WorldWideScience

Sample records for tungsten ii experiment

  1. [60]Fullerene Displacement from (Dihapto-Buckminster-Fullerene) Pentacarbonyl Tungsten(0): An Experiment for the Inorganic Chemistry Laboratory, Part II

    Science.gov (United States)

    Cortes-Figueroa, Jose E.; Moore-Russo, Deborah A.

    2006-01-01

    The kinetics experiments on the ligand-C[subscript 60] exchange reactions on (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], form an educational activity for the inorganic chemistry laboratory that promotes graphical thinking as well as the understanding of kinetics, mechanisms, and the…

  2. Potentiometric determination of the tungsten content of tantalum-tungsten alloys with chromium II

    International Nuclear Information System (INIS)

    Gavra, Z.; Ronen, S.; Levin, R.

    1977-05-01

    A method was developed for the potentiometric determination of the tungsten content of tantalum-tungsten alloys of different compositions. These were dissolved under conditions that enabled the tungsten content to be determined with chromium (II). Phosphoric acid was selected as a suitable complexing agent for the prevention of the precipitation of tungsten and tantalum compounds. The use of chromium (II) required an oxygen-tight system and therefore the work was carried out in suitable vessels for storage and tritation

  3. Quenching and recovery experiments on tungsten

    International Nuclear Information System (INIS)

    Rasch, K.D.; Siegel, R.W.; Schultz, H.

    1976-01-01

    A short summary is given of new results concerning transmission electron microscopy and resistivity measurements on quenched tungsten. These results give evidence for the first time that the quenching and annealing of high purity tungsten leads to vacancy--defect clustering resulting in small voids observable in the electron microscope. 21 references

  4. Tungsten

    International Nuclear Information System (INIS)

    Eschnauer, H.

    1978-01-01

    There is no substitute for tungsten in its main field of application so that the demand will not decrease, but there is a need for further important applications. If small variations are left out of account, a small but steady increase in the annual tungsten consumption can be expected. The amount of tungsten available will increase due to the exploritation of new deposits and the extension of existing mines. This tendency will probably be increased by the world-wide prospection. It is hard to make an assessment of the amount of tungsten are obtained in the People's Republic of china, the purchases of Eastern countries in the West, and the sales policy of the USA; pice forecasts are therefore hard to make. A rather interesting subject with regard to the tungsten cycle as a whole is the reprocessing of tungsten-containing wastes. (orig.) [de

  5. Impact of arcing on carbon and tungsten. From the observations in JT-60U, LHD, and NAGDIS-II

    International Nuclear Information System (INIS)

    Kajita, Shin; Fukumoto, Masakatsu; Nakano, Tomohide; Tokitani, Masayuki; Masuzaki, Suguru; Ohno, Noriyasu; Takamura, Shuichi; Yoshida, Naoaki; Ueda, Yoshio

    2012-11-01

    This paper assesses the impact of arcing in fusion devices based on the observations in JT-60U, LHD, and the linear divertor simulator NAGDIS-II. In NAGDIS-II, the demonstration experiments of arcing/unipolar arcing have been conducted by simulating the transient heat load using a pulsed laser; it was found that the arcing can be easily initiated on the helium irradiated nanostructured tungsten. By measuring the field emission current property from the helium irradiated tungsten surface, the initiation conditions are discussed. From the detailed analysis of JT-60U tiles, it is found that arcing phenomena occurred on carbon baffle plates. From the observation of the arc trails recorded on the baffle plate, the amount of the eroded materials is discussed. The arcing seemed to occur frequently on inner baffles rather than the outer baffles. From LHD, it is shown that the arcing can be initiated on nanostructured tungsten even without transient events. The erosion of tungsten by arcing will become an important issue in a fusion reactor, where helium fluence is significantly increased. (author)

  6. The Belle II Experiment

    CERN Document Server

    Kahn, J

    2017-01-01

    Set to begin data taking at the end of 2018, the Belle II experiment is the next-generation B-factory experiment hosted at KEK in Tsukuba, Japan. The experiment represents the cumulative effort from the collaboration of experimental and detector physics, computing, and software development. Taking everything learned from the previous Belle experiment, which ran from 1998 to 2010, Belle II aims to probe deeper than ever before into the field of heavy quark physics. By achieving an integrated luminosity of 50 ab−1 and accumulating 50 times more data than the previous experiment across its lifetime, along with a rewritten analysis framework, the Belle II experiment will push the high precision frontier of high energy physics. This paper will give an overview of the key components and development activities that make the Belle II experiment possible.

  7. Experiments on transient melting of tungsten by ELMs in ASDEX Upgrade

    Science.gov (United States)

    Krieger, K.; Balden, M.; Coenen, J. W.; Laggner, F.; Matthews, G. F.; Nille, D.; Rohde, V.; Sieglin, B.; Giannone, L.; Göths, B.; Herrmann, A.; de Marne, P.; Pitts, R. A.; Potzel, S.; Vondracek, P.; ASDEX-Upgrade Team; EUROfusion MST1 Team

    2018-02-01

    Repetitive melting of tungsten by power transients originating from edge localized modes (ELMs) has been studied in ASDEX Upgrade. Tungsten samples were exposed to H-mode discharges at the outer divertor target plate using the divertor manipulator II (DIM-II) system (Herrmann et al 2015 Fusion Eng. Des. 98-9 1496-9). Designed as near replicas of the geometries used also in separate experiments on the JET tokamak (Coenen et al 2015 J. Nucl. Mater. 463 78-84 Coenen et al 2015 Nucl. Fusion 55 023010; Matthews et al 2016 Phys. Scr. T167 7), the samples featured a misaligned leading edge and a sloped ridge respectively. Both structures protrude above the default target plate surface thus receiving an increased fraction of the parallel power flux. Transient melting by ELMs was induced by moving the outer strike point to the sample location. The temporal evolution of the measured current flow from the samples to vessel potential confirmed transient melting. Current magnitude and dependency from surface temperature provided strong evidence for thermionic electron emission as main origin of the replacement current driving the melt motion. The different melt patterns observed after exposures at the two sample geometries support the thermionic electron emission model used in the MEMOS melt motion code, which assumes a strong decrease of the thermionic net current at shallow magnetic field to surface angles (Pitts et al 2017 Nucl. Mater. Energy 12 60-74). Post exposure ex situ analysis of the retrieved samples show recrystallization of tungsten at the exposed surface areas to a depth of up to several mm. The melt layer transport to less exposed surface areas leads to ratcheting pile up of re-solidified debris with zonal growth extending from the already enlarged grains at the surface.

  8. Nitrogen implantation in tungsten and migration in the fusion experiment ASDEX upgrade

    International Nuclear Information System (INIS)

    Meisl, Gerd Korbinian

    2015-01-01

    The implantation of nitrogen ions into tungsten was studied in laboratory experiments to understand the interaction of nitrogen containing fusion plasmas with tungsten walls. The resulting model of W-N interaction was tested by experiments in the tokamak ASDEX Upgrade. Using the measurements from these experiments as boundary condition, nitrogen transport and re-distribution in the plasma were modeled by self-consistent WallDYN-DIVIMP simulations.

  9. Experiment CATETO II

    International Nuclear Information System (INIS)

    Hendriks, J.A.; Freudenreich, W.E.

    1994-03-01

    In the irradiation experiment CATETO II different reduced activation (RA) steels will be irradiated up to 2.5 dpa at a temperature of 300 C. The results of the calculation of the nuclear constants, the reactivity effect, and the activity of the steel samples are presented. (orig.)

  10. OEDGE modeling for the planned tungsten ring experiment on DIII-D

    Directory of Open Access Journals (Sweden)

    J.D. Elder

    2017-08-01

    Full Text Available The OEDGE code is used to model tungsten erosion and transport for experiments with toroidal rings of high-Z metal tiles in the DIII-D tokamak. Such modeling is needed for both experimental and diagnostic design to have estimates of the expected core and edge tungsten density and to understand the various factors contributing to the uncertainties in these calculations. OEDGE simulations are performed using the planned experimental magnetic geometries and plasma conditions typical of both L-mode and inter-ELM H-mode discharges in DIII-D. OEDGE plasma reconstruction based on specific representative discharges for similar geometries is used to determine the plasma conditions applied to tungsten plasma impurity simulations. A new model for tungsten erosion in OEDGE was developed which imports charge-state resolved carbon impurity fluxes and impact energies from a separate OEDGE run which models the carbon production, transport and deposition for the same plasma conditions as the tungsten simulations. These values are then used to calculate the gross tungsten physical sputtering due to carbon plasma impurities which is then added to any sputtering by deuterium ions; tungsten self-sputtering is also included. The code results are found to be dependent on the following factors: divertor geometry and closure, the choice of cross-field anomalous transport coefficients, divertor plasma conditions (affecting both tungsten source strength and transport, the choice of tungsten atomic physics data used in the model (in particular ionization rate for W-atoms, and the model of the carbon flux and energy used for calculating the tungsten source due to sputtering. Core tungsten density is found to be of order 1015m−3 (excluding effects of any core transport barrier and with significant variability depending on the other factors mentioned with density decaying into the scrape off layer. For the typical core density in the plasma conditions examined of 2 to 4

  11. Visualizing Type-II Weyl Points in Tungsten Ditelluride by Quasiparticle Interference.

    Science.gov (United States)

    Lin, Chun-Liang; Arafune, Ryuichi; Liu, Ro-Ya; Yoshimura, Masato; Feng, Baojie; Kawahara, Kazuaki; Ni, Zeyuan; Minamitani, Emi; Watanabe, Satoshi; Shi, Youguo; Kawai, Maki; Chiang, Tai-Chang; Matsuda, Iwao; Takagi, Noriaki

    2017-11-28

    Weyl semimetals (WSMs) are classified into two types, type I and II, according to the topology of the Weyl point, where the electron and hole pockets touch each other. Tungsten ditelluride (WTe 2 ) has garnered a great deal of attention as a strong candidate to be a type-II WSM. However, the Weyl points for WTe 2 are located above the Fermi level, which has prevented us from identifying the locations and the connection to the Fermi arc surface states by using angle-resolved photoemission spectroscopy. Here, we present experimental proof that WTe 2 is a type-II WSM. We measured energy-dependent quasiparticle interference patterns with a cryogenic scanning tunneling microscope, revealing the position of the Weyl point and its connection with the Fermi arc surface states, in agreement with prior theoretical predictions. Our results provide an answer to this crucial question and stimulate further exploration of the characteristics of WSMs.

  12. Hot tungsten plate based ionizer for cesium plasma in a multi-cusp field experiment

    International Nuclear Information System (INIS)

    Patel, Amitkumar D.; Sharma, Meenakshee; Ramasubramanian, Narayanan; Chattopadhyay, Prabal K.

    2015-01-01

    In a newly proposed basic experiment, contact-ionized cesium ions will be confined by a multi cups magnetic field configuration. The cesium ion will be produced by impinging collimated neutral atoms on an ionizer consisting of the hot tungsten plate. The temperature of the tungsten plate will also be made high enough (∼2700 K) such that it will contribute electrons also to the plasma. It is expected that at this configuration the cesium plasma would be really quiescent and would be free from even the normal drift waves observed in the classical Q-machines. For the ionizer a design based on F. F. Chen's design was made. This ionizer is very fine machining and exotic material like Tungsten plate, Molybdenum screws, rings, and Boron Nitride ceramics etc. The fine and careful machining of these materials was very hard. In this paper, the experience about to join the tungsten wire to molybdenum plate and alloy of tantalum and molybdenum ring is described. In addition experimental investigations have been made to measure 2D temperature distribution profile of the Tungsten hot plate using infrared camera and the uniformity of temperature distribution over the hot plate surface is discussed. (author)

  13. Analysis of the interaction of deuterium plasmas with tungsten in the Fuego-Nuevo II device

    Science.gov (United States)

    Ramos, Gonzalo; Castillo, Fermín; Nieto, Martín; Martínez, Marco; Rangel, José; Herrera-Velázquez, Julio

    2012-10-01

    Tungsten is one of the main candidate materials for plasma-facing components in future fusion power plants. The Fuego-Nuevo II, a plasma focus device, which can produce dense magnetized helium and deuterium plasmas, has been adapted to address plasma-facing materials questions. In this paper we present results of tungsten targets exposed to deuterium plasmas in the Fuego Nuevo II device, using different experimental conditions. The plasma generated and accelerated in the coaxial gun is expected to have, before the pinch, energies of the order of hundreds eV and velocities of the order of 40,000 m s-1. At the pinch, the ions are reported to have energies of the order of 1.5 keV at most. The samples, analysed with a scanning electron microscope (SEM) in cross section show a damage profile to depths of the order of 580 nm, which are larger than those expected for ions with 1.5 keV, and may be evidence of ion acceleration. An analysis with the SRIM (Stopping Range of Ions in Matter) package calculations is shown.

  14. Simulations of thermionic suppression during tungsten transient melting experiments.

    Czech Academy of Sciences Publication Activity Database

    Komm, Michael; Tolias, P.; Ratynskaia, S.; Dejarnac, Renaud; Gunn, J. P.; Krieger, K.; Podolník, Aleš; Pitts, R.A.; Pánek, Radomír

    T170, December (2017), č. článku 014069. ISSN 0031-8949. [PFMC 2017: 16th International Conference on Plasma-Facing Materials and Components for Fusion Applications. Düsseldorf, 16.05.2017-19.05.2017] R&D Projects: GA ČR(CZ) GA16-14228S; GA MŠk(CZ) 8D15001 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : tokamak * thermionic emission * tungsten * melt * plasma-facing component Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 1.3 Physical sciences Impact factor: 1.280, year: 2016 http://iopscience.iop.org/article/10.1088/1402-4896/aa9209

  15. An in-situ field ion microscope study of irradiated tungsten and tungsten alloys. II. The recovery behavior in Stages I and II: experimental results. Report No. 2347

    International Nuclear Information System (INIS)

    Wilson, K.L.; Seidman, D.N.

    1974-12-01

    The low temperature FIM isochronal annealing spectrum of four different purity levels of tungsten (resistivity ratios R of 5 . 10 4 , 1.5 . 10 4 , 50 and 15), irradiated in-situ with 30 keV W + ions to a dose of 5 . 10 12 ion cm -2 at 18 K, consisted of distinct recovery peaks at approximately 38, 50, 65 and 80 K with a small amount of recovery observed up to 120 K. The spectra were essentially identical between 18 and 120 K, but a fifth group of W specimens with approximately equal to 5 began to exhibit some deviations from the standard spectrum. This result indicates that the distribution of self-interstitial atoms (SIAs) produced by the ion irradiations in the W FIM tips was such that the SIA-SIA reaction dominated the recovery behavior. The isochronal peak width at half-maximum for the 38 K long-range SIA migration peak and the Stage II peaks in pure W were shown to be approximately equal to the value predicted by a diffusion model. The isochronal recovery spectra for W--0.5 at. per cent and 3 at. per cent Re alloys were radically different from the isochronal recovery spectra of pure W. For both W--Re alloys, the amount of recovery for the long-range migration peak was suppressed, and, for the 3 at. per cent Re alloy, it was almost eliminated. High-purity W (R = 5 . 10 4 ), doped with 50-100 appm carbon, showed a 20 per cent reduction in the amount of recovery observed for the long-range migration peak at 38 K. (U.S.)

  16. Displacement cascades and defect annealing in tungsten, Part II: Object kinetic Monte Carlo simulation of tungsten cascade aging

    Energy Technology Data Exchange (ETDEWEB)

    Nandipati, Giridhar, E-mail: giridhar.nandipati@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA (United States); Setyawan, Wahyu; Heinisch, Howard L. [Pacific Northwest National Laboratory, Richland, WA (United States); Roche, Kenneth J. [Pacific Northwest National Laboratory, Richland, WA (United States); Department of Physics, University of Washington, Seattle, WA 98195 (United States); Kurtz, Richard J. [Pacific Northwest National Laboratory, Richland, WA (United States); Wirth, Brian D. [University of Tennessee, Knoxville, TN (United States)

    2015-07-15

    The results of object kinetic Monte Carlo (OKMC) simulations of the annealing of primary cascade damage in bulk tungsten using a comprehensive database of cascades obtained from molecular dynamics (Setyawan et al.) are described as a function of primary knock-on atom (PKA) energy at temperatures of 300, 1025 and 2050 K. An increase in SIA clustering coupled with a decrease in vacancy clustering with increasing temperature, in addition to the disparate mobilities of SIAs versus vacancies, causes an interesting effect of temperature on cascade annealing. The annealing efficiency (the ratio of the number of defects after and before annealing) exhibits an inverse U-shape curve as a function of temperature. The capabilities of the newly developed OKMC code KSOME (kinetic simulations of microstructure evolution) used to carry out these simulations are described.

  17. Displacement cascades and defect annealing in tungsten, Part II: Object kinetic Monte Carlo Simulation of Tungsten Cascade Aging

    Energy Technology Data Exchange (ETDEWEB)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2015-07-01

    The results of object kinetic Monte Carlo (OKMC) simulations of the annealing of primary cascade damage in bulk tungsten using a comprehensive database of cascades obtained from molecular dynamics (Setyawan et al.) are described as a function of primary knock-on atom (PKA) energy at temperatures of 300, 1025 and 2050 K. An increase in SIA clustering coupled with a decrease in vacancy clustering with increasing temperature, in addition to the disparate mobilities of SIAs versus vacancies, causes an interesting effect of temperature on cascade annealing. The annealing efficiency (the ratio of the number of defects after and before annealing) exhibits an inverse U-shape curve as a function of temperature. The capabilities of the newly developed OKMC code KSOME (kinetic simulations of microstructure evolution) used to carry out these simulations are described.

  18. Dynamic SEM wear studies of tungsten carbide cermets. [friction and wear experiments

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined, and etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the tungsten carbide (WC) and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation, and the wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation, and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  19. Experience with MODSIM II

    International Nuclear Information System (INIS)

    Streets, J.; Berg, D.; Oleynik, G.; Pordes, R.; Slimmer, D.

    1992-02-01

    We present results of computer simulations for Data Acquisition systems for large fixed target experiments in an object oriented simulation language, MODSIM. This paper summarizes our experiences and presents preliminary results from the simulation already completed. We also indicate the resources required for this project

  20. Scanning the melting curve of tungsten by a submicrosecond wire-explosion experiment

    International Nuclear Information System (INIS)

    Kloss, A.; Hess, H.; Schneidenbach, H.; Grossjohann, R.

    1999-01-01

    Measurements of temperature and density during a wire-explosion experiment at atmospheric pressure are described. The measurements encompass a parameter range from the solid to near the critical point. The influence of a polytetra-fluoroethylene coating of the wire, necessary to prevent surface discharges, on the temperature and density measurements is investigated. The melting curve of tungsten up to 4,000 K is determined

  1. Phase II Tungsten Fate-and Transport Study for Camp Edwards

    Science.gov (United States)

    2010-02-01

    cubic meters degrees Fahrenheit (oF-32)/1.8 degrees Celsius (oC) feet 0.3048 meters gallons (U.S. liquid) 3.785412 E-03 liters inches 0.0254 meters...1 Desorption/dissolution of tungsten 451 39 8.1 2 Sorption of sodium tungstate and desorption/dissolution of tungsten and sodium tungstate 124

  2. Tungsten impurity transport experiments in Alcator C-Mod to address high priority research and development for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Loarte, A.; Polevoi, A. R.; Hosokawa, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Reinke, M. L. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Chilenski, M.; Howard, N.; Hubbard, A.; Hughes, J. W.; Rice, J. E.; Walk, J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Köchl, F. [Technische Universität Wien, Atominstitut, Stadionallee 2, 1020 Vienna (Austria); Pütterich, T.; Dux, R. [Max-Planck-Institut für Plasmaphysik, Boltzmanstraße 2, D-85748 Garching (Germany); Zhogolev, V. E. [NRC “Kurchatov Institute,” Kurchatov Square 1, 123098 Moscow (Russian Federation)

    2015-05-15

    Experiments in Alcator C-Mod tokamak plasmas in the Enhanced D-alpha H-mode regime with ITER-like mid-radius plasma density peaking and Ion Cyclotron Resonant heating, in which tungsten is introduced by the laser blow-off technique, have demonstrated that accumulation of tungsten in the central region of the plasma does not take place in these conditions. The measurements obtained are consistent with anomalous transport dominating tungsten transport except in the central region of the plasma where tungsten transport is neoclassical, as previously observed in other devices with dominant neutral beam injection heating, such as JET and ASDEX Upgrade. In contrast to such results, however, the measured scale lengths for plasma temperature and density in the central region of these Alcator C-Mod plasmas, with density profiles relatively flat in the core region due to the lack of core fuelling, are favourable to prevent inter and intra sawtooth tungsten accumulation in this region under dominance of neoclassical transport. Simulations of ITER H-mode plasmas, including both anomalous (modelled by the Gyro-Landau-Fluid code GLF23) and neoclassical transport for main ions and tungsten and with density profiles of similar peaking to those obtained in Alcator C-Mod show that accumulation of tungsten in the central plasma region is also unlikely to occur in stationary ITER H-mode plasmas due to the low fuelling source by the neutral beam injection (injection energy ∼ 1 MeV), which is in good agreement with findings in the Alcator C-Mod experiments.

  3. Experiences with tungsten coatings in high heat flux tests and under plasma load in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Herrmann, A; Greuner, H; Fuchs, J C; Marne, P de; Neu, R

    2009-01-01

    ASDEX Upgrade was operated with about 6400 s plasma discharge during the scientific program in 2007/2008 exploring tungsten as a first wall material in tokamaks. In the first phase, the heating power was restricted to 10 MW. It was increased to 15 MW in the second phase. During this operational period, a delamination of the 200 μm W-VPS coating happened at 2 out of 128 tiles of the outer divertor and an unscheduled opening was required. In the third phase, ASDEX Upgrade was operated with partly predamaged tiles and up to 15 MW heating power. The target load was actively controlled by N 2 -seeding. This paper presents the screening test of target tiles in the high heat flux test facility GLADIS, experiences with operation and detected damages of the outer divertor as well as the heat load to the outer divertor and the reasons for the toroidal asymmetry of the divertor load.

  4. ERB-II operating experience

    International Nuclear Information System (INIS)

    Smith, R.N.; Cissel, D.W.; Smith, R.R.

    1977-01-01

    As originally designed and operated, EBR-II successfully demonstrated the concept of a sodium-cooled fast breeder power plant with a closed fuel reprocessing cycle (mini-nuclear park). Subsequent operation has been as an irradiation facility, a role which will continue into the foreseeable future. Since the beginning of operation in 1961, operating experience of EBR-II has been very satisfactory. Most of the components and systems have performed well. In particular, the mechanical performance of heat-removal systems has been excellent. A review of the operating experience reveals that all the original design objectives have been successfully demonstrated. To date, no failures or incidents resulting in serious in-core or out-of-core consequences have occurred. No water-to-sodium leaks have been detected over the life of the plant. At the present time, the facility is operating very well and continuously except for short shutdowns required by maintenance, refueling, modification, and minor repair. A plant factor of 76.9% was achieved for the calendar year 1976

  5. Oxidation of cyclic amines by molybdenum(II and tungsten(II halocarbonyls, [M(CO4X2]2 (M = Mo, W; X = Cl, Br

    Directory of Open Access Journals (Sweden)

    H.M. Mbuvi

    2013-05-01

    Full Text Available The molybdenum(II and tungsten(II halocarbonyls, [M(CO4X2]2 (M = Mo, W; X = Cl, Br react with a large excess of the nitrogen bases, 1-methylpyrrolidine, 1-methylpiperidine, 1-ethylpiperidine and 2-ethylpiperidine to give aminecarbonyl complexes of the type M(CO3L3 (L= alkylamine. Excess piperidine reacts with the tungsten halocarbonyls, [W(CO4X2]2 (X = Cl, Br, to give the trans isomer of the complex, W(CO3(C5H11N3. The halogens were recovered as the amminium salts, amine, HX. The oxidized amine dimerized to form a yellow product which was recovered as an oily liquid but in very small amounts. However, in the reaction between Mo(CO4Br2 and 1-ethylpiperidine, a yellow crystalline solid, with a melting point of 224 oC was recovered in sufficient amounts for elemental analysis, melting point and spectral data. Its mass spectrum showed a molecular ion peak at m+/z = 222, a clear evidence that the oxidized amine dimerizes. The cyclic dibasic amine piperazine, C4H10N2 is not, however, oxidized by these halocarbonyls but rather it reacts by substituting some CO groups to form products of the type, M(CO3(C4H10N22X2 (M = Mo, W; X = Cl, Br. Products were characterized by elemental analysis, IR, UV, 1H NMR and mass spectrometry.

  6. Construction and test of a tungsten/Sci-Fi imaging calorimeter for the CREAM experiment

    CERN Document Server

    Marrocchesi, P S; Bagliesi, M G; Basti, A; Bigongiari, G; Castellina, A; Ganel, O; Lee, M H; Lomtadze, T A; Lutz, L; Maestro, P; Malinine, A; Meucci, M; Millucci, V; Morsani, F; Seo, E S; Zinn, S Y

    2004-01-01

    Cosmic Ray Energetics And Mass (CREAM) is a balloon-borne experiment designed to perform direct measurements of cosmic ray composition over the elemental range from proton to iron to the supernova energy scale of 10 **1**5eV in a series of balloon flights using the new Ultra Long Duration Balloon (ULDB) capability under development by NASA. The first flight of CREAM will take place at the end of 2004 from Antarctica. The instrument includes a sampling tungsten /scintillating fiber calorimeter preceded by a graphite target with scintillating fiber hodoscopes, a pixelated silicon charge detector, a transition radiation detector and a segmented timing-based particle-charge detector. The thin ionization calorimeter has been designed to operate in the range of energies from a few hundred GeV to 1 PeV providing imaging capability in the reconstruction of the showers originating from the interaction of primary nuclei in the carbon target. A twin calorimeter for the second CREAM payload has been built and tested at C...

  7. Textbook tests with tungsten

    CERN Multimedia

    Barbara Warmbein

    2010-01-01

    CERN's linear collider detector group joins forces with CALICE in building the world's first tungsten hadronic calorimeter.   Hadronic calorimeter prototype made of tungsten for the linear collider detector being equipped with CALICE scintillators. In a hall for test beam experiments at CERN, next to the CLOUD climate experiment and an irradiation facility, sits a detector prototype that is in many ways a first. It's the first ever hadronic sandwich calorimeter (HCal) prototype made of tungsten. It's the first prototype for a detector for the Compact Linear Collider Study CLIC, developed by the linear collider detector R&D group (LCD group) at CERN. And it's the first piece of hardware that results directly from the cooperation between CLIC and ILC detector study groups. Now its makers are keen to see first particle showers in their detector. The tungsten calorimeter has just moved from a workshop at CERN, where it was assembled from finely polished tungsten squares and triangles, into the ...

  8. Evaluation of removal efficiency of residual diclofenac in aqueous solution by nanocomposite tungsten-carbon using design of experiment.

    Science.gov (United States)

    Salmani, M H; Mokhtari, M; Raeisi, Z; Ehrampoush, M H; Sadeghian, H A

    2017-09-01

    Wastewater containing pharmaceutical residual components must be treated before being discharged to the environment. This study was conducted to investigate the efficiency of tungsten-carbon nanocomposite in diclofenac removal using design of experiment (DOE). The 27 batch adsorption experiments were done by choosing three effective parameters (pH, adsorbent dose, and initial concentration) at three levels. The nanocomposite was prepared by tungsten oxide and activated carbon powder in a ratio of 1 to 4 mass. The remaining concentration of diclofenac was measured by a spectrometer with adding reagents of 2, 2'-bipyridine, and ferric chloride. Analysis of variance (ANOVA) was applied to determine the main and interaction effects. The equilibrium time for removal process was determined as 30 min. It was observed that the pH had the lowest influence on the removal efficiency of diclofenac. Nanocomposite gave a high removal at low concentration of 5.0 mg/L. The maximum removal for an initial concentration of 5.0 mg/L was 88.0% at contact time of 30 min. The results of ANOVA showed that adsorbent mass was among the most effective variables. Using DOE as an efficient method revealed that tungsten-carbon nanocomposite has high efficiency in the removal of residual diclofenac from the aqueous solution.

  9. Deuterium trapping in tungsten

    Science.gov (United States)

    Poon, Michael

    irradiation. Deuterium trapping could be characterized by three regimes: (i) enhanced D retention in a graphitic film formed by the C+ irradiation; (ii) decreased D retention in a modified tungsten-carbon layer; and (iii) D retention in pure tungsten.

  10. Deuterium trapping in tungsten

    International Nuclear Information System (INIS)

    Poon, M.

    2004-01-01

    irradiation Deuterium trapping could be characterized by three regimes: (i) enhanced D retention in a graphitic film formed by the C + irradiation ; (ii) decreased D retention in a modified tungsten-carbon layer; and (iii) D retention in pure tungsten. (author)

  11. Deuterium trapping in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Poon, M

    2004-07-01

    irradiation Deuterium trapping could be characterized by three regimes: (i) enhanced D retention in a graphitic film formed by the C{sup +} irradiation ; (ii) decreased D retention in a modified tungsten-carbon layer; and (iii) D retention in pure tungsten. (author)

  12. Experiments on transient melting of tungsten by ELMs in ASDEX Upgrade

    Czech Academy of Sciences Publication Activity Database

    Krieger, K.; Balden, M.; Coenen, J.W.; Laggner, F.; Matthews, G. F.; Nille, D.; Rohde, V.; Sieglin, B.; Giannone, L.; Göths, B.; Herrmann, A.; de Marné, P.; Pitts, R.A.; Potzel, S.; Vondráček, Petr

    2018-01-01

    Roč. 58, č. 2 (2018), č. článku 026024. ISSN 0029-5515 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : fusion * melting * tungsten * plasma wall interaction * power exhaust Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa9a05

  13. Military Message Experiment. Volume II.

    Science.gov (United States)

    1982-04-01

    elements of the Department of Defense. This resulted in a memorandum from the Director, Telecomunications and Comand and Control, OSD, in June 1975...1978 to April 1979 and provides a discussion of the telecomunications inter- face aspects of the experiment. This Final Report covers the period of...arise in the telecomunication system which require A retransmission of an outgoing message. A "service" message may be created within the

  14. Flatland optics. II. Basic experiments.

    Science.gov (United States)

    Lohmann, A W; Wang, D; Pe'er, A; Friesem, A A

    2001-05-01

    In "Flatland optics: fundamentals" [J. Opt. Soc. Am. A 17, 1755 (2000)] we described the basic principles of two-dimensional (2D) optics and showed that a wavelength lambda in three-dimensional (3D) space (x,y,z) may appear in Flatland (x,z) as a wave with another wavelength, lambda = lambda/cosalpha. The tilt angle alpha can be modified by a 3D (Spaceland) individual who then is able to influence the 2D optics in a way that must appear to be magical to 2D Flatland individuals-in the spirit of E. A. Abbott's science fiction story [Flatland, a Romance of Many Dimensions, 6th ed. (Dover, New York, 1952)] of 1884. We now want to establish the reality or objectivity of the 2D wavelength lambda by some basic experiments similar to those that demonstrated roughly 200 years ago the wave nature of light. Specifically, we describe how to measure the 2D wavelength lambda by mean of five different arrangements that involve Young's biprism configuration, Talbot's self-imaging effect, measuring the focal length of a Fresnel zone plate, and letting light be diffracted by a double slit and by a grating. We also performed experiments with most of these arrangements. The results reveal that the theoretical wavelength, as predicted by our Flatland optics theory, does indeed coincide with the wavelength lambda as measured by Flatland experiments. Finally, we present an alternative way to understand Flatland optics in the spatial frequency domains of Flatland and Spaceland.

  15. Tungsten foil laminate for structural divertor applications – Joining of tungsten foils

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Jens, E-mail: jens.reiser@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Mrotzek, Tobias; Hoffmann, Andreas [PLANSEE SE, Reutte (Austria); Armstrong, D.E.J.; Yi, Xiaoou [University of Oxford, Department of Materials (United Kingdom)

    2013-05-15

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  16. Tungsten foil laminate for structural divertor applications - Joining of tungsten foils

    Science.gov (United States)

    Reiser, Jens; Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan; Mrotzek, Tobias; Hoffmann, Andreas; Armstrong, D. E. J.; Yi, Xiaoou

    2013-05-01

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  17. Belle-II Experiment Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Asner, David [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Bell, Greg [ESnet; Carlson, Tim [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Cowley, David [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Dart, Eli [ESnet; Erwin, Brock [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Godang, Romulus [Univ. of South Alabama, Mobile, AL (United States); Hara, Takanori [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Johnson, Jerry [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Johnson, Ron [Univ. of Washington, Seattle, WA (United States); Johnston, Bill [ESnet; Dam, Kerstin Kleese-van [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Kaneko, Toshiaki [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Kubota, Yoshihiro [NII; Kuhr, Thomas [Karlsruhe Inst. of Technology (KIT) (Germany); McCoy, John [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Miyake, Hideki [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Monga, Inder [ESnet; Nakamura, Motonori [NII; Piilonen, Leo [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Pordes, Ruth [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ray, Douglas [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Russell, Richard [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Schram, Malachi [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Schroeder, Jim [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Sevior, Martin [Univ. of Melbourne (Australia); Singh, Surya [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Suzuki, Soh [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Sasaki, Takashi [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Williams, Jim [Indiana Univ., Bloomington, IN (United States)

    2013-05-28

    The Belle experiment, part of a broad-based search for new physics, is a collaboration of ~400 physicists from 55 institutions across four continents. The Belle detector is located at the KEKB accelerator in Tsukuba, Japan. The Belle detector was operated at the asymmetric electron-positron collider KEKB from 1999-2010. The detector accumulated more than 1 ab-1 of integrated luminosity, corresponding to more than 2 PB of data near 10 GeV center-of-mass energy. Recently, KEK has initiated a $400 million accelerator upgrade to be called SuperKEKB, designed to produce instantaneous and integrated luminosity two orders of magnitude greater than KEKB. The new international collaboration at SuperKEKB is called Belle II. The first data from Belle II/SuperKEKB is expected in 2015. In October 2012, senior members of the Belle-II collaboration gathered at PNNL to discuss the computing and neworking requirements of the Belle-II experiment with ESnet staff and other computing and networking experts. The day-and-a-half-long workshop characterized the instruments and facilities used in the experiment, the process of science for Belle-II, and the computing and networking equipment and configuration requirements to realize the full scientific potential of the collaboration's work.

  18. Training experience at Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Driscoll, J.W.; McCormick, R.P.; McCreery, H.I.

    1978-01-01

    The EBR-II Training Group develops, maintains,and oversees training programs and activities associated with the EBR-II Project. The group originally spent all its time on EBR-II plant-operations training, but has gradually spread its work into other areas. These other areas of training now include mechanical maintenance, fuel manufacturing facility, instrumentation and control, fissile fuel handling, and emergency activities. This report describes each of the programs and gives a statistical breakdown of the time spent by the Training Group for each program. The major training programs for the EBR-II Project are presented by multimedia methods at a pace controlled by the student. The Training Group has much experience in the use of audio-visual techniques and equipment, including video-tapes, 35 mm slides, Super 8 and 16 mm film, models, and filmstrips. The effectiveness of these techniques is evaluated in this report

  19. LHC Experiments Phase II - TDRs Approval Process

    CERN Document Server

    Forti, F

    2017-01-01

    The overall review process and steps of Phase II were described in CERN-LHCC-2015-077. As experiments submit detailed technical design reports (TDRs), the LHCC and UCG work in close connection to ensure a timely review of the scientific and technical feasibility as well as of the budget and schedule of the upgrade programme.

  20. Fundamentals of and experiences with forming by rolling of sintered rods of the high-melting metals molybdenum and tungsten

    International Nuclear Information System (INIS)

    Kohlstrung, G.; Marx, H.; Bresch, J.; Leich, M.; Kalning, I.

    1986-01-01

    An efficient and economical technique for rolling sintered rods of the high-melting metals molybdenum and tungsten which comprises only a minimum of processing steps and provides crucial advantages in comparison with the conventional hammering procedure has been developed for application in medium-sized powder-metallurgical plants. The advantages are, in particular, given with the favourable structure development and the elimination of pores from the sintered bar as a result of the higher degree of deformation, increased labour productivity, savings of electrical energy and consumables, as well as a reduction of the working inconveniencies. Experiences gained in test series as well as in industrial practice indicate that final wire diameters can be obtained with a high material economy, provided that the preceding and subsequent process stages are adapted in the optimum manner dependent on the physical and chemical parameters of the starting material and the strain-hardening behaviour in the process of forming by rolling. (orig.) [de

  1. Status of the Gerda phase II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, Andrea [Physik-Department and Excellence Cluster Universe, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2016-07-01

    The Gerda experiment searches for the neutrinoless double beta decay (0νββ) in {sup 76}Ge. The first phase of the experiment collected 21.6 kg. yr of exposure with a background index (BI) of 0.01 cts/(keV . kg . yr). No signal was observed and a lower limit for the 0νββ half-life was set to T{sup 0νββ}{sub 1/2} < 2.1 . 10{sup 25} yr (90% C.L). The apparatus has now been upgraded to the Phase II configuration. In Phase II 38 kg of HPGe detectors will be operated to reach an exposure of 100 kg . yr. The goal of Gerda Phase II is to lower the BI to 10{sup -3} cts/(keV . kg . y), in order to reach the sensitivity for T{sup 0νββ}{sub 1/2} = O(10{sup 26}) yr. The additional target mass is constituted of 30 custom made BEGe detectors with higher energy resolution and better pulse shape discrimination performance. The detectors are operated in new radio-pure low-mass holders. The liquid argon surrounding the detectors has been instrumented to veto the background events which produce scintillation light. In this talk the current status and the performance of the Gerda Phase II are presented.

  2. Global track finder for Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Trusov, Viktor; Feindt, Michael; Heck, Martin; Kuhr, Thomas; Goldenzweig, Pablo [Karlsruhe Institute of Technology, IEKP (Germany); Collaboration: Belle II-Collaboration

    2015-07-01

    We present an implementation of a method based on the Legendre transformation for reconstruction charged particle tracks in the central drift chamber of the Belle II experiment. The method is designed for fast track finding and restoring circular patterns of track hits in transverse plane. It is done by searching for common tangents to drift circles of hits in the conformal space. With known transverse trajectories longitudinal momentum estimation performed by assigning stereo hits followed by determination of the track parameters. The method includes algorithms responsible for track quality estimation and reduction of rate of fakes. The work is targeting at increasing the efficiency and reducing the execution time because the computing power available to the experiment is limited. The algorithm is developed within the Belle II software environment with using Monte-Carlo simulation for probing its efficiency.

  3. OPAL Silicon Tungsten Luminometer

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. The Silicon Tungsten Luminometer was part of OPAL's calorimeter which was used to measure the energy of particles. Most particles end their journey in calorimeters. These detectors measure the energy deposited when particles are slowed down and stopped.

  4. Optimization of tungsten x-ray spectra for digital mammography: a comparison of model to experiment

    Science.gov (United States)

    Andre, Michael P.; Spivey, Brett A.

    1997-05-01

    Tungsten (W) target x-rays tubes are being studied for use in digital mammography to improve x-ray flux, reduce noise and increase tube heat capacity. A parametric model was developed for digital mammography to evaluate optimization of x-ray spectra for a particular sensor. The model computes spectra and mean glandular doses (MGD) for combinations of W target, beam filters, kVp, breast type and thickness. Two figures of merit were defined: (signal/noise)2/MGD and spectral quantum efficiency; these were computed as a means to approach optimization of object contrast. The model is derived from a combination of classic equations, XCOM from NBS, and published data. X-ray spectra were calculated and measured for filters of Al, Sn, Rh, Mo and Ag on a Eureka tube. (Signal/noise)2/MGD was measured for a filtered W target tube and a digital camera employing CsI scintillator optically coupled to a CCD for which the detective quantum efficiency (DQE) was known. A 3-mm thick acrylic disk was imaged on thickness of 3-8 cm of acrylic and the results were compared to the predictions of the model. The relative error between predicted and measured spectra was +/- 2 percent from 24 to 34 kVp. Calculated MGD as a function of breast thickness, half-value layer and beam filter compares very well to published data. Best performance was found for the following combinations: Mo filter with 30 mm breast, Ag filter with 45 mm, Sn filter for 60 mm, and Al filter for 75 mm thick breast. The parametric model agrees well with measurement and provides a means to explore optimum combinations of kVp and beam filter. For a particular detector, this data may be used with the DQE to estimate total system signal-to-noise ratio for a particular imaging task.

  5. Development and characterisation of a tungsten-fibre reinforced tungsten composite

    International Nuclear Information System (INIS)

    Riesch, Johann

    2012-01-01

    In tungsten-fibre reinforced tungsten, tungsten wire is combined with a tungsten matrix. The outstanding ductility of the fibres and extrinsic mechanisms of energy dissipation lead to an intense toughening. With extensive analytical and experimental investigations a manufacturing method based on chemical vapour infiltration is developed and first material is produced. The toughening mechanisms are shown by means of sophisticated mechanical experiments i.a. X-ray microtomography.

  6. Dielectronic recombination experiments with tungsten ions at the test storage ring and development of a single-particle detector at the cryogenic storage ring

    International Nuclear Information System (INIS)

    Spruck, Kaija

    2015-05-01

    This work is about electron-ion collision experiments at the ion storage rings of the Max Planck Institute for Nuclear Physics in Heidelberg. Absolute recombination rate coefficients of highly-charged tungsten ions featuring an open 4-f-shell structure have been measured at the heavy-ion storage ring TSR. The resulting plasma rate coefficients have been used to probe the significance of newly developed theoretical approaches. Plasma rate coefficients of highly-charged tungsten ions are in particular interesting for the development of plasma models for nuclear fusion reactors, since tungsten is a foreseeable impurity in the fusion plasma. In the relevant temperature range, the experimental results exceed the theoretical data used so far by up to a factor of 10, showing the need for more reliable theoretical calculations. Furthermore, based on the design of the detectors which have been used in the experiments at TSR, a movable single-particle detector for electron-ion recombination studies at the cryogenic storage ring CSR has been developed and installed within the scope of this work. The device has been designed specifically to meet the requirements of the CSR regarding low ion energies and cryogenic ambient temperature conditions. In a series of experiments, the detector was carefully characterised and successfully tested for its compatibility with these requirements. The detector was part of the infrastructure used for the room-temperature commissioning of CSR (2014) and is currently operated as a single-particle counter during the first cryogenic operation of CSR in 2015.

  7. Dielectronic recombination experiments with tungsten ions at the test storage ring and development of a single-particle detector at the cryogenic storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Spruck, Kaija

    2015-05-15

    This work is about electron-ion collision experiments at the ion storage rings of the Max Planck Institute for Nuclear Physics in Heidelberg. Absolute recombination rate coefficients of highly-charged tungsten ions featuring an open 4-f-shell structure have been measured at the heavy-ion storage ring TSR. The resulting plasma rate coefficients have been used to probe the significance of newly developed theoretical approaches. Plasma rate coefficients of highly-charged tungsten ions are in particular interesting for the development of plasma models for nuclear fusion reactors, since tungsten is a foreseeable impurity in the fusion plasma. In the relevant temperature range, the experimental results exceed the theoretical data used so far by up to a factor of 10, showing the need for more reliable theoretical calculations. Furthermore, based on the design of the detectors which have been used in the experiments at TSR, a movable single-particle detector for electron-ion recombination studies at the cryogenic storage ring CSR has been developed and installed within the scope of this work. The device has been designed specifically to meet the requirements of the CSR regarding low ion energies and cryogenic ambient temperature conditions. In a series of experiments, the detector was carefully characterised and successfully tested for its compatibility with these requirements. The detector was part of the infrastructure used for the room-temperature commissioning of CSR (2014) and is currently operated as a single-particle counter during the first cryogenic operation of CSR in 2015.

  8. Conditions Database for the Belle II Experiment

    Science.gov (United States)

    Wood, L.; Elsethagen, T.; Schram, M.; Stephan, E.

    2017-10-01

    The Belle II experiment at KEK is preparing for first collisions in 2017. Processing the large amounts of data that will be produced will require conditions data to be readily available to systems worldwide in a fast and efficient manner that is straightforward for both the user and maintainer. The Belle II conditions database was designed with a straightforward goal: make it as easily maintainable as possible. To this end, HEP-specific software tools were avoided as much as possible and industry standard tools used instead. HTTP REST services were selected as the application interface, which provide a high-level interface to users through the use of standard libraries such as curl. The application interface itself is written in Java and runs in an embedded Payara-Micro Java EE application server. Scalability at the application interface is provided by use of Hazelcast, an open source In-Memory Data Grid (IMDG) providing distributed in-memory computing and supporting the creation and clustering of new application interface instances as demand increases. The IMDG provides fast and efficient access to conditions data via in-memory caching.

  9. Overview of TJ-II experiments

    International Nuclear Information System (INIS)

    Sanchez, J.; Acedo, M.; Alonso, A.

    2007-01-01

    This paper presents an overview of experimental results and progress made in investigating the link between magnetic topology, electric fields and transport in the TJ-II stellarator. The smooth change from positive to negative electric field observed in the core region as the density is raised is correlated with global and local transport data. A statistical description of transport is emerging as a new way to describe the coupling between profiles, plasma flows and turbulence. TJ-II experiments show that the location of rational surfaces inside the plasma can, in some circumstances, provide a trigger for the development of core transitions, providing a critical test for the various models that have been proposed to explain the appearance of transport barriers in relation to magnetic topology. In the plasma core, perpendicular rotation is strongly coupled to plasma density, showing a reversal consistent with neoclassical expectations. In contrast, spontaneous sheared flows in the plasma edge appear to be coupled strongly to plasma turbulence, consistent with the expectation for turbulent driven flows. The local injection of hydrocarbons through a mobile limiter and the erosion produced by plasmas with well-known edge parameters opens the possibility of performing carbon transport studies, relevant for understanding co-deposit formation in fusion devices

  10. Overview of TJ-II experiments

    International Nuclear Information System (INIS)

    Alejaldre, C.; Alonso, J.; Almoguera, L.

    2005-01-01

    This paper presents an overview of experimental results and progress made in investigating the role of magnetic configuration on stability and transport in the TJ-II stellarator. Global confinement studies have revealed a positive dependence of energy confinement on the rotational transform and plasma density, together with different parametric dependences for metallic and boronised wall conditions. Spontaneous and biasing-induced improved confinement transitions, with some characteristics that resemble those of previously reported H-mode regimes in other stellarator devices, have been observed. Also, magnetic configuration scan experiments have shown an interplay between magnetic structure (rationals, magnetic shear), transport and electric fields. Although the DC radial electric fields are comparable with those expected from neoclassical calculations, additional mechanisms based on neoclassical/turbulent bifurcations and kinetic effects are needed to explain the impact of magnetic topology on flows and radial electric fields. Local transport studies have demonstrated a dependence of plasma diffusivities and convective velocities on plasma density and heating power in consistency with global confinement properties. Hydrocarbon fuelling experiments in configurations with a low order rational value in the rotational transform located in the proximity of the last close flux surface (n = 4/m = 2) have shown the impurity screening properties related to the expected divertor effect. First experiments in NBI plasmas are reported. (author)

  11. Label-free tungsten disulfide quantum dots as a fluorescent sensing platform for highly efficient detection of copper (II) ions

    International Nuclear Information System (INIS)

    Zhao Xuan; He Da-Wei; Wang Yong-Sheng; Hu Yin; Fu Chen; Li Xue

    2017-01-01

    A fluorescent probe for the sensitive and selective determination of copper ion (Cu 2+ ) is presented. It is based on the use of tungsten disulfide quantum dots (WS 2 QDs) which is independent of the pH of solution and emits strong blue fluorescence. Copper ions could cause aggregation of the WS 2 QDs and lead to fluorescence quenching of WS 2 QDs. The change of fluorescence intensity is proportional to the concentration of Cu 2+ , and the limit of detection is 0.4 μM. The fluorescent probe is highly selective for Cu 2+ over some potentially interfering ions. These results indicate that WS 2 QDs, as a fluorescent sensing platform, can meet the selective requirements for biomedical and environmental application. (paper)

  12. Phonons: Theory and experiments II. Volume 2

    International Nuclear Information System (INIS)

    Bruesch, P.

    1986-01-01

    The present second volume titled as ''Phonons: Theory and Experiments II'', contains, a thorough study of experimental techniques and the interpretation of experimental results. This three-volume set tries to bridge the gap between theory and experiment, and is addressed to those working in both camps in the vast field of dynamical properties of solids. Topics presented in the second volume include; infrared-, Raman and Brillouin spectroscopy, interaction of X-rays with phonons, and inelastic neutron scattering. In addition an account is given of some other techniques, including ultrasonic methods, inelastic electron tunneling spectroscopy, point contact spectroscopy, and spectroscopy of surface phonons, thin films and adsorbates. Both experimental aspects and theoretical concepts necessary for the interpretation of experimental data are discussed. An attempt is made to present the descriptive as well as the analytical aspects of the topics. Simple models are often used to illustrate the basic concepts and more than 100 figures are included to illustrate both theoretical and experimental results. Many chapters contain a number of problems with hints and results giving additional information

  13. Experiments with radioactive nuclear beams II

    International Nuclear Information System (INIS)

    Aguilera R, E.F.; Martinez Q, E.; Gomez C, A.; Lizcano C, D.; Garcia M, H.; Rosales M, P.

    2001-12-01

    The studies of nuclear reactions with heavy ions have been carried out for years for the group of heavy ions of the laboratory of the Accelerator of the ININ. Especially in the last years the group has intruded in the studies of nuclear reactions with radioactive beams, frontier theme at world level. Presently Technical Report is presented in detailed form the experimental methods and the analysis procedures of the research activities carried out by the group. The chpater II is dedicated to the procedures used in the analysis of the last two experiments with radioactive beams carried out by the group. In the chapter III is presented the procedure followed to carrying out an extended analysis with the CCDEF code, to consider the transfer channel of nucleons in the description of the fusion excitation functions of a good number of previously measured systems by the group. Finally, in the chapter IV the more important steps to continue in the study of the reaction 12 C + 12 C experiment drifted to be carried out using the available resources of the Tandem Accelerator Laboratory of the ININ are described. At the end of each chapter some of the more representative results obtained in the analysis are presented and emphasis on the scientific production generated by the group for each case is made. (Author)

  14. Design of Experiments: Optimizing the Polycarboxylation/Functionalization of Tungsten Disulfide Nanotubes

    Directory of Open Access Journals (Sweden)

    Daniel Raichman

    2014-08-01

    Full Text Available Design of experiments (DOE methodology was used to identify and optimize factors that influence the degree of functionalization (polycarboxylation of WS2 INTs via a modified acidic Vilsmeier–Haack reagent. The six factors investigated were reaction time, temperature and the concentrations of 2-bromoacetic acid, WS2 INTs, silver acetate and DMF. The significance of each factor and the associated interactive effects were evaluated using a two-level factorial statistical design in conjunction with statistical software (MiniTab® 16 based on quadratic programming. Although statistical analysis indicated that no factors were statistically significant, time, temperature and concentration of silver acetate were found to be the most important contributors to obtaining maximum functionalization/carboxylation. By examining contour plots and interaction plots, it was determined that optimal functionalization is obtained in a temperature range of 115–120 °C with a reaction time of 54 h using a mixture of 6 mL DMF, 200 mg INTs, 800 mg 2-bromoacetic acid and 60 mg silver acetate.

  15. Tungsten Transport in the Core of JET H-mode Plasmas, Experiments and Modelling

    Science.gov (United States)

    Angioni, Clemente

    2014-10-01

    The physics of heavy impurity transport in tokamak plasmas plays an essential role towards the achievement of practical fusion energy. Reliable predictions of the behavior of these impurities require the development of realistic theoretical models and a complete understanding of present experiments, against which models can be validated. Recent experimental campaigns at JET with the ITER-like wall, with a W divertor, provide an extremely interesting and relevant opportunity to perform this combined experimental and theoretical research. Theoretical models of both neoclassical and turbulent transport must consistently include the impact of any poloidal asymmetry of the W density to enable quantitative predictions of the 2D W density distribution over the poloidal cross section. The agreement between theoretical predictions and experimentally reconstructed 2D W densities allows the identification of the main mechanisms which govern W transport in the core of JET H-mode plasmas. Neoclassical transport is largely enhanced by centrifugal effects and the neoclassical convection dominates, leading to central accumulation in the presence of central peaking of the density profiles and insufficiently peaked ion temperature profiles. The strength of the neoclassical temperature screening is affected by poloidal asymmetries. Only around mid-radius, turbulent diffusion offsets neoclassical transport. Consistently with observations in other devices, ion cyclotron resonance heating in the plasma center can flatten the electron density profile and peak the ion temperature profile and provide a means to reverse the neoclassical convection. MHD activity may hamper or speed up the accumulation process depending on mode number and plasma conditions. Finally, the relationship of JET results to a parallel modelling activity of the W behavior in the core of ASDEX Upgrade plasmas is presented. This project has received funding from the European Union's Horizon 2020 research and innovation

  16. EBR-II: summary of operating experience

    International Nuclear Information System (INIS)

    Perry, W.H.; Leman, J.D.; Lentz, G.L.; Longua, K.J.; Olson, W.H.; Shields, J.A.; Wolz, G.C.

    1978-01-01

    Experimental Breeder Reactor II (EBR-II) is an unmoderated, sodium-cooled reactor with a design power of 62.5 MWt. The primary cooling system is a submerged-pool type. The early operation of the reactor successfully demonstrated the feasibility of a sodium-cooled fast breeder reactor operating as an integrated reactor, power plant, and fuel-processing facility. In 1967, the role of EBR-II was reoriented from a demonstration plant to an irradiation facility. Many changes have been made and are continuing to be made to increase the usefulness of EBR-II for irradiation and safety tests. A review of EBR-II's operating history reveals a plant that has demonstrated high availability, stable and safe operating characteristics, and excellent performance of sodium components. Levels of radiation exposure to the operating and maintenance workers have been low; and fission-gas releases to the atmosphere have been minimal. Driver-fuel performance has been excellent. The repairability of radioactive sodium components has been successfully demonstrated a number of times. Recent highlights include installation and successful operation of (1) the hydrogen-meter leak detectors for the steam generators, (2) the cover-gas-cleanup system and (3) the cesium trap in the primary sodium. Irradiations now being conducted in EBR-II include the run-beyond-cladding breach fuel tests for mixed-oxide and carbide elements. Studies are in progress to determine EBR-II's capability for conducting important ''operational safety'' tests. These tests would extend the need and usefulness of EBR-II into the 1980's

  17. Possibilities of chemical isolation of element 106 from aqueous solutions according to the model experiments with short lived tungsten isotopes

    International Nuclear Information System (INIS)

    Szeglowski, Z.; Bruchertseifer, H.; Brudanin, V.B.

    1993-01-01

    A rapid method for continuous separation of short-lived tungsten isotopes from the lanthanides has been developed. It consists in transforming nuclear reaction products from the target by an aerosol jet to an absorber where the KCl particulates are dissolved in 0.2 M HF and percolating the product solution through three successively linked columns filled with ion exchange resins Dowex 50X8 (cationite), Dowex 1X8 (anionite) and again Dowex 50X8. 3 refs

  18. FEBEX II Project THG Laboratory Experiments

    International Nuclear Information System (INIS)

    Missana, T.

    2004-01-01

    The main roles of the bentonite in a radioactive waste repository is to act as a geochemical barrier against the radionuclides migration. The effectiveness of this geochemical barrier depends on the surface properties of the solid phases and on the physico-chemical environment generated by the interaction of the solid phases with the groundwater. Within the FEBEX (Full-scale Engineered Barriers Experiment) project, a program of laboratory tests was designed to study and to understand the processes taking place in the clay barrier. Since the first stages of the project, these laboratory tests enabled to isolate different processes, making easier their interpretation, and provided fundamental parameters to be used in the Thermo Hydro Mechanical (THM) and Thermo Hydro Geochemical (THG) models. Additionally, experimental data enabled to check the predictive capability of these models. In the second phase of the project, laboratory tests focused on all those relevant aspects not sufficiently covered during FEBEX I. Particularly, the following main objectives were proposed for the THG investigations during FEBEX II : Attainment of a reliable description of the pore water chemistry at different geochemical conditions. Identification of the different types of water present in the bentonite and to determine the amount of available water for the solute transport.Evaluation of the potential effects of the extraction pressure in the chemical composition of the water obtained by squeezing methods.Study of the effects of the exchange complex in the rheological properties of the clay.Identification and modelling of the surface processes occurring in smectite, determination of the solubility constants of smectite and the formation constants of the surface complexes.Understanding of the mechanisms involved in the sorption of different radionuclides in the bentonite. Investigation of the diffusion mechanisms of conservative neutral and anionic species to have a deeper insight on the

  19. FEBEX II Project THG Laboratory Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Missana, T.

    2004-07-01

    The main roles of the bentonite in a radioactive waste repository is to act as a geochemical barrier against the radionuclides migration. The effectiveness of this geochemical barrier depends on the surface properties of the solid phases and on the physico-chemical environment generated by the interaction of the solid phases with the groundwater. Within the FEBEX (Full-scale Engineered Barriers Experiment) project, a program of laboratory tests was designed to study and to understand the processes taking place in the clay barrier. Since the first stages of the project, these laboratory tests enabled to isolate different processes, making easier their interpretation, and provided fundamental parameters to be used in the Thermo Hydro Mechanical (THM) and Thermo Hydro Geochemical (THG) models. Additionally, experimental data enabled to check the predictive capability of these models. In the second phase of the project, laboratory tests focused on all those relevant aspects not sufficiently covered during FEBEX I. Particularly, the following main objectives were proposed for the THG investigations during FEBEX II : Attainment of a reliable description of the pore water chemistry at different geochemical conditions. Identification of the different types of water present in the bentonite and to determine the amount of available water for the solute transport.Evaluation of the potential effects of the extraction pressure in the chemical composition of the water obtained by squeezing methods.Study of the effects of the exchange complex in the rheological properties of the clay.Identification and modelling of the surface processes occurring in smectite, determination of the solubility constants of smectite and the formation constants of the surface complexes.Understanding of the mechanisms involved in the sorption of different radionuclides in the bentonite. Investigation of the diffusion mechanisms of conservative neutral and anionic species to have a deeper insight on the

  20. Impact of residual by-products from tungsten film deposition on process integration due to nonuniformity of the tungsten film

    CERN Document Server

    Sidhwa, A; Gandy, T; Melosky, S; Brown, W; Ang, S; Naseem, H; Ulrich, R

    2002-01-01

    The effects of residual by products from a tungsten film deposition process and their impact on process integration due to the nonuniformity of the tungsten film were investigated in this work. The tungsten film deposition process involves three steps: nucleation, stabilization, and tungsten bulk fill. Six experiments were conducted in search for a solution to the problem. The resulting data suggest that excess nitrogen left in the chamber following the tungsten nucleation step, along with residual by products, causes a shift in the tungsten film uniformity during the tungsten bulk fill process. Data reveal that, due to the residual by products, an abnormal grain growth occurs causing a variation in the tungsten thickness across the wafer during the bulk fill step. Although several possible solutions were revealed by the experiments, potential integration problems limited the acceptable solutions to one. The solution chosen was the introduction of a 10 s pumpdown immediately following the nucleation step. Thi...

  1. LMFBR operational safety: the EBR-II experience

    International Nuclear Information System (INIS)

    Sackett, J.I.; Allen, N.L.; Dean, E.M.; Fryer, R.M.; Larson, H.A.; Lehto, W.K.

    1978-01-01

    The mission of the Experimental Breeder Reactor II (EBR-II) has evolved from that of a small LMFBR demonstration plant to a major irradiation-test facility. Because of that evolution, many operational-safety issues have been encountered. The paper describes the EBR-II operational-safety experience in four areas: protection-system design, safety-document preparation, tests of off-normal reactor conditions, and tests of elements with breached cladding

  2. Tungsten and tungsten alloys by powder metallurgy

    International Nuclear Information System (INIS)

    Belhadjhamida, A.; German, R.M.

    1991-01-01

    Tungsten has a historical link with powder metallurgy and there is continued progress in expanding the available compositions and processing options. This paper starts with an introduction to the history of tungsten powder metallurgy and use this as a basis for analyzing some of the current trends. The literature base in tungsten processing is expanding and includes new alloys, microstructures, and processing routes. A few examples will be emphasize here to produce a frame work for this program, including description of sintering mechanisms for tungsten, liquid phase sintering advances, hot consolidation fundamentals, and options for complex shaping using powder injection modeling. For this base, subsequent presentations will expand on these fundamental advances

  3. Plasma opening switch experiments on the Particle Beam Accelerator II

    International Nuclear Information System (INIS)

    Sweeney, M.A.; McDaniel, D.H.; Mendel, C.W.; Rochau, G.E.; Moore, W.B.S.; Mowrer, G.R.; Simpson, W.W.; Zagar, D.M.; Grasser, T.; McDougal, C.D.

    1989-01-01

    Plasma opening switch (POS) experiments have been done since 1986 on the PBFA-II ion beam accelerator to develop a rugged POS that will open rapidly ( 80%) into a high impedance (> 10 ohm) load. In a recent series of experiments on PBFA II, the authors have developed and tested three different switch designs that use magnetic fields to control and confine the injected plasma. All three configurations couple current efficiently to a 5-ohm electron beam diode. In this experimental series, the PBFA-II Delta Series, more extensive diagnostics were used than in previous switch experiments on PBFA II or on the Blackjack 5 accelerator at Maxwell Laboratories. Data from the experiments with these three switch designs is presented

  4. EBR-II: twenty years of operating experience

    International Nuclear Information System (INIS)

    Lentz, G.L.; Buschman, H.W.; Smith, R.N.

    1985-01-01

    Experimental Breeder Reactor No. 2 (EBR-II) is an unmoderated, sodium-cooled reactor with a design power of 62.5 MWt. For the last 20 years EBR-II has operated safely, has demonstrated stable operating characteristics, has shown excellent performance of its sodium components, and has had an excellent plant factor. These years of operating experience provide a valuable resource to the nuclear community for the development and design of future liquid metal fast reactors. This report provides a brief description of the EBR-II plant and its early operating experience, describes some recent problems of interest to the nuclear community, and also mentions some of the significant operating achievements of EBR-II. Finally, a few words and speculations on EBR-II's future are offered. 4 figs., 1 tab

  5. SIMMER-II analysis of transition-phase experiments

    International Nuclear Information System (INIS)

    Wehner, T.R.; Bell, C.R.

    1985-01-01

    Analyses of Los Alamos transition-phase experiments with the SIMMER-II computer code are reported. These transient boilup experiments simulated the recriticality-induced transient motion of a boiling pool of molten fuel, molten steel and steel vapor, within a subassembly duct in a liquid-metal fast breeder reactor during the transition phase of a core-disruptive accident. The two purposes of these experiments were to explore and reach a better understanding of fast reactor safety issues, and to provide data for SIMMER-II verification. Experimental data, consisting of four pressure traces and a high-speed movie, were recorded for four sets of initial conditions. For three of the four cases, SIMMER-II-calculated pressures compared reasonably well with the experimental pressures. After a modification to SIMMER-II's liquid-vapor drag correlation, the comparison for the fourth case was reasonable also. 12 refs., 4 figs

  6. Some organodioxygen complexes of molybdenum(VI), tungsten(VI), zinc(II) and cadmium(II) containing some monodentate and multidentate ligands

    International Nuclear Information System (INIS)

    Tarafder, M.T.H.; Leo Man Lin; Grouse, Karen A.; Mariotto, Gino

    2003-08-01

    Several novel organodioxygen complexes of the type [M(O)(O 2 ) 2 L](MMo(VI), W(VI)) and [M'(O 2 )L](M'= Cd(II) and Zn(II)) have been synthesized using monodentate, bidentate and tridentate ligands, L pyridine, picolinic acid, diethylenetriamine, 1,2-phenylenediamine, triphenylphosphine oxide. These complexes were characterized by elemental analyses, conductivity measurements, infrared, Raman spectral studies. For dioxygen complexes, the v(O=O) stretches of the superoxo moities were only Raman active, because of apparent linearity of the M-O 2 moieties, giving peaks at 1020-1030 cm -1 . The complexes were all thermodynamically stable. The dioxygen complexes containing bidentate co-ligands were found to show oxygen transfer reactions to various organic and inorganic substrates. Mechanisms have been postulated. (author)

  7. KUCA critical experiments using MEU fuel (II)

    International Nuclear Information System (INIS)

    Kanda, Keiji; Hayashi, Masatoshi; Shiroya, Seiji; Kobayashi, Keiji; Fukui, Hiroshi; Mishima, Kaichiro; Shibata, Toshikazu

    1983-01-01

    Due to mutual concerns in the USA and Japan about the proliferation potential of highly-enriched uranium (HEU), a joint study program I was initiated between Argonne National Laboratory (ANL and Kyoto University Research Reactor Institute (KURRI) in 1978. In accordance with the reduced enrichment for research and test reactor (RERTR) program, the alternatives were studied for reducing the enrichment of the fuel to be used in the Kyoto University High Flux Reactor (KUHFR). The KUHFR has a distinct feature in its core configuration it is a coupled-core. Each annular shaped core is light-water-moderated and placed within a heavy water reflector with a certain distance between them. The phase A reports of the joint ANL-KURRI program independently prepared by two laboratories in February 1979, 3,4 concluded that the use of medium-enrichment uranium (MEU, 45%) in the KUHFR is feasible, pending results of the critical experiments in the Kyoto University Critical Assembly (KUCA) 5 and of the burnup test in the Oak Ridge Research Reactor 6 (ORR). An application of safety review (Reactor Installation License) for MEU fuel to be used in the KUCA was submitted to the Japanese Government in March 1980, and a license was issued in August 1980. Subsequently, the application for 'Authorization before Construction' was submitted and was authorized in September 1980. Fabrication of MEU fuel-elements for the KUCA experiments by CERCA in France was started in September 1980, and was completed in March 1981. The critical experiments in the KUCA with MEU fuel were started on a single-core in May 1981 as a first step. The first critical state of the core using MEU fuel was achieved at 312 p.m. in May 12, 1981. After that, the reactivity effects of the outer side-plates containing boron burnable poison were measured. At Munich Meeting in Sept., 1981, we presented a paper on critical mass and reactivity of burnable poison in the MEU core. Since then we carried out the following experiments

  8. KUCA critical experiments using MEU fuel (II)

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Keiji; Hayashi, Masatoshi; Shiroya, Seiji; Kobayashi, Keiji; Fukui, Hiroshi; Mishima, Kaichiro; Shibata, Toshikazu [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka (Japan)

    1983-09-01

    Due to mutual concerns in the USA and Japan about the proliferation potential of highly-enriched uranium (HEU), a joint study program I was initiated between Argonne National Laboratory (ANL and Kyoto University Research Reactor Institute (KURRI) in 1978. In accordance with the reduced enrichment for research and test reactor (RERTR) program, the alternatives were studied for reducing the enrichment of the fuel to be used in the Kyoto University High Flux Reactor (KUHFR). The KUHFR has a distinct feature in its core configuration it is a coupled-core. Each annular shaped core is light-water-moderated and placed within a heavy water reflector with a certain distance between them. The phase A reports of the joint ANL-KURRI program independently prepared by two laboratories in February 1979, 3,4 concluded that the use of medium-enrichment uranium (MEU, 45%) in the KUHFR is feasible, pending results of the critical experiments in the Kyoto University Critical Assembly (KUCA) 5 and of the burnup test in the Oak Ridge Research Reactor 6 (ORR). An application of safety review (Reactor Installation License) for MEU fuel to be used in the KUCA was submitted to the Japanese Government in March 1980, and a license was issued in August 1980. Subsequently, the application for 'Authorization before Construction' was submitted and was authorized in September 1980. Fabrication of MEU fuel-elements for the KUCA experiments by CERCA in France was started in September 1980, and was completed in March 1981. The critical experiments in the KUCA with MEU fuel were started on a single-core in May 1981 as a first step. The first critical state of the core using MEU fuel was achieved at 312 p.m. in May 12, 1981. After that, the reactivity effects of the outer side-plates containing boron burnable poison were measured. At Munich Meeting in Sept., 1981, we presented a paper on critical mass and reactivity of burnable poison in the MEU core. Since then we carried out the following experiments

  9. Viscoelastic model of tungsten 'fuzz' growth

    International Nuclear Information System (INIS)

    Krasheninnikov, S I

    2011-01-01

    A viscoelastic model of fuzz growth is presented. The model describes the main features of tungsten fuzz observed in experiments. It gives estimates of fuzz growth rate and temperature range close to experimental ones.

  10. Experiment to study K+ → π+ + ''nothing'' at LAMPF II

    International Nuclear Information System (INIS)

    Marlow, D.R.

    1985-05-01

    An experiment to measure K + → π + + ''nothing'' (where ''nothing'' denotes unobservable neutral particles) at LAMPF II is described. This experiment is capable of measuring one K + → π + nu anti nu event for branching ratio of 10 -12 . 12 refs

  11. First results of the Auroral Turbulance II rocket experiment

    DEFF Research Database (Denmark)

    Danielides, M.A.; Ranta, A.; Ivchenco, N.

    1999-01-01

    The Auroral Turbulance II sounding rocket was launched on February 11, 1997 into moderately active nightside aurora from the Poker Flat Research Range, Alaska, US. The experiment consisted of three independent, completely instrumented payloads launched by a single vehicle. The aim of the experiment...

  12. RADLAC II high current electron beam propagation experiment

    International Nuclear Information System (INIS)

    Frost, C.A.; Shope, S.L.; Mazarakis, M.G.; Poukey, J.W.; Wagner, J.S.; Turman, B.N.; Crist, C.E.; Welch, D.R.; Struve, K.W.

    1993-01-01

    The resistive hose instability of an electron beam was observed to be convective in recent RADLAC II experiments for higher current shots. The effects of air scattering for these shots were minimal. These experiments and theory suggest low-frequency hose motion which does not appear convective may be due to rapid expansion and subsequent drifting of the beam nose

  13. Tungsten Alloy Outgassing Measurements

    CERN Document Server

    Rutherfoord, John P; Shaver, L

    1999-01-01

    Tungsten alloys have not seen extensive use in liquid argon calorimeters so far. Because the manufacturing process for tungsten is different from the more common metals used in liquid argon there is concern that tungsten could poison the argon thereby creating difficulties for precision calorimetry. In this paper we report measurements of outgassing from the tungsten alloy slugs proposed for use in the ATLAS FCal module and estimate limits on potential poisoning with reasonable assumptions. This estimate gives an upper limit poisoning rate of tungsten slugs.

  14. Argonne Bubble Experiment Thermal Model Development II

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-01

    This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at three beam power levels, 6, 12 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was observed. This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiations. The previous report described an initial analysis performed on a geometry that had not been updated to reflect the as-built solution vessel. Here, the as-built geometry is used. Monte-Carlo N-Particle (MCNP) calculations were performed on the updated geometry, and these results were used to define the power deposition profile for the CFD analyses, which were performed using Fluent, Ver. 16.2. CFD analyses were performed for the 12 and 15 kW irradiations, and further improvements to the model were incorporated, including the consideration of power deposition in nearby vessel components, gas mixture composition, and bubble size distribution. The temperature results of the CFD calculations are compared to experimental measurements.

  15. Scanning tunneling microscopy measurements of the spin Hall effect in tungsten films by using iron-coated tungsten tips

    Directory of Open Access Journals (Sweden)

    Ting Xie

    2018-05-01

    Full Text Available Scanning tunneling microscopy experiments using iron-coated tungsten tips and current-carrying tungsten films have been conducted. An asymmetry of the tunneling current with respect to the change of the direction of the bias current through a tungsten film has been observed. It is argued that this asymmetry is a manifestation of the spin Hall effect in the current-carrying tungsten film. Nanoscale variations of this asymmetry across the tungsten film have been studied by using the scanning tunneling microscopy technique.

  16. Scanning tunneling microscopy measurements of the spin Hall effect in tungsten films by using iron-coated tungsten tips

    Science.gov (United States)

    Xie, Ting; Dreyer, Michael; Bowen, David; Hinkel, Dan; Butera, R. E.; Krafft, Charles; Mayergoyz, Isaak

    2018-05-01

    Scanning tunneling microscopy experiments using iron-coated tungsten tips and current-carrying tungsten films have been conducted. An asymmetry of the tunneling current with respect to the change of the direction of the bias current through a tungsten film has been observed. It is argued that this asymmetry is a manifestation of the spin Hall effect in the current-carrying tungsten film. Nanoscale variations of this asymmetry across the tungsten film have been studied by using the scanning tunneling microscopy technique.

  17. Micro-powder injection moulding of tungsten

    International Nuclear Information System (INIS)

    Zeep, B.

    2007-12-01

    For He-cooled Divertors as integral components of future fusion power plants, about 300000 complex shaped tungsten components are to be fabricated. Tungsten is the favoured material because of its excellent properties (high melting point, high hardness, high sputtering resistance, high thermal conductivity). However, the material's properties cause major problems for large scale production of complex shaped components. Due to the resistance of tungsten to mechanical machining, new fabrication technologies have to be developed. Powder injection moulding as a well established shaping technology for a large scale production of complex or even micro structured parts might be a suitable method to produce tungsten components for fusion applications but is not yet commercially available. The present thesis is dealing with the development of a powder injection moulding process for micro structured tungsten components. To develop a suitable feedstock, the powder particle properties, the binder formulation and the solid load were optimised. To meet the requirements for a replication of micro patterned cavities, a special target was to define the smallest powder particle size applicable for micro-powder injection moulding. To investigate the injection moulding performance of the developed feedstocks, experiments were successfully carried out applying diverse cavities with structural details in micro dimension. For debinding of the green bodies, a combination of solvent debinding and thermal debinding has been adopted for injection moulded tungsten components. To develop a suitable debinding strategy, a variation of the solvent debinding time, the heating rate and the binder formulation was performed. For investigating the thermal consolidation behaviour of tungsten components, sinter experiments were carried out applying tungsten powders suitable for micro-powder injection moulding. First mechanical tests of the sintered samples showed promising material properties such as a

  18. SNEAK-4, a series of physics experiments for KNK II

    International Nuclear Information System (INIS)

    Engelmann, P.

    1969-10-01

    At the end of 1968 a three months program of neutron physics experiments was performed at SNEAK for the investigation of some nuclear properties of the KNK II reactor. The experiments were conducted by the Karlsruhe Nuclear Research Center in close cooperation with INTERATOM. The results of the measurements on SNEAK assemblies 4A and 4B are reported and compared with calculations. The experimental results of critical mass and reactivities, control rod worths, Doppler coefficient and power distribution were used to draw conclusions for the KNK II design

  19. Computer experiments on the imaging of the (111) split crowdion interstitial in tungsten by transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krakow, W [Xerox Corp., Rochester, N.Y. (USA)

    1978-06-01

    Computer simulated dark-field electron micrographs at atomic resolutions have been generated by calculating the diffuse elastic scattering distribution of short range order objects with the important point being that images are formed from regions of reciprocal space that do not contain Bragg reflections of the perfect crystal. Interpretation of these images in terms of atom positions and atom correlations becomes straightforward and it is a simple matter to distinguish between real structural information and image artifacts produced by the phase contrast mechanism in the electron optical imaging process. In this paper images were calculated under a variety of microscope conditions for a (111) split crowdion interstitial in tungsten which included up to 182 atoms of the surrounding strain field. The effect of specimen orientation, microscope objective lens defocus and the contribution of atoms lying in different shells around the defect have been considered. To aid in image interpretation accompanying diffraction patterns have been computed for different specimen orientations which show either the perfect crystal Bragg diffraction pattern or the diffuse scattering distribution produced by the crowdion defect.

  20. Upgrade for Phase II of the Gerda experiment

    Science.gov (United States)

    Agostini, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hiller, R.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kermaïdic, Y.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Nisi, S.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Ransom, C.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zsigmond, A. J.; Zuber, K.; Zuzel, G.

    2018-05-01

    The Gerda collaboration is performing a sensitive search for neutrinoless double beta decay of ^{76}Ge at the INFN Laboratori Nazionali del Gran Sasso, Italy. The upgrade of the Gerda experiment from Phase I to Phase II has been concluded in December 2015. The first Phase II data release shows that the goal to suppress the background by one order of magnitude compared to Phase I has been achieved. Gerda is thus the first experiment that will remain "background-free" up to its design exposure (100 kg year). It will reach thereby a half-life sensitivity of more than 10^{26} year within 3 years of data collection. This paper describes in detail the modifications and improvements of the experimental setup for Phase II and discusses the performance of individual detector components.

  1. Recent operating experiences and programs at EBR-II

    International Nuclear Information System (INIS)

    Lentz, G.L.

    1984-01-01

    Experimental Breeder Reactor No. II (EBR-II) is a pool-type, unmoderated, sodium-cooled reactor with a design power of 62.5 MWt and an electrical generation capability of 20 MW. It has been operated by Argonne National Laboratory for the US government for almost 20 years. During that time, it has operated safely and has demonstrated stable operating characteristics, high availability, and excellent performance of its sodium components. The 20 years of operating experience of EBR-II is a valuable resource to the nuclear community for the development and design of future LMFBR's. Since past operating experience has been extensively reported, this report will focus on recent programs and events

  2. Hydrogen retention properties of polycrystalline tungsten and helium irradiated tungsten

    International Nuclear Information System (INIS)

    Hino, T.; Koyama, K.; Yamauchi, Y.; Hirohata, Y.

    1998-01-01

    The hydrogen retention properties of a polycrystalline tungsten and tungsten irradiated by helium ions with an energy of 5 keV were examined by using an ECR ion irradiation apparatus and a technique of thermal desorption spectroscopy, TDS. The polycrystalline tungsten was irradiated at RT with energetic hydrogen ions, with a flux of 10 15 H cm -2 and an energy of 1.7 keV up to a fluence of 5 x 10 18 H cm -2 . Subsequently, the amount of retained hydrogen was measured by TDS. The heating temperature was increased from RT to 1000 C, and the heating rate was 50 C min -1 . Below 1000 C, two distinct hydrogen desorption peaks were observed at 200 C and 400 C. The retained amount of hydrogen was observed to be five times smaller than that of graphite, but the concentration in the implantation layer was comparable with that of graphite. Also, the polycrystalline tungsten was irradiated with 5 keV helium ions up to a fluence of 1.4 x 10 18 He cm -2 , and then re-irradiated with 1.7 keV hydrogen ions. The amount of retained hydrogen in this later experiment was close to the value in the case without prior helium ion irradiation. However, the amount of hydrogen which desorbed around the low temperature peak, 200 C, was largely enhanced. The desorption amount at 200 C saturated for the helium fluence of more than 5 x 10 17 He cm -2 . The present data shows that the trapping state of hydrogen is largely changed by the helium ion irradiation. Additionally, 5 keV helium ion irradiation was conducted on a sample pre-implanted with hydrogen ions to simulate a helium ion impact desorption of hydrogen retained in tungsten. The amount of the hydrogen was reduced as much as 50%. (orig.)

  3. SPQR II: A beam-plasma interaction experiment

    International Nuclear Information System (INIS)

    Bimbot, R.; Della-Negra, S.; Gardes, D.

    1986-01-01

    SPQR II is an interaction experiment designed to probe energy -and charge-exchange of C/sup n/ + ions at 2 MeV/a.m.u., flowing through a fully ionized plasma column of hydrogen with nl-script = 10 19 e-cm -2 at T = 5 eV

  4. SPQR II: A beam-plasma interaction experiment

    Science.gov (United States)

    Bimbot, R.; Della-Negra, S.; Gardès, D.; Rivet, M. F.; Fleurier, C.; Dumax, B.; Hoffman, D. H. H.; Weyrich, K.; Deutsch, C.; Maynard, G.

    1986-01-01

    SPQR II is an interaction experiment designed to probe energy -and charge-exchange of Cn+ ions at 2 MeV/a.m.u., flowing through a fully ionized plasma column of hydrogen with nℓ=1019 e-cm-2 at T=5 eV. One expects a factor of two enhanced stopping over the cold gas case.

  5. OWR/RTNS-II low exposure spectral effects experiment

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1985-05-01

    The first RTNS-II irradiation of the Low Exposure Spectral Experiment has been completed. The dosimetry has been analyzed, and expressions have been determined that fit the data very well. The effects of including the angular variation of the neutron spectrum were investigated

  6. A transient overpower experiment in EBR-II

    International Nuclear Information System (INIS)

    Herzog, J.P.; Tsai, H.; Dean, E.M.; Aoyama, T.; Yamamoto, K.

    1994-01-01

    The TOPI-IE test was a transient overpower test on irradiate mixed-oxide fuel pins in the Experimental Breeder Reactor-II (EBR-II). The test, the fifth in a series, was part of a cooperative program between the US Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan to conduct operational transient testing on mixed-oxide fuel pins in the metal-fueled EBR-II. The principle objective of the TOPI-1E test was to assess breaching margins for irradiated mixed-oxide fuel pins over the Plant Protection System (PPS) thresholds during a slow, extended overpower transient. This paper describes the effect of the TOPI-1E experiment on reactor components and the impact of the experiment on the long-term operability of the reactor. The paper discusses the role that SASSYS played in the pre-test safety analysis of the experiment. The ability of SASSYS to model transient overpower events is detailed by comparisons of data from the experiment with computed reactor variables from a SASSYS post-test simulation of the experiment

  7. EBR-II experience with sodium cleaning and radioactivity decontamination

    International Nuclear Information System (INIS)

    Ruther, W.E.; Smith, C.R.F.

    1978-01-01

    The EBR-II is now in Its 13th year of operation. During that period more than 2400 subassemblies have been cleaned of sodium without a serious incident of any kind by a two-step process developed at Argonne. Sodium cleaning and decontamination of other reactor components has been performed only on the relatively few occasions in which a repair or replacement has been required. A summary of the EBR-II experience will be presented. A new facility will be described for the improved cleaning and maintenance of sodium-wetted primary components

  8. EBR-II experience with sodium cleaning and radioactivity decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Ruther, W E; Smith, C R.F. [Argonne National Laboratory, Argonne (United States)

    1978-08-01

    The EBR-II is now in Its 13th year of operation. During that period more than 2400 subassemblies have been cleaned of sodium without a serious incident of any kind by a two-step process developed at Argonne. Sodium cleaning and decontamination of other reactor components has been performed only on the relatively few occasions in which a repair or replacement has been required. A summary of the EBR-II experience will be presented. A new facility will be described for the improved cleaning and maintenance of sodium-wetted primary components.

  9. ALT-II toroidal belt limiter biasing experiments on TEXTOR

    International Nuclear Information System (INIS)

    Doerner, R.; Boedo, J.A.; Gray, D.S.

    1991-01-01

    Edge electric fields have been related to H-mode-like behaviour. The experiments reported here are an attempt to control the SOL profiles by electrostatic biasing of the full toroidal-belt limiter ALT-II. The specific goals are: influencing the edge particle flows, particle removal, power deposition and the global confinement. The ALT-II pump limiter is a full toroidal belt located at 45 o below the outer midplane and consisting of eight graphite covered blades which can be independently biased. Particle scoops located behind the limiter neutralize and direct the incoming plasma into the pumping ducts. (author) 5 refs., 3 figs

  10. Operating experience of the EBR-II steam generating system

    International Nuclear Information System (INIS)

    Buschman, H.W.; Penney, W.H.; Quilici, M.D.; Radtke, W.H.

    1981-01-01

    The Experimental Breeder Reactor II (EBR-II) is a Liquid Metal Fast Breeder Reactor (LMFBR) with integrated power producing capability. Superheated steam is produced by eight natural circulation evaporators, two superheaters, and a conventional steam drum. Steam throttle conditions are 438 C (820 F) and 8.62 MPa (1250 psi). The designs of the evaporators and superheaters are essentially identical; both are counterflow units with low pressure nonradioactive sodium on the shell side. Safety and reliability are maximized by using duplex tubes and tubesheets. The performance of the system has been excellent and essentially trouble free. The operating experience of EBR-II provides confidence that the technology can be applied to commercial LMFBR's for an abundant supply of energy for the future. 5 refs

  11. Experience with lifetime limits for EBR-II core components

    International Nuclear Information System (INIS)

    Lambert, J.D.B.; Smith, R.N.; Golden, G.H.

    1987-01-01

    The Experimental Breeder Reactor No. 2 (EBR-II) is operated for the US Department of Energy by Argonne National Laboratory and is located on the Idaho National Engineering Laboratory where most types of American reactor were originally tested. EBR-II is a complete electricity-producing power plant now in its twenty-fourth year of successful operation. During this long history the reactor has had several concurrent missions, such as demonstration of a closed Liquid-Metal Reactor (LMR) fuel cycle (1964-69); as a steady-state irradiation facility for fuels and materials (1970 onwards); for investigating effects of operational transients on fuel elements (from 1981); for research into the inherent safety aspects of metal-fueled LMR's (from 1983); and, most recently, for demonstration of the Integral Fast Reactor (IFR) concept using U-Pu-Zr fuels. This paper describes experience gained at EBR-II in defining lifetime limits for LMR core components, particularly fuel elements

  12. Operational Experience from LCLS-II Cryomodule Testing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Renzhuo [Fermilab; Hansen, Benjamin [Fermilab; White, Michael [Fermilab; Hurd, Joseph [Fermilab; Atassi, Omar Al [Fermilab; Bossert, Richard [Fermilab; Pei, Liujin [Fermilab; Klebaner, Arkadiy [Fermilab; Makara, Jerry [Fermilab; Theilacker, Jay [Fermilab; Kaluzny, Joshua [Fermilab; Wu, Genfa [Fermilab; Harms, Elvin [Fermilab

    2017-07-01

    This paper describes the initial operational experience gained from testing Linac Coherent Light Source II (LCLS-II) cryomodules at Fermilab’s Cryomodule Test Facility (CMTF). Strategies for a controlled slow cooldown to 100 K and a fast cooldown past the niobium superconducting transition temperature of 9.2 K will be described. The test stand for the cryomodules at CMTF is sloped to match gradient in the LCLS-II tunnel at Stanford Linear Accelerator (SLAC) laboratory, which adds an additional challenge to stable liquid level control. Control valve regulation, Superconducting Radio-Frequency (SRF) power compensation, and other methods of stabilizing liquid level and pressure in the cryomodule 2.0 K SRF cavity circuit will be discussed. Several different pumping configurations using cold compressors and warm vacuum pumps have been used on the cryomodule 2.0 K return line and the associated results will be described.

  13. Operational experience from LCLS-II cryomodule testing

    Science.gov (United States)

    Wang, R.; Hansen, B.; White, M.; Hurd, J.; Atassi, O. Al; Bossert, R.; Pei, L.; Klebaner, A.; Makara, J.; Theilacker, J.; Kaluzny, J.; Wu, G.; Harms, E.

    2017-12-01

    This paper describes the initial operational experience gained from testing Linac Coherent Light Source II (LCLS-II) cryomodules at Fermilab’s Cryomodule Test Facility (CMTF). Strategies for a controlled slow cooldown to 100 K and a fast cooldown past the niobium superconducting transition temperature of 9.2 K will be described. The test stand for the cryomodules at CMTF is sloped to match gradient in the LCLS-II tunnel at Stanford Linear Accelerator (SLAC) laboratory, which adds an additional challenge to stable liquid level control. Control valve regulation, Superconducting Radio-Frequency (SRF) power compensation, and other methods of stabilizing liquid level and pressure in the cryomodule 2.0 K SRF cavity circuit will be discussed. Several different pumping configurations using cold compressors and warm vacuum pumps have been used on the cryomodule 2.0 K return line and the associated results will be described.

  14. Characterization of optical systems for the ALPS II experiment

    International Nuclear Information System (INIS)

    Spector, Aaron D.; Baehre, Robin; Willke, Benno; Hannover Univ.

    2016-09-01

    ALPS II is a light shining through a wall style experiment that will use the principle of resonant enhancement to boost the conversion and reconversion probabilities of photons to relativistic WISPs. This will require the use of long baseline low-loss optical cavities. Very high power build up factors in the cavities must be achieved in order to reach the design sensitivity of ALPS II. This necessitates a number of different sophisticated optical and control systems to maintain the resonance and ensure maximal coupling between the laser and the cavity. In this paper we report on the results of the characterization of these optical systems with a 20m cavity and discuss the results in the context of ALPS II.

  15. Damage to tungsten macro-brush targets under multiple ELM-like heat loads. Experiments vs. numerical simulations and extrapolation to ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B.; Landman, I. [Forschungszentrum Karlsruhe (Germany). IHM; Janeschitz, G. [Forschungszentrum Karlsruhe (DE). Fusion EURATOM] (and others)

    2007-07-01

    Operation of ITER at high fusion gain is assumed to be the H-mode. A characteristic feature of this regime is the transient release of energy from the confined plasma onto PFCs by multiple ELMs (about 104 ELMs per ITER discharge), which can play a determining role in the erosion rate and lifetime of these components. The expected energy heat loads on the ITER divertor during Type I ELM are in range 0.5-4 MJ/m{sup 2} in timescales of 0.3-0.6 ms. Tungsten macro-brush armour (W-brushes) is foreseen as one of plasma facing components (PFC) for ITER divertor and dome. During the intense transient events in ITER the surface melting, melt motion, melt splashing and evaporation are seen as the main mechanisms of W erosion. The expected erosion of the ITER plasma facing components under transient energy loads can be properly estimated by numerical simulations validated against target erosion of the experiments at the plasma gun facility QSPA-T. Within the collaboration established between EU fusion programme and the Russian Federation, W-brush targets (produced either from pure tungsten or tungsten with 1% of La{sub 2}O{sub 3}) manufactured according to the EU specifications for the ITER divertor targets, have been exposed to multiple ITER ELM-like loads in plasma gun facilities at TRINITI in the range 0.5 - 2.2 MJ/m2 with pulse duration of 0.5 ms. The measured material erosion data have been used to validate the codes MEMOS and PHEMOBRID. Numerical simulations, including 3D-simulations (codes MEMOS and PHEMOBRID), carried out for the conditions of the QSPA-T experiments with heat loads in the range 0.5-2.2 MJ/m{sup 2} and the timescale 0.5 ms demonstrated a rather good agreement with the data obtained at the plasma gun facility QSPA: melting of brush edges at low heat loads, intense melt motion and bridge formation caused by the Rayleigh-Taylor instability at heat loads Q>1.3 MJ/m{sup 2}. The melt splashing generated by the Kelvin-Helmholtz, and Rayleigh

  16. Tungsten Filament Fire

    Science.gov (United States)

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  17. Perturbative Heat Transport Experiments on TJ-II

    International Nuclear Information System (INIS)

    Eguilor, S.; Castejon, F.; Luna, E. de la; Cappa, A.; Likin, K.; Fernandez, A.; Tj-II, T.

    2002-01-01

    Heat wave experiments are performed on TJ-II stellarator plasmas to estimate both heat diffusivity and power deposition profiles. High frequency ECRH modulation experiments are used to obtain the power deposition profiles, which is observed to be wider and duller than estimated by tracing techniques. The causes of this difference are discussed in the paper. Fourier analysis techniques are used to estimate the heat diffusivity in low frequency ECRH modulation experiments. This include the power deposition profile as a new ingredient. ECHR switch on/off experiments are exploited to obtain power deposition and heat diffusivities profile. Those quantities are compared with the obtained by modulation experiments and transport analysis, showing a good agreement. (Author) 18 refs

  18. Perturbative Heat Transport Experiments on TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Eguilor, S.; Castejon, F.; Luna, E. de la; Cappa, A.; Likin, K.; Fernandez, A.; Tj-II, T.

    2002-07-01

    Heat wave experiments are performed on TJ-II stellarator plasmas to estimate both heat diffusivity and power deposition profiles. High frequency ECRH modulation experiments are used to obtain the power deposition profiles, which is observed to be wider and duller than estimated by tracing techniques. The causes of this difference are discussed in the paper. Fourier analysis techniques are used to estimate the heat diffusivity in low frequency ECRH modulation experiments. This include the power deposition profile as a new ingredient. ECHR switch on/off experiments are exploited to obtain power deposition and heat diffusivities profile. Those quantities are compared with the obtained by modulation experiments and transport analysis, showing a good agreement. (Author) 18 refs.

  19. TOP counter for particle identification at the Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Inami, Kenji

    2014-12-01

    Ring imaging Cherenkov counter, named TOP counter, utilizing precise photon detection timing has been developed as a particle identification detector for the Belle II experiment. The real size prototype has been produced and tested with 2 GeV positrons at Spring-8 LEPS beam line. The quartz radiator production and assembling with microchannel plate photomultipliers was successfully carried out. The beam test data shows good agreement with full Monte-Carlo simulation results in the ring image and the distribution of number of detected photons and timing information. - Highlights: • TOP counter was developed as a particle identification detector for the Belle II experiment. • The real size prototype was produced and tested with 2 GeV positrons. • The quartz radiator production and assembling with MCP-PMT was successfully carried out. • The beam test data shows good agreement with full Monte-Carlo simulation results.

  20. Lithium beam characterization of cylindrical PBFA II hohlraum experiments

    International Nuclear Information System (INIS)

    Moats, A.R.; Derzon, M.S.; Chandler, G.A.; Haill, T.A.; Johnson, D.J.; Leeper, R.J.; Ruiz, C.L.; Wenger, D.F.

    1995-01-01

    Sandia National Laboratories is actively engaged in exploring indirect-drive inertial confinement fusion on the Particle Beam Fusion Accelerator (PBFA II) with pulsed-power accelerated lithium ions as the driver. Experiments utilizing cylindrical hohlraum targets were conducted in 1994. Using the incoming ion beam-induced line radiation from titanium wires surrounding these hohlraums, beam profiles during these experiments have been measured and characterized. These data, their comparison/cross-correlation with particle-based beam diagnostics, and an analysis of the beam parameters that most significantly influence target temperature are presented

  1. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX-II)

    International Nuclear Information System (INIS)

    Roy, P.K.; Greenway, W.; Kwan, J.W.; Seidl, P.A.; Waldron, W.

    2011-01-01

    To heat targets to electron-volt temperatures for the study of warm dense matter with intense ion beams, low mass ions, such as lithium, have an energy loss peak (dE/dx) at a suitable kinetic energy. The Heavy Ion Fusion Sciences (HIFS) program at Lawrence Berkeley National Laboratory will carry out warm dense matter experiments using Li + ion beam with energy 1.2-4 MeV in order to achieve uniform heating up to 0.1-1 eV. The accelerator physics design of Neutralized Drift Compression Experiment (NDCX-II) has a pulse length at the ion source of about 0.5 (micro)s. Thus for producing 50 nC of beam charge, the required beam current is about 100 mA. Focusability requires a normalized (edge) emittance ∼2 π-mm-mrad. Here, lithium aluminosilicate ion sources, of β-eucryptite, are being studied within the scope of NDCX-II construction. Several small (0.64 cm diameter) lithium aluminosilicate ion sources, on 70%-80% porous tungsten substrate, were operated in a pulsed mode. The distance between the source surface and the mid-plane of the extraction electrode (1 cm diameter aperture) was 1.48 cm. The source surface temperature was at 1220 C to 1300 C. A 5-6 (micro)s long beam pulsed was recorded by a Faraday cup (+300 V on the collector plate and -300 V on the suppressor ring). Figure 1 shows measured beam current density (J) vs. V 3/2 . A space-charge limited beam density of ∼1 mA/cm 2 was measured at 1275 C temperature, after allowing a conditioning time of about ∼ 12 hours. Maximum emission limited beam current density of (ge) 1.8mA/cm 2 was recorded at 1300 C with 10-kV extractions. Figure 2 shows the lifetime of two typical sources with space-charge limited beam current emission at a lower extraction voltage (1.75 kV) and at temperature of 1265 ± 7 C. These data demonstrate a constant, space-charge limited beam current for 20-50 hours. The lifetime of a source is determined by the loss of lithium from the alumino-silicate material either as ions or as neutral

  2. The tungsten powder study of the dispenser cathode

    International Nuclear Information System (INIS)

    Bao Jixiu; Wan Baofei

    2006-01-01

    The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes has been investigated for the different grain morphologies. It is shown that a fully cleaning step of the tungsten powder is so necessary that the tungsten powder will be reduction of oxide in hydrogen atmosphere above 700 deg. C. The porosity of the tungsten matrix distributes more even and the closed pore is fewer, the average granule size of the tungsten powder distributes more convergent. The porosity of the tungsten matrix and the evaporation of the activator are bigger and the pulse of the cathode is smaller when the granularity is bigger by the analysis of the electronic microscope and diode experiment

  3. The tungsten powder study of the dispenser cathode

    Science.gov (United States)

    Bao, Ji-xiu; Wan, Bao-fei

    2006-06-01

    The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes has been investigated for the different grain morphologies. It is shown that a fully cleaning step of the tungsten powder is so necessary that the tungsten powder will be reduction of oxide in hydrogen atmosphere above 700 °C. The porosity of the tungsten matrix distributes more even and the closed pore is fewer, the average granule size of the tungsten powder distributes more convergent. The porosity of the tungsten matrix and the evaporation of the activator are bigger and the pulse of the cathode is smaller when the granularity is bigger by the analysis of the electronic microscope and diode experiment.

  4. Plasma etching of patterned tungsten

    International Nuclear Information System (INIS)

    Franssila, S.

    1993-01-01

    Plasma etching of tungsten is discussed from the viewpoint of thin film structure and integrated circuit process engineering. The emphasis is on patterned tungsten etching for silicon device and X-ray mask fabrication. After introducing tungsten etch chemistries and mechanisms, microstructural aspects of tungsten films (crystal structure, grain size, film density, defects, impurities) in relation to etching are discussed. Approaches to etch process optimization are presented, and the current state-of-the-art of patterned tungsten etching is reviewed. (orig.)

  5. Results on QCD Physics from the CDF-II Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pagliarone, C.; /Cassino U. /INFN, Pisa

    2006-12-01

    In this paper the authors review a selection of recent results obtained, in the area of QCD physics, from the CDF-II experiment that studies p{bar p} collisions at {radical}s = 1.96 TeV provided by the Fermilab Tevatron Collider. All results shown correspond to analysis performed using the Tevatron Run II data samples. In particular they will illustrate the progress achieved and the status of the studies on the following QCD processes: jet inclusive production, using different jet clustering algorithm, W({yields} e{nu}{sub e}) + jets and Z({yields} e{sup +}e{sup -}) + jets production, {gamma} + b-jet production, dijet production in double pomeron exchange and finally exclusive e{sup +}e{sup -} and {gamma}{gamma} production. No deviations from the Standard Model have been observed so far.

  6. Database usage and performance for the Fermilab Run II experiments

    International Nuclear Information System (INIS)

    Bonham, D.; Box, D.; Gallas, E.; Guo, Y.; Jetton, R.; Kovich, S.; Kowalkowski, J.; Kumar, A.; Litvintsev, D.; Lueking, L.; Stanfield, N.; Trumbo, J.; Vittone-Wiersma, M.; White, S.P.; Wicklund, E.; Yasuda, T.; Maksimovic, P.

    2004-01-01

    The Run II experiments at Fermilab, CDF and D0, have extensive database needs covering many areas of their online and offline operations. Delivering data to users and processing farms worldwide has represented major challenges to both experiments. The range of applications employing databases includes, calibration (conditions), trigger information, run configuration, run quality, luminosity, data management, and others. Oracle is the primary database product being used for these applications at Fermilab and some of its advanced features have been employed, such as table partitioning and replication. There is also experience with open source database products such as MySQL for secondary databases used, for example, in monitoring. Tools employed for monitoring the operation and diagnosing problems are also described

  7. Theory of electron cyclotron heating in the Constance II experiment

    International Nuclear Information System (INIS)

    Mauel, M.E.

    1981-03-01

    The bounce-averaged quasi-linear equation for a non-relativistic mirror-confined plasma interacting with electromagnetic waves is derived for use in the study of ECRH of the Constance II mirror experiment. The derivations follows the more formal examples given by Berk for electrostatic waves and Bernstein and Baxter for relativistic plasmas. The validity of the theory is discussed by examining individual particle orbits in an EM field. The local dispersion relation is found while deriving a self-consistent WKB theory which can be used to estimate the power transferred from the launching horn to the plasma

  8. Burn-up TRIGA Mark II benchmark experiment

    International Nuclear Information System (INIS)

    Persic, A.; Ravnik, M.; Zagar, T.

    1998-01-01

    Different reactor codes are used for calculations of reactor parameters. The accuracy of the programs is tested through comparison of the calculated values with the experimental results. Well-defined and accurately measured benchmarks are required. The experimental results of reactivity measurements, fuel element reactivity worth distribution and fuel-up measurements are presented in this paper. The experiments were performed with partly burnt reactor core. The experimental conditions were well defined, so that the results can be used as a burn-up benchmark test case for a TRIGA Mark II reactor calculations.(author)

  9. Evaporation of tungsten in vacuum at low hydrogen and water vapor pressures

    International Nuclear Information System (INIS)

    Andrievskij, R.A.; Galkin, E.A.; Khromonozhkin, V.V.

    1981-01-01

    The results of experimental investigations of tungsten evaporation rates in the temperature range 1650-2500 K, partial hydrogen and water vapours pressures 1x10 -5 -10 Pa are presented. Experi-- mental plant, equipment employed and radiometric technique of tungsten evaporation study are described. The dependences of evaporation rate and probabilities of tungsten oxidation by residual vacuum water vapours and dependences of tungsten evaporation rate on partial hydrogen and water vapours pressures are determined [ru

  10. Plasma flow switch and foil implosion experiments on Pegasus II

    International Nuclear Information System (INIS)

    Cochrane, J.C.; Bartsch, R.R.; Benage, J.R.; Forman, P.R.; Gribble, R.F.; Ladish, J.S.; Oona, H.; Parker, J.V.; Scudder, D.W.; Shlachter, J.S.; Wysocki, F.J.

    1993-01-01

    Pegasus II is the upgraded version of Pegasus, a pulsed power machine used in the Los Alamos AGEX (Above Ground EXperiments) program. A goal of the program is to produce an intense (> 100 TW) source of soft x-rays from the thermalization of the kinetic energy of a 1 to 10 MJ plasma implosion. The radiation pulse should have a maximum duration of several 10's of nanoseconds and will be used in the study of fusion conditions and material properties. The radiating plasma source will be generated by the thermalization of the kinetic energy of an imploding cylindrical, thin, metallic foil. This paper addresses experiments done on a capacitor bank to develop a switch (plasma flow switch) to switch the bank current into the load at peak current. This allows efficient coupling of bank energy into foil kinetic energy

  11. ICRF heating experiments on JIPP T-II

    International Nuclear Information System (INIS)

    Ichimura, M.; Fujita, J.; Hirokura, S.

    1983-10-01

    Data of JIPP T-II ICRF heating experiments are presented. The experiment covers three typical cases: the low concentration hydrogen minority case, the high concentration hydrogen minority case, and the 3 He minority case. The best heating efficiency is obtained for the 3 Heminority case. It is shown through power balance analysis that the two H-minority cases are different in the wave energy deposition profile. The difference is explained by the presence of local cavity mode for the high concentration minority case. The ion temperature stops rising at the power density level of 0.65 W/cm 3 . An analytic solution of the Fokker-Planck equation is derived to interpret the deterioration of heating efficiency. (author)

  12. Baseball II-T, a new target plasma startup experiment

    International Nuclear Information System (INIS)

    Chargin, A.; Denhoy, B.; Frank, A.; Thomas, S.

    1975-01-01

    A brief description is given of modifications and additions to the existing Baseball II experiment. These changes will make it possible to study target plasma buildup in a steady-state magnetic field. This experiment, now called Baseball II-T + will use a pellet generator to deliver ammonia pellets into the center of the magnetic mirror field where they will be heated with a 300-J, 50-ns, CO 2 laser. The plasma created by this method will have a density of approximately 10 13 cm -3 and a temperature of about 1 keV. This target plasma will be used for neutral beam injection startup studies with a 50-A, 20-keV neutral beam. Later, the beam power will be increased to study buildup. With ion injection energies of up to 50 keV, it may be possible to achieve etatau as high as 10 12 cm -3 s. The new components necessary to achieve these goals are described

  13. Characterization, 1064 nm photon signals and background events of a tungsten TES detector for the ALPS experiment

    International Nuclear Information System (INIS)

    Dreyling-Eschweiler, J.; Doebrich, B.; Januschek, F.; Lindner, A.; Bastidon, N.; Horns, D.

    2015-02-01

    The high efficiency, low-background, and single-photon detection with transition-edge sensors (TES) is making this type of detector attractive in widely different types of application. In this paper, we present first characterizations of a TES to be used in the Any Light Particle Search (ALPS) experiment searching for new fundamental ultra-light particles. Firstly, we describe the setup and the main components of the ALPS TES detector (TES, millikelvin-cryostat and SQUID read-out) and their performances. Secondly, we explain a dedicated analysis method for single-photon spectroscopy and rejection of non-photon background. Finally, we report on results from extensive background measurements. Considering an event-selection, optimized for a wavelength of 1064 nm, we achieved a background suppression of ∝10 -3 with a ∝ 50 % efficiency for photons passing the selection. The resulting overall efficiency was 23 % with a dark count rate of 8.6.10 -3 s -1 . We observed that pile-up events of thermal photons are the main background component.

  14. Gas-driven permeation of deuterium through tungsten and tungsten alloys

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, Dean A., E-mail: dabuche@sandia.gov [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States); Karnesky, Richard A. [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States); Fang, Zhigang Zak; Ren, Chai [University of Utah, Department of Metallurgical Engineering, Salt Lake City, UT 84112 (United States); Oya, Yasuhisa [Shizuoka University, Graduate School of Science, Shizuoka (Japan); Otsuka, Teppei [Kyushu University, Department of Advanced Energy Engineering Science, Fukuoka (Japan); Yamauchi, Yuji [Hokkaido University, Third Division of Quantum Science and Engineering, Faculty of Engineering, Sapporo (Japan); Whaley, Josh A. [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States)

    2016-11-01

    Highlights: • We have designed and performed initial studies on a high temperature gas-driven permeation cell capable of operating at temperatures up to 1150 °C and at pressures between 0.1–1 atm. • Permeation measurements on ITER grade tungsten compare well with past studies by Frauenfelder and Zahkarov in the temperature range from 500 to 1000 °C. • First permeation measurements on Ti dispersoid-strengthened ultra-fine grained tungsten show higher permeation at 500 °C, but very similar permeation with ITER tungsten at 1000 °C. Diffusion along grain boundaries may be playing a role for this type of material. - Abstract: To address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150 °C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungsten being developed in the US. Experiments were performed at 500–1000 °C and 0.1–1.0 atm D{sub 2} pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (< 10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000 °C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation

  15. Tungsten or Wolfram: Friend or Foe?

    Science.gov (United States)

    Zoroddu, Maria A; Medici, Serenella; Peana, Massimiliano; Nurchi, Valeria M; Lachowicz, Joanna I; Laulicht-Glickc, Freda; Costa, Max

    2018-01-01

    Tungsten or wolfram was regarded for many years as an enemy within the tin smelting and mining industry, because it conferred impurity or dirtiness in tin mining. However, later it was considered an amazing metal for its strength and flexibility, together with its diamond like hardness and its melting point which is the highest of any metal. It was first believed to be relatively inert and an only slightly toxic metal. Since early 2000, the risk exerted by tungsten alloys, its dusts and particulates to induce cancer and several other adverse effects in animals as well as humans has been highlighted from in vitro and in vivo experiments. Thus, it becomes necessary to take a careful look at all the most recent data reported in the scientific literature, covering the years 2001-2016. In fact, the findings indicate that much more attention should be devoted to thoroughly investigate the toxic effects of tungsten and the involved mechanisms of tungsten metal or tungsten metal ions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Kinetics of low pressure chemical vapor deposition of tungsten silicide from dichlorocilane reduction of tungsten hexafluoride

    International Nuclear Information System (INIS)

    Srinivas, D.; Raupp, G.B.; Hillman, J.

    1990-01-01

    The authors report on experiments to determine the intrinsic surface reaction rate dependences and film properties' dependence on local reactant partial pressures and wafer temperature in low pressure chemical vapor deposition (LPCVD) of tungsten silicide from dichlorosilane reduction of tungsten hexafluoride. Films were deposited in a commercial-scale Spectrum CVD cold wall single wafer reactor under near differential, gradientless conditions. Over the range of process conditions investigated, deposition rate was found to be first order in dichlorosillane and negative second order in tungsten hexafluoride partial pressure. The apparent activation energy in the surface reaction limited regime was found to be 70-120 kcal/mol. The silicon to tungsten ratio of as deposited silicide films ranged from 1.1 to 2.4, and increased with increasing temperature and dichlorosillane partial pressure, and decreased with increasing tungsten hexafluoride pressure. These results suggest that the apparent silicide deposition rate and composition are controlled by the relative rates of at least two competing reactions which deposit stoichiometric tungsten silicides and/or silicon

  17. Reorientation measurements on tungsten isotopes

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, J J; Saladin, J X; Baktash, C; Alessi, J G [Pittsburgh Univ., Pa. (USA)

    1977-11-14

    In a particle-..gamma.. coincidence experiment, a thick tungsten target, of natural isotopic abundance, was bombarded with ..cap alpha.. and /sup 16/O beams. From analysis of the deexcitation ..gamma..-rays following Coulomb excitation, the spectroscopic quadrupole moment of the second 2/sup +/ state (the 2/sup +/' state) was determined for /sup 186/W and /sup 184/W. In a separate Coulomb excitation experiment a thin, isotopically enriched /sup 186/W target was bombarded with /sup 16/O ions. From analysis of projectiles scattered elastically and inelastically the quadrupole moment of the 2/sup +/' state of /sup 186/W was extracted. The results of the two experiments are in good agreement. The quadrupole moment of the 2/sup +/' state is found to be opposite in sign to that of the first 2/sup +/ state for both isotopes studied. However, its magnitude decreases rapidly in going from /sup 186/W to /sup 184/W, in contrast to the predictions of the rotation-vibration of asymmetric rotor models. The microscopic theory of Kumar and Baranger does predict the experimental trend, qualitatively. Thus the present results are interpreted as being evidence of strong coupling between ..beta.. and ..gamma.. degrees of freedom in the tungsten isotopes, which, according to the theory of Kumar and Baranger, is the source of the reduced value of the quadrupole moment.

  18. IPROP simulations of the GAMBLE II proton transport experiment

    International Nuclear Information System (INIS)

    Welch, D.R.

    1993-01-01

    The author has simulated the proton transport of the 6-kA, 1-MV GAMBLE II experiment using a modified version of the IPROP particle-in-cell code. IPROP now uses a hybrid model in which plasma electrons are divided into high-energy macro particle and thermal-fluid components. This model includes open-quotes knock-onclose quotes bound-electron collision and runaway sources for high-energy electrons. Using IPROP, the authors has calculated net currents in reasonable agreement with the experiment ranging from 5-11% of the total current in pressures from 0.25-4 torr helium. In the simulations, the pinch current sample by the 1.5-cm beam was 2-3 times larger than the net current at 4 cm radius. The attenuation of net current at larger radii was the result of a highly-conductive energetic component of plasma electrons surrounding the beam. Having benchmarked IPROP against experiment, the author has examined higher-current ion beams with respect to possible transport for inertial confinement fusion

  19. Experiments with the HORUS-II test facility

    Energy Technology Data Exchange (ETDEWEB)

    Alt, S.; Lischke, W. [Univ. for Applied Sciences Zittau/Goerlitz, Zittau (Germany). Dept. of Nuclear Engineering

    1997-12-31

    Within the scope of the German reactor safety research the thermohydraulic computer code ATHLET which was developed for accident analyses of western nuclear power plants is more and more used for the accident analysis of VVER-plants particularly for VVER-440,V-213. The experiments with the HORUS-facilities and the analyses with the ATHLET-code have been realized at the Technical University Zittau/Goerlitz since 1991. The aim of the investigations was to improve and verify the condensation model particularly the correlations for the calculation of the heat transfer coefficients in the ATHLET-code for pure steam and steam-noncondensing gas mixtures in horizontal tubes. About 130 condensation experiments have been performed at the HORUS-II facility. The experiments have been carried out with pure steam as well as with noncondensing gas injections into the steam mass flow. The experimental simulations are characterized as accident simulation tests for SBLOCA for VVER-conditions. The simulation conditions had been adjusted correspondingly to the parameters of a postulated SBLOCA`s fourth phase at the original plant. 4 refs.

  20. Experiments with the HORUS-II test facility

    Energy Technology Data Exchange (ETDEWEB)

    Alt, S; Lischke, W [Univ. for Applied Sciences Zittau/Goerlitz, Zittau (Germany). Dept. of Nuclear Engineering

    1998-12-31

    Within the scope of the German reactor safety research the thermohydraulic computer code ATHLET which was developed for accident analyses of western nuclear power plants is more and more used for the accident analysis of VVER-plants particularly for VVER-440,V-213. The experiments with the HORUS-facilities and the analyses with the ATHLET-code have been realized at the Technical University Zittau/Goerlitz since 1991. The aim of the investigations was to improve and verify the condensation model particularly the correlations for the calculation of the heat transfer coefficients in the ATHLET-code for pure steam and steam-noncondensing gas mixtures in horizontal tubes. About 130 condensation experiments have been performed at the HORUS-II facility. The experiments have been carried out with pure steam as well as with noncondensing gas injections into the steam mass flow. The experimental simulations are characterized as accident simulation tests for SBLOCA for VVER-conditions. The simulation conditions had been adjusted correspondingly to the parameters of a postulated SBLOCA`s fourth phase at the original plant. 4 refs.

  1. Experiments with the HORUS-II test facility

    International Nuclear Information System (INIS)

    Alt, S.; Lischke, W.

    1997-01-01

    Within the scope of the German reactor safety research the thermohydraulic computer code ATHLET which was developed for accident analyses of western nuclear power plants is more and more used for the accident analysis of VVER-plants particularly for VVER-440,V-213. The experiments with the HORUS-facilities and the analyses with the ATHLET-code have been realized at the Technical University Zittau/Goerlitz since 1991. The aim of the investigations was to improve and verify the condensation model particularly the correlations for the calculation of the heat transfer coefficients in the ATHLET-code for pure steam and steam-noncondensing gas mixtures in horizontal tubes. About 130 condensation experiments have been performed at the HORUS-II facility. The experiments have been carried out with pure steam as well as with noncondensing gas injections into the steam mass flow. The experimental simulations are characterized as accident simulation tests for SBLOCA for VVER-conditions. The simulation conditions had been adjusted correspondingly to the parameters of a postulated SBLOCA's fourth phase at the original plant

  2. The silicon vertex detector of the Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, T. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technology Guwahati, Assam 781039 (India); Bilka, T. [Faculty of Mathematics and Physics, Charles University, 121 16 Prague (Czech Republic); Bosi, F. [INFN Sezione di Pisa, I-56127 Pisa (Italy); Bosisio, L. [Dipartimento di Fisica, Universitá di Trieste, I-34127 Trieste (Italy); INFN Sezione di Trieste, I-34127 Trieste (Italy); Bozek, A. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); and others

    2016-07-11

    The silicon vertex detector of the Belle II experiment, structured in a lantern shape, consists of four layers of ladders, fabricated from two to five silicon sensors. The APV25 readout ASIC chips are mounted on one side of the ladder to minimize the signal path for reducing the capacitive noise; signals from the sensor backside are transmitted to the chip by bent flexible fan-out circuits. The ladder is assembled using several dedicated jigs. Sensor motion on the jig is minimized by vacuum chucking. The gluing procedure provides such a rigid foundation that later leads to the desired wire bonding performance. The full ladder with electrically functional sensors is consistently completed with a fully developed assembly procedure, and its sensor offsets from the design values are found to be less than 200 μm. The potential functionality of the ladder is also demonstrated by the radioactive source test.

  3. OPAL Example Segment of Silicon Tungsten Luminometer

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. The Silicon Tungsten Luminometer was part of OPAL's calorimeter which was used to measure the energy of particles. Most particles end their journey in calorimeters. These detectors measure the energy deposited when particles are slowed down and stopped.

  4. Adhesion of non-selective CVD tungsten to silicon dioxide

    International Nuclear Information System (INIS)

    Woodruff, D.W.; Wilson, R.H.; Sanchez-Martinez, R.A.

    1986-01-01

    Adhesion of non-selective, CVD tungsten to silicon dioxide is a critical issue in the development of tungsten as a metalization for VLSI circuitry. Without special adhesion promoters, tungsten deposited from WF/sub 6/ and H/sub 2/ has typically failed a standard tape test over all types of silicon oxides and nitrides. The reasons for failure of thin films, and CVD tungsten in particular are explored along with standard techniques for improving adhesion of thin films. Experiments are reported which include a number of sputtered metals as adhesion promoters, as well as chemical and plasma treatment of the oxide surface. Sputtered molybdenum is clearly the superior adhesion promoting layer from these tests. Traditional adhesion layers such as chromium or titanium failed as adhesion layers for CVD tungsten possibly due to chemical reactions between the WF/sub 6/ and Cr or Ti

  5. Tungsten behaviour under anodic polarization

    International Nuclear Information System (INIS)

    Vas'ko, A.T.; Patsyuk, F.N.

    1980-01-01

    Electrochemical investigations have been carried out to identify the state of elements of the tungsten galvanic coating. Active zones on anode polarization curves in the hydrogen region of galvanic tungsten are established. The difference in the behaviour of monocrystal and galvanic tungsten electrodes is shown to be connected with the oxidation of hydrogen in the galvanic sediment

  6. Fuel element failure detection experiments, evaluation of the experiments at KNK II/1 (Intermediate Report)

    CERN Document Server

    Bruetsch, D

    1983-01-01

    In the frame of the fuel element failure detection experiments at KNK II with its first core the measurement devices of INTERATOM were taken into operation in August 1981 and were in operation almost continuously. Since the start-up until the end of the first KNK II core operation plugs with different fuel test areas were inserted in order to test the efficiency of the different measuring devices. The experimental results determined during this test phase and the gained experiences are described in this report and valuated. All three measuring techniques (Xenon adsorption line XAS, gas-chromatograph GC and precipitator PIT) could fulfil the expectations concerning their susceptibility. For XAS and GC the nuclide specific sensitivities as determined during the preliminary tests could be confirmed. For PIT the influences of different parameters on the signal yield could be determined. The sensitivity of the device could not be measured due to a missing reference measuring point.

  7. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition

    International Nuclear Information System (INIS)

    Sharma, Uttam; Chauhan, Sachin S; Sharma, Jayshree; Sanyasi, A K; Ghosh, J; Choudhary, K K; Ghosh, S K

    2016-01-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m 2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS. (paper)

  8. The EBR-II X501 Minor Actinide Burning Experiment

    Energy Technology Data Exchange (ETDEWEB)

    W. J. Carmack; M. K. Meyer; S. L. Hayes; H. Tsai

    2008-01-01

    The X501 experiment was conducted in EBR II as part of the Integral Fast Reactor program to demonstrate minor actinide burning through the use of a homogeneous recycle scheme. The X501 subassembly contained two metallic fuel elements loaded with relatively small quantities of americium and neptunium. Interest in the behavior of minor actinides (MA) during fuel irradiation has prompted further examination of existing X501 data and generation of new data where needed in support of the U.S. waste transmutation effort. The X501 experiment is one of the few MA bearing fuel irradiation tests conducted worldwide, and knowledge can be gained by understanding the changes in fuel behavior due to addition of MAs. Of primary interest are the effect of the MAs on fuel cladding chemical interaction and the redistribution behavior of americium. The quantity of helium gas release from the fuel and any effects of helium on fuel performance are also of interest. It must be stressed that information presented at this time is based on the limited PIE conducted in 1995–1996 and, currently, represents a set of observations rather than a complete understanding of fuel behavior. This report provides a summary of the X501 fabrication, characterization, irradiation, and post irradiation examination.

  9. Discharge initiation experiments in the Tokapole II tokamak

    International Nuclear Information System (INIS)

    Shepard, D.A.

    1984-06-01

    Experiments in the Tokapole II tokamak demonstrate the benefits of high density (n/sub e//n 0 greater than or equal to 0.01) preionization by reducing four quantities at startup: necessary toroidal loop voltage (V 1 ) (50%), volt-second consumption (40 to 50%), impurity radiation (25 to 50%), and runaway electron production (approx. 80 to 100%). A zero-dimensional code models the loop voltage reduction dependence on preionization density and predicts a similar result for reactor scale devices. The code shows low initial resistivity and a high resistivity time derivative contribute to loop voltage reduction. The power balance of the ECR plasma in a toroidal-field-only case was studied. Langmuir probes and impurity doping were used. The vertical electric field (E/sub v/) and current (I/sub v/), which result from curvature drift, were measured (E/sub v/ approx. 10 V/cm and I/sub v/ approx. 50 Amps) and exceeded expected values for the bulk electron temperature (approx. 10 eV). A series of experiments with external windings to simulate field errors perpendicular to the toroidal field was done. The results imply that an error field of 0.1% of the toroidal field is deleterious to ECR plasma density

  10. SAMGrid experiences with the Condor technology in Run II computing

    International Nuclear Information System (INIS)

    Baranovski, A.; Loebel-Carpenter, L.; Garzoglio, G.; Herber, R.; Illingworth, R.; Kennedy, R.; Kreymer, A.; Kumar, A.; Lueking, L.; Lyon, A.; Merritt, W.; Terekhov, I.; Trumbo, J.; Veseli, S.; White, S.; St. Denis, R.; Jain, S.; Nishandar, A.

    2004-01-01

    SAMGrid is a globally distributed system for data handling and job management, developed at Fermilab for the D0 and CDF experiments in Run II. The Condor system is being developed at the University of Wisconsin for management of distributed resources, computational and otherwise. We briefly review the SAMGrid architecture and its interaction with Condor, which was presented earlier. We then present our experiences using the system in production, which have two distinct aspects. At the global level, we deployed Condor-G, the Grid-extended Condor, for the resource brokering and global scheduling of our jobs. At the heart of the system is Condor's Matchmaking Service. As a more recent work at the computing element level, we have been benefiting from the large computing cluster at the University of Wisconsin campus. The architecture of the computing facility and the philosophy of Condor's resource management have prompted us to improve the application infrastructure for D0 and CDF, in aspects such as parting with the shared file system or reliance on resources being dedicated. As a result, we have increased productivity and made our applications more portable and Grid-ready. Our fruitful collaboration with the Condor team has been made possible by the Particle Physics Data Grid

  11. A Survey of Optometry Graduates to Determine Practice Patterns: Part II: Licensure and Practice Establishment Experiences.

    Science.gov (United States)

    Bleimann, Robert L.; Smith, Lee W.

    1985-01-01

    A summary of Part II of a two-volume study of optometry graduates conducted by the Association of Schools and Colleges of Optometry is presented. Part II includes the analysis of the graduates' licensure and practice establishment experiences. (MLW)

  12. Seventeen years of LMFBR experience: Experimental Breeder Reactor II (EBR-II)

    International Nuclear Information System (INIS)

    Perry, W.H.; Lentz, G.L.; Richardson, W.J.; Wolz, G.C.

    1982-01-01

    Operating experience at EBR-II over the past 17 years has shown that a sodium-cooled pool-type reactor can be safely and efficiently operated and maintained. The reactor has performed predictably and benignly during normal operation and during both unplanned and planned plant upsets. The duplex-tube evaporators and superheaters have never experienced a sodium/water leak, and the rest of the steam-generating system has operated without incident. There has been no noticeable degradation of the heat transfer efficiency of the evaporators and superheaters, except for the one superheater replaced in 1981. There has been no need to perform any chemical cleaning of steam-system components

  13. Thinking in nursing education. Part II. A teacher's experience.

    Science.gov (United States)

    Ironside, P M

    1999-01-01

    Across academia, educators are investigating teaching strategies that facilitate students' abilities to think critically. Because may these strategies require low teacher-student ratios or sustained involvement over time, efforts to implement them are often constrained by diminishing resources for education, faculty reductions, and increasing number of part-time teachers and students. In nursing, the challenges of teaching and learning critical thinking are compounded by the demands of providing care to patients with increasingly acute and complex problems in a wide variety of settings. To meet these challenges, nurse teachers have commonly used a variety of strategies to teach critical thinking (1). For instance, they often provide students with case studies or simulated clinical situations in classroom and laboratory settings (2). At other times, students are taught a process of critical thinking and given structured clinical assignments, such as care plans or care maps, where they apply this process in anticipating the care a particular patient will require. Accompanying students onto clinical units, teachers typically evaluate critical thinking ability by reviewing a student's preparation prior to the experience and discussing it with the student during the course of the experience. The rationales students provide for particular nursing interventions are taken as evidence of their critical thinking ability. While this approach is commonly thought to be effective, the evolving health care system has placed increased emphasis on community nursing (3,4), where it is often difficult to prespecify learning experiences or to anticipate patient care needs. In addition, teachers are often not able to accompany each student to the clinical site. Thus, the traditional strategies for teaching and learning critical thinking common to hospital-based clinical courses are being challenged, transformed, and extended (5). Part II of this article describes findings that suggest

  14. Electrocatalysis on tungsten carbide

    International Nuclear Information System (INIS)

    Fleischmann, R.

    1975-01-01

    General concepts of electrocatalysis, the importance of the equilibrium rest potential and its standardization on polished WC-electrodes, the influence of oxygen in the catalysts upon the oxidation of hydrogen, and the attained results of the hydrogen oxidation on tungsten carbide are treated. (HK) [de

  15. High Heat Load Properties of Ultra Fine Grain Tungsten

    International Nuclear Information System (INIS)

    Zhou, Z.; Du, J.; Ge, C.; Linke, J.; Pintsuk, G.; Song, S.X.

    2007-01-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 μm, 1 μm and 3 μm were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m 2 respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m 2 . Particle erosions occurred for tungsten with 3 μm size at 0.33 GW/m 2 and for tungsten with 0.2 and 1 μm size at 0.55 GW/m 2 . The weight loss of tungsten with 0.2, 1 and 3 μm size are 2,0.1,0.6 mg respectively at 0.88 GW/m 2 . The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 μm size has the best performance. (authors)

  16. High Heat Load Properties of Ultra Fine Grain Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Du, J.; Ge, C. [Lab. of Special Ceramic and P/M, University of Science and Technology, 100083 Beijing (China); Linke, J.; Pintsuk, G. [FZJ-Forschungszentrum Juelich GmbH, Association Euratom-FZJ, Institut fur Plasmaphysik, Postfach 1913, D-52425 Juelich (Germany); Song, S.X. [Research Center on Fusion Materials (RCFM), University of Science and Technology Beijing (USTB), 100083 Beijing (China)

    2007-07-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 {mu}m, 1 {mu}m and 3 {mu}m were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m{sup 2} respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m{sup 2}. Particle erosions occurred for tungsten with 3 {mu}m size at 0.33 GW/m{sup 2} and for tungsten with 0.2 and 1 {mu}m size at 0.55 GW/m{sup 2}. The weight loss of tungsten with 0.2, 1 and 3 {mu}m size are 2,0.1,0.6 mg respectively at 0.88 GW/m{sup 2}. The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 {mu}m size has

  17. Experiments with radioactive nuclear beams II; Experimentos con haces nucleares radiactivos II

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera R, E.F.; Martinez Q, E.; Gomez C, A.; Lizcano C, D.; Garcia M, H.; Rosales M, P. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-12-15

    The studies of nuclear reactions with heavy ions have been carried out for years for the group of heavy ions of the laboratory of the Accelerator of the ININ. Especially in the last years the group has intruded in the studies of nuclear reactions with radioactive beams, frontier theme at world level. Presently Technical Report is presented in detailed form the experimental methods and the analysis procedures of the research activities carried out by the group. The chpater II is dedicated to the procedures used in the analysis of the last two experiments with radioactive beams carried out by the group. In the chapter III is presented the procedure followed to carrying out an extended analysis with the CCDEF code, to consider the transfer channel of nucleons in the description of the fusion excitation functions of a good number of previously measured systems by the group. Finally, in the chapter IV the more important steps to continue in the study of the reaction {sup 12}C + {sup 12}C experiment drifted to be carried out using the available resources of the Tandem Accelerator Laboratory of the ININ are described. At the end of each chapter some of the more representative results obtained in the analysis are presented and emphasis on the scientific production generated by the group for each case is made. (Author)

  18. Discharge initiation experiments in the Tokapole II tokamak

    International Nuclear Information System (INIS)

    Shepard, D.A.

    1984-01-01

    Experiments in the Tokapole II tokamak demonstrate the benefits of high density (n/sub e//n/sub o/ greater than or equal to 0.01) preionization by reducing four quantities at startup: necessary toroidal loop voltage (V 1 ) (50%), volt-second consumption (40-50%), impurity radiation (25-50%), and runaway electron production (approx. 80-100%). A zero-dimensional code models the loop voltage reduction dependence on preionization density and predicts a similar result for reactor scale devices. The code shows low initial resistivity and a high resistivity time derivative contribute to loop voltage reduction. Microwaves at the electron cyclotron resonance (ECR) frequency and plasma gun injection produce high density preionization, which reduces the initial V 1 , volt-second consumption, and runaways. The ECR preionization also reduces impurity radiation by shortening the time from voltage application to current channel formation. This, evidently, reduces the total plasma-wall interaction at startup. The power balance of the ECR plasma in a toroidal-field-only case was studied using Langmuir probes and impurity doping. The vertical electric field and current, which result from curvature drift, were measured as approx. 10 V/cm and 50 amps, respectively, and exceeded expected values for the bulk electron temperature (approx. 10 eV)

  19. LEVIS lithium ion source experiments on PBFA-II

    International Nuclear Information System (INIS)

    Renk, T.J.; Tisone, G.C.; Adams, R.G.; Lopez, M.; Clark, B.F.; Schroeder, J.; Bailey, J.E.; Filuk, A.B.; Carlson, A.L.

    1992-01-01

    PBFA-II is a pulsed power generator designed to apply up to a 25 MV, 20 ns pulse to a focusing 15 cm-radius Applied-B ion diode for inertial confinement fusion applications. Several different approaches have been pursued to produce a high-purity (> 90%), high-current density (5--10 kA/cm 2 ) singly ionized lithium ion source for acceleration in this diode. In addition to having high source purity, such a source should be active, i.e. the ions should be produced before the power pulse arrives, to provide better electrical coupling from the accelerator to the diode. In the LEVIS (Laser EVaporation Ion Source) process, energy from two lasers impinges on a thin (500 nm) lithium or lithium-bearing film on an insulating substrate. The authors will discuss a new series of LEVIS experiments, with a number of improvements: (1) the laser distribution cone was redesigned, resulting in a more uniform illumination of the 4 cm-tall Li-producing surface; (2) the anode surface is being slow-heated to 120--150 C to help drive off contaminants; and (3) they have expanded the number of source and beam diagnostics

  20. Tungsten as First Wall Material in Fusion Devices

    International Nuclear Information System (INIS)

    Kaufmann, M.

    2006-01-01

    In the PLT tokamak with a tungsten limiter strong cooling of the central plasma was observed. Since then mostly graphite has been used as limiter or target plate material. Only a few tokamaks (limiter: FTU, TEXTOR; divertor: Alcator C-Mod, ASDEX Upgrade) gained experience with high-Z-materials. With the observed strong co- deposition of tritium together with carbon in JET and as a result of design studies of fusion reactors, it became clear that in the long run tungsten is the favourite for the first-wall material. Tungsten as a plasma facing material requires intensive research in all areas, i.e. in plasma physics, plasma wall-interaction and material development. Tungsten as an impurity in the confined plasma reveals considerable differences to carbon. Strong radiation at high temperatures, in connection with mostly a pronounced inward drift forms a particular challenge. Turbulent transport plays a beneficial role in this regard. The inward drift is an additional problem in the pedestal region of H-mode plasmas in ITER-like configurations. The erosion by low energy hydrogen atoms is in contrast to carbon small. However, erosion by fast particles from heating measures and impurity ions, accelerated in the sheath potential, play an important role in the case of tungsten. Radiation by carbon in the plasma boundary reduces the load to the target plates. Neon or Argon as substitutes will increase the erosion of tungsten. So far experiments have demonstrated that in most scenarios the tungsten content in the central plasma can be kept sufficiently small. The material development is directed to the specific needs of existing or future devices. In ASDEX Upgrade, which will soon be a divertor experiment with a complete tungsten first-wall, graphite tiles are coated with tungsten layers. In ITER, the solid tungsten armour of the target plates has to be castellated because of its difference in thermal expansion compared to the cooling structure. In a reactor the technical

  1. Plasma-filled diode experiments on PBFA-II

    International Nuclear Information System (INIS)

    Renk, T.J.; Rochau, G.E.; McDaniel, D.H.; Moore, W.B.; Zuchowski, N.; Padilla, R.

    1987-01-01

    The PBFA-II accelerator is designed to use a Plasma Opening Switch (POS) for pulse shaping and voltage multiplication using inductive storage. The vacuum section of the machine consists of a set of short magnetically insulated transmission lines (MITLs) that both act as a voltage adder for series stacking of the pulses out of the 72 parallel plate water lines, and as a 100 nH (total) storage inductor upstream of a biconically shaped POS region. There are two POS plasma injection areas, located above and below an equatorial load, which has consisted of either a short circuit, a blade (electron beam) diode, or an Applied B magnetically insulated ion diode. The POS is designed to conduct up to 6 MA, and open into a 5 ohm diode load in 10 ns or less. Under these conditions, the voltage at the load is predicted to exceed 24 MV. Initial POS experiments using these loads have produced 1) opening times of typically 20 ns or longer, 2) poor current transfer efficiency (less than 50%) when load impedances averaged 2 ohms or more, and 3) differential switch opening in azimuthal segments of the power feed, thought to be caused by poor plasma uniformity across the flashboard plasma source. One possible explanation for 2) is that efficient transfer out of the POS requires that the current carried to the load be magnetically insulated, or else considerable energy will be deposited in the feed region between the POS and load. This had indeed been observed. The problem is further exacerbated by the longer current turn-on times that occur when an ion diode is used as the load

  2. Tritium Decay Helium-3 Effects in Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Merrill, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructural evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible tritium

  3. Operation of ASDEX Upgrade with tungsten coated walls

    International Nuclear Information System (INIS)

    Rohde, V.

    2002-01-01

    An alternative for low-Z materials in the main chamber of a future fusion device are high-Z materials, but the maximal tolerable concentration in the plasma core is restricted. A step by step approach to employ tungsten at the central column of ASDEX Upgrade was started in 1999. Meanwhile almost the whole central column is covered with tiles, which were coated by PVD with tungsten. Up to now 9000 s of plasma discharge covering all relevant scenarios were performed. Routine operation of ASDEX Upgrade was not affected by the tungsten. Typical concentrations below 10 -5 were found. The tungsten concentration is mostly connected to the transport into the core plasma, not to the tungsten erosion. It can be demonstrated, that additional central heating can eliminate the tungsten accumulation. These experiments demonstrate the compatibility of fusion plasmas with W plasma facing components under reactor relevant conditions. The erosion pattern found by post mortem analysis indicates that the main effect is ion sputtering. The main erosion of tungsten seems to occur during plasma ramp-up and ramp-down. (author)

  4. Materials Survey: Tungsten

    Science.gov (United States)

    1956-12-01

    Columbia, from which tungsten production is planned approximately 60 miles east fromSkagway, were estimated at the end of 1951 to be Alaska. Reserves...of the principal mines inimportant producers. 1952 halted expansion programs planned by Production in Argentina reached a maxi- Patiffo Mines and...government.Concentrates International Mining Co. (W. R. Grace & from small producers are collected and Co.), La Paz; Chojlla Mine; type ore-- marketed by Banco Minero

  5. Experience with automatic reactor control at EBR-II

    International Nuclear Information System (INIS)

    Lehto, W.K.; Larson, H.A.; Christensen, L.J.

    1985-01-01

    Satisfactory operation of the ACRDS has extended the capabilities of EBR-II to a transient test facility, achieving automatic transient control. Test assemblies can now be irradiated in transient conditions overlapping the slower transient capability of the TREAT reactor

  6. UltraSail Solar Sail Flight Experiment, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A team of CU Aerospace, the University of Illinois, and ManTech SRS Technologies proposes Phase II development of a 3 kg CubeSat spacecraft for initial flight test...

  7. Helium bubble bursting in tungsten

    International Nuclear Information System (INIS)

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-01-01

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz

  8. PLANS FOR WARM DENSE MATTER EXPERIMENTS AND IFE TARGET EXPERIMENTS ON NDCX-II

    International Nuclear Information System (INIS)

    Waldron, W.L.; Barnard, J.J.; Bieniosek, F.M.; Friedman, A.; Henestroza, E.; Leitner, M.; Logan, B.G.; Ni, P.A.; Roy, P.K.; Seidl, P.A.; Sharp, W.M.

    2008-01-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is currently developing design concepts for NDCX-II, the second phase of the Neutralized Drift Compression Experiment, which will use ion beams to explore Warm Dense Matter (WDM) and Inertial Fusion Energy (IFE) target hydrodynamics. The ion induction accelerator will consist of a new short pulse injector and induction cells from the decommissioned Advanced Test Accelerator (ATA) at Lawrence Livermore National Laboratory (LLNL). To fit within an existing building and to meet the energy and temporal requirements of various target experiments, an aggressive beam compression and acceleration schedule is planned. WDM physics and ion-driven direct drive hydrodynamics will initially be explored with 30 nC of lithium ions in experiments involving ion deposition, ablation, acceleration and stability of planar targets. Other ion sources which may deliver higher charge per bunch will be explored. A test stand has been built at Lawrence Berkeley National Laboratory (LBNL) to test refurbished ATA induction cells and pulsed power hardware for voltage holding and ability to produce various compression and acceleration waveforms. Another test stand is being used to develop and characterize lithium-doped aluminosilicate ion sources. The first experiments will include heating metallic targets to 10,000 K and hydrodynamics studies with cryogenic hydrogen targets

  9. Operating and test experience of EBR-II

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1991-01-01

    EBR-II has operated for 27 years, the longest for any Liquid Metal Reactor (LMR) power plant. During that time, much has been learned about successful LMR operation and design. The basic lesson is that conservatism in design can pay significant dividends in operating reliability. Furthermore, such conservatism need not mean high cost. The EBR-II system emphasizes simplicity, minimizing the number of valves in the heat transport system, for example, and simplifying the primary heat-transport-system layout. Another lesson is that emphasizing reliability of the steam generating system at the sodium-water interface (by using duplex tubes in the case of EBR-II) has been well worth the higher initial costs; no problems with leakage have been encountered in EBR-II's operating history. Locating spent fuel storage in the primary tank and providing for decay heat removal by natural connective flow have also been contributors to EBR-II's success. The ability to accommodate loss of forced cooling or loss of heat sink passively has resulted in benefits for simplification, primarily through less reliance on emergency power and in not requiring the secondary sodium or steam systems to be safety grade. Also, the 'piped-pool' arrangement minimizes thermal stress to the primary tank and enhances natural convective flow. These benefits have been realized through a history of operation that has seen EBR-II evolve through four major phases in its test programs, culminating in its present mission as the Integral Fast Reactor (IFR) prototype. (author)

  10. Experience with advanced driver fuels in EBR-II

    International Nuclear Information System (INIS)

    Lahm, C.E.; Koenig, J.F.; Pahl, R.G.; Porter, D.L.; Crawford, D.C.

    1992-01-01

    The Experimental Breeder Reactor II (EBR-II) is a complete nuclear power plant, incorporating a pool-type liquid-metal reactor (LMR) with a fuel-power thermal output of 62.5 MW and an electrical output of 20 MW. Initial criticality was in 1961, utilizing a metallic driver fuel design called the Mark-I. The fuel design has evolved over the last 30 yr, and significant progress has been made on improving performance. The first major innovations were incorporated into the Mark-II design, and burnup then increased dramatically. This design performed successfully, and fuel element lifetime was limited by subassembly hardware performance rather than the fuel element itself. Transient performance of the fuel was also acceptable and demonstrated the ability of EBR-II to survive severe upsets such as a loss of flow without scram. In the mid 1980s, with renewed interest in metallic fuels and Argonne's integral fast reactor (IFR) concept, the Mark-II design was used as the basis for new designs, the Mark-III and Mark-IV. In 1987, the Mark-III design began qualification testing to become a driver fuel for EBR-II. This was followed in 1989 by the Mark-IIIA and Mark-IV designs. The next fuel design, the Mark-V, is being planned to demonstrate the utilization of recycled fuel. The fuel cycle facility attached to EBR-II is being refurbished to produce pyroprocessed recycled fuel as part of the demonstration of the IFR

  11. Confirmatory experiments for the United States Department of Energy Accelerator Production of Tritium Program: Neutron, triton and radionuclide production by thick targets of lead and tungsten bombarded by 800 MeV protons

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Cappiello, M.; Ullmann, J.L.; Gavron, A.; King, J.D.; Laird, R.; Mayo, D.; Waters, L.; Zoeller, C.; Staples, P.

    1994-01-01

    Neutron and Triton Production by 800 MeV Protons: The experiments presented in this report were performed in support of the Accelerator Production of Tritium (APT) project at the Los Alamos Weapons Neutron Research (WNR) facility in order to provide data to benchmark and validate physics simulations used in the APT target/blanket design. An experimental apparatus was built that incorporated many of the features of the neutron source region of the 3 He target/blanket. Those features included a tungsten neutron source, flux traps, neutron moderator, lead backstop, lead multiplying annulus, neutron absorbing blanket and a combination neutron de-coupler and tritium producing gas ( 3 He). The experiments were performed in two separate proton irradiations each with approximately 100 nA-hr of 800 MeV protons. The first irradiation was made with a small neutron moderating blanket, allowing the authors to measure tritium production in the 3 He gas by sampling, and counting the amount of tritium. The second irradiation was performed with a large neutron moderating blanket (light water with a 1% manganese sulfate solution) that allowed them to measure both the tritium production in the central region and the total neutron production. The authors did this by sampling and counting the tritium produced and by measuring the activation of the manganese solution. Results of the three tritium production measurements show large disagreements with each other and therefore with the values predicted using the LAHET-MCNP code system. The source of the discrepancies may lie with the sampling system or adsorption on the tungsten surfaces. The authors discuss tests that may resolve that issue. The data for the total neutron production measurement is much more consistent. Those results show excellent agreement between calculation and experiment

  12. Irradiation experience with KNK II Fast Breeder Fuel Subassemblies

    International Nuclear Information System (INIS)

    Hess, B.

    1993-02-01

    During the operation of the second core of KNK II fuel pin failures occurred, which were caused by local cladding weakening due to mechanical interaction between fuel pins and pin spacers. The present report gives a summarizing presentation of the consequences of these interactions, of the experimental and theoretical investigations to clarify the reason for the interactions and of measures to reduce their consequences in the extended residence time of the second core of KNK II. This type of interaction is caused by thermo-elastic instabilities of the fuel pin bundle, and its strength depends sensitively on the geometry of the pin bundle and the pin power. Finally, measures are described, which were taken for the fuel subassemblies of the third core of KNK II to avoid the wear causing instabilities [de

  13. Entdeckung elektroschwacher Produktion einzelner Top-Quarks mit dem CDF II Experiment; Discovery electroweak production of single top quarks with the CDF II Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Luck, Jan [Karlsruhe Inst. of Technology (KIT) (Germany)

    2009-01-01

    This thesis presents a neural network search for combined as well as separate s- and t-channel single top-quark production with the CDF II experiment at the Tevatron using 3.2 fb-1 of collision data. It is the twelfth thesis dealing with single top-quark production performed within the CDF Collaboration, whereas three have been done in Run I [53–55] and eight in Run II [23, 25, 28, 39, 56–59].

  14. Experience with EBR-II [Experimental Breeder Reactor] driver fuel

    International Nuclear Information System (INIS)

    Seidel, B.R.; Porter, D.L.; Walters, L.C.; Hofman, G.L.

    1986-01-01

    The exceptional performance of Experimental Breeder Reactor-II (EBR-II) metallic driver fuel has been demonstrated by the irradiation of a large number of elements under steady-state, transient overpower, and loss-of-flow conditions. High burnup with high reliability has been achieved by a close coupling of element design and materials selection. Quantification of reliability has allowed full utilization of element lifetime. Improved design and duct materials currently under test are expected to increase the burnup from 8 to 14 at.%

  15. Final project report: TA-35 Los Alamos Power Reactor Experiment No. II (LAPRE II) decommissioning project

    International Nuclear Information System (INIS)

    Montoya, G.M.

    1993-02-01

    This final report addresses the decommissioning of the LAPRE II Reactor, safety enclosure, fuel reservoir tanks, emergency fuel recovery system, primary pump pit, secondary loop, associated piping, and the post-remediation activities. Post-remedial action measurements are also included. The cost of the project including, Phase I assessment and Phase II remediation was approximately $496K. The decommissioning operation produced 533 M 3 of mixed waste

  16. Final project report, TA-35 Los Alamos Power Reactor Experiment No. II (LAPRE II) decommissioning project

    International Nuclear Information System (INIS)

    Montoya, G.M.

    1992-01-01

    This final report addresses the decommissioning of the LAPRE II Reactor, safety enclosure, fuel reservoir tanks, emergency fuel recovery system, primary pump pit, secondary loop, associated piping, and the post-remediation activities. Post-remedial action measurements are also included. The cost of the project, including Phase I assessment and Phase II remediation was approximately $496K. The decommissioning operation produced 533 m 3 of low-level solid radioactive waste and 5 m 3 of mixed waste

  17. FALSIRE Phase II. CSNI project for Fracture Analyses of Large-Scale International Reference Experiments (Phase II). Comparison report

    International Nuclear Information System (INIS)

    Sievers, J.; Schulz, H.; Bass, R.; Pugh, C.; Keeney, J.

    1996-11-01

    A summary of Phase II of the Project for Fracture Analysis of Large-Scale International Reference Experiments (FALSIRE) is presented. A FALSIRE II Workshop focused on analyses of reference fracture experiments. More than 30 participants representing 22 organizations from 12 countries took part in the workshop. Final results for 45 analyses of the reference experiments were received from the participating analysts. For each experiment, analysis results provided estimates of variables that include temperature, crack-mouth-opening displacement, stress, strain, and applied K and J values. The data were sent electronically to the Organizing Committee, who assembled the results into a comparative data base using a special-purpose computer program. A comparative assessment and discussion of the analysis results are presented in the report. Generally, structural responses of the test specimens were predicted with tolerable scatter bands. (orig./DG)

  18. Self diffusion in tungsten

    International Nuclear Information System (INIS)

    Mundy, J.N.; Rothman, S.J.; Lam, N.Q.; Nowicki, L.J.; Hoff, H.A.

    1978-01-01

    The lack of understanding of self-diffusion in Group VI metals together with the wide scatter in the measured values of tungsten self-diffusion has prompted the present measurements to be made over a wide temperature range (1/2Tsub(m) to Tsub(m)). The diffusion coefficients have been measured in the temperature range 1430-2630 0 C. The present measurements show non-linear Arrhenius behavior but a reliable two-exponential fit of the data should await further measurements. (Auth.)

  19. Gas tungsten arc welder

    International Nuclear Information System (INIS)

    Christiansen, D.W.; Brown, W.F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable grinder, co-axial with the electrode, is provided in the enclosure for refurbishing the used electrode between welds. The specification also discloses means for loading of the cladding with fuel pellets and for placement of reflectors, gas capsules and end caps. Gravity feed conveyor and inerting means are also described. (author)

  20. Thermal Cycling of Uranium Dioxide - Tungsten Cermet Fuel Specimens

    Energy Technology Data Exchange (ETDEWEB)

    Gripshover, P.J.; Peterson, J.H.

    1969-12-08

    In phase I tungsten clad cermet fuel specimens were thermal cycled, to study the effects of fuel loading, fuel particle size, stablized fuel, duplex coatings, and fabrication techniques on dimensional stability during thermal cycling. In phase II the best combination of the factors studies in phase I were combined in one specimen for evaluation.

  1. Reduction of blue tungsten oxide

    International Nuclear Information System (INIS)

    Wilken, T.; Wert, C.; Woodhouse, J.; Morcom, W.

    1975-01-01

    A significant portion of commercial tungsten is produced by hydrogen reduction of oxides. Although several modes of reduction are possible, hydrogen reduction is used where high purity tungsten is required and where the addition of other elements or compounds is desired for modification of the metal, as is done for filaments in the lamp industry. Although several investigations of the reduction of oxides have been reported (1 to 5), few principles have been developed which can aid in assessment of current commercial practice. The reduction process was examined under conditions approximating commercial practice. The specific objectives were to determine the effects of dopants, of water vapor in the reducing atmosphere, and of reduction temperature upon: (1) the rate of the reaction by which blue tungsten oxide is reduced to tungsten metal, (2) the intermediate oxides associated with reduction, and (3) the morphology of the resulting tungsten powder

  2. Experience with advanced driver fuels in EBR-II

    International Nuclear Information System (INIS)

    Lahm, C.E.; Koenig, J.F.; Pahl, R.G.; Porter, D.L.; Crawford, D.C.

    1992-01-01

    This paper discusses several metallic fuel element designs which have been tested and used as driver fuel in Experimental Breeder Reactor II (EBR-II). The most recent advanced designs have all performed acceptably in EBR-H and can provide reliable performance to high burnups. Fuel elements tested have included use of U-l0Zr metallic fuel with either D9, 316 or HT9 stainless steel cladding; the D9 and 316-clad designs have been used as standard driver fuel. Experimental data indicate that fuel performance characteristics are very similar for the various designs tested. Cladding materials can be selected that optimize performance based on reactor design and operational goals

  3. Behavior of porous tungsten under shock compression at room temperature

    International Nuclear Information System (INIS)

    Dandekar, D.P.; Lamothe, R.M.

    1977-01-01

    This work reports the results of room-temperature shock-compression experiments on porous tungsten. The porous tungsten was fabricated by sintering 1-μm tungsten particles. The initial density of the material was 15290 kg/m 3 . Around 97% of the pores in the material were interconnected. The main features of the results are as follows: (1) porous tungsten behaves as a linear elastic material to 1.43 GPa; (2) the shock wave following the elastic precursor is unstable in the material in the stress range 1.43--2.7 GPa; (3) a stable two-wave structure is established at and above 6.4 GPa; (4) the response of porous tungsten is accurately described by the Mie-Grueneisen equation of state at stresses above 4.9 GPa, the stress at which the voids suffer a complete extinction in the material; (5) the deformations induced in the material due to shock compression are irreversible; (6) the recentered Hugoniot of porous tungsten becomes stiffer with the increasing magnitude of initial compressive stress

  4. Comparative study of poloidal field systems for the torus II experiment

    International Nuclear Information System (INIS)

    Farvaque, L.; Ghazal, S.; Leloup, C.; Pariente, M.; CEA Centre d'Etudes Nucleaires de Fontenay-aux-Roses, 92

    1976-11-01

    Three types of transformer for the TORUS II experiment are compared: a saturated iron core transformer with an entire magnetic circuit, an air core transformer and a saturated iron core transformer restricted to the central limb [fr

  5. Neutralized Drift Compression Experiment (NDCX) - II Quarterly Report

    International Nuclear Information System (INIS)

    Kwan, J.W.

    2009-01-01

    LBNL has received American Recovery and Reinvestment Act (ARRA) funding to construct a new accelerator at Lawrence Berkeley National Laboratory (LBNL) to significantly increase the energy on target, which will allow both the Heavy Ion Fusion (HIF) and Warm Dense Matter (WDM) research communities to explore scientific conditions that have not been available in any other device. For NDCX-II, a new induction linear accelerator (linac) will be constructed at Lawrence Berkeley National Laboratory (LBNL). NDCX-II will produce nano-second long ion beam bunches to hit thin foil targets. The final kinetic energy of the ions arriving at the target varies according to the ion mass. For atomic mass unit of 6 or 7 (Lithium ions), useful kinetic energies range from 1.5 to 5 or more MeV. The expected beam charge in the 1 ns (or shorter) pulse is about 20 nanoCoulombs. The pulse repetition rate will be about once or twice per minute (of course, target considerations will often reduce this rate). Our approach to building the NDCX-II ion accelerator is to make use of the available induction modules and 200 kV pulsers from the retired ATA electron linac at LLNL. Reusing this hardware will maximize the ion energy on target at a minimum cost. Some modification of the cells (e.g., reduce the bore diameter and replace with higher field pulsed solenoids) are needed in order to meet the requirements of this project. The NDCX-II project will include the following tasks: (1) Physics design to determine the required ion current density at the ion source, the injector beam optics, the layout of accelerator cells along the beam line, the voltage waveforms for beam acceleration and compression, the solenoid focusing, the neutralized drift compression and the final focus on target; (2) Engineering design and fabrication of the accelerator components, pulsed power system, diagnostic system, and control and data acquisition system; (3) Conventional facilities; and (4) Installation and integration

  6. The BEAST II Experiment at Belle II. Characterization of the commissioning detector system for SuperKEKB

    Energy Technology Data Exchange (ETDEWEB)

    Ahlburg, Patrick; Eyring, Andreas; Filimonov, Viacheslav; Krueger, Hans; Mari, Laura; Marinas, Carlos; Pohl, David-Leon; Wermes, Norbert; Dingfelder, Jochen [University of Bonn (Germany)

    2016-07-01

    Before the upgraded vertex detector for the Belle II experiment at the SuperKEKB collider in Japan will be installed, a dedicated detector system for machine commissioning (BEAST II) will be employed. One of its main objectives is to measure and characterize the different background types in order to ensure a safe environment before the installation of the actual silicon detector systems close to the interaction point. FANGS, a detector system at BEAST II, based on ATLAS-IBL front-end electronics and planar silicon sensors is currently being developed for this purpose. The unique feature of this detector system is the high energy resolution achieved by using an external FPGA clock to sample the time-over-threshold signal, while keeping the excellent timing properties. The complete detector system is presented in this talk.

  7. Tungsten and optics

    International Nuclear Information System (INIS)

    Reglero, V.; Velasco, T.; Rodrigo, J.; Gasent, L.J.; Alamo, J.; Chato, R.; Ruiz Urien, I.; Santos, I.; Zarauz, J.

    2001-01-01

    High energy astronomy research requires accurate location to perform multiwavelength studies of the cosmic gamma-ray emitters. New technologies have been developed to achieve this goal, the use of large spatial signal multiplexing systems (Masks). The optical system based on the use of coded Masks together with solid stated pixelated planes provide a point source location capability of 1 arc min, that is 3600 times better than of the last NASA CGRO mission. Different materials were considered to modulate the high energy signals, tungsten was selected for implementing the codes due to both its high density and large atomic number that provide the required stooping power. An overview of the programme carried out to design and manufacture the coded Masks is provided. (nevyjel)

  8. Prompt Burst Energetics (PBE) experiment analyses using the SIMMER-II computer code

    International Nuclear Information System (INIS)

    Tomkins, J.L.; Hitchcock, J.T.; Young, M.F.

    1979-01-01

    Two of the Prompt Burst Energetics (PBE) in-pile experiments conducted at Sandia Laboratories PBE-5S and PBE-SG2, have been investigated with SIMMER-II. These two tests utilize fresh uranium oxide and fresh uranium carbide pins, respectively, in stagnant sodium. The purpose of the analysis is to investigate the applicability of SIMMER-II to this type of experiment. Qualitative agreement with measured data is seen for PBE-5S. PBE-SG2 results agree somewhat less well but demonstrate SIMMER-II's potential for describing fuel-coolant-interactions with further model development

  9. Operational features and microwave characteristics of the Vircator II experiment

    International Nuclear Information System (INIS)

    Price, D.; Fittinghoff, O.; Benford, J.; Sze, H.; Woo, W.

    1988-01-01

    The Vircator II oscillating virtual-cathode microwave source operates with diode voltages between 600 and 800 kV and diode current between 50 and 120 kA. Maximal microwave output power between 200 and 500 MW is achieved when the diode aspect ratio, cathode surface, charge voltage, and extraction coupling are arranged to simultaneously 1) maximize diode voltage, 2) satisfy magnetic insulation criteria, 3) avoid nonuniform or unstable electron emission, and 4) optimize microwave transmission from the virtual cathode to the launching antenna. Broad-band radiation between 0.4 and 5.5 GHz is generated. The central frequency follows the beam plasma frequency. It is tuned by varying the current density with anode-cathode (A-K) gap adjustments

  10. Dewetting of thin polymer film on rough substrate: II. Experiment

    International Nuclear Information System (INIS)

    Volodin, Pylyp; Kondyurin, Alexey

    2008-01-01

    The theory of the dewetting process developed for a model of substrate-film interaction forces was examined by an experimental investigation of the dewetting process of thin polystyrene (PS) films on chemically etched silicon substrates. In the dependence on PS films thickness and silicon roughness, various situations of dewetting were observed as follows: (i) if the wavelength of the substrate roughness is much larger than the critical spinodal wavelength of a film, then spinodal dewetting of the film is observed; (ii) if the wavelength of the substrate roughness is smaller than the critical wavelength of the film and the substrate roughness is larger in comparison with film thickness, then the dewetting due to substrate roughness is observed and the dewetted film patterns repeat the rough substrate structure; (iii) if the wavelength of the substrate roughness is smaller than the critical wavelength of the film and the substrate roughness is small in comparison with the film thickness, then spinodal dewetting proceeds

  11. MCNP simulation of the TRIGA Mark II benchmark experiment

    International Nuclear Information System (INIS)

    Jeraj, R.; Glumac, B.; Maucec, M.

    1996-01-01

    The complete 3D MCNP model of the TRIGA Mark II reactor is presented. It enables precise calculations of some quantities of interest in a steady-state mode of operation. Calculational results are compared to the experimental results gathered during reactor reconstruction in 1992. Since the operating conditions were well defined at that time, the experimental results can be used as a benchmark. It may be noted that this benchmark is one of very few high enrichment benchmarks available. In our simulations experimental conditions were thoroughly simulated: fuel elements and control rods were precisely modeled as well as entire core configuration and the vicinity of the core. ENDF/B-VI and ENDF/B-V libraries were used. Partial results of benchmark calculations are presented. Excellent agreement of core criticality, excess reactivity and control rod worths can be observed. (author)

  12. Filtration experiments of the KNK II primary sodium

    International Nuclear Information System (INIS)

    Stamm, H.H.

    1987-01-01

    The separated particles of the KNK primary sodium are a result of a normal corrosion rate by using ferritic and austenitic steels in sodium. Similar particle distributions and concentrations were found in primary circuits of other breeder plants (EBR-II et al). The experimental results of the particle concentration in the KNK primary sodium were lower than the theoretical calculation. Based on a corrosion rate of 0.5 micron/y for austenitic steels and a corrosion rate of 1.5 mg/square-cm y for a ferritic steel used in KNK as structure material an equilibrium particle concentration of 1.066 mg/kg Na was calculated. The experimental results of particle size are not in agreement with theoretical calculation of the BACCHUS code. (orig.)

  13. Commissioning experience from PEP-II HER longitudinal feedback

    International Nuclear Information System (INIS)

    Prabhakar, S.; Teytelman, D.; Fox, J.; Young, A.; Corredoura, P.; Tighe, R.

    1998-06-01

    The DSP-based bunch-by-bunch feedback system installed in the PEP-II HER has been used to damp HOM-induced instabilities at beam currents up to 6-5 mA during commissioning. Beam pseudospectra calcualted from feedback system data indicate the presence of coupled bunch modes that oincide with the 0-M-2 cavity HOM. Bunch current and synchronous phase measurements are also extracted from the data. These measurements reveal the impedance seen by the beam at revolution harmonics. The impedance peak at 3*frev indicates incorrect parking of the idle cavities, and explains the observed instability of mode 3. Bunch synchrotron tunes are calculated from lorentzian fits to the data. Bunch-to-bunch time variation due to the cavity transient is shown to be large enough to result in Landau damping of coupled bunch modes

  14. Separation of Rhenium (VII) from Tungsten (VI)

    International Nuclear Information System (INIS)

    Vucina, J.; Lukic, D.; Stoiljkovic, M.; Milosevic, M.; Orlic, M.

    2004-01-01

    Examined were the conditions for an effective separation of tungsten (VI) and rhenium (VII) on alumina if the solution of 0.20 mol dm -3 NaCl, ph=2.6 is used as the aqueous phase. Under the given experimental conditions alumina was found to be much better adsorbent for tungsten than for rhenium. The breakthrough and saturation capacities of alumina at pH=2 are 24 and 78 mg W/g Al 2 O 3 , respectively. With the increase of pH these values decrease. So, at pH=6 they are only 4 and 13 mg W/g Al 2 O 3 respectively. The elution volume for rhenium for the given column dimensions and quantity of the adsorbent is about 16 ml. These results were confirmed by the experiments of the radiological separations. Tungsten-187 remains firmly bound to the alumina. The radionuclide purity of the eluted 186'188 Re at pH=2 is very high. (authors)

  15. Concentration dependent hydrogen diffusion in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Ahlgren, T., E-mail: tommy.ahlgren@helsinki.fi; Bukonte, L.

    2016-10-15

    The diffusion of hydrogen in tungsten is studied as a function of temperature, hydrogen concentration and pressure using Molecular Dynamics technique. A new analysis method to determine diffusion coefficients that accounts for the random oscillation of atoms around the equilibrium position is presented. The results indicate that the hydrogen migration barrier of 0.25 eV should be used instead of the presently recommended value of 0.39 eV. This conclusion is supported by both experiments and density functional theory calculations. Moreover, the migration volume at the saddle point for H in W is found to be positive: ΔV{sub m} ≈ 0.488 Å{sup 3}, leading to a decrease in the diffusivity at high pressures. At high H concentrations, a dramatic reduction in the diffusion coefficient is observed, due to site blocking and the repulsive H-H interaction. The results of this study indicates that high flux hydrogen irradiation leads to much higher H concentrations in tungsten than expected. - Highlights: • The recommended value of 0.39 eV for the H in W migration barrier should be changed to 0.25 eV. • The random oscillation of atoms around the equilibrium position can be dealt with in diffusion simulations. • Hydrogen diffusion in tungsten is highly concentration dependent.

  16. Analyses of out-of-pile freezing experiments by SIMMER-II

    International Nuclear Information System (INIS)

    Sawada, Tetsuo; Ninokata, Hisashi

    1994-01-01

    This paper describes the interpretation of the TRAN Simulation experiments performed by SIMBATH facility of KfK. Two typical TRAN Simulation experiments were analyzed by using the SIMMER-II code. The original TRAN experiments were performed at SNL in order to examine the freezing behavior of molten UO 2 injected into an annular channel. In the TRAN Simulation experiments of SIMBATH series, similar freezing phenomena were investigated for molten thermite, i.e., a mixture of Al 2 O 3 and iron, instead of UO 2 . The analyses of the simulation experiments by SIMMER-II code aimed at clarifying the applicability of the code and interpreting the freezing process during the experiments. Distribution of molten materials that had deposited in the test section was compared between experimental measurements and calculation by SIMMER-II. Through this study, it has been confirmed that SIMMER-II can well reproduce the TRAN Simulation experiments with allowable difference. The calculations by SIMMER-II also suggested that further model improvements, e.g., freezing on a convex surface, would be effective for a better interpretation of the freezing phenomena. (author)

  17. Beta II compact torus experiment plasma equilibrium and power balance

    International Nuclear Information System (INIS)

    Turner, W.C.; Goldenbaum, G.C.; Granneman, E.H.A.; Prono, D.S.; Hartman, C.W.; Taska, J.

    1982-01-01

    In this paper we follow up some of our earlier work that showed the compact torus (CT) plasma equilibrium produced by a magnetized coaxial plasma gun is nearly force free and that impurity radiation plays a dominant role in determining the decay time of plasma currents in present generation experiments

  18. An Analysis Plan for the ARCOMS II (Armor Combat Operations Model Support II) Experiment.

    Science.gov (United States)

    1983-06-01

    In order to facilitate Armor Combat Modeling, the data analysis shculd focus upon the methods which transform the data intc descriptive or predictive ...discussed in Chapter III tc predict the Farameter for probability of detection in time ŕt. This should be compared with the results of the N.4gh -t Vision...J 6A 46.) I-I 0 f U-CL 0~ z o -Z 06 09 03 v 0 0 SJldnYS 10 ON Ipgr Cp o LSTm n at emn itgas 4AA rI z ;A (AZ - 090.0 UlA0 -O ON 404 Fiur CAd &P CC

  19. TIG (Tungsten Inert Gas) welding

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    After having recalled the Tungsten Inert Gas process principle and the different alternative TIG processes, the author explains the advantages and limits of this process. The applications and recent developments are given. (O.M.)

  20. High Rate Plastic Deformation and Failure of Tungsten-Sintered Metals

    National Research Council Canada - National Science Library

    Bjerke, Todd

    2004-01-01

    The competition between plastic deformation and brittle fracture during high rate loading of a tungsten-sintered metal is examined through impact experiments, post-experiment microscopy, and numerical simulation...

  1. FIX-II/3025, BWR FIX-II Pump Trip Experiment 3025, Immediate Split Size Break

    International Nuclear Information System (INIS)

    NILSSON, Lars; GUSTAFSSON, Per-Ake; GUSTAFSON, Lennart; JANCZAK, Rajmund; OESTERLUNDH, Ingrid

    1992-01-01

    1 - Description of test facility: The FIX-II facility is a volume scaled 1:777 representation of a Swedish BWR with external pumps. The pressure vessel contains a 36 rod full length bundle and a spray condenser at the top to allow steady state operation. The downcomer, bypass channels and guide tube volumes are represented by external piping. The intact loop represents three of the four external reactor loops. The broken loop is constructed such that both guillotine breaks and split breaks may be simulated. The facility is equipped with ADS-simulation, but no ECCS injection are included. The FIX-II loop is also suited to investigate response of pump trips and MSIV closures in internal pump reactors. 2 - Description of test: Test 3025 simulates an intermediate size split break in one of the four main recirculation lines. The break area was 31 per cent of the scaled down pipe area of the reactor. The initial power of the 36-rod bundle was 3.38 MW, corresponding to the hot channel power of the reactor

  2. Tungsten--carbide critical assembly

    International Nuclear Information System (INIS)

    Hansen, G.E.; Paxton, H.C.

    1975-06-01

    The tungsten--carbide critical assembly mainly consists of three close-fitting spherical shells: a highly enriched uranium shell on the inside, a tungsten--carbide shell surrounding it, and a steel shell on the outside. Ideal critical specifications indicate a rather low computed value of k/sub eff/. Observed and calculated fission-rate distributions for 235 U, 238 U, and 237 Np are compared, and calculated leakage neutrons per fission in various energy groups are given. (U.S.)

  3. Nurse experiences as cancer survivors: part II--professional.

    Science.gov (United States)

    Picard, Carol; Agretelis, Joan; DeMarco, Rosanna F

    2004-05-01

    To uncover dimensions of nurses' professional experiences of cancer survivorship. Interpretive, phenomenologic. Metropolitan area in the northeastern United States. 25 RNs diagnosed with cancer. Average age was 50 years, and 20 participants were less than five years from initial diagnosis. Interviews. Data were analyzed using the methodology of Newman (1994, 1999) and VanManen (1990). Nurses' professional experiences of cancer survivorship. Professional experiences of cancer survivorship fell into five themes: (a) role ambiguity, (b) a deepening level of compassion for patients and others, (c) self-disclosure as a therapeutic intervention, (d) becoming an advocate for change, and (e) volunteerism. Cancer survivorship was a factor in reshaping participants' clinical practice. Experiencing the role of the patient affirmed the necessity of compassionate care for these participants. Nurses experienced a deepening level of compassion for patients and used self-disclosure as a therapeutic intervention. During and shortly after treatment, role ambiguity (being both patient and nurse) could cause difficulties. Nurses took action to change their clinical environment through their influence on colleagues and the healthcare system and by working through other organizations to improve patient care. Nurse cancer survivors can benefit from the support of colleagues and healthcare providers and an appreciation of the challenge of being both a professional and a patient. The invitation for dialogue as they return to work may help with the challenges of role ambiguity as nurse cancer survivors. Based on this study, nurses value the opportunity to enhance care environments with their two-world knowledge through compassionate care, disclosure, advocacy, and volunteering, and coworkers need to appreciate each nurse's unique response to this potentially life-changing process. Nurses in all settings can learn from their cancer survivor colleagues who have been the recipients of care to

  4. The silicon vertex detector of the Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, Markus, E-mail: friedl@hephy.a [Institute of High Energy Physics, Nikolsdorfergasse 18, A-1050 Vienna (Austria); Bergauer, Thomas; Gfall, Immanuel; Irmler, Christian; Valentan, Manfred [Institute of High Energy Physics, Nikolsdorfergasse 18, A-1050 Vienna (Austria)

    2011-02-01

    After 10 years of successful operation, the Belle experiment at KEK (Tsukuba, Japan) will be completed in 2010. Thereafter, a major upgrade of the KEK-B machine is foreseen until 2014, aiming at a final luminosity of 8x10{sup 35} cm{sup -2} s{sup -1}, which is about 40 times higher than the present peak value. Consequently, also the Belle experiment needs to be changed and the Silicon Vertex Detector (SVD) in particular will be completely replaced as it already operates close to its limits in the present system. The future SVD (a.k.a. SuperSVD) will consist of four layers of double-sided silicon strip detectors like the present one, but at larger radii, because it will be complemented by a two-layer pixel detector as the innermost sensing device. The SuperSVD will be entirely composed of silicon sensors made from 6 in. wafers read out by APV25 front-end chips that were originally developed for the CMS experiment at the LHC. Several years of R and D effort led to innovations such as the Origami chip-on-sensor concept and readout electronics with hit time finding which were successfully demonstrated on prototypes. These features will be included in the final system which is presently being designed. This paper will give an overview of the SuperSVD and present results from prototype tests ranging from detector modules to back-end electronics.

  5. The silicon vertex detector of the Belle II experiment

    International Nuclear Information System (INIS)

    Friedl, Markus; Bergauer, Thomas; Gfall, Immanuel; Irmler, Christian; Valentan, Manfred

    2011-01-01

    After 10 years of successful operation, the Belle experiment at KEK (Tsukuba, Japan) will be completed in 2010. Thereafter, a major upgrade of the KEK-B machine is foreseen until 2014, aiming at a final luminosity of 8x10 35 cm -2 s -1 , which is about 40 times higher than the present peak value. Consequently, also the Belle experiment needs to be changed and the Silicon Vertex Detector (SVD) in particular will be completely replaced as it already operates close to its limits in the present system. The future SVD (a.k.a. SuperSVD) will consist of four layers of double-sided silicon strip detectors like the present one, but at larger radii, because it will be complemented by a two-layer pixel detector as the innermost sensing device. The SuperSVD will be entirely composed of silicon sensors made from 6 in. wafers read out by APV25 front-end chips that were originally developed for the CMS experiment at the LHC. Several years of R and D effort led to innovations such as the Origami chip-on-sensor concept and readout electronics with hit time finding which were successfully demonstrated on prototypes. These features will be included in the final system which is presently being designed. This paper will give an overview of the SuperSVD and present results from prototype tests ranging from detector modules to back-end electronics.

  6. The active phasing experiment: Part II. Design and developments

    Science.gov (United States)

    Gonte, F.; Yaitskova, N.; Derie, F.; Araujo, C.; Brast, R.; Delabre, B.; Dierickx, P.; Dupuy, C.; Frank, C.; Guisard, S.; Karban, R.; Noethe, L.; Sedghi, B.; Surdej, I.; Wilhelm, R.; Reyes, M.; Esposito, S.; Langlois, M.

    2006-06-01

    The purpose of the Active Phasing Experiment, designed under the lead of ESO, is to validate wavefront control concepts for ELT class telescopes. This instrument includes an Active Segmented Mirror, located in a pupil image. It will be mounted at a Nasmyth focus of one of the Unit Telescopes of the ESO VLT. APE contains four different types of phasing sensors, which are developed by Istituto Nazionale di Astrofisica in Arcetri, Instituto Astrofisica Canarias, Laboratoire d'Astrophysique de Marseille and ESO. These phasing sensors can be compared simultaneously under identical optical and environmental conditions. All sensors receive telecentric F/15 beams with identical optical quality and intensity. Each phasing sensor can measure segmentation errors of the active segmented mirror and correct them in closed loop. The phasing process is supervised by an Internal Metrology system developed by FOGALE Nanotech and capable of measuring piston steps with an accuracy of a few nanometers. The Active Phasing Experiment is equipped with a turbulence generator to simulate atmospheric seeing between 0.45 and 0.85 arcsec in the laboratory. In addition, the Active Phasing Experiment is designed to control simultaneously with the phasing corrections the guiding and the active optics of one of the VLT Unit Telescopes. This activity is supported by the European Community (Framework Programme 6, ELT Design Study, contract No 011863).

  7. Micro creep mechanisms of tungsten

    International Nuclear Information System (INIS)

    Levoy, R.; Hugon, I.; Burlet, H.; Baillin, X.; Guetaz, L.

    2000-01-01

    Due to its high melting point (3410 deg C), tungsten offers good mechanical properties at elevated temperatures for several applications in non-oxidizing environment. The creep behavior of tungsten is well known between 1200 and 2500 deg C and 10 -3 to 10 -1 strain. However, in some applications when dimensional stability of components is required, these strains are excessive and it is necessary to know the creep behavior of the material for micro-strains (between 10 -4 and 10 -6 ). Methods and devices used to measure creep micro-strains are presented, and creep equations (Norton and Chaboche laws) were developed for wrought, annealed and recrystallized tungsten. The main results obtained on tungsten under low stresses are: stress exponent 1, symmetry of micro-strains in creep-tension and creep-compression, inverse creep (threshold stress), etc. TEM, SEM and EBSD studies allow interpretation of the micro-creep mechanism of tungsten under low stresses and low temperature (∼0.3 K) like the Harper-Dorn creep. In Harper-Dorn creep, micro-strains are associated with the density and the distribution of dislocations existing in the crystals before creep. At 975 deg C, the initial dislocation structure moves differently whether or not a stress is applied. To improve the micro-creep behavior of tungsten, a heat treatment is proposed to create the optimum dislocation structure. (authors)

  8. Investigation of transient melting of tungsten by ELMs in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Krieger, K; Sieglin, B; Balden, M; De Marne, P; Nille, D; Rohde, V; Faitsch, M; Giannone, L; Herrmann, A; Coenen, J W; Göths, B; Laggner, F; Matthews, G F; Dejarnac, R; Horacek, J; Komm, M; Pitts, R A; Ratynskaia, S; Thoren, E; Tolias, P

    2017-01-01

    Repetitive melting of tungsten by power transients originating from edge localized modes (ELMs) has been studied in the tokamak experiment ASDEX Upgrade. Tungsten samples were exposed to H-mode discharges at the outer divertor target plate using the Divertor Manipulator II system. The exposed sample was designed with an elevated sloped surface inclined against the incident magnetic field to increase the projected parallel power flux to a level were transient melting by ELMs would occur. Sample exposure was controlled by moving the outer strike point to the sample location. As extension to previous melt studies in the new experiment both the current flow from the sample to vessel potential and the local surface temperature were measured with sufficient time resolution to resolve individual ELMs. The experiment provided for the first time a direct link of current flow and surface temperature during transient ELM events. This allows to further constrain the MEMOS melt motion code predictions and to improve the validation of its underlying model assumptions. Post exposure ex situ analysis of the retrieved samples confirms the decreased melt motion observed at shallower magnetic field line to surface angles compared to that at leading edges exposed to the parallel power flux. (paper)

  9. Chemical Remediation of Nickel(II) Waste: A Laboratory Experiment for General Chemistry Students

    Science.gov (United States)

    Corcoran, K. Blake; Rood, Brian E.; Trogden, Bridget G.

    2011-01-01

    This project involved developing a method to remediate large quantities of aqueous waste from a general chemistry laboratory experiment. Aqueous Ni(II) waste from a general chemistry laboratory experiment was converted into solid nickel hydroxide hydrate with a substantial decrease in waste volume. The remediation method was developed for a…

  10. Proton beam induced dynamics of tungsten granules

    Science.gov (United States)

    Caretta, O.; Loveridge, P.; O'Dell, J.; Davenne, T.; Fitton, M.; Atherton, A.; Densham, C.; Charitonidis, N.; Efthymiopoulos, I.; Fabich, A.; Guinchard, M.; Lacny, L. J.; Lindstrom, B.

    2018-03-01

    This paper reports the results from single-pulse experiments of a 440 GeV /c proton beam interacting with granular tungsten samples in both vacuum and helium environments. Remote high-speed photography and laser Doppler vibrometry were used to observe the effect of the beam on the sample grains. The majority of the results were derived from a trough containing ˜45 μ m diameter spheres (not compacted) reset between experiments to maintain the same initial conditions. Experiments were also carried out on other open and contained samples for the purposes of comparison both with the 45 μ m grain results and with a previous experiment carried out with sub-250 μ m mixed crystalline tungsten powder in helium [Phys. Rev. ST Accel. Beams 17, 101005 (2014), 10.1103/PhysRevSTAB.17.101005]. The experiments demonstrate that a greater dynamic response is produced in a vacuum than in a helium environment and in smaller grains compared with larger grains. The examination of the dynamics of the grains after a beam impact leads to the hypothesis that the grain response is primarily the result of a charge interaction of the proton beam with the granular medium.

  11. Proton beam induced dynamics of tungsten granules

    Directory of Open Access Journals (Sweden)

    O. Caretta

    2018-03-01

    Full Text Available This paper reports the results from single-pulse experiments of a 440  GeV/c proton beam interacting with granular tungsten samples in both vacuum and helium environments. Remote high-speed photography and laser Doppler vibrometry were used to observe the effect of the beam on the sample grains. The majority of the results were derived from a trough containing ∼45  μm diameter spheres (not compacted reset between experiments to maintain the same initial conditions. Experiments were also carried out on other open and contained samples for the purposes of comparison both with the 45  μm grain results and with a previous experiment carried out with sub-250  μm mixed crystalline tungsten powder in helium [Phys. Rev. ST Accel. Beams 17, 101005 (2014PRABFM1098-440210.1103/PhysRevSTAB.17.101005]. The experiments demonstrate that a greater dynamic response is produced in a vacuum than in a helium environment and in smaller grains compared with larger grains. The examination of the dynamics of the grains after a beam impact leads to the hypothesis that the grain response is primarily the result of a charge interaction of the proton beam with the granular medium.

  12. Experience with developmental facial paralysis: part II. Outcomes of reconstruction.

    Science.gov (United States)

    Terzis, Julia K; Anesti, Katerina

    2012-01-01

    The purpose of this study was to document the 30-year experience of the authors' center in the management of developmental facial paralysis and to analyze the outcomes of microsurgical reconstruction. Forty-two cases of developmental facial paralysis were identified in a retrospective clinical review (1980 to 2010); 34 (80.95 percent) were children (age, 8 ± 6 years) and eight (19.05 percent) were adults (age, 27 ± 12 years). Comparisons between preoperative and postoperative results were performed with electrophysiologic studies and video evaluations by three independent observers. Mean follow-up was 8 ± 6.3 years (range, 1 to 23 years). Overall, outcome scores improved in all of the patients, as was evident from the observers' mean scores (preoperatively, 2.44; 2 years postoperatively, 3.66; final, 4.11; p children as compared with adults (p children with developmental facial paralysis and reduces the prevalence of aesthetic and functional sequelae of the condition, thus facilitating reintegration among their peers. The experience of this center should serve as a framework for the establishment of accurate and reliable guidelines that will facilitate early diagnosis and management of developmental facial paralysis and provide support and counseling to the family.

  13. Vaporization of tungsten-metal in steam at high temperatures

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.C.

    2000-01-01

    The vaporization of tungsten from the APT spallation target dominates the radiological source term for unmitigated target overheating accidents. Chemical reactions of tungsten with steam which persist to tungsten temperatures as low as 800 C result in the formation of a hydrated tungsten-oxide which has a high vapor pressure and is readily convected in a flowing atmosphere. This low-temperature vaporization reaction essentially removes the oxide film that forms on the tungsten-metal surface as soon as it forms, leaving behind a fresh metallic surface for continued oxidation and vaporization. Experiments were conducted to measure the oxidative vaporization rates of tungsten in steam as part of the effort to quantify the MT radiological source term for severe target accidents. Tests were conducted with tungsten rods (1/8 inch diameter, six inches long) heated to temperatures from approximately 700 C to 1350 C in flowing steam which was superheated to 140 C. A total of 19 experiments was conducted. Fifteen tests were conducted by RF induction heating of single tungsten rods held vertical in a quartz glass retort. Four tests were conducted in a vertically-mounted tube furnace for the low temperature range of the test series. The aerosol which was generated and transported downstream from the tungsten rods was collected by passing the discharged steam through a condenser. This procedure insured total collection of the steam along with the aerosol from the vaporization of the rods. The results of these experiments revealed a threshold temperature for tungsten vaporization in steam. For the two tests at the lowest temperatures which were tested, approximately 700 C, the tungsten rods were observed to oxidize without vaporization. The remainder of the tests was conducted over the temperature range of 800 C to 1350 C. In these tests, the rods were found to have lost weight due to vaporization of the tungsten and the missing weight was collected in the downstream condensate

  14. Tungsten wire and tubing joined by nickel brazing

    Science.gov (United States)

    1965-01-01

    Thin tungsten wire and tungsten tubing are brazed together using a contacting coil of nickel wire heated to its melting point in an inert-gas atmosphere. This method is also effective for brazing tungsten to tungsten-rhenium parts.

  15. FNR demonstration experiments Part II: Subcadmium neutron flux measurements

    International Nuclear Information System (INIS)

    Wehe, D.K.; King, J.S.

    1983-01-01

    The FNR HEU-LEU Demonstration Experiments include a comprehensive set of experiments to identify and quantify significant operational differences between two nuclear fuel enrichments. One aspect of these measurements, the subcadmium flux profiling, is the subject of this paper. The flux profiling effort has been accomplished through foil and wire activations, and by rhodium self-powered neutron detector (SPND) mappings. Within the experimental limitations discussed, the program to measure subcadmium flux profiles, lead to the following conclusions: (1) Replacement of a single fresh HEU element by a fresh LEU element at the center of an equilibrium HEU core produces a local flux depression. The ratio of HEU to LEU local flux is 1.19 ± .036, which is, well within experimental uncertainty, equal to the inverse of the U-235 masses for the two elements. (2) Whole core replacement of a large 38 element equilibrium HEU core by a fresh or nearly unburned LEU core reduces the core flux and raises the flux in both D 2 O and H 2 O reflectors. The reduction in the central core region is 40% to 10.0% for the small fresh 29 element LEU core, and 16% to 18% for a 31 element LEU core 482) with low average burnup 2 O reflector fluxes relative to core fluxes as measured by SPND with a fixed value of sensitivity, are in gross disagreement with the same flux ratios measured by Fe and Rh wire activations. Space dependent refinements of S are calculated to give some improvement in the discrepancy but the major part of the correction remains to be resolved

  16. Experiments on MHD Generation with ETL Mark II

    Energy Technology Data Exchange (ETDEWEB)

    Mori, F.; Fushimi, K.; Ikeda, S. [Electrotechnical Laboratory, Ministry of International Trade and Industry, Tokyo (Japan)

    1968-11-15

    The experimental results of the ETL Mark II combustion-driven Faraday-type MHD generator are described. The cross-sectional area of the generator duct is 9 x 11 cm{sup 2} at the inlet and 9 x 25 cm{sup 2} at the outlet. The insulating wall of the duct is made of magnesia and the electrode of carbon. There are 30 electrode pairs. The length of the duct is 120 cm and the width of an electrode is 3 cm. The combustion chamber is of cylindrical shape, and from the bottom of the chamber the fuel, the seeding material and the oxidizer are injected. The fuel is diesel oil and the seeding material potassium hydroxide dissolved in methyl alcohol. The oxidizer is oxygen, but air or oxygen-enriched air can be used. In the latter case, the air is pre-heated up to about 1700 Degree-Sign K by a pebble heater containing alumina pebbles to about 7 tons in weight. The heater, which incorporates a propane burner, supplies the pre-heated air to the combustion chamber at a pressure of 5 atm(g) and at a rate of 2.6 kg/s for a period of 5 minutes. The maximum temperature of the air is 1700 Degree-Sign K at the outlet of the heater and the temperature falls by 20 Degree-Sign K after 5 minutes. If pre-heated air (or oxygen-enriched air) is used as the oxidizer, only the methyl alcohol containing the dissolved potassium hydroxide is used as the fuel. The electromagnet, which has an iron core of about 80 tons weight, can generate a maximum flux density of 3.4 T with an air gap of 16 cm. The exciting ampere-turns of the copper coil are then 1.4 x 10{sup 6} AT. The experimental procedure with the generator is as follows. The combustion chamber and the generator duct are heated to about 1300 Degree-Sign K by the combustion products of propane and air, and then the electromagnet is excited and the fuel, oxidizer and seeding material are injected. The load.resistances of each of the 30 electrode pairs are varied and the output voltages and the currents of every second electrode pair are measured

  17. Further development of the tungsten-fibre reinforced tungsten composite

    Energy Technology Data Exchange (ETDEWEB)

    Gietl, Hanns; Hoeschen, Till; Riesch, Johann [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Aumann, Martin; Coenen, Jan [Forschungszentrum Juelich, IEK4, 52425 Juelich (Germany); Huber, Philipp [Lehrstuhl fuer Textilmaschinenbau und Institut fuer Textiltechnik (ITA), 52062 Aachen (Germany); Neu, Rudolf [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Technische Universitaet Muenchen, 85748 Garching (Germany)

    2016-07-01

    For the use in a fusion device tungsten has a unique property combination. The brittleness below the ductile-to-brittle transition temperature and the embrittlement during operation e.g. by overheating, neutron irradiation are the main drawbacks for the use of pure tungsten. Tungsten fibre-reinforced tungsten composites utilize extrinsic mechanisms to improve the toughness. After proofing that this idea works in principle the next step is the conceptual proof for the applicability in fusion reactors. This will be done by producing mock-ups and testing them in cyclic high heat load tests. For this step all constituents of the composite, which are fibre, matrix and interface, and all process steps need to be investigated. Tungsten fibres are investigated by means of tension tests to find the optimum diameter and pretreatment. New interface concepts are investigated to meet the requirements in a fusion reactor, e.g. high thermal conductivity, low activation. In addition weaving processes are evaluated for their use in the fibre preform production. This development is accompanied by an extensive investigation of the materials properties e.g. single fibre tension tests.

  18. Superconducting gravity gradiometer for sensitive gravity measurements. II. Experiment

    International Nuclear Information System (INIS)

    Chan, H.A.; Moody, M.V.; Paik, H.J.

    1987-01-01

    A sensitive superconducting gravity gradiometer has been constructed and tested. Coupling to gravity signals is obtained by having two superconducting proof masses modulate magnetic fields produced by persistent currents. The induced electrical currents are differenced by a passive superconducting circuit coupled to a superconducting quantum interference device. The experimental behavior of this device has been shown to follow the theoretical model closely in both signal transfer and noise characteristics. While its intrinsic noise level is shown to be 0.07 E Hz/sup -1/2/ (1 Eequivalent10/sup -9/ sec/sup -2/), the actual performance of the gravity gradiometer on a passive platform has been limited to 0.3--0.7 E Hz/sup -1/2/ due to its coupling to the environmental noise. The detailed structure of this excess noise is understood in terms of an analytical error model of the instrument. The calibration of the gradiometer has been obtained by two independent methods: by applying a linear acceleration and a gravity signal in two different operational modes of the instrument. This device has been successfully operated as a detector in a new null experiment for the gravitational inverse-square law. In this paper we report the design, fabrication, and detailed test results of the superconducting gravity gradiometer. We also present additional theoretical analyses which predict the specific dynamic behavior of the gradiometer and of the test

  19. Titanium tungsten coatings for bioelectrochemical applications

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Amato, Letizia; Łopacińska, J.

    2011-01-01

    This paper presents an assessment of titanium tungsten (TiW) coatings and their applicability as components of biosensing systems. The focus is put on using TiW as an electromechanical interface layer between carbon nanotube (CNT) forests and silicon nanograss (SiNG) cell scaffolds. Cytotoxicity......, applicability to plasma-enhanced chemical vapor deposition (PECVD) of aligned CNT forests, and electrochemical performance are investigated. Experiments include culturing of NIH3T3 mouse embryonic fibroblast cells on TiW coated silicon scaffolds, CNT growth on TiW substrates with nickel catalyst, and cyclic...

  20. Toughness enhancement of tungsten reinforced with short tungsten fibres

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhang, L.H. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Fang, Q.F., E-mail: qffang@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Zhang, T.; Wang, X.P.; Hao, T.; Liu, C.S. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-04-06

    The feasibility and toughening efficiency of the short tungsten fibre reinforcement on tungsten were investigated in W{sub f}/W composites fabricated by powder metallurgy method of spark plasma sintering. Fibres in the composites presented a Z-free laminar structure. Partial recrystallization of fibre grains occurred but fibre crack or damage was not detected. Fracture energy of W{sub f}/W composites was estimated in tensile tests, and the results indicated great toughness improvement over pure tungsten in virtue of frictional pullout and plastic deformation of fibres, and matrix-fibres interfacial debonding since 873 K. The specimen with mass fraction of 10% and fibre diameter of 100 µm exhibits the largest elongation of 9±1.1% and the highest ultimate strength of 482±13 MPa at 873 K.

  1. Experimental study of tungsten transport properties in T-10 plasma

    Science.gov (United States)

    Krupin, V. A.; Nurgaliev, M. R.; Klyuchnikov, L. A.; Nemets, A. R.; Zemtsov, I. A.; Dnestrovskij, A. Yu.; Sarychev, D. V.; Lisitsa, V. S.; Shurygin, V. A.; Leontiev, D. S.; Borschegovskij, A. A.; Grashin, S. A.; Ryjakov, D. V.; Sergeev, D. S.; Mustafin, N. A.; Trukhin, V. M.; Solomatin, R. Yu.; Tugarinov, S. N.; Naumenko, N. N.

    2017-06-01

    First experimental results of tungsten transport investigation in OH and ECRH plasmas in the T-10 tokamak with W-limiter and movable Li-limiter are presented. It is shown that tungsten tends to accumulate (a joint process of cumulation and peaking) near the plasma axis in ohmic regimes. The cumulation of W is enhanced in discharges with high values of the parameter γ ={{\\bar{n}}\\text{e}}\\centerdot {{\\bar{Z}}\\text{eff}}\\centerdot I\\text{pl}-1.5 that coincides with accumulation conditions of light and medium impurities in T-10 plasmas. Experiments with Li-limiter show the immeasurable level of Li3+ (0.3-0.5% of n e) of T-10 CXRS diagnostics because of the low inflow of Li with respect to other light impurities. Nevertheless, the strong influence of lithium on inflow of light and tungsten impurities is observed. In discharges with lithized walls, vanishing of light impurities occurs and values of {{Z}\\text{eff}}≈ 1 are obtained. It is also shown that the tungsten density in the plasma center decreases by 15 to 20 times while the W inflow reduces only by 2 to 4 times. In lithized discharges with high γ, the flattening of the tungsten density profile occurs and its central concentration decreases up to 10 times during the on-axis ECRH. This effect is observed together with the increase of the W inflow by 3 to 4 times at the ECRH stage.

  2. Production And Characterization Of Tungsten-Based Positron Moderators

    International Nuclear Information System (INIS)

    Lucio, O. G. de; Morales, J. G.; Cruz-Manjarrez, H.

    2011-01-01

    Experiments of interest in Atomic Physics require production of well-defined low-energy positron beams through a moderation process of high-energy positrons, which can be produced by either the use of a radioactive source or by accelerator based pair production process. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency, high work function and relatively low cost. In this work we present different methods to produce tungsten-based candidate moderators in a variety of shapes. We also present results from characterizing these candidate moderators by ion beam analysis and microscopy techniques.

  3. Tool life of ceramic wedges during precise turning of tungsten

    Directory of Open Access Journals (Sweden)

    Legutko Stanislaw

    2017-01-01

    Full Text Available Properties, application and machinability of tungsten and its alloys have been demonstrated. The comparison of the tool life and wear of the wedges made of SiAlON and whisker ceramics during the precise turning at different cutting parameters have been presented. The CNC lathe DMG CTX 310 Ecoline and tungsten of 99.7 % purity were used during the experiments. Only the wedge of whisker ceramics has proved to be sufficiently suitable and only for relatively low cutting speeds.

  4. Sequential and simultaneous thermal and particle exposure of tungsten

    International Nuclear Information System (INIS)

    Steudel, I; Huber, A; Kreter, A; Linke, J; Sergienko, G; Unterberg, B; Wirtz, M

    2016-01-01

    The broad array of expected loading conditions in a fusion reactor such as ITER necessitates high requirements on the plasma facing materials (PFMs). Tungsten, the PFM for the divertor region, the most affected part of the in-vessel components, must thus sustain severe, distinct exposure conditions. Accordingly, comprehensive experiments investigating sequential and simultaneous thermal and particle loads were performed on double forged pure tungsten, not only to investigate whether the thermal and particle loads cause damage but also if the sequence of exposure maintains an influence. The exposed specimens showed various kinds of damage such as roughening, blistering, and cracking at a base temperature where tungsten could be ductile enough to compensate the induced stresses exclusively by plastic deformation (Pintsuk et al 2011 J. Nucl. Mater. 417 481–6). It was found out that hydrogen has an adverse effect on the material performance and the loading sequence on the surface modification. (paper)

  5. Investigation of the Impact of Transient Heat Loads Applied by Laser Irradiation on ITER-Grade Tungsten

    OpenAIRE

    Huber, Alexander; Arakcheev, A.; Philipps, V.; Pintsuk, Gerald; Reinhart, Michael; Samm, Ulrich; Shoshin, A.; Schweer, Bernd; Unterberg, Bernhard; Zlobinski, M.; Sergienko, Gennady; Steudel, Isabel; Wirtz, Marius; Burdakov, A. V.; Coenen, Jan Willem

    2014-01-01

    Cracking thresholds and crack patterns in tungsten targets after repetitive ITER-like edge localized mode (ELM) pulses have been studied in recent simulation experiments by laser irradiation. The tungsten specimens were tested under selected conditions to quantify the thermal shock response. A Nd:YAG laser capable of delivering up to 32 J of energy per pulse with a duration of 1 ms at the fundamental wavelength λ = 1064 nm has been used to irradiate ITER-grade tungsten samples with repetitive...

  6. Surface energy anisotropy of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R; Grenga, H E [Georgia Inst. of Tech., Atlanta (USA). School of Chemical Engineering

    1976-10-01

    Field-ion microscopy was used to study the faceting behavior and/or surface energy anisotropy of tungsten in vacuum and in hydrogen. In vacuum below 1700 K the activation energy for (110) facet growth agreed with values previously reported for surface diffusion on tungsten. The observed anisotropy values at 0.5 Tsub(m), where Tsub(m) is the absolute melting temperature of tungsten (approximately 3680 K), were different from those previously reported at higher temperatures and more nearly agreed with broken bond calculations based on Mie potential using m=5, n=8, and a 1.5% lattice expansion. Hydrogen appeared to have a negligible effect on surface energy anisotropy, but did preferentially increase surface diffusion rates on (310) regions.

  7. The dynamical mechanical properties of tungsten under compression at working temperature range of divertors

    Science.gov (United States)

    Zhu, C. C.; Song, Y. T.; Peng, X. B.; Wei, Y. P.; Mao, X.; Li, W. X.; Qian, X. Y.

    2016-02-01

    In the divertor structure of ITER and EAST with mono-block module, tungsten plays not only a role of armor material but also a role of structural material, because electromagnetic (EM) impact will be exerted on tungsten components in VDEs or CQ. The EM loads can reach to 100 MN, which would cause high strain rates. In addition, directly exposed to high-temperature plasma, the temperature regime of divertor components is complex. Aiming at studying dynamical response of tungsten divertors under EM loads, an experiment on tungsten employed in EAST divertors was performed using a Kolsky bar system. The testing strain rates and temperatures is derived from actual working conditions, which makes the constitutive equation concluded by using John-Cook model and testing data very accurate and practical. The work would give a guidance to estimate the dynamical response, fatigue life and damage evolution of tungsten divertor components under EM impact loads.

  8. Fractographic peculiarities of cermet tungsten fracture

    International Nuclear Information System (INIS)

    Stepanenko, V.A.; Babak, A.V.; Uskov, E.I.

    1982-01-01

    Effect of test temperature on fracture peculiarities of cermets tungsten with initial cellular structure of deformation is shown. Tungsten crack resistance increases at temperatures to Tsub(x) (ductile-brittle transition temperature) and decreases at temperatures above Tsub(x). The degree of ceramics tungsten plasticity realization depends on its crack resistance

  9. Recrystallization and embrittlement of sintered tungsten

    International Nuclear Information System (INIS)

    Bega, N.D.; Babak, A.V.; Uskov, E.I.

    1982-01-01

    The recrystallization of sintered tungsten with a cellular structure of deformation is studied as related to its embrittlement. It is stated that in case of preliminary recrystallization the sintered tungsten crack resistance does not depend on the testing temperature. The tungsten crack resistance is shown to lower with an increase of the structure tendency to primary recrystallization [ru

  10. Safety and operating experience at EBR-II: lessons for the future

    International Nuclear Information System (INIS)

    Sackett, J.I.; Golden, G.H.

    1981-01-01

    EBR-II is a small LMFBR power plant that has performed safely and reliably for 16 years. Much has been learned from operating it to facilitate the design, licensing, and operation of large commercial LMFBR power plants in the US. EBR-II has been found relatively easy to keep in conformity with evolving safety requirements, largely because of inherent safety features of the plant. Such features reduce dependence on active safety systems to protect against accidents. EBR-II has experienced a number of plant-transient incidents, some planned, others inadvertent; none has resulted in any significant plant damage. The operating experience with EBR-II has led to the formulation of an Operational Reliability Test Program (ORTP), aimed at showing inherently safe performance of fuel and plant systems

  11. Gleeble Testing of Tungsten Samples

    Science.gov (United States)

    2013-02-01

    temperature on an Instron load frame with a 222.41 kN (50 kip) load cell . The samples were compressed at the same strain rate as on the Gleeble...ID % RE Initial Density (cm 3 ) Density after Compression (cm 3 ) % Change in Density Test Temperature NT1 0 18.08 18.27 1.06 1000 NT3 0...4.1 Nano-Tungsten The results for the compression of the nano-tungsten samples are shown in tables 2 and 3 and figure 5. During testing, sample NT1

  12. Method of synthesizing tungsten nanoparticles

    Science.gov (United States)

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  13. Complexation Effect on Redox Potential of Iron(III)-Iron(II) Couple: A Simple Potentiometric Experiment

    Science.gov (United States)

    Rizvi, Masood Ahmad; Syed, Raashid Maqsood; Khan, Badruddin

    2011-01-01

    A titration curve with multiple inflection points results when a mixture of two or more reducing agents with sufficiently different reduction potentials are titrated. In this experiment iron(II) complexes are combined into a mixture of reducing agents and are oxidized to the corresponding iron(III) complexes. As all of the complexes involve the…

  14. In-situ field-ion microscope study of the recovery behavior of heavy metal ion-irradiated tungsten, tungsten (rhenium) alloys and molybdenum

    International Nuclear Information System (INIS)

    Nielsen, C.H.

    1977-06-01

    Three field ion microscope (FIM) experiments were carried out to study the annealing behavior of heavy ion irradiated tungsten, tungsten (rhenium) alloys and molybdenum. The first experiment dealt with the stage I long-range migration of tungsten self interstitial atoms (SIAs) in high purity tungsten of resistivity ratio, R = 24,000 (R = rho 300 /rho 4 . 2 , where rho 300 and rho 4 . 2 are the room temperature and 0 0 C resistivities). The FIM specimens were irradiated in situ at 18 K with 30 keV W + ions to an average dose of 5 x 10 12 ions cm -2 and subsequently examined by the pulsed-field evaporation technique. The second experiment dealt with the phenomenon of impurity atom trapping of SIAs during long-range migration. It was shown that rhenium atoms in a tungsten matrix tend to capture tungsten SIAs and remain bound up to temperatures as high as 390 K. The final experiment was concerned with the low temperature annealing kinetics of irradiated molybdenum. High purity molybdenum of resistivity ratio R = 5700 was irradiated at 10 K with 30 keV Mo + ions to a dose of approximately 5 x 10 12 ions cm -2 . The results indicated that the electric field has only a minimal effect on the SIA annealing kinetics. This tends to strengthen the contention that the molybdenum SIA becomes mobile at 32 K

  15. Measurement of ion species produced due to bombardment of 450 eV N{sub 2}{sup +} ions with hydrocarbons-covered surface of tungsten: Formation of tungsten nitride

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. [Atomic Physics Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005 (India); Bhatt, P. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Kumar, A. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Singh, B.K.; Singh, B.; Prajapati, S. [Atomic Physics Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005 (India); Shanker, R., E-mail: shankerorama@gmail.com [Atomic Physics Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005 (India)

    2016-08-01

    A laboratory experiment has been performed to study the ions that are produced due to collisions of 450 eV N{sub 2}{sup +} ions with a hydrocarbons-covered surface of polycrystalline tungsten at room temperature. Using a TOF mass spectrometry technique, the product ions formed in these collisions have been detected, identified and analyzed. Different ion–surface reaction processes, namely, neutralization, reflection, surface induced dissociation, surface induced chemical reactions and desorption are observed and discussed. Apart from the presence of desorbed aliphatic hydrocarbon and other ions, the mass spectra obtained from the considered collisions show the formation and sputtering of tungsten nitride (WN). A layer of WN on tungsten surface is known to decrease the sputtering of bulk tungsten in fusion devices more effectively than when the tungsten is bombarded with other seeding gases (He, Ar). It is further noted that there is a negligible diffusion of N in the bulk tungsten at room temperature.

  16. Tungsten and carbon surface change under high dose plasma exposure

    International Nuclear Information System (INIS)

    Martynenko, Y.V.; Khripunov, B.I.; Petrov, V.B.

    2009-01-01

    Study of surface composition dynamics has been made on the LENTA linear plasma simulator. Experiments have been made on tungsten and carbon materials subjected to steady-state plasma exposure. The achieved ion doses on the surface were 10 21 ion cm -2 . WL 10 tungsten containing 1% of La2O3 oxide and titanium-doped graphite RG-T were studied. The following experimental conditions were varied in these experiments: energy of ions, surface temperature, working gas. Irradiations of tungsten WL 10 were executed in deuterium plasma at low ion energies (about 20 eV) and at 200 eV for temperatures below 340 K. Graphite RG-T was exposed at 1300 K. Elevated surface temperature (about 1050K) was also characteristic of experiments on tungsten sample under nitrogen plasma impact (simulated inter-ELMs condition). Surface microstructure modification has been observed and surface composition changes were found on the materials showing influence of high dose plasma irradiations on element redistribution in the near surface layers. (author)

  17. Reactor dynamics experiment of nuclear ship Mutsu using pseudo random signal (II). The second experiment

    International Nuclear Information System (INIS)

    Hayashi, Koji; Shimazaki, Junya; Nabeshima, Kunihiko; Ochiai, Masaaki; Shinohara, Yoshikuni; Inoue, Kimihiko.

    1995-01-01

    In order to investigate dynamics of the reactor plant of the nuclear ship Mutsu, the second reactor noise experiment using pseudo random binary sequences (PRBS) was performed on August 30, 1991 in the third experimental navigation. The experiments using both reactivity and load disturbances were performed at 50% of reactor power and under a quiet sea condition. Each PRBS was applied by manual operation of the control rod or the main steam valve. Various signals of the plant responses and of the acceleration of ship motion were measured. Furthermore, natural reactor noise signals were measured after each PRBS experiment in order to evaluate the effects of the PRBS disturbances. This paper summarizes the planning of the experiment, the instruction for the experiment and logs, the data recording conditions, recorded signal wave forms and the results of power spectral analysis. (author)

  18. HYDROGEN VACANCY INTERACTION IN TUNGSTEN

    NARCIS (Netherlands)

    FRANSENS, [No Value; ELKERIEM, MSA; PLEITER, F

    1991-01-01

    Hydrogen-vacancy interaction in tungsten was investigated by means of the perturbed angular correlation technique, using the isotope In-111 as a probe. Hydrogen trapping at an In-111-vacancy cluster manifests itself as a change of the local electric field gradient, which gives rise to an observable

  19. Fabrication of tungsten wire needles

    International Nuclear Information System (INIS)

    Roder, A.

    1983-02-01

    Fine point needles for field emissoin are conventionally produced by electrolytically or chemically etching tungsten wire. Points formed in this manner have a typical tip radius of about 0.5 microns and a cone angle of some 30 degrees. The construction of needle matrix detector chambers has created a need for tungsten needles whose specifications are: 20 mil tungsten wire, 1.5 inch total length, 3 mm-long taper (resulting in a cone angle of about 5 degrees), and 25 micron-radius point (similar to that found on sewing needles). In the process described here for producing such needles, tungsten wire, immersed in a NaOH solution and in the presence of an electrode, is connected first to an ac voltage and then to a dc supply, to form a taper and a point on the end of the wire immersed in the solution. The process parameters described here are for needles that will meet the above specifications. Possible variations will be discussed under each approprite heading

  20. Beam dynamics of the Neutralized Drift Compression Experiment-II (NDCX-II),a novel pulse-compressing ion accelerator

    International Nuclear Information System (INIS)

    Friedman, A.; Barnard, J.J.; Cohen, R.H.; Grote, D.P.; Lund, S.M.; Sharp, W.M.; Faltens, A.; Henestroza, E.; Jung, J.-Y.; Kwan, J.W.; Lee, E.P.; Leitner, M.A.; Logan, B.G.; Vay, J.-L.; Waldron, W.L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.D.

    2009-01-01

    Intense beams of heavy ions are well suited for heating matter to regimes of emerging interest. A new facility, NDCX-II, will enable studies of warm dense matter at ∼1 eV and near-solid density, and of heavy-ion inertial fusion target physics relevant to electric power production. For these applications the beam must deposit its energy rapidly, before the target can expand significantly. To form such pulses, ion beams are temporally compressed in neutralizing plasma; current amplification factors of ∼50-100 are routinely obtained on the Neutralized Drift Compression Experiment (NDCX) at LBNL. In the NDCX-II physics design, an initial non-neutralized compression renders the pulse short enough that existing high-voltage pulsed power can be employed. This compression is first halted and then reversed by the beam's longitudinal space-charge field. Downstream induction cells provide acceleration and impose the head-to-tail velocity gradient that leads to the final neutralized compression onto the target. This paper describes the discrete-particle simulation models (1-D, 2-D, and 3-D) employed and the space-charge-dominated beam dynamics being realized.

  1. Phase II Upgrade of the GERDA Experiment for the Search of Neutrinoless Double Beta Decay

    Science.gov (United States)

    Majorovits, B.

    Observation of neutrinoless double beta decay could answer the question regarding the Majorana or Dirac nature of neutrinos. The GERDA experiment utilizes HPGe detectors enriched with the isotope 76Ge to search for this process. Recently the GERDA collaboration has unblinded data of Phase I of the experiment. In order to further improve the sensitivity of the experiment, additionally to the coaxial detectors used, 30 BEGe detectors made from germanium enriched in 76Ge will be deployed in GERDA Phase II. BEGe detectors have superior PSD capability, thus the background can be further reduced. The liquid argon surrounding the detector array will be instrumented in order to reject background by detecting scintillation light induced in the liquid argon by radiation. After a short introduction the hardware preparations for GERDA Phase II as well as the processing and characterization of the 30 BEGe detectors are discussed.

  2. On the mechanism of imine elimination from Fischer tungsten carbene complexes

    Directory of Open Access Journals (Sweden)

    Philipp Veit

    2016-06-01

    Full Text Available (Aminoferrocenyl(ferrocenylcarbene(pentacarbonyltungsten(0 (CO5W=C(NHFcFc (W(CO5(E-2 is synthesized by nucleophilic substitution of the ethoxy group of (CO5W=C(OEtFc (M(CO5(1Et by ferrocenyl amide Fc-NH– (Fc = ferrocenyl. W(CO5(E-2 thermally and photochemically eliminates bulky E-1,2-diferrocenylimine (E-3 via a formal 1,2-H shift from the N to the carbene C atom. Kinetic and mechanistic studies to the formation of imine E-3 are performed by NMR, IR and UV–vis spectroscopy and liquid injection field desorption ionization (LIFDI mass spectrometry as well as by trapping experiments for low-coordinate tungsten complexes with triphenylphosphane. W(CO5(E-2 decays thermally in a first-order rate-law with a Gibbs free energy of activation of ΔG‡298K = 112 kJ mol−1. Three proposed mechanistic pathways are taken into account and supported by detailed (time-dependent densitiy functional theory [(TD-DFT] calculations. The preferred pathway is initiated by an irreversible CO dissociation, followed by an oxidative addition/pseudorotation/reductive elimination pathway with short-lived, elusive seven-coordinate hydrido tungsten(II intermediates cis(N,H-W(CO4(H(Z-15 and cis(C,H-W(CO4(H(Z-15.

  3. ETA-II experiments for determining advanced radiographic capabilities of induction linacs

    International Nuclear Information System (INIS)

    Weir, J.T.; Caporaso, G.J.; Clark, J.C.; Kirbie, H.C.; Chen, Y.J.; Lund, S.M.; Westenskow, G.A.; Paul, A.C.

    1997-05-01

    LLNL has proposed a multi-pulsed, multi-line of sight radiographic machine based on induction linac technology to be the core of the advanced hydrotest facility (AHF) being considered by the Department of Energy. In order to test the new technologies being developed for AHF we have recommissioned the Experimental Test Accelerator (ETA II). We will conduct our initial experiments using kickers and large angle bending optics at the ETA II facility. Our current status and our proposed experimental schedule will be presented

  4. The First Year of the BABAR Experiment at PEP-II

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Barbara

    2000-12-18

    The BABAR detector, situated at the SLAC PEP-II asymmetric e{sup +}e{sup -} collider, has been recording data at energies on and around the {Upsilon}(4S) resonance since May 1999. In this paper, we briefly describe the PEP-II B Factory and the BABAR detector. The performance presently achieved by the experiment in the areas of tracking, vertexing, calorimetry and particle identification is reviewed. Analysis concepts that are used in the various papers submitted to this conference are also discussed.

  5. X447 EBR-II Experiment Benchmark for Verification of Audit Code of SFR Metal Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Won; Bae, Moo-Hoon; Shin, Andong; Suh, Namduk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    In KINS (Korea Institute of Nuclear Safety), to prepare audit calculation of PGSFR licensing review, the project has been started to develop the regulatory technology for SFR system including a fuel area. To evaluate the fuel integrity and safety during an irradiation, the fuel performance code must be used for audit calculation. In this study, to verify the new code system, the benchmark analysis is performed. In the benchmark, X447 EBR-II experiment data are used. Additionally, the sensitivity analysis according to mass flux change of coolant is performed. In case of LWR fuel performance modeling, various and advanced models have been proposed and validated based on sufficient in-reactor test results. However, due to the lack of experience of SFR operation, the current understanding of SFR fuel behavior is limited. In this study, X447 EBR-II Experiment data are used for benchmark. The fuel composition of X447 assembly is U-10Zr and PGSFR also uses this composition in initial phase. So we select X447 EBR-II experiment for benchmark analysis. Due to the lack of experience of SFR operation and data, the current understanding of SFR fuel behavior is limited. However, in order to prepare the licensing of PGSFR, regulatory audit technologies of SFR must be secured. So, in this study, to verify the new audit fuel performance analysis code, the benchmark analysis is performed using X447 EBR-II experiment data. Also, the sensitivity analysis with mass flux change of coolant is performed. In terms of verification, it is considered that the results of benchmark and sensitivity analysis are reasonable.

  6. X447 EBR-II Experiment Benchmark for Verification of Audit Code of SFR Metal Fuel

    International Nuclear Information System (INIS)

    Choi, Yong Won; Bae, Moo-Hoon; Shin, Andong; Suh, Namduk

    2016-01-01

    In KINS (Korea Institute of Nuclear Safety), to prepare audit calculation of PGSFR licensing review, the project has been started to develop the regulatory technology for SFR system including a fuel area. To evaluate the fuel integrity and safety during an irradiation, the fuel performance code must be used for audit calculation. In this study, to verify the new code system, the benchmark analysis is performed. In the benchmark, X447 EBR-II experiment data are used. Additionally, the sensitivity analysis according to mass flux change of coolant is performed. In case of LWR fuel performance modeling, various and advanced models have been proposed and validated based on sufficient in-reactor test results. However, due to the lack of experience of SFR operation, the current understanding of SFR fuel behavior is limited. In this study, X447 EBR-II Experiment data are used for benchmark. The fuel composition of X447 assembly is U-10Zr and PGSFR also uses this composition in initial phase. So we select X447 EBR-II experiment for benchmark analysis. Due to the lack of experience of SFR operation and data, the current understanding of SFR fuel behavior is limited. However, in order to prepare the licensing of PGSFR, regulatory audit technologies of SFR must be secured. So, in this study, to verify the new audit fuel performance analysis code, the benchmark analysis is performed using X447 EBR-II experiment data. Also, the sensitivity analysis with mass flux change of coolant is performed. In terms of verification, it is considered that the results of benchmark and sensitivity analysis are reasonable

  7. Nonthermal x-ray emission from a tungsten z-pinch at 5 MA

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Nash, T.J.; Marder, B.M.

    1995-01-01

    The generation of intense bursts of warm x rays with power in the 1-TW regime are of interest for the study of in-depth nuclear radiation effects. Results from high-atomic-number single-wire experiments carried out at 0.8 MA on Gamble II in the 1970s showed 0.25% efficient production of nonthermal, bremsstrahlung-like lines and continuum in the 5- to 100-keV regime. This high efficiency in combination with suggested Z 2 and I 2 scaling of the nonthermal radiation motivated the present experiment to measure and model the radiation from the z pinch formed from compact high-Z wire arrays at high current. In the experiment, tungsten wire arrays of length 20 mm on a mounting radius of 2 mm were imploded over the mass range 1 to 16 mg on the Saturn accelerator operating with a peak discharge current of 5 MA. As in the Gamble-II experiments, bright spots were observed to form at ∼1-mm intervals along the z axis at the time of a first implosion and to be the source of the hard radiation measured. Maximum radiation occurred for masses less than or approximately equal to 4 mg. The experiment was simulated using the LASNEX and TIP numerical codes with a nonthermal model. The timing of the multiple implosions, owing to compression and expansion of the resulting plasma are observed to be in agreement with predictions from both codes and analytic modeling

  8. Retention and release of hydrogen isotopes in tungsten plasma-facing components: the role of grain boundaries and the native oxide layer from a joint experiment-simulation integrated approach

    Science.gov (United States)

    Hodille, E. A.; Ghiorghiu, F.; Addab, Y.; Založnik, A.; Minissale, M.; Piazza, Z.; Martin, C.; Angot, T.; Gallais, L.; Barthe, M.-F.; Becquart, C. S.; Markelj, S.; Mougenot, J.; Grisolia, C.; Bisson, R.

    2017-07-01

    Fusion fuel retention (trapping) and release (desorption) from plasma-facing components are critical issues for ITER and for any future industrial demonstration reactors such as DEMO. Therefore, understanding the fundamental mechanisms behind the retention of hydrogen isotopes in first wall and divertor materials is necessary. We developed an approach that couples dedicated experimental studies with modelling at all relevant scales, from microscopic elementary steps to macroscopic observables, in order to build a reliable and predictive fusion reactor wall model. This integrated approach is applied to the ITER divertor material (tungsten), and advances in the development of the wall model are presented. An experimental dataset, including focused ion beam scanning electron microscopy, isothermal desorption, temperature programmed desorption, nuclear reaction analysis and Auger electron spectroscopy, is exploited to initialize a macroscopic rate equation wall model. This model includes all elementary steps of modelled experiments: implantation of fusion fuel, fuel diffusion in the bulk or towards the surface, fuel trapping on defects and release of trapped fuel during a thermal excursion of materials. We were able to show that a single-trap-type single-detrapping-energy model is not able to reproduce an extended parameter space study of a polycrystalline sample exhibiting a single desorption peak. It is therefore justified to use density functional theory to guide the initialization of a more complex model. This new model still contains a single type of trap, but includes the density functional theory findings that the detrapping energy varies as a function of the number of hydrogen isotopes bound to the trap. A better agreement of the model with experimental results is obtained when grain boundary defects are included, as is consistent with the polycrystalline nature of the studied sample. Refinement of this grain boundary model is discussed as well as the inclusion

  9. Deuterium desorption from tungsten using laser heating

    Directory of Open Access Journals (Sweden)

    J.H. Yu

    2017-08-01

    Full Text Available Retention and desorption of hydrogenic species need to be accurately modeled to predict the tritium inventory of next generation fusion devices, which is needed both for tritium fuel recovery and for tritium safety concerns. In this paper, experiments on thermal desorption of deuterium from intrinsic polycrystalline tungsten defects using laser heating are compared to TMAP-7 modeling. The samples during deuterium plasma exposure were at a temperature of 373K for this benchmark study with ion fluence of 0.7–1.0 ×1024Dm−2. Following plasma exposure, a fiber laser (λ= 1100nm heated the samples to peak surface temperatures ranging from ∼500 to 1400K with pulse widths from 10ms to 1s, and 1 to 10 pulses applied to each sample. The remaining deuterium retention was measured using temperature programmed desorption (TPD. Results show that > 95% of deuterium is desorbed when the peak surface temperature reached ∼950K for > 1s. TMAP-7 is used to predict deuterium desorption from tungsten for a range of surface temperatures and heating durations, and is compared to previous work on desorption from beryllium codeposits.

  10. Tensile behaviour of drawn tungsten wire used in tungsten fibre-reinforced tungsten composites

    International Nuclear Information System (INIS)

    Riesch, J; Feichtmayer, A; Fuhr, M; Gietl, H; Höschen, T; Neu, R; Almanstötter, J; Coenen, J W; Linsmeier, Ch

    2017-01-01

    In tungsten fibre-reinforced tungsten composites (W f /W) the brittleness problem of tungsten is solved by utilizing extrinsic toughening mechanisms. The properties of the composite are very much related to the properties of the drawn tungsten wire used as fibre reinforcements. Its high strength and capability of ductile deformation are ideal properties facilitating toughening of W f /W. Tensile tests have been used for determining mechanical properties and study the deformation and the fracture behaviour of the wire. Tests of as-fabricated and straightened drawn wires with a diameter between 16 and 150 μ m as well as wire electrochemically thinned to a diameter of 5 μ m have been performed. Engineering stress–strain curves and a microscopic analysis are presented with the focus on the ultimate strength. All fibres show a comparable stress–strain behaviour comprising necking followed by a ductile fracture. A reduction of the diameter by drawing leads to an increase of strength up to 4500 MPa as a consequence of a grain boundary hardening mechanism. Heat treatment during straightening decreases the strength whereas electrochemical thinning has no significant impact on the mechanical behaviour. (paper)

  11. Conversion of Phase II Unsteady Aerodynamics Experiment Data to Common Format; TOPICAL

    International Nuclear Information System (INIS)

    Hand, M. M.

    1999-01-01

    A vast amount of aerodynamic, structural, and turbine performance data were collected during three phases of the National Renewable Energy Laboratory's Unsteady Aerodynamics Experiment (UAE). To compare data from the three phases, a similar format of engineering unit data is required. The process of converting Phase II data from a previous engineering unit format to raw integer counts is discussed. The integer count files can then be input to the new post-processing software, MUNCH. The resulting Phase II engineering unit files are in a common format with current and future UAE engineering unit files. An additional objective for changing the file format was to convert the Phase II data from English units to SI units of measurement

  12. A portable data acquisition system on J.I.P.P. T-II ICRF experiment

    International Nuclear Information System (INIS)

    Hidekuma, S.

    1982-03-01

    This system has been developed for the data acquisition in the J.I.P.P. T-II ICRF experiment. It is composed of the LSI-11/2(56KB), a dual floppy disk drive, CAMAC modules, a graphic display and an interface module to the HITAC 10-II system. The operating system is RT-11. This system has functions of the data acquisition through A-D converters (max.32ch), the transfer of the data to the HITAC 10-II system and the preservation of them in its floppy disk. Furthermore, a user can easily develop his application programs with this system. The operating procedures of this system are described. (author)

  13. The JESSICA experiment. Part II. Results from the JESSICA-experiment

    International Nuclear Information System (INIS)

    Pohl, Ch.; Conrad, H.; Filges, D.; Goldenbaum, F.; Neef, R.D.; Nuenighoff, K.; Schaal, H.; Stelzer, H.; Tietze-Jaensch, H.; Paul, N.; Wohlmuther, W.; Ninaus, W.; Smirnov, A.

    2004-01-01

    In this article we like to report on the latest results of the JESSICA experiment. We focus on the experiments with an ice moderator at 20 K and 70 K. The measured time of flight spectra and the derived energy spectra will be presented. For the ice moderator we will show also the time of flight spectra for specific wavelengths. For the first time we investigated the moderation properties of a methane-hydrate moderator in a realistic environment. We compared this new data with the previous obtained ice data. (orig.)

  14. The high temperature impact response of tungsten and chromium

    Science.gov (United States)

    Zaretsky, E. B.; Kanel, G. I.

    2017-09-01

    The evolution of elastic-plastic shock waves has been studied in pure polycrystalline tungsten and chromium at room and elevated temperatures over propagation distances ranging from 0.05 to 3 mm (tungsten) and from 0.1 to 2 mm (chromium). The use of fused silica windows in all but one experiment with chromium and in several high temperature experiments with tungsten led to the need for performing shock and optic characterization of these windows over the 300-1200 K temperature interval. Experiments with tungsten and chromium samples showed that annealing of the metals transforms the initial ramping elastic wave into a jump-like wave, substantially increasing the Hugoniot elastic limits of the metals. With increased annealing time, the spall strength of the two metals slightly increases. Both at room and at high temperatures, the elastic precursor in the two metals decays in two distinct regimes. At propagation distances smaller than ˜1 mm (tungsten) or ˜0.5 mm (chromium), decay is fast, with the dislocation motion and multiplication being controlled by phonon viscous drag. At greater distances, the rate of decay becomes much lower, with control of the plastic deformation being passed to the thermally activated generation and motion of dislocation double-kinks. The stress at which this transition takes place virtually coincides with the Peierls stress τP of the active glide system. Analysis of the annealing effects in both presently and previously studied BCC metals (i.e., Ta, V, Nb, Mo, W, and Cr) and of the dependencies of their normalized Peierls stresses τP(θ) /τP(0 ) on the normalized temperature θ=T /Tm allows one to conclude that the non-planar, split into several glide planes, structure of the dislocation core in these metals is mainly responsible for their plastic deformation features.

  15. The cryogenic photon detection system for the ALPS II experiment. Characterization, optimization and background rejection

    International Nuclear Information System (INIS)

    Bastidon, Noemi Alice Chloe

    2017-01-01

    The search for new fundamental bosons at very low mass is the central objective of the ALPS II experiment which is currently set up at the Deutsches Elektronen-Synchrotron (DESY, Hamburg). This experiment follows the light-shining-through-the-wall concept where photons could oscillate into weakly interacting light bosons in front of a wall and back into photons behind the wall, giving the impression that light can shine through a light tight barrier. In this concept, the background-free detection of near-infrared photons is required to fully exploit the sensitivity of the apparatus. The high efficiency single-photon detection in the near-infrared is challenging and requires a cryogenic detector. In this project, a Transition-Edge Sensor (TES) operated below 100mK will be used to detect single photons. This thesis focuses on the characterization and optimization of the ALPS II detector system including an Adiabatic Demagnetisation Refrigerator (ADR) with its two-stage pulse-tube cooler, two TES detectors and their Superconducting Quantum Interference Devices (SQUIDs) read-out system. Stability of the detection system over time is a priority in the ALPS II experiment. It is in this context that the cooling system has been subjected to many upgrades. In the framework of this thesis, the cooling setup has been studied in detail in order to optimize its cooling performances. Furthermore, the stability of the detector has been studied according to various criteria. Other essential parameters of the ALPS II experiment are its detection efficiency and its background rate. Indeed, the sensitivity of the experiment directly depends on these two characteristics. Both elements have been studied in depth in order to define if the chosen TES detector will meet ALPS IIc specifications.

  16. The cryogenic photon detection system for the ALPS II experiment. Characterization, optimization and background rejection

    Energy Technology Data Exchange (ETDEWEB)

    Bastidon, Noemi Alice Chloe

    2017-01-12

    The search for new fundamental bosons at very low mass is the central objective of the ALPS II experiment which is currently set up at the Deutsches Elektronen-Synchrotron (DESY, Hamburg). This experiment follows the light-shining-through-the-wall concept where photons could oscillate into weakly interacting light bosons in front of a wall and back into photons behind the wall, giving the impression that light can shine through a light tight barrier. In this concept, the background-free detection of near-infrared photons is required to fully exploit the sensitivity of the apparatus. The high efficiency single-photon detection in the near-infrared is challenging and requires a cryogenic detector. In this project, a Transition-Edge Sensor (TES) operated below 100mK will be used to detect single photons. This thesis focuses on the characterization and optimization of the ALPS II detector system including an Adiabatic Demagnetisation Refrigerator (ADR) with its two-stage pulse-tube cooler, two TES detectors and their Superconducting Quantum Interference Devices (SQUIDs) read-out system. Stability of the detection system over time is a priority in the ALPS II experiment. It is in this context that the cooling system has been subjected to many upgrades. In the framework of this thesis, the cooling setup has been studied in detail in order to optimize its cooling performances. Furthermore, the stability of the detector has been studied according to various criteria. Other essential parameters of the ALPS II experiment are its detection efficiency and its background rate. Indeed, the sensitivity of the experiment directly depends on these two characteristics. Both elements have been studied in depth in order to define if the chosen TES detector will meet ALPS IIc specifications.

  17. Simulation of cracks in tungsten under ITER specific heat loads

    International Nuclear Information System (INIS)

    Peschany, S.

    2006-01-01

    The problem of high tritium retention in co-deposited carbon layers on the walls of ITER vacuum chamber motivates investigation of materials for the divertor armour others than carbon fibre composite (CFC). Tungsten is most probable material for CFC replacement as the divertor armour because of high vaporisation temperature and heat conductivity. In the modern ITER design tungsten is a reference material for the divertor cover, except for the separatrix strike point armoured with CFC. As divertor armour, tungsten should withstand severe heat loads at off-normal ITER events like disruptions, ELMs and vertical displacement events. Experiments on tungsten heating with plasma streams and e-beams have shown an intense crack formation at the surface of irradiated sample [ V.I. Tereshin, A.N. Bandura, O.V. Byrka et al. Repetitive plasma loads typical for ITER type-I ELMs: Simulation at QSPA Kh-50.PLASMA 2005. ed. By Sadowski M.J., AIP Conference Proceedings, American Institute of Physics, 2006, V 812, p. 128-135., J. Linke. Private communications.]. The reason for tungsten cracking under severe heat loads is thermo stress. It appears as due to temperature gradient in solid tungsten as in resolidified layer after cooling down. Both thermo stresses are of the same value, but the gradiental stress is compressive and the stress in the resolidified layer is tensile. The last one is most dangerous for crack formation and it was investigated in this work. The thermo stress in tungsten that develops during cooling from the melting temperature down to room temperature is ∼ 8-16 GPa. Tensile strength of tungsten is much lower, < 1 GPa at room temperature, and at high temperatures it drops at least for one order of magnitude. As a consequence, various cracks of different characteristic scales appear at the heated surface of the resolidified layer. For simulation of the cracks in tungsten the numeric code PEGASUS-3D [Pestchanyi and I. Landman. Improvement of the CFC structure to

  18. Synthesis and Ligand-Exchange Reactions of a Tri-Tungsten Cluster with Applications in Biomedical Imaging

    Science.gov (United States)

    Noey, Elizabeth; Curtis, Jeff C.; Tam, Sylvia; Pham, David M.; Jones, Ella F.

    2011-01-01

    In this experiment students are exposed to concepts in inorganic synthesis and various spectroscopies as applied to a tri-tungsten cluster with applications in biomedical imaging. The tungsten-acetate cluster, Na[W[superscript 3](mu-O)[subscript 2](CH[superscript 3]COO)[superscript 9

  19. Tungsten oxide nanowires grown on amorphous-like tungsten films

    International Nuclear Information System (INIS)

    Dellasega, D; Pezzoli, A; Russo, V; Passoni, M; Pietralunga, S M; Nasi, L; Conti, C; Vahid, M J; Tagliaferri, A

    2015-01-01

    Tungsten oxide nanowires have been synthesized by vacuum annealing in the range 500–710 °C from amorphous-like tungsten films, deposited on a Si(100) substrate by pulsed laser deposition (PLD) in the presence of a He background pressure. The oxygen required for the nanowires formation is already adsorbed in the W matrix before annealing, its amount depending on deposition parameters. Nanowire crystalline phase and stoichiometry depend on annealing temperature, ranging from W_1_8O_4_9-Magneli phase to monoclinic WO_3. Sufficiently long annealing induces the formation of micrometer-long nanowires, up to 3.6 μm with an aspect ratio up to 90. Oxide nanowire growth appears to be triggered by the crystallization of the underlying amorphous W film, promoting their synthesis at low temperatures. (paper)

  20. Solvent Extraction of Tungsten(VI) from Moderate Hydrochloric Acid Solutions with LIX 63

    Energy Technology Data Exchange (ETDEWEB)

    Truong, Hoai Thanh; Lee, Man Seung [Mokpo National University, Jeollanamdo (Korea, Republic of); Kim, Yong Hwan [Incheon Technology Service Centre, Incheon (Korea, Republic of)

    2017-06-15

    The solvent extraction of tungsten(VI) from hydrochloric acid solutions using 5,8-diethyl-7-hydroxydodecan-6-one oxime (LIX 63) was analyzed in solutions having an initial pH range from 2 to 5, by varying the concentration of metal and extractant. In our experimental range, the cationic exchange reaction as well as the solvation reaction occurred simultaneously. The cation exchange reaction was identified by applying a slope analysis method to the extraction data. The existence of cationic tungsten(VI) species was confirmed by ion exchange experiments with Diphonix resin at pH 3. Further study is needed to identify the nature of this tungsten cationic species.

  1. Experimental study of parallel multi-tungsten wire Z-pinch

    International Nuclear Information System (INIS)

    Huang Xianbin; China Academy of Engineering Physics, Mianyang; Lin Libin; Yang Libing; Deng Jianjun; Gu Yuanchao; Ye Shican; Yue Zhengpu; Zhou Shaotong; Li Fengping; Zhang Siqun

    2005-01-01

    The study of three parallel tungsten wire loads and five parallel tungsten wire loads implosion experiment on accelerator 'Yang' are reported. Tungsten wires (φ17 μm) with separation of 1 mm were used. The pinch was driven by a 350 kA peak current, 80 ns 10%-90% rise time. By means of pinhole camera and X-ray diagnostics technology, a non-uniform plasma column is formed among the wires and soft X-ray pulse are observed. the change of load current are analyzed, the development of sausage instability and kink instability, 'hot spot' effect and dispersion spot for plasma column are also discussed. (authors)

  2. The effect of tungsten on mechanical properties of the Ti-9% Al-3% Zr alloy

    International Nuclear Information System (INIS)

    Nartova, T.T.; Grigor'ev, I.P.; Stepanov, Yu.N.; Tarasova, O.B.

    1979-01-01

    The effect of tungsten (from 0 to 10 %) on mechanical properties of the ternary Ti-9 %, Al-3 % Zr alloy, has been studied. The microstructure, tensile properties at 20 and 600 deg C and Vickers hardness in as-forged and as-annealed states have been studied. The experiments have shown that the ultimate strength increases with tungsten content. Titanium alloys with 9 % Al and 3 % Zr in the case of varying tungsten content at 20 deg C fracture by brittle mechanism. The dUctility of the annealed alloy does not rise at 20 deg C, but at the test temperature of 600 deg C the alloy becomes ductile

  3. Optimizing beam transport in rapidly compressing beams on the neutralized drift compression experimentII

    Directory of Open Access Journals (Sweden)

    Anton D. Stepanov

    2018-03-01

    Full Text Available The Neutralized Drift Compression Experiment-II (NDCX-II is an induction linac that generates intense pulses of 1.2 MeV helium ions for heating matter to extreme conditions. Here, we present recent results on optimizing beam transport. The NDCX-II beamline includes a 1-m-long drift section downstream of the last transport solenoid, which is filled with charge-neutralizing plasma that enables rapid longitudinal compression of an intense ion beam against space-charge forces. The transport section on NDCX-II consists of 28 solenoids. Finding optimal field settings for a group of solenoids requires knowledge of the envelope parameters of the beam. Imaging the beam on the scintillator gives the radius of the beam, but the envelope angle is not measured directly. We demonstrate how the parameters of the beam envelope (radius, envelop angle, and emittance can be reconstructed from a series of images taken by varying the B-field strengths of a solenoid upstream of the scintillator. We use this technique to evaluate emittance at several points in the NDCX-II beamline and for optimizing the trajectory of the beam at the entry of the plasma-filled drift section. Keywords: Charged-particle beams, Induction accelerators, Beam dynamics, Beam emittance, Ion beam diagnostics, PACS Codes: 41.75.-i, 41.85.Ja, 52.59.Sa, 52.59.Wd, 29.27.Eg

  4. U-233 fuelled low critical mass solution reactor experiment PURNIMA II

    International Nuclear Information System (INIS)

    Srinivasan, M.; Chandramoleshwar, K.; Pasupathy, C.S.; Rasheed, K.K.; Subba Rao, K.

    1987-01-01

    A homogeneous U-233 uranyl nitrate solution fuelled BeO reflected, low critical mass reactor has been built at the Bhabha Atomic Research Centre, India. Christened PURNIMA II, the reactor was used for the study of the variation of critical mass as a function of fuel solution concentration to determine the minimum critical mass achievable for this geometry. Other experiments performed include the determination of temperature coefficient of reactivity, study of time behaviour of photoneutrons produced due to interaction between decaying U-233 fission product gammas and the beryllium reflector and reactor noise measurements. Besides being the only operational U-233 fuelled reactor at present, PURNIMA II also has the distinction of having attained the lowest critical mass of 397 g of fissile fuel for any operating reactor at the current time. The paper briefly describes the facility and gives an account of the experiments performed and results achieved. (author)

  5. Flow structure formation in an ion-unmagnetized plasma: The HYPER-II experiments

    Science.gov (United States)

    Terasaka, K.; Tanaka, M. Y.; Yoshimura, S.; Aramaki, M.; Sakamoto, Y.; Kawazu, F.; Furuta, K.; Takatsuka, N.; Masuda, M.; Nakano, R.

    2015-01-01

    The HYPER-II device has been constructed in Kyushu University to investigate the flow structure formation in an ion-unmagnetized plasma, which is an intermediate state of plasma and consists of unmagnetized ions and magnetized electrons. High density plasmas are produced by electron cyclotron resonance heating, and the flow field structure in an inhomogeneous magnetic field is investigated with a directional Langmuir probe method and a laser-induced fluorescence method. The experimental setup has been completed and the diagnostic systems have been installed to start the experiments. A set of coaxial electrodes will be introduced to control the azimuthal plasma rotation, and the effect of plasma rotation to generation of rectilinear flow structure will be studied. The HYPER-II experiments will clarify the overall flow structure in the inhomogeneous magnetic field and contribute to understanding characteristic feature of the intermediate state of plasma.

  6. Experiment on performance of upper head injection system with ROSA-II

    International Nuclear Information System (INIS)

    1978-05-01

    Of the total 10 ROSA-II/UHI performance tests, 6 were reported previously. The rest are presented and discussion is made on the effects of heat generation in the core and UHI injection and repeatability of experiments. In addition, the following are described: (1) Pressure spikes observed in the upper head after sudden stoppage of UHI injection, and (2) discharge flow oscillation possibly due to UHI water injection into the upper plenum. (auth.)

  7. Microstructural characterisation of Inconel 718 gas tungsten arc welds

    International Nuclear Information System (INIS)

    Ram, G.D.J.; Reddy, A.V.; Rao, K.P.

    2005-01-01

    The presence of Nb-rich, brittle, intermetallic Laves phase in Inconel 718 weld fusion zones is detrimental to weld mechanical properties. In the current work, autogenous bead-on-plate gas tungsten-arc welds were deposited in 2 mm thick IN 718 sheets. The welds were subjected to the following heat treatments: i) direct aging, ii) solution treatment at 980 C followed by aging, and iii) solution treatment at 1080 C followed by aging. Detailed microstructural characterisation was carried out using optical, scanning electron and transmission electron microscopes and electron probe microanalysis. The microstructural features in as-welded and post-weld heat treated conditions are discussed. The results show that post-weld heat treatments alone cannot provide satisfactory solution to the Laves problem in Inconel 718 gas tungsten-arc welds

  8. Thermodynamics of the hydrogen-carbon-oxygen-tungsten system, as applied to the manufacture of tungsten and tungsten carbide

    International Nuclear Information System (INIS)

    Schwenke, G.K.

    2001-01-01

    The thermodynamics of the quaternary hydrogen-carbon oxygen-tungsten system and its binary and ternary sub-systems are reviewed. Published thermodynamic data are evaluated, and expression for free energies of formation are chosen. These expressions are integrated with and equilibrium-calculating algorithm, producing a powerful tool for understanding and improving the manufacture of tungsten and tungsten carbide. Three examples are presented: reduction/carburization of tungstic oxide with hydrogen, carbon, and methane. (author)

  9. The BIOPAN experiment MARSTOX II of the FOTON M-3 mission

    Science.gov (United States)

    Rettberg, P.; Moeller, R.; Rabbow, E.; Panitz, C.; Horneck, G.; Meyer, C.; Lammer, H.; Douki, T.; Cadet, J.

    2008-09-01

    The experiment MARSTOX II on FOTON M-3 mission (September 14 - 26, 2007) was a further step in the study of the Responses of Organisms to the Martian Environment (ROME) which already started with first ground-based experiments in Mars simulation chambers and with the space experiment MARSTOX I, flown in 2005 in the ESA facility BIOPAN (Fig. 1) on FOTON M-2. The survivability of bacterial spores of B. subtilis, a well-characterized model system for highly resistant microorganisms, was investigated under the extreme environmental conditions as they exist on the surface of Mars. By use of exterrestrial UV radiation and cut-off filters the photoprotection and potential UV-phototoxicity of different minerals of the Martian soil were investigated.In MARSTOX II two further aspects were addressed (i) the influence of different concentrations of dust in the Martian atmosphere, which change the solar irradiance on the surface significantly compared to vacuum exposure under the same conditions (experiment parts 'DUST MARS' and 'DUST SPACE'), and (ii) the survivability of spores under martian atmosphere and pressure exposed to a mars-like spectral irradiance compared to vacuum exposure under the same conditions (experiment parts 'MIXED MARS' and 'MIXED SPACE') (Fig. 2 and 3). After exposure to space during the FOTON M-3 mission the sample analysis was performed at CEA in Grenoble, F, and at DLR in Cologne, D, together with parallel samples from the corresponding ground control experiment performed in the space simulation facilities at DLR. As biological endpoints in these investigations survival and UV-induced DNAphotoproducts were analysed.From the results of MARSTOX II the following conclusions can be drawn: (i) Spores mixed with martian soil analogue are protected only to a low degree against UV radiation. The protective effect of several defined layers of spores mixed with Martian soil analogue were quantified. (ii) The two investigated martian soil analogues, MRS07 (47

  10. CSNI Project for Fracture Analyses of Large-Scale International Reference Experiments (FALSIRE II)

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; Pugh, C.E.; Keeney, J. [Oak Ridge National Lab., TN (United States); Schulz, H.; Sievers, J. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koeln (Gemany)

    1996-11-01

    A summary of Phase II of the Project for FALSIRE is presented. FALSIRE was created by the Fracture Assessment Group (FAG) of the OECD/NEA`s Committee on the Safety of Nuclear Installations (CNSI) Principal Working Group No. 3. FALSIRE I in 1988 assessed fracture methods through interpretive analyses of 6 large-scale fracture experiments in reactor pressure vessel (RPV) steels under pressurized- thermal-shock (PTS) loading. In FALSIRE II, experiments examined cleavage fracture in RPV steels for a wide range of materials, crack geometries, and constraint and loading conditions. The cracks were relatively shallow, in the transition temperature region. Included were cracks showing either unstable extension or two stages of extensions under transient thermal and mechanical loads. Crack initiation was also investigated in connection with clad surfaces and with biaxial load. Within FALSIRE II, comparative assessments were performed for 7 reference fracture experiments based on 45 analyses received from 22 organizations representing 12 countries. Temperature distributions in thermal shock loaded samples were approximated with high accuracy and small scatter bands. Structural response was predicted reasonably well; discrepancies could usually be traced to the assumed material models and approximated material properties. Almost all participants elected to use the finite element method.

  11. CSNI Project for Fracture Analyses of Large-Scale International Reference Experiments (FALSIRE II)

    International Nuclear Information System (INIS)

    Bass, B.R.; Pugh, C.E.; Keeney, J.; Schulz, H.; Sievers, J.

    1996-11-01

    A summary of Phase II of the Project for FALSIRE is presented. FALSIRE was created by the Fracture Assessment Group (FAG) of the OECD/NEA's Committee on the Safety of Nuclear Installations (CNSI) Principal Working Group No. 3. FALSIRE I in 1988 assessed fracture methods through interpretive analyses of 6 large-scale fracture experiments in reactor pressure vessel (RPV) steels under pressurized- thermal-shock (PTS) loading. In FALSIRE II, experiments examined cleavage fracture in RPV steels for a wide range of materials, crack geometries, and constraint and loading conditions. The cracks were relatively shallow, in the transition temperature region. Included were cracks showing either unstable extension or two stages of extensions under transient thermal and mechanical loads. Crack initiation was also investigated in connection with clad surfaces and with biaxial load. Within FALSIRE II, comparative assessments were performed for 7 reference fracture experiments based on 45 analyses received from 22 organizations representing 12 countries. Temperature distributions in thermal shock loaded samples were approximated with high accuracy and small scatter bands. Structural response was predicted reasonably well; discrepancies could usually be traced to the assumed material models and approximated material properties. Almost all participants elected to use the finite element method

  12. FABRICATION OF GAS-FILLED TUNGSTEN-COATED GLASS SHELLS

    International Nuclear Information System (INIS)

    NIKROO, A; BAUGH, W; STEINMAN, D.A.

    2003-09-01

    OAK-B135 Deuterium (D 2 ) filled glass shells coated with a high Z element are needed for high energy density (HED) experiments by researchers at Los Alamos National Laboratory. They report here on our initial attempt to produce such shells. Glass shells made using the drop tower technique were coated with gold, palladium or tungsten, or a mixture of two of these elements. It was found that gold and palladium coatings did not stick well to the glass and resulted in poor or delaminated films. Tungsten coatings resulted in films suitable for these targets. Bouncing of shells during coating resulted in uniform tungsten coatings, but the surface of such coatings were filled with small nodules. Proper agitation of shells using a tapping technique resulted in smooth films with minimal particulate contamination. For coating rates of ∼ 0.15 (micro)m/hr coatings with ∼ 2 nm RMS surface finish could be deposited. The surface roughness of coatings at higher rates, 0.7 (micro)m/hr, was considerably worse (∼ 100 nm RMS). The columnar structure of the coatings allowed permeation filling of the tungsten coated glass shells with deuterium at 300 C

  13. Exponential and Critical Experiments Vol. II. Proceedings of the Symposium on Exponential and Critical Experiments

    International Nuclear Information System (INIS)

    1964-01-01

    In September 1963 the International Atomic Energy Agency organized the Symposium on Exponential and Critical Experiments in Amsterdam, Netherlands, at the invitation of the Government of the Netherlands. The Symposium enabled scientists from Member States to discuss the results of such experiments which provide the physics data necessary for the design of power reactors. Great advances made in recent years in this field have provided scientists with highly sophisticated and reliable experimental and theoretical methods. This trend is reflected in the presentation, at the Symposium, of many new experimental techniques resulting in more detailed and accurate information and a reduction of costs. Both the number of experimental parameters and their range of variation have been extended, and a closer degree of simulation of the actual power reactor has been achieved, for example, by means of high temperature critical assemblies. Basic types of lattices have continued to be the objective of many investigations, and extensive theoretical analyses have been carried out to provide a more thorough understanding of the neutron physics involved. Twenty nine countries and 3 international organizations were represented by 198 participants. Seventy one papers were presented. These numbers alone show the wide interest which the topic commands in the field of reactor design. We hope that this publication, which includes the papers presented at the Symposium and a record of the discussions, will prove useful as a work of reference to scientists working in this field

  14. Tungsten Speciation in Firing Range Soils

    Science.gov (United States)

    2011-01-01

    satisfactorily, such as: which tungsten mineral phase is present in soil and to what extent is adsorption important in regu- lating soil solution concentrations... soil solution rather than discrete mineral phases. Information provided in this report will assist the following organizations in future decision...the soil solution ERDC TR-11-1 43 must affect tungsten speciation in other ways. The precipitation of soil minerals also would limit tungsten

  15. Relationship between adverse childhood experiences and homelessness and the impact of axis I and II disorders.

    Science.gov (United States)

    Roos, Leslie E; Mota, Natalie; Afifi, Tracie O; Katz, Laurence Y; Distasio, Jino; Sareen, Jitender

    2013-12-01

    We investigated the links between homelessness associated with serious mental and physical healthy disparities and adverse childhood experiences (ACEs) in nationally representative data, with Axis I and II disorders as potential mediators. We examined data from the National Epidemiologic Survey of Alcohol and Related Conditions in 2001-2002 and 2004-2005, and included 34,653 participants representative of the noninstitutionalized US population who were 20 years old or older. We studied the variables related to 4 classes of Axis I disorders, all 10 Axis II personality disorders, a wide range of ACEs, and a lifetime history of homelessness. Analyses revealed high prevalences of each ACE in individuals experiencing lifetime homelessness (17%-60%). A mediation model with Axis I and II disorders determined that childhood adversities were significantly related to homelessness through direct effects (adjusted odd ratios = 2.04, 4.24) and indirect effects, indicating partial mediation. Population attributable fractions were also reported. Although Axis I and II disorders partially mediated the relationship between ACEs and homelessness, a strong direct association remained. This novel finding has implications for interventions and policy. Additional research is needed to understand relevant causal pathways.

  16. Experiences in commissioning and in the first operating cycle of GKN-II

    International Nuclear Information System (INIS)

    Grauf, E.; Zaiss, W.; Tschannerl, J.

    1990-01-01

    In 1989, after only four and a half years of construction, the second unit of the Neckar Joint Nuclear Power Station (GKN-II) was commissioned as the third convoy type nuclear power plant. Its gross power of 1314 MWe makes the pressurized water reactor of GKN-II a unit in the highest power category so far of Siemens/KWU. Delivery to the operators ahead of schedule and observance of the budget are conclusive proof of the advantages of the convoy principle. In addition, GKN-II was able to benefit from the experience accumulated in the construction and commissioning of the two earlier convoy plants. This was reflected in the speedy completion, without major disturbances, of the warranty tests and the trial period of operation. It also has an impact on power operation, the first cycle of which showed the plant to have an availability of 100% throughout and is considered to be a full success by the operators. A special feature of GKN-II is the hybrid cooling tower ensuring that no heated cooling water is returned from the plant into the Neckar river. (orig.) [de

  17. Structural stability of super duplex stainless weld metals and its dependence on tungsten and copper

    International Nuclear Information System (INIS)

    Nilsson, J.O.; Wilson, A.; Huhtala, T.; Karlsson, L.; Jonsson, P.

    1996-01-01

    Three different superduplex stainless weld metals have been produced using manual metal arc welding under identical welding conditions. The concentration of the alloying elements tungsten and copper corresponded to the concentrations in commercial superduplex stainless steels (SDSS). Aging experiments in the temperature range 700 C to 1,110 C showed that the formation of intermetallic phase was enhanced in tungsten-rich weld metal and also dissolved at higher temperatures compared with tungsten-poor and tungsten-free weld metals. It could be inferred from time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams produced in the present investigation that the critical cooling rate to avoid 1 wt pct of intermetallic phase was 2 times faster for tungsten-rich weld metal. Microanalysis in combination with thermodynamic calculations showed that tungsten was accommodated in χ phase, thereby decreasing the free energy. Experimental evidence supports the view that the formation of intermetallic phase is enhanced in tungsten-rich weld metal, owing to easier nucleation of nonequilibrium χ phase compared with σ phase. The formation of secondary austenite (γ 2 ) during welding was modeled using the thermodynamic computer program Thermo-Calc. Satisfactory agreement between theory and practice was obtained. Thermo-Calc was capable of predicting observed lower concentrations of chromium and nitrogen in γ 2 compared with primary austenite. The volume fraction of γ 2 was found to be significantly higher in tungsten-rich and tungsten + copper containing weld metal. The results could be explained by a higher driving force for precipitation of γ 2 in these

  18. Structural stability of super duplex stainless weld metals and its dependence on tungsten and copper

    Science.gov (United States)

    Nilsson, J.-O.; Huhtala, T.; Jonsson, P.; Karlsson, L.; Wilson, A.

    1996-08-01

    Three different superduplex stainless weld metals have been produced using manual metal arc welding under identical welding conditions. The concentration of the alloying elements tungsten and copper corresponded to the concentrations in commercial superduplex stainless steels (SDSS). Aging experiments in the temperature range 700 °C to 1110 °C showed that the formation of intermetallic phase was enhanced in tungsten-rich weld metal and also dissolved at higher temperatures compared with tungsten-poor and tungsten-free weld metals. It could be inferred from time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams produced in the present investigation that the critical cooling rate to avoid 1 wt pct of intermetallic phase was 2 times faster for tungsten-rich weld metal. Microanalysis in combination with thermodynamic calculations showed that tungsten was accommodated in χ phase, thereby decreasing the free energy. Experimental evidence supports the view that the formation of intermetallic phase is enhanced in tungsten-rich weld metal, owing to easier nucleation of nonequilibrium χ phase compared with σ phase. The formation of secondary austenite (γ2) during welding was modeled using the thermodynamic computer program Thermo-Calc. Satisfactory agreement between theory and practice was obtained. Thermo-Calc was capable of predicting observed lower concentrations of chromium and nitrogen in γ2 compared with primary austenite. The volume fraction of γ2 was found to be significantly higher in tungsten-rich and tungsten + copper containing weld metal. The results could be explained by a higher driving force for precipitation of γ2 in these.

  19. Latest experience on insertion devices at the National Synchrotron Light Source-II

    International Nuclear Information System (INIS)

    Tanabe, Toshiya; Cappadoro, Peter; Corwin, Todd

    2016-01-01

    National Synchrotron Light Source-II (NSLS-II) is the latest storage ring of 3 GeV energy with the horizontal emittance of the electron beam being 0.9 nm.rad. Nine In-Vacuum Undulators (IVUs) are utilized at the NSLS-II as of February 2016. All IVUs have a unique side window derived from the experience from the CHESS facility in Cornell University. An R and D activity called 'Vacuum Seal Test' was conducted to ensure the viability of aluminum wire seal. Another R and D activity to develop a measurement system for Cryogenic Permanent Magnet Undulator (CPMU) was also performed. Other in-air devices, namely damping wigglers (DWs) and elliptically polarizing undulators (EPUs) utilize extruded aluminum chambers with Non-Evaporable Getter (NEG) coating. The beam-based integral estimates were obtained from the virtual kicks at the upstream and downstream of the undulator that best fit the measured orbit distortion in a model lattice with Tracy. In some cases, there are fairly large discrepancies between magnetic measurement data and observed integrals by the beam. Beam studies were carried out to explain the discrepancies mentioned earlier. The latest experiences on ID development and commissioning are discussed in conjunction with related activities in the world. (author)

  20. Commissioning and performance studies of a proton recoil detector at the COMPASS-II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Joerg, Philipp; Buechele, Maximilian; Fischer, Horst; Gorzellik, Matthias; Grussenmeyer, Tobias; Herrmann, Florian; Koenigsmann, Kay; Kremser, Paul; Schopferer, Sebastian [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg (Germany); Collaboration: COMPASS Collaboration

    2014-07-01

    The COMPASS-II experiment is a fixed target experiment situated at CERN. A tertiary myon beam from the SPS scattered of protons from a liquid hydrogen target is used to measure Deeply Virtual Compton Scattering (DVCS) and Hard Exclusive Meson Production (HEMP). These processes offer a unique way to determine Generalized Parton Distributions, which are related to the total angular momentum of quarks, antiquarks and gluons in the nucleon by Ji's Sum Rule. One of the major parts of the COMPASS-II upgrade is the CAMERA detector. CAMERA is a proton recoil detector surrounding the COMPASS-II liquid hydrogen target. Its purpose is to measure the recoiled target proton in DVCS and HEMP reactions and viz to act as a veto to ensure the exclusivity of the measurement. The talk gives an outline of the detector and its readout electronics. It is focused on the commissioning and performance of the CAMERA detector and gives a brief insight into the ongoing DVCS analysis.

  1. FEM investigation and thermo-mechanic tests of the new solid tungsten divertor tile for ASDEX Upgrade

    International Nuclear Information System (INIS)

    Jaksic, Nikola; Greuner, Henri; Herrmann, Albrecht

    2013-01-01

    Highlights: • New solid tungsten divertor for fusion experiment ASDEX Upgrade. • Design validation in the high heat flux (HHF) test facility GLADIS (Garching Large Divertor Sample Test Facility). • FEA simulation. -- Abstract: A new solid tungsten divertor for the fusion experiment ASDEX Upgrade is under construction at present. A new divertor tile design has been developed to improve the thermal performance of the current divertor made of tungsten coated fine grain graphite. Compared to thin tungsten coatings, divertor tiles made of massive tungsten allow to extend the operational range and to study the plasma material interaction of tungsten in more detail. The improved design for the solid tungsten divertor was tested on different full scale prototypes with a hydrogen ion beam. The influence of a possible material degradation due to thermal cracking or recrystallization can be studied. Furthermore, intensive Finite Element Method (FEM) numerical analysis with the respective test parameters has been performed. The elastic–plastic calculation was applied to analyze thermal stress and the observed elastic and plastic deformation during the heat loading. Additionally, the knowledge gained by the tests and especially by the numerical analysis has been used to optimize the shape of the divertor tiles and the accompanying divertor support structure. This paper discusses the main results of the high heat flux tests and their numerical simulations. In addition, results from some special structural mechanic analysis by means of FEM tools are presented. Finally, first results from the numerical lifecycle analysis of the current tungsten tiles will be reported

  2. Preliminary optimization experiments of coupled liquid hydrogen moderator for KENS-II

    International Nuclear Information System (INIS)

    Watanabe, N.; Kiyanagi, Y.; Inoue, K.; Furusaka, M.; Ikeda, S.; Arai, M.; Iwasa, H.

    1989-01-01

    As a preliminary optimization experiment on the cold-neutron source for KENS-II, energy and time distributions of cold neutrons emanating from coupled liquid-hydrogen moderators with and without a premoderator in a graphite reflector were measured and compared with those from a decoupled liquid-hydrogen moderator. The results showed that the energy spectra from the coupled liquid-hydrogen moderators are almost the same as those from a decoupled one. Relative gain of the former to the latter is fairly high, more than 5, and further increases with increasing wavelength. The broadening of the neutron pulse width in coupled moderators at the cold-neutron region is not so significant and only 1.5 times compared to the solid methane moderator presently operated at KENS-II. 2 refs., 12 figs., 1 tab

  3. Operational-safety advantages of LMFBR's: the EBR-II experience and testing program

    International Nuclear Information System (INIS)

    Sackett, J.I.; Lindsay, R.W.; Golden, G.H.

    1982-01-01

    LMFBR's contain many inherent characteristics that simplify control and improve operating safety and reliability. The EBR-II design is such that good advantage was taken of these characteristics, resulting in a vary favorable operating history and allowing for a program of off-normal testing to further demonstrate the safe response of LMFBR's to upsets. The experience already gained, and that expected from the future testing program, will contribute to further development of design and safety criteria for LMFBR's. Inherently safe characteristics are emphasized and include natural convective flow for decay heat removal, minimal need for emergency power and a large negative reactivity feedback coefficient. These characteristics at EBR-II allow for ready application of computer diagnosis and control to demonstrate their effectiveness in response to simulated plant accidents. This latter testing objective is an important part in improvements in the man-machine interface

  4. An FPGA-based trigger for the phase II of the MEG experiment

    Energy Technology Data Exchange (ETDEWEB)

    Baldini, A. [Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Bemporad, C.; Cei, F. [Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Dipartimento di Fisica, Università di Pisa (Italy); Galli, L.; Grassi, M.; Morsani, F. [Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Nicolò, D., E-mail: donato.nicolo@pi.infn.it [Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Dipartimento di Fisica, Università di Pisa (Italy); Ritt, S. [Paul Scherrer Institut, Villigen AG (Switzerland); Venturini, M. [Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Scuola Normale Superiore, Pisa (Italy)

    2016-07-11

    For the phase II of MEG, we are going to develop a combined trigger and DAQ system. Here we focus on the former side, which operates an on-line reconstruction of detector signals and event selection within 450 μs from event occurrence. Trigger concentrator boards (TCB) are under development to gather data from different crates, each connected to a set of detector channels, to accomplish higher-level algorithms to issue a trigger in the case of a candidate signal event. We describe the major features of the new system, in comparison with phase I, as well as its performances in terms of selection efficiency and background rejection. - Highlights: • A new, two-level trigger scheme for the phase-II of the MEG experiment is presented. • Improvements with respect to phase-I are underlined. • The role of detector upgrades and the use of a new generation of FPGA as well are emphasized.

  5. Closure of the patent ductus arteriosus with the Amplatzer Duct Occluder II: a clinical experience.

    Science.gov (United States)

    Karagöz, Tevfik; Akin, Alper; Ertuğrul, Ilker; Aykan, Hayrettin Hakan; Alehan, Dursun; Ozer, Sema; Ozkutlu, Süheyla

    2012-12-01

    The aim of our study was to share our clinical experience on cases with patent ductus arteriosus treated with the Amplatzer Duct Occluder II. Between 2008 and 2012, 26 of 31 patients with patent ductus arteriosus underwent successful transcatheter closure of patent ductus arteriosus using the Amplatzer Duct Occluder II. Mean age was 3.3 years and mean weight was 15.7 kilograms. The presence of a residual shunt, left pulmonary artery or aortic obstruction was explored by administering contrast material during the procedure. The patients were discharged 24 hours after the procedure. The procedure was successful in 26 of 31 patients and failed in five patients. According to the Krichenko classification, 26 patients had type A, one patient had type B and 4 patients had type C ductus. The mean narrowest ductus diameter was 3.2 mm and the mean ductus length was 6.7 mm. Complete angiographic occlusion occurred immediately after the procedure in 22 out of 26 patients in whom the ductus was closed successfully with the Amplatzer Duct Occluder II. Complete occlusion was achieved in the remaining patients with residual shunt one month after the procedure. The procedure was preceded by closure with an Amplatzer Duct Occluder I in two patients and an Amplatzer Vascular Plug I in one patient. Amplatzer Duct Occluder II is highly effective in transcatheter closure of patent ductus arteriosus. We think that an alternative closure device and alternative techniques can be attempted in patients with type C ductus. The success rate could increase with accumulating experience.

  6. Fluxes at experiment facilities in HEU and LEU designs for the FRM-II

    International Nuclear Information System (INIS)

    Hanan, N. A.

    1998-01-01

    An Alternative LEU Design for the FRM-II proposed by the RERTR Program at Argonne National Laboratory (ANL) has a compact core consisting of a single fuel element that uses LEU silicide fuel with a uranium density of 4.5 g/cm 3 and has a power level of 32 MW. Both the HEU design by the Technical University of Munich (TUM) and the alternative LEU design by ANL have the same fuel lifetime(50 days) and the same neutron flux performance (8 x 10 14 n/cm 2 -s in the reflector). LEU silicide fuel with 4.5 g/cm 3 has been thoroughly tested and is fully-qualified, licensable, and available now for use in a high flux reactor such as the FRM-II. Several issues that were raised by TUM have been addressed in Refs. 1-3. The conclusions of these analyses are summarized below. This paper addresses four additional issues that have been raised in several forums, including Ref 4: heat generation in the cold neutron source (CNS), the gamma and fast neutron fluxes which are components of the reactor noise in neutron scattering experiments in the experiment hall of the reactor, a fuel cycle length difference, and the reactivity worth of the beam tubes and other experiment facilities. The results show that: (a) for the same thermal neutron flux, the neutron and gamma heating in the CNS is smaller in the LEU design than in the HEU design, and cold neutron fluxes as good or better than those of the HEU design can be obtained with the LEU design; (b) the gamma and fast neutron components of the reactor noise in the experiment hall are about the same in both designs; (c) the fuel cycle length is 50 days for both designs; and (d) the absolute value of the reactivity worth of the beam tubes and other experiment facilities is smaller in the LEU design, allowing its fuel cycle length to be increased to 53 or 54 days. Based on the excellent results for the Alternative LEU Design that were obtained in all analyses, the RERTR Program reiterates its conclusion that there are no major technical

  7. Mechanism of the electrochemical hydrogen reaction on smooth tungsten carbide and tungsten electrodes

    International Nuclear Information System (INIS)

    Wiesener, K.; Winkler, E.; Schneider, W.

    1985-01-01

    The course of the electrochemical hydrogen reaction on smooth tungsten-carbide electrodes in hydrogen saturated 2.25 M H 2 SO 4 follows a electrochemical sorption-desorption mechanism in the potential range of -0.4 to +0.1 V. At potentials greater than +0.1 V the hydrogen oxidation is controlled by a preliminary chemical sorption step. Concluding from the similar behaviour of tungsten-carbide and tungsten electrodes after cathodic pretreatment, different tungsten oxides should be involved in the course of the hydrogen reaction on tungsten carbide electrodes. (author)

  8. Synthesis, Consolidation and Characterization of Sol-gel Derived Tantalum-Tungsten Oxide Thermite Composites

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, O [Univ. of California, Davis, CA (United States)

    2010-06-01

    Energetic composite powders consisting of sol-gel (SG) derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The SG derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO3) energetic composite was consolidated to a density of 9.17 g·cm-3 or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy.

  9. FIX-II. Loca-blowdown heat transfer and pump trip experiments. Summary report of phase 1: Design of experiments

    International Nuclear Information System (INIS)

    Waaranperae, Y.; Nilsson, L.; Gustafsson, P.Aa.; Jonsson, N.O.

    1979-06-01

    FIX-II is a loss of coolant blowdown heat transfer experiment, performed under contract for The Swedish Nuclear Power Inspectorate, SKI. The purpose of the experiments is to provide measurements from simulations of a pipe rupture on an external recirculation line in a Swedish BWR. Pump trips in BWRs with internal recirculation pumps will also be simulated. The existing FIX-loop at the Thermal Engineering Laboratory of Studsvik Energiteknik AB will be modified and used for the experiments. Components are included to simulate the steam dome, downcomer, two recirculation lines with one pump each, lower plenum, core (36-rod full length bundle), control rod guide tubes, core bypass, upper plenum and steam separators. The results of the first phase of the project are reported here. The following tasks are included in Phase 1: reactor reference analysis, scaling calculations of the FIX loop, development of fuel rod simulators, design of test section and test loop layout and proposal for test program. Further details of the work and results obtained for the different sub-projects are published in a number ofdetailed reports. (author)

  10. Development of quantitative atomic modeling for tungsten transport study Using LHD plasma with tungsten pellet injection

    International Nuclear Information System (INIS)

    Murakami, I.; Sakaue, H.A.; Suzuki, C.; Kato, D.; Goto, M.; Tamura, N.; Sudo, S.; Morita, S.

    2014-10-01

    Quantitative tungsten study with reliable atomic modeling is important for successful achievement of ITER and fusion reactors. We have developed tungsten atomic modeling for understanding the tungsten behavior in fusion plasmas. The modeling is applied to the analysis of tungsten spectra observed from currentless plasmas of the Large Helical Device (LHD) with tungsten pellet injection. We found that extreme ultraviolet (EUV) lines of W 24+ to W 33+ ions are very sensitive to electron temperature (Te) and useful to examine the tungsten behavior in edge plasmas. Based on the first quantitative analysis of measured spatial profile of W 44+ ion, the tungsten concentration is determined to be n(W 44+ )/n e = 1.4x10 -4 and the total radiation loss is estimated as ∼4 MW, of which the value is roughly half the total NBI power. (author)

  11. High-energy, high-rate consolidation of tungsten and tungsten-based composite powders

    Energy Technology Data Exchange (ETDEWEB)

    Raghunathan, S.K.; Persad, C.; Bourell, D.L.; Marcus, H.L. (Center for Materials Science and Engineering, Univ. of Texas, Austin (USA))

    1991-01-20

    Tungsten and tungsten-based heavy alloys are well known for their superior mechanical properties at elevated temperatures. However, unalloyed tungsten is difficult to consolidate owing to its very high melting temperature (3683 K). The additions of small amounts of low-melting elements such as iron, nickel, cobalt and copper, facilitate the powder processing of dense heavy alloys at moderate temperatures. Energetic high-current pulses have been used recently for powder consolidation. In this paper, the use of a homopolar generator as a power source to consolidate selected tungsten and tungsten-based alloys is examined. Various materials were consolidated including unalloyed tungsten, W-Nb, W-Ni, and tungsten heavy alloy with boron carbide. The effect of process parameters such as pressure and specific energy input on the consolidation of different alloy systems is described in terms of microstructure and property relationships. (orig.).

  12. Operating experience and maintenance at the TRIGA Mark II LENA reactor

    International Nuclear Information System (INIS)

    Cingoli, F.; Altieri, S.; Lana, F.; Rosti, G.; Alloni, L.; Meloni, S.

    1988-01-01

    The last two years at the Trigs Mark II LENA plant were characterized by the running of the n-n-bar oscillation NADIR experiment. Consequently reactor operation was positively affected and the running hours rose again above 1000 hours per year. The LENA team was also deeply involved in the procedures for the renewal of the reactor operation license. The new requirements set by the Nuclear Energy Licensing Authority (ENEA for Italy) most of which concerning radiation protection and environmental impact, have been already fulfilled. In some cases the installation of new apparatus is underway

  13. Critical bias fields for tilting stability in the BETA-II experiment

    International Nuclear Information System (INIS)

    Dalhed, H.E.

    1981-01-01

    The PEST equilibrium code and the GATO ideal MHD stability code have been modified to study stability properties of Spheromak configurations. Of particular interest is the effect on tilting modes of perfectly conducting walls which do not link the plasma. This paper makes use of equilibria and conducting walls specifically designed to model the BETA-II experiment at LLNL. Onset of the tilting mode is determined as a function of the bias magnetic field. Comparison with available experimental data shows promising agreement with the numerical results

  14. Streaming-plasma measurements in the Baseball II-T mirror experiment

    International Nuclear Information System (INIS)

    Damm, C.C.; Foote, J.H.; Futch, A.H.; Goodman, R.K.; Hornady, R.S.; Osher, J.E.; Porter, G.D.

    1977-01-01

    The warm plasma from a deuterium-loaded titanium washer gun, streaming along magnetic-field lines through the steady-state magnetic well of Baseball II, has been examined for its suitability in this experimental situation as a target plasma for hot-ion buildup experiments and for microinstability control. The gun was positioned near the magnetic axis outside the mirror region. Measurements were made with gridded, end-loss detectors placed outside the opposite mirror, a microwave interferometer, a beam-attenuation detector, and other diagnostics

  15. Tungsten deposition by hydrogen-atom reaction with tungsten hexafluoride

    International Nuclear Information System (INIS)

    Lee, W.W.

    1991-01-01

    Using gaseous hydrogen atoms with WF 6 , tungsten atoms can be produced in a gas-phase reaction. The atoms then deposit in a near-room temperature process, which results in the formation of tungsten films. The W atoms (10 10 -10 11 /cm 3 ) were measured in situ by atomic absorption spectroscopy during the CVD process. Deposited W films were characterized by Auger electron spectroscopy, Rutherford backscattering, and X-ray diffraction. The surface morphology of the deposited films and filled holes was studied using scanning electron microscopy. The deposited films were highly adherent to different substrates, such as Si, SiO 2 , Ti/Si, TiN/Si and Teflon. The reaction mechanism and kinetics were studied. The experimental results indicated that this method has three advantages compared to conventional CVD or PECVD: (1) film growth occurs at low temperatures; (2) deposition takes place in a plasma-free environment; and (3) a low level of impurities results in high-quality adherent films

  16. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE

    International Nuclear Information System (INIS)

    Shimada, Masashi; Hatano, Y.; Calderoni, P.; Oda, T.; Oya, Y.; Sokolov, M.; Zhang, K.; Cao, G.; Kolasinski, R.; Sharpe, J.P.

    2011-01-01

    With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 x 10 21 m -2 s -1 , ion fluence: 4 x 10 25 m -2 ) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.

  17. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE

    Science.gov (United States)

    Shimada, Masashi; Hatano, Y.; Calderoni, P.; Oda, T.; Oya, Y.; Sokolov, M.; Zhang, K.; Cao, G.; Kolasinski, R.; Sharpe, J. P.

    2011-08-01

    With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 × 1021 m-2 s-1, ion fluence: 4 × 1025 m-2) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.

  18. Latest experiences and future plans on NSLS-II insertion devices

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, T.; Hidaka, Y.; Kitegi, C.; Hidas, D.; Musardo, M.; Harder, D. A.; Rank, J.; Cappadoro, P.; Fernandes, H.; Corwin, T. [Energy Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, U.S.A (United States)

    2016-07-27

    National Synchrotron Light Source-II (NSLS-II) is the latest storage ring of 3 GeV energy at the Brookhaven National Laboratory (BNL). The horizontal emittance of the electron beam with the currently installed six damping wigglers is 0.9 nm.rad, which could be further reduced to 0.5 nm.rad with more insertion devices (IDs). With only one RF cavity the beam current is restricted to 200 mA. Five hundred mA operation is envisaged for next year with an addition of the second cavity. Six (plus two branches) beamlines have been commissioned in the initial phase of the project. In July 2015, three NIH funded beamlines called “Advanced Beamlines for Biological Investigations with X-rays” (ABBIX) will be added for operation. This paper describes the experiences of ID development, installation, and commissioning for the NSLS-II project as well as our future plans to improve the performance of the facility in terms of source development.

  19. Photoionization of the valence shells of the neutral tungsten atom

    Science.gov (United States)

    Ballance, C. P.; McLaughlin, B. M.

    2015-04-01

    Results from large-scale theoretical cross section calculations for the total photoionization (PI) of the 4f, 5s, 5p and 6s orbitals of the neutral tungsten atom using the Dirac Coulomb R-matrix approximation (DARC: Dirac-atomic R-matrix codes) are presented. Comparisons are made with previous theoretical methods and prior experimental measurements. In previous experiments a time-resolved dual laser approach was employed for the photo-absorption of metal vapours and photo-absorption measurements on tungsten in a solid, using synchrotron radiation. The lowest ground state level of neutral tungsten is 5{{p}6}5{{d}4}6{{s}2}{{ }5}{{D}J}, with J = 0, and requires only a single dipole matrix for PI. To make a meaningful comparison with existing experimental measurements, we statistically average the large-scale theoretical PI cross sections from the levels associated with the ground state 5{{p}6}5{{d}4}6{{s}2}{{ }5}{{D}J} (J = 0, 1, 2, 3, 4) levels and the 5{{d}5}6{{s} 7}{{S}3} excited metastable level. As the experiments have a self-evident metastable component in their ground state measurement, averaging over the initial levels allows for a more consistent and realistic comparison to be made. In the wider context, the absence of many detailed electron-impact excitation (EIE) experiments for tungsten and its multi-charged ion stages allows current PI measurements and theory to provide a road-map for future EIE, ionization and di-electronic cross section calculations by identifying the dominant resonance structure and features across an energy range of hundreds of eV.

  20. Unsteady Aerodynamics Experiment Phases II-IV Test Configurations and Available Data Campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Simms, D. A.; Hand, M. M.; Fingersh, L. J.; Jager, D. W.

    1999-08-19

    The main objective of the Unsteady Aerodynamics Experiment is to provide information needed to quantify the full-scale three-dimensional aerodynamic behavior of horizontal axis wind turbines. To accomplish this, an experimental wind turbine configured to meet specific research objectives was assembled and operated at the National Renewable Energy Laboratory (NREL). The turbine was instrumented to characterize rotating blade aerodynamic performance, machine structural responses, and atmospheric inflow conditions. Comprehensive tests were conducted with the turbine operating in an outdoor field environment under diverse conditions. Resulting data are used to validate aerodynamic and structural dynamics models which are an important part of wind turbine design and engineering codes. Improvements in these models are needed to better characterize aerodynamic response in both the steady-state post-stall and dynamic stall regimes. Much of the effort in the earlier phase of the Unsteady Aerodynamics Experiment focused on developing required data acquisition systems. Complex instrumentation and equipment was needed to meet stringent data requirements while operating under the harsh environmental conditions of a wind turbine rotor. Once the data systems were developed, subsequent phases of experiments were then conducted to collect data for use in answering specific research questions. A description of the experiment configuration used during Phases II-IV of the experiment is contained in this report.

  1. Experiments in a 600m borehole in the Asse II salt mine

    International Nuclear Information System (INIS)

    Heijdra, J.J.

    1992-07-01

    In the design and fabrication of underground disposal sites for radio-active waste in salt formations and the assessment of the safety of such disposal facilities, the thermo-mechanical behaviour of rock salt plays an important role. In previous research programmes models have been developed which need to be verified by in-situ experiments. It has been proven during the COSA project that computations based on laboratory scale experiments do not agree with in-situ measurements. Based on the experiments performed already and on the associated validation work, two items were considered to be of special concern, viz. the consecutive behaviour of rock salt and the rock pressure in the Asse salt mine. A particular problem in the constitutive relations is the elastic or apparent elastic behaviour of rock salt. It appeared that the salt around openings is weaker than could be expected on the basis of laboratory experiments. Possible explanations are primary creep and the weakening effect of micro cracks. In the research programme discussed here, in-situ experiments will be carried out in the Asse II salt mine in the Federal Republic of Germany. The measurements will be carried out in dry drilled boreholes. The development of the drilling technique was part of a related programme carried out under supervision of GSF-Forschungszentrum fuer Umwelt und Gesundheit (Research Centre for Environment and Health). (author). 3 refs

  2. Kinetics of the tungsten hexafluoride-silane reaction for the chemical vapor deposition of tungsten

    International Nuclear Information System (INIS)

    Gokce, Huseyin.

    1991-01-01

    In this study, the kinetics of the low-pressure chemical vapor deposition (LPCVD) of tungsten by silane reduction of tungsten hexafluoride on Si(100) surfaces was studied. A single-wafer, cold-wall reactor was sued for the experiments. The SiH 4 /WF 6 ratio was 1.0. The pressure and temperature range were 1-10 torr and 137-385 degree C, respectively. Kinetic data were obtained in the absence of mass-transfer effects. The film thicknesses were measured by gravimetry. Scanning electron microscopy (SEM), Auger electron spectroscopy (AES), x-ray diffraction (XRD), and resistivity measurements were used to analyze the W films. For the horizontal substrate position and 4-minute reaction times, the apparent activation energies were determined to be 0.35 eV/atom for 10 torr, 0.17 eV/atom for 3 torr, and 0.08 eV/atom for 1 torr. Lower temperatures and higher pressures produced porous films, while higher temperatures and lower pressures resulted in continuous films with smoother surfaces. As the Si-W interface, a W(110) preferential orientation was observed. As the W films grew thicker, W orientation switched from (110) to (100). Apparent activation energy seems to change with thickness

  3. Early Experience with the Amplatzer Vascular Plug II for Occlusive Purposes in Arteriovenous Hemodialysis Access

    International Nuclear Information System (INIS)

    Powell, Steven; Narlawar, Ranjeet; Odetoyinbo, Tolulola; Littler, Peter; Oweis, Deyana; Sharma, Ajay; Bakran, Ali

    2010-01-01

    The Amplatzer Vascular Plug Type II (AVP II) has proven effective in the therapeutic embolization of various vascular lesions. It benefits from very rapid occlusion of the target lesion and can be deployed, retrieved, and redeployed if required. There is no literature available on use of the AVP II in the maintenance, closure, and management of complicated arteriovenous access in hemodialysis patients. In this series, we present our clinical experience with the use of the AVP II for embolization of problematic hemodialysis access. The AVP II is a self-expandable Nitinol wire-mesh device. Mounted on a delivery wire it has the capability to be deployed, recaptured, and redeployed. In total seven patients (four males: one diabetic, all nonsmokers), with ages ranging from 44 to 81 years (mean, 63 years), were treated between July 2008 and January 2009. One patient had not started dialysis. The remaining six patients had varied histories, with the time on hemodialysis ranging from 1 to 21 years. Retrospective review of clinical notes revealed patient demographics, type of access, device size, deployment site, and outcomes. Indications for embolization included steal syndrome (one patient), high-flow tributaries (two patients), and limb swelling (four patients). All patients had clinical and sonographical follow-up to 3 months. Surgical ligation had either failed, was considered a contraindication due to concerns regarding wound healing, or was considered difficult due to complex venous anatomy. Only one device was used in each patient, ranging from 6 to 16 mm in diameter. Immediate technical success was seen in 100%. All these patients were followed up clinically in the vascular access radiology clinic at 4 weeks and 3 months. Occlusion of the treated vessel and resolution of symptoms were reconfirmed in 100% of cases at 3 months. It was also noted whether patients were having successful dialysis, if required. There were no complications. Average procedural time was 19

  4. Mitigation of ^{42}Ar/^{42}K background for the GERDA Phase II experiment

    Science.gov (United States)

    Lubashevskiy, A.; Agostini, M.; Budjáš, D.; Gangapshev, A.; Gusev, K.; Heisel, M.; Klimenko, A.; Lazzaro, A.; Lehnert, B.; Pelczar, K.; Schönert, S.; Smolnikov, A.; Walter, M.; Zuzel, G.

    2018-01-01

    Background coming from the ^{42}Ar decay chain is considered to be one of the most relevant for the Gerda experiment, which searches for the neutrinoless double beta decay of ^{76}Ge. The sensitivity strongly relies on the absence of background around the Q-value of the decay. Background coming from ^{42}K, a progeny of ^{42}Ar, can contribute to that background via electrons from the continuous spectrum with an endpoint at 3.5 MeV. Research and development on the suppression methods targeting this source of background were performed at the low-background test facility LArGe . It was demonstrated that by reducing ^{42}K ion collection on the surfaces of the broad energy germanium detectors in combination with pulse shape discrimination techniques and an argon scintillation veto, it is possible to suppress ^{42}K background by three orders of magnitude. This is sufficient for Phase II of the Gerda experiment.

  5. Indirect-drive ablative Rayleigh-Taylor growth experiments on the Shenguang-II laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J. F.; Fan, Z. F.; Zheng, W. D.; Wang, M.; Pei, W. B.; Zhu, S. P.; Zhang, W. Y. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Miao, W. Y.; Yuan, Y. T.; Cao, Z. R.; Deng, B.; Jiang, S. E.; Liu, S. Y.; Ding, Y. K. [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Wang, L. F.; Ye, W. H., E-mail: ye-wenhua@iapcm.ac.cn; He, X. T. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871 (China)

    2014-04-15

    In this research, a series of single-mode, indirect-drive, ablative Rayleigh-Taylor (RT) instability experiments performed on the Shenguang-II laser facility [X. T. He and W. Y. Zhang, Eur. Phys. J. D 44, 227 (2007)] using planar target is reported. The simulation results from the one-dimensional hydrocode for the planar foil trajectory experiment indicate that the energy flux at the hohlraum wall is obviously less than that at the laser entrance hole. Furthermore, the non-Planckian spectra of x-ray source can strikingly affect the dynamics of the foil flight and the perturbation growth. Clear images recorded by an x-ray framing camera for the RT growth initiated by small- and large-amplitude perturbations are obtained. The observed onset of harmonic generation and transition from linear to nonlinear growth regime is well predicted by two-dimensional hydrocode simulations.

  6. Imaging radar observations of Farley Buneman waves during the JOULE II experiment

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2008-07-01

    Full Text Available Vector electric fields and associated E×B drifts measured by a sounding rocket in the auroral zone during the NASA JOULE II experiment in January 2007, are compared with coherent scatter spectra measured by a 30 MHz radar imager in a common volume. Radar imaging permits precise collocation of the spectra with the background electric field. The Doppler shifts and spectral widths appear to be governed by the cosine and sine of the convection flow angle, respectively, and also proportional to the presumptive ion acoustic speed. The neutral wind also contributes to the Doppler shifts. These findings are consistent with those from the JOULE I experiment and also with recent numerical simulations of Farley Buneman waves and instabilities carried out by Oppenheim et al. (2008. Simple linear analysis of the waves offers some insights into the spectral moments. A formula relating the spectral width to the flow angle, ion acoustic speed, and other ionospheric parameters is derived.

  7. Designing the KNK II-TOAST irradiation experiment with the saturn-FS code

    International Nuclear Information System (INIS)

    Ritzhaupt-Kleissl, H.J.; Elbel, H.; Heck, M.

    1991-01-01

    In order to study the existing specification of FBR fuel with respect to allowable fabrication tolerances with the objective to reduce the expense of fabrication and quality control, the TOAST irradiation experiment will be carried out in the 3 rd core of the KNK II. This experiment shall investigate the influence of the following fuel specification parameters on the operational behaviour: - Fuel diameter - Stoichiometry - Sintering atmosphere - Fill gas in the fuel pin. The combination of these test parameters led to a fabrication of 6 types of fuel pellets, giving together with two fill gas mixtures a total of 9 fuel pin types. Design calculations in the frame of the standard licensing procedure have been performed with the SATURN-FS fuel pin behaviour code. These calculations have been done for the steady-state behaviour as well as for some defined design transients, such as startup procedures and overpower ramps

  8. Vanadium Doped Tungsten Oxide Material - Electrical Physical and Sensing Properties

    Directory of Open Access Journals (Sweden)

    Shishkin N. Y.

    2008-05-01

    Full Text Available The electrical physical and sensing (to VOCs and inorganic gases properties of vanadium doped tungsten oxide in the regions of phase transition temperature were investigated. Vanadium oxide (II dimerization was observed in the doped material, corresponding to new phase transition. The extreme sensitivity and selectivity to chemically active gases and vapors in small concentrations: CO, NOx, NH3 acetone, ethanol near phase transitions temperature was found. Sensor elements were manufactured for the quantitative detection (close to 1 ppm of alcohol and ammonia.

  9. The Cryogenic Dark Matter Search (CDMS-II) Experiment: First Results from the Soudan Mine

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Clarence Leeder [Stanford Univ., CA (United States)

    2004-09-01

    There is an abundance of evidence that the majority of the mass of the universe is in the form of non-baryonic non-luminous matter that was non-relativistic at the time when matter began to dominate the energy density. Weakly Interacting Massive Particles, or WIMPs, are attractive cold dark matter candidates because they would have a relic abundance today of ~0.1 which is consistent with precision cosmological measurements. WIMPs are also well motivated theoretically. Many minimal supersymmetric extensions of the Standard Model have WIMPs in the form of the lightest supersymmetric partner, typically taken to be the neutralino. The CDMS II experiment searches for WIMPs via their elastic scattering off of nuclei. The experiment uses Ge and Si ZIP detectors, operated at <50 mK, which simultaneously measure the ionization and athermal phonons produced by the scattering of an external particle. The dominant background for the experiment comes from electromagnetic interactions taking place very close to the detector surface. Analysis of the phonon signal from these interactions makes it possible to discriminate them from interactions caused by WIMPs. This thesis presents the details of an important aspect of the phonon pulse shape analysis known as the ''Lookup Table Correction''. The Lookup Table Correction is a position dependent calibration of the ZIP phonon response which improves the rejection of events scattering near the detector surface. The CDMS collaboration has recently commissioned its experimental installation at the Soudan Mine. This thesis presents an analysis of the data from the first WIMP search at the Soudan Mine. The results of this analysis set the world's lowest exclusion limit making the CDMS II experiment at Soudan the most sensitive WIMP search to this date.

  10. Water/sand flooded and immersed critical experiment and analysis performed in support of the TOPAZ-II Safety Program

    International Nuclear Information System (INIS)

    Glushkov, E.S.; Ponomarev-Stepnoi, N.N.; Bubelev, V.G.; Garin, V.P.; Gomin, E.A.; Kompanietz, G.V.; Krutoy, A.M.; Lobynstev, V.A.; Maiorov, L.V.; Polyakov, D.N.

    1994-01-01

    Presented is a brief description of the Narciss-M2 critical assemblies, which simulate accidental water/wet-sand immersion of the TOPAZ-II reactor as well as water-flooding of core cavities. Experimental results obtained from these critical assemblies, including experiments with several fuel elements removed from the core, are shown. These configurations with several extracted fuel elements simulate a proposed fuel-out anticriticality-device modification to the TOPAZ-II reactor. Preliminary computational analysis of these experiments using the Monte Carlo neutron-transport method is outlined. Nuclear criticality safety of the TOPAZ-II reactor with an incorporated anticriticality unit is demonstrated

  11. The DAMPE silicon tungsten tracker

    CERN Document Server

    Gallo, Valentina; Asfandiyarov, R; Azzarello, P; Bernardini, P; Bertucci, B; Bolognini, A; Cadoux, F; Caprai, M; Domenjoz, M; Dong, Y; Duranti, M; Fan, R; Franco, M; Fusco, P; Gargano, F; Gong, K; Guo, D; Husi, C; Ionica, M; Lacalamita, N; Loparco, F; Marsella, G; Mazziotta, M N; Mongelli, M; Nardinocchi, A; Nicola, L; Pelleriti, G; Peng, W; Pohl, M; Postolache, V; Qiao, R; Surdo, A; Tykhonov, A; Vitillo, S; Wang, H; Weber, M; Wu, D; Wu, X; Zhang, F; De Mitri, I; La Marra, D

    2017-01-01

    The DArk Matter Particle Explorer (DAMPE) satellite has been successfully launched on the 17th December 2015. It is a powerful space detector designed for the identification of possible Dark Matter signatures thanks to its capability to detect electrons and photons with an unprecedented energy resolution in an energy range going from few GeV up to 10 TeV. Moreover, the DAMPE satellite will contribute to a better understanding of the propagation mechanisms of high energy cosmic rays measuring the nuclei flux up to 100 TeV. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is made of twelve layers of single-sided AC-coupled silicon micro-strip detectors for a total silicon area of about 7 $m^2$ . To promote the conversion of incident photons into electron-positron pairs, tungsten foils are inserted into the supporting structure. In this document, a detailed description of the STK constructi...

  12. Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO—potassium doped tungsten wire

    Science.gov (United States)

    Riesch, J.; Han, Y.; Almanstötter, J.; Coenen, J. W.; Höschen, T.; Jasper, B.; Zhao, P.; Linsmeier, Ch; Neu, R.

    2016-02-01

    For the next step fusion reactor the use of tungsten is inevitable to suppress erosion and allow operation at elevated temperature and high heat loads. Tungsten fibre-reinforced composites overcome the intrinsic brittleness of tungsten and its susceptibility to operation embrittlement and thus allow its use as a structural as well as an armour material. That this concept works in principle has been shown in recent years. In this contribution we present a development approach towards its use in a future fusion reactor. A multilayer approach is needed addressing all composite constituents and manufacturing steps. A huge potential lies in the optimization of the tungsten wire used as fibre. We discuss this aspect and present studies on potassium doped tungsten wire in detail. This wire, utilized in the illumination industry, could be a replacement for the so far used pure tungsten wire due to its superior high temperature properties. In tensile tests the wire showed high strength and ductility up to an annealing temperature of 2200 K. The results show that the use of doped tungsten wire could increase the allowed fabrication temperature and the overall working temperature of the composite itself.

  13. Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO—potassium doped tungsten wire

    International Nuclear Information System (INIS)

    Riesch, J; Han, Y; Höschen, T; Zhao, P; Neu, R; Almanstötter, J; Coenen, J W; Jasper, B; Linsmeier, Ch

    2016-01-01

    For the next step fusion reactor the use of tungsten is inevitable to suppress erosion and allow operation at elevated temperature and high heat loads. Tungsten fibre-reinforced composites overcome the intrinsic brittleness of tungsten and its susceptibility to operation embrittlement and thus allow its use as a structural as well as an armour material. That this concept works in principle has been shown in recent years. In this contribution we present a development approach towards its use in a future fusion reactor. A multilayer approach is needed addressing all composite constituents and manufacturing steps. A huge potential lies in the optimization of the tungsten wire used as fibre. We discuss this aspect and present studies on potassium doped tungsten wire in detail. This wire, utilized in the illumination industry, could be a replacement for the so far used pure tungsten wire due to its superior high temperature properties. In tensile tests the wire showed high strength and ductility up to an annealing temperature of 2200 K. The results show that the use of doped tungsten wire could increase the allowed fabrication temperature and the overall working temperature of the composite itself. (paper)

  14. The data analysis of the single well injection-withdraw tracer experiment using the MACRO II

    International Nuclear Information System (INIS)

    Shirakawa, Toshihiko; Kanazawa, Yasuo; Hatanaka, Koichiro

    2001-04-01

    On understanding the radionuclide transport in natural barrier in radioactive waste isolation research, the macroscopic dispersion in heterogeneous permeability field in the underground rock is regarded as an important process. Therefore, we have conducted lots of tracer experiments by the MACRO II facility with an artificially constructed heterogeneous permeability field. In order to study the scale dependence of dispersion coefficients in case of laboratory experiments, we placed the flow cell horizontally, and conducted injection-withdraw tracer experiment with a single well. We have conducted 15 cases experiments. These cases were prepared by changing a position of single well and the injection-withdraw time. At each position we have conducted 9 cases and 6 cases experiments. In this report, we evaluated the macroscopic dispersion coefficients by the fitting of analytical solution to breakthrough curve measured by the 15 cases pumping tracer experiment. Consequently, we could evaluate the dispersion coefficients for 12 cases of 15 cases. Then, we discussed the relation between a injection-withdraw flow rate and a property of heterogeneous media and dispersion coefficient. The conclusions obtained from the results of the evaluation are summarized as follows, It was found that the macroscopic dispersion coefficients tend to be increased with increase of the average radius of tracer front spread around a single well. We have conducted any experiments with s single well settled at two positions. In case of that there is low permeability around a single well, we found dispersion coefficients are large. In case of that there is high permeability around a single well, we found dispersion coefficients are small. In three cases that we could not evaluate because of incorrect accuracy of fitting, we have found it possible that there is some points that dispersion coefficients were strikingly small in tracer front. (author)

  15. Implantation driven permeation behavior of deuterium through pure tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hirofumi E-mail: nakamura@tpl.tokai.jaeri.go.jp; Hayashi, Takumi; Nishi, Masataka; Arita, Makoto; Okuno, Kenji

    2001-09-01

    Implantation driven permeation behavior of deuterium through pure tungsten has been investigated to estimate the amount of tritium permeation through its barrier in a thermo-nuclear fusion device. The permeation experiments were performed on pure tungsten foil of 25 {mu}m thickness under conditions of incident flux of 1.9x10{sup 18}-1.1x10{sup 19} D{sup +}/m{sup 2}s, incident ion energy of 200-2000 eV, and specimen temperature of 512-660 K. As a result of this steady-state permeation experiment, the rate-determining process of deuterium permeation was found to be controlled by diffusion at both implanted and permeated sides. On the other hand, transient permeation was strongly affected by trap effect in the specimen. Simulation analysis using TMAP code on transient permeation behavior indicates the existence of a trap site with a trap energy of nearly 1eV and with a trap density of over several ten's ppm in tungsten.

  16. Implantation driven permeation behavior of deuterium through pure tungsten

    International Nuclear Information System (INIS)

    Nakamura, Hirofumi; Hayashi, Takumi; Nishi, Masataka; Arita, Makoto; Okuno, Kenji

    2001-01-01

    Implantation driven permeation behavior of deuterium through pure tungsten has been investigated to estimate the amount of tritium permeation through its barrier in a thermo-nuclear fusion device. The permeation experiments were performed on pure tungsten foil of 25 μm thickness under conditions of incident flux of 1.9x10 18 -1.1x10 19 D + /m 2 s, incident ion energy of 200-2000 eV, and specimen temperature of 512-660 K. As a result of this steady-state permeation experiment, the rate-determining process of deuterium permeation was found to be controlled by diffusion at both implanted and permeated sides. On the other hand, transient permeation was strongly affected by trap effect in the specimen. Simulation analysis using TMAP code on transient permeation behavior indicates the existence of a trap site with a trap energy of nearly 1eV and with a trap density of over several ten's ppm in tungsten

  17. Shear strength of shock-loaded polycrystalline tungsten

    International Nuclear Information System (INIS)

    Asay, J.R.; Chhabildas, L.C.; Dandekar, D.P.

    1980-01-01

    Previous experiments have suggested that tungsten undergoes a significant loss of shear strength when shock loaded to stresses greater than 7 GPa. In order to investigate this effect in more detail, a series of experiments was conducted in which polycrystalline tungsten was first shock loaded to approximately 10 GPa and then either unloaded or reloaded from the shocked state. Analysis of measured time-resolved wave profiles indicates that during initial compression to 9.7 GPa, the shear stress in polycrystalline tungsten increases to a maximum value of 1.1 GPA near a longitudinal stress of 5 GPa, but decreases to a final value of 0.8 GPa for stresses approaching 10 GPa. During reloading from a longitudinal stress of 9.7 GPa to a final value of approx.14 GPa, the shear stress increases to a peak value of 1.2 GPa and softens to 1.0 GPa in the final state. During unloading from the shocked state, the initial response is elastic with a strong Baushinger effect. Examination of a recovered sample shows evidence for both deformation slipping and twinning, which may be responsible for the observed softening

  18. BMFT-CEA-US-DOE Exchange on KNK II-Rapsodie-EBR II operating experience, German contributions for the second expert meeting at Idaho Falls, USA, October 27 and 28, 1982

    International Nuclear Information System (INIS)

    1982-10-01

    The meeting at Idaho Falls was the follow-up meeting of the first expert meeting on EBR II- Rapsodie- KNK II operating experience, which took place at the Karlsruhe Research Center in March 1980. The present report compiles the ten German papers presented at the Idaho Falls meeting, discussing various aspects of experience gained by the operation of KNK II

  19. Development of quantitative atomic modeling for tungsten transport study using LHD plasma with tungsten pellet injection

    Science.gov (United States)

    Murakami, I.; Sakaue, H. A.; Suzuki, C.; Kato, D.; Goto, M.; Tamura, N.; Sudo, S.; Morita, S.

    2015-09-01

    Quantitative tungsten study with reliable atomic modeling is important for successful achievement of ITER and fusion reactors. We have developed tungsten atomic modeling for understanding the tungsten behavior in fusion plasmas. The modeling is applied to the analysis of tungsten spectra observed from plasmas of the large helical device (LHD) with tungsten pellet injection. We found that extreme ultraviolet (EUV) emission of W24+ to W33+ ions at 1.5-3.5 nm are sensitive to electron temperature and useful to examine the tungsten behavior in edge plasmas. We can reproduce measured EUV spectra at 1.5-3.5 nm by calculated spectra with the tungsten atomic model and obtain charge state distributions of tungsten ions in LHD plasmas at different temperatures around 1 keV. Our model is applied to calculate the unresolved transition array (UTA) seen at 4.5-7 nm tungsten spectra. We analyze the effect of configuration interaction on population kinetics related to the UTA structure in detail and find the importance of two-electron-one-photon transitions between 4p54dn+1- 4p64dn-14f. Radiation power rate of tungsten due to line emissions is also estimated with the model and is consistent with other models within factor 2.

  20. Preliminary Results from the PrimEx-II experiment at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Gasparian, Ashot [NCA& T, Greensboro, NC; Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-06-01

    Properties of the neutral pion, as the lightest hadron in Nature, are most sensitive to the basic symmetries and their partial breaking effects in the theory of the strong interaction (QCD). In particular, the po →gg decay width is primarily defined by the spontaneous chiral symmetry breaking effect (chiral anomaly) in QCD. The next order corrections to the anomaly have been shown to be small and are known to a 1% precision level. The PrimEx Collaboration at JLab has developed and performed two Primakoff type experiments to measure the po →gg decay width with a similar precision. The published result from the PrimEx-I experiment, G(p0 →gg ) = 7.82±0.14 (stat.)±0.17 (syst.) eV, was a factor of two more precise than the average value quoted in PDG-2010 [1]. The second experiment was performed in 2010 with a goal of 1.4% total uncertainty to address the next-to-leading-order theory calculations. The preliminary results from the PrimEx-II experiment are presented and discussed in this note.

  1. Hydrogen trapping in and release from tungsten: modeling and comparison with graphite with regard to its use as fusion reactor material

    International Nuclear Information System (INIS)

    Franzen, P.; Garcia-Rosales, C.; Plank, H.; Alimov, V.Kh.

    1997-01-01

    Trapping and release of deuterium implanted in tungsten is investigated by modeling the results of reemission, thermal and isothermal desorption experiments. Rate coefficients and activation energies for diffusion, trapping and detrapping are derived. Hydrogen atoms are able to diffuse deep into tungsten, establishing a solute amount of the same order of magnitude as the trapped one. This 'diffusion zone' exceeds the implantation zone by more than two orders of magnitude, even at room temperature. The solute amount of hydrogen in tungsten depends only slightly on the incident ion energy, but scales with implantation fluence. This high amount of solute hydrogen is the main difference of tungsten compared to graphite where nearly all hydrogen is trapped in the implantation zone, the solute amount being orders of magnitude lower. The resulting unlimited accumulation of hydrogen in tungsten deep in the material down to the backward surface disadvantages tungsten as fusion reactor material with regard to hydrogen recycling properties. (orig.)

  2. The dynamical mechanical properties of tungsten under compression at working temperature range of divertors

    International Nuclear Information System (INIS)

    Zhu, C.C.; Song, Y.T.; Peng, X.B.; Wei, Y.P.; Mao, X.; Li, W.X.; Qian, X.Y.

    2016-01-01

    In the divertor structure of ITER and EAST with mono-block module, tungsten plays not only a role of armor material but also a role of structural material, because electromagnetic (EM) impact will be exerted on tungsten components in VDEs or CQ. The EM loads can reach to 100 MN, which would cause high strain rates. In addition, directly exposed to high-temperature plasma, the temperature regime of divertor components is complex. Aiming at studying dynamical response of tungsten divertors under EM loads, an experiment on tungsten employed in EAST divertors was performed using a Kolsky bar system. The testing strain rates and temperatures is derived from actual working conditions, which makes the constitutive equation concluded by using John-Cook model and testing data very accurate and practical. The work would give a guidance to estimate the dynamical response, fatigue life and damage evolution of tungsten divertor components under EM impact loads. - Graphical abstract: From the comparison between the experimental curves and the predicted curves calculated by adopting the corrected m, it is very clear that the new model is of great capability to explain the deformation behavior of the tungsten material under dynamic compression at high temperatures. (EC, PC and PCM refers to experimental curve, predicted curve and predicted curve with a corrected m. Different colors represent different scenarios.). - Highlights: • Test research on dynamic properties of tungsten at working temperature range and strain rate range of divertors. • Constitutive equation descrbing strain hardening, strain rate hardening and temperature softening. • A guidance to estimate dynamical response and damage evolution of tungsten divertor components under impact.

  3. Hydrogen gas driven permeation through tungsten deposition layer formed by hydrogen plasma sputtering

    International Nuclear Information System (INIS)

    Uehara, Keiichiro; Katayama, Kazunari; Date, Hiroyuki; Fukada, Satoshi

    2015-01-01

    Highlights: • H permeation tests for W layer formed by H plasma sputtering are performed. • H permeation flux through W layer is larger than that through W bulk. • H diffusivity in W layer is smaller than that in W bulk. • The equilibrium H concentration in W layer is larger than that in W bulk. - Abstract: It is important to evaluate the influence of deposition layers formed on plasma facing wall on tritium permeation and tritium retention in the vessel of a fusion reactor from a viewpoint of safety. In this work, tungsten deposition layers having different thickness and porosity were formed on circular nickel plates by hydrogen RF plasma sputtering. Hydrogen permeation experiment was carried out at the temperature range from 250 °C to 500 °C and at hydrogen pressure range from 1013 Pa to 101,300 Pa. The hydrogen permeation flux through the nickel plate with tungsten deposition layer was significantly smaller than that through a bare nickel plate. This indicates that a rate-controlling step in hydrogen permeation was not permeation through the nickel plate but permeation though the deposition layer. The pressure dependence on the permeation flux differed by temperature. Hydrogen permeation flux through tungsten deposition layer is larger than that through tungsten bulk. From analysis of the permeation curves, it was indicated that hydrogen diffusivity in tungsten deposition layer is smaller than that in tungsten bulk and the equilibrium hydrogen concentration in tungsten deposition layer is enormously larger than that in tungsten bulk at same hydrogen pressure.

  4. Simulation of residual thermostress in tungsten after repetitive ELM-like heat loads

    International Nuclear Information System (INIS)

    Pestchanyi, S.; Garkusha, I.; Landman, I.

    2011-01-01

    Brittle destruction of tungsten armour under action of edge localised modes of plasma instabilities (ELMs) in ITER is an important issue determining the lifetime of the divertor. Besides, cracking of the armour produces tungsten dust with characteristic size of 1-10 μm flying from the armour surface with velocities up to 10 m/s. Influx of the tungsten dust into the ITER confinement decreases the temperature of the plasma, reduces the thermonuclear gain and even may run the confinement into disruption. This paper describes experiments in QSPA-Kh50 plasma gun and modeling, which has been performed for providing more insight into the physics of tungsten cracking under action of ELMs and for confirmation of the important result on stabilization of the crack development at the tungsten armour surface, predicted in our previous paper - the same authors, 2010. The threshold value of energy density deposition for start of tungsten cracking has been measured as 0.3 MJ/m 2 after 5-10 shots. From analytical considerations three times smaller threshold value has been predicted with increasing number of shots.

  5. Simulation of residual thermostress in tungsten after repetitive ELM-like heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Pestchanyi, S., E-mail: serguei.pestchanyi@kit.edu [Karlsruhe Institute of Technology, IHM (Germany); Garkusha, I. [Institute of Plasma Physics of the NSC KIPT, Kharkov (Ukraine); Landman, I. [Karlsruhe Institute of Technology, IHM (Germany)

    2011-10-15

    Brittle destruction of tungsten armour under action of edge localised modes of plasma instabilities (ELMs) in ITER is an important issue determining the lifetime of the divertor. Besides, cracking of the armour produces tungsten dust with characteristic size of 1-10 {mu}m flying from the armour surface with velocities up to 10 m/s. Influx of the tungsten dust into the ITER confinement decreases the temperature of the plasma, reduces the thermonuclear gain and even may run the confinement into disruption. This paper describes experiments in QSPA-Kh50 plasma gun and modeling, which has been performed for providing more insight into the physics of tungsten cracking under action of ELMs and for confirmation of the important result on stabilization of the crack development at the tungsten armour surface, predicted in our previous paper - the same authors, 2010. The threshold value of energy density deposition for start of tungsten cracking has been measured as 0.3 MJ/m{sup 2} after 5-10 shots. From analytical considerations three times smaller threshold value has been predicted with increasing number of shots.

  6. An investigation of tungsten by neutron activation techniques

    International Nuclear Information System (INIS)

    Svetsreni, R.

    1978-01-01

    This investigation used neutron from Plutonium-Beryllium source (5 curie) to analyse the amount of tungsten in tungsten oxide which was extracted from tungsten ores, slag and tungsten alloy of tungsten iron and carbon. The technique of neutron activation analysis with NaI(Tl) gamma detector 3'' x 3'' and 1024 multichannel analyzer. The dilution technique was used by mixing Fe 2 O 3 or pure sand into the sample before irradiation. In this study self shielding effect in the analysis of tungsten was solved and the detection limit of the tungsten in the sample was about 0.5%

  7. Simulations of tungsten, tungsten-coated and tungsten-doped targets at low KrF laser intensities

    Science.gov (United States)

    Colombant, D.; Klapisch, M.; Lehecka, T.; Seely, J.; Schmitt, A.; Obenschain, S.

    1998-11-01

    High-Z coatings can be used to create X-rays to preheat the ablator, thus reducing the laser imprint and the R-T instability. Targets with tungsten coated on the surface or mixed with CH have recently been irradiated using Nike at intensities of a few 10^12W/cm^2, typical of the foot of a laser fusion pulse. The present simulations in 1D have been carried out to provide an interpretation of these experiments and to validate the code for radiation-preheated target designs(S. E. Bodner et al., Phys. Plasmas, 5, 1901 (1998).). All computations were performed in non-LTE(M. Busquet, Phys. Fluids B, 5, 4191 (1993); M. Klapisch, A. Bar-Shalom, J. Oreg and D. Colombant, Phys. Plasmas, 5, 1919 (1998).). Low resolution X-ray spectra obtained from on-line computations are compared to time-integrated experimental spectra between 100 eV and 500 eV. Agreements and differences between computations and experiments will be discussed.

  8. Environmental fate of tungsten from military use

    International Nuclear Information System (INIS)

    Clausen, Jay L.; Korte, Nic

    2009-01-01

    This manuscript describes the distribution, fate and transport of tungsten used in training rounds at three small arms ranges at Camp Edwards on the Massachusetts Military Reservation (MMR), USA. Practice with tungsten/nylon rounds began in 2000 subsequent to a 1997 US Environmental Protection Agency ban on training with lead. Training with the tungsten rounds was halted in 2005 because of concerns regarding tungsten's environmental mobility and potential toxicity. This study, therefore, examines how tungsten partitions in the environment when fired on a small arms training range. Soil sampling revealed surface soil concentrations, highest at the berm face, up to 2080 mg/kg. Concentrations decreased rapidly with depth-at least by an order of magnitude by 25 cm. Nonetheless, tungsten concentrations remained above background to at least 150 cm. Pore-water samples from lysimeters installed in berm areas revealed a range of concentrations (< 1-400 mg/L) elevated with respect to background although there was no discernable trend with depth. Groundwater monitoring well samples collected approximately 30 m below ground surface showed tungsten (0.001-0.56 mg/L) attributable to range use

  9. Environmental fate of tungsten from military use

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Jay L. [Research and Development Center, Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, New Hampshire, 03755 (United States)], E-mail: Jay.L.Clausen@erdc.usace.army.mil; Korte, Nic [1946 Clover Ct., Grand Junction, Colorado, 81506 (United States)

    2009-04-01

    This manuscript describes the distribution, fate and transport of tungsten used in training rounds at three small arms ranges at Camp Edwards on the Massachusetts Military Reservation (MMR), USA. Practice with tungsten/nylon rounds began in 2000 subsequent to a 1997 US Environmental Protection Agency ban on training with lead. Training with the tungsten rounds was halted in 2005 because of concerns regarding tungsten's environmental mobility and potential toxicity. This study, therefore, examines how tungsten partitions in the environment when fired on a small arms training range. Soil sampling revealed surface soil concentrations, highest at the berm face, up to 2080 mg/kg. Concentrations decreased rapidly with depth-at least by an order of magnitude by 25 cm. Nonetheless, tungsten concentrations remained above background to at least 150 cm. Pore-water samples from lysimeters installed in berm areas revealed a range of concentrations (< 1-400 mg/L) elevated with respect to background although there was no discernable trend with depth. Groundwater monitoring well samples collected approximately 30 m below ground surface showed tungsten (0.001-0.56 mg/L) attributable to range use.

  10. Thermal shock behaviour of different tungsten grades under varying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, Oliver Marius

    2012-07-19

    damages. Furthermore the grain structure and the recrystallisation of the material have a significant influence on the thermal shock damage, especially the cracking pattern and surface roughening. Beside the thermal shock damage mapping tungsten was also successively exposed to steady state high flux hydrogen-plasma and to cyclic thermal shock events simulated with an electron beam. The induced damages were investigated to determine if the exposure to hydrogen-plasma has an influence on the thermal shock response of tungsten. Special attention was paid to the thermal shock crack parameters such as distance, width and depth. The investigations showed that there is a significant influence on the damage behaviour of tungsten, especially if the tungsten targets are pre-loaded with hydrogen plasma. Beside the sequence of the exposure also the surface temperature during the plasma loading shows a clear influence on the thermal shock behaviour. One of the most obvious changes is that due to the pre-exposure with hydrogen the thermal shock cracks are not limited to the electron beam loaded area anymore. They propagate through the only plasma loaded surface and even penetrate into the unexposed area at the edges of the tungsten targets. Additionally, all crack parameters decrease if the targets are pre-loaded with hydrogen plasma. The combination of these results shows that the thermal shock response of tungsten as a PFM is very complex and depends on a wide range of parameters. It can be very well characterised by electron beam tests, but it has to be taken into account that these tests only simulate thermal loads without any influence of particle exposure. The influence of high flux hydrogen-plasma exposure on the thermal shock behaviour of tungsten can be estimated based on the results obtained from successive loading experiments. They give a good overview of the expected damages on tungsten as a PFM. These damages on the surface of the materials which are induced by high power

  11. Thermal shock behaviour of different tungsten grades under varying conditions

    International Nuclear Information System (INIS)

    Wirtz, Oliver Marius

    2012-01-01

    . Furthermore the grain structure and the recrystallisation of the material have a significant influence on the thermal shock damage, especially the cracking pattern and surface roughening. Beside the thermal shock damage mapping tungsten was also successively exposed to steady state high flux hydrogen-plasma and to cyclic thermal shock events simulated with an electron beam. The induced damages were investigated to determine if the exposure to hydrogen-plasma has an influence on the thermal shock response of tungsten. Special attention was paid to the thermal shock crack parameters such as distance, width and depth. The investigations showed that there is a significant influence on the damage behaviour of tungsten, especially if the tungsten targets are pre-loaded with hydrogen plasma. Beside the sequence of the exposure also the surface temperature during the plasma loading shows a clear influence on the thermal shock behaviour. One of the most obvious changes is that due to the pre-exposure with hydrogen the thermal shock cracks are not limited to the electron beam loaded area anymore. They propagate through the only plasma loaded surface and even penetrate into the unexposed area at the edges of the tungsten targets. Additionally, all crack parameters decrease if the targets are pre-loaded with hydrogen plasma. The combination of these results shows that the thermal shock response of tungsten as a PFM is very complex and depends on a wide range of parameters. It can be very well characterised by electron beam tests, but it has to be taken into account that these tests only simulate thermal loads without any influence of particle exposure. The influence of high flux hydrogen-plasma exposure on the thermal shock behaviour of tungsten can be estimated based on the results obtained from successive loading experiments. They give a good overview of the expected damages on tungsten as a PFM. These damages on the surface of the materials which are induced by high power densities

  12. An initial examination of tungsten geochemistry along groundwater flow paths

    Science.gov (United States)

    Dave, H. B.; Johannesson, K. H.

    2008-12-01

    Groundwater samples were collected along groundwater flow paths from the Upper Floridan (Florida), Carrizo Sand (Texas), and the Aquia (Maryland) aquifers and analyzed for tungsten (W) concentrations by high- resolution inductively couple plasma mass spectrometry. At each well head, groundwater samples were also analyzed for pH, specific conductance, temperature, alkalinity, dissolved oxygen (DO), oxidation-reduction potential (Eh), dissolved iron speciation, and dissolved sulfide [S(-II)] concentrations. Sediment samples from the Carrizo Sand and Aquia aquifers were also collected and subjected to sequential extractions to provide additional insights into the solid-phase speciation of W in these aquifers. Tungsten concentrations varied along the groundwater flow paths chiefly in response to changing pH, and to a lesser extent, variations in the redox conditions. For groundwater from the Carrizo Sand aquifer, W ranges between 3.64 and 1297 pmol/kg, exhibiting the lowest values proximal to the recharge zone. Tungsten concentrations progressively increase along the flow path, reaching 1297 pmol/kg in the sulfidic groundwaters located approximately 60 km downgradient from the recharge area. Tungsten is strongly correlated with S(-II) concentrations and pH in Carrizo groundwaters (r = 0.95 and 0.78, respectively). Within the Aquia aquifer, however, W generally occurs at lower concentrations than the Carrizo (14 to 184 pmol/kg; mean = 80 pmol/kg), and shows no systematic trends along the flow path (e.g., r = 0.08 and 0.4 for W vs. S(-II) and pH, respectively). Our data are consistent with the increase in W concentrations in Carrizo groundwaters reflecting, in part, pH-related desorption, which has been shown to be substantial for pH greater than 8. Moreover, because of the broad similarities in the chemistry of W and Mo, which forms thiomolybdates in sulfidic waters, we suggest that thiotungstate complexes may form in sulfidic groundwaters, thus partially explaining the

  13. Combustion of powdery tungsten in pyrotechnic mixtures

    International Nuclear Information System (INIS)

    Ivanov, G.V.; Reshetov, A.A.; Viktorenko, A.M.; Surkov, V.G.; Karmadonov, L.N.

    1982-01-01

    The basic regularities of tungsten burning (powder 2-5 μm) with oxidizers most typical for pyrotechnics: nitrates, lead and barium peroxides (powder, 2-8 μm) and potassium perchlorate (powder, 2-8 μm) are studied. Dependences of burning rate as a function of pressure and ratio of components are established. It is supposed that tungsten burning in mixtures with the mentioned nitrates is a complex and multistage process the rate of which is determined by tungsten dissolution in nitrate melts. Analysis of burning products using available methods is complex

  14. Characterization of porous tungsten by microhardness

    International Nuclear Information System (INIS)

    Selcuk, C.; Wood, J.V.; Morley, N.; Bentham, R.

    2001-01-01

    One of the applications of tungsten is as high current density dispenser cathode in the form of porous tungsten. It is used as a cathode after being impregnated with an electron emissive material so pore distribution in the part is the most important parameter for its function as a uniform and controlled porosity will lead to a better performance. In this study, application of microhardness as a characterization method for uniformity of the pore distribution and homogeneity of the structure is introduced. Optical microscopy and SEM is used to relate the results and porous tungsten structure for a better understanding of the method applied. (author)

  15. Combustion of Solids in Microgravity: Results from the BASS-II Experiment

    Science.gov (United States)

    Ferkul, Paul V.; Bhattacharjee, Subrata; Fernandez-Pello, Carlos; Miller, Fletcher; Olson, Sandra L.; Takahashi, Fumiaki; T’ien, James S.

    2014-01-01

    The Burning and Suppression of Solids-II (BASS-II) experiment was performed on the International Space Station. Microgravity combustion tests burned thin and thick flat samples, acrylic slabs, spheres, and cylinders. The samples were mounted inside a small wind tunnel which could impose air flow speeds up to 53 cms. The wind tunnel was installed in the Microgravity Science Glovebox which supplied power, imaging, and a level of containment. The effects of air flow speed, fuel thickness, fuel preheating, and oxygen concentration on flame appearance, growth, spread rate, and extinction were examined in both the opposed and concurrent flow configuration. The flames are quite sensitive to air flow speed in the range 0 to 5 cms. They can be sustained at very low flow speeds of less than 1 cms, when they become dim blue and stable. In this state they are not particularly dangerous from a fire safety perspective, but they can flare up quickly with a sudden increase in air flow speed. Including earlier BASS-I results, well over one hundred tests have been conducted of the various samples in the different geometries, flow speeds, and oxygen concentrations. There are several important implications related to fundamental combustion research as well as spacecraft fire safety. This work was supported by the NASA Space Life and Physical Sciences Research and Applications Division (SLPSRA).

  16. Simulation and modeling of the Gamble II self-pinched ion beam transport experiment

    International Nuclear Information System (INIS)

    Rose, D.V.; Ottinger, P.F.; Hinshelwood, D.D.

    1999-01-01

    Progress in numerical simulations and modeling of the self-pinched ion beam transport experiment at the Naval Research Laboratory (NRL) is reviewed. In the experiment, a 1.2-MeV, 100-kA proton beam enters a 1-m long, transport region filled with a low pressure gas (30--250 mTorr helium, or 1 Torr air). The time-dependent velocity distribution function of the injected ion beam is determined from an orbit code that uses a pinch-reflex ion diode model and the measured voltage and current from this diode on the Gamble II generator at NRL. This distribution function is used as the beam input condition for numerical simulations carried out using the hybrid particle-in-cell code IPROP. Results of the simulations will be described, and detailed comparisons will be made with various measurements, including line-integrated electron-density, proton-fluence, and beam radial-profile measurements. As observed in the experiment, the simulations show evidence of self-pinching for helium pressures between 35 and 80 mTorr. Simulations and measurements in 1 Torr air show ballistic transport. The relevance of these results to ion-driven inertial confinement fusion will be discussed

  17. Procedures and instrumentation for sodium boiling experiments in EBR-II

    International Nuclear Information System (INIS)

    Crowe, R.D.

    1976-01-01

    The development of instrumentation capable of detecting localized coolant boiling in a liquid metal cooled breeder reactor (LMFBR) has a high priority in fast reactor safety. The detection must be rapid enough to allow corrective action to be taken before significant damage occurs to the core. To develop and test a method of boiling detection, it is desirable to produce boiling in a reactor and thereby introduce a condition in the reactor the original design concepts were chosen to preclude. The proposed boiling experiments are designed to safely produce boiling in the subassembly of a fast reactor and provide the information to develop boiling detection instrumentation without core damage or safety compromise. The experiment consists of the operation of two separate subassemblies, first, a gamma heated boiling subassembly which produces non-typical but highly conservative boiling and then a fission heated subassembly which simulates a prototypical boiling event. The two boiling subassemblies are designed to operate in the instrumentation subassembly test facility (INSAT) of Experiment Breeder Reactor II

  18. Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment

    Science.gov (United States)

    Cui, Xiangyi; Abdukerim, Abdusalam; Chen, Wei; Chen, Xun; Chen, Yunhua; Dong, Binbin; Fang, Deqing; Fu, Changbo; Giboni, Karl; Giuliani, Franco; Gu, Linhui; Gu, Yikun; Guo, Xuyuan; Guo, Zhifan; Han, Ke; He, Changda; Huang, Di; He, Shengming; Huang, Xingtao; Huang, Zhou; Ji, Xiangdong; Ju, Yonglin; Li, Shaoli; Li, Yao; Lin, Heng; Liu, Huaxuan; Liu, Jianglai; Ma, Yugang; Mao, Yajun; Ni, Kaixiang; Ning, Jinhua; Ren, Xiangxiang; Shi, Fang; Tan, Andi; Wang, Cheng; Wang, Hongwei; Wang, Meng; Wang, Qiuhong; Wang, Siguang; Wang, Xiuli; Wang, Xuming; Wu, Qinyu; Wu, Shiyong; Xiao, Mengjiao; Xie, Pengwei; Yan, Binbin; Yang, Yong; Yue, Jianfeng; Zhang, Dan; Zhang, Hongguang; Zhang, Tao; Zhang, Tianqi; Zhao, Li; Zhou, Jifang; Zhou, Ning; Zhou, Xiaopeng; PandaX-II Collaboration

    2017-11-01

    We report a new search for weakly interacting massive particles (WIMPs) using the combined low background data sets acquired in 2016 and 2017 from the PandaX-II experiment in China. The latest data set contains a new exposure of 77.1 live days, with the background reduced to a level of 0.8 ×10-3 evt /kg /day , improved by a factor of 2.5 in comparison to the previous run in 2016. No excess events are found above the expected background. With a total exposure of 5.4 ×104 kg day , the most stringent upper limit on the spin-independent WIMP-nucleon cross section is set for a WIMP with mass larger than 100 GeV /c2 , with the lowest 90% C.L. exclusion at 8.6 ×10-47 cm2 at 40 GeV /c2 .

  19. Design, construction and tests of the power crowbar and predischarge circuit of the SPICA II experiment

    International Nuclear Information System (INIS)

    Ingen, A.M. van; Manintveld, P.; Sterk, A.B.

    1983-01-01

    A 28 Farad, 1.8 MJ electrolytic capacitor power-crowbar battery and a flexible predischarge circuit for the SPICA II screw-pinch experiment is described. The battery is capable of delivering the toroidal and poloidal currents of more than 2.5 MA, during at least 1 ms after crowbarring of the high-voltage capacitor banks. To obtain a low short-circuit impedance a very compact construction was chosen, which resulted in seven modules of about 1 m 3 each, Rsub(i) = 100 μΩ, Lsub(i) = 7 nH, connected by plate systems to the main circuit. The predischarge circuit consists of a fast capacitor bank to start the predischarge and a slow circuit with a clamp switch to preheat the discharge. (author)

  20. Experiment on performance of upper head injection system with ROSA-II

    International Nuclear Information System (INIS)

    1976-09-01

    Thermo-hydraulic behavior in the primary cooling system of a pressurized water reactor with an upper head injection system (UHI) in a postulated loss-of-coolant accident (LOCA) has been studied with ROSA-II test facility. Simulated UHI and internal structures of the pressure vessel were installed to the facility for the experiment. Nine maximum-sized double-ended break tests and one medium-sized split break test were performed for the cold-leg break condition. The results are as follows: (1) Fluid mixing in the upper head is not perfect. (2) Cold water injection into the steam or two-phase fluid causes violent depressurization due to the condensation. Flow pattern in the primary cooling system is largely influenced by the above two. (auth.)

  1. Health as Submission and Social Responsibilities: Embodied Experiences of Javanese Women With Type II Diabetes.

    Science.gov (United States)

    Pitaloka, Dyah; Hsieh, Elaine

    2015-08-01

    By examining women's experiences with type II diabetes, we explore how illness can provide resources to construct meanings of everyday life in Javanese culture. We conducted in-depth interviews with 30 female participants in Central Java, Indonesia, and adopted grounded theory for data analysis. We identified four themes that diabetes serves as resources for women in Indonesia to (a) normalize suffering, (b) resist social control, (c) accept fate, and (d) validate faith. We concluded by noting three unique aspects of Javanese women's illness management. First, through the performance of submission, our participants demonstrated spirituality and religiosity as essential elements of health. Second, diabetes empowers individuals in everyday suffering through two divergent processes: embracing submission and resisting control. Finally, diabetes provides opportunities for individuals within a social network to (re)negotiate social responsibilities. In summary, diabetes provides unique resources to empower our participants to obtain voices that they otherwise would not have had. © The Author(s) 2015.

  2. Monitoring complex detectors: the uSOP approach in the Belle II experiment

    International Nuclear Information System (INIS)

    Capua, F. Di; Aloisio, A.; Giordano, R.; Ameli, F.; Anastasio, A.; Izzo, V.; Tortone, G.; Branchini, P.

    2017-01-01

    uSOP is a general purpose single board computer designed for deep embedded applications in control and monitoring of detectors, sensors and complex laboratory equipments. It is based on the AM3358 (1 GHz ARM Cortex A8 processor), equipped with USB and Ethernet interfaces. On-board RAM and solid state storage allows hosting a full LINUX distribution. In this paper we discuss the main aspects of the hardware and software design and the expandable peripheral architecture built around field busses. We report on several applications of uSOP system in the Belle II experiment, presently under construction at KEK (Tsukuba, Japan). In particular we will report the deployment of uSOP in the monitoring system framework of the endcap electromagnetic calorimeter.

  3. Monitoring complex detectors: the uSOP approach in the Belle II experiment

    Science.gov (United States)

    Di Capua, F.; Aloisio, A.; Ameli, F.; Anastasio, A.; Branchini, P.; Giordano, R.; Izzo, V.; Tortone, G.

    2017-08-01

    uSOP is a general purpose single board computer designed for deep embedded applications in control and monitoring of detectors, sensors and complex laboratory equipments. It is based on the AM3358 (1 GHz ARM Cortex A8 processor), equipped with USB and Ethernet interfaces. On-board RAM and solid state storage allows hosting a full LINUX distribution. In this paper we discuss the main aspects of the hardware and software design and the expandable peripheral architecture built around field busses. We report on several applications of uSOP system in the Belle II experiment, presently under construction at KEK (Tsukuba, Japan). In particular we will report the deployment of uSOP in the monitoring system framework of the endcap electromagnetic calorimeter.

  4. Experimental mechanistic investigation of the nanostructuring of tungsten with low energy helium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fiflis, P., E-mail: fiflis1@illinois.edu; Connolly, N.; Ruzic, D.N.

    2016-12-15

    Helium ion bombardment of tungsten at temperatures between approximately one third and one half of its melting point has shown growth of nanostructures colloquially referred to as “fuzz”. The nanostructures take the form of thin tendrils of diameter about 30 nm and grow out of the bulk material. Tungsten will and does compose one of the key materials for plasma facing components (PFCs) in fusion reactors. The formation of nanostructured fuzz layers on PFCs would be detrimental to the performance of the reactor, and must therefore be avoided. Previous experiments have shown evidence that tungsten fuzz is initially grown by loop punching of helium bubbles created in the bulk. However, once the tendrils grow to sufficient length, the tendrils should intercept the entire helium flux, halting the production of fuzz. Fuzz continues to grow though. To increase the understanding of the mechanisms of tungsten fuzz formation, and thereby aid the avoidance of its production, a series of tests were performed to examine the validity of several theories regarding later stage tungsten fuzz growth. Tests showed that the fuzz formation was dependent solely on the bombardment of helium ions, and not on electric fields, or adatom diffusion. Experiments employing a tungsten coated molybdenum sample indicate the presence of a strong mixing layer and strongly suggest that tungsten fuzz growth continues to occur from the bottom up even as the tendrils grow in size. Tests also show a similarity between different metals exposed to helium ion fluxes where the ratio of bubble diameter to tendril diameter is constant.

  5. Experimental mechanistic investigation of the nanostructuring of tungsten with low energy helium plasmas

    International Nuclear Information System (INIS)

    Fiflis, P.; Connolly, N.; Ruzic, D.N.

    2016-01-01

    Helium ion bombardment of tungsten at temperatures between approximately one third and one half of its melting point has shown growth of nanostructures colloquially referred to as “fuzz”. The nanostructures take the form of thin tendrils of diameter about 30 nm and grow out of the bulk material. Tungsten will and does compose one of the key materials for plasma facing components (PFCs) in fusion reactors. The formation of nanostructured fuzz layers on PFCs would be detrimental to the performance of the reactor, and must therefore be avoided. Previous experiments have shown evidence that tungsten fuzz is initially grown by loop punching of helium bubbles created in the bulk. However, once the tendrils grow to sufficient length, the tendrils should intercept the entire helium flux, halting the production of fuzz. Fuzz continues to grow though. To increase the understanding of the mechanisms of tungsten fuzz formation, and thereby aid the avoidance of its production, a series of tests were performed to examine the validity of several theories regarding later stage tungsten fuzz growth. Tests showed that the fuzz formation was dependent solely on the bombardment of helium ions, and not on electric fields, or adatom diffusion. Experiments employing a tungsten coated molybdenum sample indicate the presence of a strong mixing layer and strongly suggest that tungsten fuzz growth continues to occur from the bottom up even as the tendrils grow in size. Tests also show a similarity between different metals exposed to helium ion fluxes where the ratio of bubble diameter to tendril diameter is constant.

  6. The electrodeposition of niobium on tungsten

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1977-03-01

    The electrodeposition of niobium on a tungsten substrate has been demonstrated by electrolysis of an alkali metal fluoride melt. The deposit produced was non-porous, coherent and formed a good bond to the substrate. (author)

  7. Modeling of hydrogen desorption from tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Guterl, J., E-mail: jguterl@ucsd.edu [University of California, San Diego, La Jolla, CA 92093 (United States); Smirnov, R.D. [University of California, San Diego, La Jolla, CA 92093 (United States); Krasheninnikov, S.I. [University of California, San Diego, La Jolla, CA 92093 (United States); Nuclear Research National University MEPhI, Moscow 115409 (Russian Federation); Uberuaga, B.; Voter, A.F.; Perez, D. [Los Alamos National Laboratory, Los Alamos, NM 8754 (United States)

    2015-08-15

    Hydrogen retention in metallic plasma-facing components is among key-issues for future fusion devices. For tungsten, which has been chosen as divertor material in ITER, hydrogen desorption parameters experimentally measured for fusion-related conditions show large discrepancies. In this paper, we therefore investigate hydrogen recombination and desorption on tungsten surfaces using molecular dynamics simulations and accelerated molecular dynamics simulations to analyze adsorption states, diffusion, hydrogen recombination into molecules, and clustering of hydrogen on tungsten surfaces. The quality of tungsten hydrogen interatomic potential is discussed in the light of MD simulations results, showing that three body interactions in current interatomic potential do not allow to reproduce hydrogen molecular recombination and desorption. Effects of surface hydrogen clustering on hydrogen desorption are analyzed by introducing a kinetic model describing the competition between surface diffusion, clustering and recombination. Different desorption regimes are identified and reproduce some aspects of desorption regimes experimentally observed.

  8. SINTERED REFRACTORY TUNGSTEN ALLOYS. Gesinterte hochschmelzende wolframlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Kieffer, R.; Sedlatschek, K.; Braun, H.

    1971-12-15

    Dependence of the melting point of the refractory metals on their positions in the periodic system - alloys of tungsten with other refractory metals - sintering of the alloys - processing of the alloys - technological properties.

  9. A solid tungsten divertor for ASDEX Upgrade

    International Nuclear Information System (INIS)

    Herrmann, A; Greuner, H; Jaksic, N; Böswirth, B; Maier, H; Neu, R; Vorbrugg, S

    2011-01-01

    The conceptual design of a solid tungsten divertor for ASDEX Upgrade (AUG) is presented. The Div-III design is compatible with the existing divertor structure. It re-establishes the energy and heat receiving capability of a graphite divertor and overcomes the limitations of tungsten coatings. In addition, a solid tungsten divertor allows us to investigate erosion and bulk deuterium retention as well as test castellation and target tilting. The design criteria as well as calculations of forces due to halo and eddy currents are presented. The thermal properties of the proposed sandwich structure are calculated with finite element method models. After extensive testing of a target tile in the high heat flux test facility GLADIS, two solid tungsten tiles were installed in AUG for in-situ testing.

  10. Tungsten: A Preliminary Environmental Risk Assessment

    Science.gov (United States)

    2011-05-01

    Tungsten Effects on Soil Microbial Communities BUILDING STRONG® Actinobacteria Bacteroidetes Firmicutes alpha-Proteobacteria beta-Proteobacteria gamma...Persistence of Actinobacteria & gamma- Proteobacteria • Actinobacteria – includes the actinomycetes  γ-Proteobacteria – includes a variety of microbes

  11. Tungsten metallizing alumina--yttria ceramics

    International Nuclear Information System (INIS)

    Cowan, R.E.; Stoddard, S.D.

    1977-03-01

    The ease with which high-alumina bodies may be metallized with tungsten is improved by additions of yttria to the alumina. Mechanisms of this bonding process were studied by use of optical and electron microscopy, electron microprobe, and tensile tests. Variables studied included yttria content of the body and the firing temperature during metallizing. The study showed that a reaction between the tungsten and the yttrogarnet grain boundary phase markedly improved adherence

  12. Strain aging in tungsten heavy alloys

    International Nuclear Information System (INIS)

    Dowding, R.J.; Tauer, K.J.

    1991-01-01

    This paper reports on tungsten heavy alloys which are two-phase mixtures of body center cubic (BCC) tungsten surrounded by a face center cubic (FCC) matrix. The matrix is most often composed of nickel and iron in a ratio of 70:30 but, occasionally, the matrix may also contain cobalt or copper. Nickel, however, is always the primary matrix component. The tungsten heavy alloy is fabricated through powder metallurgy techniques. Elemental powders are blended, pressed to shape, and sintered. Depending upon the tungsten content, the sintering temperatures are usually in the range of 1450 degrees C to 1525 degrees C. These temperatures are high enough that, as a result, the matrix is at the liquid phase and the process is known as liquid phase sintering. At the liquid phase temperature, the matrix becomes saturated with tungsten, but this does not change the FCC character of the matrix. The sintering is usually done in a hydrogen atmosphere furnace in order to reduce the oxides on the tungsten powder surfaces and create clean, active surfaces which will enhance the adherence between the tungsten and the matrix. The hydrogen atmosphere also creates the presence of excess dissolved hydrogen in the alloy. It has been shown that the hydrogen degrades the toughness and ductility of the heavy alloy. A post-sintering vacuum heat treatment is generally required to insure that there is no residual hydrogen present. The as-sintered tensile strength of a 90% tungsten, 7% nickel, 3% iron alloy (90W) is in the range of 800 to 940 MPa and can be increased significantly by cold working, usually rolling or swaging. Swaging to reductions in area of 20% can result in tensile strengths of 1250 MPa or more. As the strength increases, the elongation, which may have been 30% or more, decreases to less than 5%

  13. Problems of tungsten crack resistance optimization

    International Nuclear Information System (INIS)

    Babak, A.V.; Uskov, E.I.

    1986-01-01

    Technically pure and precipitation-hardening tungsten is studied for its crack resistance in the initial and hardened states at the temperatures of 20...2000 deg C. Results of the study are presented. It is shown that hardening of tungsten base alloys in oil from the temperature corresponding to the upper boundary of the temperature region of ductile-brittle transition increases a crack propagation resistance of the studied materias at elevated and high temperatures

  14. Deuterium inventory in tungsten after plasma exposure. A microstructural survey

    International Nuclear Information System (INIS)

    Manhard, Armin

    2012-09-01

    Tungsten is a promising material for armouring the plasma-facing wall of future nuclear fusion experiments and power plants. It has a very high melting point, good thermal conductivity and is highly resistant against physical sputtering by energetic particles from the plasma. It also has a very low solubility for hydrogen isotopes. This is important both for safety and also for economic reasons, in particular with regard to the radioactive fusion fuel tritium. Due to this low solubility, the retention of hydrogen isotopes in tungsten materials after exposure to a plasma is dominated by the trapping of hydrogen isotopes at tungsten lattice defects. Therefore, a strong dependence of the hydrogen isotope retention on the microstructure of the tungsten is to be expected. This work describes a survey study of tungsten with different microstructures exposed to deuterium plasmas under a wide range of different plasma exposure conditions. The isotope deuterium was used because its natural abundance is much smaller than that of hydrogen (i.e., 1 H). This allows detecting even very small amounts retained in the tungsten practically without background signal. Furthermore, the use of deuterium allows utilising the nuclear reaction 2 D( 3 He,p) 4 He for depth-resolved quantification of the deuterium inventory up to depths of several microns. In order to standardise the specimens as far as possible, they were all cut from the same initial material from a single manufacturing batch. After a chemo-mechanical polishing procedure, which produces a well-defined surface, the specimens were annealed at either of four different temperatures in order to modify the grain structure and the dislocation density. These were then characterised by scanning electron microscopy and scanning transmission electron microscopy. The specimens were subsequently exposed in a fully characterised deuterium plasma source at different specimen temperatures, ion energies and deuterium fluences. In addition

  15. Tungsten foil laminate for structural divertor applications – Analyses and characterisation of tungsten foil

    International Nuclear Information System (INIS)

    Reiser, Jens; Rieth, Michael; Dafferner, Bernhard; Hoffmann, Andreas; Yi Xiaoou; Armstrong, David E.J.

    2012-01-01

    It has been attempted for several years to synthesise a tungsten material with a low brittle-to-ductile transition temperature and a high fracture toughness that can be used for structural parts. It was shown in our previous work that tungsten foil is ductile at room temperature and that this ductility can be transformed to bulk by synthesising a tungsten laminate. In this work we want to focus on tungsten foil and assess the microstructure as well as the mechanical properties of the foil. The assessment of the microstructure of 0.1 mm tungsten foil will be performed using electron microscopy. It will be shown that the grains of the tungsten foil have a dimension of 0.5 μm × 3 μm × 15 μm and a clear texture in (1 0 0) 〈0 1 1〉. This texture becomes even more pronounced by annealing. Three-point-bending tests with tungsten foil, as-received, will define the barriers: ductile at room temperature and brittle in liquid nitrogen (−196 °C). This shows that the ductility is a thermally activated process. Recrystallised tungsten foil (annealed for 1 h/2700 °C) shows ductile material behaviour at 200 °C. The paper closes with a discussion on the reasons of the ductility of 0.1 mm tungsten foil. These might be the ultra fine grained (UFG) microstructure or, in other words, a nano microstructure (see tungsten foil as-received), the high amount of mobile edge dislocations, and/or the foil effect, which means that dislocations can move to the surface and are annihilated (see tungsten foil recrystallised).

  16. Mitigation of {sup 42}Ar/{sup 42}K background for the GERDA Phase II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lubashevskiy, A.; Klimenko, A.; Smolnikov, A. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Joint Institute for Nuclear Research, Dubna (Russian Federation); Agostini, M. [Gran Sasso Science Institute, L' Aquila (Italy); Budjas, D.; Lazzaro, A.; Schoenert, S. [Technische Universitaet Muenchen, Physik Department E15, Munich (Germany); Gangapshev, A. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research, Russian Academy of Sciences, Moscow (Russian Federation); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Technische Universitaet Muenchen, Physik Department E15, Munich (Germany); Russian Research Center Kurchatov Institute, Moscow (Russian Federation); Heisel, M. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Lehnert, B. [Institut fuer Kern- und Teilchenphysik Technische Universitaet Dresden, Dresden (Germany); Carleton University, Physics Department, Ottawa (Canada); Pelczar, K. [Jagellonian University, Institute of Physics, Cracow (Poland); INFN Laboratori Nazionali del Gran Sasso, LNGS, Assergi (Italy); Walter, M. [Physik Institut der Universitaet Zuerich, Zurich (Switzerland); Zuzel, G. [Jagellonian University, Institute of Physics, Cracow (Poland)

    2018-01-15

    Background coming from the {sup 42}Ar decay chain is considered to be one of the most relevant for the Gerda experiment, which searches for the neutrinoless double beta decay of {sup 76}Ge. The sensitivity strongly relies on the absence of background around the Q-value of the decay. Background coming from {sup 42}K, a progeny of {sup 42}Ar, can contribute to that background via electrons from the continuous spectrum with an endpoint at 3.5 MeV. Research and development on the suppression methods targeting this source of background were performed at the low-background test facility LArGe. It was demonstrated that by reducing {sup 42}K ion collection on the surfaces of the broad energy germanium detectors in combination with pulse shape discrimination techniques and an argon scintillation veto, it is possible to suppress {sup 42}K background by three orders of magnitude. This is sufficient for Phase II of the Gerda experiment. (orig.)

  17. Simulation of TRIGA Mark II Benchmark Experiment using WIMSD4 and CITATION codes

    International Nuclear Information System (INIS)

    Dalle, Hugo Moura; Pereira, Claubia

    2000-01-01

    This paper presents a simulation of the TRIGA Mark II Benchmark Experiment, Part I: Steady-State Operation and is part of the calculation methodology validation developed to the neutronic calculation of the CDTN's TRIGA IPR - R1 reactor. A version of the WIMSD4, obtained in the Centro de Tecnologia Nuclear, in Cuba, was used in the cells calculation. In the core calculations was adopted the diffusion code CITATION. Was adopted a 3D representation of the core and the calculations were carried out at two energy groups. Many of the experiments were simulated, including, K eff , control rods reactivity worth, fuel elements reactivity worth distribution and the fuel temperature reactivity coefficient. The comparison of the obtained results, with the experimental results, shows differences in the range of the accuracy of the measurements, to the control rods worth and fuel temperature reactivity coefficient, or on an acceptable range, following the literature, to the K eff and fuel elements reactivity worth distribution and the fuel temperature reactivity coefficient. The comparison of the obtained results, with the experimental. results, shows differences in the range of the accuracy of the measurements, to the control rods worth and fuel temperature reactivity coefficient, or in an acceptable range, following the literature, to the K eff and fuel elements reactivity worth distribution. (author)

  18. FIX-II/2032, BWR Pump Trip Experiment 2032, Simulation Mass Flow and Power Transients

    International Nuclear Information System (INIS)

    1988-01-01

    1 - Description of test facility: In the FIX-II pump trip experiments, mass flow and power transients were simulated subsequent to a total loss of power to the recirculation pumps in an internal pump boiling water reactor. The aim was to determine the initial power limit to give dryout in the fuel bundle for the specified transient. In addition, the peak cladding temperature was measured and the rewetting was studied. 2 - Description of test: Pump trip experiment 2032 was a part of test group 2, i.e. the mass flow transient was to simulate the pump coast down with a pump inertia of 11.3 kg.m -2 . The initial power in the 36-rod bundle was 4.44 MW which gave dryout after 1.4 s from the start of the flow transient. A maximum rod cladding temperature of 457 degrees C was measured. Rewetting was obtained after 7.6 s. 3 - Experimental limitations or shortcomings: No ECCS injection systems

  19. Search for solar axions with the X-ray telescope of the CAST experiment (phase II)

    International Nuclear Information System (INIS)

    Nordt, Annika

    2009-01-01

    The CAST (CERN Solar Axion Telescope) experiment is searching for solar axions by their conversion into photons inside a transverse magnetic field. So far, no solar axionsignal has been detected, but a new upper limit could be given (CAST Phase I). Since 2005, CAST entered in its second phase where it operates with a buffer gas ( 4 He) in the conversion region to extend the sensitivity of the experiment to higher axionmasses. For the first time it is possible to enter the theoretically favored axion massrange and to give an upper limit for this solar axion mass-range (>0.02 eV). This thesis is about the analysis of the X-ray telescope data Phase II with 4 He inside the magnet. The result for the coupling constant of axions to photons is: g αγγ -10 GeV -1 (95%C.L.) for m a =0.02-0.4 eV. (2) This result is better than any result that has been given before in this mass range for solar axions. (orig.)

  20. Evaluation of water transport behavior in sodium fire experiment-II

    Energy Technology Data Exchange (ETDEWEB)

    Nakagiri, Toshio [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2000-02-01

    Evaluation of water transport behavior in Sodium Fire-II (Run-D4) was performed. Results of other experiments performed in Oarai-Engineering Center were considered in the evaluation, and the results of the evaluation were compared with the calculated results of ASSCOPS code. The main conclusions are described below. (1) It was estimated that aerosol hydrates were not formed in the test cell in the experiment, because of high gas temperatures (200degC - 300degC), but water vapor absorption by the formation of aerosol hydrates and water vapor condensation were occurred in humility measure line, because of low gas temperature (20degC - 40degC). Therefore, it was considered appropriate that measured water vapor concentration in the humidity measure line was different from the real concentration in the test cell. (2) Water vapor concentration in the test cell was assumed to be about 35,000 ppm during sodium leak, and reached to about 70,000 ppm because of water release from heated concrete (over 100degC) walls after 190 min from sodium leak started. The assumed value of about 35,000 ppm during sodium leak almost agree with assumed value from the quantity of aerosol in the humidity measure line, but no support for the value of about 70,000 ppm after 190 min could be found. Therefore, water release rate from heated concrete walls can change with their temperature history. (author)

  1. Substitution of thoriated tungsten electrodes in Switzerland

    International Nuclear Information System (INIS)

    Kunz, H.; Piller, G.

    2006-01-01

    Thoriated tungsten electrodes are frequently used for inert gas welding (TIG/WIG). The use of these electrodes can lead to doses which are well above the limit for the general population (1mSv/year). This has been shown by different investigations, for example from the ''Berufsgenossenschaft''. With these findings in mind, the regulatory authorities (Swiss Federal Office of Public Health (SFOPH) and Swiss National Accident Insurance Association (Suva)) started in 1999 to examine the justification of thoriated tungsten electrodes and a possible substitution with products containing no radioactive material. Up to this time, the use of thoriated tungsten electrodes could be justified since no thorium-free products leading to comparable results were available on the market. This was also the reason why the SFOPH approved several types of these electrodes. Discussions with formation centers for welding and inquiries made at welding shops, trading companies and producers showed that in the mean-time thorium-free products with comparable welding specifications and results became available on the market. Since the 1 January 2004, thoriated tungsten electrodes can only be used if the user has obtained the corresponding license from the SFOPH. The use of thoriated tungsten electrodes is thus not completely forbidden, but very strict conditions have to be fulfilled. Up to now and due to the involvement of the relevant partners, the substitution process has not met any problem. Neither trading companies nor users made any opposition and no request for obtaining a license for thoriated tungsten electrodes was made. (orig.)

  2. Site Characterization of the Source Physics Experiment Phase II Location Using Seismic Reflection Data

    Science.gov (United States)

    Sexton, E. A.; Snelson, C. M.; Chipman, V.; Emer, D. F.; White, R. L.; Emmitt, R.; Wright, A. A.; Drellack, S.; Huckins-Gang, H.; Mercadante, J.; Floyd, M.; McGowin, C.; Cothrun, C.; Bonal, N.

    2013-12-01

    An objective of the Source Physics Experiment (SPE) is to identify low-yield nuclear explosions from a regional distance. Low-yield nuclear explosions can often be difficult to discriminate among the clutter of natural and man-made explosive events (e.g., earthquakes and mine blasts). The SPE is broken into three phases. Phase I has provided the first of the physics-based data to test the empirical models that have been used to discriminate nuclear events. The Phase I series of tests were placed within a highly fractured granite body. The evolution of the project has led to development of Phase II, to be placed within the opposite end member of geology, an alluvium environment, thereby increasing the database of waveforms to build upon in the discrimination models. Both the granite and alluvium sites have hosted nearby nuclear tests, which provide comparisons for the chemical test data. Phase III of the SPE is yet to be determined. For Phase II of the experiment, characterization of the location is required to develop the geologic/geophysical models for the execution of the experiment. Criteria for the location are alluvium thickness of approximately 170 m and a water table below 170 m; minimal fracturing would be ideal. A P-wave mini-vibroseis survey was conducted at a potential site in alluvium to map out the subsurface geology. The seismic reflection profile consisted of 168 geophone stations, spaced 5 m apart. The mini-vibe was a 7,000-lb peak-force source, starting 57.5 m off the north end of the profile and ending 57.5 m past the southern-most geophone. The length of the profile was 835 m. The source points were placed every 5 m, equally spaced between geophones to reduce clipping. The vibroseis sweep was from 20 Hz down to 180 Hz over 8 seconds, and four sweeps were stacked at each shot location. The shot gathers show high signal-to-noise ratios with clear first arrivals across the entire spread and the suggestion of some shallow reflectors. The data were

  3. Tungsten Targets the Tumor Microenvironment to Enhance Breast Cancer Metastasis

    Science.gov (United States)

    Bolt, Alicia M.; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M.; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K.

    2015-01-01

    The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients’ years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans. PMID:25324207

  4. Investigation of tungsten mass transfer in rarefied air oxygen and water vapors

    International Nuclear Information System (INIS)

    Evsikov, A.S.; Makeev, A.A.; Lyubimova, L.L.; Sinyavskij, V.V.

    1989-01-01

    The results of experimental investigations of oxygen and water vapor effect on the rate of tungsten evaporation are presented. Methods for carrying out an experiment are presented. The experiments are carried out at the 2600 degC tungsten wire temperature and the pressure of oxygen and water vapors (2x10 -3 -5) Pa. Registration of final products of mass transfer is carried out by the DRON-2.0 diffractometer using a detachable substrate. Empirical dependence taking into account oxygen and water vapor effect on the rate of tungsten evaporation is suggested. It is marked that air oxygen and water vapor increase evaporation rate uniformly the difference is observed only in final products of interaction

  5. Tungsten nano-tendril growth in the Alcator C-Mod divertor

    International Nuclear Information System (INIS)

    Wright, G.M.; Brunner, D.; Labombard, B.; Lipschultz, B.; Terry, J.L.; Whyte, D.G.; Baldwin, M.J.; Doerner, R.P.

    2012-01-01

    Growth of tungsten nano-tendrils (‘fuzz’) has been observed for the first time in the divertor region of a high-power density tokamak experiment. After 14 consecutive helium L-mode discharges in Alcator C-Mod, the tip of a tungsten Langmuir probe at the outer strike point was fully covered with a layer of nano-tendrils. The thickness of the individual nano-tendrils (50–100 nm) and the depth of the layer (600 ± 150 nm) are consistent with observations from experiments on linear plasma devices. The observation of tungsten fuzz in a tokamak may have important implications for material erosion, dust formation, divertor lifetime and tokamak operations in next-step devices. (letter)

  6. Deuterium accumulation in tungsten at high fluences

    Energy Technology Data Exchange (ETDEWEB)

    Zibrov, Mikhail [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); FOM Institute DIFFER, De Zaale 20, 5612 AJ Eindhoven (Netherlands); Balden, Martin; Matej, Matej [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Bystrov, Kirill; Morgan, Thomas [FOM Institute DIFFER, De Zaale 20, 5612 AJ Eindhoven (Netherlands)

    2016-07-01

    The data on the deuterium (D) retention in tungsten (W) at high fluences (≥ 10{sup 27} D/m{sup 2}) are scarce and the existing results are contradictory. Since retention in W is known to be flux-dependent, the laboratory experiments addressing this issue should be carried out in reactor-relevant conditions (high fluxes of low-energy ions). In this work the samples made of polycrystalline W were exposed to D plasmas in the linear plasma generator Pilot-PSI at temperatures ranging from 360 K to 1140 K to fluences in the range of 0.3-8.7 x 10{sup 27} D/m{sup 2}. It was observed that at exposure temperatures of 360 K and 580 K the D retention was only slightly dependent on the ion fluence. In addition, the presence of blister-like structures was found after the exposures, and their density and size distributions were also only weakly dependent on the fluence. In the case of exposure at 1140 K no surface modifications of the samples after plasma exposure were detected and the concentrations of retained D were very small. At all temperatures used the total amounts of retained D were smaller compared to those obtained by other researchers at lower ion flux densities, which indicates that the incident ion flux may play an important role in the total D retention in W.

  7. The DAMPE silicon–tungsten tracker

    Energy Technology Data Exchange (ETDEWEB)

    Azzarello, P., E-mail: philipp.azzarello@unige.ch [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Ambrosi, G. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Asfandiyarov, R. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Bernardini, P. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sezione di Lecce, Lecce (Italy); Bertucci, B.; Bolognini, A. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Cadoux, F. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Caprai, M. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); De Mitri, I. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sezione di Lecce, Lecce (Italy); Domenjoz, M. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Dong, Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Duranti, M. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Fan, R. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); and others

    2016-09-21

    The DArk Matter Particle Explorer (DAMPE) is a spaceborne astroparticle physics experiment, launched on 17 December 2015. DAMPE will identify possible dark matter signatures by detecting electrons and photons in the 5 GeV–10 TeV energy range. It will also measure the flux of nuclei up to 100 TeV, for the study of the high energy cosmic ray origin and propagation mechanisms. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon–tungsten tracker–converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is composed of six tracking planes of 2 orthogonal layers of single-sided micro-strip detectors, for a total detector surface of ca. 7 m{sup 2}. The STK has been extensively tested for space qualification. Also, numerous beam tests at CERN have been done to study particle detection at silicon module level, and at full detector level. After description of the DAMPE payload and its scientific mission, we will describe the STK characteristics and assembly. We will then focus on some results of single ladder performance tests done with particle beams at CERN.

  8. Comprehensive diagnostic set for intense lithium ion hohlraum experiments on PBFA II

    International Nuclear Information System (INIS)

    Leeper, R.J.; Bailey, J.E.; Carlson, A.L.

    1994-01-01

    A review of the comprehensive diagnostic package developed at Sandia National Laboratories for intense lithium ion hohlraum target experiments on PBFA II will be presented. This package contains an extensive suite of x-ray spectral and imaging diagnostics that enable measurements of target radiation smoothing, hydro-motion, and temperature. The x-ray diagnostics include time-integrated and time-resolved pinhole cameras, energy-resolved 1-D streaked imaging diagnostics that enable measurements of target radiation smoothing, hydro-motion, and temperature. The x-ray diagnostics include time-integrated and time-resolved pinhole cameras, energy-resolved 1-D streaked imaging diagnostics, time-integrated and time-resolved grazing incidence spectrographs, a transmission grating spectrography, an elliptical crystal spectrograph, a bolometer array, an eleven element x-ray diode (XRD) array, and an eleven element PIN diode detector array. A hohlraum temperature measurement technique under development is a shock breakout diagnostic that measures the radiation pressure at the hohlraum wall. The incident Li beam symmetry and an estimate of incident Li beam power density are measured from ion beam-induced characteristic x-ray line and neutron emissions. An attempt to measure the Li beam intensity directly on target used Rutherford scattered ions into an ion movie camera and a magnetic spectrograph. The philosophy used in designing all the diagnostics in the set has emphasized redundant and independent measurements of fundamental physical quantities relevant to the performance of the target. Details of each diagnostic, its integration, data reduction procedures, and recent PBFA-II data will be discussed

  9. Electronic Transitions of Tungsten Monosulfide

    Science.gov (United States)

    Tsang, L. F.; Chan, Man-Chor; Zou, Wenli; Cheung, Allan S. C.

    2017-06-01

    Electronic transition spectrum of the tungsten monosulfide (WS) molecule in the near infrared region between 725 nm and 885 nm has been recorded using laser ablation/reaction free-jet expansion and laser induced fluorescence spectroscopy. The WS molecule was produced by reacting laser - ablated tungsten atoms with 1% CS_{2} seeded in argon. Fifteen vibrational bands with resolved rotational structure have been recorded and analyzed, which were organized into seven electronic transition systems. The ground state has been identified to be the X^{3}Σ^{-}(0^{+}) state, and the determined vibrational frequency, ΔG_{1/2} and bond length, r_{0}, are respectively 556.7 cm^{-1} and 2.0676 Å. In addition, vibrational bands belong to another transition system involving lower state with Ω = 1 component have also been analyzed. Least-squares fit of the measured line positions yielded molecular constants for the electronic states involved. The low-lying Λ-S states and Ω sub-states of WS have been calculated using state-averaged complete active space self-consistent field (SA-CASSCF) and followed by MRCISD+Q (internally contracted multi-reference configuration interaction with singles and doubles plus Davidson's cluster correction). The active space consists of 10 electrons in 9 orbitals corresponding to the W 5d6s and S 3p shells. The lower molecular orbitals from W 5s5p and S 3s are inactive but are also correlated, and relativistic effective core potential (RECPs) are adopted to replace the core orbitals with 60 (W) and 10 (S) core electrons, respectively. Spin-orbit coupling (SOC) is calculated via the state-interaction (SI) approach with RECP spin-orbit operators using SA-CASSCF wavefunctions, where the diagonal elements in the SOC matrix are replaced by the corresponding MRCISD+Q energies calculated above. Spectroscopic constants and potential energy curves of the ground and many low-lying Λ-S states and Ω sub-states of the WS molecule are obtained. The calculated

  10. Surface morphology changes to tungsten under exposure to He ions from an electron cyclotron resonance plasma source

    Science.gov (United States)

    Donovan, David; Maan, Anurag; Duran, Jonah; Buchenauer, Dean; Whaley, Josh

    2015-11-01

    Exposure of tungsten to low energy (ALMT ITER grade tungsten samples. A similar He plasma exposure stage has now been developed at the University of Tennessee-Knoxville with an improved compact ECR plasma source. Status of the new UTK exposure stage will be discussed as well as planned experiments and new material characterization techniques (EBSD, GIXRD). Work supported by US DOE Contract DE-AC04-94AL85000 and the PSI Science Center.

  11. Observation of Electroweak Single Top-Quark Production with the CDF II Experiment

    International Nuclear Information System (INIS)

    Lueck, Jan

    2009-01-01

    The standard model of elementary particle physics (SM) predicts, besides the top-quark pair production via the strong interaction, also the electroweak production of single top-quarks (19). Up to now, the Fermilab Tevatron proton-antiproton-collider is the only place to produce and study top quarks emerging from hadron-hadron-collisions. Top quarks were directly observed in 1995 during the Tevatron Run I at a center-of-mass energy of √s = 1.8 TeV simultaneously by the CDF and D0 Collaborations via the strong production of top-quark pairs. Run II of the Tevatron data taking period started 2001 at √s = 1.96 TeV after a five year upgrade of the Tevatron accelerator complex and of both experiments. One main component of its physics program is the determination of the properties of the top quark including its electroweak production. Even though Run II is still ongoing, the study of the top quark is already a successful endeavor, confirmed by dozens of publications from both Tevatron experiments. A comprehensive review of top-quark physics can be found in reference. The reasons for searching for single top-quark production are compelling. As the electroweak top-quark production proceeds via a Wtb vertex, it provides the unique opportunity of the direct measurement of the CKM matrix element |V tb |, which is expected to be |V tb | ∼ 1 in the SM. Significant deviations from unity could be an indication of a fourth quark generation, a production mode via flavor-changing neutral currents, and other new phenomena, respectively. There are two dominating electroweak top-quark production modes at the Fermilab Tevatron: the t-channel exchange of a virtual W boson striking a b quark and the s-channel production of a timelike W boson via the fusion of two quarks. In proton-antiproton-collisions the third electroweak production mode, the associated Wt production of an on-shell W boson in conjunction with a top quark has a comparatively negligible small predicted cross section

  12. Observation of Electroweak Single Top-Quark Production with the CDF II Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lueck, Jan [Karlsruhe Inst. of Technology (Germany)

    2009-07-24

    The standard model of elementary particle physics (SM) predicts, besides the top-quark pair production via the strong interaction, also the electroweak production of single top-quarks [19]. Up to now, the Fermilab Tevatron proton-antiproton-collider is the only place to produce and study top quarks emerging from hadron-hadron-collisions. Top quarks were directly observed in 1995 during the Tevatron Run I at a center-of-mass energy of √s = 1.8 TeV simultaneously by the CDF and D0 Collaborations via the strong production of top-quark pairs. Run II of the Tevatron data taking period started 2001 at √s = 1.96 TeV after a five year upgrade of the Tevatron accelerator complex and of both experiments. One main component of its physics program is the determination of the properties of the top quark including its electroweak production. Even though Run II is still ongoing, the study of the top quark is already a successful endeavor, confirmed by dozens of publications from both Tevatron experiments. A comprehensive review of top-quark physics can be found in reference. The reasons for searching for single top-quark production are compelling. As the electroweak top-quark production proceeds via a Wtb vertex, it provides the unique opportunity of the direct measurement of the CKM matrix element |Vtb|, which is expected to be |Vtb| ~ 1 in the SM. Significant deviations from unity could be an indication of a fourth quark generation, a production mode via flavor-changing neutral currents, and other new phenomena, respectively. There are two dominating electroweak top-quark production modes at the Fermilab Tevatron: the t-channel exchange of a virtual W boson striking a b quark and the s-channel production of a timelike W boson via the fusion of two quarks. In proton-antiproton-collisions the third electroweak production mode, the associated Wt production of an on-shell W boson in conjunction with a top quark has a comparatively negligible small

  13. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting

    KAUST Repository

    Garcia Esparza, Angel T.

    2012-12-17

    Tungsten carbide exhibits platinum-like behavior, which makes it an interesting potential substitute for noble metals in catalytic applications. Tungsten carbide nanocrystals (≈5 nm) are directly synthesized through the reaction of tungsten precursors with mesoporous graphitic C3N 4 (mpg-C3N4) as the reactive template in a flow of inert gas at high temperatures. Systematic experiments that vary the precursor compositions and temperatures used in the synthesis selectively generate different compositions and structures for the final nanocarbide (W 2C or WC) products. Electrochemical measurements demonstrate that the WC phase with a high surface area exhibits both high activity and stability in hydrogen evolution over a wide pH range. The WC sample also shows excellent hydrogen oxidation activity, whereas its activity in oxygen reduction is poor. These tungsten carbides are successful cocatalysts for overall water splitting and give H2 and O2 in a stoichiometric ratio from H 2O decomposition when supported on a Na-doped SrTiO3 photocatalyst. Herein, we present tungsten carbide (on a small scale) as a promising and durable catalyst substitute for platinum and other scarce noble-metal catalysts in catalytic reaction systems used for renewable energy generation. Platinum replacement: The phase-controlled synthesis of tungsten carbide nanoparticles from the nanoconfinement of a mesoporous graphite C 3N4 (mpg-C3N4) reactive template is shown. The nanomaterials catalyze hydrogen evolution/oxidation reactions, but are inactive in the oxygen reduction reaction. Tungsten carbide is an effective cocatalyst for photocatalytic overall water splitting (see picture). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting

    KAUST Repository

    Garcia Esparza, Angel T.; Cha, Dong Kyu; Ou, Yiwei; Kubota, Jun; Domen, Kazunari; Takanabe, Kazuhiro

    2012-01-01

    Tungsten carbide exhibits platinum-like behavior, which makes it an interesting potential substitute for noble metals in catalytic applications. Tungsten carbide nanocrystals (≈5 nm) are directly synthesized through the reaction of tungsten precursors with mesoporous graphitic C3N 4 (mpg-C3N4) as the reactive template in a flow of inert gas at high temperatures. Systematic experiments that vary the precursor compositions and temperatures used in the synthesis selectively generate different compositions and structures for the final nanocarbide (W 2C or WC) products. Electrochemical measurements demonstrate that the WC phase with a high surface area exhibits both high activity and stability in hydrogen evolution over a wide pH range. The WC sample also shows excellent hydrogen oxidation activity, whereas its activity in oxygen reduction is poor. These tungsten carbides are successful cocatalysts for overall water splitting and give H2 and O2 in a stoichiometric ratio from H 2O decomposition when supported on a Na-doped SrTiO3 photocatalyst. Herein, we present tungsten carbide (on a small scale) as a promising and durable catalyst substitute for platinum and other scarce noble-metal catalysts in catalytic reaction systems used for renewable energy generation. Platinum replacement: The phase-controlled synthesis of tungsten carbide nanoparticles from the nanoconfinement of a mesoporous graphite C 3N4 (mpg-C3N4) reactive template is shown. The nanomaterials catalyze hydrogen evolution/oxidation reactions, but are inactive in the oxygen reduction reaction. Tungsten carbide is an effective cocatalyst for photocatalytic overall water splitting (see picture). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. OEDGE Modeling of Collector Probe measurements in L-mode from the DIII-D tungsten ring campaign

    Science.gov (United States)

    Elder, J. D.; Stangeby, P. C.; Unterberg, Z.; Donovan, D.; Wampler, W. R.; Watkins, J.; Abrams, T.; McLean, A. G.

    2017-10-01

    During the tungsten ring campaign on DIII-D, a collector probe system with multiple diameter, dual-facing collector rods was inserted into the far scrape off layer (SOL) near the outer midplane to measure the plasma tungsten content. For most probes more tungsten was observed on the side connected along field lines to the inner divertor, with the larger probes showing largest divertor-facing asymmetries The OEDGE code is used to model the tungsten erosion, transport and deposition. It has been enhanced with (i) a peripheral particle transport and deposition model to record the impurity content in the peripheral region outside the regular mesh, and (ii) a collector probe model. The OEDGE results approximately reproduce both the divertor-facing asymmetries and the radial decay of each collector probe profile. The effect of changing impurity transport assumptions and wall location are examined. The measured divertor-facing asymmetries imply a higher tungsten density in the plasma upstream of the probe; this was expected theoretically from the effect of the parallel ion temperature gradient force driving upstream transport of tungsten from the outer divertor and was also found in the code analysis. Work supported by the US Department of Energy under DE-FC02-04ER54698, DE-NA0003525, DE-AC05-00OR22725, and DE-AC52-07NA27344.

  16. Stratospheric Aerosol and Gas Experiment II measurements of the quasi-biennial oscillations in ozone and nitrogen dioxide

    Science.gov (United States)

    Zawodny, Joseph M.; Mccormick, M. P.

    1991-01-01

    The first measurements ever to show a quasi-biennial oscillation (QBO) in NO2 have been made by the Stratospheric Aerosol and Gas Experiment II) (SAGE II) and are presented in this work along with observations of the well-known QBO in stratospheric ozone. The SAGE II instrument was launched aboard the Earth Radiation Budget satellite near the end of 1984. Measurements of ozone and nitrogen dioxide through early 1990 are analyzed for the presence of a quasi-biennial oscillation. The measurements show the global extent of both the O3 and NO2 QBO in the 25- to 40-km region of the stratosphere. The SAGE II QBO results for ozone compare favorably to theory and previous measurements. The QBO in NO2 is found to be consistent with the vertical and horizontal transport of NOy. Both species exhibit a QBO at extratropical latitudes consistent with strong meridional transport into the winter hemisphere.

  17. High temperature diffusion of hafnium in tungsten and a tungsten-hafnium carbide alloy

    International Nuclear Information System (INIS)

    Ozaki, Y.; Zee, R.H.

    1994-01-01

    Refractory metals and ceramics are used extensively in energy systems due to their high temperature properties. This is particularly important in direct conversion systems where thermal to electric conversion efficiency is a direct function of temperature. Tungsten, which has the highest melting temperature among elemental metals, does not possess sufficient creep resistance at temperature above 1,600 K. Different dispersion strengthened tungsten alloys have been developed to extend the usefulness of tungsten to higher temperatures. One of these alloys, tungsten with 0.4 mole percent of finely dispersed HfC particles (W-HfC), has the optimum properties for high temperature applications. Hafnium carbide is used as the strengthening agent due to its high chemical stability and its compatibility with tungsten. The presence of HfC particles retards the rate of grain growth as well as restricting dislocation motion. Both of which are beneficial for creep resistance. The long term behavior of this alloy depends largely on the evolution of its microstructure which is governed by the diffusion of its constituents. Data on the diffusion of carbon in tungsten and tungsten self-diffusion are available, but no direct measurements have been made on the diffusion of hafnium in tungsten. The only diffusion data available are estimated from a coarsening study and these data are highly unreliable. In this study, the diffusion behavior of hafnium in pure tungsten and in a W-HfC alloy was directly measured by means of Secondary Ion Mass Spectroscopy (SIMS). The selection of the W-HfC alloy is due to its importance in high temperature engineering applications, and its higher recrystallization temperature. The presence of HfC particles in tungsten restricts grain growth resulting in better high temperature creep resistance. The higher recrystallization temperature allows measurements to be made over a wider range of temperatures at a relatively constant grain size

  18. Search for Electroweak Single-Top Quark Production with the CDF II Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Buehler, Matthias; /Karlsruhe U., EKP

    2006-08-01

    The CDF II experiment and the Tevatron proton-antiproton collider are parts of the Fermi National Laboratories (Fermilab). The Fermilab is located in the vicinity of Chicago, USA. Today, the Tevatron is the only collider which is able to produce the heaviest known elementary particle, the top quark. The top quark was discovered at the Tevatron by the CDF and the D0 collaborations in 1995 [1]. So far, all the top quarks found are produced via the strong interaction as top-antitop pairs. The Standard Model of elementary particle physics also predicts single-top quark production via the electroweak interaction. This production mode has not yet been observed. The CDF and the D0 collaborations have set upper limits on the cross section for that process in Run I [2, 3] and improved those results in Run II [4, 5]. Single-top quark production is one of the major interests in Run II of the Tevatron as it offers several ways to test the Standard Model and to search for potential physics beyond the Standard Model. The measurement of the cross section of singly produced top quarks via the electroweak interaction offers the possibility to determine the Cabbibo-Kobayashi-Maskawa (CKM) matrix element V{sub tb} directly. The CKM matrix defines the transformation from the eigenstates of the electroweak interactions to the mass eigenstates of the quarks. V{sub tb} gives the strength of the coupling at the Wtb vertex. The single-top quark is produced at this vertex and therefore the cross section of the single-top quark production is directly proportional to |V{sub tb}|{sup 2}. In the Standard Model, three generations of quarks and the unitarity of the CKM matrix are predicted. This leads to V{sub tb} {approx} 1. Up to now, there is no possibility to measure V{sub tb} without using the assumption that there are a certain number of quark generations. Since the measurement of the cross section of single-top quark production is independent of this assumption it could verify another

  19. Water/sand flooded and immersed critical experiment and analysis performed in support of the TOPAZ-II safety program

    International Nuclear Information System (INIS)

    Glushkov, E.S.; Ponomarev-Stepnoi, N.N.; Bubelev, V.G.; Garin, V.P.; Gomin, E.A.; Kompanietz, G.V.; Krutov, A.M.; Lobynstev, V.A.; Maiorov, L.V.; Polyakov, D.N.; Chunyaev, E.I.; Marshall, A.C.; Sapir, J.L.; Pelowitz, D.B.

    1995-01-01

    Presented is a brief description of the Narciss-M2 critical assemblies, which simulate accidental water/wet-sand immersion of the TOPAZ-II reactor as well as water-flooding of core cavities. Experimental results obtained from these critical assemblies, including experiments with several fuel elements removed from the core, are shown. These configurations with several extracted fuel elements simulate a proposed fuel-out anticriticality-device modification to the TOPAZ-II reactor. Preliminary computational analysis of these experiments using the Monte Carlo neutron-transport method is outlined. Nuclear criticality safety of the TOPAZ-II reactor with an incorporated anticriticality unit is demonstrated. copyright 1995 American Institute of Physics

  20. In situ monitoring of the electrochemical dissolution of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Krebsz, Melinda [Christian Doppler Laboratory for Combinatorial Oxide Chemistry at ICTAS, Johannes Kepler University Linz (Austria); Kollender, Jan Philipp [Institute for Chemical Technology of Inorganic Materials (ICTAS), Johannes Kepler University Linz (Austria); Hassel, Achim Walter [Christian Doppler Laboratory for Combinatorial Oxide Chemistry at ICTAS, Johannes Kepler University Linz (Austria); Institute for Chemical Technology of Inorganic Materials (ICTAS), Johannes Kepler University Linz (Austria)

    2017-09-15

    In the present work, which is aimed to monitor in situ the electrochemical dissolution of tungsten by using a Flow-Type Scanning Droplet Cell Microscope (FT-SDCM) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS), novel results are reported. The anodic oxide growth and its dissolution on the surface of W have been monitored in situ. The results of this current study show the importance of coupling electrochemical experiments to ICP-MS. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Chemical behavior of tungsten trifluorophosphines following neutron activation

    International Nuclear Information System (INIS)

    Bottomley, L.D.; Clark, R.J.

    1988-01-01

    The chemical reactions that follow neutron capture have been studied for a series of tungsten trifluorophosphine carbonyls. The molecular distribution of 187 W was determined by gas chromatographic separation using scintillation detection. The chemical behavior of these compounds was examined in the condensed phase and the gas phase, both with and without excess PF 3 or CO. The retention of the parent species was measured as well as the formation of any scrambled species W(PF 3 ) x (CO) 6-x in all experiments. The results of irradiations done in condensed phase with no excess ligands were modeled by a Simplex iterative routine to calculate the distribution of recoil fragments. (orig.)

  2. Evaluation of stable tungsten isotopes in the resolved resonance region

    Directory of Open Access Journals (Sweden)

    Schillebeeckx P.

    2013-03-01

    Full Text Available In the last decade benchmark experiments and simulations, together with newly obtained neutron cross section data, have pointed out deficiencies in evaluated data files of W isotopes. The role of W as a fundamental structural material in different nuclear applications fully justifies a new evaluation of 182, 183, 184, 186W neutron resonance parameters. In this regard transmission and capture cross section measurements on natural and enriched tungsten samples were performed at the GELINA facility of the EC-JRC-IRMM. A resonance parameter file used as input in the resonance shape analysis was prepared based on the available literature and adjusted in first instance to transmission data.

  3. Toward Reanalysis of the Tight-Pitch HCLWR-PROTEUS Phase II Experiments

    Science.gov (United States)

    Perret, Grégory; Vlassopoulos, Efstathios; Hursin, Mathieu; Pautz, Andreas

    2016-03-01

    The HCLWR-Proteus Phase II experiments were conducted from 1985 to 1990 in the zero-power reactor Proteus at PSI in Switzerland. The experimental program was dedicated to the physics of high conversion light water reactors and in particular to the measurement of reactor parameters such as reaction rate traverses, spectral indices, absorber reactivity worths and void coefficients. The HCLWR experiments are especially interesting because they generated knowledge in the epithermal range of the neutron flux spectrum, for which little integral experimental data is available. In an effort to assess the interest of this experimental data to validate modern nuclear data and improve their uncertainties, a preliminary re-analysis of selected configurations was conducted with Monte-Carlo codes (MCNP6/SERPENT2) and modern nuclear data libraries (ENDF/B-VII.0, JEFF-3.1.1 and JENDL-4.0). The spectral ndices, flux spectra and sensitivity coefficients on k∞ were calculated using cell models representative of the tight-pitch measurement configurations containing 11% PuO2-UO2 fuel rods in different moderation conditions (air, water and dowtherm). Spectral index predictions using the three nuclear data libraries agreed within two standard deviations with the measured values. The only exception is the Pu-242-capture-to-Pu-239-fission ratio, which was overestimated with all libraries by more than four standard deviations, i.e. 13%, in the non-moderated configuration. In this configuration, Pu-242 captures are few since the flux spectrum in the Pu-242 capture resonance region (between 1eV and 1keV) is small making this spectral index hard to measure. Sensitivity coefficient predictions with both MCNP6 and SERPENT2 were in good agreement.

  4. Cartografia e deficiência visual: experiências no Colégio Pedro II

    Directory of Open Access Journals (Sweden)

    Rafael Medeiros de Andrade

    2014-01-01

    Full Text Available O processo de construção de uma escola inclusiva perpassa um conjunto de esforços cognitivos e técnicos por parte da comunidade escolar que são necessários para a adequada educação e desenvolvimento do aluno. No que diz respeito ao ensino de Geografia para alunos deficientes visuais, fazem parte deste conjunto de medidas o domínio do sistema Braille, a confecção de materiais e mapas táteis, a gravação de textos em áudio e, entre outras, a realização de trabalhos de campo. O presente relato de experiência refere-se à um projeto de dedicação exclusiva, implementado no Colégio Pedro II de 2008 a 2010, cujo objetivo foi aprimorar o ensino de Geografia para os alunos deficientes visuais. Conclui-se que a adoção dessas medidas representa o início de um longo trabalho de toda comunidade escolar que não pode ser resumido à existência de alguns materiais táteis. Deve, por outro lado, envolver um processo de construção e adequação instrumental, acompanhado da capacitação profissional e da sensibilização da comunidade escolar.

  5. Intermediate Photovoltaic System Application Experiment. Oklahoma Center for Science and Arts. Phase II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This report presents the key results of the Phase II efforts for the Intermediate PV System Applications Experiment at the Oklahoma Center for Science and Arts (OCSA). This phase of the project involved fabrication, installation and integration of a nominal 140 kW flat panel PV system made up of large, square polycrystalline-silicon solar cell modules, each nominally 61 cm x 122 cm in size. The output of the PV modules, supplied by Solarex Corporation, was augmented, 1.35 to 1 at peak, by a row of glass reflectors, appropriately tilted northward. The PV system interfaces with the Oklahoma Gas and Electric Utility at the OCSA main switchgear. Any excess power generated by the system is fed into the utility under a one to one buyback arrangement. Except for a shortfall in the system output, presently suspected to be due to the poor performance of the modules, no serious problems were encountered. Certain value engineering changes implemented during construction and early operational failure events associated with the power conditioning system are also described. The system is currently undergoing extended testing and evaluation.

  6. Adaptive Core Simulation Employing Discrete Inverse Theory - Part II: Numerical Experiments

    International Nuclear Information System (INIS)

    Abdel-Khalik, Hany S.; Turinsky, Paul J.

    2005-01-01

    Use of adaptive simulation is intended to improve the fidelity and robustness of important core attribute predictions such as core power distribution, thermal margins, and core reactivity. Adaptive simulation utilizes a selected set of past and current reactor measurements of reactor observables, i.e., in-core instrumentation readings, to adapt the simulation in a meaningful way. The companion paper, ''Adaptive Core Simulation Employing Discrete Inverse Theory - Part I: Theory,'' describes in detail the theoretical background of the proposed adaptive techniques. This paper, Part II, demonstrates several computational experiments conducted to assess the fidelity and robustness of the proposed techniques. The intent is to check the ability of the adapted core simulator model to predict future core observables that are not included in the adaption or core observables that are recorded at core conditions that differ from those at which adaption is completed. Also, this paper demonstrates successful utilization of an efficient sensitivity analysis approach to calculate the sensitivity information required to perform the adaption for millions of input core parameters. Finally, this paper illustrates a useful application for adaptive simulation - reducing the inconsistencies between two different core simulator code systems, where the multitudes of input data to one code are adjusted to enhance the agreement between both codes for important core attributes, i.e., core reactivity and power distribution. Also demonstrated is the robustness of such an application

  7. Operational Experience with the TRIGA Mark II Reactor of the University of Pavia

    Energy Technology Data Exchange (ETDEWEB)

    Tigliole, A. Borio Di; Alloni, D.; Cagnazzo, M.; Coniglio, M.; Lana, F.; Losi, A.; Magrotti, G.; Manera, S.; Marchetti, F.; Pappalardo, P.; Prata, M.; Provasi, M.C.; Salvini, A.; Scian, G.; Vinciguerra, G. [University of Pavia, Laboratory of Applied Nuclear Energy (L.E.N.A), Via Aselli 41, 27100 Pavia (Italy)

    2011-07-01

    The Laboratory of Applied Nuclear Energy (LENA) is an Interdepartmental Research Centre of the University of Pavia which operates a 250 kW TRIGA Mark II Research Nuclear Reactor, a Cyclotron for the production of radioisotopes and other irradiation facilities. The reactor is in operation since 1965 and many home-made upgrading were realized in the past years in order to assure a continuous operation of the reactor for the future. The annual reactor operational time at nominal power is in the range of 300 - 400 hours depending upon the time schedule of some experiments and research activities. The reactor is mainly used for NAA activities, BNCT research, samples irradiation and training. In specific, few tens of hours of reactor operation per year are dedicated to training courses for University students and for professionals. Besides, the LENA Centre hosts every year more than one thousand high school students in visit. Lately, LENA was certified ISO 9001:2008 for the ''operation and maintenance of the reactor'' and for the ''design and delivery of the irradiation service''. Nowadays the reactor shows a good technical state and, at the moment, there are no political or economical reason to consider the reactor shut-down. (author)

  8. EDELWEISS-II, direct Dark Matter search experiment: first data analysis and results

    International Nuclear Information System (INIS)

    Scorza, Silvia

    2009-01-01

    relies in the measurement of nuclear recoils that produce measurable effects in the crystal such ionization and heat. My PhD thesis is organized as follows. The first chapter aims to provide an introduction to the theoretical framework and the scientific motivation for the following work. The nature of DM has been one of the most challenging topics in contemporary physics since the first evidences of its existence had been found in the 1930's. Cosmologists and astrophysicists on one side, together with particle theorists on the other have put a lot of effort into this field: I will briefly account for their achievements and for the experimental strategies which can be set in this scenario. Since this thesis work was carried out within the EDELWEISS-II direct dark matter experiment, I will focus the next chapter on this topic, describing the main features. The second chapter is related to the set-up of the EDELWEISS-II, the current stage of the EDELWEISS experiment necessary after a first phase that achieved the best upper limit on the WIMP elastic scattering on nucleon as a function of WIMP mass in 2004. The set-up was conceived to reduce radioactive background observed in the first experiment phase. Thus, describing the starting point for this second stage, I will present detectors involved in, with a peculiar regard to the Ge-NTD type, the same implied in EDELWEISS-I, on which I have focused my thesis work. In the third chapter the performed Ge-NTD analysis chain is presented. Starting with the signal processing of the recorded data, I will enter in the essential analysis steps from calibration signals passing through measurements of thresholds and resolutions in order to predict nuclear and electronic recoil band and definition of fiducial zone to conclude determining a selection for likely WIMP candidate. These suggestions are applied in the fourth chapter, which presents the analysis and the results of the 8. cool down that takes places from November 2007 to March

  9. Thermal response of plasma sprayed tungsten coating to high heat flux

    International Nuclear Information System (INIS)

    Liu, X.; Yang, L.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.; Xu, Z.

    2004-01-01

    In order to investigate the thermal response of tungsten coating on carbon and copper substrates by vacuum plasma spray (VPS) or inert gas plasma spray (IPS), annealing and cyclic heat load experiments of these coatings were conducted. It is indicated that the multi-layered tungsten and rhenium interface of VPS-W/CFC failed to act as a diffusion barrier at elevated temperature and tungsten carbides were developed after 1 h incubation time when annealing temperature was higher than 1600 deg. C. IPS-W/Cu and W/C without an intermediate bonding layer were failed by the detachment of the tungsten coating at 900 and 1200 deg. C annealing for several hours, respectively. Cyclic heat load of electron beam with 35 MW/m 2 and 3-s pulse duration indicated that IPS-W/Cu samples failed with local detachment of the tungsten coating within 200 cycles and IPS-W/C showed local cracks by 300 cycles, but VPS-W/CFC withstood 1000 cycles without visible damages. However, crack creation and propagation in VPS-W/CFC were also observed under higher heat load

  10. Design of characteristic parameters for controlling tungsten tip profile during electrochemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Le Duy Cuong; Duong, Thanh Hung; Kim, Huyn Chul [Inje University, Gimhae (Korea, Republic of)

    2014-05-15

    Micro/nano-scale tungsten tips fabricated by electrochemical etching have many diverse industrial applications. The characteristic parameters of the tungsten tip profile include apex radius, taper angle, and aspect ratio. These parameters are governed by many factors including applied voltage, concentration of the electrolyte (potassium hydroxide) solution, and diameter of the inner gold ring. However, a systematic investigation with the aim of determining the best conditions for fabricating micro/nano-scale tips with desired profiles has not been carried out yet. This study is aimed at obtaining controllable tungsten tip -particularly with respect to the radius of curvature and aspect ratio of tips (taper angle)-by altering the experimental conditions. A series of experiments were executed and the results were aggregated and analyzed using response surface methodology in order to identify the relationships between the tungsten tip characteristics and input parameters. The method proposed herein would prove to be suitable for a variety of applications in industries that require tungsten tips with a specific profile.

  11. Design of characteristic parameters for controlling tungsten tip profile during electrochemical etching

    International Nuclear Information System (INIS)

    Le Duy Cuong; Duong, Thanh Hung; Kim, Huyn Chul

    2014-01-01

    Micro/nano-scale tungsten tips fabricated by electrochemical etching have many diverse industrial applications. The characteristic parameters of the tungsten tip profile include apex radius, taper angle, and aspect ratio. These parameters are governed by many factors including applied voltage, concentration of the electrolyte (potassium hydroxide) solution, and diameter of the inner gold ring. However, a systematic investigation with the aim of determining the best conditions for fabricating micro/nano-scale tips with desired profiles has not been carried out yet. This study is aimed at obtaining controllable tungsten tip -particularly with respect to the radius of curvature and aspect ratio of tips (taper angle)-by altering the experimental conditions. A series of experiments were executed and the results were aggregated and analyzed using response surface methodology in order to identify the relationships between the tungsten tip characteristics and input parameters. The method proposed herein would prove to be suitable for a variety of applications in industries that require tungsten tips with a specific profile

  12. Surface morphologies of He-implanted tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Bannister, M.E., E-mail: bannisterme@ornl.gov [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6371 (United States); Meyer, F.W.; Hijazi, H. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6371 (United States); Unocic, K.A.; Garrison, L.M.; Parish, C.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2016-09-01

    Surface morphologies of tungsten surfaces, both polycrystalline and single-crystal [1 1 0], were investigated using SEM and FIB/SEM techniques after implantations at elevated surfaces temperatures (1200–1300 K) using well-characterized, mono-energetic He ion beams with a wide range of ion energies (218 eV–250 keV). Nanofuzz was observed on polycrystalline tungsten (PCW) following implantation of 100-keV He ions at a flux threshold of 0.9 × 10{sup 16} cm{sup −2} s{sup −1}, but not following 200-keV implantations with similar fluxes. No nanofuzz formation was observed on single-crystal [1 1 0] tungsten (SCW), despite fluxes exceeding those demonstrated previously to produce nanofuzz on polycrystalline tungsten. Pre-damaging the single-crystal tungsten with implanted C impurity interstitials did not significantly affect the surface morphologies resulting from the high-flux He ion implantations. The main factor leading to the different observed surface structures for the pristine and C-implanted single-crystal W samples appeared to be the peak He ion flux characterizing the different exposures. It was speculated that nanofuzz formation was not observed for any SCW target exposures because of increased incubation fluences required for such targets.

  13. Operation experience with the 3 MW TRIGA Mark-II research reactor of Bangladesh

    International Nuclear Information System (INIS)

    Islam, M.S.; Haque, M.M.; Salam, M.A.; Rahman, M.M.; Khandokar, M.R.I.; Sardar, M.A.; Saha, P.K.; Haque, A.; Malek Sonar, M.A.; Uddin, M.M.; Hossain, S.M.S.; Zulquarnain, M.A.

    2004-01-01

    The 3 MW TRIGA Mark-II research reactor of Bangladesh Atomic Energy Commission (BAEC) has been operating since September 14, 1986. The reactor is used for radioisotope production ( 131 I, 99m Tc, 46 Sc), various R and D activities and manpower training. The reactor has been operated successfully since it's commissioning with the exception of a few reportable incidents. Of these, the decay tank leakage incident of 1997 is considered to be the most significant one. As a result of this incident, reactor operation at full power under forced-convection mode remained suspended for about 4 years. During that time, the reactor was operated at a power level of 250 kW so as to carry out experiments that require lower neutron flux. This was made possible by establishing a temporary by pass connection across the decay tank using local technology. The other incident was the contamination of the Dry Central Thimble (DCT) that took place in March 2002 when a pyrex vial containing 50 g of TeO 2 powder got melted inside the DCT. The vial was melted due to high heat generation on its surface while the reactor was operated for 8 hours at 3 MW for trial production of Iodine-131 ( 131 I). A Wet Central Thimble (WCT) was used to replace the damaged DCT in June 2002 such that the reactor operation could be resumed. The WCT was again replaced by a new DCT in June 2003 such that radioisotope production could be continued. A total of 873 irradiation requests (IRs) have been catered for different reactor uses. Out of these, 114 IRs were for radioisotope (RI) production and 759 IRs for different experiments. The total amount of RI produced stands at about 2100 GBq. The total amount of burn-up-fuel is about 6158 MWh. Efforts are on to undertake an ADP project so as to convert the analog console and I and C system of the reactor into digital one. The paper summarizes the reactor operation experiences focusing on troubleshooting, rectification, modification, RI production, various R and D

  14. Loss of shear strength in polycrystalline tungsten under shock compression

    International Nuclear Information System (INIS)

    Dandekar, D.P.

    1976-01-01

    A reexamination of existing data on shock compression of polycrystalline tungsten at room temperature indicates that tungsten may be an exception to the common belief that metals do not behave like elastic-isotropic solids under shock compression

  15. Effect of thermomechanical conditions of deformation on structure and properties of tungsten wire

    International Nuclear Information System (INIS)

    Pavlov, I.M.; Ushakov, E.V.; Karavajtsev, V.I.; Drobysheva, E.K.; Tiraspol'skij, V.I.; Zelentsova, N.M.; Gruzdov, V.V.

    1983-01-01

    The purpose of the investigation is to specify the relation between conditions of plastic deformation of non-slacked tungsten, structure and properties of rods and wire. Planning multifactor experiments is chosen as the basic method for investigation. It is shown that rationai choice of plastic working conditions permits to reduce the tendency to lamination of tungsten wire. Growth of wire ductility is followed by decrease of its residual electroresistance. Rapid porocedure of return due to precipitation of dissolved admixtures is the main reason for improving plastic properties of the wire

  16. Properties of multiple field ion emitters of tungsten and a simple method for improving their ionization efficiency

    International Nuclear Information System (INIS)

    Okuyama, F.; Beckey, H.D.

    1978-01-01

    The ion emission properties of the multiple tungsten emitters developed recently for field ionization mass spectrometry were investigated with the aid of a sector type mass spectrometer at emitter-cathode voltages of 10-15 kV using acetone, n-heptane and benzene as test substances. The emitters, which comprised a 10-μm tungsten filament bearing thickly arrayed microneedles of tungsten, produced very weak and unstable signals at voltages of about 10 kV, but increasing the voltage to 14 kV led to intensifying ion currents high enough to yield mass spectra of satisfactory quality. During the course of the experiments, it was observed that nucleating tungsten carbide particles on the emitter surface by means of a high-field chemical reaction with benzene vapours can significanlty promote the field ionization of gas molecules, presumably as a result of the field enhancement resulting from roughening of the surface. (Auth.)

  17. Effects of fusion relevant transient energetic radiation, plasma and thermal load on PLANSEE double forged tungsten samples in a low-energy plasma focus device

    Science.gov (United States)

    Javadi, S.; Ouyang, B.; Zhang, Z.; Ghoranneviss, M.; Salar Elahi, A.; Rawat, R. S.

    2018-06-01

    Tungsten is the leading candidate for plasma facing component (PFC) material for thermonuclear fusion reactors and various efforts are ongoing to evaluate its performance or response to intense fusion relevant radiation, plasma and thermal loads. This paper investigates the effects of hot dense decaying pinch plasma, highly energetic deuterium ions and fusion neutrons generated in a low-energy (3.0 kJ) plasma focus device on the structure, morphology and hardness of the PLANSEE double forged tungsten (W) samples surfaces. The tungsten samples were provided by Forschungszentrum Juelich (FZJ), Germany via International Atomic Energy Agency, Vienna, Austria. Tungsten samples were irradiated using different number of plasma focus (PF) shots (1, 5 and 10) at a fixed axial distance of 5 cm from the anode top and also at various distances from the top of the anode (5, 7, 9 and 11 cm) using fixed number (5) of plasma focus shots. The virgin tungsten sample had bcc structure (α-W phase). After PF irradiation, the XRD analysis showed (i) the presence of low intensity new diffraction peak corresponding to β-W phase at (211) crystalline plane indicating the partial structural phase transition in some of the samples, (ii) partial amorphization, and (iii) vacancy defects formation and compressive stress in irradiated tungsten samples. Field emission scanning electron microscopy showed the distinctive changes to non-uniform surface with nanometer sized particles and particle agglomerates along with large surface cracks at higher number of irradiation shots. X-ray photoelectron spectroscopy analysis demonstrated the reduction in relative tungsten oxide content and the increase in metallic tungsten after irradiation. Hardness of irradiated samples initially increased for one shot exposure due to reduction in tungsten oxide phase, but then decreased with increasing number of shots due to increasing concentration of defects. It is demonstrated that the plasma focus device provides

  18. Plasma exposure of different tungsten grades with plasma accelerators under ITER-relevant conditions

    International Nuclear Information System (INIS)

    Makhlaj, Vadym A; Garkusha, Igor E; Aksenov, Nikolay N; Byrka, Oleg V; Bazylev, Boris; Landman, Igor; Linke, Jochen; Wirtz, Marius; Malykhin, Sergey V; Pugachov, Anatoliy T; Sadowski, Marek J; Skladnik-Sadowska, Elzbieta

    2014-01-01

    This paper presents the results of tungsten irradiation experiments performed with three plasma facilities: the QSPA Kh-50 quasi-steady-state plasma accelerator, the PPA pulsed plasma gun and the magneto-plasma compressor. Targets made of different kinds of tungsten (sintered, rolled and deformed) were irradiated with powerful plasma streams at heat fluxes relevant to edge-localized modes in ITER. The irradiated targets were analyzed and two different meshes of cracks were identified. It has been shown that the major cracks do not depend on the tungsten grade. This has been attributed to ductile-to-brittle transition effects. Meshes of inter-granular micro-cracks were detected for energy loads above the melting threshold and these were probably caused by the re-solidification process. The blister-like and cellular-like structures were observed on sample surfaces exposed to helium and hydrogen plasmas. (paper)

  19. Tungsten erosion under plasma heat loads typical for ITER type I Elms and disruptions

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine)]. E-mail: garkusha@ipp.kharkov.ua; Bandura, A.N. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Byrka, O.V. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Landman, I.S. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Makhlaj, V.A. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Marchenko, A.K. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Solyakov, D.G. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Tereshin, V.I. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Trubchaninov, S.A. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Tsarenko, A.V. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine)

    2005-03-01

    The behavior of pure sintered tungsten under repetitive plasma heat loads of {approx}1 MJ/m{sup 2} (which is relevant to ITER ELMs) and 25 MJ/m{sup 2} (ITER disruptions) is studied with the quasi-steady-state plasma accelerator QSPA Kh-50. The ELM relevant heat loads have resulted in formation of two kinds of crack networks, with typical sizes of 10-20 {mu}m and {approx}1 mm, at the surface. Tungsten preheating to 600 deg. C indicates that fine intergranular cracks are probably caused by thermal stresses during fast resolidification of the melt, whereas large cracks are the result of ductile-to-brittle transition. For several hundreds of ELM-like exposures, causing surface melting, the melt motion does not dominate the profile of the melt spot. The disruption relevant experiments demonstrated that melt motion became the main factor of tungsten damage.

  20. Fabrication and evaluation of chemically vapor deposited tungsten heat pipe.

    Science.gov (United States)

    Bacigalupi, R. J.

    1972-01-01

    A network of lithium-filled tungsten heat pipes is being considered as a method of heat extraction from high temperature nuclear reactors. The need for material purity and shape versatility in these applications dictates the use of chemically vapor deposited (CVD) tungsten. Adaptability of CVD tungsten to complex heat pipe designs is shown. Deposition and welding techniques are described. Operation of two lithium-filled CVD tungsten heat pipes above 1800 K is discussed.

  1. Dynamic control of low-Z material deposition and tungsten erosion by strike point sweeping on DIII-D

    Directory of Open Access Journals (Sweden)

    J. Guterl

    2017-08-01

    Full Text Available Carbon deposition on tungsten between ELMs was investigated in DIII-D in semi-attached/detached H-mode plasma conditions using fixed outer strike point (OSP positions. Carbon deposition during plasma exposure of tungsten was monitored in-situ by measuring the reflectivity of the tungsten sample surface. No significant carbon deposition, i.e., without strong variations of the reflectivity, was observed during these experiments including discharges at high densities. In contrast, ERO modeling predicts a significant carbon deposition on the tungsten surface for those high density plasma conditions. The surface reflectivity decreases with methane injection, consistent with increased carbon coverage, as expected. The sweeping of OSP leads to a pronounced increase of the surface reflectivity, suggesting that the strike point sweeping may provide an effective means to remove carbon coating from tungsten surface. The ERO modeling however predicts again a regime of carbon deposition for these experiments. The discrepancies between carbon deposition regime predicted by the ERO model and the experimental observations suggest that carbon erosion during ELMs may significantly affect carbon deposition on tungsten.

  2. In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding

    Science.gov (United States)

    Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas

    2018-01-01

    A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.

  3. Element 74, the Wolfram Versus Tungsten Controversy

    Energy Technology Data Exchange (ETDEWEB)

    Holden,N.E.

    2008-08-11

    Two and a quarter centuries ago, a heavy mineral ore was found which was thought to contain a new chemical element called heavy stone (or tungsten in Swedish). A few years later, the metal was separated from its oxide and the new element (Z=74) was called wolfram. Over the years since that time, both the names wolfram and tungsten were attached to this element in various countries. Sixty years ago, IUPAC chose wolfram as the official name for the element. A few years later, under pressure from the press in the USA, the alternative name tungsten was also allowed by IUPAC. Now the original, official name 'wolfram' has been deleted by IUPAC as one of the two alternate names for the element. The history of this controversy is described here.

  4. Study of tungsten based positron moderators

    Energy Technology Data Exchange (ETDEWEB)

    Lucio, O.G. de; Pérez, M.; Mendoza, U.; Morales, J.G.; Cruz, J.C. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México DF (Mexico); DuBois, R.D. [Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2015-07-01

    Positrons and how they interact with matter has a growing interest in many fields. Most of their uses require the production of slow positron beams with a well-defined energy, but since these particles are usually generated by means of a radioactive source, they are fast and with a broad distribution of energies. For this reason it is necessary to moderate them to lower energies via inelastic collisions. Then, they can be accelerated to the desired energies. This requires the use of a moderator. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency and relatively low cost. In this work we present different methods of producing transmission tungsten-based moderators, with particular interest in a combination of tungsten thin foils and grids. We also show results about the characterization of these moderators by ion beam analysis and microscopy techniques along with their relative moderation efficiencies.

  5. Electron work function of stepped tungsten surfaces

    International Nuclear Information System (INIS)

    Krahl-Urban, B.

    1976-03-01

    The electron work function of tungsten (110) vicinal faces was measured with the aid of thermionic emission, and its dependence on the crystallographic orientation and the surface structure was investigated. The thermionic measurements were evaluated with the aid of the Richardson plot. The real temperature of the emitting tungsten faces was determined with an accuracy of +- 0.5% in the range between 2,200 and 2,800 K. The vicinal faces under investigation have been prepared with an orientation exactness of +- 15'. In the tungsten (110) vicinal faces under investigation, a strong dependence of the temperature coefficient d PHI/dT of the work function on the crystallographic orientation was found. A strong influence of the edge structure as well as of the step density on the temperature coefficient was observed. (orig./HPOE) [de

  6. Characterization of plasma coated tungsten heavy alloy

    International Nuclear Information System (INIS)

    Bose, A.; Kapoor, D.; Lankford, J. Jr.; Nicholls, A.E.

    1996-01-01

    The detrimental environmental impact of Depleted Uranium-based penetrators have led to tremendous development efforts in the area of tungsten heavy alloy based penetrators. One line of investigation involves the coating of tungsten heavy alloys with materials that are prone to shear localization. Plasma spraying of Inconel 718 and 4340 steel have been used to deposit dense coatings on tungsten heavy alloy substrates. The aim of the investigation was to characterize the coating primarily in terms of its microstructure and a special push-out test. The paper describes the results of the push-out tests and analyzes some of the possible failure mechanisms by carrying out microstructural characterization of the failed rings obtained from the push out tests

  7. RF induction plasma spheroidization of tungsten powders

    International Nuclear Information System (INIS)

    Gu Zhogntao; Ye Gaoying; Liu Chuandong; Tong Honghui

    2009-01-01

    Irregularly-shaped tungsten powders (average granular sizes of 512 μm) have been spheroidized by radio frequency (RF)induction plasma. The effects of feed rate, mode of material dispersion, particle size on spheroidization efficiency are investigated. Experimental results show that the spheroidization efficiency decreases rapidly when the feed rate increases to more than 95 g/min. Only 30% spheroidization efficiency is gained at the feed rate of 135.75 g/min. The spheroidization efficiency is also affected by the flow rate of carrier gas. When the flow rate of carrier gas is 0.12 m 3 /h, the dispersion effect is the best, and the spheroidization efficiency is almost 100%. The apparent density of tungsten powders increases a bit with the increase of spheroidization efficiency. And the particle size uniformity of spheroidized tungsten powders is in accordance with that of original powders. (authors)

  8. Study of tungsten based positron moderators

    International Nuclear Information System (INIS)

    Lucio, O.G. de; Pérez, M.; Mendoza, U.; Morales, J.G.; Cruz, J.C.; DuBois, R.D.

    2015-01-01

    Positrons and how they interact with matter has a growing interest in many fields. Most of their uses require the production of slow positron beams with a well-defined energy, but since these particles are usually generated by means of a radioactive source, they are fast and with a broad distribution of energies. For this reason it is necessary to moderate them to lower energies via inelastic collisions. Then, they can be accelerated to the desired energies. This requires the use of a moderator. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency and relatively low cost. In this work we present different methods of producing transmission tungsten-based moderators, with particular interest in a combination of tungsten thin foils and grids. We also show results about the characterization of these moderators by ion beam analysis and microscopy techniques along with their relative moderation efficiencies

  9. Process for recovering tungsten from alkaline leaching solution of tungsten ores

    International Nuclear Information System (INIS)

    Onozaki, S.; Nemoto, S.; Hazeyama, T.

    1976-01-01

    This invention relates to a process for recovering tungsten from an alkaline leaching solution of tungsten ores. This invention comprises adjusting the pH of an alkaline leaching solution which is obtained by lixiviating ore containing tungsten with an alkaline solution to 7--8 with acid to oxidize molybdic acid ions in the solution, adding a sulfide donor, then precipitating molybdenum sulfide compounds by adjusting the pH value of the solution to 2--3. Tungstic acid ions are recovered as calcium tungstate by the addition of a calcium ion donor after the molybdenum sulfide compounds are separated

  10. Auditory Brainstem Implantation in Chinese Patients With Neurofibromatosis Type II: The Hong Kong Experience.

    Science.gov (United States)

    Thong, Jiun Fong; Sung, John K K; Wong, Terence K C; Tong, Michael C F

    2016-08-01

    To describe our experience and outcomes of auditory brainstem implantation (ABI) in Chinese patients with Neurofibromatosis Type II (NF2). Retrospective case review. Tertiary referral center. Patients with NF2 who received ABIs. Between 1997 and 2014, eight patients with NF2 received 9 ABIs after translabyrinthine removal of their vestibular schwannomas. One patient did not have auditory response using the ABI after activation. Environmental sounds could be differentiated by six (75%) patients after 6 months of ABI use (mean score 46% [range 28-60%]), and by five (63%) patients after 1 year (mean score 57% [range 36-76%]) and 2 years of ABI use (mean score 48% [range 24-76%]). Closed-set word identification was possible in four (50%) patients after 6 months (mean score 39% [range 12-72%]), 1 year (mean score 68% [range 48-92%]), and 2 years of ABI use (mean score 62% [range 28-100%]). No patient demonstrated open-set sentence recognition in quiet in the ABI-only condition. However, the use of ABI together with lip-reading conferred an improvement over lip-reading alone in open-set sentence recognition scores in two (25%) patients after 6 months of ABI use (mean improvement 46%), and five (63%) patients after 1 year (mean improvement 25%) and 2 years of ABI use (mean improvement 28%). At 2 years postoperatively, three (38%) patients remained ABI users. This is the only published study to date examining ABI outcomes in Cantonese-speaking Chinese NF2 patients and the data seems to show poorer outcomes compared with English-speaking and other nontonal language-speaking NF2 patients. Environmental sound awareness and lip-reading enhancement are the main benefits observed in our patients. More work is needed to improve auditory implant speech-processing strategies for tonal languages and these advancements may yield better speech perception outcomes in the future.

  11. The investigation of fast reactor fuel pin start up behaviour in the irradiation experiment DUELL II

    International Nuclear Information System (INIS)

    Freund, D.; Geithoff, D.

    1988-04-01

    The irradiation experiments DUELL-II within the SNR-300 operational Transient Experimental Program deal with the investigation of fresh mixed oxide fuel behaviour at start-up. The irradiation has been carried out in the HFR Petten in four so-called DUELL capsules with two fuel pin samples each. The fuel pins with a total length of 453 mm contained a fuel column of 150 mm length, consisting of high dense (U,Pu)O 2-x fuel with an initial porosity of 4%, a Pu-content of 20.9%, and an O/Me ratio of 1.96. The fuel pellet diameter was 6.37 mm, the outer diameter of the SS cladding, material No. 1.4970, was 7.6 mm. The irradiation included four phases, consisting of preconditioning at 85% nominal power (corresponds to 550 W/cm), a following increase to full power, and two following full power periods of 1 and 10 days, respectively. Post irradiation examination showed incomplete fuel restructuring in the first capsules with central void diameters of 800 μm in the hot plane, complete restructuring in the last capsule, leading to central voids of approximately 1 mm diameter. The residual gaps between fuel and clad varied between 25 and 44 μm. The clad inner surface did not show any corrosion attack. The analysis of fuel restructuring has been carried out with the computer code SATURN-S showing good agreement with the PIE results. The analysis led to a series of model improvements, especially for crack volume and relocation modelling. (orig./GL) [de

  12. Electroweak production of the top quark in the Run II of the D0 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Clement, Benoit [Louis Pasteur Univ., Strasbourg (France)

    2006-04-28

    The work exposed in this thesis deals with the search for electroweak production of top quark (single top) in proton-antiproton collisions at √s = 1.96 TeV. This production mode has not been observed yet. Analyzed data have been collected during the Run II of the D0 experiment at the Fermilab Tevatron collider. These data correspond to an integrated luminosity of 370 pb-1. In the Standard Model, the decay of a top quark always produce a high momentum bottom quark. Therefore bottom quark jets identification plays a major role in this analysis. The large lifetime of b hadrons and the subsequent large impact parameters relative to the interaction vertex of charged particle tracks are used to tag bottom quark jets. Impact parameters of tracks attached to a jet are converted into the probability for the jet to originate from the primary vertex. This algorithm has a 45% tagging efficiency for a 0.5% mistag rate. Two processes (s and t channels) dominate single top production with slightly different final states. The searched signature consists in 2 to 4 jets with at least one bottom quark jet, one charged lepton (electron or muon) and missing energy accounting for a neutrino. This final state is background dominated and multivariate techniques are needed to separate the signal from the two main backgrounds: associated production of a W boson and jets and top quarks pair production. The achieved sensitivity is not enough to reach observation and we computed upper limits at the 95% confidence level at 5 pb (s-channel) and 4.3 pb (t-channel) on single top production cross-sections.

  13. Operation experience and maintenance at the TRIGA Mark II L.E.N.A. reactor

    International Nuclear Information System (INIS)

    Gngoli, F.; Berzero, A.; Lana, F.; Rosti, G.; Meloni, S.

    2008-01-01

    The TRIGA Mark II reactor of the University of Pavia was operated in the last two years on a routine basis, mostly for neutron activation analysis purposes. Moreover the reactor was completely shutdown in the first six months of this year to allow the dismantling of the NADIR experimental setup. The paper presents: - Reactor operation from July 1990 to June 1992; - Reactor users in the time period January 1990 - December 1991; - Specific activities of some radionuclides in the filling materials; - Specific activity of some radionuclides in thermal column materials. Operations related to dismantling of NADIR experimental facility are described. Finally the new thermal column configuration is presented. Starting from the end inside the reactor tank, a graphite layer (35 cm thick) was positioned, followed by a bismuth layer (10 cm thick) to reduce gamma-ray intensity. The old graphite rods were then positioned leaving in the central part, on the equatorial plane of the thermal column, a cavity whose vertical section has 40 cm width and 20 cm height. The bottom of the cavity, towards to the reactor tank, has been lined with additional layers of graphite (10 cm), bismuth (10 cm) and again graphite (1 cm). The new configuration allowed new experiments to be performed. The cavity in the central part has been created to allow the irradiation of large biological samples such as experimental animal and human livers. This is a peculiar step in a neutron capture boron therapy project to be carried out at the University of Pavia. In order to avoid an implemented 41 Ar production in the void space between shutters and the thermal column outer end, the external surface of the thermal column has been coated with boral sheets. The neutron flux profile, both thermal and epithermal, and cadmium ratio for gold are shown. The flux distribution appears to be adequate to proceed with the neutron capture boron therapy experiment. The LENA Health Physics Service has checked all phases of

  14. Color in 'tungsten trioxide' thin films

    International Nuclear Information System (INIS)

    Gerard, P.; Deneuville, A.; Hollinger, G.; Duc, Tran Minh

    1977-01-01

    We show that evaporated tungsten trioxide amorphous layers commonly used in electrochromic displays actually have the composition WO_2_._7H_y (0.2< y<0.5). We emphasize that coloration of virgin transparent films can be obtained without injection of any external ion into the layer, and further that around a critical substoichiometry by sputtering, namely, WO_2_._5, one can prepare blue virgin layers without any hydrogen. The effect of substoichiometry on the valence of tungsten atoms has been followed by XPS measurements of sputtered layers.

  15. Color in ''tungsten trioxide'' thin films

    International Nuclear Information System (INIS)

    Gerard, P.; Deneuville, A.; Hollinger, G.; Tran Minh Duc

    1977-01-01

    We show that evaporated tungsten trioxide amorphous layers commonly used in electrochromic displays actually have the composition WO/sub 2.7/H/sub y/ (0.2< y<0.5). We emphasize that coloration of virgin transparent films can be obtained without injection of any external ion into the layer, and further that around a critical substoichiometry by sputtering, namely, WO/sub 2.5/, one can prepare blue virgin layers without any hydrogen. The effect of substoichiometry on the valence of tungsten atoms has been followed by XPS measurements of sputtered layers

  16. GENERATION, TRANSPORT AND DEPOSITION OF TUNGSTEN-OXIDE AEROSOLS AT 1000 C IN FLOWING AIR-STEAM MIXTURES.

    Energy Technology Data Exchange (ETDEWEB)

    GREENE,G.A.; FINFROCK,C.C.

    2001-10-01

    Experiments were conducted to measure the rates of oxidation and vaporization of pure tungsten rods in flowing air, steam and air-steam mixtures in laminar flow. Also measured were the downstream transport of tungsten-oxide condensation aerosols and their region of deposition, including plateout in the superheated flow tube, rainout in the condenser and ambient discharge which was collected on an array of sub-micron aerosol filters. The nominal conditions of the tests, with the exception of the first two tests, were tungsten temperatures of 1000 C, gas mixture temperatures of 200 C and wall temperatures of 150 C to 200 C. It was observed that the tungsten oxidation rates were greatest in all air and least in all steam, generally decreasing non-linearly with increasing steam mole fraction. The tungsten oxidation rates in all air were more than five times greater than the tungsten oxidation rates in all steam. The tungsten vaporization rate was zero in all air and increased with increasing steam mole fraction. The vaporization rate became maximum at a steam mole fraction of 0.85 and decreased thereafter as the steam mole fraction was increased to unity. The tungsten-oxide was transported downstream as condensation aerosols, initially flowing upwards from the tungsten rod through an 18-inch long, one-inch diameter quartz tube, around a 3.5-inch radius, 90{sup o} bend and laterally through a 24-inch horizontal run. The entire length of the quartz glass flow path was heated by electrical resistance clamshell heaters whose temperatures were individually controlled and measured. The tungsten-oxide plateout in the quartz tube was collected, nearly all of which was deposited at the end of the heated zone near the entrance to the condenser which was cold. The tungsten-oxide which rained out in the condenser as the steam condensed was collected with the condensate and weighed after being dried. The aerosol smoke which escaped the condenser was collected on the sub

  17. Nuclear instrumentation system operating experience and nuclear instrument testing in the EBR-II

    International Nuclear Information System (INIS)

    Yingling, G.E.; Curran, R.N.

    1980-01-01

    In March of 1972 three wide range nuclear channels were purchased from Gulf Atomics Corporation and installed in EBR-II as a test. The three channels were operated as a test until April 1975 when they became a permanent part of the reactor shutdown system. Also described are the activities involved in evaluating and qualifying neutron detectors for LMFBR applications. Included are descriptions of the ANL Components Technology Division Test Program and the EBR-II Nuclear Instrument Test Facilities (NITF) used for the in-reactor testing and a summary of program test results from EBR-II

  18. Lightweight Design of an HTS Coil for the VASIMR Experiment, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II SBIR contract Tai-Yang Research Company of Tennessee proposes to design, fabricate, and test an ultra-lightweight High Temperature Superconducting...

  19. CVD tungsten metallization and electron beam lithography for fabricating submicron interconnects for advanced ULSI

    International Nuclear Information System (INIS)

    Wilson, S.R.; Mattox, R.J.

    1988-01-01

    CVD W (0.45μm thick) and CVD W (0.25μm thick) strapped by Al (0.5μm thick) have been used as metal 1 systems. Electrical and physical data are presented from experiments exploring the effects of processing issues with both e-beam and stepper lithography as well as dry etch chemistry on both metal systems. The special issues encountered with the thick tungsten processing were: (i) Significant e-beam proximity related problems as compared to the sandwich metal layers. The resultant e-beam proximity problem contributed to a high level of metal bridging and poor CD control. (ii) Multiple etch related problems due to mask failure and a lack of etch selectivity. The multilevel masks utilized, consisting of photoresist and plasma enhanced oxide (PEO), failed due to the poor etch selectivity. Poor etch selectivity with respect to the underlying oxide was also observed. These issues were addressed with thicker organic and PEO mask layers as well as changes in etch chemistry. These thick layers were successful in preventing the loss of the mask during etch., but caused problems in the e-beam CD control and did not prevent the degradation of the underlying glass. A higher selectivity etch was developed which greatly reduced the underlying dielectric damage and also allowed the use of the thinner organic and PEO hardmask layers without mask failure

  20. Ab initio and DFT benchmarking of tungsten nanoclusters and tungsten hydrides

    International Nuclear Information System (INIS)

    Skoviera, J.; Novotny, M.; Cernusak, I.; Oda, T.; Louis, F.

    2015-01-01

    We present several benchmark calculations comparing wave-function based methods and density functional theory for model systems containing tungsten. They include W 4 cluster as well as W 2 , WH and WH 2 molecules. (authors)

  1. The Effect of Ion Energy and Substrate Temperature on Deuterium Trapping in Tungsten

    Science.gov (United States)

    Roszell, John Patrick Town

    Tungsten is a candidate plasma facing material for next generation magnetic fusion devices such as ITER and there are major operational and safety issues associated with hydrogen (tritium) retention in plasma facing components. An ion gun was used to simulate plasma-material interactions under various conditions in order to study hydrogen retention characteristics of tungsten thus enabling better predictions of hydrogen retention in ITER. Thermal Desorption Spectroscopy (TDS) was used to measure deuterium retention from ion irradiation while modelling of TDS spectra with the Tritium Migration Analysis Program (TMAP) was used to provide information about the trapping mechanisms involved in deuterium retention in tungsten. X-ray Photoelectron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS) were used to determine the depth resolved composition of specimens used for irradiation experiments. Carbon and oxygen atoms will be among the most common contaminants within ITER. C and O contamination in polycrystalline tungsten (PCW) specimens even at low levels (˜0.1%) was shown to reduce deuterium retention by preventing diffusion of deuterium into the bulk of the specimen. This diffusion barrier was also responsible for the inhibition of blister formation during irradiations at 500 K. These observations may provide possible mitigation techniques for problems associated with tritium retention and mechanical damage to plasma facing components caused by hydrogen implantation. Deuterium trapping in PCW and single crystal tungsten (SCW) was studied as a function of ion energy and substrate temperature. Deuterium retention was shown to decrease with decreasing ion energy below 100 eV/D+. Irradiation of tungsten specimens with 10 eV/D+ ions was shown to retain up to an order of magnitude less deuterium than irradiation with 500 eV/D+ ions. Furthermore, the retention mechanism for deuterium was shown to be consistent across the entire energy range studied (10-500 e

  2. Substructure and electrical resistivity analyses of pure tungsten sheet

    International Nuclear Information System (INIS)

    Trybus, C.L.; Sellers, C.H.; Anderl, R.A.

    1991-01-01

    The substructure of pure tungsten sheet (0.025 mm thick) is examined and quantified by transmission electron microscopy (TEM). Dislocation populations and arrangements are evaluated for as-worked and various annealed conditions of the tungsten sheet. The worked (rolled) tungsten substructure was nonhomogeneous, consisting of areas of very high and low dislocation densities. These results are correlated to resistivity measurements of the tungsten sheet following thermal cycling to 1200 degrees C to determine the substructural changes as a function of temperature. The comparison between the two characterization techniques is used to examine the relationship between structural and electronic properties in tungsten. 15 refs., 6 figs., 2 tabs

  3. The separation of tungsten and molybdenum by the formation of sulphide complexes and extraction into a weak-base resin

    International Nuclear Information System (INIS)

    Fleming, C.A.

    1985-01-01

    The separation of molybdenum from tungten can be achieved if a solution containing molybdate and tungstate ions is reacted with sulphide ions, and the molybdenum sulphide is extracted with an anion-exchangeresin. The separation between molybdenum and tungsten is influenced byfactors such as the pH value of the solution, the concentrations of sulphide and resin in the solution, and the period of contact between theresin and the metal ions in solution. A fundamental study of the interaction between sulphide ions and molybdate or tungstate ions confirmed a mechanism proposed recently in the literature: MeOsup(2-)sub(4)+nHSsup(-)+nHsup(+) is equivalent to MeO 4 sub(-n)Ssub(n)sup(2-)+nH 2 O, where Me = molybdenum or tungsten and n = 1, 2, 3, or 4. In these reaction sequences, each successive step in the reaction (sulphur being substituted for oxygen) is slower than the preceding one, and the molybdate reactions with sulphide are several orders of magnitude faster than the analogous tungsten reactions. As a result, the extent of the complexing of tungsten with sulphide is minimal compared with that of molybdenum in the time span of the extraction experiments. However, the current investigation shows that this is not the cause of the selectivity of anion-exchange resins for molybdenum in this system, and that the separation factor between molybdenum and tungsten is much the same for the precursor tungstate anion as it is for the various tungsten sulphide anions. The selectivity of the resin for molybdenum apparently originates from a thermodynamic preference of the amine functional group on the resin for molybdenum sulphide anions over tungstate or tungsten sulphide anions. It is shown that, under optimum conditions, a separation factor of about 30 between molybdenum and tungsten can be achieved in this system

  4. Deuterium Depth Profile in Neutron-Irradiated Tungsten Exposed to Plasma

    International Nuclear Information System (INIS)

    Shimada, Masashi; Cao, G.; Hatano, Y.; Oda, T.; Oya, Y.; Hara, M.; Calderoni, P.

    2011-01-01

    The effect of radiation damage has been mainly simulated using high-energy ion bombardment. The ions, however, are limited in range to only a few microns into the surface. Hence, some uncertainty remains about the increase of trapping at radiation damage produced by 14 MeV fusion neutrons, which penetrate much farther into the bulk material. With the Japan-US joint research project: Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), the tungsten samples (99.99 % pure from A.L.M.T., 6mm in diameter, 0.2mm in thickness) were irradiated to high flux neutrons at 50 C and to 0.025 dpa in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL). Subsequently, the neutron-irradiated tungsten samples were exposed to a high-flux deuterium plasma (ion flux: 1021-1022 m-2s-1, ion fluence: 1025-1026 m-2) in the Tritium Plasma Experiment (TPE) at the Idaho National Laboratory (INL). First results of deuterium retention in neutron-irradiated tungsten exposed in TPE have been reported previously. This paper presents the latest results in our on-going work of deuterium depth profiling in neutron-irradiated tungsten via nuclear reaction analysis. The experimental data is compared with the result from non neutron-irradiated tungsten, and is analyzed with the Tritium Migration Analysis Program (TMAP) to elucidate the hydrogen isotope behavior such as retention and depth distribution in neutron-irradiated and non neutron-irradiated tungsten.

  5. Neutrino Oscillation Experiments with J-PARC: T2K, T2K-II and Hyper-Kamiokande

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The T2K experiment started the operation in 2010, and advances neutrino physics with the discovery of electron neutrino appearance in the muon neutrino beam and precision measurements of neutrino oscillation parameters. In 2016, the measurements of anti-neutrino oscillation directly constrain CP violation in neutrino oscillation. In this colloquium, we introduce many physics results from T2K including the most recent one of the CP violation. By utilizing the J-PARC neutrino beam, the upgrade of the T2K experiment (naming T2K-II) is planned and Hyper-Kamiokande is proposed to explore neutrino physics further. In T2K-II, the beam power of J-PARC will be upgraded to 1.3 MW around 2020. Hyper-Kamiokande is the larger Water Cherenkov detector of 520 k...

  6. Experience in the chemistry field from the operating cycle of Grohnde and Philippsburg II nuclear power stations

    International Nuclear Information System (INIS)

    Jacobi, G.; Ruehle, W.

    1987-01-01

    Experience from the primary section of the plants in relation to the activity pattern of corrosion products, indicates primarily that cobalt-free materials have been used throughout in Philippsburg II nuclear power station, which was no longer economically possible at Grohnde because of the advanced stages of manufacture and installation. Consequently, the activity concentration for Co-60 in Philippsburg was lower from the outset than at a comparable time at Grohnde. The second part of the paper discusses experience from the secondary section of the plants, based on the AVT (all volatile treatment) method of operation and its effect on the deposits in the steam generators. The chemical control is described and a comparison is made between the sampling points at Grohnde and Philippsburg II. (orig.) [de

  7. Molecular complexes of tungsten oxotetrachloride with azomethins

    International Nuclear Information System (INIS)

    Abramenko, Yu.V.; Garnovskij, A.D.; Abramenko, V.A.; Medvedeva, T.E.

    1992-01-01

    Series of new molecular complexes of tungsten oxotetrachloride with benza- and salicylalimines of equimolar compositions obtained. Substances are studied using element analysis, IR spectroscopy and conductometry. Octahedral structure of complexes with central atom coordination of benzalaniline molecules via azomethin nitrogen atom, and salicylalimines - via carbonyl oxygen atom of quinoid tantometric form of ligand is assumed

  8. Deuterium transport and trapping in polycrystalline tungsten

    International Nuclear Information System (INIS)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R.; Pawelko, R.J.; Trybus, C.L.; Sellers, C.H.

    1992-01-01

    This paper reports that deuterium permeation studies for polycrystalline tungsten foil have been conducted to provide data for estimating tritium transport and trapping in tungsten-clad divertors proposed for advanced fusion-reactor concepts. Based on a detailed transmission electron microscopy (TEM) microstructural characterization of the specimen material and on analyses of permeation data measured at temperatures ranging form 610 to 823 K for unannealed and annealed tungsten foil (25 μm thick), the authors note the following key results: deuterium transport in tungsten foil is dominated by extensive trapping that varies inversely with prior anneal temperatures of the foil material, the reduction in the trapped fraction correlates with a corresponding elimination of a high density of dislocations in cell-wall structures introduced during the foil fabrication process, trapping behavior in these foils can be modelled using trap energies between 1.3 eV and 1.5 eV and trap densities ranging from 1 x 10 -5 atom fraction

  9. Analytical methods for the determination of tungsten

    International Nuclear Information System (INIS)

    Topping, J.J.

    1978-01-01

    Methods developed and employed in the recent literature (1969 to 1975) for the detection and determination of tungsten in a wide variety of matrices are reviewed. This paper is a supplement to the books, monographs and review papers which deal with the earlier literature. (author)

  10. Distribution of induced activity in tungsten targets

    International Nuclear Information System (INIS)

    Donahue, R.J.; Nelson, W.R.

    1988-09-01

    Estimates are made of the induced activity created during high-energy electron showers in tungsten, using the EGS4 code. Photon track lengths, neutron yields and spatial profiles of the induced activity are presented. 8 refs., 9 figs., 1 tab

  11. Development of tungsten collimators for industrial radiography

    International Nuclear Information System (INIS)

    Varkey, P.A.; Verma, P.B.; Jayakumar, T.K.; Mammachan, M.K.

    2001-01-01

    Collimators are essential components of industrial radiography set up as it provides radiation safety to persons involved in the radiography work. A collimator with optimum design features also helps in reducing the scattered radiation which in turn results in radiographs having better sensitivity. This papers describes the salient design features of the tungsten collimators developed by the BRIT, for industrial radiography. (author)

  12. Joining of Tungsten Armor Using Functional Gradients

    International Nuclear Information System (INIS)

    John Scott O'Dell

    2006-01-01

    The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.

  13. Tungsten and refractory metals 3, proceedings

    International Nuclear Information System (INIS)

    Bose, A.; Dowding, R.J.

    1996-01-01

    The Third International Conference on Tungsten and Refractory Metals was held in Greater Washington DC at the McLean Hilton, McLean Virginia, on November 15--16, 1995. This meeting was the third in a series of conferences held in the Washington DC area. The first meeting was in 1992 and was entitled ''International Conference on Tungsten and Tungsten Alloys.'' In 1994, the scope of the meeting was expanded to include other refractory metals such as molybdenum, iridium, rhenium, tantalum and niobium. The tremendous success of that meeting was the primary motivation for this Conference. The broader scope (the inclusion of other refractory metals and alloys) of the Conference was kept intact for this meeting. In fact, it was felt that the developments in the technology of these materials required a common forum for the interchange of current research information. The papers presented in this meeting examined the rapid advancements in the technology of refractory metals, with special emphasis on the processing, structure, and properties. Among the properties there was emphasis on both quasi-static and dynamic rates. Another topic that received considerable interest was the area of refractory carbides and tungsten-copper composites. One day of concurrent session was necessary to accommodate all of the presentations

  14. CALICE silicon-tungsten electromagnetic calorimeter

    Indian Academy of Sciences (India)

    A highly granular electromagnetic calorimeter prototype based on tungsten absorber and sampling units equipped with silicon pads as sensitive devices for signal collection is under construction. The full prototype will have in total 30 layers and be read out by about 10000 Si cells of 1 × 1 cm2. A first module consisting of 14 ...

  15. Consolidation of tungsten disilicide by plasma spraying

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Matějíček, Jiří; Rohan, Pavel; Janča, J.

    2007-01-01

    Roč. 52, č. 3 (2007), s. 311-320 ISSN 0001-7043 R&D Projects: GA ČR(CZ) GA104/05/0540 Institutional research plan: CEZ:AV0Z20430508 Keywords : Water stabilized plasma * tungsten disilicide * plasma deposition * thermal spray coatings Subject RIV: JJ - Other Materials

  16. Electrospark doping of steel with tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Denisova, Yulia, E-mail: yukolubaeva@mail.ru; Shugurov, Vladimir, E-mail: shugurov@opee.hcei.tsc.ru [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); Petrikova, Elizaveta, E-mail: elizmarkova@yahoo.com [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 36 Lenin Str. Tomsk, 634050 (Russian Federation); Seksenalina, Malika, E-mail: sportmiss@bk.ru [National Research Tomsk Polytechnic University, 30 Lenin Str. Tomsk, 634050 (Russian Federation); Ivanova, Olga, E-mail: ivaov@mail.ru; Ikonnikova, Irina, E-mail: irinaikonnikova@yandex.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq. Tomsk, 634003 (Russian Federation); Kunitsyna, Tatyana, E-mail: kma11061990@mail.ru; Vlasov, Victor, E-mail: rector@tsuab.ru [National Research Tomsk Polytechnic University, 30 Lenin Str. Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, 2 Solyanaya Sq. Tomsk, 634003 (Russian Federation); Klopotov, Anatoliy, E-mail: klopotovaa@tsuab.ru [National Research Tomsk State University, 36 Lenin Str. Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, 2 Solyanaya Sq. Tomsk, 634003 (Russian Federation); Ivanov, Yuriy, E-mail: yufi55@mail.ru [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 36 Lenin Str. Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Str. Tomsk, 634050 (Russian Federation)

    2016-01-15

    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensional approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties.

  17. Technique for investigation on tungsten crack resistance

    International Nuclear Information System (INIS)

    Uskov, E.I.; Babak, A.V.

    1983-01-01

    The possibility of using the linear destruction mechanic for the estimation of tungsten crack resistance in a wide range of temperatures has been studied and grounded. Values critical of stress intensity factors in the 20-2000 deg C temperature range are given

  18. Electrospark doping of steel with tungsten

    International Nuclear Information System (INIS)

    Denisova, Yulia; Shugurov, Vladimir; Petrikova, Elizaveta; Seksenalina, Malika; Ivanova, Olga; Ikonnikova, Irina; Kunitsyna, Tatyana; Vlasov, Victor; Klopotov, Anatoliy; Ivanov, Yuriy

    2016-01-01

    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensional approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties

  19. Superhard Rhenium/Tungsten Diboride Solid Solutions.

    Science.gov (United States)

    Lech, Andrew T; Turner, Christopher L; Lei, Jialin; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B

    2016-11-02

    Rhenium diboride (ReB 2 ), containing corrugated layers of covalently bonded boron, is a superhard metallic compound with a microhardness reaching as high as 40.5 GPa (under an applied load of 0.49 N). Tungsten diboride (WB 2 ), which takes a structural hybrid between that of ReB 2 and AlB 2 , where half of the boron layers are planar (as in AlB 2 ) and half are corrugated (as in ReB 2 ), has been shown not to be superhard. Here, we demonstrate that the ReB 2 -type structure can be maintained for solid solutions of tungsten in ReB 2 with tungsten content up to a surprisingly large limit of nearly 50 atom %. The lattice parameters for the solid solutions linearly increase along both the a- and c-axes with increasing tungsten content, as evaluated by powder X-ray and neutron diffraction. From micro- and nanoindentation hardness testing, all of the compositions within the range of 0-48 atom % W are superhard, and the bulk modulus of the 48 atom % solid solution is nearly identical to that of pure ReB 2 . These results further indicate that ReB 2 -structured compounds are superhard, as has been predicted from first-principles calculations, and may warrant further studies into additional solid solutions or ternary compounds taking this structure type.

  20. Technical Information on the Carbonation of the EBR-II Reactor, Summary Report Part 1: Laboratory Experiments and Application to EBR-II Secondary Sodium System

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Sherman

    2005-04-01

    Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/or to comply with decommissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidified carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, U.S.A. This report is Part 1 of a two-part report. It is divided into three sections. The first section describes the chemistry of carbon dioxide-water-sodium reactions. The second section covers the laboratory experiments that were conducted in order to develop the residual sodium deactivation process. The third section discusses the application of the deactivation process to the treatment of residual sodium within the EBR-II secondary sodium cooling system. Part 2 of the report, under separate cover, describes the application of the technique to residual sodium

  1. Electrokinetic treatment of firing ranges containing tungsten-contaminated soils

    International Nuclear Information System (INIS)

    Braida, Washington; Christodoulatos, Christos; Ogundipe, Adebayo; Dermatas, Dimitris; O'Connor, Gregory

    2007-01-01

    Tungsten-based alloys and composites are being used and new formulations are being considered for use in the manufacturing of different types of ammunition. The use of tungsten heavy alloys (WHA) in new munitions systems and tungsten composites in small caliber ammunition could potentially release substantial amounts of this element into the environment. Although tungsten is widely used in industrial and military applications, tungsten's potential environmental and health impacts have not been thoroughly addressed. This necessitates the research and development of remedial technologies to contain and/or remove tungsten from soils that may serve as a source for water contamination. The current work investigates the feasibility of using electrokinetics for the remediation of tungsten-contaminated soils in the presence of other heavy metals of concern such as Cu and Pb with aim to removing W from the soil while stabilizing in situ, Pb and Cu

  2. ITER tungsten divertor design development and qualification program

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, T., E-mail: takeshi.hirai@iter.org [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint Paul lez Durance (France); Escourbiac, F.; Carpentier-Chouchana, S.; Fedosov, A.; Ferrand, L.; Jokinen, T.; Komarov, V.; Kukushkin, A.; Merola, M.; Mitteau, R.; Pitts, R.A.; Shu, W.; Sugihara, M. [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint Paul lez Durance (France); Riccardi, B. [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Suzuki, S. [JAEA, Fusion Research and Development Directorate JAEA, 801-1 Mukouyama, Naka, Ibaragi 311-0193 (Japan); Villari, R. [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, I-00044 Frascati, Rome (Italy)

    2013-10-15

    Highlights: • Detailed design development plan for the ITER tungsten divertor. • Latest status of the ITER tungsten divertor design. • Brief overview of qualification program for the ITER tungsten divertor and status of R and D activity. -- Abstract: In November 2011, the ITER Council has endorsed the recommendation that a period of up to 2 years be set to develop a full-tungsten divertor design and accelerate technology qualification in view of a possible decision to start operation with a divertor having a full-tungsten plasma-facing surface. To ensure a solid foundation for such a decision, a full tungsten divertor design, together with a demonstration of the necessary high performance tungsten monoblock technology should be completed within the required timescale. The status of both the design and technology R and D activity is summarized in this paper.

  3. Computer simulations for thorium doped tungsten crystals

    Energy Technology Data Exchange (ETDEWEB)

    Eberhard, Bernd

    2009-07-17

    Tungsten has the highest melting point among all metals in the periodic table of elements. Furthermore, its equilibrium vapor pressure is by far the lowest at the temperature given. Thoria, ThO{sub 2}, as a particle dopant, results in a high temperature creep resistant material. Moreover, thorium covered tungsten surfaces show a drastically reduced electronic work function. This results in a tremendous reduction of tip temperatures of cathodes in discharge lamps, and, therefore, in dramatically reduced tungsten vapor pressures. Thorium sublimates at temperatures below those of a typical operating cathode. For proper operation, a diffusional flow of thorium atoms towards the surface has to be maintained. This atomic flux responds very sensitively on the local microstructure, as grain boundaries as well as dislocation cores offer ''short circuit paths'' for thorium atoms. In this work, we address some open issues of thoriated tungsten. A molecular dynamics scheme (MD) is used to derive static as well as dynamic material properties which have their common origin in the atomistic behavior of tungsten and thorium atoms. The interatomic interactions between thorium and tungsten atoms are described within the embedded atom model (EAM). So far, in literature no W-Th interaction potentials on this basis are described. As there is no alloying system known between thorium and tungsten, we have determined material data for the fitting of these potentials using ab-initio methods. This is accomplished using the full potential augmented plane wave method (FLAPW), to get hypothetical, i.e. not occurring in nature, ''alloy'' data of W-Th. In order to circumvent the limitations of classical (NVE) MD schemes, we eventually couple our model systems to external heat baths or volume reservoirs (NVT, NPT). For the NPT ensemble, we implemented a generalization of the variable cell method in combination with the Langevin piston, which results in a

  4. Computer simulations for thorium doped tungsten crystals

    International Nuclear Information System (INIS)

    Eberhard, Bernd

    2009-01-01

    Tungsten has the highest melting point among all metals in the periodic table of elements. Furthermore, its equilibrium vapor pressure is by far the lowest at the temperature given. Thoria, ThO 2 , as a particle dopant, results in a high temperature creep resistant material. Moreover, thorium covered tungsten surfaces show a drastically reduced electronic work function. This results in a tremendous reduction of tip temperatures of cathodes in discharge lamps, and, therefore, in dramatically reduced tungsten vapor pressures. Thorium sublimates at temperatures below those of a typical operating cathode. For proper operation, a diffusional flow of thorium atoms towards the surface has to be maintained. This atomic flux responds very sensitively on the local microstructure, as grain boundaries as well as dislocation cores offer ''short circuit paths'' for thorium atoms. In this work, we address some open issues of thoriated tungsten. A molecular dynamics scheme (MD) is used to derive static as well as dynamic material properties which have their common origin in the atomistic behavior of tungsten and thorium atoms. The interatomic interactions between thorium and tungsten atoms are described within the embedded atom model (EAM). So far, in literature no W-Th interaction potentials on this basis are described. As there is no alloying system known between thorium and tungsten, we have determined material data for the fitting of these potentials using ab-initio methods. This is accomplished using the full potential augmented plane wave method (FLAPW), to get hypothetical, i.e. not occurring in nature, ''alloy'' data of W-Th. In order to circumvent the limitations of classical (NVE) MD schemes, we eventually couple our model systems to external heat baths or volume reservoirs (NVT, NPT). For the NPT ensemble, we implemented a generalization of the variable cell method in combination with the Langevin piston, which results in a set of Langevin equations, i.e. stochastic

  5. Trends in tungsten coil atomic spectrometry

    Science.gov (United States)

    Donati, George L.

    Renewed interest in electrothermal atomic spectrometric methods based on tungsten coil atomizers is a consequence of a world wide increasing demand for fast, inexpensive, sensitive, and portable analytical methods for trace analysis. In this work, tungsten coil atomic absorption spectrometry (WCAAS) and tungsten coil atomic emission spectrometry (WCAES) are used to determine several different metals and even a non-metal at low levels in different samples. Improvements in instrumentation and new strategies to reduce matrix effects and background signals are presented. Investigation of the main factors affecting both WCAAS and WCAES analytical signals points to the importance of a reducing, high temperature gas phase in the processes leading to atomic cloud generation. Some more refractory elements such as V and Ti were determined for the first time by double tungsten coil atomic emission spectrometry (DWCAES). The higher temperatures provided by two atomizers in DWCAES also allowed the detection of Ag, Cu and Sn emission signals for the first time. Simultaneous determination of several elements by WCAES in relatively complex sample matrices was possible after a simple acid extraction. The results show the potential of this method as an alternative to more traditional, expensive methods for fast, more effective analyses and applications in the field. The development of a new metallic atomization cell is also presented. Lower limits of detection in both WCAAS and WCAES determinations were obtained due to factors such as better control of background signal, smaller, more isothermal system, with atomic cloud concentration at the optical path for a longer period of time. Tungsten coil-based methods are especially well suited to applications requiring low sample volume, low cost, sensitivity and portability. Both WCAAS and WCAES have great commercial potential in fields as diverse as archeology and industrial quality control. They are simple, inexpensive, effective

  6. Operating Experience with Power Reactors. Proceedings of the Conference on Operating Experience with Power Reactors. Vol. II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-10-15

    At the beginning of 1963 nuclear power plants produced some 3 500 000 kW of electrical power to different distribution grids around the world. Much significant operating experience has been gained with these power reactors, but this experience is often not collected in such a way as to make it easily available. The International Atomic Energy Agency convened a Conference on Operating Experience with Power Reactors in Vienna from 4 -8 June 1963 which was attended by 240 participants representing 27 of the Agency's Member States and six international organizations. At the Conference, 42 papers giving detailed experience with more than 20 nuclear power stations were discussed. Although similar meetings on a national or regional scale have been held earlier in various countries, this is the first arranged by the Agency on a world-wide basis. Some of the detailed material may have been given earlier but for the most part it represents new and recently acquired experience, and for the first time it has been possible to compile in one place such extensive material on the operating experience with power reactors. The Conference discussed the experience gained both generally in the context of national and international nuclear power development programmes, and more specifically in the detailed operating experience with different power reactor stations. In addition, various plant components, fuel cycles, staffing of nuclear plants and licensing of such staff were treated. It is hoped that these Proceedings will be of interest not only to nuclear , plant designers and operators who daily encounter problems similar to those discussed by the Conference, but also to those guiding the planning and implementation of power development programmes.

  7. Experimental studies on tungsten-armour impact on nuclear responses of solid breeding blanket

    International Nuclear Information System (INIS)

    Sato, Satoshi; Nakao, Makoto; Verzilov, Yury; Ochiai, Kentaro; Wada, Masayuki; Kubota, Naoyoshi; Kondo, Keitaro; Yamauchi, Michinori; Nishitani, Takeo

    2005-01-01

    In order to experimentally evaluate the tungsten armour impact on tritium production of the solid breeding blanket being developed by JAERI for tokamak-type DEMO reactors, neutronics integral experiments have been performed using DT neutrons at the Fusion Neutron Source facility of JAERI. Solid breeding blanket mockups relevant to the DEMO blanket have been applied in this study. The mockups are made of a set of layers consisting of 0-25.2 mm thick tungsten, 16 mm thick F82H, 12 mm thick Li 2 TiO 3 and 100-200 mm thick beryllium with a cross-section of 660 x 660 mm in maximum. Pellets of Li 2 CO 3 are embedded in the Li 2 TiO 3 layers to measure the tritium production rate. By installing the 5 mm, 12.6 mm and 25.2 mm thick tungsten armours, the sum of the integrated tritium productions at the pellets are reduced by about 2.1%, 2.5% and 6.1% relative to the case without the armour, respectively. Numerical calculations have been conducted using the Monte Carlo code. In the case of the mockups with the tungsten armour, calculation results for the sum of the integrated tritium productions agree well with the experimental data within 4% and 19% in the experiments without and with a neutron reflector, respectively

  8. Experimental studies on tungsten-armour impact on nuclear responses of solid breeding blanket

    Science.gov (United States)

    Sato, Satoshi; Nakao, Makoto; Verzilov, Yury; Ochiai, Kentaro; Wada, Masayuki; Kubota, Naoyoshi; Kondo, Keitaro; Yamauchi, Michinori; Nishitani, Takeo

    2005-07-01

    In order to experimentally evaluate the tungsten armour impact on tritium production of the solid breeding blanket being developed by JAERI for tokamak-type DEMO reactors, neutronics integral experiments have been performed using DT neutrons at the Fusion Neutron Source facility of JAERI. Solid breeding blanket mockups relevant to the DEMO blanket have been applied in this study. The mockups are made of a set of layers consisting of 0-25.2 mm thick tungsten, 16 mm thick F82H, 12 mm thick Li2TiO3 and 100-200 mm thick beryllium with a cross-section of 660 × 660 mm in maximum. Pellets of Li2CO3 are embedded in the Li2TiO3 layers to measure the tritium production rate. By installing the 5 mm, 12.6 mm and 25.2 mm thick tungsten armours, the sum of the integrated tritium productions at the pellets are reduced by about 2.1%, 2.5% and 6.1% relative to the case without the armour, respectively. Numerical calculations have been conducted using the Monte Carlo code. In the case of the mockups with the tungsten armour, calculation results for the sum of the integrated tritium productions agree well with the experimental data within 4% and 19% in the experiments without and with a neutron reflector, respectively.

  9. Experimental studies on tungsten-armor impact on nuclear responses of solid breeding blanket

    International Nuclear Information System (INIS)

    Sato, S.; Nakao, M.; Verzilov, Y.; Ochiai, K.; Wada, M.; Kubota, N.; Kondo, K.; Yamauchi, M.; Enoeda, M.; Nishitani, T.

    2005-01-01

    In order to experimentally evaluate the tungsten armor impact on tritium production of the solid breeding blanket being developed by JAERI for tokamak-type DEMO reactors, neutronics integral experiments have been performed by using DT neutrons at Fusion Neutron Source (FNS) facility of JAERI. Solid breeding blanket mockups relevant to the DEMO blanket have been applied in this study. The mockups are constructed by a set of layers consisting of 0 - 25.2 mm thick tungsten, 16 mm thick F82H, 12 mm thick Li 2 TiO 3 and 100 - 200mm thick beryllium with cross-section of 660 x 660 mm in maximum. Pellets of Li 2 CO 3 are embedded inside the Li 2 TiO 3 layers to measure the tritium production rate. By installing the 5, 12.6 and 25.2 mm thick tungsten armors, sum of the integrated tritium productions at the pellets are reduced by about 2, 3 and 6 % relative to the case without the armor, respectively. Numerical calculations have been conducted using the Monte Carlo code. Calculation results for sum of the integrated tritium productions in the case with the tungsten armor agree well with the experiment data within 4% and 19% under condition without and with a neutron reflector, respectively. (author)

  10. Four Gaucher disease type II patients with three novel mutations: a single centre experience from Turkey.

    Science.gov (United States)

    Bulut, Fatma Derya; Kör, Deniz; Şeker-Yılmaz, Berna; Hergüner, Özlem; Ceylaner, Serdar; Özkınay, Ferda; Kılavuz, Sebile; Önenli-Mungan, Neslihan

    2018-04-14

    Gaucher disease is the most common lysosomal storage disorder due to glucosylceramidase enzyme deficiency. There are three subtypes of the disease. Neurological involvement accompanies visceral and haematological findings only in type II and type III Gaucher patients. Type II is the acute progressive neuronopathic form which is the most severe and rare subtype. Clinical findings are recognized prenatally or in the first months of life and followed by death within the first two years of age. Among our 81 Gaucher patients, we identified 4 (4,9%) type II patients in our metabolic centre. This rate is significantly higher than the rate reported in the literature (Gaucher patients with three novel mutations and one perinatal lethal form with generalized ichthyosis which is a very rare disorder. Additionally, we would like to highlight the phenotypic heterogeneity not only between the subtypes, also even in the same type.

  11. Considerations for advanced reactor design based on EBR-II experience

    International Nuclear Information System (INIS)

    King, R. W.

    1999-01-01

    The long-term success of the Experimental Breeder Reactor-II (EBR-II) provides several insights into fundamental characteristics and design features of a nuclear generating station that enhance safety, operability, and maintainability. Some of these same characteristics, together with other features, offer the potential for operational lifetimes well beyond the current licensing time frame, and improved reliability that could potentially reduce amortized capital costs as well as overall operation and maintenance costs if incorporated into advanced plant designs. These features and characteristics are described and the associated benefits are discussed

  12. Test beam results for an upgraded forward tagger of the L3 experiment at LEP II

    International Nuclear Information System (INIS)

    Chemarin, M.; Depasse, P.; Fay, J.; Felcini, M.; Fredj, L.; Ille, B.; Nessi-Tedaldi, F.; Susinno, G.F.

    1994-01-01

    We have tested new scintillator modules with silicon photodiode readout for the upgraded Active Lead Rings (ALR) of the L3 detector at LEP II. Results are presented from data recorded in muon and electron test beams with particular emphasis on the light production and collection as a function of the particle impact position on the scintillator modules. The results from the beam test data will be used for the design of the readout and trigger electronics in conjunction with the required ALR performance as an electron tagger and beam background monitor at LEP II. ((orig.))

  13. Dissociative experiences in bipolar disorder II: Are they related to childhood trauma and obsessive-compulsive symptoms?

    Directory of Open Access Journals (Sweden)

    Gul Eryilmaz

    2015-04-01

    Full Text Available Objective The aim of this study is to investigate the presence of dissociative symptoms and whether they are related to childhood trauma and obsessive-compulsive symptoms in bipolar disorder type II (BD-II. Methods Thirty-three euthymic patients (HDRS<8, YMRS<5 and 50 healthy subjects were evaluated by SCID-I and SCID-NP. We excluded all first and second-axis comorbidities. All patients and healthy subjects were examined with the Dissociative Experiences Scale (DES, Childhood Trauma Questionnaire (CTQ-53, and Yale-Brown Obsessive-Compulsive Disorder scale (Y-BOCS. Results In pairwise comparisons between the BD-II and control groups, the total CTQ, emotional abuse, emotional neglect, DES, and total Y-BOCS scores in the BD-II group were significantly higher than those in the control group (p < 0.05. There were five cases with DES scores over 30 (15.2% and one case (2% in the control group. DES was weakly correlated with total CTQ and Y-BOCS in patients diagnosed with BD-II (r = 0.278, p < 0.05 and r = 0.217, p < 0.05, respectively. While there was no correlation between total CTQ and Y-BOCS, the CTQ sexual abuse subscale was found to be related to Y-BOCS (r = 0.330, p < 0.05. Discussion These results suggest that there is a relation between childhood traumas and obsessive-compulsive symptoms, or that dissociative symptoms are more associated with anxiety than obsessive symptoms, which prevents the increase of obsessive-compulsive symptoms in BD-II.

  14. Prompt ignition of a unipolar arc on helium irradiated tungsten

    International Nuclear Information System (INIS)

    Kajita, Shin; Takamura, Shuichi; Ohno, Noriyasu

    2009-01-01

    A fibreform nanostructured layer is formed on a tungsten surface by helium plasma bombardment. The helium fluence was of the order of 10 26 m -2 , and the surface temperature and incident ion energy during helium irradiation were, respectively, 1900 K and 75 eV. By irradiating a laser pulse to the surface in the plasma, a unipolar arc, which many people have tried to verify in well-defined experiments, is promptly initiated and continued for a much longer time than the laser pulse width. The laser pulse width (∼0.6 ms) and power (∼5 MJ m -2 ) are similar to the heat load accompanied by type-I edge localized modes (ELMs) in ITER. The unipolar arc is verified from an increase in the floating potential, a moving arc spot detected by a fast camera and arcing traces on the surface. This result suggests that the nanostructure on the tungsten surface formed by the bombardment of helium, which is a fusion product, could significantly change the ignition property of arcing, and ELMs become a trigger of unipolar arcing, which would be a great impurity source in fusion devices. (letter)

  15. Dynamic SEM wear studies of tungsten carbide cermets

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined. Etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the WC and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation. The wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  16. Deuterium retention in molten salt electrodeposition tungsten coatings

    International Nuclear Information System (INIS)

    Zhou, Hai-Shan; Xu, Yu-Ping; Sun, Ning-Bo; Zhang, Ying-Chun; Oya, Yasuhisa; Zhao, Ming-Zhong; Mao, Hong-Min; Ding, Fang; Liu, Feng; Luo, Guang-Nan

    2016-01-01

    Highlights: • We investigate D retention in electrodeposition W coatings. • W coatings are exposed to D plasmas in the EAST tokamak. • A cathodic current density dependence on D retention is found. • Electrodeposition W exhibits lower D retention than VPS-W. - Abstract: Molten salt electrodeposition is a promising technology to manufacture the first wall of a fusion reactor. Deuterium (D) retention behavior in molten salt electrodeposition tungsten (W) coatings has been investigated by D-plasma exposure in the EAST tokamak and D-ion implantation in an ion beam facility. Tokamak exposure experiments demonstrate that coatings prepared with lower current density exhibit less D retention and milder surface damage. Deuterium-ion implantation experiments indicate the D retention in the molten salt electrodeposition W is less than that in vacuum plasma spraying W and polycrystalline W.

  17. Tungsten Z-Pinch Long Implosions on the Saturn Generator

    International Nuclear Information System (INIS)

    DOUGLAS, MELISSA R.; DEENEY, Christopher; SPIELMAN, RICK B.; COVERDALE, CHRISTINE A.; RODERICK, N.F.; HAINES, M.G.

    1999-01-01

    Recent success on the Saturn and Z accelerators at Sandia National Laboratories have demonstrated the ability to scale z-pinch parameters to increasingly larger current pulsed power facilities. Next generation machines will require even larger currents (>20 MA), placing further demands on pulsed power technology. To this end, experiments have been carried out on Saturn operating in a long pulse mode, investigating the potential of lower voltages and longer implosion times while still maintaining pinch fidelity. High wire number, 25 mm diameter tungsten arrays were imploded with implosion times ranging from 130 to 240 ns. The results were comparable to those observed in the Saturn short pulse mode, with risetimes on the order of 4.5 to 6.5 ns. Experimental data will be presented, along with two dimensional radiation magnetohydrodynamic simulations used to explain and reproduce the experiment

  18. Deuterium retention in molten salt electrodeposition tungsten coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hai-Shan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xu, Yu-Ping [Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Sun, Ning-Bo; Zhang, Ying-Chun [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing (China); Oya, Yasuhisa [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka (Japan); Zhao, Ming-Zhong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Mao, Hong-Min [Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Ding, Fang; Liu, Feng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Luo, Guang-Nan, E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Hefei Center for Physical Science and Technology, Hefei (China); Hefei Science Center of Chinese Academy of Science, Hefei (China)

    2016-12-15

    Highlights: • We investigate D retention in electrodeposition W coatings. • W coatings are exposed to D plasmas in the EAST tokamak. • A cathodic current density dependence on D retention is found. • Electrodeposition W exhibits lower D retention than VPS-W. - Abstract: Molten salt electrodeposition is a promising technology to manufacture the first wall of a fusion reactor. Deuterium (D) retention behavior in molten salt electrodeposition tungsten (W) coatings has been investigated by D-plasma exposure in the EAST tokamak and D-ion implantation in an ion beam facility. Tokamak exposure experiments demonstrate that coatings prepared with lower current density exhibit less D retention and milder surface damage. Deuterium-ion implantation experiments indicate the D retention in the molten salt electrodeposition W is less than that in vacuum plasma spraying W and polycrystalline W.

  19. Joining of Tungsten Cermet Nuclear Fuel, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear Thermal Propulsion (NTP) has been identified as a critical technology needed for human missions to Mars and beyond due to its increased specific impulse...

  20. The Design and Use of Tungsten Coated TZM Molybdenum Tile Inserts in the DIII-D Tokamak Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Christopher [General Atomics, San Diego; Nygren, R. E. [Sandia National Laboratories (SNL); Chrobak, C P. [General Atomics, San Diego; Buchenauer, Dean [Sandia National Laboratories (SNL); Holtrop, Kurt [General Atomics, San Diego; Unterberg, Ezekial A. [ORNL; Zach, Mike P. [ORNL

    2017-08-01

    Future tokamak devices are envisioned to utilize a high-Z metal divertor with tungsten as theleading candidate. However, tokamak experiments with tungsten divertors have seen significantdetrimental effects on plasma performance. The DIII-D tokamak presently has carbon as theplasma facing surface but to study the effect of tungsten on the plasma and its migration aroundthe vessel, two toroidal rows of carbon tiles in the divertor region were modified with high-Zmetal inserts, composed of a molybdenum alloy (TZM) coated with tungsten. A dedicated twoweek experimental campaign was run with the high-Z metal inserts. One row was coated withtungsten containing naturally occurring levels of isotopes. The second row was coated withtungsten where the isotope 182W was enhanced from the natural level of 26% up to greater than90%. The different isotopic concentrations enabled the experiment to differentiate between thetwo different sources of metal migration from the divertor. Various coating methods wereexplored for the deposition of the tungsten coating, including chemical vapor deposition,electroplating, vacuum plasma spray, and electron beam physical vapor deposition. The coatingswere tested to see if they were robust enough to act as a divertor target for the experiment. Testsincluded cyclic thermal heating using a high power laser and high-fluence deuterium plasmabombardment. The issues associate with the design of the inserts (tile installation, thermal stress,arcing, leading edges, surface preparation, etc.), are reviewed. The results of the tests used toselect the coating method and preliminary experimental observations are presented.

  1. Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite II{sup TM}: Column experiments

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, Josep [Department of Mining Engineering and Natural Resou-rces, Universitat Politecnica de Catalunya, Bases de Manresa 61-73, 08242 Manresa, Catalonia (Spain); De Pablo, Joan [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona, Catalonia (Spain); Cortina, Jose-Luis, E-mail: jose.luis.cortina@upc.edu [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona, Catalonia (Spain); Water Technology Center, CETaqua, Paseo de los Tilos 3, 08034 Barcelona, Catalonia (Spain); Cama, Jordi; Ayora, Carlos [Institute of Environmental Assessment and Water Research, IDAEA, CSIC, Jordi Girona 18, 08034 Barcelona, Catalonia (Spain)

    2011-10-30

    Highlights: {yields} The efficiency of Apatite II{sup TM} increases as the acidity decreases, then the application of apatite-based materials for metal removal treatments should be restricted to slightly acid to neutral waters. {yields} Because of the preferred process of using phosphate ions to form metal-phosphate precipitates, the mixture with other sources of alkalinity, such as limestone, is proposed to extend the duration of Apatite II{sup TM}. {yields} Compared with other reactive materials such as limestone and caustic magnesia that exhibit a reduction of porosity Apatite II{sup TM} showed stable hydraulic performance. {yields} The extrapolation of the column durabilities to a 1-m-thick passive treatment suggests that the Apatite II{sup TM} filling can be active between 5 and 10 years for an inflow pH exceeding 5. - Abstract: Apatite II{sup TM}, a biogenic hydroxyapatite, was evaluated as a reactive material for heavy metal (Cd, Cu, Co, Ni and Hg) removal in passive treatments. Apatite II{sup TM} reacts with acid water by releasing phosphates that increase the pH up to 6.5-7.5, complexing and inducing metals to precipitate as metal phosphates. The evolution of the solution concentration of calcium, phosphate and metals together with SEM-EDS and XRD examinations were used to identify the retention mechanisms. SEM observation shows low-crystalline precipitate layers composed of P, O and M. Only in the case of Hg and Co were small amounts of crystalline phases detected. Solubility data values were used to predict the measured column experiment values and to support the removal process based on the dissolution of hydroxyapatite, the formation of metal-phosphate species in solution and the precipitation of metal phosphate. Cd{sub 5}(PO{sub 4}){sub 3}OH(s), Cu{sub 2}(PO{sub 4})OH(s), Ni{sub 3}(PO{sub 4}){sub 2}(s), Co{sub 3}(PO{sub 4}){sub 2}8H{sub 2}O(s) and Hg{sub 3}(PO{sub 4}){sub 2}(s) are proposed as the possible mineral phases responsible for the removal

  2. Grid-generated He II turbulence in a finite channel - experiment

    International Nuclear Information System (INIS)

    Niemela, J.J.; Skrbek, L.; Stalp, S.R.

    2001-01-01

    We present experimental data on decaying turbulence, generated by towing a grid through a stationary sample of He II. We describe in detail the experimental apparatus and physical principles that allow observation of up to six orders of magnitude of decaying vortex line density over three orders of magnitude in time using the second sound attenuation technique. (orig.)

  3. Status of the calibration and alignment framework at the Belle II experiment

    Science.gov (United States)

    Dossett, D.; Sevior, M.; Ritter, M.; Kuhr, T.; Bilka, T.; Yaschenko, S.; Belle Software Group, II

    2017-10-01

    The Belle II detector at the Super KEKB e+e-collider plans to take first collision data in 2018. The monetary and CPU time costs associated with storing and processing the data mean that it is crucial for the detector components at Belle II to be calibrated quickly and accurately. A fast and accurate calibration system would allow the high level trigger to increase the efficiency of event selection, and can give users analysis-quality reconstruction promptly. A flexible framework to automate the fast production of calibration constants is being developed in the Belle II Analysis Software Framework (basf2). Detector experts only need to create two components from C++ base classes in order to use the automation system. The first collects data from Belle II event data files and outputs much smaller files to pass to the second component. This runs the main calibration algorithm to produce calibration constants ready for upload into the conditions database. A Python framework coordinates the input files, order of processing, and submission of jobs. Splitting the operation into collection and algorithm processing stages allows the framework to optionally parallelize the collection stage on a batch system.

  4. Remote, under-sodium fuel handling experience at EBR-II

    International Nuclear Information System (INIS)

    King, R.W.; Planchon, H.P.

    1995-01-01

    The EBR-II is a pool-type design; the reactor fuel handling components and entire primary-sodium coolant system are submerged in the primary tank, which is 26 feet in diameter, 26 feet high, and contains 86,000 gallons of sodium. Since the reactor is submerged in sodium, fuel handling operations must be performed blind, making exact positioning and precision control of the fuel handling system components essential. EBR-II operated for 30 years, and the fuel handling system has performed approximately 25,000 fuel transfer operations in that time. Due to termination of the IFR program, EBR-II was shut down on September 30, 1994. In preparation for decommissioning, all fuel in the reactor will be transferred out of EBR-II to interim storage. This intensive fuel handling campaign will last approximately two years, and the number of transfers will be equivalent to the fuel handling done over about nine years of normal reactor operation. With this demand on the system, system reliability will be extremely important. Because of this increased demand, and considering that the system has been operating for about 32 years, system upgrades to increase reliability and efficiency are proceeding. Upgrades to the system to install new digital, solid state controls, and to take advantage of new visualization technology, are underway. Future reactor designs using liquid metal coolant will be able to incorporate imaging technology now being investigated, such as ultraviolet laser imaging and ultrasonic imaging

  5. dE/dx electronics for MARK II experiment at SLAC

    International Nuclear Information System (INIS)

    Bernstein, D.; Boyarski, A.; Coupal, D.; Feldman, G.; Paffrath, L.

    1985-10-01

    This paper describes a 100 MHz pulse digitizer for dE/dx measurements on the MARK II drift chamber at SLAC. The electronics provides the read-out of the detector's 5832 sense based on a 16-channel FASTBUS module. The basic element of the module is the TRW 6-bit Flash-ADC

  6. Operation experience of the UE44 fixed gap APPLE II at SLS

    International Nuclear Information System (INIS)

    Schmidt, T; Calvi, M; Schmitt, T; Strocov, V N; Zimoch, D

    2013-01-01

    All soft x-ray beamlines at the Swiss Light Source (SLS) are served with variable polarization from APPLE II [1] type and electromagnetic undulators. Three APPLE II type undulators are used: a twin and a single standard APPLE II (UE56 and UE54) and a fixed gap APPLE II (UE44) which follows the adjustable-phase undulator approach by R. Carr [2], [3]. The demand to rotate the linear polarization vector from 0 – 180° required all four magnet arrays to be shiftable. This opened the possibility to also vary the energy by a suitable shift of the magnet arrays with a simplified support structure lacking in any gap drive system [4], [5]. The current photon beam quality in linear and circular mode and the pros and cons of the operation of the UE44 will be discussed, namely the underestimated influence of gradients in the complex field distribution. As a consequence the spectra are degraded, but can be recovered by use of distributed coils or by a simple change in the operation mode.

  7. The Experience of Soviet Medicine in World War II 1941-1945. Volume I.

    Science.gov (United States)

    1982-02-25

    countries. The low percentage of neuropsychological patients in the Soviet Army is evidence of the achievements of pre- war years of the Soviet people...unsplinted 269 I I II I fracture did not bother them. To the question of the physician about =npn.aints, they most often pointed out hunger . As early

  8. Microscale Organic Laboratory II: The Benefits Derived from Conversion to the Program and Representative Experiments.

    Science.gov (United States)

    Mayo, Dana W.; And Others

    1985-01-01

    Smaller amounts of materials are used in organic chemistry experiments as a means of improving air quality in the laboratory. Outlines benefits from this approach and describes two representative experiments in detail. These experiments are the Cannizzaro reaction and preparation of an aromatic nitrile. (JN)

  9. Measurement of the charge asymmetry in top-antitop quark production with the CDF II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, Julia; /Karlsruhe U., EKP

    2006-12-01

    The Fermi National Laboratory (Fermilab) operates the Tevatron proton-antiproton collider at a center-of-mass energy of {radical}s = 1.96 TeV, the is therefore the only collider which is today able to produce the heaviest known particle, the top quark. The top quark was discovered at the Tevatron by the CDF and D0 collaborations in 1995. At the Tevatron, most top quarks are produced via the strong interaction, whereby quark-antiquark annihilation dominates with 85%, and gluon fusion contributes with 15%. Considering next-to-leading order (NLO) contributions in the cross section of top-antitop quark production, leads to a slight positive asymmetry in the differential distribution of the production angle {alpha} of the top quarks. This asymmetry is due to the interference of certain NLO contributions. The charge asymmetry A in the cosine of {alpha} is predicted [14] to amount to 4-6%. Information about the partonic rest frame, necessary for a measurement of A in the observable cos {alpha}, is not accessible in the experiment. Thus, they use the rapidity difference of the top and the antitop quark as sensitive variable. This quantity offers the advantage of Lorentz invariance and is uniquely correlated with the cosine of {alpha}, justifying the choice of the rapidity difference to describe the behavior of cos {alpha}. In preparation for a measurement of the charge asymmetry, they conduct several Monte Carlo based studies concerning the effect of different event selection criteria on the asymmetry in the selected event samples. They observe a strong dependence of the measured asymmetry on the number of required jets in the particular event sample. This motivates further studies to understand the influence of additional gluon radiation, which leads to more than four observed jets in an event, on the rapidity distribution of the produced top quarks. They find, that events containing hard gluon radiation are correlated with a strong negative shift of the rapidity

  10. Experimental and numerical simulations of ELM-like transient damage behaviors to different grade tungsten and tungsten alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Lian, Youyun; Chen, Lei; Chen, Zhenkui; Chen, Jiming; Duan, Xuru [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Fan, Jinlian [Central South University, Changsha 410083 (China); Song, Jiupeng [Xiamen Honglu Tungsten & Molybdenum Industry Co., Ltd, Xiamen (China)

    2015-08-15

    Transient heat loads, such as plasma disruptions and ELMs, could induce plastic deformations, cracking, melting, even fatigue cracks and creep of tungsten (W) surface. A high purity W, CVD-W coating, TiC dispersion strengthened and K doped tungsten alloys were tested in a 60 kW electron-beam facility by simulating the transient load events under different base temperatures. It was found that CVD-W, W-TiC and W-K alloys have higher crack thresholds than high purity W, meanwhile CVD-W is more sensitive to the crack disappearing at elevated base temperatures. On the other hand, repetitive pulse loading like ELMs can induce serious network cracks even the power density was quite lower than the crack threshold determined by a single shot. The ABAQUS code was used to simulate the crack behaviors of ITER grade pure W by a single shot and a FE-SAFE code was adopted to estimate the fatigue life under ELMs-like loads. A good agreement with experiment results was found.

  11. Irradiation effects in tungsten-copper laminate composite

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, L.M., E-mail: garrisonlm@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Katoh, Y. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Snead, L.L. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Byun, T.S. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Reiser, J.; Rieth, M. [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2016-12-01

    Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410–780 °C and fast neutron fluences of 0.02–9.0 × 10{sup 25} n/m{sup 2}, E > 0.1 MeV, 0.0039–1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 °C. After only 0.0039 dpa this was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 °C. For elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile. - Highlights: • Fusion reactors need a tough, ductile tungsten plasma-facing material. • The unirradiated tungsten-copper laminate is more ductile than tungsten alone. • After neutron irradiation, the composite has significantly less ductility. • The tungsten behavior appears to dominate the overall composite behavior.

  12. Structure of tungsten electrodeposited from oxide chloride-fluoride molten salts

    International Nuclear Information System (INIS)

    Pavlovskij, V.A.; Reznichenko, V.A.

    1998-01-01

    Investigation results on the influence of electrolysis parameters and electrolyte composition on tungsten cathode deposit structure are presented. The electrolysis was performed in NaCl-NaF-WO 3 molten salts using tungsten and tungsten coated molybdenum cathodes. Morphological and metallographic studies of tungsten crystals were carrier out. Tungsten deposits were obtained in the form of crystalline conglomerates, sponge and high dispersity powder

  13. A Foreground Masking Strategy for [C II] Intensity Mapping Experiments Using Galaxies Selected by Stellar Mass and Redshift

    Science.gov (United States)

    Sun, G.; Moncelsi, L.; Viero, M. P.; Silva, M. B.; Bock, J.; Bradford, C. M.; Chang, T.-C.; Cheng, Y.-T.; Cooray, A. R.; Crites, A.; Hailey-Dunsheath, S.; Uzgil, B.; Hunacek, J. R.; Zemcov, M.

    2018-04-01

    Intensity mapping provides a unique means to probe the epoch of reionization (EoR), when the neutral intergalactic medium was ionized by energetic photons emitted from the first galaxies. The [C II] 158 μm fine-structure line is typically one of the brightest emission lines of star-forming galaxies and thus a promising tracer of the global EoR star formation activity. However, [C II] intensity maps at 6 ≲ z ≲ 8 are contaminated by interloping CO rotational line emission (3 ≤ J upp ≤ 6) from lower-redshift galaxies. Here we present a strategy to remove the foreground contamination in upcoming [C II] intensity mapping experiments, guided by a model of CO emission from foreground galaxies. The model is based on empirical measurements of the mean and scatter of the total infrared luminosities of galaxies at z {10}8 {M}ȯ selected in the K-band from the COSMOS/UltraVISTA survey, which can be converted to CO line strengths. For a mock field of the Tomographic Ionized-carbon Mapping Experiment, we find that masking out the “voxels” (spectral–spatial elements) containing foreground galaxies identified using an optimized CO flux threshold results in a z-dependent criterion {m}{{K}}AB}≲ 22 (or {M}* ≳ {10}9 {M}ȯ ) at z cost of a moderate ≲8% loss of total survey volume.

  14. Detection and reduction of tungsten contamination in ion implantation processes

    International Nuclear Information System (INIS)

    Polignano, M.L.; Galbiati, A.; Grasso, S.; Mica, I.; Barbarossa, F.; Magni, D.

    2016-01-01

    In this paper, we review the results of some studies addressing the problem of tungsten contamination in implantation processes. For some tests, the implanter was contaminated by implantation of wafers with an exposed tungsten layer, resulting in critical contamination conditions. First, DLTS (deep level transient spectroscopy) measurements were calibrated to measure tungsten contamination in ion-implanted samples. DLTS measurements of tungsten-implanted samples showed that the tungsten concentration increases linearly with the dose up to a rather low dose (5 x 10 10 cm -2 ). Tungsten deactivation was observed when the dose was further increased. Under these conditions, ToF-SIMS revealed tungsten at the wafer surface, showing that deactivation was due to surface segregation. DLTS calibration could therefore be obtained in the linear dose regime only. This calibration was used to evaluate the tungsten contamination in arsenic implantations. Ordinary operating conditions and critical contamination conditions of the equipment were compared. A moderate tungsten contamination was observed in samples implanted under ordinary operating conditions. This contamination was easily suppressed by a thin screen oxide. On the contrary, implantations in critical conditions of the equipment resulted in a relevant tungsten contamination, which could be reduced but not suppressed even by a relatively thick screen oxide (up to 150 Aa). A decontamination process consisting of high dose implantations of dummy wafers was tested for its efficiency to remove tungsten and titanium contamination. This process was found to be much more effective for titanium than for tungsten. Finally, DLTS proved to be much more sensitive that TXRF (total reflection X-ray fluorescence) in detecting tungsten contamination. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Detection and reduction of tungsten contamination in ion implantation processes

    Energy Technology Data Exchange (ETDEWEB)

    Polignano, M.L.; Galbiati, A.; Grasso, S.; Mica, I.; Barbarossa, F.; Magni, D. [STMicroelectronics, Agrate Brianza (Italy)

    2016-12-15

    In this paper, we review the results of some studies addressing the problem of tungsten contamination in implantation processes. For some tests, the implanter was contaminated by implantation of wafers with an exposed tungsten layer, resulting in critical contamination conditions. First, DLTS (deep level transient spectroscopy) measurements were calibrated to measure tungsten contamination in ion-implanted samples. DLTS measurements of tungsten-implanted samples showed that the tungsten concentration increases linearly with the dose up to a rather low dose (5 x 10{sup 10} cm{sup -2}). Tungsten deactivation was observed when the dose was further increased. Under these conditions, ToF-SIMS revealed tungsten at the wafer surface, showing that deactivation was due to surface segregation. DLTS calibration could therefore be obtained in the linear dose regime only. This calibration was used to evaluate the tungsten contamination in arsenic implantations. Ordinary operating conditions and critical contamination conditions of the equipment were compared. A moderate tungsten contamination was observed in samples implanted under ordinary operating conditions. This contamination was easily suppressed by a thin screen oxide. On the contrary, implantations in critical conditions of the equipment resulted in a relevant tungsten contamination, which could be reduced but not suppressed even by a relatively thick screen oxide (up to 150 Aa). A decontamination process consisting of high dose implantations of dummy wafers was tested for its efficiency to remove tungsten and titanium contamination. This process was found to be much more effective for titanium than for tungsten. Finally, DLTS proved to be much more sensitive that TXRF (total reflection X-ray fluorescence) in detecting tungsten contamination. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Post-test simulation and analysis of the second full scale CHAN 28-element experiment (validations of CHAN-II (MOD 6) against experiments)

    Energy Technology Data Exchange (ETDEWEB)

    Bayoumi, M H; Muir, W C [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    An experimental program, the CHAN Thermal Chemical Experimental Program, has been setup at WNRE under COG/CANDEV to assess and verify the physical and mathematical models of the CHAN codes. The program has been progressing from studying separate effects in single-element experiments to a full integrated mode in a CANDU 28-element bundle geometry. The CHAN-II series codes are used in the licensing analysis of CANDU reactors. The basic code provides an efficient tool to predict the thermal response of a fuel channel during postulated loss-of-coolant accidents (LOCA) with and without a loss of emergency coolant injection (LOECI) in which the transport of heat by convection is greatly reduced. The code models the progression of the event including fuel channel geometry deformation due to severe overheating. It is the main objective of this paper to discuss further verification of the CHAN-II (MOD 6) computer code against the second full scale 28-element experiment performed at WNRE under COG/CANDEV, designed to represent a Pickering type bundle geometry. The main models and assumptions used in the code will be briefly described. The objective of the experiments is to provide data for the assessment of the physical and mathematical models of the CHAN codes and produce data for code verification under integrated conditions with significant hydrogen production and flow rates similar to the LOCA/LOECI scenario. The issue of whether the Zr/steam reaction is sustainable in a full bundle geometry at elevated temperatures is also examined. A comparison between the predictions of CHAN-II (MOD 6) and the experimental results is discussed. (author).12 refs., 17 figs.

  17. Post-test simulation and analysis of the second full scale CHAN 28-element experiment (validations of CHAN-II (MOD 6) against experiments)

    International Nuclear Information System (INIS)

    Bayoumi, M.H.; Muir, W.C.

    1995-01-01

    An experimental program, the CHAN Thermal Chemical Experimental Program, has been setup at WNRE under COG/CANDEV to assess and verify the physical and mathematical models of the CHAN codes. The program has been progressing from studying separate effects in single-element experiments to a full integrated mode in a CANDU 28-element bundle geometry. The CHAN-II series codes are used in the licensing analysis of CANDU reactors. The basic code provides an efficient tool to predict the thermal response of a fuel channel during postulated loss-of-coolant accidents (LOCA) with and without a loss of emergency coolant injection (LOECI) in which the transport of heat by convection is greatly reduced. The code models the progression of the event including fuel channel geometry deformation due to severe overheating. It is the main objective of this paper to discuss further verification of the CHAN-II (MOD 6) computer code against the second full scale 28-element experiment performed at WNRE under COG/CANDEV, designed to represent a Pickering type bundle geometry. The main models and assumptions used in the code will be briefly described. The objective of the experiments is to provide data for the assessment of the physical and mathematical models of the CHAN codes and produce data for code verification under integrated conditions with significant hydrogen production and flow rates similar to the LOCA/LOECI scenario. The issue of whether the Zr/steam reaction is sustainable in a full bundle geometry at elevated temperatures is also examined. A comparison between the predictions of CHAN-II (MOD 6) and the experimental results is discussed. (author).12 refs., 17 figs

  18. MRP (materiel requirements planning) II education: a team-building experience.

    Science.gov (United States)

    Iemmolo, G R

    1994-05-01

    Conestoga Wood Specialties, a leader in the woodworking industry, is constantly striving for continuous improvement in manufacturing and service. Recently, the company embarked on a major MRP II education effort that served as a framework for team building. This team building concept has carried over into other aspects related to the business, such as the formalization of the sales and operations planning meeting. At Conestoga Wood, it is recognized that successful team building is necessary to achieve and maintain world-class performance.

  19. Results of site validation experiments. Volume II. Supporting documents 5 through 14

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Volume II contains the following supporting documents: Summary of Geologic Mapping of Underground Investigations; Logging of Vertical Coreholes - ''Double Box'' Area and Exploratory Drift; WIPP High Precision Gravity Survey; Basic Data Reports for Drillholes, Brine Content of Facility Internal Strata; Mineralogical Content of Facility Interval Strata; Location and Characterization of Interbedded Materials; Characterization of Aquifers at Shaft Locations; and Permeability of Facility Interval Strate.

  20. The influence of Fe content on spreading ability of tungsten heavy alloys matrix on tungsten surface

    Directory of Open Access Journals (Sweden)

    A. Krzyńska

    2011-07-01

    Full Text Available The results of experimental study of tungsten spreading ability with W-Ni-Co-Fe matrix are presented. The aim of these investigations was to see how Fe concentration in W – Ni – Co matrix influences the wettability of tungsten grains during liquid phase sintering. Four green compact specimens containing 50%W, 10%Co and Ni + Fe = 40% but with different Ni to Fe ratio were prepared. The cylindrical specimen 5mm diameter and 5mm height were put on clean pure tungsten substrate and then 20 minutes heated at 1520oC in hydrogen atmosphere. After heating the specimens were carefully measured and then the specimens for structure observations were prepared. It was concluded, that increase of Fe content decrease the melting temperature of W – Ni – Co alloy. The melting point decrease caused by Fe content increase substantially the spreading ability of tungsten substrate with W – Ni – Co alloy. Metallography investigations showed some microstructure changes in “reaction zone” identified in tungsten substrate – (WNi40-xCo10Fex interface. The results of the study confirmed our earlier observations that even relative small Fe addition promotes Weight Heavy Alloys (WHA liquid phase sintering.

  1. The TETRA-II Experiment to Observe Terrestrial Gamma Flashes at Ground Level - Preliminary Results

    Science.gov (United States)

    Cherry, M. L.; Adams, C.; Al-Nussirat, S.; Bai, S.; Banadaki, Y.; Bitzer, P. M.; Hoffmann, J.; Khosravi, E.; Legault, M.; Orang, M.; Pleshinger, D. J.; Rodriguez, R.; Smith, D.; Trepanier, J. C.; Sunda-Meya, A.; Zimmer, N.

    2017-12-01

    An upgraded version of the TGF and Energetic Thunderstorm Rooftop Array (TETRA-II) consists of an array of BGO scintillators to detect bursts of gamma rays from thunderstorms at ground level in four separate locations: the campus of Louisiana State University in Baton Rouge, Louisiana; the campus of the University of Puerto Rico at Utuado, Puerto Rico; the Centro Nacional de Metrologia de Panama (CENAMEP) in Panama City, Panama; and the Severe Weather Institute and Radar & Lightning Laboratories in Huntsville, Alabama. The original TETRA-I array of NaI scintillators at Louisiana State University detected 37 millisecond-scale bursts of gamma rays at energies 50 keV-2 MeV associated with nearby (brief description of the TETRA-I observations, a description of TETRA-II, and preliminary results of the first events observed by TETRA-II will be presented including frequency and time history of events, spectral information, and correlation with local radar and radio data.

  2. Over Twenty Years Of Experience In ITU TRIGA MARK-II Reactor

    International Nuclear Information System (INIS)

    Yavuz, Hasbi

    2008-01-01

    I.T.U. TRIGA MARK-II Training and Research Reactor, rated at 250 kW steady-state and 1200 MW pulsing power is the only research and training reactor owned and operated by a university in Turkey. Reactor has been operating since March 11, 1979; therefore the reactor has been operating successfully for more than twenty years. Over the twenty years of operation: - The tangential beam tube was equipped with a neutron radiography facility, which consists of a divergent collimator and exposure room; - A computerized data acquisition system was designed and installed such that all parameters of the reactor, which are observed from the console, could be monitored both in normal and pulse operations; - An electrical power calibration system was built for the thermal power calibration of the reactor; - Publications related with I.T.U. TRIGA MARK-II Training and Research Reactor are listed in Appendix; - Two majors undesired shutdown occurred; - The I.T.U. TRIGA MARK-II Training and Research Reactor is still in operation at the moment. (authors)

  3. Development of positron annihilation spectroscopy for investigating deuterium decorated voids in neutron-irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.N., E-mail: chase.taylor@inl.gov [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Shimada, M.; Merrill, B.J. [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Akers, D.W. [Experimental Programs, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Hatano, Y. [Hydrogen Isotope Research Center, University of Toyama, Toyama 930-8555 (Japan)

    2015-08-15

    The present work is a continuation of a recent research to develop and optimize positron annihilation spectroscopy (PAS) for characterizing neutron-irradiated tungsten. Tungsten samples were exposed to neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and damaged to 0.025 and 0.3 dpa. Subsequently, they were exposed to deuterium plasmas in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory. The implanted deuterium was desorbed through sample heating to 900 °C, and Doppler broadening (DB)-PAS was performed both before and after heating. Results show that deuterium impregnated tungsten is identified as having a smaller S-parameter. The S-parameter increases after deuterium desorption. Microstructural changes also occur during sample heating. These effects can be isolated from deuterium desorption by comparing the S-parameters from the deuterium-free back face with the deuterium-implanted front face. The application of using DB-PAS to examine deuterium retention in tungsten is examined.

  4. Development of positron annihilation spectroscopy for investigating deuterium decorated voids in neutron-irradiated tungsten

    Science.gov (United States)

    Taylor, C. N.; Shimada, M.; Merrill, B. J.; Akers, D. W.; Hatano, Y.

    2015-08-01

    The present work is a continuation of a recent research to develop and optimize positron annihilation spectroscopy (PAS) for characterizing neutron-irradiated tungsten. Tungsten samples were exposed to neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and damaged to 0.025 and 0.3 dpa. Subsequently, they were exposed to deuterium plasmas in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory. The implanted deuterium was desorbed through sample heating to 900 °C, and Doppler broadening (DB)-PAS was performed both before and after heating. Results show that deuterium impregnated tungsten is identified as having a smaller S-parameter. The S-parameter increases after deuterium desorption. Microstructural changes also occur during sample heating. These effects can be isolated from deuterium desorption by comparing the S-parameters from the deuterium-free back face with the deuterium-implanted front face. The application of using DB-PAS to examine deuterium retention in tungsten is examined.

  5. Suppression of cavitation in melted tungsten by doping with lanthanum oxide

    International Nuclear Information System (INIS)

    Yuan, Y.; Lu, G.H.; Xu, B.; Fu, B.Q.; Xu, H.Y.; Li, C.; Jia, Y.Z.; Qu, S.L.; Liu, W.; Greuner, H.; Böswirth, B.; Luo, G.-N.

    2014-01-01

    Melting and boiling behaviour of pure tungsten and 1 wt% lanthanum-oxide-doped tungsten (WL10) are investigated, focusing on the material selection with respect to material loss induced by cavitation. Melting experiments under high heat loads are carried out in the high heat flux facility GLADIS. Pulsed hydrogen neutral beams with heat flux of 10 and 23 MW m −2 are applied onto the adiabatically loaded samples for intense surface melting. Melt layer of the two tungsten grades exhibit different microstructure characteristics. Substantive voids owing to cavitation in the liquid phase are observed in pure W and lead to porous resolidified material. However, little cavitation bubbles can be found in the dense resolidified layer of WL10. In order to find out the gaseous sources, vapour collection is performed and the components are subsequently detected. Based on the observations and analyses, the microstructure evolutions corresponding to melting and vapourization behaviour of the two tungsten grades are tentatively described, and furthermore, the underlying mechanisms of cavitation in pure W and its suppression in WL10 are discussed. (paper)

  6. Simulation of tungsten armour cracking due to small ELMs in ITER

    International Nuclear Information System (INIS)

    Pestchanyi, S.; Garkusha, I.; Landman, I.

    2010-01-01

    Simulations of tungsten armour cracking under small ELM-like plasma heat load, which does not cause surface melting, have been performed using the PEGASUS-3D code. A dedicated series of experiments have been performed in the QSPA-Kh50 facility for measurements of the unknown tungsten thermophysical properties and for verification of the PEGASUS-3D simulation results. The simulations revealed that a cellular crack network with average mesh size Λ ∼ 0.5 mm formed after first ELMs and the pattern does not change further. With increasing number of repetitive ELMs loads, the average crack width Δ(n) has a maximum value Δ m . The ratio of Δ m /Λ is equal to the tungsten thermal expansion at the maximum surface temperature. Δ(n) tends to this value exponentially. The number of ELMs n m needed for Δ stabilization depends on the ELMs energy density and time duration, n m ∼ 300 for the simulated ELMs of 0.45 MJ/m 2 and 0.25 ms duration. The PEGASUS-3D code is prepared for simulations of tungsten armour damage under action of ELMs of various energy deposition and time duration. These parameters of ELMs depend on ITER regimes of operation and on how successful will be the efforts on ELMs mitigation.

  7. Simulation of tungsten armour cracking due to small ELMs in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Pestchanyi, S., E-mail: sergey.pestchanyi@ihm.fzk.de [Forschungszentrum Karlsruhe, IHM (Germany); Garkusha, I. [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Landman, I. [Forschungszentrum Karlsruhe, IHM (Germany)

    2010-12-15

    Simulations of tungsten armour cracking under small ELM-like plasma heat load, which does not cause surface melting, have been performed using the PEGASUS-3D code. A dedicated series of experiments have been performed in the QSPA-Kh50 facility for measurements of the unknown tungsten thermophysical properties and for verification of the PEGASUS-3D simulation results. The simulations revealed that a cellular crack network with average mesh size {Lambda} {approx} 0.5 mm formed after first ELMs and the pattern does not change further. With increasing number of repetitive ELMs loads, the average crack width {Delta}(n) has a maximum value {Delta}{sub m}. The ratio of {Delta}{sub m}/{Lambda} is equal to the tungsten thermal expansion at the maximum surface temperature. {Delta}(n) tends to this value exponentially. The number of ELMs n{sub m} needed for {Delta} stabilization depends on the ELMs energy density and time duration, n{sub m} {approx} 300 for the simulated ELMs of 0.45 MJ/m{sup 2} and 0.25 ms duration. The PEGASUS-3D code is prepared for simulations of tungsten armour damage under action of ELMs of various energy deposition and time duration. These parameters of ELMs depend on ITER regimes of operation and on how successful will be the efforts on ELMs mitigation.

  8. In-situ imaging of tungsten surface modification under ITER-like transient heat loads

    Directory of Open Access Journals (Sweden)

    A.A. Vasilyev

    2017-08-01

    Full Text Available Experimental research on behavior of rolled tungsten plates under intense transient heat loads generated by a powerful (a total power of up to 7 MW long-pulse (0.1–0.3ms electron beam with full irradiation area of 2 cm2 was carried out. Imaging of the sample by the fast CCD cameras in the NIR range and with illumination by the 532nm continuous-wave laser was applied for in-situ surface diagnostics during exposure. In these experiments tungsten plates were exposed to heat loads 0.5–1MJ/m2 with a heat flux factor (Fhf close to and above the melting threshold of tungsten at initial room temperature. Crack formation and crack propagation under the surface layer were observed during multiple exposures. Overheated areas with excessive temperature over surrounding surface of about 500K were found on severely damaged samples more than 5ms after beam ending. The application of laser illumination enables to detect areas of intense tungsten melting near crack edges and crack intersections.

  9. Yield strength of molybdenum, tantalum and tungsten at high strain rates and very high temperatures

    International Nuclear Information System (INIS)

    Škoro, G.P.; Bennett, J.R.J.; Edgecock, T.R.; Booth, C.N.

    2012-01-01

    Highlights: ► New experimental data on the yield strength of molybdenum, tantalum and tungsten. ► High strain rate effects at record high temperatures (up to 2700 K). ► Test of the consistency of the Zerilli–Armstrong model at very high temperatures. - Abstract: Recently reported results of the high strain rate, high temperature measurements of the yield strength of tantalum and tungsten have been analyzed along with new experimental results on the yield strength of molybdenum. Thin wires are subjected to high stress by passing a short, fast, high current pulse through a thin wire; the amplitude of the current governs the stress and the repetition rate of the pulses determines the temperature of the wire. The highest temperatures reached in the experiments were 2100 °C (for molybdenum), 2250 °C (for tantalum) and 2450 °C (for tungsten). The strain-rates in the tests were in the range from 500 to 1500 s −1 . The parameters for the constitutive equation developed by Zerilli and Armstrong have been determined from the experimental data and the results have been compared with the data obtained at lower temperatures. An exceptionally good fit is obtained for the deformation of tungsten.

  10. The thermoviscoplastic response of polycrystalline tungsten in compression

    International Nuclear Information System (INIS)

    Lennon, A.M.; Ramesh, K.T.

    2000-01-01

    The thermomechanical response of commercially pure polycrystalline tungsten was investigated over a wide range of strain rates and temperatures. The material was examined in two forms: one an equiaxed recrystallized microstructure and the other a heavily deformed extruded microstructure that was loaded in compression along the extrusion axis. Low strain rate (10 -3 -10 0 s -1 ) compression experiments were conducted on an MTS servo-hydraulic load frame equipped with an infra-red furnace capable of sustaining specimen temperatures in excess of 600 C. High strain rate (10 3 -10 4 s -1 ) experiments were performed on a compression Kolsky bar equipped with an infra-red heating system capable of developing specimen temperatures as high as 800 C. Pressure-shear plate impact experiments were used to obtain shear stress versus shear strain curves at very high rates (∝10 4 -10 5 s -1 ). The recrystallized material was able to sustain very substantial plastic deformations in compression (at room temperature), with a flow stress that appears to be rate-dependent. Intergranular microcracks were developed during the compressive deformations. Under quasi-static loadings a few relatively large axial splitting cracks were formed, while under dynamic loadings a very large number of small, uniformly distributed microcracks (that did not link up to form macrocracks) were developed. The rate of nucleation of microcracks increased dramatically with strain rate. The extruded tungsten is also able to sustain large plastic deformations in compression, with a flow stress that increases with the rate of deformation. The strain hardening of the extruded material is lower than that of the recrystallized material, and is relatively insensitive to the strain rate. (orig.)

  11. Inelastic neutron scattering experiments with the monochromatic imaging mode of the RITA-II spectrometer

    International Nuclear Information System (INIS)

    Bahl, C.R.H.; Lefmann, K.; Abrahamsen, A.B.; Ronnow, H.M.; Saxild, F.; Jensen, T.B.S.; Udby, L.; Andersen, N.H.; Christensen, N.B.; Jakobsen, H.S.; Larsen, T.; Haefliger, P.S.; Streule, S.; Niedermayer, Ch.

    2006-01-01

    Recently a monochromatic multiple data taking mode has been demonstrated for diffraction experiments using a RITA type cold neutron spectrometer with a multi-bladed analyser and a position-sensitive detector. Here, we show how this mode can be used in combination with a flexible radial collimator to perform real inelastic neutron scattering experiments. We present the results from inelastic powder, single crystal dispersion and single crystal constant energy mapping experiments. The advantages and complications of performing these experiments are discussed along with a comparison between the imaging mode and the traditional monochromatic focussing mode

  12. Inelastic neutron scattering experiments with the monochromatic imaging mode of the RITA-II spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bahl, C.R.H. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark) and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark)]. E-mail: christian.bahl@risoe.dk; Lefmann, K. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)]. E-mail: kim.lefmann@risoe.dk; Abrahamsen, A.B. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Ronnow, H.M. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Saxild, F. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Jensen, T.B.S. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Udby, L. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Andersen, N.H. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Christensen, N.B. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Jakobsen, H.S. [Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, DK-2100 Copenhagen (Denmark); Larsen, T. [Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, DK-2100 Copenhagen (Denmark); Haefliger, P.S. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Streule, S.; Niedermayer, Ch. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

    2006-05-15

    Recently a monochromatic multiple data taking mode has been demonstrated for diffraction experiments using a RITA type cold neutron spectrometer with a multi-bladed analyser and a position-sensitive detector. Here, we show how this mode can be used in combination with a flexible radial collimator to perform real inelastic neutron scattering experiments. We present the results from inelastic powder, single crystal dispersion and single crystal constant energy mapping experiments. The advantages and complications of performing these experiments are discussed along with a comparison between the imaging mode and the traditional monochromatic focussing mode.

  13. Characterization of a Cobalt-Tungsten Interconnect

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Caspersen, Michael

    2012-01-01

    is to act both as a diffusion barrier for chromium and provide better protection against high temperature oxidation than a pure cobalt coating. This work presents a characterization of a cobalt-tungsten alloy coating electrodeposited on the ferritic steel Crofer 22 H which subsequently was oxidized in air......A ferritic steel interconnect for a solid oxide fuel cell must be coated in order to prevent chromium evaporation from the steel substrate. The Technical University of Denmark and Topsoe Fuel Cell have developed an interconnect coating based on a cobalt-tungsten alloy. The purpose of the coating...... for 300 h at 800 °C. The coating was characterized with Glow Discharge Optical Spectroscopy (GDOES), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The oxidation properties were evaluated by measuring weight change of coated samples of Crofer 22 H and Crofer 22 APU as a function...

  14. Laser induced white lighting of tungsten filament

    Science.gov (United States)

    Strek, W.; Tomala, R.; Lukaszewicz, M.

    2018-04-01

    The sustained bright white light emission of thin tungsten filament was induced under irradiation with focused beam of CW infrared laser diode. The broadband emission centered at 600 nm has demonstrated the threshold behavior on excitation power. Its intensity increased non-linearly with excitation power. The emission occurred only from the spot of focused beam of excitation laser diode. The white lighting was accompanied by efficient photocurrent flow and photoelectron emission which both increased non-linearly with laser irradiation power.

  15. Spectroscopic modeling for tungsten EUV spectra

    International Nuclear Information System (INIS)

    Murakami, Izumi; Kato, Daiji; Sakaue, Hiroyuki A.; Suzuki, Chihiro; Morita, Shigeru; Goto, Motoshi; Sasaki, Akira; Nakamura, Nobuyuki; Yamamoto, Norimasa; Koike, Fumihiro

    2014-01-01

    We have constructed an atomic model for tungsten extreme ultraviolet (EUV) spectra to reconstruct characteristic spectral feature of unresolved transition array (UTA) observed at 4-7 nm for tungsten ions. In the tungsten atomic modeling, we considered fine-structure levels with the quantum principal number n up to 6 as the atomic structure and calculated the electron-impact collision cross sections by relativistic distorted-wave method, using HULLAC atomic code. We measured tungsten EUV spectra in Large Helical Device (LHD) and Compact Electron Beam Ion Trap device (CoBIT) and compared them with the model calculation. The model successfully explain series of emission peaks at 1.5-3.5 nm as n=5-4 and 6-4 transitions of W"2"4"+ - W"3"2"+ measured in CoBIT and LHD and the charge state distributions were estimated for LHD plasma. The UTA feature observed at 4-7 nm was also successfully reconstructed with our model. The peak at ∼5 nm is produced mainly by many 4f-4d transition of W"2"2"+ - W"3"5"+ ions, and the second peak at ∼6 nm is produced by 4f-4d transition of W"2"5"+ - W"2"8"+ ions, and 4d-4p inner-shell transitions, 4p"54d"n"+"1 - 4p"64d"n, of W"2"9"+ - W"3"5"+ ions. These 4d-4p inner-shell transitions become strong since we included higher excited states such as 4p"54d"n4f state, which ADAS atomic data set does not include for spectroscopic modeling with fine structure levels. (author)

  16. EBIT spectroscopy of Pm-like tungsten

    International Nuclear Information System (INIS)

    Hutton, R.; Zou, Y.; Reyna Almandos, J.; Biedermann, C.; Radtke, R.; Greier, A.; Neu, R.

    2003-01-01

    Methods of VUV electron beam ion trap (EBIT) spectroscopy are applied to the study of Pm-like tungsten (W 13+ ). These data show that theory appears well capable of dealing with these multi-electron (61) ions, at least for high ionization stages. A comparison of other spectroscopic methods applied to the study of other ions of the Pm I sequence is also given, and finally a search for the Pm-like W lines at the ASDEX Upgrade Tokamak is mentioned

  17. Synthesis and electrical characterization of tungsten oxide nanowires

    Institute of Scientific and Technical Information of China (English)

    Huang Rui; Zhu Jing; Yu Rong

    2009-01-01

    Tungsten oxide nanowires of diameters ranging from 7 to 200 nm are prepared on a tungsten rod substrate by using the chemical vapour deposition (CVD) method with vapour-solid (VS) mechanism. Tin powders are used to control oxygen concentration in the furnace, thereby assisting the growth of the tungsten oxide nanowires. The grown tungsten oxide nanowires are determined to be of crystalline W18O49. Ⅰ-Ⅴ curves are measured by an in situ transmission electron microscope (TEM) to investigate the electrical properties of the nanowires. All of the Ⅰ-Ⅴ curves observed are symmetric, which reveals that the tungsten oxide nanowires are semiconducting. Quantitative analyses of the experimental I V curves by using a metal-semiconductor-metal (MSM) model give some intrinsic parameters of the tungsten oxide nanowires, such as the carrier concentration, the carrier mobility and the conductivity.

  18. Process for separation of tungsten and molybdenum by extraction

    International Nuclear Information System (INIS)

    Zelikman, A.N.; Voldman, G.M.; Rumyantsev, V.K.; Ziberov, G.N.; Kagermanian, V.S.

    1976-01-01

    A process for the separation of tungsten and molybdenum by extraction involves the addition of HCl or HNO 3 to an aqueous solution containing tungsten and molybdenum to obtain a pH from 0.5 to 4.3, and introduction of a stabilizer comprising water-soluble phosphorus salts and a complexing agent, hydrogen peroxide, in an amount from 1.5 to 2 mole per 1 g-atom of the total content of tungsten and molybdenum. Then molybdenum is selectively extracted from the resulting aqueous solution with tri-n-butylphosphate with equal volumetric proportioning of the aqueous and organic solutions. Re-extraction of molybdenum and partially tungsten is carried out from the organic extracting agent with an alkali or soda solution. The process makes possible the preparation of tungsten solution containing no more than 0.001 g/l of molybdenum, and an increase in the degree of extraction of tungsten and molybdenum

  19. Safety Research Experiment Facility Project. Conceptual design report. Volume II. Building and facilities

    International Nuclear Information System (INIS)

    1975-12-01

    The conceptual design of Safety Research Experiment Facility (SAREF) site system includes a review and evaluation of previous geotechnical reports for the area where SAREF will be constructed and the conceptual design of access and in-plant roads, parking, experiment-transport-vehicle maneuvering areas, security fencing, drainage, borrow area development and restoration, and landscaping

  20. Separation of tungsten and rhenium on alumina

    Directory of Open Access Journals (Sweden)

    MILOVAN SM. STOILJKOVIC

    2004-09-01

    Full Text Available The conditions for the efficient separation of tungsten(VI and rhenium (VII on alumina were established. The distribution coefficients Kd for tungstate and perrhenate anions, as well as the separation factors a (a = KdWO42-/Kd ReO4- were determined using hydrochloric or nitric acid as the aqueous media. A solution of sodium chloride in the pH range 2–6 was also examined. Under all the tested experimental conditions, alumina is a much better adsorbent for tungsten than for rhenium. The obtained results indicated that the best separation of these two elements is achieved when 0.01– 0.1 mol dm-3 HCl or 1.0 mol dm-3 HNO3 are used as the aqueous media. If NaCl is used as the aqueous phase, the best separation is achieved with 0.20 mol dm-3 NaCl, pH 4–6. Under these experimental conditions, the breakthrough and saturation capacities of alumina for tungsten at pH 4 are 17 and 26 mg W/g Al2O3, respectively. With increasing pH, these values decrease. Thus, at pH 6 they are only 4 and 13 mg W/g Al2O3, respectively.

  1. Controlled nanostructuration of polycrystalline tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    Girault, B. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), LUNAM Universite, Universite de Nantes, Centrale Nantes, CRTT, 37 Bd de l' Universite, BP 406, 44602 Saint-Nazaire Cedex (France); Eyidi, D.; Goudeau, P.; Guerin, P.; Bourhis, E. Le; Renault, P.-O. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Sauvage, T. [CEMHTI/CNRS (UPR 3079 CNRS), Universite d' Orleans, 3A rue de la Ferollerie, 45071 Orleans Cedex 2 (France)

    2013-05-07

    Nanostructured tungsten thin films have been obtained by ion beam sputtering technique stopping periodically the growing. The total thickness was maintained constant while nanostructure control was obtained using different stopping periods in order to induce film stratification. The effect of tungsten sublayers' thicknesses on film composition, residual stresses, and crystalline texture evolution has been established. Our study reveals that tungsten crystallizes in both stable {alpha}- and metastable {beta}-phases and that volume proportions evolve with deposited sublayers' thicknesses. {alpha}-W phase shows original fiber texture development with two major preferential crystallographic orientations, namely, {alpha}-W<110> and unexpectedly {alpha}-W<111> texture components. The partial pressure of oxygen and presence of carbon have been identified as critical parameters for the growth of metastable {beta}-W phase. Moreover, the texture development of {alpha}-W phase with two texture components is shown to be the result of a competition between crystallographic planes energy minimization and crystallographic orientation channeling effect maximization. Controlled grain size can be achieved for the {alpha}-W phase structure over 3 nm stratification step. Below, the {beta}-W phase structure becomes predominant.

  2. The overvoltage protection module for the power supply system for the pixel detector at Belle II experiment at KEK

    International Nuclear Information System (INIS)

    Kapusta, P.; Kisielewski, B.

    2015-01-01

    In this paper the overvoltage protection modules (OVP) for the power supply (PS) system of the Belle II pixel detector (PXD) are described. The aim of the OVP is to protect the detector and associated electronics against overvoltage conditions. Most critical in the system are voltages supplying the front-end ASICs. The PXD detector consists of the DEPFET sensor modules with integrated chips like the Drain Current Digitizer, the Switcher and the Data Handling Processor. These chips, implemented in modern sub-micron technologies, are quite vulnerable to variations in the supply voltages. The PXD will be placed in the Belle II experiment as close as possible to the interaction point, where access during experiment is very limited or even impossible, thus the PS and OVP systems exploit the remote-sensing method. Overvoltage conditions are due to failures of the PS itself, wrong setting of the output voltages or transient voltages coming out of hard noisy environment of the experiment. The OVP modules are parts of the PS modules. For powering the PXD 40 PS modules are placed 15 m outside the Belle II spectrometer. Each one is equipped with the OVP board. All voltages (22) are grouped in 4 domains: Analog, Digital, Steering and Gate which have independent grounds. The OVP boards are designed from integrated circuits from Linear Technology. All configurations were simulated with the Spice program. The control electronics is designed in a Xilinx CPLD. Two types of integrated circuits were used. LT4356 surge stopper protects loads from high voltage transients. The output voltages are limited to a safe value and also protect loads against over current faults. For less critical voltages, the LTC2912 voltage monitors are used that detect under-voltage and overvoltage events. It has to be noted that the OVP system is working independently of any other protection of the PS system, which increases its overall reliability. (authors)

  3. The overvoltage protection module for the power supply system for the pixel detector at Belle II experiment at KEK

    Energy Technology Data Exchange (ETDEWEB)

    Kapusta, P.; Kisielewski, B. [Institute of Nuclear Physics PAN, ul.Radzikowskiego 152, 31-875 Krakow, (Poland)

    2015-07-01

    In this paper the overvoltage protection modules (OVP) for the power supply (PS) system of the Belle II pixel detector (PXD) are described. The aim of the OVP is to protect the detector and associated electronics against overvoltage conditions. Most critical in the system are voltages supplying the front-end ASICs. The PXD detector consists of the DEPFET sensor modules with integrated chips like the Drain Current Digitizer, the Switcher and the Data Handling Processor. These chips, implemented in modern sub-micron technologies, are quite vulnerable to variations in the supply voltages. The PXD will be placed in the Belle II experiment as close as possible to the interaction point, where access during experiment is very limited or even impossible, thus the PS and OVP systems exploit the remote-sensing method. Overvoltage conditions are due to failures of the PS itself, wrong setting of the output voltages or transient voltages coming out of hard noisy environment of the experiment. The OVP modules are parts of the PS modules. For powering the PXD 40 PS modules are placed 15 m outside the Belle II spectrometer. Each one is equipped with the OVP board. All voltages (22) are grouped in 4 domains: Analog, Digital, Steering and Gate which have independent grounds. The OVP boards are designed from integrated circuits from Linear Technology. All configurations were simulated with the Spice program. The control electronics is designed in a Xilinx CPLD. Two types of integrated circuits were used. LT4356 surge stopper protects loads from high voltage transients. The output voltages are limited to a safe value and also protect loads against over current faults. For less critical voltages, the LTC2912 voltage monitors are used that detect under-voltage and overvoltage events. It has to be noted that the OVP system is working independently of any other protection of the PS system, which increases its overall reliability. (authors)

  4. Tungsten/copper composite deposits produced by a cold spray

    International Nuclear Information System (INIS)

    Kang, Hyun-Ki; Kang, Suk Bong

    2003-01-01

    An agglomerated tungsten/copper composite powder was both cold sprayed and plasma sprayed onto a mild steel substrate for electronic package applications. Most pores resulting from the spraying were found in the vicinity of the tungsten-rich regions of the final product. The levels of porosity varied with the amount of tungsten present. No copper oxidation was found at the cold-sprayed deposit, but relatively high copper oxidation was observed at the plasma-sprayed deposit

  5. Tungsten-induced carcinogenesis in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Laulicht, Freda; Brocato, Jason; Cartularo, Laura; Vaughan, Joshua; Wu, Feng; Kluz, Thomas; Sun, Hong [Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987 (United States); Oksuz, Betul Akgol [Genome Technology Center, New York University Langone Medical Center, New York, NY 10016 (United States); Shen, Steven [Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY 10016 (United States); Peana, Massimiliano; Medici, Serenella; Zoroddu, Maria Antonietta [Department of Chemistry and Pharmacy, University of Sassari, Sassari (Italy); Costa, Max, E-mail: Max.Costa@nyumc.org [Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987 (United States)

    2015-10-01

    Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten's ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer-related pathways in transformed clones as determined by RNA sequencing. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data show the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. - Highlights: • Tungsten (W) induces cell transformation and increases migration in vitro. • W increases xenograft growth in nude mice. • W altered the expression of cancer-related genes such as those involved in leukemia. • Some of the dysregulated leukemia genes include, CD74, CTGF, MST4, and HOXB5. • For the first time, data is presented that demonstrates tungsten's carcinogenic potential.

  6. Operating experience of TRIGA MK-II Research Reactor in Bangladesh

    International Nuclear Information System (INIS)

    Mannan, M.A.; Ahmed, K.

    1992-01-01

    A 3 MW TRIGA MK II Research Reactor was installed in Bangladesh in 1986. The reactor is being utilized for research, training and for production of radioisotopes. Recently two faults were detected, one in the Emergency Core Cooling System and the other in the Primary Coolant Loop, which hindered the operation of the reactor partially. The faults were investigated by a team of local experts. Results of analyses of possible initiating events of the faults and the remedial steps are briefly discussed in the paper. (author)

  7. Results of high heat flux tests and structural analysis of the new solid tungsten divertor tile for ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Jaksic, Nikola, E-mail: nikola.jaksic@ipp.mpg.de; Greuner, Henri; Herrmann, Albrecht; Böswirth, Bernd; Vorbrugg, Stefan

    2015-10-15

    Highlights: • The main motivation for the HHF investigation of tungsten tiles was an untypical deformation of some specimens under thermal loading, observed during the previous tests in GLADIS test facility. • A nonlinear finite element (FE) model for simulations of the GLADIS tests has been built. • The unexpected plastic deformations are mainly caused by internal stresses due to the manufacturing process. The small discrepancies among the FEA investigated and measured plastic deformations are most likely caused, beside of the practical difficulties by measuring of low items, also by tile internal stresses. • The influences of the residual stresses caused by special production processes have to be taken into account by design of the structural part made of solid tungsten. - Abstract: Tungsten as plasma-facing material for fusion devices is currently the most favorable candidate. In general solid tungsten is used for shielding the plasma chamber interior against the high heat generated from the plasma. For the purposes of implementation at ASDEX Upgrade and as a contribution to ITER the thermal performance of tungsten tiles has been extensively tested in the high heat flux test facility GLADIS during the development phase and beyond. These tests have been performed on full scale tungsten tile prototypes including their clamping and cooling structure. Simulating the adiabatically thermal loading due to plasma operation in ASDEX Upgrade, the tungsten tiles have been subjected to a thermal load with central heat flux of 10–24 MW/m{sup 2} and absorbed energy between 370 and 680 kJ. This loading results in maximum surface temperatures between 1300 °C and 2800 °C. The tests in GLADIS have been accompanied by intensive numerical investigations using FEA methods. For this purpose a multiple nonlinear finite element model has been set up. This paper discusses the main results of the high heat flux final tests and their numerical simulation. Moreover, first

  8. Results of high heat flux tests and structural analysis of the new solid tungsten divertor tile for ASDEX Upgrade

    International Nuclear Information System (INIS)

    Jaksic, Nikola; Greuner, Henri; Herrmann, Albrecht; Böswirth, Bernd; Vorbrugg, Stefan

    2015-01-01

    Highlights: • The main motivation for the HHF investigation of tungsten tiles was an untypical deformation of some specimens under thermal loading, observed during the previous tests in GLADIS test facility. • A nonlinear finite element (FE) model for simulations of the GLADIS tests has been built. • The unexpected plastic deformations are mainly caused by internal stresses due to the manufacturing process. The small discrepancies among the FEA investigated and measured plastic deformations are most likely caused, beside of the practical difficulties by measuring of low items, also by tile internal stresses. • The influences of the residual stresses caused by special production processes have to be taken into account by design of the structural part made of solid tungsten. - Abstract: Tungsten as plasma-facing material for fusion devices is currently the most favorable candidate. In general solid tungsten is used for shielding the plasma chamber interior against the high heat generated from the plasma. For the purposes of implementation at ASDEX Upgrade and as a contribution to ITER the thermal performance of tungsten tiles has been extensively tested in the high heat flux test facility GLADIS during the development phase and beyond. These tests have been performed on full scale tungsten tile prototypes including their clamping and cooling structure. Simulating the adiabatically thermal loading due to plasma operation in ASDEX Upgrade, the tungsten tiles have been subjected to a thermal load with central heat flux of 10–24 MW/m"2 and absorbed energy between 370 and 680 kJ. This loading results in maximum surface temperatures between 1300 °C and 2800 °C. The tests in GLADIS have been accompanied by intensive numerical investigations using FEA methods. For this purpose a multiple nonlinear finite element model has been set up. This paper discusses the main results of the high heat flux final tests and their numerical simulation. Moreover, first results

  9. Improved experimental determination of critical-point data for tungsten

    International Nuclear Information System (INIS)

    Fucke, W.; Seydel, U.

    1980-01-01

    It is shown that under certain conditions in resistive pulse-heating experiments, refractory liquid metals can be heated up to the limit of thermodynamic stability (spinodal) of the superheated liquid. Here, an explosion-like decomposition takes place which is directly monitored by measurements of expansion, surface radiation, and electric resistivity, thus allowing the determination of the temperature-pressure dependence of the spinodal transition. A comparison of the spinodal equation obtained this way with theoretical models yields the critical temperature Tsub(c), pressure psub(c), and volume vsub(c). A completely experimentally-determined set of the critical parameters for tungsten is presented: Tsub(c) = (13400 +- 1400) K, psub(c) = (3370 +- 850) bar, vsub(c) = (43 +- 4) cm 3 mol -1 . (author)

  10. Proton tungsten reactions at 400 GeV

    International Nuclear Information System (INIS)

    Cincheza, J.; Cohen, J.; Marin, A.

    1979-03-01

    We report from an experiment where 400 GeV protons interact with tungsten nuclei in thin wires laminated into nuclear emulsion. The mean multiplicities of black, grey and shower track producing particles are found to be 11.5+-0.4, 5.2+-0.2 and 20.0+-0.6 respectively. The correlations between different particle categories are studied and we find that the correlation between black and grey prongs is dependent on the target mass, while the correlation between the grey prongs and the shower particles are similar to the one found when lighter elements are used as targets. This provides evidence that the grey prong particles (recoiling protons) is a measure of the number of collisions inside the nucleus. (author)

  11. CRYSTALLIZATION EXPERIMENTS ON AMORPHOUS MAGNESIUM SILICATE. II. EFFECT OF STACKING FAULTS ON INFRARED SPECTRA OF ENSTATITE

    International Nuclear Information System (INIS)

    Murata, K.; Chihara, H.; Koike, C.; Takakura, T.; Imai, Y.; Tsuchiyama, A.; Noguchi, T.

    2009-01-01

    We carried out experiments of low-temperature infrared spectroscopy and transmission electron microscopy of enstatite (MgSiO 3 ) synthesized by heating of amorphous magnesium silicate. There is a discrepancy between the infrared feature of enstatite obtained in this experiment and that of fine powdered single crystals. This reflects stacking disorder of enstatite. We show that circumstellar dust emission of enstatite is similar to the infrared feature measured in this experiment. This result strongly suggests that circumstellar enstatite has abundant stacking faults and is different from the single crystal.

  12. Early stage of deformation in tungsten, tantalum, and nickel single crystals

    International Nuclear Information System (INIS)

    Pinatti, D.G.

    1977-01-01

    High purity Tantalum, Tungsten and Nickel single crystals were tested in simple tension between 77 and 300 K. The Ta and W was oriented for maximum resolved shear stress on the [111] (101) system. Simultaneously microstrain and ultrasonic propagation measurements (attenuation and modulus defect) were performed at various stress bias in order to test details of theories concerning the preyield region and the flow stress in body-centered cubic refractory metals. The experimental retical predictions for the kink chain model over the string model for dislocation. It appears that double kink nucleation in non-screw dislocations has negligible effect in this domains. The results for annealed Ta exhibited no stress bias effect on the ultrasonic propagation measurements, which suggest that the strong influence of impurities mask our ability to discern this fine structure for dislocation motion. For prestrained W and Ta, it was found that double-kink nucleation on nonscrew dislocation plays an important role and revealed interesting results with respect to our understanding of the intrinsic dislocation structure in bcc metals. These results support the kink chain model for dislocation unambiguously. The experiments on the prestrained samples also exhibited experimental results which are qualitatively but not quantitatively in agreement with the theoretical predictions of Seeger and Sectak. The Ni single crystals were prestrained between 10 and 23 percent in stage II, and the microstrain damping loops have been studied as a function of stress amplitude, temperature and magnetic field. The predominant hysteretic contribution to the observed decrement was analyzed according to the model of Roberts (Al. 14, Al. 15), and good agreement between theory and experiment was found

  13. Surface composition of carburized tungsten trioxide and its catalytic activity

    International Nuclear Information System (INIS)

    Nakazawa, M.; Okamoto, H.

    1985-01-01

    The surface composition and electronic structure of carburized tungsten trioxide are investigated using x-ray photoelectron spectroscopy (XPS). The relationship between the surface composition and the catalytic activity for methanol electro-oxidation is clarified. The tungsten carbide concentration in the surface layer increases with the carburization time. The formation of tungsten carbide enhances the catalytic activity. On the other hand, the presence of free carbon or tungsten trioxide in the surface layer reduces the activity remarkably. It is also shown that, the higher the electronic density of states near the Fermi level, the higher the catalytic activity

  14. Radiative capture of slow electrons by tungsten surface

    International Nuclear Information System (INIS)

    Artamonov, O.M.; Belkina, G.M.; Samarin, S.N.; Yakovlev, I.I.

    1987-01-01

    Isochromatic spectra of radiation capture of slow electrons by the surface of mono- and polycrystal tungsten recorded on 322 and 405 nm wave lengths are presented. The effect of oxygen adsorption on isochromates of the (110) face of tungsten monocrystal is investigated. The obtained isochromatic spectra are compared with energy band structure of tungsten. Based on the analysis of the obtained experimental results it is assumed that optical transition to the final state at the energy of 7.3 eV relatively to Fermi level is conditioned by surface states of the tungsten face (110)

  15. On tungsten technologies and qualification for DEMO

    International Nuclear Information System (INIS)

    Laan, J. van der; Hegeman, H.; Wouters, O.; Luzginova, N.; Jonker, B.; Van der Marck, S.; Opschoor, J.; Wang, J.; Dowling, G.; Stuivenga, M.; Carton, E.

    2009-01-01

    Tungsten alloys are considered prime candidates for the in-vessel components directly facing the plasma. For example, in the HEMJ helium cooled divertor design tiles may be operated at temperatures up to 1700 deg. C, supported by a structure partially consisting of tungsten at temperatures from 600 to 1000 deg. C, and connected to a HT steel structure. The tungsten armoured primary wall is operated at 500-900 deg. C. Irradiation doses will be few tens dpa at minimum, but FPR requirements for plants availability will stretch these targets. Recently injection moulding technology was developed for pure tungsten and representative parts were manufactured for ITER monobloc divertors and DEMO HEMJ thimbles. The major advantages for this technology are the efficient use of material feedstock/resources and the intrinsic possibility to produce near-finished product, avoiding machining processes that are costly and may introduce surface defects deteriorating the component in service performance. It is well suited for mass-manufacturing of components as well known in e.g. lighting industries. To further qualify this material technology various specimen types were produced with processing parameters identical to the components, and tested successfully, showing the high potential for implementation in (fusion) devices. Furthermore, the engineering approach can clearly be tailored away from conventional design and manufacturing technologies based on bulk materials. The technology is suitable for shaping of new W-alloys and W-ODS variants as well. Basically this technology allows a particular qualification trajectory. There is no need to produce large batches of material during the material development and optimization stage. For the verification of irradiation behaviour in the specific neutron spectra, there is a further attractive feature to use e.g. isotope tailored powders to adjust to available irradiation facilities like MTR's. In addition the ingrowth of transmutation

  16. Uncommon Mixed Type I and II Choledochal Cyst: An Indonesian Experience

    Directory of Open Access Journals (Sweden)

    Fransisca J. Siahaya

    2013-01-01

    Full Text Available Bile duct cyst is an uncommon disease worldwide; however, its incidence is remarkably high in Asian population, primarily in children. Nevertheless, the mixed type choledochal cysts are extremely rare especially in adults. A case report of a 20-year-old female with a history of upper abdominal pain that was diagnosed with cholecystitis with stone and who underwent laparoscopic cholecystectomy is discussed. Choledochal malformation was found intraoperatively. Magnetic resonance cholangiography (MRCP and USG after first surgery revealed extrahepatic fusiform dilatation of the CBD; therefore, provisional diagnosis of type I choledochal cyst was made. Complete resection of the cyst was performed, and a mixed type I and II choledochal cyst was found intraoperatively. Bile duct reconstruction was carried out with Roux-en-Y hepaticojejunostomy. The mixed type I and II choledochal cysts are rare in adults, and this is the third adult case that has been reported. The mixed type can be missed on radiology imaging, and diagnosing the anomaly is only possible after a combination of imaging and intraoperative findings. Mixed type choledochal cyst classification should not be added to the existing classification since it does not affect the current operative techniques.

  17. Utilizing subcooled, superfluid He-II in the design of a 12-Tesla tandem mirror experiment

    International Nuclear Information System (INIS)

    Hoard, R.W.; Cornish, D.N.; Baldi, R.W.; Taylor, W.D.

    1981-01-01

    A design study of 12-T yin-yang coils for a conceptual Tandem Mirror Next Step facility has been recently performed by Lawrence Livermore National Laboratory in conjunction with the Convair Division of General Dynamics. The large magnets have major and mirror radii of 3.7 and 1.5 m, 0.70 x 3.75 m 2 cross section, 46.3 MA turns, and an overall current density of 1765 A/cm 2 , obtained by the use of Nb 3 Sn and Nb-Ti superconductors. Each coil is composed of several subcoils separated by internal strengthening substructure to react the enormous electromagnetic forces. The size of the yin-yang coils, and hence the current density, was reduced by utilizing subcooled, superfluid He-II at 1.8 K for the coolant. This paper reviews the design study, with emphasis on He-II heat transport and conductor stability. Methods are also presented which allow the extension of Gorter-Mellink-channel calculations to encompass multiple, interconnecting coolant channels

  18. Crystal plasticity study of single crystal tungsten by indentation tests

    International Nuclear Information System (INIS)

    Yao, Weizhi

    2012-01-01

    Owing to its favorable material properties, tungsten (W) has been studied as a plasma-facing material in fusion reactors. Experiments on W heating in plasma sources and electron beam facilities have shown an intense micro-crack formation at the heated surface and sub-surface. The cracks go deep inside the irradiated sample, and often large distorted areas caused by local plastic deformation are present around the cracks. To interpret the crack-induced microscopic damage evolution process in W, one needs firstly to understand its plasticity on a single grain level, which is referred to as crystal plasticity. In this thesis, the crystal plasticity of single crystal tungsten (SCW) has been studied by spherical and Berkovich indentation tests and the finite element method with a crystal plasticity model. Appropriate values of the material parameters included in the crystal plasticity model are determined by fitting measured load-displacement curves and pile-up profiles with simulated counterparts for spherical indentation. The numerical simulations reveal excellent agreement with experiment. While the load-displacement curves and the deduced indentation hardness exhibit little sensitivity to the indented plane at small indentation depths, the orientation of slip directions within the crystals governs the development of deformation hillocks at the surface. It is found that several factors like friction, indentation depth, active slip systems, misoriented crystal orientation, misoriented sample surface and azimuthal orientation of the indenter can affect the indentation behavior of SCW. The Berkovich indentation test was also used to study the crystal plasticity of SCW after deuterium irradiation. The critical load (pop-in load) for triggering plastic deformation under the indenter is found to depend on the crystallographic orientation. The pop-in loads decrease dramatically after deuterium plasma irradiation for all three investigated crystallographic planes.

  19. Spectroscopic Investigations of Highly Charged Tungsten Ions - Atomic Spectroscopy and Fusion Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, Joel [Lund Univ. (Sweden)

    2010-05-01

    The spectra of highly charged tungsten ions have been investigated using x-ray and extreme ultraviolet spectroscopy. These heavy ions are of interest in relativistic atomic structure theory, where high-precision wavelength measurements benchmark theoretical approaches, and in magnetic fusion research, where the ions may serve to diagnose high-temperature plasmas. The work details spectroscopic investigations of highly charged tungsten ions measured at the Livermore electron beam ion trap (EBIT) facility. Here, the EBIT-I and SuperEBIT electron beam ion traps have been employed to create, trap, and excite tungsten ions of M- and L-shell charge states. The emitted spectra have been studied in high resolution using crystal, grating, and x-ray calorimeter spectrometers. In particular, wavelengths of n = 0 M-shell transitions in K-like W55+ through Ne-like W64+, and intershell transitions in Zn-like W44+ through Co-like W47+ have been measured. Special attention is given to the Ni-like W46+ ion, which has two strong electric-dipole forbidden transitions that are of interest for plasma diagnostics. The EBIT measurements are complemented by spectral modeling using the Flexible Atomic Code (FAC), and predictions for tokamak spectra are presented. The L-shell tungsten ions have been studied at electron-beam energies of up to 122 keV and transition energies measured in Ne-like W64+ through Li-like W71+. These spectra constitute the physics basis in the design of the ion-temperature crystal spectrometer for the ITER tokamak. Tungsten particles have furthermore been introduced into the Sustained Spheromak Physics Experiment (SSPX) spheromak in Livermore in order to investigate diagnostic possibilities of extreme ultraviolet tungsten spectra for the ITER divertor. The spheromak measurement and spectral modeling using FAC suggest that tungsten ions in charge states around Er-like W6+ could be useful for

  20. Analysis of PROTEUS phase II experiments performed using the AARE modular system and JEF-based libraries

    International Nuclear Information System (INIS)

    Pelloni, S.; Stepanek, J.; Vontobel, P.

    1989-01-01

    The capability of the advanced analysis of reactor engineering (AARE) modular code system and JEF-1-based nuclear data libraries to analyze light water high converter reactor (LWHCR) lattices is investigated by calculating the wet and dry cells of the PROTEUS-LWHCR phase II experiment. The results are compared to those obtained using several cell codes. Main features of the AARE code system, such as the self-shielding of resonance cross sections in the whole energy range, the generation of adequate fission source spectra, and the efficiency of the elastic removal correction,are investigated. In particular, it is shown that AARE results for the k ∞ void coefficient agree very well with the experiment, whereas other codes give larger deviations