    International Nuclear Information System (INIS)

    Nagle, D.C.; Brupbacher, J.M.; Christodoulou, L.

    1990-01-01

    This paper describes a composite material. It comprises: a dispersion of in-situ precipitated second phase particles selected from the group consisting of borides, carbides, nitrides, and sulfides, in an intermetallic containing matrix selected from the group consisting of the aluminides, silicides, and beryllides of nickel, copper, titanium, cobalt, iron, platinum, gold, silver, niobium, tantalum, zinc, molybdenum, hafnium, tin, tungsten, lithium, magnesium, thorium, chromium, vanadium, zirconium, and manganese

  3. Molybdenum, molybdenum oxides, and their electrochemistry.

    Science.gov (United States)

    Saji, Viswanathan S; Lee, Chi-Woo

    2012-07-01

    The electrochemical behaviors of molybdenum and its oxides, both in bulk and thin film dimensions, are critical because of their widespread applications in steels, electrocatalysts, electrochromic materials, batteries, sensors, and solar cells. An important area of current interest is electrodeposited CIGS-based solar cells where a molybdenum/glass electrode forms the back contact. Surprisingly, the basic electrochemistry of molybdenum and its oxides has not been reviewed with due attention. In this Review, we assess the scattered information. The potential and pH dependent active, passive, and transpassive behaviors of molybdenum in aqueous media are explained. The major surface oxide species observed, reversible redox transitions of the surface oxides, pseudocapacitance and catalytic reduction are discussed along with carefully conducted experimental results on a typical molybdenum glass back contact employed in CIGS-based solar cells. The applications of molybdenum oxides and the electrodeposition of molybdenum are briefly reviewed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Influence of molybdenum impurity on the electronic properties of refractory phases

    International Nuclear Information System (INIS)

    Ivanovskij, A.L.

    1992-01-01

    Results of calculations of electronic structure modification of refractory phases - TiC, TiN - during dissolution in their volume of molybdenum as the element, dominating in the processes of formation of ring transition area (K-phase) are presented. It is shown that reconstruction of local state density (LSD) of Mo in the system Ni:Mo reflects the effects of impurity state and nickel valency area hybridization. LSD of Mo in MoC, MoN acquires quite a new form

  5. Annual reports in inorganic and general syntheses 1974

    CERN Document Server

    Niedenzu, Kurt

    1975-01-01

    Annual Reports in Inorganic and General Syntheses-1974 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book discusses the chemistry of simple and complex metal hydrides of main groups I, II, and III, boron, aluminium, gallium, indium, thallium, silicon, germanium, tin, lead, phosphorus, arsenic, antimony, bismuth, chalcogens, halogens, and pseudohalogens. The text also describes the chemistry of scandium, yttrium, lanthanides, actinides, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, ma

  6. Capacitive performance of molybdenum nitride/titanium nitride nanotube array for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn; Tian, Fang

    2017-01-15

    Highlights: • MoN{sub x}/TiN NTA is fully converted from MoO{sub 2}/TiO{sub 2} NTA by one-step nitridation process. • MoN{sub x}/TiN NTA is used as feasible electrode material of high-performance supercapacitor. • MoN{sub x}/TiN NTA shows high capacitance, rate capability and cycling stability. - Abstract: Molybdenum nitride (MoN{sub x}) depositing on titanium nitride nanotube array (TiN NTA) was designed as MoN{sub x}/TiN NTA for supercapacitor electrode material. MoN{sub x}/TiN NTA was fabricated by electrodepositing molybdenum oxide onto titanium dioxide NTA and one-step nitridation treatment in ammonia. MoN{sub x}/TiN NTA involved top-surface layer of MoN{sub x} nanoparticles and underlying layer of TiN NTA, which contributed to electric double layer capacitance in aqueous lithium-ion electrolyte solution. The specific capacitance was increased from 69.05 mF cm{sup −2} for TiN NTA to 121.50 mF cm{sup −2} for MoN{sub x}/TiN NTA at 0.3 mA cm{sup −2}, presenting the improved capacitance performance. MoN{sub x} exhibited the capacitance of 174.83 F g{sup −1} at 1.5 A g{sup −1} and slightly declined to 109.13 F g{sup −1} at 30 A g{sup −1}, presenting high rate capability. MoN{sub x}/TiN NTA exhibited the capacitance retention ratio of 93.8% at 3.0 mA cm{sup −2} after 1000 cycles, presenting high cycling stability. MoN{sub x}/TiN NTA could act as a promising electrode material of supercapacitor.

  7. The determination, by x-ray-fluorescence spectrometry, of tin and zinc in ores, middlings, and residues

    International Nuclear Information System (INIS)

    Balaes, A.M.E.

    1984-01-01

    The method of analysis is applicable to samples with tin and zinc contents from 15μg/g upwards. Samples with widely ranging concentrations of the analytes are diluted with river sand. The matrix variations are compensated for by the use of briquettes containing coarse river sand, a styrene copolymer binder, and an internal standard. Tungsten is used as the internal standard for zinc, and antimony for tin. Calibration graphs for zinc and tin are obtained by the use of a reference material for tin and of zinc oxide for zinc. The precision of the analysis for each element does not exeed 0,040 relative standard deviation. The agreement between the analysis and the accepted international values and recommended values for in-house reference materials is better than 3 per cent over the concentration range 50μg/g to 16 per cent. The lower limits of detection are 2μg/g for tin and 3μg/g for zinc. The overall time required for the analysis of 10 samples, one control sample, and five calibration standards is approximately 3 hours

  8. Experimental mechanistic investigation of the nanostructuring of tungsten with low energy helium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fiflis, P., E-mail: fiflis1@illinois.edu; Connolly, N.; Ruzic, D.N.

    2016-12-15

    Helium ion bombardment of tungsten at temperatures between approximately one third and one half of its melting point has shown growth of nanostructures colloquially referred to as “fuzz”. The nanostructures take the form of thin tendrils of diameter about 30 nm and grow out of the bulk material. Tungsten will and does compose one of the key materials for plasma facing components (PFCs) in fusion reactors. The formation of nanostructured fuzz layers on PFCs would be detrimental to the performance of the reactor, and must therefore be avoided. Previous experiments have shown evidence that tungsten fuzz is initially grown by loop punching of helium bubbles created in the bulk. However, once the tendrils grow to sufficient length, the tendrils should intercept the entire helium flux, halting the production of fuzz. Fuzz continues to grow though. To increase the understanding of the mechanisms of tungsten fuzz formation, and thereby aid the avoidance of its production, a series of tests were performed to examine the validity of several theories regarding later stage tungsten fuzz growth. Tests showed that the fuzz formation was dependent solely on the bombardment of helium ions, and not on electric fields, or adatom diffusion. Experiments employing a tungsten coated molybdenum sample indicate the presence of a strong mixing layer and strongly suggest that tungsten fuzz growth continues to occur from the bottom up even as the tendrils grow in size. Tests also show a similarity between different metals exposed to helium ion fluxes where the ratio of bubble diameter to tendril diameter is constant.

  9. Experimental mechanistic investigation of the nanostructuring of tungsten with low energy helium plasmas

    International Nuclear Information System (INIS)

    Fiflis, P.; Connolly, N.; Ruzic, D.N.

    2016-01-01

    Helium ion bombardment of tungsten at temperatures between approximately one third and one half of its melting point has shown growth of nanostructures colloquially referred to as “fuzz”. The nanostructures take the form of thin tendrils of diameter about 30 nm and grow out of the bulk material. Tungsten will and does compose one of the key materials for plasma facing components (PFCs) in fusion reactors. The formation of nanostructured fuzz layers on PFCs would be detrimental to the performance of the reactor, and must therefore be avoided. Previous experiments have shown evidence that tungsten fuzz is initially grown by loop punching of helium bubbles created in the bulk. However, once the tendrils grow to sufficient length, the tendrils should intercept the entire helium flux, halting the production of fuzz. Fuzz continues to grow though. To increase the understanding of the mechanisms of tungsten fuzz formation, and thereby aid the avoidance of its production, a series of tests were performed to examine the validity of several theories regarding later stage tungsten fuzz growth. Tests showed that the fuzz formation was dependent solely on the bombardment of helium ions, and not on electric fields, or adatom diffusion. Experiments employing a tungsten coated molybdenum sample indicate the presence of a strong mixing layer and strongly suggest that tungsten fuzz growth continues to occur from the bottom up even as the tendrils grow in size. Tests also show a similarity between different metals exposed to helium ion fluxes where the ratio of bubble diameter to tendril diameter is constant.

  10. Determination of tungsten in high-alloy steels and heat resisting alloys by isotope dilution-spark source mass spectrometry

    International Nuclear Information System (INIS)

    Saito, Morimasa; Yamada, Kei; Okochi, Haruno; Hirose, Fumio

    1983-01-01

    Tungsten in high-alloy steels and heat-resisting alloys was determined by isotope dilution method combined with spark source mass spectrometry by using 183 W enriched tungsten. The spike solution was prepared by fusing tungsten trioxide in sodium carbonate. A high-alloy steel sample was dissolved in the mixture of sulfuric acid and phosphoric acid together with the spike solution; a sample of heat resisting alloy was similarly dissolved in the mixture of hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid. The solution was evaporated to give dense white fumes. Tungsten was separated from the residue by a conventional cinchonine salt-precipitation method. The salt was ignited, and the residue was mixed with graphite powder and pressed into electrodes. The isotope 183 W and 184 W were measured. The method was applied to the determination of tungsten in JSS and NBS standard high-alloy steels and JAERI standard nickel- and NBS standard cobalt-base heat resisting alloys containing more than 0.05% tungsten. The results were obtained with satisfactory precision and accuracy. However, the results obtained for JSS standard high- speed steels containing molybdenum tended to be significantly lower than the certified values. (author)

  11. Effects of tungsten and titanium oxide nanoparticles on the diazotrophic growth and metals acquisition by Azotobacter vinelandii under molybdenum limiting condition.

    Science.gov (United States)

    Allard, Patrick; Darnajoux, Romain; Phalyvong, Karine; Bellenger, Jean-Philippe

    2013-02-19

    The acquisition of essential metals, such as the metal cofactors (molybdenum (Mo) and iron (Fe)) of the nitrogenase, the enzyme responsible for the reduction of dinitrogen (N(2)) to ammonium, is critical to N(2) fixing bacteria in soil. The release of metal nanoparticles (MNPs) to the environment could be detrimental to N(2) fixing bacteria by introducing a new source of toxic metals and by interfering with the acquisition of essential metals such as Mo. Since Mo has been reported to limit nonsymbiotic N(2) fixation in many ecosystems from tropical to cold temperate, this question is particularly acute in the context of Mo limitation. Using a combination of microbiology and analytical chemistry techniques, we have evaluated the effect of titanium (Ti) and tungsten (W) oxide nanoparticles on the diazotrophic growth and metals acquisition in pure culture of the ubiquitous N(2) fixing bacterium Azotobacter vinelandii under Mo replete and Mo limiting conditions. We report that under our conditions (≤10 mg·L(-1)) TiO(2) NPs have no effects on the diazotrophic growth of A. vinelandii while WO(3) NPs are highly detrimental to the growth especially under Mo limiting conditions. Our results show that the toxicity of WO(3) NPs to A. vinelandii is due to an interference with the catechol-metalophores assisted uptake of Mo.

  12. Al Kushaymiyah as a target for a Colorado-type molybdenite deposit

    Science.gov (United States)

    Theobald, P.K.

    1971-01-01

    The granitic complex in the vicinity of Al Kushaymiyah was singled out by Whitlow (19,69, 1969a, 1971), as one of the most promising areas for exploration in the Southern Wajd quadrangle (Jackson and others, 1962). He noted in particular the intensity of shattering and silicification of these potassium-rich granites, and the presence of unusual concentrations of tungsten , molybdenum, and tin in samples from the area. In the light of shield-wide compilations, this area again stands out as the principal geochemical anomaly for the three metals. The similarity of these unusual geologic and geochemical features to those of Colorado-type molybdenite deposits is striking and suggests that the Al Kushaymiyah provides a favorableenvironment to explore for a stockwork molybdenum deposit.

  13. Vapor deposition of molybdenum oxide using bis(ethylbenzene) molybdenum and water

    International Nuclear Information System (INIS)

    Drake, Tasha L.; Stair, Peter C.

    2016-01-01

    Three molybdenum precursors—bis(acetylacetonate) dioxomolybdenum, molybdenum isopropoxide, and bis(ethylbenzene) molybdenum—were tested for molybdenum oxide vapor deposition. Quartz crystal microbalance studies were performed to monitor growth. Molybdenum isopropoxide and bis(ethylbenzene) molybdenum achieved linear growth rates 0.01 and 0.08 Å/cycle, respectively, using atomic layer deposition techniques. Negligible MoO_x growth was observed on alumina powder using molybdenum isopropoxide, as determined by inductively coupled plasma optical emission spectroscopy. Bis(ethylbenzene) molybdenum achieved loadings of 0.5, 1.1, and 1.9 Mo/nm"2 on alumina powder after one, two, and five cycles, respectively, using atomic layer deposition techniques. The growth window for bis(ethylbenzene) molybdenum is 135–150 °C. An alternative pulsing strategy was also developed for bis(ethylbenzene) molybdenum that results in higher growth rates in less time compared to atomic layer deposition techniques. The outlined process serves as a methodology for depositing molybdenum oxide for catalytic applications. All as-deposited materials undergo further calcination prior to characterization and testing.

  14. Molybdenum and tungsten disulfides surface-modified with a conducting polymer, polyaniline, for application in electrorheology

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Mrlík, M.; Plachý, T.; Trchová, Miroslava; Kovářová, Jana; Li, Yu

    2017-01-01

    Roč. 120, November (2017), s. 30-37 ISSN 1381-5148 R&D Projects: GA ČR(CZ) GA17-04109S Institutional support: RVO:61389013 Keywords : molybdenum sulfide * polyaniline * conducting polymer Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.151, year: 2016

  15. Codeposition of either molybdenum or tungsten with the metals of iron group 8. The citric acid influence on codeposition of nickel and tungsten from sulphamic electrolytes

    International Nuclear Information System (INIS)

    Bernotas, A.; Kadziauskiene, V.; Jasulaitiene, V.

    1995-01-01

    The influence of citric acid on codeposition of Ni and W from sulphamic electrolytes was investigated by measuring the hydrogen content in electro deposits and determining the current efficiency and the alloy composition by chemical analysis and X-ray spectroscopy. The reduction of W(VI) to W(0) in the electrolyte with and without citric acid was found to proceed through the formation of tungsten compounds of intermediate oxidation state. It is supposed that an increased amount of tungsten in the alloys with the increase of citric acid concentration in the electrolyte (to 0.042 mol/l) is caused by a large amount of W(IV) at the cathodic surface. The further increase of the concentration of citric acid in the electrolyte causes a decrease of tungsten amount in the alloy, because the blocking of the metallic surface of Ni and W by W compounds of intermediate oxidation state makes the reduction of W(VI) to W(0) more difficult. (author). 8 refs., 3 figs., 1 tab

  16. Molybdenum-base cermet fuel development

    International Nuclear Information System (INIS)

    Gurwell, W.E.; Moss, R.W.; Pilger, J.P.; White, G.D.

    1987-07-01

    Development of a multimegawatt (MMW) space nuclear power system requires identification and resolution of several technical feasibility issues before selecting one or more promising system concepts. Demonstration of reactor fuel fabrication technology is required for cermet-fueled reactor concepts. MMW reactor fuel development activity at Pacific Northwest Laboratory (PNL) is focused on producing a molybdenum-matrix uranium-nitride (UN) fueled cermet. This cermet is to have a high matrix density (≥95%) for high strength and high thermal conductance coupled with a high particle (UN) porosity (∼25%) for retention of released fission gas at high burnup. Fabrication process development involves the use of porous TiN microspheres as surrogate fuel material until porous UN microspheres become available. Process development has been conducted in the areas of microsphere synthesis, particle sealing/coating, and high-energy-rate forming (HERF) and vacuum hot press consolidation techniques. This paper summarizes the status of these activities

  17. Molybdenum extraction from copper-molybdenum ores

    International Nuclear Information System (INIS)

    Nevaeva, L.M.

    1982-01-01

    Molybdenum extraction from copper-molybdenum ores as practised in different countries is reviewed. In world practice the production process including depression of copper and iron sulfides and flotation of molybdenite is widely spread. At two USA factories the process of a selective flotation with molybdenite depression by dextrin is used

  18. An experimental assessment of methods used to compute secondary electron emission yield for tungsten and molybdenum electrodes based on exposure to Alcator C-Mod scrape-off layer plasmas

    Science.gov (United States)

    McCarthy, W.; LaBombard, B.; Brunner, D.; Kuang, A. Q.

    2018-03-01

    Plasma potentials computed from Langmuir probe data rely on a method to account for secondary electron emission (SEE) from the electrodes. However, significant variations exist among published models for SEE and the reported experimental parameters used to evaluate them. As a means to critically assess SEE computation methods, two of four tungsten electrodes on a Langmuir-Mach probe head were replaced with molybdenum and exposed to Alcator C-Mod boundary plasmas where electron temperatures exceed 50 eV and SEE becomes significant. In this situation, plasma potentials computed for either material should be identical—the SEE evaluation method should properly account for the differences in SEE yields. Of the six methods used to compute SEE, two are found to produce consistent results (Sternglass model with Bronstein experimental parameters and Young-Dekker model with Bronstein experimental parameters). In contrast, the method previously used for C-Mod data analysis (Sternglass model with Kollath parameters) was found to be inconsistent. We have since adopted Young-Dekker-Bronstein as the preferred method.

  19. Tungsten Oxide Photonic Crystals as Optical Transducer for Gas Sensing.

    Science.gov (United States)

    Amrehn, Sabrina; Wu, Xia; Wagner, Thorsten

    2018-01-26

    Some metal oxide semiconductors, such as tungsten trioxide or tin dioxide, are well-known as resistive transducers for gas sensing and offer high sensitivities down to the part per billion level. Electrical signal read-out, however, limits the information obtained on the electronic properties of metal oxides to a certain frequency range and its application because of the required electrical contacts. Therefore, a novel approach for building an optical transducer for gas reactions utilizing metal oxide photonic crystals is presented here. By the rational design of the structure and composition it is possible to synthesize a functional material which allows one to obtain insight into its electronic properties in the optical frequency range with simple experimental measures. The concept is demonstrated by tungsten trioxide inverse opal structure as optical transducer material for hydrogen sensing. The sensing behavior is analyzed in a temperature range from room temperature to 500 °C and in a wide hydrogen concentration range (3000 ppm to 10%). The sensing mechanism is mainly the refractive index change resulting from hydrogen intercalation in tungsten trioxide, but the back reaction has also impact on the optical properties of this system. Detailed chemical reaction studies provide suggestions for specific sensing conditions.

  20. Hydrolysis of bis(dimethylamido)tin to tin (II) oxyhydroxide and its selective transformation into tin (II) or tin (IV) oxide

    KAUST Repository

    Khanderi, Jayaprakash; Shi, Lei; Rothenberger, Alexander

    2015-01-01

    Sn6O4(OH)4, a hydrolysis product of Sn(NMe2)2, is transformed to tin (II) or tin (IV) oxide by solid and solution phase processing. Tin (II) oxide is formed by heating Sn6O4(OH)4 at ≤200 °C in air or under inert atmosphere. Tin (IV) oxide

  1. In Situ Synthesis of Tungsten-Doped SnO2 and Graphene Nanocomposites for High-Performance Anode Materials of Lithium-Ion Batteries.

    Science.gov (United States)

    Wang, Shuai; Shi, Liyi; Chen, Guorong; Ba, Chaoqun; Wang, Zhuyi; Zhu, Jiefang; Zhao, Yin; Zhang, Meihong; Yuan, Shuai

    2017-05-24

    The composite of tungsten-doped SnO 2 and reduced graphene oxide was synthesized through a simple one-pot hydrothermal method. According to the structural characterization of the composite, tungsten ions were doped in the unit cells of tin dioxide rather than simply attaching to the surface. Tungsten-doped SnO 2 was in situ grown on the surface of graphene sheet to form a three-dimensional conductive network that enhanced the electron transportation and lithium-ion diffusion effectively. The issues of SnO 2 agglomeration and volume expansion could be also avoided because the tungsten-doped SnO 2 nanoparticles were homogeneously distributed on a graphene sheet. As a result, the nanocomposite electrodes of tungsten-doped SnO 2 and reduced graphene oxide exhibited an excellent long-term cycling performance. The residual capacity was still as high as 1100 mA h g -1 at 0.1 A g -1 after 100 cycles. It still remained at 776 mA h g -1 after 2000 cycles at the current density of 1A g -1 .

  2. Conflict minerals from the Democratic Republic of the Congo: global tungsten processing plants, a critical part of the tungsten supply chain

    Science.gov (United States)

    Bermúdez-Lugo, Omayra

    2014-01-01

    The U.S. Geological Survey (USGS) analyzes supply chains to identify and define major components of mineral and material flows from ore extraction, through intermediate forms, to a final product. Two major reasons necessitate these analyses: (1) to identify risks associated with the supply of critical and strategic minerals to the United States and (2) to provide greater supply chain transparency so that policymakers have the information necessary to ensure domestic legislation compliance. This fact sheet focuses on the latter. The USGS National Minerals Information Center has been asked by governmental and non-governmental organizations to provide information on tin, tantalum, tungsten, and gold (collectively known as “3TG minerals”) processing facilities worldwide in response to U.S. legislation aimed at removing the link between the trade in these minerals and civil unrest in the Democratic Republic of the Congo. Post beneficiation processing plants (smelters and refineries) of 3TG mineral ores and concentrates were identified by company and industry association representatives as being the link in the 3TG mineral supply chain through which these minerals can be traced to their source of origin (mine); determining the point of origin is critical to establishing a transparent conflict mineral supply chain. This fact sheet, the first in a series of 3TG mineral fact sheets, focuses on the tungsten supply chain by listing plants that consume tungsten concentrates to produce ammonium paratungstate and ferrotungsten worldwide.

  3. Tungsten

    International Nuclear Information System (INIS)

    Eschnauer, H.

    1978-01-01

    There is no substitute for tungsten in its main field of application so that the demand will not decrease, but there is a need for further important applications. If small variations are left out of account, a small but steady increase in the annual tungsten consumption can be expected. The amount of tungsten available will increase due to the exploritation of new deposits and the extension of existing mines. This tendency will probably be increased by the world-wide prospection. It is hard to make an assessment of the amount of tungsten are obtained in the People's Republic of china, the purchases of Eastern countries in the West, and the sales policy of the USA; pice forecasts are therefore hard to make. A rather interesting subject with regard to the tungsten cycle as a whole is the reprocessing of tungsten-containing wastes. (orig.) [de

  4. Determination of hafnium, molybdenum, and vanadium in niobium and niobium-based alloys by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ide, Kunikazu; Kobayashi, Takeshi; Sudo, Emiko.

    1985-01-01

    The analytical procedure is as follows: Weigh 1 g of a sample and put it into a 100 cm 3 PTFE beaker. Add 5 ml of distilled water and 5 ml of hydrofluoric acid, and then heat the solution on a hot plate, adding 3 ml of nitric acid dropwise. Dilute the solution to 100 cm 3 with distilled water. When hafnium is determined, add 2 g of diammonium titanium hexafluoride ((NH 4 ) 2 TiF 6 )) before dilution. Working standard solutions are prepared by adding the stock standard solutions of hafnium, molybdenum, and vanadium into niobium solutions. When hafnium is determined, add 2 g of (NH 4 ) 2 TiF 6 and the alloying elements in amounts corresponding to those in sample solutions into the working standard solutions. The tolerable amounts of hydrofluoric acid were 2.9 M, 2.1 M, and 3.1 M and those of nitric acid were 1.0 M, 1.6 M, and 1.6 M for hafnium, molybdenum, and vanadium, respectively. It was found that (NH 4 ) 2 TiF 6 greatly increased the sensitivity for hafnium determination. Niobium showed minus effect for hafnium and plus effect for molybdenum and vanadium. The atomic absorption of molybdenum and vanadium were not influenced by the presence of 20 % of each alloying element, while the atomic absorption of hafnium was given plus effect by 20 % of zirconium, iron, cobalt, nickel, manganese, chromium or vanadium and minus effect by 20 % tungsten. The analytical values of hafnium, molybdenum, and vanadium in niobium-based alloys by this method showed a good agreement with those by X-ray fluorescence analysis. The lower limits of determination (S/N=2) were 0.05, 0.001, and 0.002 % and the relative standard deviation were 3, 1, and 1.5 % for hafnium, molybdenum, and vanadium, respectively. (author)

  5. Analytical characteristics of a continuum-source tungsten coil atomic absorption spectrometer.

    Science.gov (United States)

    Rust, Jennifer A; Nóbrega, Joaquim A; Calloway, Clifton P; Jones, Bradley T

    2005-08-01

    A continuum-source tungsten coil electrothermal atomic absorption spectrometer has been assembled, evaluated, and employed in four different applications. The instrument consists of a xenon arc lamp light source, a tungsten coil atomizer, a Czerny-Turner high resolution monochromator, and a linear photodiode array detector. This instrument provides simultaneous multi-element analyses across a 4 nm spectral window with a resolution of 0.024 nm. Such a device might be useful in many different types of analyses. To demonstrate this broad appeal, four very different applications have been evaluated. First of all, the temperature of the gas phase was measured during the atomization cycle of the tungsten coil, using tin as a thermometric element. Secondly, a summation approach for two absorption lines for aluminum falling within the same spectral window (305.5-309.5 nm) was evaluated. This approach improves the sensitivity without requiring any additional preconcentration steps. The third application describes a background subtraction technique, as it is applied to the analysis of an oil emulsion sample. Finally, interference effects caused by Na on the atomization of Pb were studied. The simultaneous measurements of Pb and Na suggests that negative interference arises at least partially from competition between Pb and Na atoms for H2 in the gas phase.

  6. Sputtering of molybdenum and tungsten nano rods and nodules irradiated with 150 eV argon ions

    International Nuclear Information System (INIS)

    Ghoniem, N.M.; Sehirlioglu, Alp; Neff, Anton L.; Allain, Jean-Paul; Williams, Brian; Sharghi-Moshtaghin, Reza

    2015-01-01

    Highlights: • The work was motivated by the idea of designing material surface architecture, using the CVD process, that can result in a reduction in the surface sputtering rate as compared to planar surfaces. • We present an experimental investigation of the effects of low energy (150 eV) Ar ions on surface sputtering, amorphization of near-surface layers, and the formation of surface ripples in Mo and W nano-rods and nano-nodules at room temperature. • We show that the sputtering rate decreases in all nano-architecture surfaces as compared to planar surfaces. • We discovered that energy deposition in the near surface layer in W leads to its amorphization at room temperature, to a depth of 5–10 nm. • We also show that surfaces of nano rods become rippled as a result of an ion-induced roughening instability. - Abstract: The influence of surface nano architecture on the sputtering and erosion of tungsten and molybdenum is discussed. We present an experimental investigation of the effects of low energy (150 eV) Ar ions on surface sputtering in Mo and W nano-rods and nano-nodules at room temperature. Measurements of the sputtering rate from Mo and W surfaces with nano architecture indicate that the surface topology plays an important role in the mechanism of surface erosion and restructuring. Chemical vapor deposition (CVD) is utilized as a material processing route to fabricate nano-architectures on the surfaces of W and Mo substrates. First, Re dendrites form as needles with cross-sections that have hexagonal symmetry, and are subsequently employed as scaffolding for further deposition of W and Mo to create nano rod surface architecture. The sputtering of surface atoms in these samples shows a marked dependence on their surface architecture. The sputtering rate is shown to decrease at normal ion incidence in all nano-architecture surfaces as compared to planar surfaces. Moreover, and unlike an increase in sputtering of planar crystalline surfaces, the

  7. Petrography and fluid inclusions study in Marbin porphyry Molybdenum (Sn) index (northeast of Isfahan)

    International Nuclear Information System (INIS)

    Mirzaei, M.; Bagheri, H.; Ayati, F.

    2016-01-01

    Marbin Tin and Molybdenum index is located in north of Zefreh Village the Isfahan Province and Uromieh-Dokhtar magmatic zone. The main rock units in this area are Eocene subvolcanic and volcanic rocks with rhyolite to dacite composition. Based on petrography studies the main minerals are plagioclase, quartz, sanidine and biotite and secondary minerals are chlorite, calcite, epidote and sericite. The main hydrothermal alterations are including sericitic, propylitic, intermediate argillic and silisification. Average grade of tin, molybdenum, copper and gold is about 4850, 157, 330 ppm and 82 ppb, respectively. Microthermometric studies on silica veins and veinlet indicate five different types of fluid inclusion, 1-three-phase type (L+V+S→L), 2- three-phase type (L+V+S→V), 3- two-phase type (L+V→L), 4- two-phase type (V+L→V), 5- vapor rich single phase type (V). Fluid inclusion studies in mineralized veins in phyllic and propylitic zones, show the wide range of homogenization temperature from 248 to 600 ºC and salinity from 28 to 65 wt% NaCl equivalent. The temperature, salinity and density of fluids decrease from phyllic to propylitic alteration zone. The wide range of homogenization temperatures for the studied fluid inclusions in index show dilution with surface water and fluid boiling, as the most important factor in ore deposition. According to field, mineralogical, geochemical and fluid inclusion studies Marbin index has been considered as a porphyry deposit type which show the most similarity with Mo porphyry systems in world wide.

  8. L-H power threshold studies with tungsten/carbon divertor on the EAST tokamak

    DEFF Research Database (Denmark)

    Chen, L.; Xu, G. S.; Gao, W.

    2016-01-01

    The power threshold for low (L) to high (H) confinement mode transition achieved by radio-frequency heating and molybdenum first wall with lithium coating has been experimentally investigated on the EAST tokamak for two sets of divertor geometries and materials: tungsten/carbon divertor and full...... carbon divertor. For both sets of divertors, the power threshold was found to decrease with gradual accumulation of the lithium wall coating, suggesting the important role played by the low Z impurities and/or the edge neutral density on the L-H power threshold. When operating in the upper single null...

  9. Bulk-heterojunction organic solar cells sandwiched by solution processed molybdenum oxide and titania nanosheet layers

    Science.gov (United States)

    Itoh, Eiji; Goto, Yoshinori; Fukuda, Katsutoshi

    2014-02-01

    The contributions of ultrathin titania nanosheet (TN) crystallites were studied in both an inverted bulk-heterojunction (BHJ) cell in an indium-tin oxide (ITO)/titania nanosheet (TN)/poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methylester (PCBM) active layer/MoOx/Ag multilayered photovoltaic device and a conventional BHJ cell in ITO/MoOx/P3HT:PCBM active layer/TN/Al multilayered photovoltaic device. The insertion of only one or two layers of poly(diallyldimethylammonium chloride) (PDDA) and TN multilayered film prepared by the layer-by-layer deposition technique effectively decreased the leakage current and increased the open circuit voltage (VOC), fill factor (FF), and power conversion efficiency (η). The conventional cell sandwiched between a solution-processed, partially crystallized molybdenum oxide hole-extracting buffer layer and a TN electron extracting buffer layer showed comparable cell performance to a device sandwiched between vacuum-deposited molybdenum oxide and TN layers, whereas the inverted cell with solution-processed molybdenum oxide showed a poorer performance probably owing to the increment in the leakage current across the film. The abnormal S-shaped curves observed in the inverted BHJ cell above VOC disappeared with the use of a polyfluorene-based cationic semiconducting polymer as a substitute for an insulating PDDA film, resulting in the improved cell performance.

  10. Radio frequency induction plasma spraying of molybdenum

    International Nuclear Information System (INIS)

    Jiang Xianliang

    2003-01-01

    Radio frequency (RF) induction plasma was used to make free-standing deposition of molybdenum (Mo). The phenomena of particle melting, flattening, and stacking were investigated. The effect of process parameters such as plasma power, chamber pressure, and spray distance on the phenomena mentioned above was studied. Scanning electron microscopy (SEM) was used to analyze the plasma-processed powder, splats formed, and deposits obtained. Experimental results show that less Mo particles are spheroidized when compared to the number of spheroidized tungsten (W) particles at the same powder feed rate under the same plasma spray condition. Molten Mo particles can be sufficiently flattened on substrate. The influence of the process parameters on the flattening behavior is not significant. Mo deposit is not as dense as W deposit, due to the splash and low impact of molten Mo particles. Oxidation of the Mo powder with a large particle size is not evident under the low pressure plasma spray

  11. Evaluation of oxide dispersion strengthened (ODS) molybdenum and molybdenum-rhenium alloys

    International Nuclear Information System (INIS)

    Mueller, A.J.; Bianco, R.; Buckman, R.W. Jr.

    1999-01-01

    Oxide dispersion strengthened (ODS) molybdenum alloys being developed for high temperature applications possess excellent high temperature strength and creep resistance. In addition they exhibit a ductile-to-brittle transition temperature (DBIT) in the worked and stress-relieved condition under longitudinal tensile load well below room temperature. However, in the recrystallized condition, the DBTT maybe near or above room temperature, depending on the volume fraction of oxide dispersion and the amount of prior work. Dilute rhenium additions (7 and 14 wt.%) to ODS molybdenum were evaluated to determine their effect on low temperature ductility. The addition of 7 wt.% rhenium to the ODS molybdenum did not significantly enhance the mechanical properties. However, the addition of 14 wt.% rhenium to the ODS molybdenum resulted in a DBTT well below room temperature in both the stress-relieved and recrystallized condition. Additionally, the tensile strength of ODS Mo-14Re is greater than the base ODS molybdenum at 1,000 to 1,250 C

  12. Tungsten and tungsten alloys by powder metallurgy

    International Nuclear Information System (INIS)

    Belhadjhamida, A.; German, R.M.

    1991-01-01

    Tungsten has a historical link with powder metallurgy and there is continued progress in expanding the available compositions and processing options. This paper starts with an introduction to the history of tungsten powder metallurgy and use this as a basis for analyzing some of the current trends. The literature base in tungsten processing is expanding and includes new alloys, microstructures, and processing routes. A few examples will be emphasize here to produce a frame work for this program, including description of sintering mechanisms for tungsten, liquid phase sintering advances, hot consolidation fundamentals, and options for complex shaping using powder injection modeling. For this base, subsequent presentations will expand on these fundamental advances

  13. Fabrication and use of zircaloy/tantalum-sheathed cladding thermocouples and molybdenum/rhenium-sheathed fuel centerline thermocouples

    International Nuclear Information System (INIS)

    Wilkins, S.C.; Sepold, L.K.

    1985-01-01

    The thermocouples described in this report are zircaloy/tantalum-sheathed and molybdenum/rhenium alloy-sheathed instruments intended for fuel rod cladding and fuel centerline temperature measurements, respectively. Both types incorporate beryllium oxide insulation and tungsten/rhenium alloy thermoelements. These thermocouples, operated at temperatures of 2000 0 C and above, were developed for use in the internationally sponsored Severe Fuel Damage test series in the Power Burst Facility. The fabrication steps for both thermocouple types are described in detail. A laser-welding attachment technique for the cladding-type thermocouple is presented, and experience with alternate materials for cladding and fuel therocouples is discussed

  14. Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO—potassium doped tungsten wire

    Science.gov (United States)

    Riesch, J.; Han, Y.; Almanstötter, J.; Coenen, J. W.; Höschen, T.; Jasper, B.; Zhao, P.; Linsmeier, Ch; Neu, R.

    2016-02-01

    For the next step fusion reactor the use of tungsten is inevitable to suppress erosion and allow operation at elevated temperature and high heat loads. Tungsten fibre-reinforced composites overcome the intrinsic brittleness of tungsten and its susceptibility to operation embrittlement and thus allow its use as a structural as well as an armour material. That this concept works in principle has been shown in recent years. In this contribution we present a development approach towards its use in a future fusion reactor. A multilayer approach is needed addressing all composite constituents and manufacturing steps. A huge potential lies in the optimization of the tungsten wire used as fibre. We discuss this aspect and present studies on potassium doped tungsten wire in detail. This wire, utilized in the illumination industry, could be a replacement for the so far used pure tungsten wire due to its superior high temperature properties. In tensile tests the wire showed high strength and ductility up to an annealing temperature of 2200 K. The results show that the use of doped tungsten wire could increase the allowed fabrication temperature and the overall working temperature of the composite itself.

  15. Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO—potassium doped tungsten wire

    International Nuclear Information System (INIS)

    Riesch, J; Han, Y; Höschen, T; Zhao, P; Neu, R; Almanstötter, J; Coenen, J W; Jasper, B; Linsmeier, Ch

    2016-01-01

    For the next step fusion reactor the use of tungsten is inevitable to suppress erosion and allow operation at elevated temperature and high heat loads. Tungsten fibre-reinforced composites overcome the intrinsic brittleness of tungsten and its susceptibility to operation embrittlement and thus allow its use as a structural as well as an armour material. That this concept works in principle has been shown in recent years. In this contribution we present a development approach towards its use in a future fusion reactor. A multilayer approach is needed addressing all composite constituents and manufacturing steps. A huge potential lies in the optimization of the tungsten wire used as fibre. We discuss this aspect and present studies on potassium doped tungsten wire in detail. This wire, utilized in the illumination industry, could be a replacement for the so far used pure tungsten wire due to its superior high temperature properties. In tensile tests the wire showed high strength and ductility up to an annealing temperature of 2200 K. The results show that the use of doped tungsten wire could increase the allowed fabrication temperature and the overall working temperature of the composite itself. (paper)

  16. Tungsten foil laminate for structural divertor applications - Joining of tungsten foils

    Science.gov (United States)

    Reiser, Jens; Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan; Mrotzek, Tobias; Hoffmann, Andreas; Armstrong, D. E. J.; Yi, Xiaoou

    2013-05-01

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  17. Development and characterisation of a tungsten-fibre reinforced tungsten composite

    International Nuclear Information System (INIS)

    Riesch, Johann

    2012-01-01

    In tungsten-fibre reinforced tungsten, tungsten wire is combined with a tungsten matrix. The outstanding ductility of the fibres and extrinsic mechanisms of energy dissipation lead to an intense toughening. With extensive analytical and experimental investigations a manufacturing method based on chemical vapour infiltration is developed and first material is produced. The toughening mechanisms are shown by means of sophisticated mechanical experiments i.a. X-ray microtomography.

  18. GIS-based identification of areas with mineral resource potential for six selected deposit groups, Bureau of Land Management Central Yukon Planning Area, Alaska

    Science.gov (United States)

    Jones, James V.; Karl, Susan M.; Labay, Keith A.; Shew, Nora B.; Granitto, Matthew; Hayes, Timothy S.; Mauk, Jeffrey L.; Schmidt, Jeanine M.; Todd, Erin; Wang, Bronwen; Werdon, Melanie B.; Yager, Douglas B.

    2015-01-01

    This study, covering the Bureau of Land Management (BLM) Central Yukon Planning Area (CYPA), Alaska, was prepared to aid BLM mineral resource management planning. Estimated mineral resource potential and certainty are mapped for six selected mineral deposit groups: (1) rare earth element (REE) deposits associated with peralkaline to carbonatitic intrusive igneous rocks, (2) placer and paleoplacer gold, (3) platinum group element (PGE) deposits associated with mafic and ultramafic intrusive igneous rocks, (4) carbonate-hosted copper deposits, (5) sandstone uranium deposits, and (6) tin-tungsten-molybdenum-fluorspar deposits associated with specialized granites. These six deposit groups include most of the strategic and critical elements of greatest interest in current exploration.

  19. Investigation of thermal and hot-wire chemical vapor deposition copper thin films on TiN substrates using CupraSelect as precursor.

    Science.gov (United States)

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    Copper films were deposited on oxidized Si substrates covered with TiN using a novel chemical vapor deposition reactor in which reactions were assisted by a heated tungsten filament (hot-wire CVD, HWCVD). Liquid at room temperature hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) was directly injected into the reactor with the aid of a direct-liquid injection (DLI) system using N2 as carrier gas. The deposition rates of HWCVD Cu films obtained on TiN covered substrates were found to increase with filament temperature (65 and 170 degrees C were tested). The resistivities of HWCVD Cu films were found to be higher than for thermally grown films due to the possible presence of impurities into the Cu films from the incomplete dissociation of the precursor and W impurities caused by the presence of the filament. For HWCVD films grown at a filament temperature of 170 degrees C, smaller grains are formed than at 65 degrees C as shown from the taken SEM micrographs. XRD diffractograms taken on Cu films deposited on TiN could not reveal the presence of W compounds originating from the filament because the relative peak was masked by the TiN [112] peak.

  20. Analytic chemistry of molybdenum

    International Nuclear Information System (INIS)

    Parker, G.A.

    1983-01-01

    Electrochemical, colorimetric, gravimetric, spectroscopic, and radiochemical methods for the determination of molybdenum are summarized in this book. Some laboratory procedures are described in detail while literature citations are given for others. The reader is also referred to older comprehensive reviews of the analytical chemistry of molybdenum. Contents, abridged: Gravimetric methods. Titrimetric methods. Colorimetric methods. X-ray fluorescence. Voltammetry. Catalytic methods. Molybdenum in non-ferrous alloys. Molydbenum compounds

  1. Molybdenum from uranium solutions

    International Nuclear Information System (INIS)

    Gardner, H.E.

    1981-01-01

    A method of removing molybdenum from a uranium bearing solution is claimed. It comprises adding sufficient reactive lead compound to supply at least 90 percent of the stoichiometric quantity of lead ion required to fully react with the molybdenum present to form insoluble lead molybdate and continuing the reaction with agitation until the desired percentage of the molybdenum present has reacted with the lead ion

  2. Bibliographic study on molybdenum biokinetics

    International Nuclear Information System (INIS)

    Erzberger, A.

    1988-05-01

    This bibliographical study compiles and analyzes findings about the metabolism and resorption of molybdenum. Besides including studies on the physiology of molybdenum 99, a general survey is given on molybdenum in the environment and on its physiological behaviour. In particular, information on the dependence of molybdenum resorption on various factors, such as the chemical form, antagonisms etc., are gathered from literature. These factors have to be considered for sensibly carrying out necessary experiments. (orig./MG) [de

  3. Spectrophotometric determination of molybdenum(VI) with sodium 2-bromo-4, 5-dihydroxyazobenzene-4'-sulfonate in the presence of cetyltrimethylammonium chloride

    International Nuclear Information System (INIS)

    Wakamatsu, Yoshinobu

    1977-01-01

    Sodium 2-bromo-4,5-dihydroxyazobenzene-4'-sulfonate (abbreviated as BDAS) reacts with molybdenum(VI) in the presence of excessive cetyltrimethylammonium chloride(CTMAC) to form a water-soluble ternary complex. The combining ratio of molybdenum(VI) and BDAS in the ternary complex was shown to be 1 : 2. The ternary complex having its absorption maximum at 525 nm is quantitatively formed between pH 1.0 and 2.0. A constant absorbance was obtained when the concentrations of BDAS and CTMAC were more than 1.8 x 10 -4 M and (1.2 -- 1.6) x 10 -3 M, respectively. The procedure for the determination of molybdenum(VI) is as follows: Transfer the sample solution containing up to 28 μg of molybdenum(VI) to a 25 ml volumetric flask. Add 3 ml of 2.0 x 10 -3 M BDAS solution and an appropriate amount of a masking agent such as ascorbic acid, EDTA or sodium fluoride. Adjust the pH to about 1.6 with hydrochloric acid and sodium acetate. Add 3.5 ml of 0.01 M CTMAC solution and dilute the solution to the mark with water. Measure the absorbance at 525 nm against the reagent blank. A linear calibration curve was obtained over the concentration range 0 -- 28 μg of molybdenum(VI). The apparent molar absorptivity is 6.1 x 10 4 l cm -1 mol -1 at 525 nm, and the sensitivity of the reaction is 1.5 x 10 -3 μg cm -2 . The interference from metal ions such as iron(III), titanium(IV), zirconium(IV) and vanadium(V) could be eliminated by the addition of ascorbic acid, EDTA, sodium fluoride, or a mixture of these reagents. Tungsten(VI), however, interfered with the determination of molybdenum(VI) even when present at microgram levels. The present method was applied to the determination of molybdenum in three standard steel samples. Analytical results were satisfactory. (auth.)

  4. Tungsten foil laminate for structural divertor applications – Joining of tungsten foils

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Jens, E-mail: jens.reiser@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Mrotzek, Tobias; Hoffmann, Andreas [PLANSEE SE, Reutte (Austria); Armstrong, D.E.J.; Yi, Xiaoou [University of Oxford, Department of Materials (United Kingdom)

    2013-05-15

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  5. Effect of plasma molybdenized buffer layer on adhesive properties of TiN film coated on Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Lin, E-mail: qinlin@tyut.edu.cn; Yi, Hong; Kong, Fanyou; Ma, Hua; Guo, Lili; Tian, Linhai; Tang, Bin

    2017-05-01

    Highlights: • A molybdenized layer was prepared as a buffer layer under TiN film on Ti6Al4V. • The molybdenized layer can enhance adhesion strength of PVD coatings effectively. • The duplex treated samples increase elastic energy ratio in the impact tests. • The enhancement attributes to the hardness improvement and inverted-S shape elastic modulus profile of the modified layer. - Abstract: Effect of molybdenized buffer layer on adhesion strength of TiN film on Ti6Al4V alloy was investigated. The buffer layer composed of a dense molybdenum deposition layer, a rapid drop zone and a slow fall zone was prepared using double glow plasma surface alloying technique. Scratch tests and low energy repeated impact tests were adopted to comparatively evaluate the duplex treated layers and the single TiN samples. The results show that the critical load was increased from 62 N for the single TiN film to over 100 N for the duplex treated layer. The volume of impact pit, formed in impact tests, of the single TiN samples is 9.15 × 10{sup 6} μm{sup 3}, and about 1.5 times than that of the duplex treated samples. The Leeb hardness values reveal that about 70% impact energy was transferred to the single TiN samples to generate permanent deformation, while that was only about 47% for the duplex treated samples. The mechanism of improving adhesion strength is attributed to synergistic effect due to an inverted-S shape elastic modulus distribution produced by the molybdenized layer.

  6. Application of life cycle analysis: The case of green bullets

    Energy Technology Data Exchange (ETDEWEB)

    Bogard, J.S.; Yuracko, K.L.; Murray, M.E.; Lowden, R.A.; Vaughn, N.L.

    1998-06-01

    Life-cycle analysis (LCA) has been used to analyze the desirability of replacing lead with a composite of tungsten and tin in projectile slugs used in small arms ammunition at US Department of Energy (DOE) training facilities for security personnel. The analysis includes consideration of costs, performance, environmental and human health impacts, availability of raw materials, and stakeholder acceptance. The DOE expends approximately 10 million rounds of small-arms ammunition each year training security personnel. This deposits over 300,000 pounds of lead and copper annually into DOE firing ranges, contributing to lead migration in the surrounding environment. Human lead intake occurs by inhalation of contaminated indoor firing range air and air containing lead particles that are resuspended during regular maintenance and cleanup, and by skin absorption while cleaning weapons. Projectiles developed by researchers at Oak Ridge National Laboratory (ORNL) using a composite of tungsten and tin perform as well as, or better than, those fabricated using lead. A cost analysis shows that tungsten-tin is less costly to use than lead, since, for the current number of rounds used annually, the higher tungsten-tin purchase price is small compared with higher maintenance costs associated with lead. The tungsten-tin composite presents a much smaller potential for adverse human health and environmental impacts than lead. Only a small fraction of the world`s tungsten production occurs in the United States, however, and market-economy countries account for only around 15% of world tungsten production. Life cycle analysis clearly shows that advantages outweigh risks in replacing lead with tungsten-tin in small-caliber projectiles at DOE training facilities. Concerns about the availability of raw tungsten are mitigated by the ease of converting back to lead (if necessary) and the recyclability of tungsten-tin rounds.

  7. Molybdenum dioxide-molybdenite roasting

    International Nuclear Information System (INIS)

    Sabacky, B.J.; Hepworth, M.T.

    1984-01-01

    A process is disclosed for roasting molybdenite concentrates directly to molybdenum dioxide. The process comprises establishing a roasting zone having a temperature of about 700 0 C. to about 800 0 C., introducing into the roasting zone particulate molybdenum dioxide and molybdenite in a weight ratio of at least about 2:1 along with an oxygen-containing gas in amount sufficient to oxidize the sulfur content of the molybdenite to molybdenum dioxide

  8. Automated energy-dispersive x-ray determination of trace elements in stream sediments

    International Nuclear Information System (INIS)

    Hansel, J.M.; Martell, C.J.

    1977-01-01

    Nickel, copper, tungsten, lead, bismuth, niobium, silver, cadmium, and tin are determined in stream sediments using a computer-controlled energy-dispersive x-ray fluorescence system. The system consists of an automatic 20-position sample changer, a silicon lithium-drifted detector, a pulsed molybdenum transmission-target x-ray tube, a multichannel analyzer, and a minicomputer. Samples are analyzed as minus 325-mesh powders. A computer program positions the samples, unfolds overlapping peaks, determines peak intensities for each element, and calculates the ratio of the intensity of each peak to that of the molybdenum Kα Compton peak. Concentrations of each element are then calculated using equations obtained by analyzing prepared standards. Detection limits range from 5 ppM for silver, cadmium, lead, and bismuth to 20 ppM for niobium. The relative standard is 10 percent or less at the 100-ppM level and 20 percent at the 20-ppM level. Samples can be analyzed at the rate of sixty per day

  9. High-energy, high-rate consolidation of tungsten and tungsten-based composite powders

    Energy Technology Data Exchange (ETDEWEB)

    Raghunathan, S.K.; Persad, C.; Bourell, D.L.; Marcus, H.L. (Center for Materials Science and Engineering, Univ. of Texas, Austin (USA))

    1991-01-20

    Tungsten and tungsten-based heavy alloys are well known for their superior mechanical properties at elevated temperatures. However, unalloyed tungsten is difficult to consolidate owing to its very high melting temperature (3683 K). The additions of small amounts of low-melting elements such as iron, nickel, cobalt and copper, facilitate the powder processing of dense heavy alloys at moderate temperatures. Energetic high-current pulses have been used recently for powder consolidation. In this paper, the use of a homopolar generator as a power source to consolidate selected tungsten and tungsten-based alloys is examined. Various materials were consolidated including unalloyed tungsten, W-Nb, W-Ni, and tungsten heavy alloy with boron carbide. The effect of process parameters such as pressure and specific energy input on the consolidation of different alloy systems is described in terms of microstructure and property relationships. (orig.).

  10. Gas-driven permeation of deuterium through tungsten and tungsten alloys

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, Dean A., E-mail: dabuche@sandia.gov [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States); Karnesky, Richard A. [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States); Fang, Zhigang Zak; Ren, Chai [University of Utah, Department of Metallurgical Engineering, Salt Lake City, UT 84112 (United States); Oya, Yasuhisa [Shizuoka University, Graduate School of Science, Shizuoka (Japan); Otsuka, Teppei [Kyushu University, Department of Advanced Energy Engineering Science, Fukuoka (Japan); Yamauchi, Yuji [Hokkaido University, Third Division of Quantum Science and Engineering, Faculty of Engineering, Sapporo (Japan); Whaley, Josh A. [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States)

    2016-11-01

    Highlights: • We have designed and performed initial studies on a high temperature gas-driven permeation cell capable of operating at temperatures up to 1150 °C and at pressures between 0.1–1 atm. • Permeation measurements on ITER grade tungsten compare well with past studies by Frauenfelder and Zahkarov in the temperature range from 500 to 1000 °C. • First permeation measurements on Ti dispersoid-strengthened ultra-fine grained tungsten show higher permeation at 500 °C, but very similar permeation with ITER tungsten at 1000 °C. Diffusion along grain boundaries may be playing a role for this type of material. - Abstract: To address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150 °C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungsten being developed in the US. Experiments were performed at 500–1000 °C and 0.1–1.0 atm D{sub 2} pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (< 10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000 °C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation

  11. Evaluation of molybdenum and its alloys

    International Nuclear Information System (INIS)

    Lundberg, L.B.

    1981-01-01

    The choice of pure molybdenum as the prime candidate material for space reactor core heat pipes is critically examined. Pure molybdenum's high ductile-brittle transition temperature appears to be its major disadvantage. The candidate materials examined in detail for this application include low carbon arc-cast molybdenum, TZM-molybdenum alloy, and molybdenum-rhenium alloys. Published engineering properties are collected and compared, and it appears that Mo-Re alloys with 10 to 15% rhenium offer the best combination. Hardware is presently being made from electron beam melted Mo-13Re to test this conclusion

  12. Recovery of uranium and molybdenum from a carbonate type uranium-molybdenum ore

    International Nuclear Information System (INIS)

    Zhou Genmao; Zeng Yijun; Tang Baobin; Meng Shu; Xu Guolong

    2014-01-01

    Based on the results of process mineralogical research of a carbonate type uranium-molybdenum ore, leaching behaviors of the uranium-molybdenum ore were studied by alkali agitation leaching, conventional alkali column leaching and alkali curing column leaching processes. The results showed that using the alkali curing column leaching process, the leaching rate of molybdenum increased to more than 90%, and the leaching rate of uranium was about 85%, Compared with the conventional alkali column leaching process, the leaching time of the alkali curing column leaching process decreased by 60 days. (authors)

  13. Gel Fabrication of Molybdenum “Beads”

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, Richard Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Cooley, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-11-01

    Spherical molybdenum particles or “beads” of various diameters are of interest as feedstock materials for the additive manufacture of targets and assemblies used in the production of 99Mo medical isotopes using accelerator technology. Small metallic beads or ball bearings are typically fabricated from wire; however, small molybdenum spheres cannot readily be produced in this manner. Sol-gel processes are often employed to produce small dense microspheres of metal oxides across a broad diameter range that in the case of molybdenum could be reduced and sintered to produce metallic spheres. These Sol-gel type processes were examined for forming molybdenum oxide beads; however, the molybdenum trioxide was chemically incompatible with commonly used gelation materials. As an alternative, an aqueous alginate process being assessed for the fabrication of oxide spheres for catalyst applications was employed to form molybdenum trioxide beads that were successfully reduced and sintered to produce small molybdenum spheres.

  14. Recent situation and future of molybdenum mineral resources; Molybdenum shigen no genjo to shorai

    Energy Technology Data Exchange (ETDEWEB)

    Ono, K.; Nishiyama, T. [Kyoto University, Kyoto (Japan)

    1997-05-05

    Molybdenum is produced mainly from molybdenite, and the majority of this ore is exploited from the porphyry deposit. The reserve is estimated at 5.5-million ton. A total of 118-thousand ton was produced across the world in 1995, in the U.S., China, Chile, and Canada, the countries named in the order of quantities they exploited. Molybdenite is first refined by flotation for the production of a sulphide. It is subjected to oxidizing roasting for conversion into crude molybdenum trioxide, which is next subjected to extraction in warmed-up aqueous ammonia and then to evaporation for the crystallization of ammonium paramolybdate. The crystals are baked for conversion into molybdenum trioxide of the ordinary purity, to be further processed into ferromolybdenum, molybdenum compounds, molybdenum powder, etc. In view of the magnitude of demand, the metal is used mostly for the manufacture of special steels and special alloys. The demand for this metal, though small in size, involves important articles, such as line materials for semiconductors in the power industry, catalysts in the chemical industry, and lubricants. Japan`s stockpile includes molybdenum, but the U.S. has been stockpiling none since 1977. 9 refs., 4 figs., 1 tab.

  15. Rapid analysis of molybdenum contents in molybdenum master alloys by X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Tongkong, P.

    1985-01-01

    Determination of molybdenum contents in molybdenum master alloy had been performed using energy dispersive x-ray fluorescence (EDX) technique where analysis were made via standard additions and calibration curves. Comparison of EDX technique with other analyzing techniques, i.e., wavelength dispersive x-ray fluorescence, neutron activation analysis and inductive coupled plasma spectrometry, showed consistency in the results. This technique was found to yield reliable results when molybdenum contents in master alloys were in the range of 13 to 50 percent using HPGe detector or proportional counter. When the required error was set at 1%, the minimum analyzing time was found to be 30 and 60 seconds for Fe-Mo master alloys with molybdenum content of 13.54 and 49.09 percent respectively. For Al-Mo master alloys, the minimum times required were 120 and 300 seconds with molybdenum content of 15.22 and 47.26 percent respectively

  16. Method of producing oxidation resistant coatings for molybdenum

    International Nuclear Information System (INIS)

    Timmons, G.A.

    1989-01-01

    A method is described for producing a molybdenum element having adherently bonded thereto a thermally self-healing plasma-sprayed coating consisting essentially of a composite of molybdenum and a refactory oxide material capable of reacting with molybdenum oxide under oxidizing conditions to form a substantially thermally stable refractory compound of molybdenum, the method comprising plasma-spraying a coating formed by the step-wise application of a plurality of interbonded plasma-sprayed layers of a composite of molybdenum/refractory oxide material produced from a particulate mixture thereof. The coating comprises a first layer of molybdenum plasma-sprayed bonded to the substrate of the molybdenum element, a second layer of plasma-sprayed mixture of particulate molybdenum/refactory oxide consisting essentially of predominantly molybdenum bonded to the first layer, and succeeding layers of this mixture. The next step is heating the coated molybdenum element under oxidizing conditions to an elevated temperature sufficient to cause oxygen to diffuse into the surface of the multi-layered coating to react with dispersed molybdenum therein to form molybdenum oxide and effect healing of the coating by reaction of the molybdenum oxide with the contained refractory oxide and thereby protect the substrate of the molybdenum element against oxidation

  17. Structural basis of thermal stability of the tungsten cofactor synthesis protein MoaB from Pyrococcus furiosus.

    Directory of Open Access Journals (Sweden)

    Nastassia Havarushka

    Full Text Available Molybdenum and tungsten cofactors share a similar pterin-based scaffold, which hosts an ene-dithiolate function being essential for the coordination of either molybdenum or tungsten. The biosynthesis of both cofactors involves a multistep pathway, which ends with the activation of the metal binding pterin (MPT by adenylylation before the respective metal is incorporated. In the hyperthermophilic organism Pyrococcus furiosus, the hexameric protein MoaB (PfuMoaB has been shown to catalyse MPT-adenylylation. Here we determined the crystal structure of PfuMoaB at 2.5 Å resolution and identified key residues of α3-helix mediating hexamer formation. Given that PfuMoaB homologues from mesophilic organisms form trimers, we investigated the impact on PfuMoaB hexamerization on thermal stability and activity. Using structure-guided mutagenesis, we successfully disrupted the hexamer interface in PfuMoaB. The resulting PfuMoaB-H3 variant formed monomers, dimers and trimers as determined by size exclusion chromatography. Circular dichroism spectroscopy as well as chemical cross-linking coupled to mass spectrometry confirmed a wild-type-like fold of the protomers as well as inter-subunits contacts. The melting temperature of PfuMoaB-H3 was found to be reduced by more than 15 °C as determined by differential scanning calorimetry, thus demonstrating hexamerization as key determinant for PfuMoaB thermal stability. Remarkably, while a loss of activity at temperatures higher than 50 °C was observed in the PfuMoaB-H3 variant, at lower temperatures, we determined a significantly increased catalytic activity. The latter suggests a gain in conformational flexibility caused by the disruption of the hexamerization interface.

  18. Molybdenum reduction to molybdenum blue in Serratia sp. Strain DRY5 is catalyzed by a novel molybdenum-reducing enzyme.

    Science.gov (United States)

    Shukor, M Y; Halmi, M I E; Rahman, M F A; Shamaan, N A; Syed, M A

    2014-01-01

    The first purification of the Mo-reducing enzyme from Serratia sp. strain DRY5 that is responsible for molybdenum reduction to molybdenum blue in the bacterium is reported. The monomeric enzyme has an apparent molecular weight of 105 kDalton. The isoelectric point of this enzyme was 7.55. The enzyme has an optimum pH of 6.0 and maximum activity between 25 and 35°C. The Mo-reducing enzyme was extremely sensitive to temperatures above 50°C (between 54 and 70°C). A plot of initial rates against substrate concentrations at 15 mM 12-MP registered a V max for NADH at 12.0 nmole Mo blue/min/mg protein. The apparent K m for NADH was 0.79 mM. At 5 mM NADH, the apparent V max and apparent K m values for 12-MP of 12.05 nmole/min/mg protein and 3.87 mM, respectively, were obtained. The catalytic efficiency (k cat/K m ) of the Mo-reducing enzyme was 5.47 M(-1) s(-1). The purification of this enzyme could probably help to solve the phenomenon of molybdenum reduction to molybdenum blue first reported in 1896 and would be useful for the understanding of the underlying mechanism in molybdenum bioremediation involving bioreduction.

  19. Molybdenum Reduction to Molybdenum Blue in Serratia sp. Strain DRY5 Is Catalyzed by a Novel Molybdenum-Reducing Enzyme

    Directory of Open Access Journals (Sweden)

    M. Y. Shukor

    2014-01-01

    Full Text Available The first purification of the Mo-reducing enzyme from Serratia sp. strain DRY5 that is responsible for molybdenum reduction to molybdenum blue in the bacterium is reported. The monomeric enzyme has an apparent molecular weight of 105 kDalton. The isoelectric point of this enzyme was 7.55. The enzyme has an optimum pH of 6.0 and maximum activity between 25 and 35°C. The Mo-reducing enzyme was extremely sensitive to temperatures above 50°C (between 54 and 70°C. A plot of initial rates against substrate concentrations at 15 mM 12-MP registered a Vmax for NADH at 12.0 nmole Mo blue/min/mg protein. The apparent Km for NADH was 0.79 mM. At 5 mM NADH, the apparent Vmax and apparent Km values for 12-MP of 12.05 nmole/min/mg protein and 3.87 mM, respectively, were obtained. The catalytic efficiency (kcat/Km of the Mo-reducing enzyme was 5.47 M-1 s-1. The purification of this enzyme could probably help to solve the phenomenon of molybdenum reduction to molybdenum blue first reported in 1896 and would be useful for the understanding of the underlying mechanism in molybdenum bioremediation involving bioreduction.

  20. X-ray radiometric method of ore quality monitoring during mining

    International Nuclear Information System (INIS)

    Ivanyukovich, G.A.

    1979-01-01

    The method is basically applied for sampling ore deposits, mainly of nonferrous and rare metals. It can be used for determining one, two or three elements in the deposit. In the USSR, the method has so far been used in Far East tin deposits and in the North Caucasus tungsten-molybdenum deposit. It is used for the analysis of boreholes, shaft walls, mined ore and ore material intended for enriching. The instruments used include single-channel gamma spectrometers using scintillation or proportional counters as detectors. Logging instruments include dual-channel spectrometers featuring automatic gain control and data processing devices. The instruments are designed for separating elements with atomic numbers 19 to 88 from mine wall materials and with atomic numbers 26 to 88 in boreholes at concentrations exceeding 0.1% and 0.01% for tin and silver, respectively. The economic benefit is shown of the introduction of the method using the Sadon lead-zinc plant and Khrustalnensk ore treatment plant as examples. (H.S.)

  1. Studies on Cementation of Tin on Copper and Tin Stripping from Copper Substrate

    Directory of Open Access Journals (Sweden)

    Rudnik E.

    2016-06-01

    Full Text Available Cementation of tin on copper in acid chloride-thiourea solutions leads to the formation of porous layers with a thickness dependent on the immersion time. The process occurs via Sn(II-Cu(I mechanism. Chemical stripping of tin was carried out in alkaline and acid solutions in the presence of oxidizing agents. It resulted in the dissolution of metallic tin, but refractory Cu3Sn phase remained on the copper surface. Electrochemical tin stripping allows complete tin removal from the copper substrate, but porosity and complex phase composition of the tin coating do not allow monitoring the process in unambiguous way.

  2. Further development of the tungsten-fibre reinforced tungsten composite

    Energy Technology Data Exchange (ETDEWEB)

    Gietl, Hanns; Hoeschen, Till; Riesch, Johann [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Aumann, Martin; Coenen, Jan [Forschungszentrum Juelich, IEK4, 52425 Juelich (Germany); Huber, Philipp [Lehrstuhl fuer Textilmaschinenbau und Institut fuer Textiltechnik (ITA), 52062 Aachen (Germany); Neu, Rudolf [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Technische Universitaet Muenchen, 85748 Garching (Germany)

    2016-07-01

    For the use in a fusion device tungsten has a unique property combination. The brittleness below the ductile-to-brittle transition temperature and the embrittlement during operation e.g. by overheating, neutron irradiation are the main drawbacks for the use of pure tungsten. Tungsten fibre-reinforced tungsten composites utilize extrinsic mechanisms to improve the toughness. After proofing that this idea works in principle the next step is the conceptual proof for the applicability in fusion reactors. This will be done by producing mock-ups and testing them in cyclic high heat load tests. For this step all constituents of the composite, which are fibre, matrix and interface, and all process steps need to be investigated. Tungsten fibres are investigated by means of tension tests to find the optimum diameter and pretreatment. New interface concepts are investigated to meet the requirements in a fusion reactor, e.g. high thermal conductivity, low activation. In addition weaving processes are evaluated for their use in the fibre preform production. This development is accompanied by an extensive investigation of the materials properties e.g. single fibre tension tests.

  3. TIN-X

    DEFF Research Database (Denmark)

    Cannon, Daniel C; Yang, Jeremy J; Mathias, Stephen L

    2017-01-01

    between proteins and diseases, based on text mining data processed from scientific literature. In the current implementation, TIN-X supports exploration of data for G-protein coupled receptors, kinases, ion channels, and nuclear receptors. TIN-X supports browsing and navigating across proteins......Motivation: The increasing amount of peer-reviewed manuscripts requires the development of specific mining tools to facilitate the visual exploration of evidence linking diseases and proteins. Results: We developed TIN-X, the Target Importance and Novelty eXplorer, to visualize the association...

  4. Synthesis and structure of dihydridodichloro-tetrakis-(dimethylphenylphosphine)molybdenum

    International Nuclear Information System (INIS)

    Lenenko, V.S.; Yanovskij, A.I.; Struchkov, Yu.T.; Shur, V.B.; Vol'pin, M.E.

    1986-01-01

    The molybdenum hydride complex (Me 2 PhP) 4 MoH 2 Cl 2 (1) characterized by infrared and nmr spectra and studied using x-ray diffraction method is produced in the course of (THF) 3 MoCl 3 reduction in the Me 2 PhP presence. Crystals 1 are triclinic, at -120 deg a=8.092, b=9.820, c=22.73 A, α=86.13, β=89.28, γ=67.52 deg, Z=2, sp.gr. Panti1. Mo atom coordination polyhedron can be described as distorted triagular dodecahedron Mo-P bond lengths differ considerably: longer bonds such as Mo-P 2.544 and 2.531 A form an angle of 157.8 deg, an angle between shorter bonds such as Mo-P 2.459 and 2.445 A is 119.6 deg; other PMoP angles fall into the interval of 90.6-100.0 deg Mo-P and Mo-Cl (2.542 and 2.532 A) bonds in complex 1 are close to the corresponding distances in its tungsten analogue investigated before

  5. Method of producing molybdenum-99

    Science.gov (United States)

    Pitcher, Eric John

    2013-05-28

    Method of producing molybdenum-99, comprising accelerating ions by means of an accelerator; directing the ions onto a metal target so as to generate neutrons having an energy of greater than 10 MeV; directing the neutrons through a converter material comprising techentium-99 to produce a mixture comprising molybdenum-99; and, chemically extracting the molybdenum-99 from the mixture.

  6. Deuterium trapping in tungsten

    Science.gov (United States)

    Poon, Michael

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  7. Deuterium trapping in tungsten

    International Nuclear Information System (INIS)

    Poon, M.

    2004-01-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D 2 molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  8. Deuterium trapping in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Poon, M

    2004-07-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D{sub 2} molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  9. Geochemical constraints on sustainable development: Can an advanced global economy achieve long-term stability?

    Science.gov (United States)

    Pickard, William F.

    2008-04-01

    The eighty-one stable chemical elements are examined individually with respect to (i) recent annual demand and (ii) worst case long-term availability in a distant future in which they must be extracted from the background sources of air, seawater, and ordinary rock. It is shown that, if a conventional use scenario is envisioned, the supplies of ruthenium, rhodium, palladium, tellurium, rhenium, osmium, iridium, platinum, gold, and especially phosphorus will be questionable while the supplies of copper, zinc, molybdenum, silver, cadmium, tin, antimony, tungsten, mercury, lead, and bismuth will be inadequate. It is therefore concluded that, in the long run, only the promotion of massive recycling and substitution technologies will suffice to maintain the global industrial society now developing.

  10. Beneficiation strategy for some low grade ores of strategic metals in India

    International Nuclear Information System (INIS)

    Krishna Rao, N.

    1997-01-01

    In developing indigenous resources of strategic metals, beneficiation strategy has a major role to play, particularly where the ores are of low tenor. Presently India imports most of its requirements of metals like tin, tungsten, molybdenum, nickel and cobalt. In all these cases important low grade resources occur in the country. Beneficiation strategy necessary for exploitation of these deposits are discussed based mainly on vast batch and semi plant scale data generated in the Ore Dressing Section of Bhabha Atomic Research Centre. Also discussed is the case of strategic metal uranium where, in certain cases pre-concentration by beneficiation has the potential to make it feasible the exploitation of otherwise difficult to process ore resources. (author)

  11. On the electrochemistry of tin oxide coated tin electrodes in lithium-ion batteries

    International Nuclear Information System (INIS)

    Böhme, Solveig; Edström, Kristina; Nyholm, Leif

    2015-01-01

    As tin based electrodes are of significant interest in the development of improved lithium-ion batteries it is important to understand the associated electrochemical reactions. In this work it is shown that the electrochemical behavior of SnO_2 coated tin electrodes can be described based on the SnO_2 and SnO conversion reactions, the lithium tin alloy formation and the oxidation of tin generating SnF_2. The CV, XPS and SEM data, obtained for electrodeposited tin crystals on gold substrates, demonstrates that the capacity loss often observed for SnO_2 is caused by the reformed SnO_2 layer serving as a passivating layer protecting the remaining tin. Capacities corresponding up to about 80 % of the initial SnO_2 capacity could, however, be obtained by cycling to 3.5 V vs. Li"+/Li. It is also shown that the oxidation of the lithium tin alloy is hindered by the rate of the diffusion of lithium through a layer of tin with increasing thickness and that the irreversible oxidation of tin to SnF_2 at potentials larger than 2.8 V vs. Li"+/Li is due to the fact that SnF_2 is formed below the SnO_2 layer. This improved electrochemical understanding of the SnO_2/Sn system should be valuable in the development of tin based electrodes for lithium-ion batteries.

  12. Mechanism of the electrochemical hydrogen reaction on smooth tungsten carbide and tungsten electrodes

    International Nuclear Information System (INIS)

    Wiesener, K.; Winkler, E.; Schneider, W.

    1985-01-01

    The course of the electrochemical hydrogen reaction on smooth tungsten-carbide electrodes in hydrogen saturated 2.25 M H 2 SO 4 follows a electrochemical sorption-desorption mechanism in the potential range of -0.4 to +0.1 V. At potentials greater than +0.1 V the hydrogen oxidation is controlled by a preliminary chemical sorption step. Concluding from the similar behaviour of tungsten-carbide and tungsten electrodes after cathodic pretreatment, different tungsten oxides should be involved in the course of the hydrogen reaction on tungsten carbide electrodes. (author)

  13. Rolling of bars and sections of fire-resisting metals on mills with noulti-shaft calibers

    International Nuclear Information System (INIS)

    Vydrin, V.N.; Barkov, L.A.; Pastukhov, V.V.; Matveev, V.A.; Mebel', V.S.; Korneev, L.I.

    1976-01-01

    Summarized in this paper are the results of experimental studies and rolling of rods and sections from metal-ceramic and cest molybdenum and tungsten. The technical characteristics of the new MK-200 laboratory mill are given together with the calibaration scheme of tungsten and molybdenum rods

  14. Tungsten Alloy Outgassing Measurements

    CERN Document Server

    Rutherfoord, John P; Shaver, L

    1999-01-01

    Tungsten alloys have not seen extensive use in liquid argon calorimeters so far. Because the manufacturing process for tungsten is different from the more common metals used in liquid argon there is concern that tungsten could poison the argon thereby creating difficulties for precision calorimetry. In this paper we report measurements of outgassing from the tungsten alloy slugs proposed for use in the ATLAS FCal module and estimate limits on potential poisoning with reasonable assumptions. This estimate gives an upper limit poisoning rate of tungsten slugs.

  15. Molybdenum market in transition

    International Nuclear Information System (INIS)

    Sutulov, A.

    1980-01-01

    Since the beginning of 1980 - after seven years of constant unbalance between supply and demand of molybdenum, characterized by a demand overhang and after two years of unprecedented spot market prices - clear signals for a consolidation of the molybdenum market can be recognized. (orig.) [de

  16. Tensile behaviour of drawn tungsten wire used in tungsten fibre-reinforced tungsten composites

    International Nuclear Information System (INIS)

    Riesch, J; Feichtmayer, A; Fuhr, M; Gietl, H; Höschen, T; Neu, R; Almanstötter, J; Coenen, J W; Linsmeier, Ch

    2017-01-01

    In tungsten fibre-reinforced tungsten composites (W f /W) the brittleness problem of tungsten is solved by utilizing extrinsic toughening mechanisms. The properties of the composite are very much related to the properties of the drawn tungsten wire used as fibre reinforcements. Its high strength and capability of ductile deformation are ideal properties facilitating toughening of W f /W. Tensile tests have been used for determining mechanical properties and study the deformation and the fracture behaviour of the wire. Tests of as-fabricated and straightened drawn wires with a diameter between 16 and 150 μ m as well as wire electrochemically thinned to a diameter of 5 μ m have been performed. Engineering stress–strain curves and a microscopic analysis are presented with the focus on the ultimate strength. All fibres show a comparable stress–strain behaviour comprising necking followed by a ductile fracture. A reduction of the diameter by drawing leads to an increase of strength up to 4500 MPa as a consequence of a grain boundary hardening mechanism. Heat treatment during straightening decreases the strength whereas electrochemical thinning has no significant impact on the mechanical behaviour. (paper)

  17. Molybdenum Oxides - From Fundamentals to Functionality.

    Science.gov (United States)

    de Castro, Isabela Alves; Datta, Robi Shankar; Ou, Jian Zhen; Castellanos-Gomez, Andres; Sriram, Sharath; Daeneke, Torben; Kalantar-Zadeh, Kourosh

    2017-10-01

    The properties and applications of molybdenum oxides are reviewed in depth. Molybdenum is found in various oxide stoichiometries, which have been employed for different high-value research and commercial applications. The great chemical and physical characteristics of molybdenum oxides make them versatile and highly tunable for incorporation in optical, electronic, catalytic, bio, and energy systems. Variations in the oxidation states allow manipulation of the crystal structure, morphology, oxygen vacancies, and dopants, to control and engineer electronic states. Despite this overwhelming functionality and potential, a definitive resource on molybdenum oxide is still unavailable. The aim here is to provide such a resource, while presenting an insightful outlook into future prospective applications for molybdenum oxides. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Process for purifying molybdenum

    International Nuclear Information System (INIS)

    Cheresnowsky, J.

    1989-01-01

    This patent describes a process for purifying molybdenum containing arsenic and phosphorus. The process comprising: adding to an acidic slurry of molybdenum trioxide, a source of magnesium ions in a solid form, with the amount of magnesium and the magnesium ion concentration in the subsequently formed ammonium molybdate solution being sufficient to subsequently form insoluble compounds containing greater than about 80% by weight of the arsenic and greater than about 80% by weight of the phosphorus, and ammonia in an amount sufficient to subsequently dissolve the molybdenum and subsequently form the insoluble compounds, with the source of magnesium ions being added prior to the addition of the ammonia; digesting the resulting ammoniated slurry at a temperature sufficient to dissolve the molybdenum and form an ammonium molybdate solution while the pH is maintained at from bout 9 to about 10 to form a solid containing the insoluble compounds; and separating the solid from the ammonium molybdate solution

  19. Thermodynamics of the hydrogen-carbon-oxygen-tungsten system, as applied to the manufacture of tungsten and tungsten carbide

    International Nuclear Information System (INIS)

    Schwenke, G.K.

    2001-01-01

    The thermodynamics of the quaternary hydrogen-carbon oxygen-tungsten system and its binary and ternary sub-systems are reviewed. Published thermodynamic data are evaluated, and expression for free energies of formation are chosen. These expressions are integrated with and equilibrium-calculating algorithm, producing a powerful tool for understanding and improving the manufacture of tungsten and tungsten carbide. Three examples are presented: reduction/carburization of tungstic oxide with hydrogen, carbon, and methane. (author)

  20. Temperature dependent surface modification of molybdenum due to low energy He+ ion irradiation

    International Nuclear Information System (INIS)

    Tripathi, J.K.; Novakowski, T.J.; Joseph, G.; Linke, J.; Hassanein, A.

    2015-01-01

    In this paper, we report on the temperature dependent surface modifications in molybdenum (Mo) samples due to 100 eV He + ion irradiation in extreme conditions as a potential candidate to plasma-facing components in fusion devices alternative to tungsten. The Mo samples were irradiated at normal incidence, using an ion fluence of 2.6 × 10 24 ions m −2 (with a flux of 7.2 × 10 20 ions m −2 s −1 ). Surface modifications have been studied using high-resolution field emission scanning electron-(SEM) and atomic force (AFM) microscopy. At 773 K target temperature homogeneous evolution of molybdenum nanograins on the entire Mo surface were observed. However, at 823 K target temperature appearance of nano-pores and pin-holes nearby the grain boundaries, and Mo fuzz in patches were observed. The fuzz density increases significantly with target temperatures and continued until 973 K. However, at target temperatures beyond 973 K, counterintuitively, a sequential reduction in the fuzz density has been seen till 1073 K temperatures. At 1173 K and above temperatures, only molybdenum nano structures were observed. Our temperature dependent studies confirm a clear temperature widow, 823–1073 K, for Mo fuzz formation. Ex-situ high resolution X-ray photoelectron spectroscopy studies on Mo fuzzy samples show the evidence of MoO 3 3d doublets. This elucidates that almost all the Mo fuzz were oxidized during open air exposure and are thick enough as well. Likewise the microscopy studies, the optical reflectivity measurements also show a sequential reduction in the reflectivity values (i.e., enhancement in the fuzz density) up to 973 K and after then a sequential enhancement in the reflectivity values (i.e., reduction in the fuzz density) with target temperatures. This is in well agreement with microscopy studies where we observed clear temperature window for Mo fuzz growth

  1. Well-Defined Molybdenum Oxo Alkyl Complex Supported on Silica by Surface Organometallic Chemistry: A Highly Active Olefin Metathesis Precatalyst

    KAUST Repository

    Merle, Nicolas; Le Qué mé ner, Fré dé ric; Bouhoute, Yassine; Szeto, Kai C.; De Mallmann, Aimery; Barman, Samir; Samantaray, Manoja; Delevoye, Laurent; Gauvin, Ré gis M.; Taoufik, Mostafa; Basset, Jean-Marie

    2016-01-01

    The well-defined silica-supported molybdenum oxo alkyl species (SiO−)MoO(CH Bu) was selectively prepared by grafting of MoO(CH Bu)Cl onto partially dehydroxylated silica (silica) using the surface organometallic chemistry approach. This surface species was fully characterized by elemental analysis and DRIFT, solid-state NMR, and EXAFS spectroscopy. This new material is related to the active species of industrial supported MoO/SiO olefin metathesis catalysts. It displays very high activity in propene self-metathesis at mild (turnover number = 90 000 after 25 h). Remarkably, its catalytic performance outpaces those of the parent imido derivative and its tungsten oxo analogue.

  2. Well-Defined Molybdenum Oxo Alkyl Complex Supported on Silica by Surface Organometallic Chemistry: A Highly Active Olefin Metathesis Precatalyst

    KAUST Repository

    Merle, Nicolas

    2016-12-05

    The well-defined silica-supported molybdenum oxo alkyl species (SiO−)MoO(CH Bu) was selectively prepared by grafting of MoO(CH Bu)Cl onto partially dehydroxylated silica (silica) using the surface organometallic chemistry approach. This surface species was fully characterized by elemental analysis and DRIFT, solid-state NMR, and EXAFS spectroscopy. This new material is related to the active species of industrial supported MoO/SiO olefin metathesis catalysts. It displays very high activity in propene self-metathesis at mild (turnover number = 90 000 after 25 h). Remarkably, its catalytic performance outpaces those of the parent imido derivative and its tungsten oxo analogue.

  3. Elimination of excess molybdenum by cattle

    Energy Technology Data Exchange (ETDEWEB)

    Toelgyesi, G.; Elmoty, I.A.

    1967-01-01

    It was found that cattle would ingest spontaneously 5-15 g of molybdenum on one occasion. The uptake of this quantity caused but moderate loss of appetite and mild enteritis, both normalizing in one week. The occurrence of a severe acute molybdenum poisoning can be practically excluded, owing to refusal of the poisoned feed. Spontaneously ingested molybdenum caused on the first day a 30-100 fold rise of ruminal Mo-level, decreasing to the order of the normal value in about one week. But in the urine and faeces, Mo-level was at least 10 fold, in the blood and milk about 4 fold of the normal one, even one or two weeks after ingestion. During this period at least 90% of ingested Mo was eliminated with the faeces, urine and milk. One week after the ingestion of molybdenum, the rumen content showed no evidence on poisoning and no trace of molybdenum. Oral administration of ammonium molybdenate in an amount equivalent to 40 g molybdenum caused no fatality. In fact, cattle would never ingest spontaneously such a large dose.

  4. Characteristics of tungsten oxide thin films prepared on the flexible substrates using pulsed laser deposition

    International Nuclear Information System (INIS)

    Suda, Yoshiaki; Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyuu, Yoshihito

    2008-01-01

    Tungsten trioxide (WO 3 ) thin films have been prepared on the flexible indium tin oxide (ITO) substrates by pulsed laser deposition (PLD) using WO 3 targets in oxygen gas. Color of the WO 3 film on the flexible ITO substrates depends on the oxygen gas mixture. The plasma plume produced by PLD using a Nd:YAG laser and WO 3 target is investigated by temporal and spatial-resolved optical emission spectroscopy. WO 3 films prepared on the flexible ITO substrates show electrochromic properties, even when the substrates are bent. The film color changes from blue to transparent within 10-20 s after the applied DC voltage is turned off

  5. Tungsten foil laminate for structural divertor applications – Analyses and characterisation of tungsten foil

    International Nuclear Information System (INIS)

    Reiser, Jens; Rieth, Michael; Dafferner, Bernhard; Hoffmann, Andreas; Yi Xiaoou; Armstrong, David E.J.

    2012-01-01

    It has been attempted for several years to synthesise a tungsten material with a low brittle-to-ductile transition temperature and a high fracture toughness that can be used for structural parts. It was shown in our previous work that tungsten foil is ductile at room temperature and that this ductility can be transformed to bulk by synthesising a tungsten laminate. In this work we want to focus on tungsten foil and assess the microstructure as well as the mechanical properties of the foil. The assessment of the microstructure of 0.1 mm tungsten foil will be performed using electron microscopy. It will be shown that the grains of the tungsten foil have a dimension of 0.5 μm × 3 μm × 15 μm and a clear texture in (1 0 0) 〈0 1 1〉. This texture becomes even more pronounced by annealing. Three-point-bending tests with tungsten foil, as-received, will define the barriers: ductile at room temperature and brittle in liquid nitrogen (−196 °C). This shows that the ductility is a thermally activated process. Recrystallised tungsten foil (annealed for 1 h/2700 °C) shows ductile material behaviour at 200 °C. The paper closes with a discussion on the reasons of the ductility of 0.1 mm tungsten foil. These might be the ultra fine grained (UFG) microstructure or, in other words, a nano microstructure (see tungsten foil as-received), the high amount of mobile edge dislocations, and/or the foil effect, which means that dislocations can move to the surface and are annihilated (see tungsten foil recrystallised).

  6. Studies on the pressed yttrium oxide-tungsten matrix as a possible dispenser cathode material

    International Nuclear Information System (INIS)

    Yang, Fan; Wang, Jinshu; Liu, Wei; Liu, Xiang; Zhou, Meiling

    2015-01-01

    Yttrium oxide was chosen as the secondary emission substance based on calculation results through first principle theory method. A new kind of pressed yttrium oxide-tungsten matrix dispenser cathodes are prepared by a sol–gel method combined with high temperature sintering in dry hydrogen atmosphere. The results show that the growth of the grains is hampered by the pinning effect of Y 2 O 3 distributing uniformly between the tungsten particles, resulting in the formation of small grain size. It is found that Y 2 O 3 improves the secondary electron emission property, i.e., the secondary emission yield increases with the increase of Y 2 O 3 content in the samples. The maximum secondary emission yield δ max of the cathode with 15% amount of Y 2 O 3 can reach 2.92. Furthermore, the cathode shows a certain thermionic emission performance. The zero field emission current density J 0 of 4.18A/cm 2 has reached at 1050 °C b for this kind of cathode after being activated at 1200 °C b , which are much higher than that of rare earth oxide doped molybdenum (REO-Mo) cathode reported in the previous work. - Highlights: • Yttrium oxide was chosen as the secondary emission substance based on first principle calculation result. • A new kind of cathode has been successfully obtained. • Pressed yttrium oxide-tungsten matrix dispenser cathode exhibits good emission properties. • The improvement of the cathode emission can be well explained by the surface analysis results presented in this work

  7. Molybdenum solubility in aluminium nitrate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Heres, X.; Sans, D.; Bertrand, M.; Eysseric, C. [CEA, Centre de Marcoule, Nuclear Energy Division, DRCP, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Brackx, E.; Domenger, R.; Excoffier, E. [CEA, Centre de Marcoule, Nuclear Energy Division, DTEC, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Valery, J.F. [AREVA-NC, DOR/RDP, Paris - La Defense (France)

    2016-07-01

    For over 60 years, research reactors (RR or RTR for research testing reactors) have been used as neutron sources for research, radioisotope production ({sup 99}Mo/{sup 99m}Tc), nuclear medicine, materials characterization, etc... Currently, over 240 of these reactors are in operation in 56 countries. They are simpler than power reactors and operate at lower temperature (cooled to below 100 C. degrees). The fuel assemblies are typically plates or cylinders of uranium alloy and aluminium (U-Al) coated with pure aluminium. These fuels can be processed in AREVA La Hague plant after batch dissolution in concentrated nitric acid and mixing with UOX fuel streams. The aim of this study is to accurately measure the solubility of molybdenum in nitric acid solution containing high concentrations of aluminium. The higher the molybdenum solubility is, the more flexible reprocessing operations are, especially when the spent fuels contain high amounts of molybdenum. To be most representative of the dissolution process, uranium-molybdenum alloy and molybdenum metal powder were dissolved in solutions of aluminium nitrate at the nominal dissolution temperature. The experiments showed complete dissolution of metallic elements after 30 minutes long stirring, even if molybdenum metal was added in excess. After an induction period, a slow precipitation of molybdic acid occurs for about 15 hours. The data obtained show the molybdenum solubility decreases with increasing aluminium concentration. The solubility law follows an exponential relation around 40 g/L of aluminium with a high determination coefficient. Molybdenum solubility is not impacted by the presence of gadolinium, or by an increasing concentration of uranium. (authors)

  8. Potentiometric determination of the tungsten content of tantalum-tungsten alloys with chromium II

    International Nuclear Information System (INIS)

    Gavra, Z.; Ronen, S.; Levin, R.

    1977-05-01

    A method was developed for the potentiometric determination of the tungsten content of tantalum-tungsten alloys of different compositions. These were dissolved under conditions that enabled the tungsten content to be determined with chromium (II). Phosphoric acid was selected as a suitable complexing agent for the prevention of the precipitation of tungsten and tantalum compounds. The use of chromium (II) required an oxygen-tight system and therefore the work was carried out in suitable vessels for storage and tritation

  9. High temperature diffusion of hafnium in tungsten and a tungsten-hafnium carbide alloy

    International Nuclear Information System (INIS)

    Ozaki, Y.; Zee, R.H.

    1994-01-01

    Refractory metals and ceramics are used extensively in energy systems due to their high temperature properties. This is particularly important in direct conversion systems where thermal to electric conversion efficiency is a direct function of temperature. Tungsten, which has the highest melting temperature among elemental metals, does not possess sufficient creep resistance at temperature above 1,600 K. Different dispersion strengthened tungsten alloys have been developed to extend the usefulness of tungsten to higher temperatures. One of these alloys, tungsten with 0.4 mole percent of finely dispersed HfC particles (W-HfC), has the optimum properties for high temperature applications. Hafnium carbide is used as the strengthening agent due to its high chemical stability and its compatibility with tungsten. The presence of HfC particles retards the rate of grain growth as well as restricting dislocation motion. Both of which are beneficial for creep resistance. The long term behavior of this alloy depends largely on the evolution of its microstructure which is governed by the diffusion of its constituents. Data on the diffusion of carbon in tungsten and tungsten self-diffusion are available, but no direct measurements have been made on the diffusion of hafnium in tungsten. The only diffusion data available are estimated from a coarsening study and these data are highly unreliable. In this study, the diffusion behavior of hafnium in pure tungsten and in a W-HfC alloy was directly measured by means of Secondary Ion Mass Spectroscopy (SIMS). The selection of the W-HfC alloy is due to its importance in high temperature engineering applications, and its higher recrystallization temperature. The presence of HfC particles in tungsten restricts grain growth resulting in better high temperature creep resistance. The higher recrystallization temperature allows measurements to be made over a wider range of temperatures at a relatively constant grain size

  10. Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi.

    Science.gov (United States)

    Othman, A R; Bakar, N A; Halmi, M I E; Johari, W L W; Ahmad, S A; Jirangon, H; Syed, M A; Shukor, M Y

    2013-01-01

    Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v) glucose, 50 mM molybdate, between 28 and 30 °C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS) such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong's constants p max, K(s), S(m), and n was 5.88 μmole Mo-blue hr(-1), 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution.

  11. Plasma etching of patterned tungsten

    International Nuclear Information System (INIS)

    Franssila, S.

    1993-01-01

    Plasma etching of tungsten is discussed from the viewpoint of thin film structure and integrated circuit process engineering. The emphasis is on patterned tungsten etching for silicon device and X-ray mask fabrication. After introducing tungsten etch chemistries and mechanisms, microstructural aspects of tungsten films (crystal structure, grain size, film density, defects, impurities) in relation to etching are discussed. Approaches to etch process optimization are presented, and the current state-of-the-art of patterned tungsten etching is reviewed. (orig.)

  12. Comparative assessment of gastrointestinal irritant potency in man of tin(II) chloride and tin migrated from packaging.

    Science.gov (United States)

    Boogaard, Peter J; Boisset, Michel; Blunden, Steve; Davies, Scot; Ong, Teng Jin; Taverne, Jean-Pierre

    2003-12-01

    Tin is present in low concentrations in most canned foods and beverages, the highest levels being found in products packaged in unlacquered or partially lacquered tinplate cans. A limited number of case-reports of acute gastrointestinal disorders after consumption of food containing 100-500 mg/kg tin have been reported, but these reports suffer many insufficiencies. Controlled clinical studies on acute effects of tin migrated from packaging suggest a threshold concentration for adverse effects (AEs) of >730 mg/kg. Two separate randomised, single-centre, double-blind, crossover studies, enabling comparison of the tolerability of tin added as tin(II) chloride at concentrations of soup in 24 volunteers (Study 2) were carried out. Distribution studies were conducted to get insight in the acute AEs of low molecular weight (clear dose-response relationship was only observed when tin was added as tin(II) chloride in tomato juice. No clinically significant AEs were reported in Study 2 and comparison of the incidence of tin-related AEs showed no difference between the dose levels (including control). Tin species of low molecular weight in supernatant represented 31-32% of total tin in canned tomato soup versus 56-61% in juice freshly spiked with tin(II) chloride. Differences in the incidence of AEs following administration of tomato juice with 161 and 264 mg of tin per kg and tomato soup with 201 and 267 mg of tin per kg likely results from differences in the concentration of low molecular weight tin species and in the nature of tin complexes formed. The results of this work demonstrate that tin levels up to 267 mg/kg in canned food cause no AEs in healthy adults and support the currently proposed tin levels of 200 mg/kg and 250 mg/kg for canned beverages and canned foods, respectively, as safe levels for adults in the general population.

  13. Hydrolysis of bis(dimethylamido)tin to tin (II) oxyhydroxide and its selective transformation into tin (II) or tin (IV) oxide

    KAUST Repository

    Khanderi, Jayaprakash

    2015-03-01

    Sn6O4(OH)4, a hydrolysis product of Sn(NMe2)2, is transformed to tin (II) or tin (IV) oxide by solid and solution phase processing. Tin (II) oxide is formed by heating Sn6O4(OH)4 at ≤200 °C in air or under inert atmosphere. Tin (IV) oxide nanoparticles are formed in the presence of a carboxylic acid and base in air at room temperature. IR spectroscopy, Raman spectroscopy, thermogravimetry (coupled with infrared spectroscopy), powder X-ray diffraction, high temperature X-ray diffraction, scanning electron and transmission electron microscopy are used for the characterization of Sn6O4(OH)4 and the investigation of its selective decomposition into SnO or SnO2. Spectroscopic and X-ray diffraction results indicate that SnO is formed by the removal of water from crystalline Sn6O4(OH)4. SEM shows octahedral morphology of the Sn6O4(OH)4, SnO and SnO2 with particle size from 400 nm-2 μm during solid state conversion. Solution phase transformation of Sn6O4(OH)4 to SnO2 occurs in the presence of potassium glutarate and oxygen. SnO2 particles are 15-20 nm in size.

  14. CVD molybdenum films of high infrared reflectance

    Energy Technology Data Exchange (ETDEWEB)

    Carver, G. E.

    1979-01-01

    Molybdenum thin films of high infrared reflectance have been deposited by pyrolytic decomposition of molybdenum carbonyl (Mo(CO)/sub 6/), and by hydrogen reduction of molybdenum pentachloride (MoCl/sub 5/). Reflectance values within 0.7% of the reflectance of supersmooth bulk molybdenum have been attained by annealing films of lower reflectance in both reducing and non-reducing atmospheres. All depositions and anneals proceed at atmospheric pressure, facilitating a continuous, flow-through fabrication. These reflectors combine the high temperature stability of molybdenum thin films with the infrared reflectance of a material such as aluminum. Deposition from Mo(CO)/sub 6/ under oxidizing conditions, and subsequent anneal in a reducing atmosphere, results in films that combine high solar absorptance with low thermal emittance. If anti-reflected, black molybdenum films can serve as highly selective single layer photothermal converters. Structural, compositional, and crystallographic properties have been measured after both deposition and anneal.

  15. Kinetics of Molybdenum Reduction to Molybdenum Blue by Bacillus sp. Strain A.rzi

    Directory of Open Access Journals (Sweden)

    A. R. Othman

    2013-01-01

    Full Text Available Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v glucose, 50 mM molybdate, between 28 and 30°C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong’s constants pmax, Ks, Sm, and n was 5.88 μmole Mo-blue hr−1, 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution.

  16. Development of quantitative atomic modeling for tungsten transport study using LHD plasma with tungsten pellet injection

    Science.gov (United States)

    Murakami, I.; Sakaue, H. A.; Suzuki, C.; Kato, D.; Goto, M.; Tamura, N.; Sudo, S.; Morita, S.

    2015-09-01

    Quantitative tungsten study with reliable atomic modeling is important for successful achievement of ITER and fusion reactors. We have developed tungsten atomic modeling for understanding the tungsten behavior in fusion plasmas. The modeling is applied to the analysis of tungsten spectra observed from plasmas of the large helical device (LHD) with tungsten pellet injection. We found that extreme ultraviolet (EUV) emission of W24+ to W33+ ions at 1.5-3.5 nm are sensitive to electron temperature and useful to examine the tungsten behavior in edge plasmas. We can reproduce measured EUV spectra at 1.5-3.5 nm by calculated spectra with the tungsten atomic model and obtain charge state distributions of tungsten ions in LHD plasmas at different temperatures around 1 keV. Our model is applied to calculate the unresolved transition array (UTA) seen at 4.5-7 nm tungsten spectra. We analyze the effect of configuration interaction on population kinetics related to the UTA structure in detail and find the importance of two-electron-one-photon transitions between 4p54dn+1- 4p64dn-14f. Radiation power rate of tungsten due to line emissions is also estimated with the model and is consistent with other models within factor 2.

  17. Preparation of selective molybdenum concentrate from collective coppermolybdenum concentrate

    Directory of Open Access Journals (Sweden)

    N. Tusupbaev

    2016-06-01

    Full Text Available The paper considers possibilities of selective separation of the concentrate of copper and molybdenum from a collective copper-molybdenum concentrate of Aktogay deposit using regrinding and conventional flotation reagents. In the case of conventional flotoreagents, the content of molybdenum in a molybdenum concentrate was 8.0% at extraction effectiveness 83.12%. At 27.96% extraction degree of copper, it’s content in the concentrate equaled to 21.3%. After regrinding, molybdenum content in the concentrate was 24.0% at the extraction effectiveness 59.63%, and copper content in the concentrate was 21.9% at the recovery of 61.23%. Thus, the regrinding of a collective copper-molybdenum concentrate resulted in an increase in the content of molybdenum in molybdenum concentrate by 16%, and the copper concentration increased by 0.6%.

  18. Application of life cycle analysis: The case of green bullets

    Energy Technology Data Exchange (ETDEWEB)

    Bogard, J.S.; Yuracko, K.L.; Lowden, R.A.; Murray, M.E.; Vaughn, N.L.

    1998-11-01

    Life-cycle analysis (LCA) provides a general framework for assessing and summarizing all of the information important to a decision. LCA has been used to analyze the desirability of replacing lead (Pb) with a composite of tungsten (W) and tin (Sn) in projectile slugs used in small arms ammunition at US Department of Energy (DOE) training facilities for security personnel. The analysis includes consideration of costs, performance, environmental and human health impacts, availability of raw materials, and stakeholder acceptance. The DOE expends approximately 10 million rounds of small-arms ammunition each year training security personnel. This deposits over 300,000 pounds of lead and copper annually into DOE firing ranges, contributing to lead migration in the surrounding environment. Human lead intake occurs by inhalation of contaminated indoor firing range air and air containing lead particles that are resuspended during regular maintenance and cleanup, and by skin absorption while cleaning weapons. Projectiles developed by researchers at Oak Ridge National laboratory (ORNL) using a composite of tungsten and tin perform as well as, or better than, those fabricated using lead. A cost analysis shows that tungsten-tin is less costly to use than lead, since, for the current number of rounds used annually, the higher tungsten-tin purchase price is small compared with higher maintenance costs associated with lead. The tungsten-tin composite presents a much smaller potential for adverse human health and environmental impacts than lead. Only a small fraction of the world`s tungsten production occurs in the US, however, and market-economy countries account for only around 15% of world tungsten production. Stakeholders would prefer tungsten-tin on the basis of total cost, performance, reduced environmental impact and lower human toxicity. Lead is preferable on the basis of material availability.

  19. 1987 annual powder metallurgy conference proceedings

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This book contains over 50 selections. Some of the titles are: High strength tungsten heavy alloys with molybdenum additions; Gravitational contributions to microstructural coarsening in liquid phase sintering; Large area sheet from P/M materials; Liquid phase sintering of carbides using a nickel-molybdenum alloy; and Influence of structures on fracture and fracture toughness of cemented tungsten carbides

  20. The Development of Molybdenum Speciation as a Paleoredox Tool

    Science.gov (United States)

    Rodley, J.; Peacock, C.; Mosselmans, J. F. W.; Poulton, S.

    2017-12-01

    The redox state of the oceans has changed throughout geological time and an understanding of these changes is essential to elucidate links between ocean chemistry, climate and life. Due to its abundance in seawater and redox-sensitive nature, molybdenum has enormous potential as a paleoredox proxy. Although a significant amount of research has been done on molybdenum in ancient and modern sediments in terms of its concentrations and isotopic ratios there remains a limited understanding of the drawdown mechanisms of molybdenum under different redox conditions restricting its use in identifying a range of redox states. In order to address these uncertainties, we have developed a novel sequential extraction technique to examine molybdenum concentrations in six sediment fractions from modern samples that represent oxic, nitrogenous, ferruginous and euxinic environments. In addition we use µ-XRF and µ-XANES synchrotron spectroscopy to examine the molybdenum speciation within these fractions and environments. To interpret our µ-XANES data we have developed an extensive library of molybdenum XANES standards that represent molybdenum sequestration by the sediment fractions identified from the sequential extraction. To further verify our synchrotron results we developed a series of µ-XANES micro-column experiments to examine preferential uptake pathways of molybdenum to different sediment phases under a euxinic water column. The initial data from both the sequential extraction and µ-XANES methods indicate that molybdenum is not limited to a single burial pathway in any of the redox environments. We find that each of the redox environments can be characterised by a limited set of molybdenum phase associations, with molybdenum adsorption to pyrite likely the dominant burial pathway. These findings agree with existing research for molybdenum speciation in euxinic environments suggesting that both pyrite and sulphidised organic matter act as important molybdenum sinks. Our

  1. Molybdenum distribution and sensitivity in tomatoes, sunflowers and beans

    Energy Technology Data Exchange (ETDEWEB)

    Hecht-Buchholz, C

    1973-01-01

    The influence of increasing levels of molybdenum on the growth, molybdenum uptake and distribution in individual plant organs was investigated in tomatoes, beans and sunflowers in a 9 day trial. With tomatoes, which showed marked damage with high molybdenum levels, the molybdenum content of dry matter was highest in the leaf and lowest in the stem. On the other hand, beans, insensitive towards the high molybdenum level, dry matter molybdenum content was appreciably higher in the stem than in the leaf. It is supposed that in plant species, insensitive to high molybdenum levels, molybdenum is held less firmly in this tissue and can attain damaging levels in the cytoplasm of the youngest leaf tissue cells. It is supposed, on the basis of the reactions which were carried out with expressed root juice and on the basis of the yellow coloration attainable in vitro in the tissue caused by the addition of molybdate solution, that the yellow coloration appearing in the cells and plant organs of various plant species, here tomatoes and sunflowers, with high molybdenum levels is due to a reaction between molybdenum and polyvalent phenols in cellsap.

  2. Interaction of plasma-facing materials with air and steam

    International Nuclear Information System (INIS)

    Druyts, F.; Fays, J.; Wu, C.H.

    2002-01-01

    In the design of ITER-FEAT, several candidate materials are foreseen for plasma-facing components of the divertor (tungsten, carbon fibre-reinforced composites (CFC), molybdenum) and the first wall (beryllium). In the view of accidental scenarios such as a loss of coolant accident or a loss of vacuum accident the reaction between these materials and steam or air remains a safety concern. To provide kinetic data, describing the chemical reactivity of plasma-facing materials in air and steam, we used coupled thermogravimetry/quadrupole mass spectrometry. In this paper we present the results of a screening investigation that compares the oxidation rates of tungsten, molybdenum, CFC and beryllium in the temperature range 300-700 deg. C. From the thermogravimetry and mass spectrometry results we obtained the reaction rates as a function of temperature. For the metals tungsten, molybdenum and beryllium, a transition is observed between protective oxidation at lower temperatures and non-protective oxidation at higher temperatures. This transition temperature lies in the range 500-550 deg. C for tungsten and molybdenum, which is lower than for beryllium. At above temperatures 550 deg. C, the oxides formed on molybdenum and tungsten volatilise. This increases the oxidation rate dramatically and can lead to mobilisation of activation products in a fusion reactor. We also performed experiments on both undoped CFC and CFC doped with 8-10% silicon. The influence of silicon doping on the chemical reactivity of CFC's in air is discussed

  3. Development of quantitative atomic modeling for tungsten transport study Using LHD plasma with tungsten pellet injection

    International Nuclear Information System (INIS)

    Murakami, I.; Sakaue, H.A.; Suzuki, C.; Kato, D.; Goto, M.; Tamura, N.; Sudo, S.; Morita, S.

    2014-10-01

    Quantitative tungsten study with reliable atomic modeling is important for successful achievement of ITER and fusion reactors. We have developed tungsten atomic modeling for understanding the tungsten behavior in fusion plasmas. The modeling is applied to the analysis of tungsten spectra observed from currentless plasmas of the Large Helical Device (LHD) with tungsten pellet injection. We found that extreme ultraviolet (EUV) lines of W 24+ to W 33+ ions are very sensitive to electron temperature (Te) and useful to examine the tungsten behavior in edge plasmas. Based on the first quantitative analysis of measured spatial profile of W 44+ ion, the tungsten concentration is determined to be n(W 44+ )/n e = 1.4x10 -4 and the total radiation loss is estimated as ∼4 MW, of which the value is roughly half the total NBI power. (author)

  4. Isotope analysis of molybdenum in selected minerals

    International Nuclear Information System (INIS)

    Becker, S.; Dietze, H.J.

    1980-01-01

    An analytical method is described for the mass spectrometric determination of molybdenum abundance values. The results of analyses of three molybdenum mineral samples are presented and compared with the results of other authors. It is shown that the fine variations of molybdenum in natural minerals cannot be analysed with currently available mass spectrometers

  5. Studies on the pressed yttrium oxide-tungsten matrix as a possible dispenser cathode material

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan; Wang, Jinshu, E-mail: wangjsh@bjut.edu.cn; Liu, Wei; Liu, Xiang; Zhou, Meiling

    2015-01-15

    Yttrium oxide was chosen as the secondary emission substance based on calculation results through first principle theory method. A new kind of pressed yttrium oxide-tungsten matrix dispenser cathodes are prepared by a sol–gel method combined with high temperature sintering in dry hydrogen atmosphere. The results show that the growth of the grains is hampered by the pinning effect of Y{sub 2}O{sub 3} distributing uniformly between the tungsten particles, resulting in the formation of small grain size. It is found that Y{sub 2}O{sub 3} improves the secondary electron emission property, i.e., the secondary emission yield increases with the increase of Y{sub 2}O{sub 3} content in the samples. The maximum secondary emission yield δ{sub max} of the cathode with 15% amount of Y{sub 2}O{sub 3} can reach 2.92. Furthermore, the cathode shows a certain thermionic emission performance. The zero field emission current density J{sub 0} of 4.18A/cm{sup 2} has reached at 1050 °C{sub b} for this kind of cathode after being activated at 1200 °C{sub b}, which are much higher than that of rare earth oxide doped molybdenum (REO-Mo) cathode reported in the previous work. - Highlights: • Yttrium oxide was chosen as the secondary emission substance based on first principle calculation result. • A new kind of cathode has been successfully obtained. • Pressed yttrium oxide-tungsten matrix dispenser cathode exhibits good emission properties. • The improvement of the cathode emission can be well explained by the surface analysis results presented in this work.

  6. International strategic minerals inventory summary report; tin

    Science.gov (United States)

    Sutphin, D.M.; Sabin, A.E.; Reed, B.L.

    1990-01-01

    The International Strategic Minerals Inventory tin inventory contains records for 56 major tin deposits and districts in 21 countries. These countries accounted for 98 percent of the 10 million metric tons of tin produced in the period 1934-87. Tin is a good alloying metal and is generally nontoxic, and its chief uses are as tinplate for tin cans and as solder in electronics. The 56 locations consist of 39 lode deposits and 17 placers and contain almost 7.5 million metric tons of tin in identified economic resources (R1E) and another 1.5 million metric tons of tin in other resource categories. Most of these resources are in major deposits that have been known for over a hundred years. Lode deposits account for 44 percent of the R1E and 87 percent of the resources in other categories. Placer deposits make up the remainder. Low-income and middle-income countries, including Bolivia and Brazil and countries along the Southeast Asian Tin Belt such as Malaysia, Thailand, and Indonesia account for 91 percent of the R1E resources of tin and for 61 percent of resources in other categories. The United States has less than 0.05 percent of the world's tin R1E in major deposits. Available data suggest that the Soviet Union may have about 4 percent of resources in this category. The industrial market economy countries of the United States, Japan, Federal Republic of Germany, and the United Kingdom are major consumers of tin, whereas the major tin-producing countries generally consume little tin. The Soviet Union and China are both major producers and consumers of tin. At the end of World War II, the four largest tin-producing countries (Bolivia, the Belgian Congo (Zaire), Nigeria, and Malaysia) produced over 80 percent of the world's tin. In 1986, the portion of production from the four largest producers (Malaysia, Brazil, Soviet Union, Indonesia) declined to about 55 percent, while the price of tin rose from about $1,500 to $18,000 per metric ton. In response to tin shortages

  7. Textbook tests with tungsten

    CERN Multimedia

    Barbara Warmbein

    2010-01-01

    CERN's linear collider detector group joins forces with CALICE in building the world's first tungsten hadronic calorimeter.   Hadronic calorimeter prototype made of tungsten for the linear collider detector being equipped with CALICE scintillators. In a hall for test beam experiments at CERN, next to the CLOUD climate experiment and an irradiation facility, sits a detector prototype that is in many ways a first. It's the first ever hadronic sandwich calorimeter (HCal) prototype made of tungsten. It's the first prototype for a detector for the Compact Linear Collider Study CLIC, developed by the linear collider detector R&D group (LCD group) at CERN. And it's the first piece of hardware that results directly from the cooperation between CLIC and ILC detector study groups. Now its makers are keen to see first particle showers in their detector. The tungsten calorimeter has just moved from a workshop at CERN, where it was assembled from finely polished tungsten squares and triangles, into the ...

  8. Investigations of dc breakdown fields

    CERN Document Server

    Ramsvik, Trond; Reginelli, Alessandra; Taborelli, Mauro

    2006-01-01

    The need for high accelerating gradients for the future 30 GHz multi-TeV e+e- Compact Linear Collider (CLIC) at CERN has triggered a comprehensive study of DC breakdown fields of metals in UHV. The study shows that molybdenum (Mo), tungsten (W), titanium (Ti) and TiVAl reach high breakdown fields, and are thus good candidates for the iris material of CLIC structures. A significant decrease in the saturated breakdown field (Esat) is observed for molybdenum and tungsten when exposed to air. Specifically, at air pressures of 10-5 mbar, the decrease in Esat is found to be 50% and 30% for molybdenum and tungsten, respectively. In addition, a 30% decrease is found when molybdenum is conditioned with a CO pressure of ~1-10-5 mbar. Surface analysis measurements and breakdown conditioning in O2 ambience imply that the origin of the decrease in Esat is closely linked to oxide formation on the cathode surface. "Ex-situ" treatments by ion bombardment of molybdenum effectively reduce the oxide layers, and improve the brea...

  9. Preparation of molybdenum oxide thin films by MOCVD

    International Nuclear Information System (INIS)

    Guerrero, R. Martinez; Garcia, J.R. Vargas; Santes, V.; Gomez, E.

    2007-01-01

    In this study, molybdenum oxide films were prepared in a horizontal hot-wall MOCVD apparatus using molybdenum dioxide acetylacetonate as precursor. The molybdenum precursor was synthesized from acetylacetone and molybdenum oxide powder. Thermal gravimetric (TG) and differential thermal analyses (DTA) of the precursor suggested the formation of molybdenum oxides around 430 o C (703 K). Thus, a range of deposition temperatures varying from 350 to 630 o C (623-903 K) was explored to investigate the effects on the nature of the molybdenum oxide films. X-ray diffraction (XRD) results showed that the films consisted of α-MoO 3 phase at deposition temperatures ranging from 400 to 560 o C (673-833 K). Crystalline α-MoO 3 films can be obtained from molybdenum dioxide acetylacetonate precursor, without need of a post-annealing treatment. The best crystalline quality was found in films having needle-like crystallites grown at deposition temperature of about 560 o C (833 K), which exhibit a strong (0 1 0) preferred orientation and a transparent visual appearance

  10. Preparation of molybdenum oxide thin films by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, R. Martinez [Depto. de Ingenieria Metalurgica, ESIQIE-IPN, Mexico 07300, D.F. (Mexico); Garcia, J.R. Vargas [Depto. de Ingenieria Metalurgica, ESIQIE-IPN, Mexico 07300, D.F. (Mexico)]. E-mail: rvargasga@ipn.mx; Santes, V. [CIIEMAD-IPN, Miguel Othon de Mendizabal 485, Mexico 07700, D.F. (Mexico); Gomez, E. [Instituto de Quimica-UNAM, Circuito Exterior-Ciudad Universitaria, Mexico 04510, D.F. (Mexico)

    2007-05-31

    In this study, molybdenum oxide films were prepared in a horizontal hot-wall MOCVD apparatus using molybdenum dioxide acetylacetonate as precursor. The molybdenum precursor was synthesized from acetylacetone and molybdenum oxide powder. Thermal gravimetric (TG) and differential thermal analyses (DTA) of the precursor suggested the formation of molybdenum oxides around 430 {sup o}C (703 K). Thus, a range of deposition temperatures varying from 350 to 630 {sup o}C (623-903 K) was explored to investigate the effects on the nature of the molybdenum oxide films. X-ray diffraction (XRD) results showed that the films consisted of {alpha}-MoO{sub 3} phase at deposition temperatures ranging from 400 to 560 {sup o}C (673-833 K). Crystalline {alpha}-MoO{sub 3} films can be obtained from molybdenum dioxide acetylacetonate precursor, without need of a post-annealing treatment. The best crystalline quality was found in films having needle-like crystallites grown at deposition temperature of about 560 {sup o}C (833 K), which exhibit a strong (0 1 0) preferred orientation and a transparent visual appearance.

  11. Toughness enhancement of tungsten reinforced with short tungsten fibres

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhang, L.H. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Fang, Q.F., E-mail: qffang@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Zhang, T.; Wang, X.P.; Hao, T.; Liu, C.S. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-04-06

    The feasibility and toughening efficiency of the short tungsten fibre reinforcement on tungsten were investigated in W{sub f}/W composites fabricated by powder metallurgy method of spark plasma sintering. Fibres in the composites presented a Z-free laminar structure. Partial recrystallization of fibre grains occurred but fibre crack or damage was not detected. Fracture energy of W{sub f}/W composites was estimated in tensile tests, and the results indicated great toughness improvement over pure tungsten in virtue of frictional pullout and plastic deformation of fibres, and matrix-fibres interfacial debonding since 873 K. The specimen with mass fraction of 10% and fibre diameter of 100 µm exhibits the largest elongation of 9±1.1% and the highest ultimate strength of 482±13 MPa at 873 K.

  12. A study on molybdenum sulphoselenide (MoSxSe2−x, 0 ≤ x ≤ 2) thin films: Growth from solution and its properties

    International Nuclear Information System (INIS)

    Anand, T. Joseph Sahaya; Shariza, S.

    2012-01-01

    Highlights: ► Effect of deposition time on the properties of molybdenum chalcogenide thin films. ► First time to compare the study of binary and ternary molybdenum chalcogenides. ► No previous report on ternary molybdenum sulphoselenide by electrodeposition. ► Semiconducting parameters by CV analysis promising to be good solar cell material. - Abstract: Thin films of molybdenum sulphoselenide, MoS x Se 2−x , (0 ≤ x ≤ 2) have been electrosynthesized on indium-tin-oxide (ITO)-coated glass and stainless steel substrates. The films were characterized for their structural, morphological and compositional characteristics. Their optical and semiconducting parameters were also analysed in order to determine the suitability of the thin films for photoelectrochemical (PEC)/solar cell applications. Structural analysis via X-ray diffraction (XRD) analysis reveals that the films are polycrystalline in nature. Scanning electron microscope (SEM) studies reveals the films were adherent to the substrate with uniform in nature which also confirmed by Transmission electron microscope (TEM). Compositional analysis via energy dispersive X-ray (EDX) technique confirms the presence of Mo, S and Se elements in the films. The optical studies show that the films are of direct bandgap. Results on the semiconductor parameters analysis of the films showed that the nature of the Mott–Schottky plots indicates that the films obtained are of n-type material. For all films, the semiconductor parameter values come in the better range of other transition metal chalcogenides which has proven that MoSSe thin films are capable as solar/PEC cell materials.

  13. Nitrogen reduction: Molybdenum does it again

    Science.gov (United States)

    Schrock, Richard R.

    2011-02-01

    Nature reduces dinitrogen under mild conditions using nitrogenases, the most active of which contains molybdenum and iron. The only abiological dinitrogen reduction catalyst that avoids the harsh conditions of the Haber-Bosch process contains just molybdenum.

  14. Overview of the US-Japan collaborative investigation on hydrogen isotope retention in neutron-irradiated and ion-damaged tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Masashi, E-mail: Masashi.Shimada@inl.gov [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID (United States); Hatano, Y. [Hydrogen Isotope Research Center, University of Toyama, Toyama (Japan); Oya, Y. [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka (Japan); Oda, T. [Department of Nuclear Engineering and Management, The University of Tokyo, Tokyo (Japan); Hara, M. [Hydrogen Isotope Research Center, University of Toyama, Toyama (Japan); Cao, G. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI (United States); Kobayashi, M. [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka (Japan); Sokolov, M. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Watanabe, H. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan); Tyburska-Pueschel, B. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI (United States); Institute fuer Plasmaphysik, EURATOM Association, Garching (Germany); Ueda, Y. [Graduate School of Engineering, Osaka University, Osaka (Japan); Calderoni, P. [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID (United States); Okuno, K. [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka (Japan)

    2012-08-15

    The effect of neutron-irradiation damage has been mainly simulated using high-energy ion bombardment. A recent MIT report (PSFC/RR-10-4, An assessment of the current data affecting tritium retention and its use to project towards T retention in ITER, Lipschultz et al., 2010) summarizes the observations from high-energy ion bombardment studies and illustrates the saturation trend in deuterium concentration due to damage from ion irradiation in tungsten and molybdenum above 1 displacement per atom (dpa). While this prior database of results is quite valuable for understanding the behavior of hydrogen isotopes in plasma facing components (PFCs), it does not encompass the full range of effects that must be considered in a practical fusion environment due to short penetration depth, damage gradient, high damage rate, and high primary knock-on atom (PKA) energy spectrum of the ion bombardment. In addition, neutrons change the elemental composition via transmutations, and create a high radiation environment inside PFCs, which influences the behavior of hydrogen isotope in PFCs, suggesting the utilization of fission reactors is necessary for neutron-irradiation. Under the framework of the US-Japan TITAN program, tungsten samples (99.99 at.% purity from A.L.M.T. Co.) were irradiated by fission neutrons in the High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory (ORNL), at 50 and 300 Degree-Sign C to 0.025, 0.3, and 2.4 dpa, and the investigation of deuterium retention in neutron-irradiated tungsten was performed in the Tritium Plasma Experiment (TPE), the unique high-flux linear plasma facility that can handle tritium, beryllium and activated materials. This paper reports the recent results from the comparison of ion-damaged tungsten via various ion species (2.8 MeV Fe{sup 2+}, 20 MeV W{sup 2+}, and 700 keV H{sup -}) with that from neutron-irradiated tungsten to identify the similarities and differences among them.

  15. Molybdenum sealing glass-ceramic composition

    International Nuclear Information System (INIS)

    Eagan, R.J.

    1976-01-01

    A glass-ceramic composition is described having low hydrogen and helium permeability properties, along with high fracture strength, and a thermal coefficient of expansion similar to that of molybdenum. The composition is adaptable for hermetically sealing to molybdenum at temperatures between 900 and about 950 0 C to form a hermetically sealed insulator body

  16. Development of Silicide Coating on Molybdenum Alloy Cladding

    International Nuclear Information System (INIS)

    Lim, Woojin; Ryu, Ho Jin

    2015-01-01

    The molybdenum alloy is considered as one of the accident tolerant fuel (ATF) cladding materials due to its high temperature mechanical properties. However, molybdenum has a weak oxidation resistance at elevated temperatures. To modify the oxidation resistance of molybdenum cladding, silicide coating on the cladding is considered. Molybdenum silicide layers are oxidized to SiO 2 in an oxidation atmosphere. The SiO 2 protective layer isolates the substrate from the oxidizing atmosphere. Pack cementation deposition technique is widely adopted for silicide coating for molybdenum alloys due to its simple procedure, homogeneous coating quality and chemical compatibility. In this study, the pack cementation method was conducted to develop molybdenum silicide layers on molybdenum alloys. It was found that the Mo 3 Si layer was deposited on substrate instead of MoSi 2 because of short holding time. It means that through the extension of holding time, MoSi 2 layer can be formed on molybdenum substrate to enhance the oxidation resistance of molybdenum. The accident tolerant fuel (ATF) concept is to delay the process following an accident by reducing the oxidation rate at high temperatures and to delay swelling and rupture of fuel claddings. The current research for Atf can be categorized into three groups: First, modification of existing zirconium-based alloy cladding by improving the high temperature oxidation resistance and strength. Second, replacing Zirconium based alloys with alternative metallic materials such as refractory elements with high temperature oxidation resistance and strength. Third, designing alternative fuel structures using ceramic and composite systems

  17. Liquid tin limiter for FTU tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Vertkov, A., E-mail: avertkov@yandex.ru [JSC “Red Star”, Moscow (Russian Federation); Lyublinski, I. [JSC “Red Star”, Moscow (Russian Federation); NRNU MEPhI, Moscow (Russian Federation); Zharkov, M. [JSC “Red Star”, Moscow (Russian Federation); Mazzitelli, G.; Apicella, M.L.; Iafrati, M. [Associazione EURATOM-ENEA sulla Fusione, C. R. Frascati, Frascati, Rome, Italy, (Italy)

    2017-04-15

    Highlights: • First steady state operating liquid tin limiter TLL is under study on FTU tokamak. • The cooling system with water spray coolant for TLL has been developed and tested. • High corrosion resistance of W and Mo in molten Sn confirmed up to 1000 °C. • Wetting process with Sn has been developed for Mo and W. - Abstract: The liquid Sn in a matrix of Capillary Porous System (CPS) has a high potential as plasma facing material in steady state operating fusion reactor owing to its physicochemical properties. However, up to now it has no experimental confirmation in tokamak conditions. First steady state operating limiter based on the CPS with liquid Sn installed on FTU tokamak and its experimental study is in progress. Several aspects of the design, structural materials and operation parameters of limiter based on tungsten CPS with liquid Sn are considered. Results of investigation of corrosion resistance of Mo and W in Sn and their wetting process are presented. The heat removal for limiter steady state operation is provided by evaporation of flowing gaswater spray. The effectiveness of such heat removal system is confirmed in modelling tests with power flux up to 5 MW/m2.

  18. Method of molybdenum kinetic determination

    International Nuclear Information System (INIS)

    Krejngol'd, S.U.; Dzotsenidze, N.E.; Ruseishviyai, T.G.; Nelen', I.M.

    1980-01-01

    The method molybdenum kinetic determination according to oxidation of pyrogallol with bromate in the medium of 0.05-0.15 M perchloric or sulphuric acids is presented. 1 mg of Ni, Co, Mn, Mg, Zn, Cr(3); 100 μg of Ca, Al, Cu, 10 μg of Cr(4), W; 10 μg of Fe in the presence of 22x10 - 4 M solution of EDTA, as well as 10 - 4 M solutions of chlorides and fluorides, 10 - 5 M solutions of bromides do not interfere with molybdenum determination using the given method. The method is rather simple, it takes 30 min to carry out the analysis. Determination limit of molybdenum constitutes 0.01 μg/ml

  19. Chemistry of tin compounds and environment

    International Nuclear Information System (INIS)

    Ali, S.; Mazhar, M.; Mahmood, S.; Bhatti, M.H.; Chaudhary, M.A.

    1997-01-01

    Of the large volume of tin compounds reported in the literature, possible only 100 are commercially important. Tin compounds are a wide variety of purposes such as catalysts, stabilizers for many materials including polymer, biocidal agents, bactericides, insecticides, fungicides, wood preservatives, acaricides and anti fouling agents in paints, anticancer and antitumour agents, ceramic opacifiers, as textile additives, in metal finishing operations, as food additives and in electro conductive coating. All these applications make the environment much exposed to tin contamination. The application of organotin compounds as biocides account for about 30% of total tin consumption suggesting that the main environmental effects are likely to originate from this sector. Diorgano tins and mono-organo tins are used mainly in plastic industry which is the next big source for environmental pollution. In this presentation all environmental aspects of the use of tin compounds and the recommended preventive measures are discussed. (author)

  20. Mineral resource potential map of the Benton Range Roadless Area, Mono County, California

    Science.gov (United States)

    Donahoe, James L.; McKee, Edwin D.; Rains, Richard L.; Barnes, Donald J.; Campbell, Harry W.; Denton, David K.; Iverson, Stephen R.; Jeske, Rodney E.; Stebbins, Scott A.

    1983-01-01

    Tungsten-bearing rocks in the Benton Range Roadless Area occur in tactite lenses within the Paleozoic metasedimentary units that surround and are intruded by Triassic granodiorite of the Benton Range. High anomalous tungsten values were found in the southern part of the study area. Quartz-vein deposits with copper, lead, zinc, and silver may occur within the Jurassic granitic rock in the northwestern part of the area. Stream-sediment and panned-concentrate samples from the northwestern part of the roadless area, reveal anomalous values in a number of elements. Some of these elements are indicative of mineral suites that form by hydrothermal alteration and are potential metallic-ore producers. Metals having anomalous values are antimony, copper, lead, molybdenum, tin, and zinc; their presence suggests the potential for deposits of the lead-zinc-silver or copper-molybdenum type. Molybdenum and lead were identified by geochemical sampling as having low to moderate potential in the roadless area. An estimated 190,000 tons (172,000 t) of subeconomic gold and silver resources are inside the roadless area at the Gold Crown, Gold Webb, and Gold Wedge mines; another 60,000 tons (54,000 t) of subeconomic gold and silver resources are just outside the area at the Tower, Gold Webb, and Gold Wedge mines (table 1). Most of the lode gold and silver deposits are in quartz veins and shear zones. Minor amounts of copper, lead, and zinc occur in some gold deposits. About 2,240 oz (70 kg) of gold, 8,450 oz (260 kg) of silver, and 4,600 lb of lead (2,090 kg) have been produced from the roadless area. In addition, 7,257 oz (226 kg) of gold and 350 oz (11 kg) silver were produced at the Tower mine, near the area.

  1. Large-Batch Reduction of Molybdenum Trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Kiggans, Jr, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, Richard Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Menchhofer, Paul A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nunn, Stephen D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bryan, Chris [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Unconverted, isotopically-enriched molybdenum metal must be recovered from the spent radiopharmaceutical solution used in NorthStar’s Technetium-99m generator and reused. The recycle process begins by recovering the metal from the aqueous potassium molybdate (K2MoO4) solutions as molybdenum trioxide (MoO3) employing a process developed at Argonne National Laboratory. The MoO3 powder is subsequently reduced to molybdenum metal powder which can be blended with new powder and further processed into a flowable form to be used to produce target disks for irradiation. The molybdenum oxide reduction process has been examined and scaled to produce kilogram quantities of metal powder suitable for processing into a useable form employing spray drying or similar technique and ultimately used for target fabrication.

  2. Synthesising highly reactive tin oxide using Tin(II2- ethylhexanoate polynucleation as precursor

    Directory of Open Access Journals (Sweden)

    Alejandra Montenegro Hernández

    2009-01-01

    Full Text Available Tin oxide is a widely used compound in technological applications, particularity as a catalyst, gas sensor and in making varistors, transparent conductors, electrocatalytic electrodes and photovoltaic cells. An ethylhexanoate tin salt, a carboxylic acid and poly-esterification were used for synthesising highly reactive tin oxide in the present study. Synthesis was controlled by Fourier transform infrared (FTIR spectroscopy and recording changes in viscosity. The tin oxide characteristics so obtained were determined using FTIR spectroscopy, X-ray diffraction (XRD and scanning electron microscopy (SEM. The SnO2 dust synthesised and heat-treated at 550°C yielded high density aggregates, having greater than 50 μm particle size. This result demonstrates the high reactivity of the ceramic powders synthesised here.

  3. Measuring the sustainability of tin in China.

    Science.gov (United States)

    Yang, Congren; Tan, Quanyin; Zeng, Xianlai; Zhang, Yuping; Wang, Zhishi; Li, Jinhui

    2018-09-01

    Tin is a component of many items used in daily activities, including solder in consumer electronics, tin can containing food and beverages, polyvinyl chloride stabilizers in construction products, catalysts in industrial processes, etc. China is the largest producer and consumer of refined tin, and more than 60% of this refined tin is applied in the electronics sector as solder. China is the leader in global economic growth; simultaneously, China is also a major producer and consumer of electrical and electronic equipment (EEE). Thus, future tin supply and demand in China are forecasted, based on the gross domestic product per capita and the average consumption of refined tin in past five years. Current tin reserves and identified resources in China can meet the future two decades of mine production, but import of tin will also be critical for China's future tin consumption. However, there will be a lot of uncertainty for import of tin from other countries. At the same time, virgin mining of geological ores is a process of high energy consumption and destruction of the natural environment. Hence recycling tin from Sn-bearing secondary resources like tailings and waste electrical and electronic equipment (WEEE) can not only address the shortage of tin mineral resources, but also save energy and protect the ecological environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Tungsten Filament Fire

    Science.gov (United States)

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  5. Effect of molybdenum and iron supply on molybdenum (99Mo) and iron (59Fe) uptake and activity of certain enzymes in tomato plants grown in sand culture

    International Nuclear Information System (INIS)

    Chatterjee, C.; Agarwala, S.C.

    1979-01-01

    Tomato (Lycopersicon esculentum Mill. var. Marglobe) plants were raised under controlled sand culture to study the interaction of molybdenum and iron supply on the uptake of molybdenum and iron and activity of certain enzymes affected by iron and/or molybdenum supply. Iron deficiency caused a decrease in the molybdenum uptake and accentuated the effect of molybdenum deficiency in reducing the uptake and more so the translocation of molybdenum from roots to shoots, thus inducing more severe molybdenum deficiency. The deficiency of iron and molybdenum decreased the activity of catalase, succinate dehydrogenase and nitrate reductase, the most marked decrease being found in plants supplied with both iron and molybdenum at low levels. Changes in the activities of nitrate reductase and catalase can be attributed to the interaction of iron and molybdenum supply in their absorption and translocation. (auth.)

  6. Thermal transport properties of polycrystalline tin-doped indium oxide films

    International Nuclear Information System (INIS)

    Ashida, Toru; Miyamura, Amica; Oka, Nobuto; Sato, Yasushi; Shigesato, Yuzo; Yagi, Takashi; Taketoshi, Naoyuki; Baba, Tetsuya

    2009-01-01

    Thermal diffusivity of polycrystalline tin-doped indium oxide (ITO) films with a thickness of 200 nm has been characterized quantitatively by subnanosecond laser pulse irradiation and thermoreflectance measurement. ITO films sandwiched by molybdenum (Mo) films were prepared on a fused silica substrate by dc magnetron sputtering using an oxide ceramic ITO target (90 wt %In 2 O 3 and 10 wt %SnO 2 ). The resistivity and carrier density of the ITO films ranged from 2.9x10 -4 to 3.2x10 -3 Ω cm and from 1.9x10 20 to 1.2x10 21 cm -3 , respectively. The thermal diffusivity of the ITO films was (1.5-2.2)x10 -6 m 2 /s, depending on the electrical conductivity. The thermal conductivity carried by free electrons was estimated using the Wiedemann-Franz law. The phonon contribution to the heat transfer in ITO films with various resistivities was found to be almost constant (λ ph =3.95 W/m K), which was about twice that for amorphous indium zinc oxide films

  7. Molybdenum-A Key Component of Metal Alloys

    Science.gov (United States)

    Kropschot, S.J.

    2010-01-01

    Molybdenum, whose chemical symbol is Mo, was first recognized as an element in 1778. Until that time, the mineral molybdenite-the most important source of molybdenum-was believed to be a lead mineral because of its metallic gray color, greasy feel, and softness. In the late 19th century, French metallurgists discovered that molybdenum, when alloyed (mixed) with steel in small quantities, creates a substance that is remarkably tougher than steel alone and is highly resistant to heat. The alloy was found to be ideal for making tools and armor plate. Today, the most common use of molybdenum is as an alloying agent in stainless steel, alloy steels, and superalloys to enhance hardness, strength, and resistance to corrosion.

  8. Tungsten behaviour under anodic polarization

    International Nuclear Information System (INIS)

    Vas'ko, A.T.; Patsyuk, F.N.

    1980-01-01

    Electrochemical investigations have been carried out to identify the state of elements of the tungsten galvanic coating. Active zones on anode polarization curves in the hydrogen region of galvanic tungsten are established. The difference in the behaviour of monocrystal and galvanic tungsten electrodes is shown to be connected with the oxidation of hydrogen in the galvanic sediment

  9. Cesium ion bombardment of metal surfaces

    International Nuclear Information System (INIS)

    Tompa, G.S.

    1986-01-01

    The steady state cesium coverage due to cesium ion bombardment of molybdenum and tungsten was studied for the incident energy range below 500 eV. When a sample is exposed to a positive ion beam, the work function decreases until steady state is reached with a total dose of less than ≅10 16 ions/cm 2 , for both tungsten and molybdenum. A steady state minimum work function surface is produced at an incident energy of ≅100 eV for molybdenum and at an incident energy of ≅45 eV for tungsten. Increasing the incident energy results in an increase in the work function corresponding to a decrease in the surface coverage of cesium. At incident energies less than that giving the minimum work function, the work function approaches that of cesium metal. At a given bombarding energy the cesium coverage of tungsten is uniformly less than that of molybdenum. Effects of hydrogen gas coadsorption were also examined. Hydrogen coadsorption does not have a large effect on the steady state work functions. The largest shifts in the work function due to the coadsorption of hydrogen occur on the samples when there is no cesium present. A theory describing the steady-state coverage was developed is used to make predictions for other materials. A simple sticking and sputtering relationship, not including implantation, cannot account for the steady state coverage. At low concentrations, cesium coverage of a target is proportional to the ratio of (1 - β)/γ where β is the reflection coefficient and γ is the sputter yield. High coverages are produced on molybdenum due to implantation and low backscattering, because molybdenum is lighter than cesium. For tungsten the high backscattering and low implantation result in low coverages

  10. Helium bubble bursting in tungsten

    International Nuclear Information System (INIS)

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-01-01

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz

  11. Low-temperature Synthesis of Tin(II) Oxide From Tin(II) ketoacidoximate Precursor

    KAUST Repository

    Alshankiti, Buthainah

    2015-01-01

    Sn (II) oxide finds numerous applications in different fields such as thin film transistors1, solar cells2 and sensors.3 In this study we present the fabrication of tin monoxide SnO by using Sn (II) ketoacid oximate complexes as precursors. Tin (II

  12. Molybdenum solar neutrino experiment

    International Nuclear Information System (INIS)

    Wolfsberg, K.; Cowan, G.A.; Bryant, E.A.

    1984-01-01

    The goal of the molybdenum solar neutrino experiment is to deduce the 8 B solar neutrino flux, averaged over the past several million years, from the concentration of 98 Tc in a deeply buried molybdenum deposit. The experiment is important to an understanding of stellar processes because it will shed light on the reason for the discrepancy between theory and observation of the chlorine solar neutrino experiment. Possible reasons for the discrepancy may lie in the properties of neutrinos (neutrino oscillations or massive neutrinos) or in deficiencies of the standard solar model. The chlorine experiment only measures the 8 B neutrino flux in current times and does not address possible temporal variations in the interior of the sun, which are also not considered in the standard model. In the molybdenum experiment, we plan to measure 98 Tc (4.2 Myr), also produced by 8 B neutrinos, and possibly 97 Tc (2.6 Myr), produced by lower energy neutrinos

  13. Scanning tunneling microscopy measurements of the spin Hall effect in tungsten films by using iron-coated tungsten tips

    Science.gov (United States)

    Xie, Ting; Dreyer, Michael; Bowen, David; Hinkel, Dan; Butera, R. E.; Krafft, Charles; Mayergoyz, Isaak

    2018-05-01

    Scanning tunneling microscopy experiments using iron-coated tungsten tips and current-carrying tungsten films have been conducted. An asymmetry of the tunneling current with respect to the change of the direction of the bias current through a tungsten film has been observed. It is argued that this asymmetry is a manifestation of the spin Hall effect in the current-carrying tungsten film. Nanoscale variations of this asymmetry across the tungsten film have been studied by using the scanning tunneling microscopy technique.

  14. Determination of molybdenum by the gravimetric plumbate method (with the molybdenum content from 50 % and above)

    International Nuclear Information System (INIS)

    Stepin, V.V.; Kurbatova, V.I.; Fedorova, N.D.

    1980-01-01

    A gravimetric method of molybdenum determination in ferromolybdenum (Mo content from 50% and higher) after its dissolving in HNO 3 is developed. The method is based on Mo deposition in acetic acid solution in the form of molybdenum oxide lead after separation of Fe and other interfering elements with sodium hydroxide [ru

  15. Scanning tunneling microscopy measurements of the spin Hall effect in tungsten films by using iron-coated tungsten tips

    Directory of Open Access Journals (Sweden)

    Ting Xie

    2018-05-01

    Full Text Available Scanning tunneling microscopy experiments using iron-coated tungsten tips and current-carrying tungsten films have been conducted. An asymmetry of the tunneling current with respect to the change of the direction of the bias current through a tungsten film has been observed. It is argued that this asymmetry is a manifestation of the spin Hall effect in the current-carrying tungsten film. Nanoscale variations of this asymmetry across the tungsten film have been studied by using the scanning tunneling microscopy technique.

  16. Thermodynamic Properties of Manganese and Molybdenum

    International Nuclear Information System (INIS)

    Desai, P.D.

    1987-01-01

    This work reviews and discusses the data on the various thermodynamic properties of manganese and molybdenum available through March 1985. These include heat capacity, enthalpy, enthalpy of transitions and melting, vapor pressure, and enthalpy of vaporization. The existing data have been critically evaluated and analyzed. The recommended values for the heat capacity, enthalpy, entropy, and Gibbs energy function from 0.5 to 2400 K for manganese and from 0.4 to 5000 K for molybdenum have been generated, as have heat capacity values for supercooled β-Mn and for γ-Mn below 298.15 K. The recommended values for vapor pressure cover the temperature range from 298.15 to 2400 K for manganese and from 298.15 to 5000 K for molybdenum. These values are referred to temperatures based on IPTS-1968. The uncertainties in the recommended values of the heat capacity range from +-3% to +-5% for manganese and from +-1.5% to +-3% for molybdenum

  17. Reduction of blue tungsten oxide

    International Nuclear Information System (INIS)

    Wilken, T.; Wert, C.; Woodhouse, J.; Morcom, W.

    1975-01-01

    A significant portion of commercial tungsten is produced by hydrogen reduction of oxides. Although several modes of reduction are possible, hydrogen reduction is used where high purity tungsten is required and where the addition of other elements or compounds is desired for modification of the metal, as is done for filaments in the lamp industry. Although several investigations of the reduction of oxides have been reported (1 to 5), few principles have been developed which can aid in assessment of current commercial practice. The reduction process was examined under conditions approximating commercial practice. The specific objectives were to determine the effects of dopants, of water vapor in the reducing atmosphere, and of reduction temperature upon: (1) the rate of the reaction by which blue tungsten oxide is reduced to tungsten metal, (2) the intermediate oxides associated with reduction, and (3) the morphology of the resulting tungsten powder

  18. Micro-powder injection moulding of tungsten

    International Nuclear Information System (INIS)

    Zeep, B.

    2007-12-01

    For He-cooled Divertors as integral components of future fusion power plants, about 300000 complex shaped tungsten components are to be fabricated. Tungsten is the favoured material because of its excellent properties (high melting point, high hardness, high sputtering resistance, high thermal conductivity). However, the material's properties cause major problems for large scale production of complex shaped components. Due to the resistance of tungsten to mechanical machining, new fabrication technologies have to be developed. Powder injection moulding as a well established shaping technology for a large scale production of complex or even micro structured parts might be a suitable method to produce tungsten components for fusion applications but is not yet commercially available. The present thesis is dealing with the development of a powder injection moulding process for micro structured tungsten components. To develop a suitable feedstock, the powder particle properties, the binder formulation and the solid load were optimised. To meet the requirements for a replication of micro patterned cavities, a special target was to define the smallest powder particle size applicable for micro-powder injection moulding. To investigate the injection moulding performance of the developed feedstocks, experiments were successfully carried out applying diverse cavities with structural details in micro dimension. For debinding of the green bodies, a combination of solvent debinding and thermal debinding has been adopted for injection moulded tungsten components. To develop a suitable debinding strategy, a variation of the solvent debinding time, the heating rate and the binder formulation was performed. For investigating the thermal consolidation behaviour of tungsten components, sinter experiments were carried out applying tungsten powders suitable for micro-powder injection moulding. First mechanical tests of the sintered samples showed promising material properties such as a

  19. Fluid inclusion characteristics and geological significance of the Dajinshan W-Sn polymetallic deposit in Yunfu, Guangdong Province

    Science.gov (United States)

    Yu, Zhangfa; Chen, Maohong; Zhao, Haijie

    2015-05-01

    The Dajinshan tungsten-tin polymetallic deposit is a quartz-vein-type ore deposit located in Western Guangdong Province. The ore bodies show a fairly simple shape and mainly occur as tungsten-tin polymetallic-bearing sulfide quartz veins, including quartz vein, quartz-greisens, and sulfide quartz veins, and their distribution is spatially related to Dajinshan granitoids. The formation of the deposit experienced three stages: a wolframite-molybdenite-quartz stage, a wolframite-cassiterite-sulfide-quartz stage, and a fluorite-calcite-carbonate stage. Based on detailed petrographic observations, we conducted microthermometric and Raman microspectroscopic studies of fluid inclusions formed at different ore-forming stages in the Dajinshan tungsten-tin polymetallic deposit, identifying four dominant types of fluid inclusions: aqueous two-phase inclusions, CO2-bearing inclusions, solid or daughter mineral-bearing inclusions, and gas-rich inclusions. The gas compositions of ore-forming fluids in the Dajinshan tungsten-tin polymetallic deposit are mostly CO2, CH4, and H2O. The hydrogen, oxygen, and sulfur isotopic data imply that the ore-forming fluids in the Dajinshan tungsten-tin polymetallic deposit were mainly derived from magmatic fluids, mixed with meteoric water in the ore-formation process. These results indicate that the fluid mixing and boiling led to the decomposition of the metal complex in ore-forming fluids and ore deposition.

  20. Impact of residual by-products from tungsten film deposition on process integration due to nonuniformity of the tungsten film

    CERN Document Server

    Sidhwa, A; Gandy, T; Melosky, S; Brown, W; Ang, S; Naseem, H; Ulrich, R

    2002-01-01

    The effects of residual by products from a tungsten film deposition process and their impact on process integration due to the nonuniformity of the tungsten film were investigated in this work. The tungsten film deposition process involves three steps: nucleation, stabilization, and tungsten bulk fill. Six experiments were conducted in search for a solution to the problem. The resulting data suggest that excess nitrogen left in the chamber following the tungsten nucleation step, along with residual by products, causes a shift in the tungsten film uniformity during the tungsten bulk fill process. Data reveal that, due to the residual by products, an abnormal grain growth occurs causing a variation in the tungsten thickness across the wafer during the bulk fill step. Although several possible solutions were revealed by the experiments, potential integration problems limited the acceptable solutions to one. The solution chosen was the introduction of a 10 s pumpdown immediately following the nucleation step. Thi...

  1. Irradiation effects in tungsten-copper laminate composite

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, L.M., E-mail: garrisonlm@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Katoh, Y. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Snead, L.L. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Byun, T.S. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Reiser, J.; Rieth, M. [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2016-12-01

    Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410–780 °C and fast neutron fluences of 0.02–9.0 × 10{sup 25} n/m{sup 2}, E > 0.1 MeV, 0.0039–1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 °C. After only 0.0039 dpa this was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 °C. For elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile. - Highlights: • Fusion reactors need a tough, ductile tungsten plasma-facing material. • The unirradiated tungsten-copper laminate is more ductile than tungsten alone. • After neutron irradiation, the composite has significantly less ductility. • The tungsten behavior appears to dominate the overall composite behavior.

  2. Structural studies of supported tin catalysts

    Science.gov (United States)

    Nava, Noel; Viveros, Tomás

    1999-11-01

    Tin oxide was supported on aluminium oxide, titanium oxide, magnesium oxide and silicon oxide, and the resulting interactions between the components in the prepared samples and after reduction were characterized by Mössbauer spectroscopy. It was observed that in the oxide state, tin is present as SnO2 on alumina, magnesia and silica, but on titania tin occupies Ti sites in the structure. After hydrogen treatment at high temperatures, tin is reduced from Sn(4) to Sn(2) on alumina and titania; it is reduced from Sn(4) to Sn(0) on silica, and is practically not reduced on magnesia. These results reveal the degree of interaction between tin and the different supports studied.

  3. Structural studies of supported tin catalysts

    International Nuclear Information System (INIS)

    Nava, Noel; Viveros, Tomas

    1999-01-01

    Tin oxide was supported on aluminium oxide, titanium oxide, magnesium oxide and silicon oxide, and the resulting interactions between the components in the prepared samples and after reduction were characterized by Moessbauer spectroscopy. It was observed that in the oxide state, tin is present as SnO 2 on alumina, magnesia and silica, but on titania tin occupies Ti sites in the structure. After hydrogen treatment at high temperatures, tin is reduced from Sn(4) to Sn(2) on alumina and titania; it is reduced from Sn(4) to Sn(0) on silica, and is practically not reduced on magnesia. These results reveal the degree of interaction between tin and the different supports studied

  4. An investigation of tungsten by neutron activation techniques

    International Nuclear Information System (INIS)

    Svetsreni, R.

    1978-01-01

    This investigation used neutron from Plutonium-Beryllium source (5 curie) to analyse the amount of tungsten in tungsten oxide which was extracted from tungsten ores, slag and tungsten alloy of tungsten iron and carbon. The technique of neutron activation analysis with NaI(Tl) gamma detector 3'' x 3'' and 1024 multichannel analyzer. The dilution technique was used by mixing Fe 2 O 3 or pure sand into the sample before irradiation. In this study self shielding effect in the analysis of tungsten was solved and the detection limit of the tungsten in the sample was about 0.5%

  5. Hydrogen permeation properties of plasma-sprayed tungsten

    International Nuclear Information System (INIS)

    Anderl, R.A.; Pawelko, R.J.; Hankins, M.R.; Longhurst, G.R.; Neiser, R.A.

    1994-01-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D + 3 ion beam with fluxes of similar 6.5x10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity. ((orig.))

  6. Hydrogen permeation properties of plasma-sprayed tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Pawelko, R.J. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Hankins, M.R. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Longhurst, G.R. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Neiser, R.A. (Sandia National Laboratories, Albuquerque, NM 87185 (United States))

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D[sup +][sub 3] ion beam with fluxes of similar 6.5x10[sup 19] D/m[sup 2] s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity. ((orig.))

  7. Kinetics of low pressure chemical vapor deposition of tungsten silicide from dichlorocilane reduction of tungsten hexafluoride

    International Nuclear Information System (INIS)

    Srinivas, D.; Raupp, G.B.; Hillman, J.

    1990-01-01

    The authors report on experiments to determine the intrinsic surface reaction rate dependences and film properties' dependence on local reactant partial pressures and wafer temperature in low pressure chemical vapor deposition (LPCVD) of tungsten silicide from dichlorosilane reduction of tungsten hexafluoride. Films were deposited in a commercial-scale Spectrum CVD cold wall single wafer reactor under near differential, gradientless conditions. Over the range of process conditions investigated, deposition rate was found to be first order in dichlorosillane and negative second order in tungsten hexafluoride partial pressure. The apparent activation energy in the surface reaction limited regime was found to be 70-120 kcal/mol. The silicon to tungsten ratio of as deposited silicide films ranged from 1.1 to 2.4, and increased with increasing temperature and dichlorosillane partial pressure, and decreased with increasing tungsten hexafluoride pressure. These results suggest that the apparent silicide deposition rate and composition are controlled by the relative rates of at least two competing reactions which deposit stoichiometric tungsten silicides and/or silicon

  8. Hydrotreatment activities of supported molybdenum nitrides and carbides

    Energy Technology Data Exchange (ETDEWEB)

    Dolce, G.M.; Savage, P.E.; Thompson, L.T. [University of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering

    1997-05-01

    The growing need for alternative sources of transportation fuels encourages the development of new hydrotreatment catalysts. These catalysts must be active and more hydrogen efficient than the current commercial hydrotreatment catalysts. Molybdenum nitrides and carbides are attractive candidate materials possessing properties that are comparable or superior to those of commercial sulfide catalysts. This research investigated the catalytic properties of {gamma}-Al{sub 2}O{sub 3}-supported molybdenum nitrides and carbides. These catalysts were synthesized via temperature-programmed reaction of supported molybdenum oxides with ammonia or methane/hydrogen mixtures. Phase constituents and compositions were determined by X-ray diffraction, elemental analysis, and neutral activation analysis. Oxygen chemisorption was used to probe the surface properties of the catalysts. Specific activities of the molybdenum nitrides and carbides were competitive with those of a commercial sulfide catalyst for hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrodeoxygenation (HDO). For HDN and HDS, the catalytic activity on a molybdenum basis was a strong inverse function of the molybdenum loading. Product distributions of the HDN, HDO and HDS of a variety of heteroatom compounds indicated that several of the nitrides and carbides were more hydrogen efficient than the sulfide catalyst. 35 refs., 8 figs., 7 tabs.

  9. Tungsten ion implantation of aluminum for improved resistance to pitting corrosion -- electrochemical testing results

    International Nuclear Information System (INIS)

    Smith, P.P.; Buchanan, R.A.; Williams, J.M.

    1995-01-01

    The greatly accelerated localized corrosion of aluminum in salt solutions has been observed and combated for many years. The susceptibility to pitting attack has been linked to the presence of chloride ions in the solution. Alloying additions to aluminum for improved corrosion resistance are restricted due to its limited solubility for passivating species such as chromium and molybdenum. However, many recent attempts to produce non-equilibrium alloys with these and other species, both through sputtering techniques and by rapid solidification, have met with very promising pitting resistance enhancements. The most dramatic increase in passivity is demonstrated by a thin co-sputtered film of Al and 9 atomic percent W, in which the pitting potential is increased by 2600 m V relative to pure Al. Recent efforts to extrapolate the promising W-Al thin film results to a bulk aluminum alloy using tungsten ion implantation are discussed here

  10. Molybdenum-UO2 cermet irradiation at 1145 K.

    Science.gov (United States)

    Mcdonald, G.

    1971-01-01

    Two molybdenum-uranium dioxide cermet fuel pins with molybdenum clad were fission-heated in a forced-convection helium coolant for sufficient time to achieve 5.3% burnup. The cermet core contained 20 wt % of 93.2% enriched uranium dioxide. The results were as follows: there was no visible change in the appearance of the molybdenum clad during irradiation; the maximum increase in diameter of the fuel pins was 0.8%; there was no migration of uranium dioxide along grain boundaries and no evident interaction between molybdenum and uranium dioxide; and, finally, approximately 12% of the fission gas formed was released from the cermet core into the gas plenum.

  11. Spheroidization of molybdenum powder by radio frequency thermal plasma

    Science.gov (United States)

    Liu, Xiao-ping; Wang, Kuai-she; Hu, Ping; Chen, Qiang; Volinsky, Alex A.

    2015-11-01

    To control the morphology and particle size of dense spherical molybdenum powder prepared by radio frequency (RF) plasma from irregular molybdenum powder as a precursor, plasma process parameters were optimized in this paper. The effects of the carrier gas flow rate and molybdenum powder feeding rate on the shape and size of the final products were studied. The molybdenum powder morphology was examined using high-resolution scanning electron microscopy. The powder phases were analyzed by X-ray diffraction. The tap density and apparent density of the molybdenum powder were investigated using a Hall flow meter and a Scott volumeter. The optimal process parameters for the spherical molybdenum powder preparation are 50 g/min powder feeding rate and 0.6 m3/h carrier gas rate. In addition, pure spherical molybdenum powder can be obtained from irregular powder, and the tap density is enhanced after plasma processing. The average size is reduced from 72 to 62 µm, and the tap density is increased from 2.7 to 6.2 g/cm3. Therefore, RF plasma is a promising method for the preparation of high-density and high-purity spherical powders.

  12. Hydrogen retention properties of polycrystalline tungsten and helium irradiated tungsten

    International Nuclear Information System (INIS)

    Hino, T.; Koyama, K.; Yamauchi, Y.; Hirohata, Y.

    1998-01-01

    The hydrogen retention properties of a polycrystalline tungsten and tungsten irradiated by helium ions with an energy of 5 keV were examined by using an ECR ion irradiation apparatus and a technique of thermal desorption spectroscopy, TDS. The polycrystalline tungsten was irradiated at RT with energetic hydrogen ions, with a flux of 10 15 H cm -2 and an energy of 1.7 keV up to a fluence of 5 x 10 18 H cm -2 . Subsequently, the amount of retained hydrogen was measured by TDS. The heating temperature was increased from RT to 1000 C, and the heating rate was 50 C min -1 . Below 1000 C, two distinct hydrogen desorption peaks were observed at 200 C and 400 C. The retained amount of hydrogen was observed to be five times smaller than that of graphite, but the concentration in the implantation layer was comparable with that of graphite. Also, the polycrystalline tungsten was irradiated with 5 keV helium ions up to a fluence of 1.4 x 10 18 He cm -2 , and then re-irradiated with 1.7 keV hydrogen ions. The amount of retained hydrogen in this later experiment was close to the value in the case without prior helium ion irradiation. However, the amount of hydrogen which desorbed around the low temperature peak, 200 C, was largely enhanced. The desorption amount at 200 C saturated for the helium fluence of more than 5 x 10 17 He cm -2 . The present data shows that the trapping state of hydrogen is largely changed by the helium ion irradiation. Additionally, 5 keV helium ion irradiation was conducted on a sample pre-implanted with hydrogen ions to simulate a helium ion impact desorption of hydrogen retained in tungsten. The amount of the hydrogen was reduced as much as 50%. (orig.)

  13. Fractographic peculiarities of cermet tungsten fracture

    International Nuclear Information System (INIS)

    Stepanenko, V.A.; Babak, A.V.; Uskov, E.I.

    1982-01-01

    Effect of test temperature on fracture peculiarities of cermets tungsten with initial cellular structure of deformation is shown. Tungsten crack resistance increases at temperatures to Tsub(x) (ductile-brittle transition temperature) and decreases at temperatures above Tsub(x). The degree of ceramics tungsten plasticity realization depends on its crack resistance

  14. Feasibility of preparing patterned molybdenum coatings on bismuth telluride thermoelectric modules.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Hall, Aaron Christopher; Miller, Stephen Samuel; Knight, Marlene E.; LePage, William S.; Sobczak, Catherine Elizabeth.; Wesolowski, Daniel Edward

    2013-09-01

    Molybdenum electrical interconnects for thermoelectric modules were produced by air plasma spraying a 30%CE%BCm size molybdenum powder through a laser-cut Kapton tape mask. Initial feasibility demonstrations showed that the molybdenum coating exhibited excellent feature and spacing retention (~170%CE%BCm), adhered to bismuth-telluride, and exhibited electrical conductivity appropriate for use as a thermoelectric module interconnect. A design of experiments approach was used to optimize air plasma spray process conditions to produce a molybdenum coating with low electrical resistivity. Finally, a molybdenum coating was successfully produced on a fullscale thermoelectric module. After the addition of a final titanium/gold layer deposited on top of the molybdenum coating, the full scale module exhibited an electrical resistivity of 128%CE%A9, approaching the theoretical resistivity value for the 6mm module leg of 112%CE%A9. Importantly, air plasma sprayed molybdenum did not show significant chemical reaction with bismuth-telluride substrate at the coating/substrate interface. The molybdenum coating microstructure consisted of lamellar splats containing columnar grains. Air plasma sprayed molybdenum embedded deeply (several microns) into the bismuth-telluride substrate, leading to good adhesion between the coating and the substrate. Clusters of round pores (and cracks radiating from the pores) were found immediately beneath the molybdenum coating. These pores are believed to result from tellurium vaporization during the spray process where the molten molybdenum droplets (2623%C2%B0C) transferred their heat of solidification to the substrate at the moment of impact. Substrate cooling during the molybdenum deposition process was recommended to mitigate tellurium vaporization in future studies.

  15. Tungsten wire and tubing joined by nickel brazing

    Science.gov (United States)

    1965-01-01

    Thin tungsten wire and tungsten tubing are brazed together using a contacting coil of nickel wire heated to its melting point in an inert-gas atmosphere. This method is also effective for brazing tungsten to tungsten-rhenium parts.

  16. Sorption of molybdenum by cellulose polyphosphate from acid solutions

    International Nuclear Information System (INIS)

    Luneva, N.K.; Oputina, A.G.; Ermolenko, I.N.

    1985-01-01

    The sorption of molybdenum on cellulose polyphosphate from acid solutions of ammonium molybdate depending on the phosphorus content in samples, concentration and pH of the solution, sorption time is studied. It is shown that a maximum molybdenum content on the cellulose samples with different phosphorus content is pointed out at an ammonium molybdate concentration 0.02 M. Saturation of the sorption curve is attained at molar ratio of adsrbed molybdenum to phosphorus 1:4. In case of small fillings the compound with molybdenum to phosphorus ratio 1:10 is formed

  17. Micro creep mechanisms of tungsten

    International Nuclear Information System (INIS)

    Levoy, R.; Hugon, I.; Burlet, H.; Baillin, X.; Guetaz, L.

    2000-01-01

    Due to its high melting point (3410 deg C), tungsten offers good mechanical properties at elevated temperatures for several applications in non-oxidizing environment. The creep behavior of tungsten is well known between 1200 and 2500 deg C and 10 -3 to 10 -1 strain. However, in some applications when dimensional stability of components is required, these strains are excessive and it is necessary to know the creep behavior of the material for micro-strains (between 10 -4 and 10 -6 ). Methods and devices used to measure creep micro-strains are presented, and creep equations (Norton and Chaboche laws) were developed for wrought, annealed and recrystallized tungsten. The main results obtained on tungsten under low stresses are: stress exponent 1, symmetry of micro-strains in creep-tension and creep-compression, inverse creep (threshold stress), etc. TEM, SEM and EBSD studies allow interpretation of the micro-creep mechanism of tungsten under low stresses and low temperature (∼0.3 K) like the Harper-Dorn creep. In Harper-Dorn creep, micro-strains are associated with the density and the distribution of dislocations existing in the crystals before creep. At 975 deg C, the initial dislocation structure moves differently whether or not a stress is applied. To improve the micro-creep behavior of tungsten, a heat treatment is proposed to create the optimum dislocation structure. (authors)

  18. Activity and selectivity of three molybdenum catalysts for coal liquefaction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.; Pellegrino, J.L.

    The activity and selectivity of three different molybdenum catalysts for reactions occurring in coal liquefaction, specifically for hydrogenation (HYD), hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrocracking (HYC), have been examined. The three molybdenum catalysts used were molybdenum napthenate, molybdenum on ..gamma..-alumina, and a precipitated, disordered MoS/sub 2/. Molybdenum naphthenate was most selective for HYD and HDN. All three catalysts exhibited approximately equal activity for HDS and HDO and little selectivity for HYC of alkyl bridge structures. The activity and selectivity of the three molybdenum catalysts for producing hydrocarbons and removing heteroatoms from coal during liquefaction were determined and compared. Molybdenum naphthenate was the most active catalyst for hydrocarbon production and removal of nitrogen- and oxygen-containing species during coal liquefaction. 31 refs., 4 figs., 7 tabs.

  19. Recrystallization and embrittlement of sintered tungsten

    International Nuclear Information System (INIS)

    Bega, N.D.; Babak, A.V.; Uskov, E.I.

    1982-01-01

    The recrystallization of sintered tungsten with a cellular structure of deformation is studied as related to its embrittlement. It is stated that in case of preliminary recrystallization the sintered tungsten crack resistance does not depend on the testing temperature. The tungsten crack resistance is shown to lower with an increase of the structure tendency to primary recrystallization [ru

  20. Deformation localization and cyclic strength in polycrystalline molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Sidorov, O.T.; Rakshin, A.F.; Fenyuk, M.I.

    1983-06-01

    Conditions of deformation localization and its interrelation with cyclic strength in polycrystalline molybdenum were investigated. A fatigue failure of polycrystalline molybdenum after rolling and in an embrittled state reached by recrystallization annealing under cyclic bending at room temperature takes place under nonuniform distribution of microplastic strain resulting in a temperature rise in separate sections of more than 314 K. More intensive structural changes take place in molybdenum after rolling than in recrystallized state.

  1. Tungsten-induced carcinogenesis in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Laulicht, Freda; Brocato, Jason; Cartularo, Laura; Vaughan, Joshua; Wu, Feng; Kluz, Thomas; Sun, Hong [Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987 (United States); Oksuz, Betul Akgol [Genome Technology Center, New York University Langone Medical Center, New York, NY 10016 (United States); Shen, Steven [Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY 10016 (United States); Peana, Massimiliano; Medici, Serenella; Zoroddu, Maria Antonietta [Department of Chemistry and Pharmacy, University of Sassari, Sassari (Italy); Costa, Max, E-mail: Max.Costa@nyumc.org [Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987 (United States)

    2015-10-01

    Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten's ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer-related pathways in transformed clones as determined by RNA sequencing. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data show the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. - Highlights: • Tungsten (W) induces cell transformation and increases migration in vitro. • W increases xenograft growth in nude mice. • W altered the expression of cancer-related genes such as those involved in leukemia. • Some of the dysregulated leukemia genes include, CD74, CTGF, MST4, and HOXB5. • For the first time, data is presented that demonstrates tungsten's carcinogenic potential.

  2. Bibliographic study on molybdenum biokinetics. Literaturstudie zur Biokinetik von Molybdaen

    Energy Technology Data Exchange (ETDEWEB)

    Erzberger, A.

    1988-05-01

    This bibliographical study compiles and analyzes findings about the metabolism and resorption of molybdenum. Besides including studies on the physiology of molybdenum 99, a general survey is given on molybdenum in the environment and on its physiological behaviour. In particular, information on the dependence of molybdenum resorption on various factors, such as the chemical form, antagonisms etc., are gathered from literature. These factors have to be considered for sensibly carrying out necessary experiments.

  3. Electrochemical dissolution of tin in methanesulphonic acid solutions

    NARCIS (Netherlands)

    de Greef, R.A.T.; Janssen, L.J.J.

    2001-01-01

    High-rate electroplating of tin on a moving steel strip is generally carried out in cells with dimensionally stable anodes. To obtain a matt tin deposit a concentrated acidic tin methanesulphonate solution containing a small concentration of sulphuric acid is used. The concentrated tin

  4. Environmental fate of tungsten from military use

    International Nuclear Information System (INIS)

    Clausen, Jay L.; Korte, Nic

    2009-01-01

    This manuscript describes the distribution, fate and transport of tungsten used in training rounds at three small arms ranges at Camp Edwards on the Massachusetts Military Reservation (MMR), USA. Practice with tungsten/nylon rounds began in 2000 subsequent to a 1997 US Environmental Protection Agency ban on training with lead. Training with the tungsten rounds was halted in 2005 because of concerns regarding tungsten's environmental mobility and potential toxicity. This study, therefore, examines how tungsten partitions in the environment when fired on a small arms training range. Soil sampling revealed surface soil concentrations, highest at the berm face, up to 2080 mg/kg. Concentrations decreased rapidly with depth-at least by an order of magnitude by 25 cm. Nonetheless, tungsten concentrations remained above background to at least 150 cm. Pore-water samples from lysimeters installed in berm areas revealed a range of concentrations (< 1-400 mg/L) elevated with respect to background although there was no discernable trend with depth. Groundwater monitoring well samples collected approximately 30 m below ground surface showed tungsten (0.001-0.56 mg/L) attributable to range use

  5. Thermal cyclic strength of molybdenum monocrystal at high temperatures

    International Nuclear Information System (INIS)

    Strizhalo, V.A.; Uskov, E.I.

    1975-01-01

    The results of the investigation of the thermocyclic creep and low-cycle fatigue of a molybdenum single crystal are discussed. The strength of a molybdenum single crystal under nonisothermal stressing has been investigated by using two different regimes of temperature and load variation. The temperature limits of the cycle were the same for the two testing regimes, the maximum temperature being 1700degC and the minimum 350degC. At higher temperatures (above 1500degC) the short-term strength of single-crystal molybdenum is comparable with that of commercial molybdenum and the refractory alloys, while the ductility is considerably higher. It should be noted that the failure of single-crystal molybdenum under rigid alternating loading is preceded by intensive distortion of the specimen, owing to directional cyclic creep of the metal in zones of bulging and thinning

  6. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua; Hu, Zhixin; Probert, Matt; Li, Kun; Lv, Danhui; Yang, Xinan; Gu, Lin; Mao, Nannan; Feng, Qingliang; Xie, Liming; Zhang, Jin; Wu, Dianzhong; Zhang, Zhiyong; Jin, Chuanhong; Ji, Wei; Zhang, Xixiang; Yuan, Jun; Zhang, Ze

    2015-01-01

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm '2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  7. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua

    2015-02-19

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm \\'2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  8. Molybdenum silicide based materials and their properties

    International Nuclear Information System (INIS)

    Yao, Z.; Stiglich, J.; Sudarshan, T.S.

    1999-01-01

    Molybdenum disilicide (MoSi 2 ) is a promising candidate material for high temperature structural applications. It is a high melting point (2030 C) material with excellent oxidation resistance and a moderate density (6.24 g/cm 3 ). However, low toughness at low temperatures and high creep rates at elevated temperatures have hindered its commercialization in structural applications. Much effort has been invested in MoSi 2 composites as alternatives to pure molybdenum disilicide for oxidizing and aggressive environments. Molybdenum disilicide-based heating elements have been used extensively in high-temperature furnaces. The low electrical resistance of silicides in combination with high thermal stability, electron-migration resistance, and excellent diffusion-barrier characteristics is important for microelectronic applications. Projected applications of MoSi 2 -based materials include turbine airfoils, combustion chamber components in oxidizing environments, missile nozzles, molten metal lances, industrial gas burners, diesel engine glow plugs, and materials for glass processing. On this paper, synthesis, fabrication, and properties of the monolithic and composite molybdenum silicides are reviewed

  9. X-ray photoelectron spectroscopy analysis of cleaning procedures for synchrotron radiation beamline materials at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Li, Y.; Ryding, D.; Liu, C.; Kuzay, T.M.; McDowell, M.W.; Rosenberg, R.A.

    1994-01-01

    TZM (a high temperature molybdenum alloy), machinable tungsten, and 304 stainless steel were cleaned using environmentally safe, commercially available cleaning detergents. The surface cleanliness was evaluated by x-ray photoelectron spectroscopy (XPS). It was found that a simple alkaline detergent is very effective at removal of organic and inorganic surface contaminants or foreign particle residue from machining processes. The detergent can be used with ultrasonic agitation at 140 F to clean the TZM molybdenum, machinable tungsten, and 304 stainless steel. A citric-acid-based detergent was also found to be effective at cleaning metal oxides, such as iron oxide, molybdenum oxide, as well as tungsten oxides at mild temperatures with ultrasonic agitation, and it can be used to replace strong inorganic acids to improve cleaning safety and minimize waste disposal and other environmental problems. The efficiency of removing the metal oxides depends on both cleaning temperature and time

  10. Tin-antimony oxide oxidation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Frank J. [Open University, Department of Chemistry (United Kingdom)

    1998-12-15

    Tin-antimony oxide catalysts for the selective oxidation of hydrocarbons have been made by precipitation techniques. The dehydration of the amorphous dried precipitate by calcination at increasingly higher temperatures induces the crystallisation of a rutile-related tin dioxide-type phase and the segregation of antimony oxides which volatilise at elevated temperatures. The rutile-related tin dioxide-type phase contains antimony(V) in the bulk and antimony(III) in the surface. Specific catalytic activity for the oxidative dehydrogenation of butene to butadiene is associated with materials with large concentrations of antimony(III) in the surface.

  11. Molybdenum: the element and aqueous solution chemistry

    International Nuclear Information System (INIS)

    Sykes, A.G.

    1987-01-01

    This chapter on the chemistry of the coordination compounds of molybdenum concentrates on the element itself, its recovery from ores and its use in the manufacture of steels. Most of the chapter is devoted to the aqueous solution chemistry of molybdenum in oxidation states II, III and IV. (UK)

  12. Low-temperature heat capacity of molybdenum borides

    International Nuclear Information System (INIS)

    Bolgar, A.S.; Klinder, A.V.; Novoseletskaya, L.M.; Turov, V.P.; Klochkov, L.A.; Lyashchenko, A.B.

    1988-01-01

    Heat capacity of molybdenum borides Mo 2 B, MoB, Mo 2 B 5 is studied for the first time in the 60-300 K range using the adiabatic method. Standard (at 298.15 K) thermodynamic functions (enthalpy, heat capacity, entropy, reduced Gibbs energy) of molybdenum borides are calculated

  13. ITER tungsten divertor design development and qualification program

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, T., E-mail: takeshi.hirai@iter.org [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint Paul lez Durance (France); Escourbiac, F.; Carpentier-Chouchana, S.; Fedosov, A.; Ferrand, L.; Jokinen, T.; Komarov, V.; Kukushkin, A.; Merola, M.; Mitteau, R.; Pitts, R.A.; Shu, W.; Sugihara, M. [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint Paul lez Durance (France); Riccardi, B. [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Suzuki, S. [JAEA, Fusion Research and Development Directorate JAEA, 801-1 Mukouyama, Naka, Ibaragi 311-0193 (Japan); Villari, R. [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, I-00044 Frascati, Rome (Italy)

    2013-10-15

    Highlights: • Detailed design development plan for the ITER tungsten divertor. • Latest status of the ITER tungsten divertor design. • Brief overview of qualification program for the ITER tungsten divertor and status of R and D activity. -- Abstract: In November 2011, the ITER Council has endorsed the recommendation that a period of up to 2 years be set to develop a full-tungsten divertor design and accelerate technology qualification in view of a possible decision to start operation with a divertor having a full-tungsten plasma-facing surface. To ensure a solid foundation for such a decision, a full tungsten divertor design, together with a demonstration of the necessary high performance tungsten monoblock technology should be completed within the required timescale. The status of both the design and technology R and D activity is summarized in this paper.

  14. XUV spectra of highly ionised molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Mansfield, M W.D.; Peacock, N J; Smith, C C; Hobby, M G [UKAEA, Abingdon. Culham Lab.; Cowan, R D

    1978-05-14

    The spectra of molybdenum ions produced in Tokamaks in the wavelength range 10-200 A have been reproduced in a plasma formed by laser beam irradiation of solid molybdenum targets. Lines from highly ionised stages of molybdenum (Mo XXX to Mo XXXII) have been distinguished by varying the laser beam intensity. Detailed analyses of the simpler ions, Mo XV (Ni-like), Mo XVI (Co-like), Mo XXXII (Na-like), and to a lesser extent Mo XXXI (Mg-like) and Mo XVII (Fe-like), have been achieved by comparison with ab initio calculations. A general interpretation of intermediate ion stages is also given but it is shown that most of these spectra are so complex, as a result of inner-subshell excitation, that detailed term-scheme analyses are nearly impossible.

  15. Hydrogen permeation properties of plasma-sprayed tungsten*1

    Science.gov (United States)

    Anderl, R. A.; Pawelko, R. J.; Hankins, M. R.; Longhurst, G. R.; Neiser, R. A.

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D 3+ ion beam with fluxes of ˜6.5 × 10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity.

  16. Vapor-transport of tungsten and its geologic application

    Energy Technology Data Exchange (ETDEWEB)

    Shibue, Y [Hyogo Univ. of Teacher Education, Hyogo (Japan)

    1988-11-10

    The volatility of tungsten in a hydrous system at elevated temperatures and pressures was examined, and a tentative model for the enrichment of tungsten in hydrothermal solutions for the deposits related to granitic activities was proposed. To produce vapor-saturated solution, 17 or 15ml of 20wt% NaCl solution was introduced into an autoclave. Ca(OH){sub 2} for tungsten and H{sub 2}WO{sub 4} for base metals were used as vapor-captures, and run products were identified by X-ray powder diffractometry. The results suggested that the ratio of tungsten to base metals was higher in a vapor phase than in a liquid phase, and more enrichment of tungsten in the vapor phase occurred at higher temperature and pressure under the coexistence of the vapor and liquid phase. The tentative model emphasizing the vapor-transport of tungsten could explain the presence of tungsten deposits without large mineralization of base metals. Geological schematic model for the generation of the hydrothermal solution enriched in tungsten compared with base metals was illustrated based on above mentioned results. 21 refs., 3 figs.

  17. Environmental fate of tungsten from military use

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Jay L. [Research and Development Center, Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, New Hampshire, 03755 (United States)], E-mail: Jay.L.Clausen@erdc.usace.army.mil; Korte, Nic [1946 Clover Ct., Grand Junction, Colorado, 81506 (United States)

    2009-04-01

    This manuscript describes the distribution, fate and transport of tungsten used in training rounds at three small arms ranges at Camp Edwards on the Massachusetts Military Reservation (MMR), USA. Practice with tungsten/nylon rounds began in 2000 subsequent to a 1997 US Environmental Protection Agency ban on training with lead. Training with the tungsten rounds was halted in 2005 because of concerns regarding tungsten's environmental mobility and potential toxicity. This study, therefore, examines how tungsten partitions in the environment when fired on a small arms training range. Soil sampling revealed surface soil concentrations, highest at the berm face, up to 2080 mg/kg. Concentrations decreased rapidly with depth-at least by an order of magnitude by 25 cm. Nonetheless, tungsten concentrations remained above background to at least 150 cm. Pore-water samples from lysimeters installed in berm areas revealed a range of concentrations (< 1-400 mg/L) elevated with respect to background although there was no discernable trend with depth. Groundwater monitoring well samples collected approximately 30 m below ground surface showed tungsten (0.001-0.56 mg/L) attributable to range use.

  18. Importance of molybdenum in the nitrogen metabolism of microorganisms and higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Mulder, E G

    1948-01-01

    The effect of molybdenum on the growth of microorganisms and higher plants and on some well-defined biochemical reactions was investigated. Results indicate that Aspergillus niger requires small amounts of molybdenum when growing in a culture solution supplied with nitrate nitrogen. With ammonium sulfate as a source of nitrogen, the response of the fungus to molybdenum was much smaller. It was shown that this different response of Aspergillus to molybdenum was not brought about by a difference in purity of both nitrogen compounds used, nor by a difference in absorption of the molybdenum impurity, but by a considerably higher requirement of molybdenum in a medium with nitrate nitrogen. The growth-rate curve and the increasing sporulation of Aspergillus niger with increasing amounts of molybdenum were used in estimating very small amounts of this element in various materials. In culture solution experiments with tomato, barley and oat plants the effect of traces of molybdenum on the growth of these plants was investigated. In good agreement with the results of the experiments with Aspergillus and denitrifying bacteria it could be shown that in the green plant as in these microorganisms molybdenum is acting as a catalyst in nitrate reduction. In experiments with Azotobacter chroococcum and leguminous plants the effect of molybdenum on the fixation of gaseous N/sub 2/ was studied. In culture solutions with pea plants the effect of molybdenum on the nitrogen fixation of the nodules was investigated. In the absence of molybdenum as well as in a complete nutrient medium many nodules were formed. 30 references, 6 figures, 16 tables.

  19. Tungsten Speciation in Firing Range Soils

    Science.gov (United States)

    2011-01-01

    satisfactorily, such as: which tungsten mineral phase is present in soil and to what extent is adsorption important in regu- lating soil solution concentrations... soil solution rather than discrete mineral phases. Information provided in this report will assist the following organizations in future decision...the soil solution ERDC TR-11-1 43 must affect tungsten speciation in other ways. The precipitation of soil minerals also would limit tungsten

  20. Strain aging in tungsten heavy alloys

    International Nuclear Information System (INIS)

    Dowding, R.J.; Tauer, K.J.

    1991-01-01

    This paper reports on tungsten heavy alloys which are two-phase mixtures of body center cubic (BCC) tungsten surrounded by a face center cubic (FCC) matrix. The matrix is most often composed of nickel and iron in a ratio of 70:30 but, occasionally, the matrix may also contain cobalt or copper. Nickel, however, is always the primary matrix component. The tungsten heavy alloy is fabricated through powder metallurgy techniques. Elemental powders are blended, pressed to shape, and sintered. Depending upon the tungsten content, the sintering temperatures are usually in the range of 1450 degrees C to 1525 degrees C. These temperatures are high enough that, as a result, the matrix is at the liquid phase and the process is known as liquid phase sintering. At the liquid phase temperature, the matrix becomes saturated with tungsten, but this does not change the FCC character of the matrix. The sintering is usually done in a hydrogen atmosphere furnace in order to reduce the oxides on the tungsten powder surfaces and create clean, active surfaces which will enhance the adherence between the tungsten and the matrix. The hydrogen atmosphere also creates the presence of excess dissolved hydrogen in the alloy. It has been shown that the hydrogen degrades the toughness and ductility of the heavy alloy. A post-sintering vacuum heat treatment is generally required to insure that there is no residual hydrogen present. The as-sintered tensile strength of a 90% tungsten, 7% nickel, 3% iron alloy (90W) is in the range of 800 to 940 MPa and can be increased significantly by cold working, usually rolling or swaging. Swaging to reductions in area of 20% can result in tensile strengths of 1250 MPa or more. As the strength increases, the elongation, which may have been 30% or more, decreases to less than 5%

  1. Chemically deposited tungsten fibre-reinforced tungsten – The way to a mock-up for divertor applications

    Directory of Open Access Journals (Sweden)

    J. Riesch

    2016-12-01

    Full Text Available The development of advanced materials is essential for sophisticated energy systems like a future fusion reactor. Tungsten fibre-reinforced tungsten composites (Wf/W utilize extrinsic toughening mechanisms and therefore overcome the intrinsic brittleness of tungsten at low temperature and its sensitivity to operational embrittlement. This material has been successfully produced and tested during the last years and the focus is now put on the technological realisation for the use in plasma facing components of fusion devices. In this contribution, we present a way to utilize Wf/W composites for divertor applications by a fabrication route based on the chemical vapour deposition (CVD of tungsten. Mock-ups based on the ITER typical design can be realized by the implementation of Wf/W tiles. A concept based on a layered deposition approach allows the production of such tiles in the required geometry. One fibre layer after the other is positioned and ingrown into the W-matrix until the final sample size is reached. Charpy impact tests on these samples showed an increased fracture energy mainly due to the ductile deformation of the tungsten fibres. The use of Wf/W could broaden the operation temperature window of tungsten significantly and mitigate problems of deep cracking occurring typically in cyclic high heat flux loading. Textile techniques are utilized to optimise the tungsten wire positioning and process speed of preform production. A new device dedicated to the chemical deposition of W enhances significantly, the available machine time for processing and optimisation. Modelling shows that good deposition results are achievable by the use of a convectional flow and a directed temperature profile in an infiltration process.

  2. Separation of uranium from molybdenum by alkyl phosphoric acid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Zhongshi, Li

    1986-08-01

    The regularities of separation of uranium from molybdenum by alkyl phosphoric acid extraction are described. Two parameters, i.e., density ratio of uranium to molybdenum in organic phase at first stage and density of uranium in raffinate at last stage are presented. The relationship between these parameters and purity of molybdenum and uranium products is given. The method of adjusting and controlling these parameters in experiments and production is worked out. The technical key problem in comprehensive utilization of sedimentary type uranium ore containing molybdenum with close concentration of these to elements has been solved.

  3. Activity of molybdenum-containing oxide catalysts in the reaction of ethane oxidation

    International Nuclear Information System (INIS)

    Konovalov, V.I.; Ehpova, T.I.; Shchukin, V.P.; Averbukh, A.Ya.

    1977-01-01

    Investigation results concerning the catalytic activity of molybdenum-containing catalysts in ethane oxidation reaction are presented. It has been found that the greatest activity in the temperature range from 450 to 600 deg C is exhibited by cobalt-molybdenum catalyst; at 600 deg C bismuth-molybdenum catalyst is the most active. Nickel-molybdenum catalyst is selective and active with respect to ethylene. Iron- and manganese-molybdenum catalysts do not show high ethane oxidation rates and their selectivity is insignificant

  4. Alkaline elution of uranium and molybdenum and their recovery

    International Nuclear Information System (INIS)

    Song Wenlan; Wu Peisheng; Zhao Pinzhi; Tao Dening; Xie Chaoyan

    1987-01-01

    The uranium and molybdenum can be simultaneously eluted by using eluant (NH 4 ) 2 CO 3 + (NH 4 ) 2 SO 4 from resin loaded uranium and molybdenum. The ADU is precipitated from eluant by volatilization of ammonia. The molybdenum is extracted by TFA-TBP-kerosene from the filtrate at pH 3.0-3.2 with molybdenum extraction > 98%. Uranium is nearly not extracted. The precipitation of Mo is reached by sulphuric acid after stripping and the ammonium multimolybdate is obtained. This process can give the total recovery more than 99% for U and 90% for Mo. Because of the use of sulphate salt system, the hazard of NO 3 - can be avoided

  5. Molybdenum erosion measurements in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, W.R. [Sandia National Labs., Albuquerque, NM (United States); LaBombard, B.; Lipshultz, B.; Pappas, D.; Pitcher, C.S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); McCracken, G.M. [JET Joint Undertaking, Abingdon (United Kingdom)

    1998-05-01

    Erosion of molybdenum was measured on a set of 21 tiles after a run campaign of 1,090 shots in the Alcator C-Mod tokamak. The net erosion of molybdenum, was determined from changes in the depth of a thin chromium marker layer measured by Rutherford backscattering. Net Mo erosion was found to be approximately 150 nm near the outer divertor strike point, and much less everywhere else. Gross erosion rates by sputtering were estimated using ion energies and fluxes obtained from Langmuir probe measurements of edge-plasma conditions. Predicted net erosion using calculated gross erosion with prompt redeposition and measured net erosion agree within a factor of 3. Sputtering by boron and molybdenum impurities dominates erosion.

  6. Fabrication of tungsten wire needles

    International Nuclear Information System (INIS)

    Roder, A.

    1983-02-01

    Fine point needles for field emissoin are conventionally produced by electrolytically or chemically etching tungsten wire. Points formed in this manner have a typical tip radius of about 0.5 microns and a cone angle of some 30 degrees. The construction of needle matrix detector chambers has created a need for tungsten needles whose specifications are: 20 mil tungsten wire, 1.5 inch total length, 3 mm-long taper (resulting in a cone angle of about 5 degrees), and 25 micron-radius point (similar to that found on sewing needles). In the process described here for producing such needles, tungsten wire, immersed in a NaOH solution and in the presence of an electrode, is connected first to an ac voltage and then to a dc supply, to form a taper and a point on the end of the wire immersed in the solution. The process parameters described here are for needles that will meet the above specifications. Possible variations will be discussed under each approprite heading

  7. The tungsten powder study of the dispenser cathode

    International Nuclear Information System (INIS)

    Bao Jixiu; Wan Baofei

    2006-01-01

    The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes has been investigated for the different grain morphologies. It is shown that a fully cleaning step of the tungsten powder is so necessary that the tungsten powder will be reduction of oxide in hydrogen atmosphere above 700 deg. C. The porosity of the tungsten matrix distributes more even and the closed pore is fewer, the average granule size of the tungsten powder distributes more convergent. The porosity of the tungsten matrix and the evaporation of the activator are bigger and the pulse of the cathode is smaller when the granularity is bigger by the analysis of the electronic microscope and diode experiment

  8. The tungsten powder study of the dispenser cathode

    Science.gov (United States)

    Bao, Ji-xiu; Wan, Bao-fei

    2006-06-01

    The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes has been investigated for the different grain morphologies. It is shown that a fully cleaning step of the tungsten powder is so necessary that the tungsten powder will be reduction of oxide in hydrogen atmosphere above 700 °C. The porosity of the tungsten matrix distributes more even and the closed pore is fewer, the average granule size of the tungsten powder distributes more convergent. The porosity of the tungsten matrix and the evaporation of the activator are bigger and the pulse of the cathode is smaller when the granularity is bigger by the analysis of the electronic microscope and diode experiment.

  9. Extraction of molybdenum VI by alpha benzoinoxime

    International Nuclear Information System (INIS)

    Achache, M.; Meklati, M.

    1990-06-01

    The concentration of molybdenum, was studied using alpha benzoinoxime dissolved in chloroform. Several acids and salt at different levels of concentration were investigated as well as other parameters such as (mixing time, extractant to metal ratio, temperature etc.) The molybdenum stippling was also studied in alkaline medium with the subsequent recovery of the extractant and solvent

  10. Synthesis of molybdenum borides and molybdenum silicides in molten salts and their oxidation behavior in an air-water mixture

    NARCIS (Netherlands)

    Kuznetsov, S.A.; Kuznetsova, S.V.; Rebrov, E.V.; Mies, M.J.M.; Croon, de M.H.J.M.; Schouten, J.C.

    2005-01-01

    The formation of various coatings in molybdenum-boron and molybdenum-silicon systems was investigated. Boronizing and siliciding treatments were conducted in molten salts under inert gas atm. in the 850-1050 DegC temp. range for 7 h. The presence of boride (e.g. Mo2B, MoB, Mo2B5) and silicide

  11. Synthesis and characterization of Ni-Mo filler brazing alloy for Mo-W joining for microwave tube technology

    Directory of Open Access Journals (Sweden)

    Frank Ferrer Sene

    2013-04-01

    Full Text Available A brazing process based on Ni-Mo alloy was developed to join porous tungsten cathode bottom and dense molybdenum cathode body for microwave tubes manufacture. The Ni-Mo alloy was obtained by mixing and milling powders in the eutectic composition, and applied on the surface of the components. The brazing was made at 1400 °C by using induction heating in hydrogen for 5 minutes. Alumina surfaces were coated with the binder and analyzed by Energy Dispersive X-rays Fluorescence. The brazed samples were analyzed by Scanning Electron Microscopy coupled to Energy Dispersive Spectroscopy. Stress-strain tests were performed to determine the mechanical behavior of the joining. The quality of the brazing was evaluated by assuring the presence of a "meniscus" formed by the Ni-Mo alloy on the border of the tungsten and molybdenum joint, the absence of microstructural defects in the interface between the tungsten and molybdenum alloys, and the adhesion of the brazed components.

  12. Weldability of powder-metallurgy molybdenum with low oxygen content

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Okada, Masatoshi

    1987-01-01

    Relationships between the formation of weld pores and the chemical compositions in powder-metallurgy molybdenum were investigated. It is suggested that almost 100% of Ca and Mg form oxides. In contrast, Fe, Ni, Cr and Al, Si only partly form oxides. A powder-metallurgy molybdenum containing less than 84 at.ppm oxygen did not show any large weld pores. The reduction of the oxygen content was achieved by purifying the molybdenum powder. (orig.) [de

  13. Conversion electron Moessbauer spectroscopic studies on the chemical states of surface layers of corroded tin plates and tin-coated iron plates

    International Nuclear Information System (INIS)

    Kato, Akinori; Endo, Kazutoyo; Sano, Hirotoshi

    1980-01-01

    By means of the conversion electron Moessbauer spectroscopy (CEMS), we studied surface layers of ''tin'' plates and tin-coated iron plates corroded by various acids. Transmission Moessbauer spectra and X-ray diffraction patterns were also measured. Metastannic acid was formed, when the ''tin'' plate was corroded by nitric acid solution. In corrosion by phosphoric acid solution, the X-ray diffractometry revealed the formation of tin(IV) pyrophosphate. In corrosion by various organic acid solutions, the formation of oxides was identified by the 119 Sn CEMS, but not by the X-ray diffractometry because of the too thin corrosion layer. In corrosion of tin-coated iron plates, maleic acid, malonic acid, formic acid, and oxalic acid were used. It was determined by CEMS that the corrosion products caused by these acids were tin(IV) oxides, although they could not be identified by the X-ray diffractometry. CEMS also confirmed that the surface of uncorroded tin-coated iron plate was already oxidized by air. Colorimetric determinations of Sn and Fe dissolved from tin-coated iron plates to various acid solutions confirmed that maleic acid had the strongest corrosion effect among the organic acids studied. (author)

  14. Separation and selective determination of molybdenum with sodiumthiosulfate and ethylacetate

    International Nuclear Information System (INIS)

    Hainberger, L.; de Oliveira Andrade, W.

    1982-01-01

    A sensitive and selective method of spectrophotometric determination of molybdenum is described. Molybdenum is extracted to more than 97%. Lambert-Beer's law is obeyed between 0.35 and 30μg/10ml of the used aqueous solution. 43 ions concerning their interference are studied. The method was used to determine the content of molybdenum in black beans. (Author)

  15. Friction and corrosion resistance of sputter deposited supersaturated metastable aluminium-molybdenum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Zeid, O.A. [Univ. of the United Arab Emirates, Al-Ain (United Arab Emirates). Dept. of Mech. Eng.; Bates, R.I. [Design, Mfg. and Marketing Research Inst., Univ. of Salford (United Kingdom)

    1996-12-15

    Two closed field unbalanced magnetrons with targets of aluminium and molybdenum have been used for the co-deposition of aluminium-molybdenum coatings with different compositions. A pin on disk machine and a computer controlled potentiostat have been used to evaluate respectively, the tribological and corrosion properties of the deposited alloys. Results have shown that introducing molybdenum into aluminium coatings improves their poor tribological properties. Aluminium-molybdenum coatings with different compositions have shown low wear behaviour and for coatings with high molybdenum contents (> 80%) friction coefficients against steel, as low as 0.18 have been obtained. The addition of molybdenum into aluminium coatings has reduced their corrosion tendency and corrosion current density in a marine environment. (orig.)

  16. Molybdenum plasma spray powder, process for producing said powder, and coating made therefrom

    International Nuclear Information System (INIS)

    Lafferty, W.D.; Cheney, R.F.; Pierce, R.H.

    1979-01-01

    Plasma spray powders of molybdenum particles containing 0.5 to 15 weight percent oxygen and obtained by reacting molybdenum particles with oxygen or oxides in a plasma, form plasma spray coatings exhibiting hardness comparable to flame sprayed coatings formed from molybdenum wire and plasma coatings of molybdenum powders. Such oxygen rich molybdenum powders may be used to form wear resistant coatings, such as for piston rings. (author)

  17. Thermal Spray Coating of Tungsten for Tokamak Device

    International Nuclear Information System (INIS)

    Jiang Xianliang; Gitzhofer, F; Boulos, M I

    2006-01-01

    Thermal spray, such as direct current (d.c.) plasma spray or radio frequency induced plasma spray, was used to deposit tungsten coatings on the copper electrodes of a tokamak device. The tungsten coating on the outer surface of one copper electrode was formed directly through d.c. plasma spraying of fine tungsten powder. The tungsten coating/lining on the inner surface of another copper electrode could be formed indirectly through induced plasma spraying of coarse tungsten powder. Scanning electron microscopy (SEM) was used to examine the cross section and the interface of the tungsten coating. Energy Dispersive Analysis of X-ray (EDAX) was used to analyze the metallic elements attached to a separated interface. The influence of the particle size of the tungsten powder on the density, cracking behavior and adhesion of the coating is discussed. It is found that the coarse tungsten powder with the particle size of 45 ∼ 75 μm can be melted and the coating can be formed only by using induced plasma. The coating deposited from the coarse powder has much higher cohesive strength, adhesive strength and crack resistance than the coating made from the fine powder with a particle size of 5 μm

  18. Operation of ASDEX Upgrade with tungsten coated walls

    International Nuclear Information System (INIS)

    Rohde, V.

    2002-01-01

    An alternative for low-Z materials in the main chamber of a future fusion device are high-Z materials, but the maximal tolerable concentration in the plasma core is restricted. A step by step approach to employ tungsten at the central column of ASDEX Upgrade was started in 1999. Meanwhile almost the whole central column is covered with tiles, which were coated by PVD with tungsten. Up to now 9000 s of plasma discharge covering all relevant scenarios were performed. Routine operation of ASDEX Upgrade was not affected by the tungsten. Typical concentrations below 10 -5 were found. The tungsten concentration is mostly connected to the transport into the core plasma, not to the tungsten erosion. It can be demonstrated, that additional central heating can eliminate the tungsten accumulation. These experiments demonstrate the compatibility of fusion plasmas with W plasma facing components under reactor relevant conditions. The erosion pattern found by post mortem analysis indicates that the main effect is ion sputtering. The main erosion of tungsten seems to occur during plasma ramp-up and ramp-down. (author)

  19. Solid solutions of hydrogen in niobium, molybdenum and their alloys

    International Nuclear Information System (INIS)

    Ishikawa, T.T.

    1981-01-01

    The solubility of hydrogen in niobium, molybdenum and niobium-molybdenum alloys with varying atomic fraction of molybdenum from 0.15 to 0.75 was measured on the temperature range of 673 0 K to 1273 0 k for one atmosphere hydrogen pressure. The experimental technique involved the saturation of the solvent metal or alloy with hydrogen, followed by quenching and analysis of the solid solution. The results obtained of hydrogen solubility are consistent with the quasi-regular model for the dilute interstitial solid solutions. The partial molar enthalpy and partial molar entropy in excess of the dissolved hydrogen atoms were calculated from data of solubility versus reciprocal doping temperature. The variation of the relative partial molar enthalpy of hydrogen dissolved in niobium-molybdenum alloys, with the increase of molybdenum content of the alloy was analized. (Author) [pt

  20. Tungsten Targets the Tumor Microenvironment to Enhance Breast Cancer Metastasis

    Science.gov (United States)

    Bolt, Alicia M.; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M.; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K.

    2015-01-01

    The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients’ years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans. PMID:25324207

  1. Directly smelted lead-tin alloys: A historical perspective

    Science.gov (United States)

    Dube, R. K.

    2010-08-01

    This paper discusses evidence related to the genesis and occurrence of mixed lead-tin ore deposit consisting of cassiterite and the secondary minerals formed from galena. These evidences belong to a very long time period ranging from pre-historic to as late as the nineteenth century a.d. This type of mixed ore deposits was smelted to prepare lead-tin alloys. The composition of the alloy depended on the composition of the starting ore mixture. A nineteenth century evidence for the production of directly smelted lead-tin alloys in southern Thailand is discussed. A unique and rather uncommon metallurgical terminology in Sanskrit language— Nāgaja—was introduced in India for the tin recovered from impure lead. This suggests that Indians developed a process for recovering tin from lead-tin alloys, which in all probability was based on the general principle of fire refining. It has been shown that in the context of India the possibility of connection between the word Nāgaja and the directly smelted lead-tin alloys cannot be ruled out.

  2. Recovery of molybdenum metal powder from a low grade molybdenite concentrate

    International Nuclear Information System (INIS)

    Mukherjee, T.K.; Menon, P.R.; Shukla, P.P.; Gupta, C.K.

    1988-01-01

    An account is given of the development of a process for the production of molybdenum metal powder from a low grade molybdenite concentrate. The molybdenum value present in the concentrate was leached with a dilute hypochlorite solution generated in-situ by electrolysis of brine solution. The leach liquor was subsequently purified by carbon adsorption process. The leach liquor was chemically processed to recover the molybdenum value in the forms of calcium molybdate and ammonium molybdate salts. These molybdenum intermediates were hydrogen-reduced to metallic molybdenum powder. The experimental set up used, procedure followed and results obtained are discussed and a flowsheet indicating the entire processing scheme is included. 11 refs., 4 figs., 8 tabs

  3. Study of N-cinnamoylphenylhydroxylaminate solubility in water and organic solvents

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Shpak, Eh.A.; Samchuk, A.I.

    1975-01-01

    The composition of complexes of N-cinnamoylphenylhydroxylamine with copper, cadmium, lead, indium, iron, gallium, titanium, zirconium, hafnium, niobium, tantalum, tungsten, molybdenum and vanadium was determined. The solubility products of the N-cinnamoylphenylhydroxylaminates of copper, cadmium, indium, gallium and iron were determined by the method of measuring the solubility of precipitates in acid. The solubility of N-cinnamoylphenylhydroxalaminates of cadmium, indium, iron, titanium, zirconium, hafnium, niobium, tantalum, vanadium, molybdenum and tungsten in organic solvents was studied. Two-phase constants for the stability of the complexes were calculated. (author)

  4. Experiment on bio-leaching of associated molybdenum and uranium ore

    International Nuclear Information System (INIS)

    Zheng Ying; Fan Baotuan; Liu Jian; Meng Yunsheng; Liu Chao

    2007-01-01

    Column leaching experiment results on associated molybdenum uranium ore by bacteria (T. f) are introduced. The ore are leached for 210 days using bacteria domesticated to tolerate molybdenum, the leaching of uranium is of 98% and leaching of molybdenum is of 41%. Sulphuric acid produced by bio-oxidation of sulfides in ore can meet the demand of ore leaching. (authors)

  5. Microstructure and mechanical properties of multi-components rare earth oxide-doped molybdenum alloys

    International Nuclear Information System (INIS)

    Zhang Guojun; Sun Yuanjun; Zuo Chao; Wei Jianfeng; Sun Jun

    2008-01-01

    Pure molybdenum and molybdenum alloys doped with two- or three-components rare earth oxide particles were prepared by powder metallurgy. Both the tensile property and fracture toughness of the pure molybdenum and multi-components rare earth oxide-doped molybdenum alloys were determined at room temperature. The multi-components rare earth oxide-doped molybdenum alloys are fine grained and contain a homogeneous distribution of fine particles in the submicron and nanometer size ranges, which is why the molybdenum alloys have higher strength and fracture toughness than pure molybdenum. Quantitative analysis is used to explain the increase in yield strength with respect to grain size and second phase strengthening. Furthermore, the relationship between the tensile properties and microstructural parameters is quantitatively established

  6. Catalytic hydrotreatment of Illinois No. 6 coal-derived naphtha: comparison of molybdenum nitride and molybdenum sulfide for heteroatom removal

    Energy Technology Data Exchange (ETDEWEB)

    Raje, A.; Liaw, S.J.; Chary, K.V.R.; Davis, B.H. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1995-03-16

    The hydrotreatment of naphtha derived from Illinois No. 6 coal was investigated using molybdenum sulfide and nitride catalysts. The two catalysts are compared on the basis of total catalyst weight. Molybdenum sulfide is more active than molybdenum nitride for hydrodesulfurization (HDS) of a coal-derived naphtha. The rate of hydrodeoxygenation (HDO) of the naphtha over both catalysts are comparable. For hydrodenitrogenation (HDN), the sulfide is more active than the nitride only at higher temperatures ({gt}325{degree}C). Based upon conversion data, the naphtha can be lumped into a reactive and a less reactive fraction with each following first-order kinetics for heteroatom removal. The HDS and HDN rates and activation energies of the less reactive lump are smaller for the nitride than for the sulfide catalyst.

  7. A study on direct alloying with molybdenum oxides by feed wire method

    Directory of Open Access Journals (Sweden)

    Jingjing Zou

    2018-04-01

    Full Text Available Direct alloying with molybdenum oxides has been regarded in years; the main addition methods are adding to the bottom of electric arc furnace (EAF with scrap, adding to the ladle during the converter tapping and mixing molybdenum oxide, lime and reductant to prepare pellet added to basic oxygen furnace (BOF. In this paper, a new method for direct alloying with molybdenum trioxide is proposed, adding molybdenum trioxide molten steel by feeding wire method in ladle furnace (LF refining process. The feasibility of molybdenum oxide reduction, the influence rules of bottom-blown on liquid steel fluidity and the yield of molybdenum by feeding wire method were analyzed. Results show that molybdenum oxide can be reduced by [Al], [Si], [C], and even [Fe] in molten steel. Bottom blowing position has a significant influence on the flow of molten steel when the permeable brick is located in 1/2 radius. The yields of Mo are higher than 97% for the experiments with feed wire method, the implementation of direct alloying with molybdenum trioxide by feed wire method works even better than that uses of ferromolybdenum in the traditional process.

  8. Toxicology of inorganic tin

    International Nuclear Information System (INIS)

    Burba, J.V.

    1982-01-01

    Tin(II) or stannous ion as a reducing agent is important in nuclear medicine because it is an essential component and common denominator for many in vivo radiodiagnostic agents, commonly called kits for the preparation of radiopharmaceuticals. This report is intended to alert nuclear medicine community regarding the wide range of biological effects that the stannous ion is capable of producing, and is a review of a large number of selected publications on the toxicological potential of tin(II)

  9. Processing of tungsten scrap into powders by electroerosion disintegration

    International Nuclear Information System (INIS)

    Fominskii, L.P.; Leuchuk, M.V.; Myuller, A.S.; Tarabrina, V.P.

    1985-01-01

    Utilization of tungsten and tungsten alloy swarf and other waste and also of rejected and worn parts is a matter of great importance in view of the shortage of this metal. The authors examine the electroerosion (EE) disintegration of tungsten in water as a means of utilizing swarf and other loose waste. Unlike chemical methods, EE disintegration ensures ecological purity since there are no effluent waters or toxic discharges. Swarf and trimmings of rods of diameters up to 20 mm obtained after the lathe-turning of tungsten bars sintered from PVN and PVV tungsten powders were disintegrated in water at room temperature between tungsten electrodes. The phase composition of the powder was studied using FeK /SUB alpha/ radiation, by x-ray diffraction methods in a DRON-2 diffractometer with a graphite monochromator on the secondary beam. When tungsten is heated to boiling during EE disintegration, the impurities present in it can evaporate and burn out. Thus, tungsten powder produced by EE disintegration can be purer than the starting metal

  10. Solvent extraction in analytical chemistry of tungsten (Review)

    International Nuclear Information System (INIS)

    Ivanov, V.M.; Busev, A.I.; Sokolova, T.A.

    1975-01-01

    The use of extraction for isolating and concentrating tungsten with subsequent determination by various methods is considered. For tungsten extractants of all types are employed: neutral, basic and acidic. Neutral extractants are used for isolating and concentrating tungsten, basic and acidic ones are employed, as a rule, for the isolation and subsequent determination of tungsten. This type of extractants is highly promising, since, selectively extracting tungsten, they allow its simultaneous determination. Neutral extractants are oxygen-containing solvents, TBP; basic extractants are aniline, pyridine, 1-naphthylamine, trialkylbenzylammoniumanitrate. As acidic reagents use is made of 8-oxyquinoline and its derivatives, oximes and hydroxamic acids, β-diketones, carbaminates. In the extraction radioactive isotope 185 W is employed

  11. Surface energy anisotropy of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R; Grenga, H E [Georgia Inst. of Tech., Atlanta (USA). School of Chemical Engineering

    1976-10-01

    Field-ion microscopy was used to study the faceting behavior and/or surface energy anisotropy of tungsten in vacuum and in hydrogen. In vacuum below 1700 K the activation energy for (110) facet growth agreed with values previously reported for surface diffusion on tungsten. The observed anisotropy values at 0.5 Tsub(m), where Tsub(m) is the absolute melting temperature of tungsten (approximately 3680 K), were different from those previously reported at higher temperatures and more nearly agreed with broken bond calculations based on Mie potential using m=5, n=8, and a 1.5% lattice expansion. Hydrogen appeared to have a negligible effect on surface energy anisotropy, but did preferentially increase surface diffusion rates on (310) regions.

  12. Investigation of pressing of molybdenum powder compacts

    International Nuclear Information System (INIS)

    Mymrin, S.A.; Kuznetsov, V.Eh.; Yampol'skij, M.L.; Leonov, S.A.; Mikhridinov, R.M.; Korzukhin, V.A.

    1990-01-01

    Results of an experimental investigation into pressing of compacts of MCh type molybdenum powders using the industrial equipment are presented. To measure the density of powder molybdenum billets a radioisotopic density meter with cesium-137 is used as radioactive gamma radiation source. The dependence of the produced billet density on the specific compacting pressure at different values of the powder bulk density is ascertained

  13. High Heat Load Properties of Ultra Fine Grain Tungsten

    International Nuclear Information System (INIS)

    Zhou, Z.; Du, J.; Ge, C.; Linke, J.; Pintsuk, G.; Song, S.X.

    2007-01-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 μm, 1 μm and 3 μm were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m 2 respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m 2 . Particle erosions occurred for tungsten with 3 μm size at 0.33 GW/m 2 and for tungsten with 0.2 and 1 μm size at 0.55 GW/m 2 . The weight loss of tungsten with 0.2, 1 and 3 μm size are 2,0.1,0.6 mg respectively at 0.88 GW/m 2 . The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 μm size has the best performance. (authors)

  14. High Heat Load Properties of Ultra Fine Grain Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Du, J.; Ge, C. [Lab. of Special Ceramic and P/M, University of Science and Technology, 100083 Beijing (China); Linke, J.; Pintsuk, G. [FZJ-Forschungszentrum Juelich GmbH, Association Euratom-FZJ, Institut fur Plasmaphysik, Postfach 1913, D-52425 Juelich (Germany); Song, S.X. [Research Center on Fusion Materials (RCFM), University of Science and Technology Beijing (USTB), 100083 Beijing (China)

    2007-07-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 {mu}m, 1 {mu}m and 3 {mu}m were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m{sup 2} respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m{sup 2}. Particle erosions occurred for tungsten with 3 {mu}m size at 0.33 GW/m{sup 2} and for tungsten with 0.2 and 1 {mu}m size at 0.55 GW/m{sup 2}. The weight loss of tungsten with 0.2, 1 and 3 {mu}m size are 2,0.1,0.6 mg respectively at 0.88 GW/m{sup 2}. The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 {mu}m size has

  15. The influence of Fe content on spreading ability of tungsten heavy alloys matrix on tungsten surface

    Directory of Open Access Journals (Sweden)

    A. Krzyńska

    2011-07-01

    Full Text Available The results of experimental study of tungsten spreading ability with W-Ni-Co-Fe matrix are presented. The aim of these investigations was to see how Fe concentration in W – Ni – Co matrix influences the wettability of tungsten grains during liquid phase sintering. Four green compact specimens containing 50%W, 10%Co and Ni + Fe = 40% but with different Ni to Fe ratio were prepared. The cylindrical specimen 5mm diameter and 5mm height were put on clean pure tungsten substrate and then 20 minutes heated at 1520oC in hydrogen atmosphere. After heating the specimens were carefully measured and then the specimens for structure observations were prepared. It was concluded, that increase of Fe content decrease the melting temperature of W – Ni – Co alloy. The melting point decrease caused by Fe content increase substantially the spreading ability of tungsten substrate with W – Ni – Co alloy. Metallography investigations showed some microstructure changes in “reaction zone” identified in tungsten substrate – (WNi40-xCo10Fex interface. The results of the study confirmed our earlier observations that even relative small Fe addition promotes Weight Heavy Alloys (WHA liquid phase sintering.

  16. Tungsten--carbide critical assembly

    International Nuclear Information System (INIS)

    Hansen, G.E.; Paxton, H.C.

    1975-06-01

    The tungsten--carbide critical assembly mainly consists of three close-fitting spherical shells: a highly enriched uranium shell on the inside, a tungsten--carbide shell surrounding it, and a steel shell on the outside. Ideal critical specifications indicate a rather low computed value of k/sub eff/. Observed and calculated fission-rate distributions for 235 U, 238 U, and 237 Np are compared, and calculated leakage neutrons per fission in various energy groups are given. (U.S.)

  17. Electrokinetic treatment of firing ranges containing tungsten-contaminated soils

    International Nuclear Information System (INIS)

    Braida, Washington; Christodoulatos, Christos; Ogundipe, Adebayo; Dermatas, Dimitris; O'Connor, Gregory

    2007-01-01

    Tungsten-based alloys and composites are being used and new formulations are being considered for use in the manufacturing of different types of ammunition. The use of tungsten heavy alloys (WHA) in new munitions systems and tungsten composites in small caliber ammunition could potentially release substantial amounts of this element into the environment. Although tungsten is widely used in industrial and military applications, tungsten's potential environmental and health impacts have not been thoroughly addressed. This necessitates the research and development of remedial technologies to contain and/or remove tungsten from soils that may serve as a source for water contamination. The current work investigates the feasibility of using electrokinetics for the remediation of tungsten-contaminated soils in the presence of other heavy metals of concern such as Cu and Pb with aim to removing W from the soil while stabilizing in situ, Pb and Cu

  18. Low temperature processing of tungsten-fibre high-strength composite

    International Nuclear Information System (INIS)

    Semrau, W.M.

    2001-01-01

    A tungsten nickel/iron compound with a high tungsten content up to over 90 percent by volume of tungsten and an ideal distribution of the nickel-iron multilayer-matrix avoiding tungsten - tungsten interfaces, has been processed without the use of any sintering process and thus resulted in avoiding temperatures of above 700 o C during the entire manufacturing process. An electrochemical coating of coarse tungsten powder with alternating layers of nickel and iron and a forging process at temperatures not exceeding 650 o C resulted in a high strength compound, which easily could be altered into a tungsten fiber compound with a fiber-length to fiber-diameter ratio of more than 10 3 . From the viewpoint of the metallurgist, easier handling systems are obtained when both a liquid phase and high temperatures with their risks for grain structures and grain boundaries are lacking. (author)

  19. Characterization of tin selenides synthesized by high-energy milling

    Directory of Open Access Journals (Sweden)

    Marcela Achimovičová

    2011-12-01

    Full Text Available Tin selenides SnSeX (x=1,2 were synthesized from tin and selenium powder precursors by high-energy milling in the planetary ballmill Pulverisette 6 (Fritsch, Germany. The orthorhombic tin selenide SnSe and the hexagonal tin diselenide SnSe2 phases were formed after4 min and 5 min of milling, respectively. Specific surface area of both selenides increased with increasing time of mechanochemicalsynthesis. The particle size distribution analysis demonstrated that the synthesized products contain agglomerated selenide particlesconsisting of numerous idiomorphic tin selenide crystals, measuring from 2 to more than 100 nm in diameter, which were also documentedby TEM. UV-Vis spectrophotometry confirmed that tin selenide particles do not behave as quantum dots.

  20. The XUV spectra of highly ionised molybdenum

    International Nuclear Information System (INIS)

    Mansfield, M.W.D.; Peacock, N.J.; Smith, C.C.; Hobby, M.G.; Cowan, R.D.

    1978-01-01

    The spectra of molybdenum ions produced in Tokamaks in the wavelength range 10-200 A have been reproduced in a plasma formed by laser beam irradiation of solid molybdenum targets. Lines from highly ionised stages of molybdenum (Mo XXX to Mo XXXII) have been distinguished by varying the laser beam intensity. Detailed analyses of the simpler ions, Mo XV (Ni-like), Mo XVI (Co-like), Mo XXXII (Na-like), and to a lesser extent Mo XXXI (Mg-like) and Mo XVII (Fe-like), have been achieved by comparison with ab initio calculations. A general interpretation of intermediate ion stages is also given but it is shown that most of these spectra are so complex, as a result of inner-subshell excitation, that detailed term-scheme analyses are nearly impossible. (author)

  1. Reduction and immobilization of molybdenum by Desulfovibrio desulfuricans

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, M.D.; Barton, L.L.; Thomson, B.M. [Sandia National Laboratories, Albuquerque, NM (United States)

    1997-07-01

    Molybdenum contamination of groundwater occurs through activities such as molybdenum and copper mining and processing, shale oil production and power generation from coal-fired power plants. The mobility of Mo in the environment is strongly dependent on its chemical oxidation state. Under oxidizing conditions, Mo occurs as highly soluble and mobile Mo(VI) and Mo(V) compounds. However, under reducing conditions Mo usually forms insoluble Mo(IV) phases. The objective of this study was to demonstrate the ability of the sulfate-reducing bacterium, Desulfovibrio desulfuricans, to reduce Mo(IV) to Mo(IV) in anaerobic environments. Molybdenum-VI was reduced to Mo(IV) by washed cells of D. desulfuricans suspended in bicarbonate buffer solution with either lactate or H{sub 2} as the electron donor and Mo(VI) as the electron acceptor. Molybdenum-VIi reduction by D. desulfuricans in the presence of sulfide resulted in the extracelluar precipitation of the mineral molybdenite. Molybdenum-VI reduction did not occur in the absence of an electron donor or in the presence of heat-killed cells of D. desulfuricans. The results indicate that enzymatic reduction of Mo(VI) by sulfate-reducing bacteria may contribute to the accumulation of Mo(IV) in anaerobic environments and that there organisms may be useful for removing soluble Mo from contaminated water. 20 refs., 6 figs., 4 tabs.

  2. Uranium and Molybdenum extraction from a Cerro Solo deposit ore

    International Nuclear Information System (INIS)

    Becquart, Elena T.; Arias, Maria J.; Fuente, Juan C. de la; Misischia, Yamila A.; Santa Cruz, Daniel E.; Tomellini, Guido C.

    2009-01-01

    Cerro Solo, located in Chubut, Argentina, is a sandstone type uranium-molybdenum deposit. Good recovery of both elements can be achieved by acid leaching of the ore but the presence of molybdenum in pregnant liquors is an inconvenient to uranium separation and purification. A two steps process is developed. A selective alkaline leaching of the ore with sodium hydroxide allows separating and recovering of molybdenum and after solid-liquid separation, the ore is acid leached to recover uranium. Several samples averaging 0,2% uranium and 0,1% molybdenum with variable U/Mo ratio have been used and in both steps, leaching and oxidant reagents concentration, temperature and residence time in a stirred tank leaching have been studied. In alkaline leaching molybdenum recoveries greater than 96% are achieved, with 1% uranium extraction. In acid leaching up to 93% of the uranium is extracted and Mo/U ratio in solvent extraction feed is between 0,013 and 0,025. (author)

  3. Detection and reduction of tungsten contamination in ion implantation processes

    International Nuclear Information System (INIS)

    Polignano, M.L.; Galbiati, A.; Grasso, S.; Mica, I.; Barbarossa, F.; Magni, D.

    2016-01-01

    In this paper, we review the results of some studies addressing the problem of tungsten contamination in implantation processes. For some tests, the implanter was contaminated by implantation of wafers with an exposed tungsten layer, resulting in critical contamination conditions. First, DLTS (deep level transient spectroscopy) measurements were calibrated to measure tungsten contamination in ion-implanted samples. DLTS measurements of tungsten-implanted samples showed that the tungsten concentration increases linearly with the dose up to a rather low dose (5 x 10 10 cm -2 ). Tungsten deactivation was observed when the dose was further increased. Under these conditions, ToF-SIMS revealed tungsten at the wafer surface, showing that deactivation was due to surface segregation. DLTS calibration could therefore be obtained in the linear dose regime only. This calibration was used to evaluate the tungsten contamination in arsenic implantations. Ordinary operating conditions and critical contamination conditions of the equipment were compared. A moderate tungsten contamination was observed in samples implanted under ordinary operating conditions. This contamination was easily suppressed by a thin screen oxide. On the contrary, implantations in critical conditions of the equipment resulted in a relevant tungsten contamination, which could be reduced but not suppressed even by a relatively thick screen oxide (up to 150 Aa). A decontamination process consisting of high dose implantations of dummy wafers was tested for its efficiency to remove tungsten and titanium contamination. This process was found to be much more effective for titanium than for tungsten. Finally, DLTS proved to be much more sensitive that TXRF (total reflection X-ray fluorescence) in detecting tungsten contamination. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Detection and reduction of tungsten contamination in ion implantation processes

    Energy Technology Data Exchange (ETDEWEB)

    Polignano, M.L.; Galbiati, A.; Grasso, S.; Mica, I.; Barbarossa, F.; Magni, D. [STMicroelectronics, Agrate Brianza (Italy)

    2016-12-15

    In this paper, we review the results of some studies addressing the problem of tungsten contamination in implantation processes. For some tests, the implanter was contaminated by implantation of wafers with an exposed tungsten layer, resulting in critical contamination conditions. First, DLTS (deep level transient spectroscopy) measurements were calibrated to measure tungsten contamination in ion-implanted samples. DLTS measurements of tungsten-implanted samples showed that the tungsten concentration increases linearly with the dose up to a rather low dose (5 x 10{sup 10} cm{sup -2}). Tungsten deactivation was observed when the dose was further increased. Under these conditions, ToF-SIMS revealed tungsten at the wafer surface, showing that deactivation was due to surface segregation. DLTS calibration could therefore be obtained in the linear dose regime only. This calibration was used to evaluate the tungsten contamination in arsenic implantations. Ordinary operating conditions and critical contamination conditions of the equipment were compared. A moderate tungsten contamination was observed in samples implanted under ordinary operating conditions. This contamination was easily suppressed by a thin screen oxide. On the contrary, implantations in critical conditions of the equipment resulted in a relevant tungsten contamination, which could be reduced but not suppressed even by a relatively thick screen oxide (up to 150 Aa). A decontamination process consisting of high dose implantations of dummy wafers was tested for its efficiency to remove tungsten and titanium contamination. This process was found to be much more effective for titanium than for tungsten. Finally, DLTS proved to be much more sensitive that TXRF (total reflection X-ray fluorescence) in detecting tungsten contamination. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Tungsten oxide nanowires grown on amorphous-like tungsten films

    International Nuclear Information System (INIS)

    Dellasega, D; Pezzoli, A; Russo, V; Passoni, M; Pietralunga, S M; Nasi, L; Conti, C; Vahid, M J; Tagliaferri, A

    2015-01-01

    Tungsten oxide nanowires have been synthesized by vacuum annealing in the range 500–710 °C from amorphous-like tungsten films, deposited on a Si(100) substrate by pulsed laser deposition (PLD) in the presence of a He background pressure. The oxygen required for the nanowires formation is already adsorbed in the W matrix before annealing, its amount depending on deposition parameters. Nanowire crystalline phase and stoichiometry depend on annealing temperature, ranging from W_1_8O_4_9-Magneli phase to monoclinic WO_3. Sufficiently long annealing induces the formation of micrometer-long nanowires, up to 3.6 μm with an aspect ratio up to 90. Oxide nanowire growth appears to be triggered by the crystallization of the underlying amorphous W film, promoting their synthesis at low temperatures. (paper)

  6. Mechanical properties of molybdenum coated with titanium carbide film

    International Nuclear Information System (INIS)

    Shikama, T.; Shinno, H.; Fukutomi, M.; Fujitsuka, M.; Okada, M.

    1983-01-01

    TiC-coated molybdenum is mechanically tensile tested. The 6 μm thick TiC-coated molybdenum has a higher 0.2% proof strength with a slight decrease in uniform and rupture elongation than the uncoated one. This strengthening effect of the TiC coating can be explained by the constrained effect of the high strength TiC film. The 1.2 μm thick TiC-coated molybdenum starts its plastic deformation at a lower stress than the uncoated one. Also, the coating makes the stress-strain curve more smooth. These effects are attributed to the surface effect, namely, that the interface between the molybdenum substrate and the strong and brittle TiC film acts as a strong dislocation source. The compressive stress in the TiC film will also help the start of plastic deformation at lower external stresses. (author)

  7. Preparation of textural lamellar tin deposits via electrodeposition

    Science.gov (United States)

    Wen, Xiaoyu; Pan, Xiaona; Wu, Libin; Li, Ruinan; Wang, Dan; Zhang, Jinqiu; Yang, Peixia

    2017-06-01

    Lamellar tin deposits were prepared by galvanostatical electroplating from the aqueous acidic-sulfate bath, with gelatin and benzalacetone dissolved in ethanol (ABA+EtOH) as additive, and their morphologies were investigated by scanning electron microscopy. Cathodic polarization curves revealed that the absorbability of ABA+EtOH on the cathode surface was higher than that of gelatin. X-ray diffraction analysis indicated preferred orientations of tin growth led to the formation of lamellar structure and distortion of tin lattice. The growth mechanism of lamellar tin was also discussed.

  8. Tungsten as First Wall Material in Fusion Devices

    International Nuclear Information System (INIS)

    Kaufmann, M.

    2006-01-01

    In the PLT tokamak with a tungsten limiter strong cooling of the central plasma was observed. Since then mostly graphite has been used as limiter or target plate material. Only a few tokamaks (limiter: FTU, TEXTOR; divertor: Alcator C-Mod, ASDEX Upgrade) gained experience with high-Z-materials. With the observed strong co- deposition of tritium together with carbon in JET and as a result of design studies of fusion reactors, it became clear that in the long run tungsten is the favourite for the first-wall material. Tungsten as a plasma facing material requires intensive research in all areas, i.e. in plasma physics, plasma wall-interaction and material development. Tungsten as an impurity in the confined plasma reveals considerable differences to carbon. Strong radiation at high temperatures, in connection with mostly a pronounced inward drift forms a particular challenge. Turbulent transport plays a beneficial role in this regard. The inward drift is an additional problem in the pedestal region of H-mode plasmas in ITER-like configurations. The erosion by low energy hydrogen atoms is in contrast to carbon small. However, erosion by fast particles from heating measures and impurity ions, accelerated in the sheath potential, play an important role in the case of tungsten. Radiation by carbon in the plasma boundary reduces the load to the target plates. Neon or Argon as substitutes will increase the erosion of tungsten. So far experiments have demonstrated that in most scenarios the tungsten content in the central plasma can be kept sufficiently small. The material development is directed to the specific needs of existing or future devices. In ASDEX Upgrade, which will soon be a divertor experiment with a complete tungsten first-wall, graphite tiles are coated with tungsten layers. In ITER, the solid tungsten armour of the target plates has to be castellated because of its difference in thermal expansion compared to the cooling structure. In a reactor the technical

  9. Crystalline silicon films sputtered on molybdenum A study of the silicon-molybdenum interface

    Energy Technology Data Exchange (ETDEWEB)

    Reinig, P.; Fenske, F.; Fuhs, W.; Schoepke, A.; Selle, B

    2003-04-15

    Polycrystalline silicon films were grown on molybdenum (Mo)-coated substrates at high deposition rate using the pulsed magnetron sputtering technique. Our study investigates the silicon-molybdenum interface of these films to elucidate stimulating mechanisms for an ordered crystalline silicon thin film growth. Both Auger electron spectroscopy and Rutherford backscattering reveal that at a substrate temperature as low as T{sub S}=450 deg. C during the deposition process intermixing of Si and Mo at the Si-Mo interface takes place leading to a compositional ratio Mo:Si of about 1:2. By Raman spectroscopy hexagonal {beta}-MoSi{sub 2} could be identified as the dominant phase in this intermixed region. The dependence of the resulting thickness of the reacted interface layer on the deposition conditions is not fully understood yet.

  10. Crystalline silicon films sputtered on molybdenum A study of the silicon-molybdenum interface

    International Nuclear Information System (INIS)

    Reinig, P.; Fenske, F.; Fuhs, W.; Schoepke, A.; Selle, B.

    2003-01-01

    Polycrystalline silicon films were grown on molybdenum (Mo)-coated substrates at high deposition rate using the pulsed magnetron sputtering technique. Our study investigates the silicon-molybdenum interface of these films to elucidate stimulating mechanisms for an ordered crystalline silicon thin film growth. Both Auger electron spectroscopy and Rutherford backscattering reveal that at a substrate temperature as low as T S =450 deg. C during the deposition process intermixing of Si and Mo at the Si-Mo interface takes place leading to a compositional ratio Mo:Si of about 1:2. By Raman spectroscopy hexagonal β-MoSi 2 could be identified as the dominant phase in this intermixed region. The dependence of the resulting thickness of the reacted interface layer on the deposition conditions is not fully understood yet

  11. Study of molybdenum(VI) dimerization equilibrium in strongly acidic medium

    International Nuclear Information System (INIS)

    Esbelin, E.

    2000-01-01

    Molybdenum (VI) was investigated spectro-photometrically in non complexing and strongly acidic medium for the first time by Krumenacker. Cationic species of molybdenum were identified by electrophoresis on cellulose paper in highly acidic solutions. From these early results using absorption spectrophotometry, Krumenacker postulated the condensation of molybdenum in this medium. He studied the polymeric species by measuring diffusion coefficients and identified the polymeric form as a dimer. He described the system by equations (1) and (2). Cruywagen later added two equations (3) and (4) to supplement the description of the system. The aim of this work was to re-examine the conditional dimerization equilibrium between the various species of molybdenum(VI) in strongly acid medium by focussing on the influence of the medium. All Mo solution concentrations were analyzed by ICP-AES. Absorbance of the solutions were measured with a VARIAN model CARY5 spectrophotometer in double beam mode with air as reference; blank solutions contained all reagents except molybdenum. The quartz cell path length was 1 mm. The dimerization of monomeric molybdenum(VI) was investigated spectro-photometrically at perchloric acid concentrations of 0.5, 1.0, 2.0 and 3 M at 25 deg C. Two absorption bands at 215 and 245 nm were observed and attributed to monomeric and dimeric forms respectively. The variations in the conditional molar absorption coefficient of molybdenum with total molybdenum(VI) concentration is indicative of several molybdenum forms involved in the total absorbance. Dimerization equilibrium is defined by equation (5). By using the additivity of absorbance and mass conservation of molybdenum, a descriptive equation of the 'spectrochemical' system is developed. This equation is linearized into two forms (6) et (7). From them, two refinement methods were used to estimate the conditional dimerization constant K' d for various medium concentrations. This numerical procedure offers

  12. Radiative capture of slow electrons by tungsten surface

    International Nuclear Information System (INIS)

    Artamonov, O.M.; Belkina, G.M.; Samarin, S.N.; Yakovlev, I.I.

    1987-01-01

    Isochromatic spectra of radiation capture of slow electrons by the surface of mono- and polycrystal tungsten recorded on 322 and 405 nm wave lengths are presented. The effect of oxygen adsorption on isochromates of the (110) face of tungsten monocrystal is investigated. The obtained isochromatic spectra are compared with energy band structure of tungsten. Based on the analysis of the obtained experimental results it is assumed that optical transition to the final state at the energy of 7.3 eV relatively to Fermi level is conditioned by surface states of the tungsten face (110)

  13. Femtosecond laser surface structuring of molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Mthunzi, P. [Council for Scientific and Industrial Research (CSIR), Biophotonics Lab: National Laser Centre Pretoria, 0001 (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Itala (Italy); Sechoghela, P.; Mongwaketsi, N. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Ramponi, R. [Institute for Photonics and Nanotechnologies (IFN)–CNR, Piazza Leanardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa)

    2015-10-30

    Highlights: • Color change of the molybdenum thin film from shinny to violet–yellowish color after laser irradiation at various laser powers. • Formation of the molybdenum dioxide coating after laser exposure, as confirmed by the X-ray diffraction spectrometry. • Selective solar absorbing nature of the laser exposed films. • Study of the binding energies is presented in this contribution using the XPS spectrometry. - Abstract: This contribution reports on the femtosecond surface structuring of molybdenum thin coatings deposited by electron beam evaporation onto Corning glass substrates. The 1-D type periodic grating lines created by such an ablation showed that the widths of the shallow grooves followed a logarithmic dependence with the laser energy incident on the molybdenum film. The electronic valence “x” of the created oxide surface layer MoO{sub x} was found to be incident laser power dependent via Rutherford backscattering spectrometry, X-ray photoelectron spectroscopy and X-ray diffraction investigations. Such a photo-induced MoO{sub x}–Mo nanocomposite exhibited effective selective solar absorption in the UV–vis–IR spectral range.

  14. Morphology of Si/tungsten-silicides/Si interlayers

    International Nuclear Information System (INIS)

    Theodore, N.; Secco d'Aragona, F.; Blackstone, S.

    1992-01-01

    Tungsten and tungsten-silicides are of interest for semiconductor technology because of their refractory nature, low electrical-resistivity and high electromigration-resistance. This paper presents the first formation of buried tungsten-silicide layers in silicon, by proximity adhesion. The interlayers, created by a combination of chemical vapor-deposition (CVD) and proximity-adhesion were studied using transmission electron-microscopy (TEM). The behavior of the layers in the presence and absence of an adjacent silicon-dioxide interlayer was also investigated. Buried silicide layers were successfully formed with or without the adjacent silicon-dioxide. The silicide formed continuous layers with single grains encompassing the width of the interlayer. Individual grains were globular, with cusps at grain boundaries. This caused interlayer-thicknesses to be non-uniform, with lower thickness values being present at the cusps. Occasional voids were observed at grain-boundary cusps. The voids were smaller and less frequent in the presence of an adjacent oxide-layer, due to flow of the oxide during proximity adhesion. Electron-diffraction revealed a predominance of tungsten-disilicide in the interlayers, with some free tungsten being present. Stresses in the silicide layers caused occasional glide dislocations to propagate into the silicon substrate beneath the interlayers. The dislocations propagate only ∼100 nm into the substrate and therefore should not be detrimental to use of the buried layers. Occasional precipitates were observed at the end of glide-loops. These possibly arise due to excess tungsten from the interlayer diffusion down the glide dislocation to finally precipitate out as tungsten-silicide

  15. IMPEDANCE SPECTROSCOPY OF POLYCRYSTALLINE TIN DIOXIDE FILMS

    Directory of Open Access Journals (Sweden)

    D. V. Adamchuck

    2016-01-01

    Full Text Available The aim of this work is the analysis of the influence of annealing in an inert atmosphere on the electrical properties and structure of non-stoichiometric tin dioxide films by means of impedance spectroscopy method. Non-stoichiometric tin dioxide films were fabricated by two-step oxidation of metallic tin deposited on the polycrystalline Al2O3 substrates by DC magnetron sputtering. In order to modify the structure and stoichiometric composition, the films were subjected to the high temperature annealing in argon atmosphere in temperature range 300–800 °С. AC-conductivity measurements of the films in the frequency range 20 Hz – 2 MHz were carried out. Variation in the frequency dependencies of the real and imaginary parts of the impedance of tin dioxide films was found to occur as a result of high-temperature annealing. Equivalent circuits for describing the properties of films with various structure and stoichiometric composition were proposed. Possibility of conductivity variation of the polycrystalline tin dioxide films as a result of аnnealing in an inert atmosphere was demonstrated by utilizing impedance spectroscopy. Annealing induces the recrystallization of the films, changing in their stoichiometry as well as increase of the sizes of SnO2 crystallites. Variation of electrical conductivity and structure of tin dioxide films as a result of annealing in inert atmosphere was confirmed by X-ray diffraction analysis. Analysis of the impedance diagrams of tin dioxide films was found to be a powerful tool to study their electrical properties. 

  16. A molybdenum disulfide/carbon nanotube heterogeneous complementary inverter.

    Science.gov (United States)

    Huang, Jun; Somu, Sivasubramanian; Busnaina, Ahmed

    2012-08-24

    We report a simple, bottom-up/top-down approach for integrating drastically different nanoscale building blocks to form a heterogeneous complementary inverter circuit based on layered molybdenum disulfide and carbon nanotube (CNT) bundles. The fabricated CNT/MoS(2) inverter is composed of n-type molybdenum disulfide (MOS(2)) and p-type CNT transistors, with a high voltage gain of 1.3. The CNT channels are fabricated using directed assembly while the layered molybdenum disulfide channels are fabricated by mechanical exfoliation. This bottom-up fabrication approach for integrating various nanoscale elements with unique characteristics provides an alternative cost-effective methodology to complementary metal-oxide-semiconductors, laying the foundation for the realization of high performance logic circuits.

  17. Surface morphologies of He-implanted tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Bannister, M.E., E-mail: bannisterme@ornl.gov [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6371 (United States); Meyer, F.W.; Hijazi, H. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6371 (United States); Unocic, K.A.; Garrison, L.M.; Parish, C.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2016-09-01

    Surface morphologies of tungsten surfaces, both polycrystalline and single-crystal [1 1 0], were investigated using SEM and FIB/SEM techniques after implantations at elevated surfaces temperatures (1200–1300 K) using well-characterized, mono-energetic He ion beams with a wide range of ion energies (218 eV–250 keV). Nanofuzz was observed on polycrystalline tungsten (PCW) following implantation of 100-keV He ions at a flux threshold of 0.9 × 10{sup 16} cm{sup −2} s{sup −1}, but not following 200-keV implantations with similar fluxes. No nanofuzz formation was observed on single-crystal [1 1 0] tungsten (SCW), despite fluxes exceeding those demonstrated previously to produce nanofuzz on polycrystalline tungsten. Pre-damaging the single-crystal tungsten with implanted C impurity interstitials did not significantly affect the surface morphologies resulting from the high-flux He ion implantations. The main factor leading to the different observed surface structures for the pristine and C-implanted single-crystal W samples appeared to be the peak He ion flux characterizing the different exposures. It was speculated that nanofuzz formation was not observed for any SCW target exposures because of increased incubation fluences required for such targets.

  18. The gate oxide integrity of CVD tungsten polycide

    International Nuclear Information System (INIS)

    Wu, N.W.; Su, W.D.; Chang, S.W.; Tseng, M.F.

    1988-01-01

    CVD tungsten polycide has been demonstrated as a good gate material in recent very large scale integration (VLSI) technology. CVD tungsten silicide offers advantages of low resistivity, high temperature stability and good step coverage. On the other hand, the polysilicon underlayer preserves most characteristics of the polysilicon gate and acts as a stress buffer layer to absorb part of the thermal stress origin from the large thermal expansion coefficient of tungsten silicide. Nevertheless, the gate oxide of CVD tungsten polycide is less stable or reliable than that of polysilicon gate. In this paper, the gate oxide integrity of CVD tungsten polycide with various thickness combinations and different thermal processes have been analyzed by several electrical measurements including breakdown yield, breakdown fluence, room temperature TDDB, I-V characteristics, electron traps and interface state density

  19. Tailoring nanomaterial products through electrode material and oxygen partial pressure in a mini-arc plasma reactor

    International Nuclear Information System (INIS)

    Cui Shumao; Mattson, Eric C.; Lu, Ganhua; Hirschmugl, Carol; Gajdardziska-Josifovska, Marija; Chen Junhong

    2012-01-01

    Nanomaterials with controllable morphology and composition are synthesized by a simple one-step vapor condensation process using a mini-arc plasma source. Through systematic investigation of mini-arc reactor parameters, the roles of carrier gas, electrode material, and precursor on producing diverse nanomaterial products are revealed. Desired nanomaterial products, including tungsten oxide nanoparticles (NPs), tungsten oxide nanorods (NRs), tungsten oxide and tin oxide NP mixtures and pure tin dioxide NPs can thus be obtained by tailoring reaction conditions. The amount of oxygen in the reactor is critical to determining the final nanomaterial product. Without any precursor material present, a lower level of oxygen in the reactor favors the production of W 18 O 49 NRs with tungsten as cathode, while a high level of oxygen produces more round WO 3 NPs. With the presence of a precursor material, amorphous particles are favored with a high ratio of argon:oxygen. Oxygen is also found to affect tin oxide crystallization from its amorphous phase in the thermal annealing. Results from this study can be used for guiding gas phase nanomaterial synthesis in the future.

  20. Comparative Investigation of Tungsten Fibre Nets Reinforced Tungsten Composite Fabricated by Three Different Methods

    Directory of Open Access Journals (Sweden)

    Linhui Zhang

    2017-07-01

    Full Text Available Tungsten fibre nets reinforced tungsten composites (Wf/W containing four net layers were fabricated by spark plasma sintering (SPS, hot pressing (HP and cold rolling after HP (HPCR, with the weight fraction of fibres being 17.4%, 10.5% and 10.5%, respectively. The relative density of the HPCRed samples is the highest (99.8% while that of the HPed composites is the lowest (95.1%. Optical and scanning electron microscopy and electron back scattering diffraction were exploited to characterize the microstructure, while tensile and hardness tests were used to evaluate the mechanical properties of the samples. It was found that partial recrystallization of fibres occurred after the sintering at 1800 °C. The SPSed and HPed Wf/W composites begin to exhibit plastic deformation at 600 °C with tensile strength (TS of 536 and 425 MPa and total elongation at break (TE of 11.6% and 23.0%, respectively, while the HPCRed Wf/W composites exhibit plastic deformation at around 400 °C. The TS and TE of the HPCRed Wf/W composites at 400 °C are 784 MPa and 8.4%, respectively. The enhanced mechanical performance of the Wf/W composites over the pure tungsten can be attributed to the necking, cracking, and debonding of the tungsten fibres.

  1. A solid tungsten divertor for ASDEX Upgrade

    International Nuclear Information System (INIS)

    Herrmann, A; Greuner, H; Jaksic, N; Böswirth, B; Maier, H; Neu, R; Vorbrugg, S

    2011-01-01

    The conceptual design of a solid tungsten divertor for ASDEX Upgrade (AUG) is presented. The Div-III design is compatible with the existing divertor structure. It re-establishes the energy and heat receiving capability of a graphite divertor and overcomes the limitations of tungsten coatings. In addition, a solid tungsten divertor allows us to investigate erosion and bulk deuterium retention as well as test castellation and target tilting. The design criteria as well as calculations of forces due to halo and eddy currents are presented. The thermal properties of the proposed sandwich structure are calculated with finite element method models. After extensive testing of a target tile in the high heat flux test facility GLADIS, two solid tungsten tiles were installed in AUG for in-situ testing.

  2. Mitigating tin whisker risks theory and practice

    CERN Document Server

    Handwerker, Carol A; Bath, Jasbir

    2016-01-01

    Discusses the growth mechanisms of tin whiskers and the effective mitigation strategies necessary to reduce whisker growth risks. This book covers key tin whisker topics, ranging from fundamental science to practical mitigation strategies. The text begins with a review of the characteristic properties of local microstructures around whisker and hillock grains to identify why these particular grains and locations become predisposed to forming whiskers and hillocks. The book discusses the basic properties of tin-based alloy finishes and the effects of various alloying elements on whisker formation, with a focus on potential mechanisms for whisker suppression or enhancement for each element. Tin whisker risk mitigation strategies for each tier of the supply chain for high reliability electronic systems are also described.

  3. Neutron scattering and models: molybdenum

    International Nuclear Information System (INIS)

    Smith, A.B.

    1999-01-01

    A comprehensive interpretation of the fast-neutron interaction with elemental and isotopic molybdenum at energies of le 30 MeV is given. New experimental elemental-scattering information over the incident energy range 4.5 r a rrow 10 MeV is presented. Spherical, vibrational and dispersive models are deduced and discussed, including isospin, energy-dependent and mass effects. The vibrational models are consistent with the ''Lane potential''. The importance of dispersion effects is noted. Dichotomies that exist in the literature are removed. The models are vehicles for fundamental physical investigations and for the provision of data for applied purposes. A ''regional'' molybdenum model is proposed. Finally, recommendations for future work are made

  4. FY16 Status Report for the Uranium-Molybdenum Fuel Concept

    International Nuclear Information System (INIS)

    Bennett, Wendy D.; Doherty, Ann L.; Henager, Charles H.; Lavender, Curt A.; Montgomery, Robert O.; Omberg, Ronald P.; Smith, Mark T.; Webster, Ryan A.

    2016-01-01

    The Fuel Cycle Research and Development program of the Office of Nuclear Energy has implemented a program to develop a Uranium-Molybdenum metal fuel for light water reactors. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties. With sufficient development, it may be able to provide the Light Water Reactor industry with a melt-resistant, accident-tolerant fuel with improved safety response. The Pacific Northwest National Laboratory has been tasked with extrusion development and performing ex-reactor corrosion testing to characterize the performance of Uranium-Molybdenum fuel in both these areas. This report documents the results of the fiscal year 2016 effort to develop the Uranium-Molybdenum metal fuel concept for light water reactors.

  5. FY16 Status Report for the Uranium-Molybdenum Fuel Concept

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Wendy D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Doherty, Ann L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Montgomery, Robert O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Omberg, Ronald P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Mark T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webster, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-22

    The Fuel Cycle Research and Development program of the Office of Nuclear Energy has implemented a program to develop a Uranium-Molybdenum metal fuel for light water reactors. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties. With sufficient development, it may be able to provide the Light Water Reactor industry with a melt-resistant, accident-tolerant fuel with improved safety response. The Pacific Northwest National Laboratory has been tasked with extrusion development and performing ex-reactor corrosion testing to characterize the performance of Uranium-Molybdenum fuel in both these areas. This report documents the results of the fiscal year 2016 effort to develop the Uranium-Molybdenum metal fuel concept for light water reactors.

  6. A highly sensitive method for detection of molybdenum-containing proteins

    International Nuclear Information System (INIS)

    Kalakutskii, K.L.; Shvetsov, A.A.; Bursakov, S.A.; Letarov, A.V.; Zabolotnyi, A.I.; L'vov, N.P.

    1992-01-01

    A highly sensitive method for detection of molybdenum-containing proteins in gels after electrophoresis has been developed. The method involves in vitro labeling of the proteins with the radioactive isotope 185 W. The method used to detect molybdenum-accumulating proteins in lupine seeds, xanthine dehydrogenase and another molybdenum-containing protein in wheat, barley, and pea seedlings, and nitrate reductase and xanthine dehydrogenase in bacteroides from lupine nodules. Nitrogenase could not be detected by the method. 16 refs., 5 figs

  7. Molybdenum(6) complexing with ethylenediaminedisuccinic acid from PMR spectroscopy data

    International Nuclear Information System (INIS)

    Larchenko, V.E.; Kovaleva, I.B.; Mitrofanova, N.D.; Martynenko, L.I.

    1989-01-01

    Methods of high resolution PMR spectroscopy and pH potentiometry are used to study molybdenum(6) complexing with ethylenediaminedisuccinic acid in aqueous solutions. It is shown that molybdenum(6) interacts with ethylenediaminedisuccinic acid in the narrow range of pH values 4.0-6.5, where MoO 3 H 2 L 2 - and MoO 3 HL 3- complexes with asymmetrical structure are formed. Composition and structure of molybdenum(6) ethylenediaminedisuccinates and ethylenediaminetetraacetates are compared

  8. Corrosion of high-density sintered tungsten alloys. Part 2

    International Nuclear Information System (INIS)

    Batten, J.J.; Moore, B.T.

    1988-12-01

    The behaviour of four high-density sintered tungsten alloys has been evluated and compared with that of pure tungsten. Rates of corrosion during the cyclic humidity and the salt mist tests were ascertained from weight loss measurements. Insight into the corrosion mechanism was gained from the nature of the corrosion products and an examination of the corroded surfaces. In the tests, the alloy 95% W, 2.5% Ni, 1.5% Fe was the most corrosion resistant. The data showed that copper as an alloying element accelerates corrosion of tungsten alloys. Both attack on the tungsten particles and the binder phase were observed together with tungsten grain loss. 6 refs., 3 tabs.,

  9. Substructure and electrical resistivity analyses of pure tungsten sheet

    International Nuclear Information System (INIS)

    Trybus, C.L.; Sellers, C.H.; Anderl, R.A.

    1991-01-01

    The substructure of pure tungsten sheet (0.025 mm thick) is examined and quantified by transmission electron microscopy (TEM). Dislocation populations and arrangements are evaluated for as-worked and various annealed conditions of the tungsten sheet. The worked (rolled) tungsten substructure was nonhomogeneous, consisting of areas of very high and low dislocation densities. These results are correlated to resistivity measurements of the tungsten sheet following thermal cycling to 1200 degrees C to determine the substructural changes as a function of temperature. The comparison between the two characterization techniques is used to examine the relationship between structural and electronic properties in tungsten. 15 refs., 6 figs., 2 tabs

  10. Comparison of early stages of precipitation in molybdenum-rich and molybdenum-poor maraging stainless steels

    International Nuclear Information System (INIS)

    Andersson, M.; Stiller, K.; Haettestrand, M.

    2004-01-01

    Full text: The precipitation hardening process in the molybdenum-rich Sandvik alloy 1RK91, with composition 12.8Cr-8.6Ni-2.3Mo-1.7Cu-1.2Ti-0.7Al (at. %), has previously been investigated with APFIM, energy-filtering transmission electron microscopy, and conventional transmission electron microscopy. The initial ageing response corresponds to Ni 3 (Al, Ti)-type precipitates, nucleating on copper clusters after only five minutes of ageing at 475 o C. After several hours of ageing, the precipitation hardening also includes contribution from molybdenum-rich quasicrystalline precipitates of icosahedral symmetry (R'), and another nickel-rich phase of type L1 0 . This complex precipitation behaviour, in combination with a resistance to coarsening of R', results in a continuous increase in material hardness for up to several hundred of hours of ageing. A significant difference in ageing response has been observed between the Sandvik alloy 1RK91 and molybdenum-poor alloy Carpenter 455 with composition 12.3Cr-7.9Ni-0.3Mo-1.8Cu-1.3Ti-0.1Al (at. %). During ageing at 475 o C, the hardness of Carpenter 455 saturates with a subsequent softening after just a few hours. The reason for the discrepancy in the ageing behaviour of the two steels is not well understood, since the precipitation reactions in Carpenter 455 have not been thoroughly surveyed. Therefore, the precipitation hardening process of Carpenter 455 has been studied, by using three-dimensional atom probe and energy-filtering transmission electron microscopy. The results have been compared with the precipitation hardening process of 1RK91 in order to explain the difference in ageing response of the two steels. Special interest has been devoted to understand the influence of molybdenum in the precipitation process of 1RK91. Refs 3 (author)

  11. Manufacture of good-weldable low oxygen molybdenum by powder metallurgy

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Okada, Masatoshi; Akiyama, Takashi; Yamafuchi, Yasuo.

    1984-01-01

    In general most of commercial molybdenum is produced by the powder metallurgy method and is utilized as a superior heat-resisting material in many fields. Moreover, molybdenum is expected to be used as the first-wall components of JT-60 (JAERI Tokamak-60). However, one of major problems on molybdenum, particularly on powder metallurgy molybdenum, is that any sound welded joint is hard to be obtainable. In many cases weld pores are formed on welding and, therefore, ductility of the welded joint is severely degraded. The object of the present work is to get a sound welded joint without any weld pores by reducing impurity levels in the material. The materials were produced by modifying one or several parts in the ordinary manufacturing process of powder metallurgy molybdenum. Oxygen, nitrogen, carbon and other principal metallic impurities were chemically analysed. The above materials were then subjected to electron-beam-welding by using a melt-run technique, and the soundness of the welded joints was examined by optical microscopy. (author)

  12. Ion exchange resin fouling of molybdenum in recovery uranium processess

    International Nuclear Information System (INIS)

    Zhang Guowei; Zhao Guirong

    1990-09-01

    The relationship between anion exchange resin fouling and molybdic acid polymerization was studied. By using potentiometer titration and laser-Raman spectroscopy the relationship of molybdic acid polymerization and the pH value of solution or the molybdenum concentration was determined. It was shown that as the concentration of initial molybdenum in solution decreases from 0.2 mol/L to 0.5 mmol/L, the pH value of starting polymerization decreased from 6.5 to 4.5. The experimental results show that the fouling of 201 x 7 resin in the acidic solution is mainly caused by the adsorbing of Mo 3 O 26 4- ion and occupying the exchange radical site of the resin. Under the leaching conditions the molybdenum and phosphate existing in the leaching liquor can form 12-molybdo-phosphate ion. It also leads to resin fouling. The molybdenum on the fouled resin can synergically be desorbed by mixed desorbents containing ammonium hydroxide and ammonium sulfate. The desorbed resin can be used for uranium adsorption and the desorbed molybdenum can be recovered by ion exchange method

  13. Tungsten transport in the plasma edge at ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Janzer, Michael Arthur

    2015-04-30

    The Plasma Facing Components (PFC) will play a crucial role in future deuterium-tritium magnetically confined fusion power plants, since they will be subject to high energy and particle loads, but at the same time have to ensure long lifetimes and a low tritium retention. These requirements will most probably necessitate the use of high-Z materials such as tungsten for the wall materials, since their erosion properties are very benign and, unlike carbon, capture only little tritium. The drawback with high-Z materials is, that they emit strong line radiation in the core plasma, which acts as a powerful energy loss mechanism. Thus, the concentration of these high-Z materials has to be controlled and kept at low levels in order to achieve a burning plasma. Understanding the transport processes in the plasma edge is essential for applying the proper impurity control mechanisms. This control can be exerted either by enhancing the outflux, e.g. by Edge Localized Modes (ELM), since they are known to expel impurities from the main plasma, or by reducing the influx, e.g. minimizing the tungsten erosion or increasing the shielding effect of the Scrape Off Layer (SOL). ASDEX Upgrade (AUG) has been successfully operating with a full tungsten wall for several years now and offers the possibility to investigate these edge transport processes for tungsten. This study focused on the disentanglement of the frequency of type-I ELMs and the main chamber gas injection rate, two parameters which are usually linked in H-mode discharges. Such a separation allowed for the first time the direct assessment of the impact of each parameter on the tungsten concentration. The control of the ELM frequency was performed by adjusting the shape of the plasma, i.e. the upper triangularity. The radial tungsten transport was investigated by implementing a modulated tungsten source. To create this modulated source, the linear dependence of the tungsten erosion rate at the Ion Cyclotron Resonance

  14. Synthesis of high purity tungsten nanoparticles from tungsten heavy alloy scrap by selective precipitation and reduction route

    International Nuclear Information System (INIS)

    Kamal, S.S. Kalyan; Sahoo, P.K.; Vimala, J.; Shanker, B.; Ghosal, P.; Durai, L.

    2016-01-01

    In this paper we report synthesis of tungsten nanoparticles of high purity >99.7 wt% from heavy alloy scrap using a novel chemical route of selective precipitation and reduction. The effect of Poly(vinylpyrrolidone) polymer on controlling the particle size is established through FTIR spectra and corroborated with TEM images, wherein the average size decreased form 210 to 45 nm with increasing PVP content from zero to 2 g under different experimental conditions. This process is economical as raw material is a scrap and the efficiency of the reaction is >95%. - Highlights: • Tungsten nanoparticles were synthesized from tungsten heavy alloy scrap. • A novel chemical route of precipitation and reduction with Poly(vinylpyrrolidone) polymer as stabilizer is reported. • The average size decreased form 210 to 45 nm with increasing PVP content from zero to 2 g. • High pure tungsten nanoparticles of >99.7% purity could be synthesized using this route. • Efficiency of the reaction is >95%.

  15. NMR studies of metallic tin confined within porous matrices

    International Nuclear Information System (INIS)

    Charnaya, E. V.; Tien, Cheng; Lee, M. K.; Kumzerov, Yu. A.

    2007-01-01

    119 Sn NMR studies were carried out for metallic tin confined within synthetic opal and porous glass. Tin was embedded into nanoporous matrices in the melted state under pressure. The Knight shift for liquid confined tin was found to decrease with decreasing pore size. Correlations between NMR line shapes, Knight shift, and pore filling were observed. The melting and freezing phase transitions of tin under confinement were studied through temperature dependences of NMR signals upon warming and cooling. Melting of tin within the opal matrix agreed well with the liquid skin model suggested for small isolated particles. The influence of the pore filling on the melting process was shown

  16. Molybdenum/alkali metal/ethylene glycol complexes useful as epoxidation catalysts

    International Nuclear Information System (INIS)

    Marquis, E.T.; Sanderson, J.R.; Keating, K.P.

    1987-01-01

    This patent describes a clear, storage stable solution of a molybdenum/alkali metal/ethylene glycol complex in ethylene glycol made by the process comprising: reacting at an elevated temperature between about 25 0 and 150 0 C a solid ammonium molybdate or a hydrate thereof and a solid alkali metal molybdate or a hydrate thereof with ethylene glycol, such that the ratio of moles of ethylene glycol to total gram atoms of molybdenum in the molybdates ranges from about 7:10 to 10:1, and the ratio of gram atoms of molybdenum in the ammonium molybdate or hydrate thereof to gram atoms of molybdenum in the alkali metal molybdate is from about 1:1 to about 20:1 to thereby provide a reaction product composed of a solution of an alkali metal-containing complex of molybdenum, alkali metal and ethylene glycol and by-products, including water, in the ethylene glycol and subsequently stripping the solution at a reduced pressure to remove from about 5 to about 25% of the reaction product, as distillate, to thereby provide a storage stable solution of the complex in the ethylene glycol having a molybdenum content of about 6 wt. % to about 20 wt. %, a water concentration of about 0.1 wt. % to about 6 wt. % and an acid number of more than about 60

  17. Strategies to Reduce Tin and Other Metals in Electronic Cigarette Aerosol.

    Directory of Open Access Journals (Sweden)

    Monique Williams

    Full Text Available Metals are present in electronic cigarette (EC fluid and aerosol and may present health risks to users.The objective of this study was to measure the amounts of tin, copper, zinc, silver, nickel and chromium in the aerosol from four brands of EC and to identify the sources of these metals by examining the elemental composition of the atomizer components.Four brands of popular EC were dissected and the cartomizers were examined microscopically. Elemental composition of cartomizer components was determined using integrated energy dispersive X-ray microanalysis, and the concentrations of the tin, copper, zinc silver, nickel, and chromium in the aerosol were determined for each brand using inductively coupled plasma optical emission spectroscopy.All filaments were made of nickel and chromium. Thick wires were copper coated with either tin or silver. Wires were joined to each other by tin solder, brazing, or by brass clamps. High concentrations of tin were detected in the aerosol when tin solder joints were friable. Tin coating on copper wires also contributed to tin in the aerosol.Tin concentrations in EC aerosols varied both within and between brands. Tin in aerosol was reduced by coating the thick wire with silver rather than tin, placing stable tin solder joints outside the atomizing chamber, joining wires with brass clamps or by brazing rather than soldering wires. These data demonstrate the feasibility of removing tin and other unwanted metals from EC aerosol by altering designs and using materials of suitable quality.

  18. Characterization of porous tungsten by microhardness

    International Nuclear Information System (INIS)

    Selcuk, C.; Wood, J.V.; Morley, N.; Bentham, R.

    2001-01-01

    One of the applications of tungsten is as high current density dispenser cathode in the form of porous tungsten. It is used as a cathode after being impregnated with an electron emissive material so pore distribution in the part is the most important parameter for its function as a uniform and controlled porosity will lead to a better performance. In this study, application of microhardness as a characterization method for uniformity of the pore distribution and homogeneity of the structure is introduced. Optical microscopy and SEM is used to relate the results and porous tungsten structure for a better understanding of the method applied. (author)

  19. Modification of molybdenum disulfide in methanol solvent for hydrogen evolution reaction

    Science.gov (United States)

    Niyitanga, Theophile; Jeong, Hae Kyung

    2018-05-01

    Molybdenum disulfide is a promising catalyst to replace the expensive platinum as an electrocatalyst but needs to be modified to present excellent electrocatalytic properties. Herein, we successfully modify molybdenum disulfide in methanol solvent for hydrogen evolution reaction by using a simple hydrothermal method. Overpotential reduced to -0.6 V from -1.5 V, and energy band gap decreased from 1.73 eV to 1.58 eV after the modification. The modified molybdenum disulfide also demonstrated lower resistance (42 Ω) at high frequency (1000 kHz) compared with that (240 Ω) of the precursor, showing that conductivity of the modified molybdenum disulfide has improved.

  20. Fracture toughness of 6.4 mm (0.25 inch) Arc-Cast molybdenum and molybdenum-TZM plate at room temperature and 300 oC

    International Nuclear Information System (INIS)

    Shields, J.A. jr.; Lipetzky, P.; Mueller, A.J.

    2001-01-01

    The fracture toughness of 6.4 mm (0.25 inch) low carbon arc-cast (LCAC) molybdenum and arc-cast molybdenum-TZM alloy plate were measured at room temperature and 300 o C using compact tension specimens. The effect of crack plane orientation (longitudinal vs. transverse) and annealing practice (stress-relieved vs. recrystallized) were evaluated. Depending upon the test temperature either a standard K IC or a J-integral analysis was used to obtain the toughness value. At room temperature, regardless of alloy, orientation, or microstructure, fracture toughness values between 15 and 22 MPa m 1/2 (14 and 20 ksi in 1/2 ) were measured. These K IC values were consistent with measurements by other authors. Increasing temperature improves the toughness, due to the fact that one takes advantage of the ductile-brittle transition behavior of molybdenum. At 300 o C, the fracture toughness of recrystallized LCAC and arc-cast TZM molybdenum were also similar at approximately 64 MPa m 1/2 (58 ksi in 1/2 ). In the stress-relieved condition, however, the toughness of arc-cast TZM (91 MPa m 1/2 / 83 ksi in 1/2 ) was higher than that of the LCAC molybdenum (74 MPa m 1/2 / 67 ksi in 1/2 ). (author)

  1. Microstructure and tensile properties of tungsten at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tielong [Laboratory for Nuclear Materials, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Dai, Yong, E-mail: yong.dai@psi.ch [Laboratory for Nuclear Materials, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Lee, Yongjoong [European Spallation Source, Tunavägen 24, 223 63 Lund (Sweden)

    2016-01-15

    In order to support the development of the 5 MW spallation target for the European Spallation Source, the effect of fabrication process on microstructure, ductile-to-brittle transition temperature (DBTT), tensile and fracture behaviour of powder-metallurgy pure tungsten materials has been investigated. A hot-rolled (HR) tungsten piece of 12 mm thickness and a hot-forged (HF) piece of about 80 mm thickness were used to simulate the thin and thick blocks in the target. The two tungsten pieces were characterized with metallography analysis, hardness measurement and tensile testing. The HR piece exhibits an anisotropic grain structure with an average size of about 330 × 140 × 40 μm in rolling, long transverse and short transverse (thickness) directions. The HF piece possesses a bimodal grain structure with about 310 × 170 × 70 μm grain size in deformed part and about 25 μm sized grains remained from sintering process. Hardness (HV0.2) of the HR piece is slightly greater than that of the HF one. The ductility of the HR tungsten specimens is greater than that of the HF tungsten. For the HF tungsten piece, specimens with small grains in gauge section manifest lower ductility but higher strength. The DBTT evaluated from the tensile results is 250–300 °C for the HR tungsten and about 350 °C for the HF tungsten. - Highlights: • This work was conducted to support the development of the 5 MW spallation target for the European Spallation Source. • The effect of fabrication process on microstructure, ductile-to-brittle transition temperature and tensile behaviour was studied with hot-rolled and hot-forged tungsten. • The tungsten materials were characterized with metallography analysis, hardness measurement and tensile test in a temperature range of 25–500 °C. • The results indicate that the HR tungsten has better mechanical properties in terms of greater ductility and lower ductile-to-brittle transition temperature.

  2. Quenching and recovery experiments on tungsten

    International Nuclear Information System (INIS)

    Rasch, K.D.; Siegel, R.W.; Schultz, H.

    1976-01-01

    A short summary is given of new results concerning transmission electron microscopy and resistivity measurements on quenched tungsten. These results give evidence for the first time that the quenching and annealing of high purity tungsten leads to vacancy--defect clustering resulting in small voids observable in the electron microscope. 21 references

  3. Influence of Chromium and Molybdenum on the Corrosion of Nickel Based Alloys

    International Nuclear Information System (INIS)

    Hayes, J R; Gray, J; Szmodis, A W; Orme, C A

    2005-01-01

    The addition of chromium and molybdenum to nickel creates alloys with exceptional corrosion resistance in a diverse range of environments. This study examines the complementary roles of Cr and Mo in Ni alloy passivation. Four nickel alloys with varying amounts of chromium and molybdenum were studied in 1 molar salt solutions over a broad pH range. The passive corrosion and breakdown behavior of the alloys suggests that chromium is the primary element influencing general corrosion resistance. The breakdown potential was nearly independent of molybdenum content, while the repassivation potential is strongly dependant on the molybdenum content. This indicates that chromium plays a strong role in maintaining the passivity of the alloy, while molybdenum acts to stabilize the passive film after a localized breakdown event

  4. Effect of drying method on properties of vanadium-molybdenum oxide catalysts

    International Nuclear Information System (INIS)

    Gorshkova, T.P.; Savchenko, L.A.; Tarasova, D.V.; Tret'yakov, Yu.D.; Olen'kova, I.P.; Nikoro, T.A.; Maksimov, N.G.

    1981-01-01

    Effect of drying method of molybdenum and vanadium salt solutions on physicochemical and catalytical properties of vanadium-molybdenum catalysts is studied. It is shown that the drying method of solutions determines the completeness of vanadium binding into oxide vanadium-molybdenum compounds and thus effects the activity and selectivity of catalysts in acrolein oxidation into acrylic acid. Besides the drying method determines the porous structure of catalysts [ru

  5. Effect of Graphene Addition on Mechanical Properties of TiN

    International Nuclear Information System (INIS)

    Shon, In-Jin; Yoon, Jin-Kook; Hong, Kyung-Tae

    2017-01-01

    Despite of many attractive properties of TiN, the current concern about the TiN focuses on its low fracture toughness below the ductile-brittle transition temperature. To improve its mechanical properties, the approach generally utilized has been the addition of a second phase to form composites and to make nanostructured materials. In this respect, highly dense nanostructured TiN and TiN-graphene composites were obtained within two min at 1250 ℃. The grain size of TiN was reduced remarkably by the addition of graphene. The addition of graphene to TiN simultaneously improved the fracture toughness and hardness of TiN-graphene composite due to refinement of TiN and deterring crack propagation by graphene. This study demonstrates that the graphene can be an effective reinforcing agent for improved hardness and fracture toughness of TiN composites.

  6. Effect of Graphene Addition on Mechanical Properties of TiN

    Energy Technology Data Exchange (ETDEWEB)

    Shon, In-Jin [Chonbuk National University, Jeonju (Korea, Republic of); Yoon, Jin-Kook; Hong, Kyung-Tae [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2017-03-15

    Despite of many attractive properties of TiN, the current concern about the TiN focuses on its low fracture toughness below the ductile-brittle transition temperature. To improve its mechanical properties, the approach generally utilized has been the addition of a second phase to form composites and to make nanostructured materials. In this respect, highly dense nanostructured TiN and TiN-graphene composites were obtained within two min at 1250 ℃. The grain size of TiN was reduced remarkably by the addition of graphene. The addition of graphene to TiN simultaneously improved the fracture toughness and hardness of TiN-graphene composite due to refinement of TiN and deterring crack propagation by graphene. This study demonstrates that the graphene can be an effective reinforcing agent for improved hardness and fracture toughness of TiN composites.

  7. Change of mechanical properties of molybdenum after chemical heat treatment

    International Nuclear Information System (INIS)

    Skuratov, L.P.; Yatsimirskij, V.K.; Kirillova, N.V.

    1987-01-01

    Gaseous media (argon, ammonia, nitrogen-hydrogen-ammonia mixture) are studied for their effect on mechanical characteristics of molybdenum at temperatures up to 1000 deg C. It is established that the highest hardening occurs when molybdenum is esposed in the nitrogen-hydrogen medium, while the highest lost of strength takes place in the ammonia medium. An increase of the ammonia concentration in nitrogen-hydrogen-ammonia mixture promotes regular increasing of the deformation rate. With ammonia concentration of 33.3% the gaseous mixture acts the same as pure ammonia. Change of physical-and-mechanical properties of molybdenum under the action of nitrogen-containing gaseous media is associated with formation of molybdenum compounds with nitrogen. During nitriding in ammonia an internal (volume) nitriding proceeds while in the medium of nitrogen-hydrogen mixture surface nitride layers form

  8. Microwave plasma CVD of NANO structured tin/carbon composites

    Science.gov (United States)

    Marcinek, Marek [Warszawa, PL; Kostecki, Robert [Lafayette, CA

    2012-07-17

    A method for forming a graphitic tin-carbon composite at low temperatures is described. The method involves using microwave radiation to produce a neutral gas plasma in a reactor cell. At least one organo tin precursor material in the reactor cell forms a tin-carbon film on a supporting substrate disposed in the cell under influence of the plasma. The three dimensional carbon matrix material with embedded tin nanoparticles can be used as an electrode in lithium-ion batteries.

  9. Temperature measurement of tin under shock compression

    International Nuclear Information System (INIS)

    Hereil, Pierre-Louis; Mabire, Catherine

    2002-01-01

    The results of pyrometric measurements performed at the interface of a tin target with a LiF window material are presented for stresses ranging from 38 to 55 GPa. The purpose of the study is to analyze the part of the interface in the temperature measurement by a multi-channel pyrometric device. The results show that the glue used at target/window interface remains transparent under shock. The values of temperature measured at the tin/LiF interface are consistent with the behavior of tin under shock

  10. Surface studies of tungsten erosion and deposition in JT-60U

    International Nuclear Information System (INIS)

    Ueda, Y.; Fukumoto, M.; Nishikawa, M.; Tanabe, T.; Miya, N.; Arai, T.; Masaki, K.; Ishimoto, Y.; Tsuzuki, K.; Asakura, N.

    2007-01-01

    In order to study tungsten erosion and migration in JT-60U, 13 W tiles have been installed in the outer divertor region and tungsten deposition on graphite tiles was measured. Dense local tungsten deposition was observed on a CFC tile toroidally adjacent to the W tiles, which resulted from prompt ionization and short range migration of tungsten along field lines. Tungsten deposition with relatively high surface density was found on an inner divertor tile around standard inner strike positions and on an outer wing tile of a dome. On the outer wing tile, tungsten deposition was relatively high compared with carbon deposition. In addition, roughly uniform tungsten depth distribution near the upper edge of the inner divertor tile was observed. This could be due to lift-up of strike point positions in selected 25 shots and tungsten flow in the SOL plasma

  11. Strategies to Reduce Tin and Other Metals in Electronic Cigarette Aerosol

    Science.gov (United States)

    Williams, Monique; To, An; Bozhilov, Krassimir; Talbot, Prue

    2015-01-01

    Background Metals are present in electronic cigarette (EC) fluid and aerosol and may present health risks to users. Objective The objective of this study was to measure the amounts of tin, copper, zinc, silver, nickel and chromium in the aerosol from four brands of EC and to identify the sources of these metals by examining the elemental composition of the atomizer components. Methods Four brands of popular EC were dissected and the cartomizers were examined microscopically. Elemental composition of cartomizer components was determined using integrated energy dispersive X-ray microanalysis, and the concentrations of the tin, copper, zinc silver, nickel, and chromium in the aerosol were determined for each brand using inductively coupled plasma optical emission spectroscopy. Results All filaments were made of nickel and chromium. Thick wires were copper coated with either tin or silver. Wires were joined to each other by tin solder, brazing, or by brass clamps. High concentrations of tin were detected in the aerosol when tin solder joints were friable. Tin coating on copper wires also contributed to tin in the aerosol. Conclusions Tin concentrations in EC aerosols varied both within and between brands. Tin in aerosol was reduced by coating the thick wire with silver rather than tin, placing stable tin solder joints outside the atomizing chamber, joining wires with brass clamps or by brazing rather than soldering wires. These data demonstrate the feasibility of removing tin and other unwanted metals from EC aerosol by altering designs and using materials of suitable quality. PMID:26406602

  12. Environmental Benign Process for Production of Molybdenum Metal from Sulphide Based Minerals

    Science.gov (United States)

    Rajput, Priyanka; Janakiram, Vangada; Jayasankar, Kalidoss; Angadi, Shivakumar; Bhoi, Bhagyadhar; Mukherjee, Partha Sarathi

    2017-10-01

    Molybdenum is a strategic and high temperature refractory metal which is not found in nature in free state, it is predominantly found in earth's crust in the form of MoO3/MoS2. The main disadvantage of the industrial treatment of Mo concentrate is that the process contains many stages and requires very high temperature. Almost in every step many gaseous, liquid, solid chemical substances are formed which require further treatment. To overcome the above drawback, a new alternative one step novel process is developed for the treatment of sulphide and trioxide molybdenum concentrates. This paper presents the results of the investigations on molybdenite dissociation (MoS2) using microwave assisted plasma unit as well as transferred arc thermal plasma torch. It is a single step process for the preparation of pure molybdenum metal from MoS2 by hydrogen reduction in thermal plasma. Process variable such as H2 gas, Ar gas, input current, voltage and time have been examined to prepare molybdenum metal. Molybdenum recovery of the order of 95% was achieved. The XRD results confirm the phases of molybdenum metal and the chemical analysis of the end product indicate the formation of metallic molybdenum (Mo 98%).

  13. Reduction of molybdate to molybdenum blue by Klebsiella sp. strain hkeem.

    Science.gov (United States)

    Lim, H K; Syed, M A; Shukor, M Y

    2012-06-01

    A novel molybdate-reducing bacterium, tentatively identified as Klebsiella sp. strain hkeem and based on partial 16s rDNA gene sequencing and phylogenetic analysis, has been isolated. Strain hkeem produced 3 times more molybdenum blue than Serratia sp. strain Dr.Y8; the most potent Mo-reducing bacterium isolated to date. Molybdate was optimally reduced to molybdenum blue using 4.5 mM phosphate, 80 mM molybdate and using 1% (w/v) fructose as a carbon source. Molybdate reduction was optimum at 30 °C and at pH 7.3. The molybdenum blue produced from cellular reduction exhibited absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of electron transport system such as antimycin A, rotenone, sodium azide, and potassium cyanide did not inhibit the molybdenum-reducing enzyme. Mercury, silver, and copper at 1 ppm inhibited molybdenum blue formation in whole cells of strain hkeem. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Tritium Decay Helium-3 Effects in Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Merrill, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructural evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible tritium

  15. Low cycle fatigue behavior of titanium carbide coated molybdenum

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Oku, Tatsuo; Kodaira, Tsuneo; Kikuyama, Toshihiko

    1985-09-01

    Sintered molybdenum coated by TiC is used for the first wall such as a troidal fixed limiter and a magnetic limiter plate in JT-60, that is being operated at JAERI presently. This report describes the low cycle fatigue behavior of sintered molybdenum and the influence of TiC coating on fatigue strength. The low cycle fatigue test was conducted at room temperature and 500 0 C. The test results was also analyzed by fractographic observation, metallography and element analysis using EPMA. The low cycle fatigue strength of the molybdenum coated by TiC at 500 0 C is decreased compared with the one at room temperature. (author)

  16. Tungsten metallizing alumina--yttria ceramics

    International Nuclear Information System (INIS)

    Cowan, R.E.; Stoddard, S.D.

    1977-03-01

    The ease with which high-alumina bodies may be metallized with tungsten is improved by additions of yttria to the alumina. Mechanisms of this bonding process were studied by use of optical and electron microscopy, electron microprobe, and tensile tests. Variables studied included yttria content of the body and the firing temperature during metallizing. The study showed that a reaction between the tungsten and the yttrogarnet grain boundary phase markedly improved adherence

  17. Bioaccessibility of micron-sized powder particles of molybdenum metal, iron metal, molybdenum oxides and ferromolybdenum--Importance of surface oxides.

    Science.gov (United States)

    Mörsdorf, Alexander; Odnevall Wallinder, Inger; Hedberg, Yolanda

    2015-08-01

    The European chemical framework REACH requires that hazards and risks posed by chemicals, including alloys and metals, that are manufactured, imported or used in different products (substances or articles) are identified and proven safe for humans and the environment. Metals and alloys need hence to be investigated on their extent of released metals (bioaccessibility) in biologically relevant environments. Read-across from available studies may be used for similar materials. This study investigates the release of molybdenum and iron from powder particles of molybdenum metal (Mo), a ferromolybdenum alloy (FeMo), an iron metal powder (Fe), MoO2, and MoO3 in different synthetic body fluids of pH ranging from 1.5 to 7.4 and of different composition. Spectroscopic tools and cyclic voltammetry have been employed to characterize surface oxides, microscopy, light scattering and nitrogen absorption for particle characterization, and atomic absorption spectroscopy to quantify released amounts of metals. The release of molybdenum from the Mo powder generally increased with pH and was influenced by the fluid composition. The mixed iron and molybdenum surface oxide of the FeMo powder acted as a barrier both at acidic and weakly alkaline conditions. These findings underline the importance of the surface oxide characteristics for the bioaccessibility of metal alloys. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Physical metallurgy of tungsten. Metallovedenie vol'frama

    Energy Technology Data Exchange (ETDEWEB)

    Savitskii, E M; Povarova, K B; Makarov, P V

    1978-01-01

    The physico-chemical principles of the interaction between tungsten and the elements of the periodic chart are systematized and summarized, and a description is given of the physical and mechanical properties of tungsten and its alloys. An examination is made of the nature of cold brittleness and methods of increasing the plasticity of alloys, means of producing tungsten, methods of purification, alloying, thermal and mechanical processing, and a survey is made of the contemporary use of tungsten and its alloys in advanced sectors of modern technology. The book is designed for personnel at scientific-research institutes, design bureaus and plants, engaged in the development, technology, and use of alloys of refractory metals as well as for instructors, graduate students and senior students taking metal studies and machine building courses, and aeronautical institutions of higher learning. 431 references, 11 tables.

  19. Diffuse scattering in metallic tin polymorphs

    International Nuclear Information System (INIS)

    Wehinger, Björn; Bosak, Alexeï; Piccolboni, Giuseppe; Krisch, Michael; Refson, Keith; Chernyshov, Dmitry; Ivanov, Alexandre; Rumiantsev, Alexander

    2014-01-01

    The lattice dynamics of the metallic tin β and γ polymorphs has been studied by a combination of diffuse scattering, inelastic x-ray scattering and density functional perturbation theory. The non-symmorphic space group of the β -tin structure results in unusual asymmetry of thermal diffuse scattering. Strong resemblance of the diffuse scattering intensity distribution in β and γ-tin were observed, reflecting the structural relationship between the two phases and revealing the qualitative similarity of the underlying electronic potential. The strong influence of the electron subsystem on inter-ionic interactions creates anomalies in the phonon dispersion relations. All observed features are described in great detail by the density functional perturbation theory for both β - and γ-tin at arbitrary momentum transfers. The combined approach delivers thus a complete picture of the lattice dynamics in harmonic description. (paper)

  20. Selective CVD tungsten on silicon implanted SiO/sub 2/

    International Nuclear Information System (INIS)

    Hennessy, W.A.; Ghezzo, M.; Wilson, R.H.; Bakhru, H.

    1988-01-01

    The application range of selective CVD tungsten is extended by its coupling to the ion implantation of insulating materials. This article documents the results of selective CVD tungsten using silicon implanted into SiO/sub 2/ to nucleate the tungsten growth. The role of implant does, energy, and surface preparation in achieving nucleation are described. SEM micrographs are presented to demonstrate the selectivity of this process. Measurements of the tungsten film thickness and sheet resistance are provided for each of the experimental variants corresponding to successful deposition. RBS and XPS analysis are discussed in terms of characterizing the tungsten/oxide interface and to evaluate the role of the silicon implant in the CVD tungsten mechanism. Utilizing this method a desired metallization pattern can be readily defined with lithography and ion implantation, and accurately replicated with a layer of CVD tungsten. This approach avoids problems usually associated with blanket deposition and pattern transfer, which are particularly troublesome for submicron VLSI technology

  1. Molybdenum peroxo complex. Structure and thermal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Koichi; Ooga, Katsumi; Kurusu, Yasuhiko

    1984-10-01

    The molybdenum peroxide (Mo-y) prepared by oxidation of molybdenum metal with hydrogen peroxide has been studied to determine its structure and thermal behavior. Temperature programmed decomposition has been used to study the thermal stability of Mo-y. Two distinct peaks, I and II, of decomposition processes are discernible in Mo-y. Peak I corresponds to the elimination of water of crystallization and peak II to the decomposition of a peroxide ion of Mo-y. IR and UV examinations support the results of the thermal analysis. The IR band at 931 cm/sup -1/ and the UV band at 381 nm show the same thermal behavior. Both bands are attributable to the peroxide ion of Mo-y. Spectroscopic studies show that Mo-y has the tetrahedral coordination derived from the single molybdenum complex, which has double bond oxygens attached to Mo atom and has a symmetric type of peroxide ion with one water of crystallization.

  2. Combustion of powdery tungsten in pyrotechnic mixtures

    International Nuclear Information System (INIS)

    Ivanov, G.V.; Reshetov, A.A.; Viktorenko, A.M.; Surkov, V.G.; Karmadonov, L.N.

    1982-01-01

    The basic regularities of tungsten burning (powder 2-5 μm) with oxidizers most typical for pyrotechnics: nitrates, lead and barium peroxides (powder, 2-8 μm) and potassium perchlorate (powder, 2-8 μm) are studied. Dependences of burning rate as a function of pressure and ratio of components are established. It is supposed that tungsten burning in mixtures with the mentioned nitrates is a complex and multistage process the rate of which is determined by tungsten dissolution in nitrate melts. Analysis of burning products using available methods is complex

  3. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    International Nuclear Information System (INIS)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap; Tanemura, Masaki

    2016-01-01

    The synthesis of large-area monolayer tungsten disulphide (WS 2 ) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS 2 crystals using tungsten hexachloride (WCl 6 ) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl 6 in ethanol was drop-casted on SiO 2 /Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS 2 crystals on the substrate. The crystal geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS 2 single crystalline monolayer can be grown using the WCl 6 precursor. Our finding shows an easier and effective approach to grow WS 2 monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction

  4. Production of Molybdenum-99 using Neutron Capture Methods

    Energy Technology Data Exchange (ETDEWEB)

    Toth, James J; Greenwood, Lawrence R; Soderquist, Chuck Z; Wittman, Richard S; Pierson, Bruce D; Burns, Kimberly A; Lavender, Curt A; Painter, Chad L; Love, Edward F; Wall, Donald E

    2011-01-01

    Pacific Northwest National Laboratory (PNNL), operated by Battelle, has identified a reference process for the production of molybdenum-99 (99Mo) for use in a chromatographic generator to separate the daughter product, technetium-99m (99mTc). The reference process uses the neutron capture reaction of natural or enriched molybdenum oxide via the reaction 98Mo(n,γ)99Mo. The irradiated molybdenum is dissolved in an alkaline solution, whereby the molybdenum, dissolved as the molybdate anion, is loaded on a proprietary ion exchange material in the chromatographic generator. The approach of this investigation is to provide a systematic collection of technologies to make the neutron capture method for Mo-99 production economically viable. This approach would result in the development of a technetium Tc99m generator and a new type of target. The target is comprised of molybdenum, either natural or enriched, and is tailored to the design of currently operating U.S. research reactors. The systematic collection of technologies requires evaluation of new metallurgical methods to produce the target, evaluation of target geometries tailored to research reactors, and chemical methods to dissolve the irradiated target materials for use in a chromatographic generator. A Technical specification for testing the target and neutron capture method in a research reactor is also required. This report includes identification of research and demonstration activities needed to enable deployment of neutron capture production method, including irradiations of prototypic targets, chemical processing of irradiated targets, and loading and extraction tests of Mo99 and Tc99m on the sorbent material in a prototypic generator design. The prototypical generator design is based on the proprietary method and systems for isotope product generation. The proprietary methods and systems described in this report are clearly delineated with footnotes. Ultimately, the Tc-99m generator solution provided by

  5. High Purity Tungsten Spherical Particle Preparation From WC-Co Spent Hard Scrap

    Directory of Open Access Journals (Sweden)

    Han Chulwoong

    2015-06-01

    Full Text Available Tungsten carbide-cobalt hard metal scrap was recycled to obtain high purity spherical tungsten powder by a combined hydrometallurgy and physical metallurgy pathway. Selective leaching of tungsten element from hard metal scrap occurs at solid / liquid interface and therefore enlargement of effective surface area is advantageous. Linear oxidation behavior of Tungsten carbide-cobalt and the oxidized scrap is friable to be pulverized by milling process. In this regard, isothermally oxidized Tungsten carbide-cobalt hard metal scrap was mechanically broken into particles and then tungsten trioxide particle was recovered by hydrometallurgical method. Recovered tungsten trioxide was reduced to tungsten particle in a hydrogen environment. After that, tungsten particle was melted and solidified to make a spherical one by RF (Ratio Frequency thermal plasma process. Well spherical tungsten micro-particle was successfully obtained from spent scrap. In addition to the morphological change, thermal plasma process showed an advantage for the purification of feedstock particle.

  6. Formation of a glassy phase in ceramic-like coatings

    International Nuclear Information System (INIS)

    Sazonova, M.V.; Gorbatova, G.N.

    1986-01-01

    The authors investigate the synthesis directly in coatings of a borosilicate melt that could fill the role of glassy matrix, thereby avoiding fusion and processing of the glassy material. The effect of added boron on the formation of coatings based on molybdenum disilicide and tungsten disilicide in air at 900 degrees C is presented. Without an additive no coating forms; there is no adhesion to the graphite and a continuous film does not form. As a result of boron oxidation an easily fused glassy matrix forms, which bonds the molybdenum disilicide or tungsten disilicide particles together and ensures adhesion to the graphite

  7. Production of nanocrystalline metal powders via combustion reaction synthesis

    Science.gov (United States)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.; Kim, Jin Yong

    2017-10-31

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  8. Tungsten-based composite materials for fusion reactor shields

    International Nuclear Information System (INIS)

    Greenspan, E.; Karni, Y.

    1985-01-01

    Composite tungsten-based materials were recently proposed for the heavy constituent of compact fusion reactor shields. These composite materials will enable the incorporation of tungsten - the most efficient nonfissionable inelastic scattering (as well as good neutron absorbing and very good photon attenuating) material - in the shield in a relatively cheap way and without introducing voids (so as to enable minimizing the shield thickness). It is proposed that these goals be achieved by bonding tungsten powder, which is significantly cheaper than high-density tungsten, with a material having the following properties: good shielding ability and relatively low cost and ease of fabrication. The purpose of this work is to study the effectiveness of the composite materials as a function of their composition, and to estimate the economic benefit that might be gained by the use of these materials. Two materials are being considered for the binder: copper, second to tungsten in its shielding ability, and iron (or stainless steel), the common fusion reactor shield heavy constituent

  9. Telomere dysfunction and cell survival: roles for distinctTIN2-containing complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sahn-Ho; Davalos, Albert R.; Heo, Seok-Jin; Rodier, Francis; Beausejour, Christian; Kaminker, Patrick; Campisi, Judith

    2006-11-07

    Telomeres are maintained by three DNA binding proteins, TRF1, TRF2 and POT1, and several associated factors. One factor, TIN2, binds TRF1 and TRF2 directly and POT1 indirectly. These and two other proteins form a soluble complex that may be the core telomere-maintenance complex. It is not clear whether subcomplexes exist or function in vivo. Here, we provide evidence for two TIN2 subcomplexes with distinct functions in human cells. TIN2 ablation by RNA interference caused telomere uncapping and p53-independent cell death in all cells tested. However, we isolated two TIN2 complexes from cell lysates, each selectively sensitive to a TIN2 mutant (TIN2-13, TIN2-15C). In cells with wild-type p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere uncapping and eventual growth arrest. In cells lacking p53 function, TIN215C more than TIN2-13 caused genomic instability and cell death. Thus, TIN2 subcomplexes likely have distinct functions in telomere maintenance, and may provide selective targets for eliminating cells with mutant p53.

  10. Extraction of molybdenum with TBP-dodecane mixture in nitric medium. Application to uranium refining

    International Nuclear Information System (INIS)

    Donnet, Louis

    1993-01-01

    Uranium ores may contain high quantities of molybdenum which represents an undesirable impurity in the uranium conversion process. Thus it is necessary to check carefully its extraction and its stripping during the purification step. The purpose of this study was to investigate the molybdenum behaviour during this step. We have developed a radiochemical method for the determination of the molybdenum concentration in each phase. This method used gamma radiation of technetium 99m issued from molybdenum 99 disintegration. After a systematic study of all the extraction parameters, we have proposed mechanisms accounting for molybdenum extraction and we have calculated the constants for the different equilibria. In particular, we have furnished new data concerning the extraction of polymerised molybdenum species with tri butyl phosphate. We have also determined the polymerization constants of molybdenum in the aqueous phase. The influence of uranium and phosphate ions on the molybdenum behaviour during the extraction and stripping has been investigated. We have shown that the extraction of molybdenum was not modified by uranium but improved in the presence of phosphate ions. In the general case, we have shown that uranium, phosphate ions and the ageing of the solvent have an unfavourable effect on stripping. We have explained this result by the evolution of the complex in the organic phase to an un-stripped polymeric form. In conclusion, our study has allowed to explain the behaviour of molybdenum during the purification process, and the role of impurities present in the industrial solutions. It would serve as a guide to improve the exploitation for a better molybdenum-uranium separation. (author) [fr

  11. Tetrathionate reductase of Salmonella thyphimurium: a molybdenum containing enzyme

    International Nuclear Information System (INIS)

    Hinojosa-Leon, M.; Dubourdieu, M.; Sanchez-Crispin, J.A.; Chippaux, M.

    1986-01-01

    Use of radioactive molybdenum demonstrates that the tetrathionate reductase of Salmonella typhimurium is a molydenum containing enzyme. It is proposed that this enzyme shares with other molybdo-proteins, such as nitrate reductase, a common molybdenum containing cofactor the defect of which leads to the loss of the tetrathionate reductase and nitrate reductase activities

  12. Potentiometric titrations of molybdenum and vanadium in aqueous and mixed so lvents

    International Nuclear Information System (INIS)

    Das, S.K.; Dhaneshwar, R.G.

    1990-01-01

    Potentiometric titration method was developed for molybdenum, employing different electrode systems. Molybdenum(VI) is reduced to molybdenum(V) by ferrous solution in presence of phosphoric acid and then titrated with potassium dichromate. It was found that ferrous concentration should be five times more than molybdenum and phosphoric acid should be 1.0 ml for 0.1N titration and 0.5 ml for lower concentration titrations. The method is also applicable to vanadium titrations. Employing Au/SCE and Pt/SCE systems, it was observed that generally curve heights obtained for platinum electrode are higher than those for gold electrode. Also for both the electrode systems, the curve heights for vanadium titrations were found to be more than those for molybdenum. Lower limits of titrations for Au/SCE system are 0.01N for molybdenum and 0.0001N for vanadium, whereas for Pt/SCE system, the lower limits obtained were 0.01N for both molybdenum and vanadium titrations. In order to improve the sensitivities of the method, the bimetallic electrode systems Au/Pt and Pt/Au were employed. Au/Pt system was found to give better results than Pt/Au systems. Addition of organic solvent was found to have beneficial effects for titrations of 0.001N and below. Methanol was found to be a better solvent than ethanol. Molybdenum titrations, at 0.0001N level could be performed in methanol with Au/Pt system, which is to b e generally preferred than Pt/Au system. (author). 7 refs., 3 tabs

  13. Computer simulations for thorium doped tungsten crystals

    International Nuclear Information System (INIS)

    Eberhard, Bernd

    2009-01-01

    Tungsten has the highest melting point among all metals in the periodic table of elements. Furthermore, its equilibrium vapor pressure is by far the lowest at the temperature given. Thoria, ThO 2 , as a particle dopant, results in a high temperature creep resistant material. Moreover, thorium covered tungsten surfaces show a drastically reduced electronic work function. This results in a tremendous reduction of tip temperatures of cathodes in discharge lamps, and, therefore, in dramatically reduced tungsten vapor pressures. Thorium sublimates at temperatures below those of a typical operating cathode. For proper operation, a diffusional flow of thorium atoms towards the surface has to be maintained. This atomic flux responds very sensitively on the local microstructure, as grain boundaries as well as dislocation cores offer ''short circuit paths'' for thorium atoms. In this work, we address some open issues of thoriated tungsten. A molecular dynamics scheme (MD) is used to derive static as well as dynamic material properties which have their common origin in the atomistic behavior of tungsten and thorium atoms. The interatomic interactions between thorium and tungsten atoms are described within the embedded atom model (EAM). So far, in literature no W-Th interaction potentials on this basis are described. As there is no alloying system known between thorium and tungsten, we have determined material data for the fitting of these potentials using ab-initio methods. This is accomplished using the full potential augmented plane wave method (FLAPW), to get hypothetical, i.e. not occurring in nature, ''alloy'' data of W-Th. In order to circumvent the limitations of classical (NVE) MD schemes, we eventually couple our model systems to external heat baths or volume reservoirs (NVT, NPT). For the NPT ensemble, we implemented a generalization of the variable cell method in combination with the Langevin piston, which results in a set of Langevin equations, i.e. stochastic

  14. Molybdenum-cofactor deficiency: an easily missed cause of neonatal convulsions

    NARCIS (Netherlands)

    Slot, H. M.; Overweg-Plandsoen, W. C.; Bakker, H. D.; Abeling, N. G.; Tamminga, P.; Barth, P. G.; van Gennip, A. H.

    1993-01-01

    Intractable seizures in the neonatal period may be caused by molybdenum-cofactor deficiency, an inborn error which combines the deficiencies of sulphite oxidase and xanthine dehydrogenase. The neurological symptoms of molybdenum cofactor and isolated sulphite oxidase deficiencies are identical. Two

  15. Spectrographic analysis of uranium-molybdenum alloys

    International Nuclear Information System (INIS)

    Roca, M.

    1967-01-01

    A spectrographic method of analysis has been developed for uranium-molybdenum alloys containing up to 10 % Mo. The carrier distillation technique, with gallium oxide and graphite as carriers, is used for the semiquantitative determination of Al, Cr, Fe, Ni and Si, involving the conversion of the samples into oxides. As a consequence of the study of the influence of the molybdenum on the line intensities, it is useful to prepare only one set of standards with 0,6 % MoO 3 . Total burning excitation is used for calcium, employing two sets of standards with 0,6 and 7.5 MoO 3 . (Author) 5 refs

  16. The Effect of Molybdenum Fertilization on Arachis Glabrata Biomass ...

    African Journals Online (AJOL)

    The effect of molybdenum fertilization on biomass and the number of nodules of Arachis glabrata was assessed at the Teaching and Research Farm of the University of Dschang in 2011 at different periods of mowing. A factorial design comparing four doses of molybdenum as ammonium molybdate (0, 0.75, 1.5 and 2.25 ...

  17. Tungsten deposition by hydrogen-atom reaction with tungsten hexafluoride

    International Nuclear Information System (INIS)

    Lee, W.W.

    1991-01-01

    Using gaseous hydrogen atoms with WF 6 , tungsten atoms can be produced in a gas-phase reaction. The atoms then deposit in a near-room temperature process, which results in the formation of tungsten films. The W atoms (10 10 -10 11 /cm 3 ) were measured in situ by atomic absorption spectroscopy during the CVD process. Deposited W films were characterized by Auger electron spectroscopy, Rutherford backscattering, and X-ray diffraction. The surface morphology of the deposited films and filled holes was studied using scanning electron microscopy. The deposited films were highly adherent to different substrates, such as Si, SiO 2 , Ti/Si, TiN/Si and Teflon. The reaction mechanism and kinetics were studied. The experimental results indicated that this method has three advantages compared to conventional CVD or PECVD: (1) film growth occurs at low temperatures; (2) deposition takes place in a plasma-free environment; and (3) a low level of impurities results in high-quality adherent films

  18. Modeling of hydrogen desorption from tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Guterl, J., E-mail: jguterl@ucsd.edu [University of California, San Diego, La Jolla, CA 92093 (United States); Smirnov, R.D. [University of California, San Diego, La Jolla, CA 92093 (United States); Krasheninnikov, S.I. [University of California, San Diego, La Jolla, CA 92093 (United States); Nuclear Research National University MEPhI, Moscow 115409 (Russian Federation); Uberuaga, B.; Voter, A.F.; Perez, D. [Los Alamos National Laboratory, Los Alamos, NM 8754 (United States)

    2015-08-15

    Hydrogen retention in metallic plasma-facing components is among key-issues for future fusion devices. For tungsten, which has been chosen as divertor material in ITER, hydrogen desorption parameters experimentally measured for fusion-related conditions show large discrepancies. In this paper, we therefore investigate hydrogen recombination and desorption on tungsten surfaces using molecular dynamics simulations and accelerated molecular dynamics simulations to analyze adsorption states, diffusion, hydrogen recombination into molecules, and clustering of hydrogen on tungsten surfaces. The quality of tungsten hydrogen interatomic potential is discussed in the light of MD simulations results, showing that three body interactions in current interatomic potential do not allow to reproduce hydrogen molecular recombination and desorption. Effects of surface hydrogen clustering on hydrogen desorption are analyzed by introducing a kinetic model describing the competition between surface diffusion, clustering and recombination. Different desorption regimes are identified and reproduce some aspects of desorption regimes experimentally observed.

  19. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors.

    Science.gov (United States)

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-07-18

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process.

  20. Study on creep-fatigue evaluation of chrome-molybdenum steel

    International Nuclear Information System (INIS)

    Aoto, Kazumi; Wada, Yusaku

    1993-01-01

    Though chrome-molybdenum steel has quite different basic material properties from austenitic stainless steel, the life fraction rule based on an advanced ductility exhaustion theory proposed for SUS304 is able to give proper prediction for creep-fatigue life of chrome-molybdenum steel. The applicability of the present evaluation method to chrome-molybdenum steel is validated by both mechanical study and micro-structural observation. The mechanism of creep-fatigue failure of Mod.9Cr-1Mo(NT) is one of the most controversial subjects among researchers. However, it is clarified in this report that creep-fatigue damage of this material under actual loading conditions is dominated by creep-cavitation of grain boundaries as same way as that of austenitic stainless steel. Furthermore, for the life reduction of low cycle fatigue of chrome-molybdenum steel with compression-side strain hold, both effects of mean stress and oxide-wedge are denied and it is insisted that the acceleration of fatigue-crack propagation is occurred by oxide-progress location and its thickness. (author)

  1. Investigation and evaluation of electron radiation damage on TiC and TiN protective coatings of Molybdenum for highly stressed first-wall components of fusion machines

    International Nuclear Information System (INIS)

    Wallura, E.; Hoven, H.; Koizlik, K.; Kny, E.

    1995-01-01

    The components of the plasma chamber of fusion reactors are subjected to the plasma wall interaction, a complex system of mechanical, thermal, and irradiation loadings. To investigate special modes of individual load processes (thermal shock, thermal fatigue, erosion) specific laboratory tests in an electron beam welding machine have been carried out. The materials Mo, Mo coated with TiC and with TiN, and bulk sintered TiC and TiN were examined in the tests. The 'post mortem' characterization of the material samples was done by secondary electron microscopy and metallography. One important aim was to determine critical loads as defined by the applied beam power density and the effective beam pulse duration, and to deduce from this load limit curves as a type of quantification of acceptable plasma wall interaction intensity. Below these load limits, Mo showed no induced material defects - neither in the uncoated nor in the coated quality. Above the critical heat load (100 MWm -2 ) severe melting occured in the surface of the uncoated as well as in the coated version - the TiC- and the TiN-coatings were completely eroded or vaporized in the molten crater. An influence of the coatings on the recrystallization of the Mo-melt was not detectable. Outside the molten area the coatings showed honeycombed cracking by thermal shock. In the case of bulk sintered TiC and TiN, marked thermal shock cracking appeared already after loadings with 10 MWm -2 and pulse duration of 0.1 sec. (author)

  2. Telomere dysfunction and cell survival: Roles for distinct TIN2-containing complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sahn-ho; Davalos, Albert R.; Heo, Seok-Jin; Rodier, Francis; Zou, Ying; Beausejour, Christian; Kaminker, Patrick; Yannone, Steven M.; Campisi, Judith

    2007-10-02

    Telomeres are maintained by three DNA binding proteins (TRF1, TRF2 and POT1), and several associated factors. One factor, TIN2, binds TRF1 and TRF2 directly and POT1 indirectly. Along with two other proteins, TPP1 and hRap1, these form a soluble complex that may be the core telomere maintenance complex. It is not clear whether sub-complexes also exist in vivo. We provide evidence for two TIN2 sub-complexes with distinct functions in human cells. We isolated these two TIN2 sub-complexes from nuclear lysates of unperturbed cells and cells expressing TIN2 mutants TIN2-13, TIN2-15C, which cannot bind TRF2 or TRF1, respectively. In cells with wild-type p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere uncapping and eventual growth arrest. In cells lacking p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere dysfunction and cell death. Our findings suggest that distinct TIN2 complexes exist, and that TIN2-15C-sensitive subcomplexes are particularly important for cell survival in the absence of functional p53.

  3. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    Science.gov (United States)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan; Velikokhatnyi, Oleg

    2017-02-07

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VII of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.

  4. Substitution of thoriated tungsten electrodes in Switzerland

    International Nuclear Information System (INIS)

    Kunz, H.; Piller, G.

    2006-01-01

    Thoriated tungsten electrodes are frequently used for inert gas welding (TIG/WIG). The use of these electrodes can lead to doses which are well above the limit for the general population (1mSv/year). This has been shown by different investigations, for example from the ''Berufsgenossenschaft''. With these findings in mind, the regulatory authorities (Swiss Federal Office of Public Health (SFOPH) and Swiss National Accident Insurance Association (Suva)) started in 1999 to examine the justification of thoriated tungsten electrodes and a possible substitution with products containing no radioactive material. Up to this time, the use of thoriated tungsten electrodes could be justified since no thorium-free products leading to comparable results were available on the market. This was also the reason why the SFOPH approved several types of these electrodes. Discussions with formation centers for welding and inquiries made at welding shops, trading companies and producers showed that in the mean-time thorium-free products with comparable welding specifications and results became available on the market. Since the 1 January 2004, thoriated tungsten electrodes can only be used if the user has obtained the corresponding license from the SFOPH. The use of thoriated tungsten electrodes is thus not completely forbidden, but very strict conditions have to be fulfilled. Up to now and due to the involvement of the relevant partners, the substitution process has not met any problem. Neither trading companies nor users made any opposition and no request for obtaining a license for thoriated tungsten electrodes was made. (orig.)

  5. Effect of neutron irradiation on the microstructure of tungsten

    Directory of Open Access Journals (Sweden)

    M. Klimenkov

    2016-12-01

    Full Text Available Two grades of pure tungsten, single and polycrystalline, were irradiated for 282 days in the HFR reactor, Petten, at 900 °C to an average damage level of 1.6dpa. Each grade of tungsten was investigated using the transmission electron microscope (TEM to assess the effect of neutron irradiation on tungsten microstructure. Investigations revealed the formation of faceted cavities, whose diameter varies from 4 to 14nm in both materials. The cavities are homogeneously distributed only inside single crystalline tungsten. The local distribution of cavities in polycrystalline tungsten is strongly influenced by grain boundaries. The number densities of cavities were measured to be 4×1021 m−3 for polycrystalline and 2.5×1021 m−3 for single crystalline tungsten. This corresponds to volumetric densities of 0.45% and 0.33% respectively. High-resolution transmission electron microscopy (HRTEM revealed that faces of cavities are oriented in (110 plane. Analytical investigations showed precipitation of rhenium and osmium produced by a transmutation reaction around cavities and at grain boundaries.

  6. Preliminary study of tin slag concrete mixture

    Science.gov (United States)

    Hashim, Mohd Jamil; Mansor, Ishak; Pauzi Ismail, Mohamad; Sani, Suhairy; Azmi, Azhar; Sayuti, Shaharudin; Zaidi Ibrahim, Mohd; Adli Anuar, Abul; Rahim, Abdul Adha Abdul

    2018-01-01

    The study focuses on practices to facilitate tin smelting industry to reduce radioactive waste product (Tin Slag) by diluting its radioactivity to a safe level and turning it to a safer infrastructural building product. In the process the concrete mix which include Portland cement, sand, tin slag, water and plasticizer are used to produce interlocking brick pavements, piles and other infrastructural products. The mixing method follows DOE (UK) standard method of mixing targeted at in selected compressive strength suitable for its function and durability. A batching machine is used in the mixing and six test cubes are produced for the test. The testing equipment used are a compressional machine, ultrasonic measurement and a Geiger Muller counter to evaluate of the concrete mix to find the lowest emission of radiation surface dose without compromising the strength of concrete mix. The result obtained indicated the radioactivity of tin slag in the mixing process has reduced to background level that is 0.5μSv/h while the strength and workability of the concrete has not been severely affected. In conclusion, the concrete mix with tin slag has shown the potential it can be turned into a safe beneficial infrastructural product with good strength.

  7. Vaporization of tungsten-metal in steam at high temperatures

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.C.

    2000-01-01

    The vaporization of tungsten from the APT spallation target dominates the radiological source term for unmitigated target overheating accidents. Chemical reactions of tungsten with steam which persist to tungsten temperatures as low as 800 C result in the formation of a hydrated tungsten-oxide which has a high vapor pressure and is readily convected in a flowing atmosphere. This low-temperature vaporization reaction essentially removes the oxide film that forms on the tungsten-metal surface as soon as it forms, leaving behind a fresh metallic surface for continued oxidation and vaporization. Experiments were conducted to measure the oxidative vaporization rates of tungsten in steam as part of the effort to quantify the MT radiological source term for severe target accidents. Tests were conducted with tungsten rods (1/8 inch diameter, six inches long) heated to temperatures from approximately 700 C to 1350 C in flowing steam which was superheated to 140 C. A total of 19 experiments was conducted. Fifteen tests were conducted by RF induction heating of single tungsten rods held vertical in a quartz glass retort. Four tests were conducted in a vertically-mounted tube furnace for the low temperature range of the test series. The aerosol which was generated and transported downstream from the tungsten rods was collected by passing the discharged steam through a condenser. This procedure insured total collection of the steam along with the aerosol from the vaporization of the rods. The results of these experiments revealed a threshold temperature for tungsten vaporization in steam. For the two tests at the lowest temperatures which were tested, approximately 700 C, the tungsten rods were observed to oxidize without vaporization. The remainder of the tests was conducted over the temperature range of 800 C to 1350 C. In these tests, the rods were found to have lost weight due to vaporization of the tungsten and the missing weight was collected in the downstream condensate

  8. Fabrication and evaluation of chemically vapor deposited tungsten heat pipe.

    Science.gov (United States)

    Bacigalupi, R. J.

    1972-01-01

    A network of lithium-filled tungsten heat pipes is being considered as a method of heat extraction from high temperature nuclear reactors. The need for material purity and shape versatility in these applications dictates the use of chemically vapor deposited (CVD) tungsten. Adaptability of CVD tungsten to complex heat pipe designs is shown. Deposition and welding techniques are described. Operation of two lithium-filled CVD tungsten heat pipes above 1800 K is discussed.

  9. Comparison of four tungsten alloys for use as ultrasonic thermometer sensors

    International Nuclear Information System (INIS)

    Arave, A.E.

    1975-06-01

    Four tungsten alloy materials were evaluated for use as ultrasonic sensors: (a) tungsten, (b) tungsten-1 percent thoria, (c) tungsten-2 percent thoria, and (d) tungsten-26 percent rhenium. Four parameters were checked: (1) temperature sensitivity, (2) signal attenuation as a function of temperature, (3) temperature sensitivity as a function of frequency, and (4) relative signal attenuation as a function of frequency. The temperature sensors were designed for the Loss-of-Fluid Test (LOFT) and Power Burst Facility (PBF) reactors. (U.S.)

  10. New doped tungsten cathodes. Applications to power grid tubes

    International Nuclear Information System (INIS)

    Cachard, J. de; Cadoret, K; Martinez, L.; Veillet, D.; Millot, F.

    2001-01-01

    Thermionic emission behavior of tungsten/tungsten carbide modified with rare earth (La, Ce, Y) oxides is examined on account of suitability to deliver important current densities in a thermo-emissive set up and for long lifetime. Work functions of potential cathodes have been determined from Richardson plots for La 2 O 3 doped tungsten and for tungsten covered with variable compositions rare earth tungstates. The role of platinum layers covering the cathode was also examined. Given all cathodes containing mainly lanthanum oxides were good emitters, emphasis was put on service lifetime. Comparisons of lifetime in tungsten doped with rare earth oxides and with rare earth tungstates show that microstructure of the operating cathodes may play the major role in the research of very long lifetime cathodes. Based on these results, tests still running show lifetime compatible with power grid tubes applications. (author)

  11. Deuterium transport and trapping in polycrystalline tungsten

    International Nuclear Information System (INIS)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R.; Pawelko, R.J.; Trybus, C.L.; Sellers, C.H.

    1992-01-01

    This paper reports that deuterium permeation studies for polycrystalline tungsten foil have been conducted to provide data for estimating tritium transport and trapping in tungsten-clad divertors proposed for advanced fusion-reactor concepts. Based on a detailed transmission electron microscopy (TEM) microstructural characterization of the specimen material and on analyses of permeation data measured at temperatures ranging form 610 to 823 K for unannealed and annealed tungsten foil (25 μm thick), the authors note the following key results: deuterium transport in tungsten foil is dominated by extensive trapping that varies inversely with prior anneal temperatures of the foil material, the reduction in the trapped fraction correlates with a corresponding elimination of a high density of dislocations in cell-wall structures introduced during the foil fabrication process, trapping behavior in these foils can be modelled using trap energies between 1.3 eV and 1.5 eV and trap densities ranging from 1 x 10 -5 atom fraction

  12. Corrosion of high-density sintered tungsten alloys

    International Nuclear Information System (INIS)

    Batten, J.J.; Moore, B.T.

    1989-01-01

    In comparative corrosion tests, the corrosion resistance of an Australian tungsten alloy (95% W, 3.5% Ni, 1.5% Fe) was found to be superior to three other tungsten alloys and, under certain conditions, even more corrosion-resistant than pure tungsten. Corrosion resistance was evaluated after immersion in both distilled water and 5% sodium chloride solutions, and in cyclic humidity and salt mist environments. For all but the Australian alloy, the rate of corrosion in sodium chloride solution was markedly less than that in distilated water. In all cases, alloys containing copper had the greatest corrosion rates. Corrosion mechanisms were investigated using a scanning electron microscope, analysis of corrosion products and galvanic corrosion studies. For the alloys, corrosion was attributed primarily to a galvanic reaction. Whether the tungsten or binder phase of the alloy became anodic, and thus was attacked preferentially, depended upon alloy composition and corrosion environment. 16 refs., 4 tabs., 4 figs

  13. Incorporation of tungsten metal fibers in a metal and ceramic matrix

    Directory of Open Access Journals (Sweden)

    V. Brozek

    2017-01-01

    Full Text Available Tungsten fibers have high tensile strength but a poor oxidation resistance at elevated temperatures. Using this first characteristic and to prevent oxidation of tungsten coated composite materials in which the primary requirement: reinforcement against destruction or deformation, was studied on tungsten fibers and tungsten wires which were coated by applying the metal and ceramic powders via plasma spraying device in plasma generator WSP®. Deposition took place in an atmosphere of Ar + 7 % H2, sufficient to reduce the oxidized trace amounts of tungsten.

  14. The potential roles of lime and molybdenum on the growth, nitrogen ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-04-26

    Apr 26, 2010 ... and Molybdenum (Mo) are essential plant nutrients; whose role has been well ... interaction on different photosynthetic activities in P. vulgaris grown ..... concentrations of nickel, cadmium lead and molybdenum. J. Plant. Nutr.

  15. Computer simulations for thorium doped tungsten crystals

    Energy Technology Data Exchange (ETDEWEB)

    Eberhard, Bernd

    2009-07-17

    Tungsten has the highest melting point among all metals in the periodic table of elements. Furthermore, its equilibrium vapor pressure is by far the lowest at the temperature given. Thoria, ThO{sub 2}, as a particle dopant, results in a high temperature creep resistant material. Moreover, thorium covered tungsten surfaces show a drastically reduced electronic work function. This results in a tremendous reduction of tip temperatures of cathodes in discharge lamps, and, therefore, in dramatically reduced tungsten vapor pressures. Thorium sublimates at temperatures below those of a typical operating cathode. For proper operation, a diffusional flow of thorium atoms towards the surface has to be maintained. This atomic flux responds very sensitively on the local microstructure, as grain boundaries as well as dislocation cores offer ''short circuit paths'' for thorium atoms. In this work, we address some open issues of thoriated tungsten. A molecular dynamics scheme (MD) is used to derive static as well as dynamic material properties which have their common origin in the atomistic behavior of tungsten and thorium atoms. The interatomic interactions between thorium and tungsten atoms are described within the embedded atom model (EAM). So far, in literature no W-Th interaction potentials on this basis are described. As there is no alloying system known between thorium and tungsten, we have determined material data for the fitting of these potentials using ab-initio methods. This is accomplished using the full potential augmented plane wave method (FLAPW), to get hypothetical, i.e. not occurring in nature, ''alloy'' data of W-Th. In order to circumvent the limitations of classical (NVE) MD schemes, we eventually couple our model systems to external heat baths or volume reservoirs (NVT, NPT). For the NPT ensemble, we implemented a generalization of the variable cell method in combination with the Langevin piston, which results in a

  16. Extraction of Mo, W and Tc with polyurethane foam and with cyclic polyether from SCN-/HC1 medium

    International Nuclear Information System (INIS)

    Caletka, R.; Hausbeck, R.; Krivan, V.

    1986-01-01

    The extraction of molybdenum, tungsten and technetium by polyether-based polyurethane foam and by a cyclic polyether from aqueous thiocyanate solutions is described. The influence of the reductants stannous chloride and ascorbic acid has also been studied. The possibilites of the polyurethane foam for preconcentration and determination of molybdenum are discussed. (author)

  17. Critical evaluation of molybdenum and its alloys for use in space reactor core heat pipes

    International Nuclear Information System (INIS)

    Lundberg, L.B.

    1981-01-01

    The choice of pure molybdenum as the prime candidate material for space reactor core heat pipes is examined, and the advantages and disadvantages of this material are brought into focus. Even though pure molybdenum heat pipes have been built and tested, this metal's high ductile-brittle transition temperature and modest creep strength place significant design restrictions on a core heat pipe made from it. Molybdenum alloys are examined with regard to their promise as potential replacements for pure molybdenum. The properties of TZM and molybdenum-rhenium alloys are examined, and it appears that Mo-Re alloys with 10 to 15 wt % rhenium offer the most advantage as an alternative to pure molybdenum in space reactor core heat pipes

  18. Recovering and recycling uranium used for production of molybdenum-99

    Science.gov (United States)

    Reilly, Sean Douglas; May, Iain; Copping, Roy; Dale, Gregory Edward

    2017-12-12

    A processes for recycling uranium that has been used for the production of molybdenum-99 involves irradiating a solution of uranium suitable for forming fission products including molybdenum-99, conditioning the irradiated solution to one suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina. Another process involves irradiation of a solid target comprising uranium, forming an acidic solution from the irradiated target suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina.

  19. Sintering of cermets on the base of corundum and molybdenum

    International Nuclear Information System (INIS)

    Fedotov, A.V.

    1987-01-01

    Liquid-phase sintering of cermets has been studied to develop rational technology allowing to produce a dense material at lower temperatures. Molybdenum of the MPCh mark with the specific surface ranged from 1900 to 4000 cm 2 /g and the corundum powder of the VK-94-1 mark with the specific surface of 6000 cm 2 /g containing upto 10% of the glass-phase have been used as initial materials. It is shown that application of the VK-94-1 ceramics powder for molybdenum content cermets allows to decrease the temperature of dense material production (∼ upto 100 deg C). To produce dense materials, it is necessary to restrict the initial porosity of compaction and to correspond it to the sintering conditions. The increase of molybdenum dispersion allows to produce material with the more homogeneous structure, higher density and strength. Molybdenum presence decreases recrystallization of corundum crystals and causes structure production resistant to high-temperature heating

  20. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    Energy Technology Data Exchange (ETDEWEB)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp; Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2016-02-01

    The synthesis of large-area monolayer tungsten disulphide (WS{sub 2}) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS{sub 2} crystals using tungsten hexachloride (WCl{sub 6}) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl{sub 6} in ethanol was drop-casted on SiO{sub 2}/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS{sub 2} crystals on the substrate. The crystal geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS{sub 2} single crystalline monolayer can be grown using the WCl{sub 6} precursor. Our finding shows an easier and effective approach to grow WS{sub 2} monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction.

  1. Ab initio and DFT benchmarking of tungsten nanoclusters and tungsten hydrides

    International Nuclear Information System (INIS)

    Skoviera, J.; Novotny, M.; Cernusak, I.; Oda, T.; Louis, F.

    2015-01-01

    We present several benchmark calculations comparing wave-function based methods and density functional theory for model systems containing tungsten. They include W 4 cluster as well as W 2 , WH and WH 2 molecules. (authors)

  2. Gleeble Testing of Tungsten Samples

    Science.gov (United States)

    2013-02-01

    temperature on an Instron load frame with a 222.41 kN (50 kip) load cell . The samples were compressed at the same strain rate as on the Gleeble...ID % RE Initial Density (cm 3 ) Density after Compression (cm 3 ) % Change in Density Test Temperature NT1 0 18.08 18.27 1.06 1000 NT3 0...4.1 Nano-Tungsten The results for the compression of the nano-tungsten samples are shown in tables 2 and 3 and figure 5. During testing, sample NT1

  3. Method of synthesizing tungsten nanoparticles

    Science.gov (United States)

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  4. Electrical resistivity of sputtered molybdenum films

    International Nuclear Information System (INIS)

    Nagano, J.

    1980-01-01

    The electrical resistivity of r.f. sputtered molybdenum films of thickness 5-150 nm deposited on oxidized silicon substrates was resolved into the three electron scattering components: isotropic background scattering, scattering at grain boundaries and scattering at surfaces. It was concluded that the isotropic background scattering is almost equal to that of bulk molybdenum and is not influenced by sputtering and annealing conditions. When the film thickness is sufficient that surface scattering can be ignored, the decrease in film resistivity after annealing is caused by the decrease in scattering at the grain boundaries for zero bias sputtered films, and is caused by an increase of the grain diameter for r.f. bias sputtered films. (Auth.)

  5. Microstructure and growth mechanism of tin whiskers on RESn3 compounds

    International Nuclear Information System (INIS)

    Li Caifu; Liu Zhiquan

    2013-01-01

    Graphical abstract: Large amount of intact tin whiskers were firstly prepared without post handling, and their microstructures were investigated systematically with TEM. A growth model was proposed to explain the observed growth characteristics from Sn–RE alloys. - Abstract: An exclusive method was developed to prepare intact tin whiskers as transmission electron microscope specimens, and with this technique in situ observation of tin whisker growth from RESn 3 (RE = Nd, La, Ce) film specimen was first achieved. Electron irradiation was discovered to have an effect on the growth of a tin whisker through its root. Large quantities of tin whiskers with diameters from 20 nm to 10 μm and lengths ranging from 50 nm to 500 μm were formed at a growth rate of 0.1–1.8 nm s −1 on the surface of RESn 3 compounds. Most (>85%) of these tin whiskers have preferred growth directions of 〈1 0 0〉, 〈0 0 1〉, 〈1 0 1〉 and 〈1 0 3〉, as determined by statistics. This kind of tin whisker is single-crystal β-Sn even if it has growth striations, steps and kinks, and no dislocations or twin or grain boundaries were observed within the whisker body. RESn 3 compounds undergo selective oxidation during whisker growth, and the oxidation provides continuous tin atoms for tin whisker growth until they are exhausted. The driving force for whisker growth is the compressive stress resulting from the restriction of the massive volume expansion (38–43%) during the oxidation by the surface RE(OH) 3 layer. Tin atoms diffuse and flow to feed the continuous growth of tin whiskers under a compressive stress gradient formed from the extrusion of tin atoms/clusters at weak points on the surface RE(OH) 3 layers. A growth model was proposed to discuss the characteristics and growth mechanism of tin whiskers from RESn 3 compounds.

  6. Dependence of fracture toughness of molybdenum laser welds on processing parameters and in-situ oxygen gettering

    International Nuclear Information System (INIS)

    Pope, L.E.; Jellison, J.L.

    1980-01-01

    Fracture toughness properties have been determined for laser welds in different grades of molybdenum. The fracture toughness of welds in sintered molybdenum was consistently less than the fracture toughness of welds in vacuum arc remelted molybdenum. These differences cannot be attributed to oxygen content, since the oxygen level was nominally the same for all grades of molybdenum examined in this program. Alloy additions of titanium by means of physically deposited coatings significantly improved the fracture toughness of welds in sintered molybdenum, whereas titanium additions to welds in vacuum arc remelted molybdenum decreased the fracture toughness slightly. Pulsed laser welds exhibited fine columnar structures and, in the case of sintered molybdenum, superior fracture toughness when compared with continuous wave laser welds. 6 figures, 3 tables

  7. The behaviour of molybdenum dialkyldithiocarbamate friction modifier additives

    International Nuclear Information System (INIS)

    Graham, Jocelyn Claire Herries

    2001-01-01

    In recent years there has been growing concern to produce energy-efficient lubricated components and modem engine oil specifications require lubricants to demonstrate fuel efficiency in standardised engine tests. One important method of producing low friction and thus fuel-efficient lubricants is to use oil-soluble, molybdenum-containing, friction modifier additives. In optimal conditions these additives are able to produce very low friction coefficients, in the range 0.045 to 0.075 in boundary lubrication conditions. Very little is known about the chemical and physical mechanisms by which oil soluble molybdenum additives form low friction films in tribological contacts. Information about their activity could lead to optimal use of these additives in lubricants and, therefore, more efficient engine running. The work outlined in this thesis investigated the behaviour of oil-soluble molybdenum additives and showed that these additives were able to effectively reduce friction in the absence of other additives such as ZnDTP. Their activity was shown to be highly concentration and temperature dependent and was also found to be sensitive to the roughness of the contacting surfaces. Raman spectroscopy was used to analyse the chemical nature of molybdenum-containing reaction films and found that friction reduction indubitably arises from the local formation of platelets (diameter 30-50 nm) of MoS 2 . The formation of MoS 2 -rich films was found to occur only during direct asperity-asperity rubbing of the contacting surfaces (this type of contact being especially prevalent in pure sliding contacts). At elevated temperatures and in the presence of oxidising gases the consumption of MoDTC was monitored. MoDTC concentration dropped until the total value fell below a critical level to reduce friction. The study showed that decay rate of molybdenum-containing species was reduced by the addition of peroxide-decomposing antioxidants. (author)

  8. NASA GSFC Tin Whisker Homepage http://nepp.nasa.gov/whisker

    Science.gov (United States)

    Shaw, Harry

    2000-01-01

    The NASA GSFC Tin Whisker Homepage provides general information and GSFC Code 562 experimentation results regarding the well known phenomenon of tin whisker formation from pure tin plated substrates. The objective of this www site is to provide a central repository for information pertaining to this phenomenon and to provide status of the GSFC experiments to understand the behavior of tin whiskers in space environments. The Tin Whisker www site is produced by Code 562. This www site does not provide information pertaining to patented or proprietary information. All of the information contained in this www site is at the level of that produced by industry and university researchers and is published at international conferences.

  9. Preparation of single phase molybdenum boride

    International Nuclear Information System (INIS)

    Camurlu, Hasan Erdem

    2011-01-01

    Highlights: → Formation of Mo and a mixture of molybdenum boride phases take place in preparation of molybdenum borides. → It is intricate to prepare single phase molybdenum borides. → Formation of single phase MoB from MoO 3 + B 2 O 3 + Mg mixtures has not been reported previously. → Single phase MoB was successfully prepared through a combination of mechanochemical synthesis and annealing process. - Abstract: The formation of MoB through volume combustion synthesis (VCS), and through mechanochemical synthesis (MCS) followed by annealing has been investigated. MoO 3 , B 2 O 3 and Mg were used as reactants while MgO and NaCl were introduced as diluents. Products were leached in dilute HCl solution and were subjected to X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) examinations. Mo was the major phase component in the VCS products under all the experimental conditions. Mo 2 B, MoB, MoB 2 and Mo 2 B 5 were found as minor phases. Products of MCS contained a mixture of Mo 2 B, MoB, MoB 2 and Mo. After annealing the MCS product at 1400 deg. C for 3 h, single phase α-MoB was obtained.

  10. Formation of carbon containing layers on tungsten test limiters

    International Nuclear Information System (INIS)

    Rubel, M.; Philipps, V.; Huber, A.; Tanabe, T.

    1999-01-01

    Tungsten test limiters of mushroom shape and a plasma facing area of approximately 100 cm 2 were exposed at the TEXTOR-94 tokamak to a number of deuterium fuelled discharges performed under various operation conditions. Two types of limiters were tested: a sole tungsten limiter and a twin limiter consisting of two halves, one made of tungsten and another of graphite. The exposed surfaces were examined with ion beam analysis methods and laser profilometry. The formation of some deposition zones was observed near the edges of the limiters. The deuterium-to-carbon concentration ratio was in the range from 0.04 to 0.11 and around 0.2 for the sole tungsten and the twin limiter, respectively. Significant amounts of the co-deposited tungsten and silicon atoms were found on the graphite part of the twin limiter indicating the formation of mixed W-C-Si compounds. (orig.)

  11. Application of anion-exchange techniques to the determination of traces of molybdenum in sea-water

    International Nuclear Information System (INIS)

    Kiriyama, T.; Kuroda, R.

    1984-01-01

    A combined ion-exchange spectrophotometric method has been developed for the determination of molybdenum in sea-water. Molybdenum is sorbed strongly on Amberlite CG 400 (Cl - ) at pH 3 from sea-water containing ascorbic acid and is easily eluted with 6 M nitric acid. Molybdenum in the effluent can be determined spectrophotometrically with potassium thiocyanate and stannous chloride. The combined method allows selective and sensitive determination of traces of molybdenum in sea-water. The precision of the method is 2% at a molybdenum level of approx. 10 μg/l. (author)

  12. No clinical benefit of titanium nitride coating in cementless mobile-bearing total knee arthroplasty

    NARCIS (Netherlands)

    van Hove, R.P.; Brohet, R.M.; van Royen, B.J.; Nolte, P.A.

    2015-01-01

    Purpose: Titanium nitride (TiN) coating of cobalt–chromium–molybdenum (CoCrMo) implants has shown to improve the biomechanical properties of the implant surface and to reduce adhesive wear in vitro. It is yet unknown whether TiN coating of total knee prosthesis (TKP) affects the postoperative

  13. Atomic dynamics of tin nanoparticles embedded into porous glass

    Energy Technology Data Exchange (ETDEWEB)

    Parshin, P. P.; Zemlyanov, M. G., E-mail: zeml@isssph.kiae.ru; Panova, G. Kh.; Shikov, A. A. [Russian Research Centre Kurchatov Institute (Russian Federation); Kumzerov, Yu. A.; Naberezhnov, A. A. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation); Sergueev, I.; Crichton, W. [European Synchrotron Radiation Facility (France); Chumakov, A. I. [Russian Research Centre Kurchatov Institute (Russian Federation); Rueffer, R. [European Synchrotron Radiation Facility (France)

    2012-03-15

    The method of resonant nuclear inelastic absorption of synchrotron radiation has been used to study the phonon spectrum for tin nanoparticles (with a natural isotope mixture) embedded into a porous glassy (silica) matrix with an average pore diameter of 7 nm in comparison to the analogous spectrum of bulk tin enriched with {sup 119}Sn isotope. Differences between the spectra have been observed, which are related to both the dimensional effects and specific structural features of the porous glass-tin nanocomposite. Peculiarities in the dynamics of tin atoms embedded into nanopores of glass are interpreted in terms of a qualitative model of the nanocomposite structure.

  14. Atomic dynamics of tin nanoparticles embedded into porous glass

    International Nuclear Information System (INIS)

    Parshin, P. P.; Zemlyanov, M. G.; Panova, G. Kh.; Shikov, A. A.; Kumzerov, Yu. A.; Naberezhnov, A. A.; Sergueev, I.; Crichton, W.; Chumakov, A. I.; Rüffer, R.

    2012-01-01

    The method of resonant nuclear inelastic absorption of synchrotron radiation has been used to study the phonon spectrum for tin nanoparticles (with a natural isotope mixture) embedded into a porous glassy (silica) matrix with an average pore diameter of 7 nm in comparison to the analogous spectrum of bulk tin enriched with 119 Sn isotope. Differences between the spectra have been observed, which are related to both the dimensional effects and specific structural features of the porous glass-tin nanocomposite. Peculiarities in the dynamics of tin atoms embedded into nanopores of glass are interpreted in terms of a qualitative model of the nanocomposite structure.

  15. Astrocyte dysfunction following molybdenum-associated purine loading could initiate Parkinson's disease with dementia.

    Science.gov (United States)

    Bourke, Christopher A

    2018-01-01

    Sporadic or idiopathic Parkinson's disease is a movement disorder with a worldwide distribution, a long pre-clinical latent period and a frequent association with dementia. The combination of molybdenum deficiency and purine ingestion could explain the movement disorder, the distribution, the latent period and the dementia association. Recent studies in sheep have shown that molybdenum deficiency enables some dietary purines to accumulate in the central nervous system. This causes astrocyte dysfunction, altered neuromodulation and eventually irreversible central nervous system disease. Humans and sheep share the ability to salvage purines and this ability places humans at risk when they ingest xanthosine, inosine, adenosine and guanosine. Adenosine ingestion in molybdenum-deficient humans will lead to adenosine loading and potentially a disturbance to the A2a adenosine receptors in the nigro-striatum. This could result in Parkinson's disease. Guanosine ingestion in molybdenum-deficient humans will lead to guanosine loading and potentially a disturbance to the guanosine receptors in the hippocampus, amygdala and ventral striatum. This could result in dementia. The molybdenum content of the average daily diet in the United States is 0.07 ppm and in the United Kingdom 0.04 ppm. Central nervous system disease occurs in sheep at <0.04 ppm. Consistent with the role proposed for molybdenum deficiency in Parkinson's disease is the observation that affected individuals have elevated sulfur amino acid levels, depressed sulfate levels, and depressed uric acid levels. Likewise the geographical distribution of Parkinson's dementia complex on Guam corresponds with the distribution of molybdenum-deficient soils hence molybdenum-deficient food gardens on that island.

  16. The use of xylenol orange (XO) reagent in molybdenum (MO) analysis

    International Nuclear Information System (INIS)

    Yusuf Nampira; Dian Anggraini

    2012-01-01

    The use of xylenol orange (XO) reagent in the analysis of Molybdenum (Mo) by spectrophotometry have been studied. The aim of this activity is to study the ability of xylenol orange to form a compound of molybdenum-xylenol orange complex to be analyzed by spectrophotometry. Some factors influencing the forming of the complex compound, for instance pH, time, comparison of XO/MO and the amount of Mo, are also studied. The materials used in this research includes ammonium molybdate (NH 4 ) 6 Mo 7 O 24 .4H 2 O), 0,5% xylenol orange and buffer solution (pH 1,5). Measurement result indicates that molybdenum content can be determined by spectrophotometry method at a wavelength of 563,6 nm. The maximum absorbance reached at a ratio of Molybdenum/Xylenol orange 1:2. The concentration of Mo was determined by using law of Lambert Beer, which stayed in the range of 2 ppm to 4 ppm. The stability of complex compound of molybdenum xylenol orange was shorter than 5 minutes. This measurement result can be used as a parameter in the determination of Mo element with UV-VIS spectrophotometer. (author)

  17. Organic derivatives of tin (II/IV): Investigation of their structure

    Energy Technology Data Exchange (ETDEWEB)

    Szirtes, L., E-mail: szirtes@iki.kfki.h [Institute of Isotopes of the Hungarian Academy of Sciences, Budapest H-1525, P.O. Box 77 (Hungary); Megyeri, J., E-mail: megyeri@iki.kfki.h [Institute of Isotopes of the Hungarian Academy of Sciences, Budapest H-1525, P.O. Box 77 (Hungary); Kuzmann, E. [Laboratory of Nuclear Chemistry, CRC of the Hungarian Academy of Science at Eoetvoes University, H-1518 Budapest, P.O. Box 32 (Hungary); Beck, A. [Institute of Isotopes of the Hungarian Academy of Sciences, Budapest H-1525, P.O. Box 77 (Hungary)

    2011-07-15

    The structures of tin(II)-oxalate, tin(IV)Na-EDTA and tin(IV)Na{sub 8}-inositol hexaphosphate were investigated using XRD analysis. Samples were identified using the Moessbauer study, thermal analysis and FTIR spectrometry. The Moessbauer study determined two different oxidation states of tin atoms, and consequently two different tin surroundings in the end products. The tin oxalate was found to be orthorhombic with space group Pnma, a=9.2066(3) A, b=9.7590(1) A, c=13.1848(5) A, V=1184.62 A{sup 3} and Z=8. SnNa-EDTA was found to be monoclinic with space group P2{sub 1}/c{sub 1}, a=10.7544(3) A, b=10.1455(3) A, c=16.5130(6) A, {beta}=98.59(2){sup o}, V=1781.50(4) A{sup 3} and Z=4. Sn(C{sub 6}H{sub 6}Na{sub 8}O{sub 24}P{sub 6}) was found to be amorphous.

  18. The adsorption of molybdenum(VI) onto activated carbon from acid solution

    International Nuclear Information System (INIS)

    De Wet, H.F.

    1985-11-01

    The adsorption of molybdenum(VI) onto activated carbon is dependent on which nuclides are present in the solution. In this study the adsorption of Mo(VI) onto activated carbon is examined as a function of two variables, namely: the total molybdenum concentration and the pH. The equilibration time, the influence of ionic strength and the reversibility of the system was also examined. A series of solutions of a specified molybdenum concentration were equilibrated with activated carbon. In these experiments the pH varied from 5,5 to 0,9 while the temperature and ionic strength remained constant. The solutions were analysed colorimetrically and the pH equilibrium of each was measured. The molybdenum concentration for the series of experiments varied from 5x10 -4 M to 2x10 -2 M. 61 refs., 39 figs., 38 tabs

  19. Proton transport properties of tin phosphate, chromotropic acid ...

    Indian Academy of Sciences (India)

    The functionalized materials of tin (IV) phosphate (SnP) like chromotropic acid anchored tin ... elemental analysis (ICP–AES), thermal analysis, X-ray analysis and FTIR spectroscopy. .... nal level below 1 V, interfaced to a minicomputer for data.

  20. Nano powders, components and coatings by plasma technique

    Science.gov (United States)

    McKechnie, Timothy N. (Inventor); Antony, Leo V. M. (Inventor); O'Dell, Scott (Inventor); Power, Chris (Inventor); Tabor, Terry (Inventor)

    2009-01-01

    Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

  1. Nano powders, components and coatings by plasma technique

    Science.gov (United States)

    McKechnie, Timothy N [Brownsboro, AL; Antony, Leo V. M. [Huntsville, AL; O'Dell, Scott [Arab, AL; Power, Chris [Guntersville, AL; Tabor, Terry [Huntsville, AL

    2009-11-10

    Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

  2. Application of ion chromatography in the analysis of metals

    International Nuclear Information System (INIS)

    Doepke, T.; Braun, N.; Wuensch, G.

    1992-01-01

    Methods for the determination of chloride in molybdenum, tungsten, niobium and tantalum and of phosphorus in molybdenum and tungsten are presented. After oxidative digestion the analytes are separated from the matrix and accumulated in a small volume of liquid. Unsuppressed ion chromatography serves as the final determination method. The trace-matrix-separation and enrichment of chloride is largely independent of the kind of matrix. The procedure is therefore also applicable to concentrated solutions of various salts. A closed system ensures chloride blanks around 0.2 ppm and detection limits in the higher ppb range. A modification allows an enrichment of bromide and the simultaneous determination of chloride and bromide. (orig.) [de

  3. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition

    International Nuclear Information System (INIS)

    Sharma, Uttam; Chauhan, Sachin S; Sharma, Jayshree; Sanyasi, A K; Ghosh, J; Choudhary, K K; Ghosh, S K

    2016-01-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m 2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS. (paper)

  4. Electrospark doping of steel with tungsten

    International Nuclear Information System (INIS)

    Denisova, Yulia; Shugurov, Vladimir; Petrikova, Elizaveta; Seksenalina, Malika; Ivanova, Olga; Ikonnikova, Irina; Kunitsyna, Tatyana; Vlasov, Victor; Klopotov, Anatoliy; Ivanov, Yuriy

    2016-01-01

    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensional approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties

  5. Electrospark doping of steel with tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Denisova, Yulia, E-mail: yukolubaeva@mail.ru; Shugurov, Vladimir, E-mail: shugurov@opee.hcei.tsc.ru [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); Petrikova, Elizaveta, E-mail: elizmarkova@yahoo.com [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 36 Lenin Str. Tomsk, 634050 (Russian Federation); Seksenalina, Malika, E-mail: sportmiss@bk.ru [National Research Tomsk Polytechnic University, 30 Lenin Str. Tomsk, 634050 (Russian Federation); Ivanova, Olga, E-mail: ivaov@mail.ru; Ikonnikova, Irina, E-mail: irinaikonnikova@yandex.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq. Tomsk, 634003 (Russian Federation); Kunitsyna, Tatyana, E-mail: kma11061990@mail.ru; Vlasov, Victor, E-mail: rector@tsuab.ru [National Research Tomsk Polytechnic University, 30 Lenin Str. Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, 2 Solyanaya Sq. Tomsk, 634003 (Russian Federation); Klopotov, Anatoliy, E-mail: klopotovaa@tsuab.ru [National Research Tomsk State University, 36 Lenin Str. Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, 2 Solyanaya Sq. Tomsk, 634003 (Russian Federation); Ivanov, Yuriy, E-mail: yufi55@mail.ru [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 36 Lenin Str. Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Str. Tomsk, 634050 (Russian Federation)

    2016-01-15

    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensional approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties.

  6. Research of the technology of obtaining pure and disperse molybdenum disulfide from molybdenum concentrate

    International Nuclear Information System (INIS)

    Hovsepyan, A.H.; Israyelyan, S.M.

    2009-01-01

    The technology of obtaining pure and disperse molybdenum disulfide is worked out. The processes of refinement from the flotation reagents and deslimation by means of decantation, refinement of molybdenite concentrate from impurities by selective leaching methods are studied. The optimal regime of technological process is chosen

  7. Studies on Nanocrystalline TiN Coatings Prepared by Reactive Plasma Spraying

    Directory of Open Access Journals (Sweden)

    Dong Yanchun

    2008-01-01

    Full Text Available Titanium nitride (TiN coatings with nanostructure were prepared on the surface of 45 steel (Fe-0.45%C via reactive plasma spraying (denoted as RPS Ti powders using spraying gun with self-made reactive chamber. The microstructural characterization, phases constitute, grain size, microhardness, and wear resistance of TiN coatings were systematically investigated. The grain size was obtained through calculation using the Scherrer formula and observed by TEM. The results of X-ray diffraction and electron diffraction indicated that the TiN is main phase of the TiN coating. The forming mechanism of the nano-TiN was characterized by analyzing the SEM morphologies of surface of TiN coating and TiN drops sprayed on the surface of glass, and observing the temperature and velocity of plasma jet using Spray Watch. The tribological properties of the coating under nonlubricated condition were tested and compared with those of the AISI M2 high-speed steel and Al2O3 coating. The results have shown that the RPS TiN coating presents better wear resistance than the M2 high-speed steel and Al2O3 coating under nonlubricated condition. The microhardness of the cross-section and longitudinal section of the TiN coating was tested. The highest hardness of the cross-section of TiN coating is 1735.43HV100 g.

  8. Influence of Soil Solution Salinity on Molybdenum Adsorption by Soils

    Science.gov (United States)

    Molybdenum (Mo) adsorption on five arid-zone soils from California was investigated as a function of equilibrium solution Mo concentration (0-30 mg L-1), solution pH (4-8), and electrical conductivity (EC = 0.3 or 8 dS m-1). Molybdenum adsorption decreased with increasing pH. An adsorption maximum...

  9. Microstructures define melting of molybdenum at high pressures

    Science.gov (United States)

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-03-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature.

  10. Joining of Tungsten Armor Using Functional Gradients

    International Nuclear Information System (INIS)

    John Scott O'Dell

    2006-01-01

    The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.

  11. Problems of tungsten crack resistance optimization

    International Nuclear Information System (INIS)

    Babak, A.V.; Uskov, E.I.

    1986-01-01

    Technically pure and precipitation-hardening tungsten is studied for its crack resistance in the initial and hardened states at the temperatures of 20...2000 deg C. Results of the study are presented. It is shown that hardening of tungsten base alloys in oil from the temperature corresponding to the upper boundary of the temperature region of ductile-brittle transition increases a crack propagation resistance of the studied materias at elevated and high temperatures

  12. Characterization of plasma coated tungsten heavy alloy

    International Nuclear Information System (INIS)

    Bose, A.; Kapoor, D.; Lankford, J. Jr.; Nicholls, A.E.

    1996-01-01

    The detrimental environmental impact of Depleted Uranium-based penetrators have led to tremendous development efforts in the area of tungsten heavy alloy based penetrators. One line of investigation involves the coating of tungsten heavy alloys with materials that are prone to shear localization. Plasma spraying of Inconel 718 and 4340 steel have been used to deposit dense coatings on tungsten heavy alloy substrates. The aim of the investigation was to characterize the coating primarily in terms of its microstructure and a special push-out test. The paper describes the results of the push-out tests and analyzes some of the possible failure mechanisms by carrying out microstructural characterization of the failed rings obtained from the push out tests

  13. Recovery of uranium and molybdenum elements from gebel gattar raw material, eastern desert, Egypt. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    El-Hazek, N T; Mahdy, M A; Mahmoud, H M.K. [Nuclear Materials Authority, Cairo, (Egypt)

    1996-03-01

    G. Gatter uranium mineralizations are located along the faults and fracture zones crossing G.Gattar granitic pluton and long the contact of the pluton with the hammamat sediments. Also, molybdenum id presented in more than one mode of occurrence. The molybdenum mineralization treated in this work is the dessimenated type. The uranium and molybdenum raw material was subjected to series of leaching experiments including acid and alkaline agitation, alkaline percolation, and acid heap leaching techniques. Recovery of uranium and molybdenum was achieved by anion-exchange method followed by their elution by acidified sodium chloride. Uranium precipitation was performed in the form of ammonium diuranate (Yellow Cake). On the other hand molybdenum was precipitated in the form of molybdenum oxide. A tentative flowsheet for the extraction of both uranium and molybdenum is proposed and discussed. 13 figs., 3 tabs.

  14. Recovery of uranium and molybdenum elements from gebel gattar raw material, eastern desert, Egypt. Vol. 3

    International Nuclear Information System (INIS)

    El-Hazek, N.T.; Mahdy, M.A.; Mahmoud, H.M.K.

    1996-01-01

    G. Gatter uranium mineralizations are located along the faults and fracture zones crossing G.Gattar granitic pluton and long the contact of the pluton with the hammamat sediments. Also, molybdenum id presented in more than one mode of occurrence. The molybdenum mineralization treated in this work is the dessimenated type. The uranium and molybdenum raw material was subjected to series of leaching experiments including acid and alkaline agitation, alkaline percolation, and acid heap leaching techniques. Recovery of uranium and molybdenum was achieved by anion-exchange method followed by their elution by acidified sodium chloride. Uranium precipitation was performed in the form of ammonium diuranate (Yellow Cake). On the other hand molybdenum was precipitated in the form of molybdenum oxide. A tentative flowsheet for the extraction of both uranium and molybdenum is proposed and discussed. 13 figs., 3 tabs

  15. Active carbon supported molybdenum carbides for higher alcohols synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Chiarello, Gian Luca; Christensen, Jakob Munkholt

    This work provides an investigation of the high pressure CO hydrogenation to higher alcohols on K2CO3 promoted active carbon supported molybdenum carbide. Both activity and selectivity to alcohols over supported molybdenum carbides increased significantly compared to bulk carbides in literatures...

  16. Response of soybean plants to phosphorus, boron and molybdenum fertilization

    International Nuclear Information System (INIS)

    Abdel-Aziz, H. A.; Aly, M. E.

    2012-12-01

    A pot experiment was carried out to study the effect of added phosphorus levels (30. 60 kg p/fed) with the addition of boron at (2, 6 ppm) and molybdenum at (5, 10.ppm) and without addition beside the control the control on growth and mineral content and root nodules in soybean plants. The results indicated that the effect of phosphorus on the formation of nodules had a clear effect when added with boron, molybdenum and when boron added at a rate of 2 ppm in the absence of phosphorus led to increase in root nodules in each of the 5, 10 ppm led to increased formation of, naldetuss in of the alluvial and calcareous soil. The molybdenum, nitrogen and phosphorus uptake increased directly proportional to the result of increased rate of addition of phosphorus and molybdenum. While the uptake born may be added with the rate of increased concentration of 2 ppm, while when added at 6 ppm led tp increased absorption of boron in the calcareous soil, but led to a decrease in the alluvial soils. (Author)

  17. Edge eigen-stress and eigen-displacement of armchair molybdenum disulfide nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Quan; Li, Xi [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Volinsky, Alex A., E-mail: volinsky@usf.edu [Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620 (United States); Su, Yanjing, E-mail: yjsu@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China)

    2017-05-10

    Edge effects on mechanical properties of armchair molybdenum disulfide nanoribbons were investigated using first principles calculations. The edge eigen-stress model was applied to explain the relaxation process of forming molybdenum disulfide nanoribbon. Edge effects on surface atoms fluctuation degree were obtained from each fully relaxed nanoribbon with different width. Changes of the relaxed armchair molybdenum disulfide nanoribbons structure can be expressed using hexagonal perimeters pattern. Based on the thickness change, relaxed armchair molybdenum disulfide nanoribbons tensile/compression tests were simulated, providing intrinsic edge elastic parameters, such as eigen-stress, Young's modulus and Poisson's ratio. - Highlights: • Edge effects on mechanical properties of armchair MoS{sub 2} nanoribbons were investigated. • Structure changes of different width armchair MoS{sub 2} nanoribbons were obtained. • Tensile/compressive tests were conducted to determine elastic constants. • Mechanical properties are compared for two and three dimensional conditions.

  18. Geochronology and geochemistry of the granitoids and ore - forming age in the Xiaoyao tungsten polymetallic skarn deposit in the Jiangnan Massif tungsten belt, China: Implications for their petrogenesis, geodynamic setting, and mineralization

    Science.gov (United States)

    Su, Qiangwei; Mao, Jingwen; Wu, Shenghua; Zhang, Zhaochong; Xu, Shengfa

    2018-01-01

    The Xiaoyao tungsten polymetallic skarn deposit in the eastern Jiangnan Massif of Yangtze Block is located at the contact between a granodiorite pluton and Sinian-Cambrian limestone. The intrusions in the tungsten-rich district comprise the Xiaoyao and other granodiorite plutons and granite porphyry dikes. The age determinations by LA-ICP-MS U-Pb dating of zircons indicate that the granodiorite formed at 149.4 ± 1.1 Ma, whereas the granite porphyry was emplaced at 133.2 ± 0.7 Ma. Re-Os dating of molybdenite from the skarn orebodies yielded a weighted average age of 148.7 ± 2.3 Ma (n = 5). These ages indicate that the tungsten mineralization is temporally related to the granodiorite. The granodiorites are metaluminous (A/CNK = 0.86-0.98) and in the high-K calc-alkaline series. They contain hornblende and have a negative correlation between P2O5 and SiO2, indicating that they are typical I-type intrusions. The granite porphyries exhibit high alkali contents (Na2O + K2O = 7.97-9.53%), elevated FeOT/(FeOT + MgO) ratios (0.83-0.94), high concentrations of Zr, Nb, Ce, and Y, and high Zr saturation temperatures (average of 812 °C); thus, they are geochemically similar to A-type intrusions. The initial 87Sr/86Sr and εNd(t) values range respectively from 0.7074 to 0.7083 and from - 7.9 to - 1.3 for the granodiorite, and from 0.7008 to 0.7083 and from - 6.3 to - 4.7 for the granite porphyry. In addition, two-stage Nd model ages (T2DM) of 1.0-1.6 Ga for the granodiorite and 1.3-1.4 Ga for the granite porphyry indicate that the Proterozoic crustal rocks of the Shangxi Group could have contributed to the Xiaoyao magmas. The rhenium contents of the molybdenite grains vary from 32 to 136 ppm, suggesting that the molybdenum was derived mainly from a mixture of mantle and crustal sources. Based on the new geochemical data and regional geological investigations, we propose that the Late Jurassic mineralization-related I-type granodiorite was derived from the Neoproterozoic

  19. Pulse current electrodeposition of tungsten coatings on V–4Cr–4Ti alloy

    International Nuclear Information System (INIS)

    Jiang, Fan; Zhang, Yingchun; Li, Xuliang

    2015-01-01

    Highlights: • Tungsten coatings were successfully electroplated on vanadium alloy substrate. • Tungsten coatings consisted of two sub-layers. • Tungsten coatings plated at lower duty cycle has a better surface quality. • High heat flux property of tungsten coatings was investigated. • Helium ion irradiation property of tungsten coatings was investigated. - Abstract: Tungsten coatings with high (2 2 0)-orientation were formed on V alloy substrate by pulse current electrodeposition in air atmosphere. The coatings’ microstructure, crystal structure and adhesive strength between coatings and substrates were investigated. It could be observed the tungsten coatings consisted of two sub-layers with the inner tooth-like layer, and the outer columnar layer. The tungsten coatings deposited at lower duty cycle have a better surface quality with a little change in the adhesive strength. The tungsten coating was exposed to electron beam with power density of 200 MW/m 2 in the thermal shock test, the tungsten crystal grain surface melt, the microcracks are found among the crystal grains. Exfoliation, flaking and dense needle-like holes were observed on the tungsten coating after irradiation with helium ions at an energy of 65 keV and an implanted dose of 22.67 × 10 18 cm −2

  20. Recovery of uranium from sulphate solutions containing molybdenum

    International Nuclear Information System (INIS)

    Weir, D.R.; Genik-Sas-Berezowsky, R.M.

    1983-01-01

    A process for recovering uranium from a sulphate solution containing dissolved uranium and molybdenum includes reacting the solution with ammonia (pH 8 to 10), the pH of the original solution must not exceed 5.5 and after the addition of ammonia the pH must not be in the vicinity of 7 for a significant time. The resultant uranium precipitate is relatively uncontaminated by molybdenum. The precipitate is then separated from the remaining solution while the pH is maintained within the stated range

  1. Tungsten/copper composite deposits produced by a cold spray

    International Nuclear Information System (INIS)

    Kang, Hyun-Ki; Kang, Suk Bong

    2003-01-01

    An agglomerated tungsten/copper composite powder was both cold sprayed and plasma sprayed onto a mild steel substrate for electronic package applications. Most pores resulting from the spraying were found in the vicinity of the tungsten-rich regions of the final product. The levels of porosity varied with the amount of tungsten present. No copper oxidation was found at the cold-sprayed deposit, but relatively high copper oxidation was observed at the plasma-sprayed deposit

  2. Behavior of porous tungsten under shock compression at room temperature

    International Nuclear Information System (INIS)

    Dandekar, D.P.; Lamothe, R.M.

    1977-01-01

    This work reports the results of room-temperature shock-compression experiments on porous tungsten. The porous tungsten was fabricated by sintering 1-μm tungsten particles. The initial density of the material was 15290 kg/m 3 . Around 97% of the pores in the material were interconnected. The main features of the results are as follows: (1) porous tungsten behaves as a linear elastic material to 1.43 GPa; (2) the shock wave following the elastic precursor is unstable in the material in the stress range 1.43--2.7 GPa; (3) a stable two-wave structure is established at and above 6.4 GPa; (4) the response of porous tungsten is accurately described by the Mie-Grueneisen equation of state at stresses above 4.9 GPa, the stress at which the voids suffer a complete extinction in the material; (5) the deformations induced in the material due to shock compression are irreversible; (6) the recentered Hugoniot of porous tungsten becomes stiffer with the increasing magnitude of initial compressive stress

  3. Molecular dynamics study of grain boundary diffusion of hydrogen in tungsten

    International Nuclear Information System (INIS)

    Von Toussaint, U; Gori, S; Manhard, A; Höschen, T; Höschen, C

    2011-01-01

    Understanding the influence of the microstructure of tungsten on hydrogen transport is crucial for the use of tungsten as first-wall material in fusion reactors. Here, we report the results of molecular dynamics and transition state studies on the influence of grain boundaries in tungsten on the transport of hydrogen. An exhaustive mapping of possible minimum activation energy migration trajectories for hydrogen as the trace impurity reveals a strongly modified activation energy distribution in the neighborhood of grain boundaries together with an altered connectivity matrix. The results indicate that grain boundaries in polycrystalline tungsten may provide an important transport channel, especially for neutron-damaged tungsten.

  4. Effect of oxidizing environment on mechanical properties of molybdenum and TZM

    International Nuclear Information System (INIS)

    Liu, C.T.; Anderson, S.H.; Inouye, H.

    1978-10-01

    The effect of environment on mechanical properties of molybdenum and TZM was investigated in low-pressure (1.3-mPa) oxygen at 1150 0 C. Specimens of TZM picked up oxygen and lost carbon. The oxygen concentration increases linearly with exposure time, indicating that the chemisorption of oxygen molecules at the specimen surface, rather than bulk diffusion, controls the kinetics of oxygen absorption at 1150 0 C. Specimens of TZM increase in tensile strength and decrease in ductility with increasing oxygen content. Exposed TZM loses its ductility at elevated temperatures at an oxygen level of 500 ppM. The embrittlement is due to the formation of zones or oxide precipitates, which harden the alloy and promote the brittle fracture associated with cleavage and grain-boundary separation. Unalloyed molybdenum responds to the oxidizing environment quite differently from TZM. The molybdenum (containing no active element such as Ti and Zr) showed no internal oxidation at 1150 0 C. Instead, our results indicate that a trace of oxygen penetrated into molybdenum through its grain boundaries. This penetration raises the ductile-to-brittle transition temperature of molybdenum by 200 0 C lowers the ductility above 900 0 C. The ductility of oxygen-exposed molybdenum is virtually unaffected in the temperature range from 400 to 900 0 C. A ductility minimum (10%) is observed at 1350 0 C because of dynamic embrittlement effects; that is, diffusion of oxygen to grain boundaries or crack tips where high triaxial states of stress are generated during plastic deformation. This embrittlement can be totally eliminated by an increase in strain rate

  5. Paraelasticity in electron-irradiated molybdenum

    International Nuclear Information System (INIS)

    Beuneu, Brigitte; Quere, Yves.

    1981-11-01

    The relaxation of a radiation-induced point defect-most probably the rotation of a dumbell-is observed during isothermal anneals of irradiated molybdenum by resistivity measurements. The recovery of close pairs is not affected, in first analysis, by the presence of a uniaxial stress

  6. Special features of nickel-molybdenum alloy electrodeposition onto screen-type cathodes

    International Nuclear Information System (INIS)

    Aleksandrova, G.S.; Varypaev, V.N.

    1982-01-01

    Electrolytic nickel-molybdenum alloy, which has a rather low hydrogen overpotential and high corrosion resistance, is of interest as cathode material in industrial electrolysis. Screen-type electrodes with a nickel-molybdenum coating can be used as nonconsumable cathodes in water-activated magnesium-alloy batteries

  7. Selective Recovery of Mushistonite from Gravity Tailings of Copper–Tin Minerals in Tajikistan

    OpenAIRE

    Lei Sun; Yuehua Hu; Wei Sun; Zhiyong Gao; Mengjie Tian

    2017-01-01

    Tajikistan has abundant copper–tin resources. In this study, mineralogical analysis of copper–tin ores from the Mushiston deposit of Tajikistan indicates that tin mainly occurred in mushistonite, cassiterite, and stannite, while copper mainly occurred in mushistonite, malachite, azurite, and stannite. The total grades of tin (Sn) and copper (Cu) were 0.65% and 0.66%, respectively, and the dissemination size of copper–tin minerals ranged from 4 μm to over 200 μm. Coarse particles of copper–tin...

  8. Determination of molybdenum in plant reference material by thermal-ionization isotope-dilution mass spectrometry

    International Nuclear Information System (INIS)

    Saumer, M.; Gantner, E.; Reinhardt, J.; Ache, H.J.

    1992-01-01

    An analytical method is described for the determination of the concentration and the isotopic composition of molybdenum in plant samples using thermal ionization mass spectrometry. After microwave acid digestion and liquid-liquid extractive separation with Amberlite LA-2, the molybdenum isotopes are measured as MoO 3 - -ions in a quadrupole mass spectrometer. In all cases, the relative standard deviation of the measurements of both natural and spike molybdenum was better than 3% for all ratios measured. The concentration of molybdenum found in three different plant reference materials agreed well with the certified values. (orig.)

  9. MOLYBDENUM CATALYZED ACID PEROXIDE BLEACHING OF EUCALYPTUS KRAFT PULP

    Directory of Open Access Journals (Sweden)

    Marcos S. Rabelo

    2008-08-01

    Full Text Available Molybdenum catalyzed peroxide bleaching (PMo Stage consists of pulp treatment with hydrogen peroxide under acidic conditions in the presence of a molybdenum catalyst. Molybdenum is applied in catalytic doses (50-200 mg/kg pulp and may originate from various sources, including (NH46Mo7O24.4H2O, Na2MoO4.2H2O, siliconmolybdate, etc. This work is aimed at optimizing the PMo stage and evaluating its industrial application in the OAZDP sequence. Optimum PMo stage conditions for bleaching eucalyptus pulp were 90 ºC, pH 3.5, 2 h, 0.1 kg/adt Mo and 5 kg/adt H2O2. The PMo stage was more efficient to remove pulp hexenuronic acids than lignin. Its efficiency decreased with increasing pH in the range of 1.5-5.5, while it increased with increasing temperature and peroxide and molybdenum doses. The application of the PMo stage as replacement for the A-stage of the AZDP sequence significantly decreased chlorine dioxide demand. The PMo stage caused a decrease of 20-30% in the generation of organically bound chlorine. The quality parameters of the pulp produced during the PMo stage mill trial were comparable to those obtained with the reference A-stage.

  10. Surface composition of carburized tungsten trioxide and its catalytic activity

    International Nuclear Information System (INIS)

    Nakazawa, M.; Okamoto, H.

    1985-01-01

    The surface composition and electronic structure of carburized tungsten trioxide are investigated using x-ray photoelectron spectroscopy (XPS). The relationship between the surface composition and the catalytic activity for methanol electro-oxidation is clarified. The tungsten carbide concentration in the surface layer increases with the carburization time. The formation of tungsten carbide enhances the catalytic activity. On the other hand, the presence of free carbon or tungsten trioxide in the surface layer reduces the activity remarkably. It is also shown that, the higher the electronic density of states near the Fermi level, the higher the catalytic activity

  11. GEMAS: Molybdenum Spatial Distribution Patterns in European Soil

    Science.gov (United States)

    Cicchella, Domenico; Zuzolo, Daniela; Demetriades, Alecos; De Vivo, Benedetto; Eklund, Mikael; Ladenberger, Anna; Negrel, Philippe; O'Connor, Patrick

    2017-04-01

    Molybdenum is an essential trace element for both plants and animals as well as for human being. It is one such trace element for which potential health concerns have been raised but for which few data exist and little investigation or interpretation of distributions in soils has been made. The main goal of this study was to fill this gap. Molybdenum (Mo) concentrations are reported for the similar spatial distribution patterns mainly governed by geology (parent material and mineralisation), as well as weathering, soil formation and climate since the last glaciations period. The dominant feature is represented by low Mo concentrations over the coarse-grained sandy deposits of the last glaciations in central northern Europe while the most extensive anomalies occur in Scandinavian soils. The highest Mo concentration value occurs to the North of Oslo close to one of the largest porphyry Mo deposit of the World. Some interesting anomalous patterns occur also in Italy in correspondence with alkaline volcanics, in Spain and Greece associated with sulfides mineralizations and in Slovenia and Croatia where are probably related to the long weathering history of karstic residual soils. Anomalous concentrations in some areas of Ireland represent a clear example of how an excess of molybdenum has produced potentially toxic pastures. In fact, these give rise to problems particularly in young cattle when excess molybdenum in the herbage acts as an antagonist, which militates against efficient copper absorption by the animal.

  12. Study of tungsten based positron moderators

    International Nuclear Information System (INIS)

    Lucio, O.G. de; Pérez, M.; Mendoza, U.; Morales, J.G.; Cruz, J.C.; DuBois, R.D.

    2015-01-01

    Positrons and how they interact with matter has a growing interest in many fields. Most of their uses require the production of slow positron beams with a well-defined energy, but since these particles are usually generated by means of a radioactive source, they are fast and with a broad distribution of energies. For this reason it is necessary to moderate them to lower energies via inelastic collisions. Then, they can be accelerated to the desired energies. This requires the use of a moderator. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency and relatively low cost. In this work we present different methods of producing transmission tungsten-based moderators, with particular interest in a combination of tungsten thin foils and grids. We also show results about the characterization of these moderators by ion beam analysis and microscopy techniques along with their relative moderation efficiencies

  13. Study of tungsten based positron moderators

    Energy Technology Data Exchange (ETDEWEB)

    Lucio, O.G. de; Pérez, M.; Mendoza, U.; Morales, J.G.; Cruz, J.C. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México DF (Mexico); DuBois, R.D. [Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2015-07-01

    Positrons and how they interact with matter has a growing interest in many fields. Most of their uses require the production of slow positron beams with a well-defined energy, but since these particles are usually generated by means of a radioactive source, they are fast and with a broad distribution of energies. For this reason it is necessary to moderate them to lower energies via inelastic collisions. Then, they can be accelerated to the desired energies. This requires the use of a moderator. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency and relatively low cost. In this work we present different methods of producing transmission tungsten-based moderators, with particular interest in a combination of tungsten thin foils and grids. We also show results about the characterization of these moderators by ion beam analysis and microscopy techniques along with their relative moderation efficiencies.

  14. OEDGE modeling for the planned tungsten ring experiment on DIII-D

    Directory of Open Access Journals (Sweden)

    J.D. Elder

    2017-08-01

    Full Text Available The OEDGE code is used to model tungsten erosion and transport for experiments with toroidal rings of high-Z metal tiles in the DIII-D tokamak. Such modeling is needed for both experimental and diagnostic design to have estimates of the expected core and edge tungsten density and to understand the various factors contributing to the uncertainties in these calculations. OEDGE simulations are performed using the planned experimental magnetic geometries and plasma conditions typical of both L-mode and inter-ELM H-mode discharges in DIII-D. OEDGE plasma reconstruction based on specific representative discharges for similar geometries is used to determine the plasma conditions applied to tungsten plasma impurity simulations. A new model for tungsten erosion in OEDGE was developed which imports charge-state resolved carbon impurity fluxes and impact energies from a separate OEDGE run which models the carbon production, transport and deposition for the same plasma conditions as the tungsten simulations. These values are then used to calculate the gross tungsten physical sputtering due to carbon plasma impurities which is then added to any sputtering by deuterium ions; tungsten self-sputtering is also included. The code results are found to be dependent on the following factors: divertor geometry and closure, the choice of cross-field anomalous transport coefficients, divertor plasma conditions (affecting both tungsten source strength and transport, the choice of tungsten atomic physics data used in the model (in particular ionization rate for W-atoms, and the model of the carbon flux and energy used for calculating the tungsten source due to sputtering. Core tungsten density is found to be of order 1015m−3 (excluding effects of any core transport barrier and with significant variability depending on the other factors mentioned with density decaying into the scrape off layer. For the typical core density in the plasma conditions examined of 2 to 4

  15. Dense Pure Tungsten Fabricated by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Dianzheng Wang

    2017-04-01

    Full Text Available Additive manufacturing using tungsten, a brittle material, is difficult because of its high melting point, thermal conductivity, and oxidation tendency. In this study, pure tungsten parts with densities of up to 18.53 g/cm3 (i.e., 96.0% of the theoretical density were fabricated by selective laser melting. In order to minimize balling effects, the raw polyhedral tungsten powders underwent a spheroidization process before laser consolidation. Compared with polyhedral powders, the spherical powders showed increased laser absorptivity and packing density, which helped in the formation of a continuous molten track and promoted densification.

  16. On the shear strength of tungsten nano-structures with embedded helium

    International Nuclear Information System (INIS)

    Smirnov, R.D.; Krasheninnikov, S.I.

    2013-01-01

    Modification of plastic properties of tungsten nano-structures under shear stress load due to embedded helium atoms is studied using molecular dynamics modelling. The modelling demonstrates that the yield strength of tungsten nano-structures reduces significantly with increasing embedded helium concentration. At high helium concentrations (>10 at%), the yield strength decreases to values characteristic to the pressure in helium nano-bubbles, which are formed in tungsten under such conditions and thought to be responsible for the formation of nano-fuzz on tungsten surfaces irradiated with helium plasma. It is also shown that tungsten plastic flow strongly facilitates coagulation of helium clusters to larger bubbles. The temperature dependencies of the yield strength are obtained. (letter)

  17. Superhard Rhenium/Tungsten Diboride Solid Solutions.

    Science.gov (United States)

    Lech, Andrew T; Turner, Christopher L; Lei, Jialin; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B

    2016-11-02

    Rhenium diboride (ReB 2 ), containing corrugated layers of covalently bonded boron, is a superhard metallic compound with a microhardness reaching as high as 40.5 GPa (under an applied load of 0.49 N). Tungsten diboride (WB 2 ), which takes a structural hybrid between that of ReB 2 and AlB 2 , where half of the boron layers are planar (as in AlB 2 ) and half are corrugated (as in ReB 2 ), has been shown not to be superhard. Here, we demonstrate that the ReB 2 -type structure can be maintained for solid solutions of tungsten in ReB 2 with tungsten content up to a surprisingly large limit of nearly 50 atom %. The lattice parameters for the solid solutions linearly increase along both the a- and c-axes with increasing tungsten content, as evaluated by powder X-ray and neutron diffraction. From micro- and nanoindentation hardness testing, all of the compositions within the range of 0-48 atom % W are superhard, and the bulk modulus of the 48 atom % solid solution is nearly identical to that of pure ReB 2 . These results further indicate that ReB 2 -structured compounds are superhard, as has been predicted from first-principles calculations, and may warrant further studies into additional solid solutions or ternary compounds taking this structure type.

  18. Enhanced properties of tungsten thin films deposited with a novel HiPIMS approach

    Science.gov (United States)

    Velicu, Ioana-Laura; Tiron, Vasile; Porosnicu, Corneliu; Burducea, Ion; Lupu, Nicoleta; Stoian, George; Popa, Gheorghe; Munteanu, Daniel

    2017-12-01

    Despite the tremendous potential for industrial use of tungsten (W), very few studies have been reported so far on controlling and tailoring the properties of W thin films obtained by physical vapor deposition techniques and, even less, for those deposited by High Power Impulse Magnetron Sputtering (HiPIMS). This study presents results on the deposition process and properties characterization of nanocrystalline W thin films deposited on silicon and molybdenum substrates (100 W average sputtering power) by conventional dc magnetron sputtering (dcMS) and HiPIMS techniques. Topological, structural, mechanical and tribological properties of the deposited thin films were investigated. It was found that in HiPIMS, both deposition process and coatings properties may be optimized by using an appropriate magnetic field configuration and pulsing design. Compared to the other deposited samples, the W films grown in multi-pulse (5 × 3 μs) HiPIMS assisted by an additional magnetic field, created with a toroidal-shaped permanent magnet placed in front of the magnetron cathode, show significantly enhanced properties, such as: smoother surfaces, higher homogeneity and denser microstructure, higher hardness and Young's modulus values, better adhesion to the silicon substrate and lower coefficient of friction. Mechanical behaviour and structural changes are discussed based on plasma diagnostics results.

  19. Structural integrity testing of glass-ceramic/molybdenum vacuum tube frames

    International Nuclear Information System (INIS)

    Spears, R.K.

    1980-01-01

    In this study, vacuum tube subassemblies made of glass-ceramic insulators sealed to inner and outer molybdenum frames were loaded in compression to failure with a tensile test machine. Several factors were varied in processing these subassemblies. These factors included etching and nonetching of molybdenum piece parts, annealing and nonannealing of subassemblies, and vapor and non-vapor honing of insulators after sealing. After failure, the subassemblies were examined for fracture patterns. In most cases, fracture started at points near the lower portion of the inner sleeve-insulator interface. More load was carried by subassemblies having molybdenum piece parts that were acid etched. No difference appeared between the strength of subassemblies having annealed and nonannealed glass-ceramic insulators. Parts with vapor-honed insulators failed at substantially lower loads

  20. High-temperature performance of the brazement of molybdenum single crystals

    International Nuclear Information System (INIS)

    Hirakoa, Y.

    1992-01-01

    Molybdenum is utilized in the fields of high-temperature vacuum industry, electrical and electronic industry, and chemical industries. For the wider application of this material, however, it is necessary to obtain a joining with good quality. In this investigation, high-temperature brazing of a single-crystalline molybdenum was performed. Then the bend properties of the brazement after a high-temperature annealing were evaluated. The single-crystalline molybdenum had been produced by the secondary recrystallization method. Brazing was performed in vacuum at 2273K using Mo-40Ru alloy powder as a brazing material. The brazement was investigated via optical microscopy, EPMA, Knoop hardness, and three point bending. In this paper the effects of annealing in hydrogen and vacuum are discussed