WorldWideScience

Sample records for tungsten compounds

  1. Hydroxyaromatic compounds of tantalum, tungsten, and the lighter actinides

    International Nuclear Information System (INIS)

    Gfaller, H.

    1980-01-01

    Some hydroxyaromatic compounds of the elements tantalum, tungsten, thorium and uranium were prepared as well as the basic materials for these synthesis processes, i.e. metal halides and metal alkoxides. The hydroxyaromatic compounds were studied by elemental analysis, IR spectroscopy, 1 H-NMR spectroscopy (if soluble in suitable solvents) and, in some cases, by X-ray fine structure analysis. (orig./EF) [de

  2. Photometric investigation of tungsten (6) reaction with monoazo compound based on pyrogallol

    International Nuclear Information System (INIS)

    Gambarov, D.G.; Gusejnov, A.G.

    1980-01-01

    The possibility has been studied to use a new monoazo compound 2,3,4-trihydroxy-4'-sulfoazobenzene (TSAB) for the photometric determination of tungsten in steels. The maximum yield of W(6) complex is observed in the interval from 0.3 NHCl to pH2. The maximum absorption of the complex is observed at 460 nm and that of reagent - at 380 nm. The complex coloring immediately develops and in stable for more than one day. Molar coefficient of complex extinctior equals 43000+-300. Tungsten concentration interval being determined in 0.3 N HCl is 10-140 μg/25 ml. Tungsten determination technique in chromium-nickel-tungsten and chromium-silicon-nickel steels is given. If steel samples contain Mo > 0.1 mg, Y > 0.2 mg, Zr > 1.0 mg, Fe > 0.03 mg and Si > 0.3 mg then it is necessary to separate Mo, Y and Zr beforehand. Fe and Si are respectively well camouflaged by ascorbic acid and EDTA

  3. Process for recovering tungsten from alkaline leaching solution of tungsten ores

    International Nuclear Information System (INIS)

    Onozaki, S.; Nemoto, S.; Hazeyama, T.

    1976-01-01

    This invention relates to a process for recovering tungsten from an alkaline leaching solution of tungsten ores. This invention comprises adjusting the pH of an alkaline leaching solution which is obtained by lixiviating ore containing tungsten with an alkaline solution to 7--8 with acid to oxidize molybdic acid ions in the solution, adding a sulfide donor, then precipitating molybdenum sulfide compounds by adjusting the pH value of the solution to 2--3. Tungstic acid ions are recovered as calcium tungstate by the addition of a calcium ion donor after the molybdenum sulfide compounds are separated

  4. Potentiometric determination of the tungsten content of tantalum-tungsten alloys with chromium II

    International Nuclear Information System (INIS)

    Gavra, Z.; Ronen, S.; Levin, R.

    1977-05-01

    A method was developed for the potentiometric determination of the tungsten content of tantalum-tungsten alloys of different compositions. These were dissolved under conditions that enabled the tungsten content to be determined with chromium (II). Phosphoric acid was selected as a suitable complexing agent for the prevention of the precipitation of tungsten and tantalum compounds. The use of chromium (II) required an oxygen-tight system and therefore the work was carried out in suitable vessels for storage and tritation

  5. An indirect sequential determination of phosphorus and arsenic in high-purity tungsten and its compounds by atomic-absorption spectrophotometry

    International Nuclear Information System (INIS)

    Tekula-Buxbaum, P.

    1981-01-01

    An indirect atomic-absorption spectrophotometric method based on selective extraction of heteropolymolybdic acids has been developed for determination of small quantities of P and As in high-purity tungsten metal and tungsten compounds. The method is suitable for determination of 5-100 ppm of phosphorus and arsenic. The relative standard deviation is 38-5% for P and 31-3% for As, depending on the concentrations. (auth.)

  6. Low temperature processing of tungsten-fibre high-strength composite

    International Nuclear Information System (INIS)

    Semrau, W.M.

    2001-01-01

    A tungsten nickel/iron compound with a high tungsten content up to over 90 percent by volume of tungsten and an ideal distribution of the nickel-iron multilayer-matrix avoiding tungsten - tungsten interfaces, has been processed without the use of any sintering process and thus resulted in avoiding temperatures of above 700 o C during the entire manufacturing process. An electrochemical coating of coarse tungsten powder with alternating layers of nickel and iron and a forging process at temperatures not exceeding 650 o C resulted in a high strength compound, which easily could be altered into a tungsten fiber compound with a fiber-length to fiber-diameter ratio of more than 10 3 . From the viewpoint of the metallurgist, easier handling systems are obtained when both a liquid phase and high temperatures with their risks for grain structures and grain boundaries are lacking. (author)

  7. Tungsten migration studies by controlled injection of volatile compounds

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, M., E-mail: rubel@kth.se [Royal Institute of Technology (KTH), Association EURATOM-VR, Stockholm (Sweden); Coenen, J. [IEK-4, Plasma Physics, Forschungszentrum Jülich, Association EURATOM-FZJ, Jülich (Germany); Ivanova, D. [Royal Institute of Technology (KTH), Association EURATOM-VR, Stockholm (Sweden); Möller, S. [IEK-4, Plasma Physics, Forschungszentrum Jülich, Association EURATOM-FZJ, Jülich (Germany); Petersson, P. [Royal Institute of Technology (KTH), Association EURATOM-VR, Stockholm (Sweden); Brezinsek, S.; Kreter, A.; Philipps, V.; Pospieszczyk, A.; Schweer, B. [IEK-4, Plasma Physics, Forschungszentrum Jülich, Association EURATOM-FZJ, Jülich (Germany)

    2013-07-15

    Volatile tungsten hexa-fluoride was locally injected into the TEXTOR tokamak as a marker for material migration studies. The injection was accompanied by puffing N-15 rare isotope as a nitrogen tracer in discharges with edge cooling by impurity seeding. The objective was to assess material balance by qualitative and quantitative determination of a global and local deposition pattern, material mixing effects and fluorine residence in plasma-facing components. Spectroscopy and ex situ ion beam analysis techniques were used. Tungsten was detected on all types of limiter tiles and short-term probes retrieved from the vessel. Over 80% of the injected W was identified. The largest tungsten concentration, 1 × 10{sup 18} cm{sup −2}, was in the vicinity of the gas inlet. Co-deposits contained tungsten and a mix of light isotopes: H, D, He-4, B-10, B-11, C-12, C-13, N-14, N-15, O-16 and small quantities of F-19 thus showing that both He and nitrogen are trapped following wall conditioning (He glow) and edge cooling.

  8. Reduction of blue tungsten oxide

    International Nuclear Information System (INIS)

    Wilken, T.; Wert, C.; Woodhouse, J.; Morcom, W.

    1975-01-01

    A significant portion of commercial tungsten is produced by hydrogen reduction of oxides. Although several modes of reduction are possible, hydrogen reduction is used where high purity tungsten is required and where the addition of other elements or compounds is desired for modification of the metal, as is done for filaments in the lamp industry. Although several investigations of the reduction of oxides have been reported (1 to 5), few principles have been developed which can aid in assessment of current commercial practice. The reduction process was examined under conditions approximating commercial practice. The specific objectives were to determine the effects of dopants, of water vapor in the reducing atmosphere, and of reduction temperature upon: (1) the rate of the reaction by which blue tungsten oxide is reduced to tungsten metal, (2) the intermediate oxides associated with reduction, and (3) the morphology of the resulting tungsten powder

  9. Studying reactions of interaction of tungsten (6) with rhodamine B and rhodamine 6 Zh

    International Nuclear Information System (INIS)

    Andreeva, I.Yu.; Lebedeva, L.I.; Burmistrova, N.M.

    1978-01-01

    The reaction of the interaction between tungsten (6) and rhodamine B and rhodamine 6 Zh has been investigated. The formation of two compounds in the tungsten-rhodamine system is shown. The composition of these compounds has been determined, and their stability has been estimated. The composition of compounds in the solid phase has also been determined. This reaction is used for the determination of tungsten in stells

  10. Superhard Rhenium/Tungsten Diboride Solid Solutions.

    Science.gov (United States)

    Lech, Andrew T; Turner, Christopher L; Lei, Jialin; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B

    2016-11-02

    Rhenium diboride (ReB 2 ), containing corrugated layers of covalently bonded boron, is a superhard metallic compound with a microhardness reaching as high as 40.5 GPa (under an applied load of 0.49 N). Tungsten diboride (WB 2 ), which takes a structural hybrid between that of ReB 2 and AlB 2 , where half of the boron layers are planar (as in AlB 2 ) and half are corrugated (as in ReB 2 ), has been shown not to be superhard. Here, we demonstrate that the ReB 2 -type structure can be maintained for solid solutions of tungsten in ReB 2 with tungsten content up to a surprisingly large limit of nearly 50 atom %. The lattice parameters for the solid solutions linearly increase along both the a- and c-axes with increasing tungsten content, as evaluated by powder X-ray and neutron diffraction. From micro- and nanoindentation hardness testing, all of the compositions within the range of 0-48 atom % W are superhard, and the bulk modulus of the 48 atom % solid solution is nearly identical to that of pure ReB 2 . These results further indicate that ReB 2 -structured compounds are superhard, as has been predicted from first-principles calculations, and may warrant further studies into additional solid solutions or ternary compounds taking this structure type.

  11. Synthesis and ferroelectric properties of rare earth compounds with tungsten bronze-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Bouziane, M., E-mail: bouzianemeryem@yahoo.fr [Laboratoire de Chimie du Solide Appliquee, Faculte des Sciences, Avenue Ibn Batouta, BP 1014, Rabat (Morocco); Taibi, M. [Laboratoire de Physico-Chimie des Materiaux, LAF 502, Ecole Normale Superieure, BP 5118, Rabat (Morocco); Boukhari, A. [Laboratoire de Chimie du Solide Appliquee, Faculte des Sciences, Avenue Ibn Batouta, BP 1014, Rabat (Morocco)

    2011-10-03

    Highlights: {center_dot} Polycrystalline materials with the tungsten bronze-type structure have been synthesized and characterized. {center_dot} Effect of the incorporation of rare earth ions and paramagnetic cations (Fe{sup 3+}) into a matrix ferroelectrically active was studied. {center_dot} Ferroelectric transition is pronounced by a large thermal hysteresis during the heating and cooling cycles. {center_dot} Phase transitions around T{sub c} were confirmed by differential scanning calorimetry (DSC) measurements. - Abstract: Polycrystalline materials with a general formula Pb{sub 2}Na{sub 0.8}R{sub 0.2}Nb{sub 4.8}Fe{sub 0.2}O{sub 15} (R = Dy, Eu, Sm, Nd, La) have been synthesized, in air by a high temperature solid state reaction method. X-ray diffraction study, at room temperature, revealed that they crystallize in the tungsten bronze-type structure. Dielectric properties were performed, in the temperature range 25-500 deg. C, at three different frequencies 10, 100 and 1000 kHz. The ferroelectric transition is pronounced by a large thermal hysteresis during the heating and cooling cycles. The determined Curie temperature values T{sub c} were discussed as a function of rare earth size. Phase transitions around T{sub c} for the investigated compounds were confirmed by differential scanning calorimetry (DSC) measurements.

  12. The behaviour of doped elements in tungsten sintering

    International Nuclear Information System (INIS)

    Scheiner, L.

    1975-01-01

    The lecture deals with the occurrence of bubbles in the sintering of doped tungsten. The doping of tungsten normally takes place by the addition of K, Al and Si compounds. A part of the doping substances disappears with sintering which can easily be proved by chemical analyses. In the process described here, the evaporation is non-destructively observed during sintering with an absorption spectrometer. Temperature, absorption slope and sintering resistance are recorded. The evaluation of the absorption curves gives a diffusion equation. The discussion of the curves resulted so far in that a doped substance compound sets free the single elements of the compound at high temperature. Aluminium and silicon diffuse out. In the case of aluminium, the activation energy can be determined. (GSC/LH) [de

  13. Effect of structural packing on the luminescence properties in tungsten bronze compounds M{sub 2}KNb{sub 5}O{sub 15} (M=Ca, Sr, Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Yin Xin; Shi Liu [State Key Laboratory of High Performance Ceramics and Superfine Microstructures and CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Wei Ang, E-mail: iamawei@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays, 9 Wenyuan Road, Nanjing 210046 (China); Wan Dongyun; Wang Yaoming [State Key Laboratory of High Performance Ceramics and Superfine Microstructures and CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Huang Fuqiang, E-mail: huangfq@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructures and CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2012-08-15

    Tungsten bronze compounds M{sub 2}KNb{sub 5}O{sub 15} (M=Ca, Sr, Ba) were successfully synthesized, and the luminescence properties were investigated. Among the three compounds, Ca{sub 2}KNb{sub 5}O{sub 15} showed an obviously broad band of host luminescence at 460 nm with exciting at 269 nm. By doping Eu{sup 3+} into the M sites, Ca{sub 2}KNb{sub 5}O{sub 15}:Eu{sup 3+} displayed strong red emission from Eu{sup 3+} ions characteristic transitions, nearly four times higher than Sr{sub 2}KNb{sub 5}O{sub 15}:Eu{sup 3+} and seven times higher than Ba{sub 2}KNb{sub 5}O{sub 15}:Eu{sup 3+}. Crystal packing factor (PF) was introduced to account for this luminescence difference, lower PF being correlated to higher luminescence intensity for perovskite-related structure. Both the as-prepared compounds and the literature examples were proved to fit this correlation. This can be explained through the influence of the structural packing on the environment distortion and crystal field splitting of the doping site. - Graphical abstract: Tungsten bronze compounds M{sub 2}KNb{sub 5}O{sub 15} (M=Ca, Sr, Ba) show the dependence of luminescence properties on structural packing, among which Ca{sub 2}KNb{sub 5}O{sub 15} has the superior luminescence. Highlights: Black-Right-Pointing-Pointer Tungsten bronze compounds were synthesized by solid state reaction. Black-Right-Pointing-Pointer Ca{sub 2}KNb{sub 5}O{sub 15} displayed remarkably blue host luminescence. Black-Right-Pointing-Pointer Ca{sub 2}KNb{sub 5}O{sub 15}:Eu{sup 3+} showed more intense red emission than M{sub 2}KNb{sub 5}O{sub 15}:Eu{sup 3+} (M=Sr, Ba). Black-Right-Pointing-Pointer The relationship between crystal packing factor and luminescence was obtained.

  14. Tissue distribution patterns of solubilized metals from internalized tungsten alloy in the F344 rat

    Directory of Open Access Journals (Sweden)

    Vernieda B. Vergara

    2016-06-01

    Full Text Available Because of its unique physical and chemical properties, tungsten has been increasingly utilized in a variety of civilian and military applications. This expanded use also raises the risk of human exposure through internalization by various routes. In most cases the toxicological and carcinogenic properties of these tungsten-based compounds are not known nor are the dissolution biokinetics and ultimate fate of the associated metals. Using a laboratory rodent model system designed to assess the health effects of embedded metals, and a tungsten alloy comprised of tungsten (91.1%, nickel (6.0%, and cobalt (2.9%, we investigated the tissue distribution patterns of the metals over a six month period. Despite its perceived insolubility, tungsten rapidly solubilized from the implanted metal fragments, as did nickel and cobalt. All three metals distributed systemically over time with extremely elevated levels of all three metals found in kidney, liver, and spleen. Unexpectedly, tungsten was found to cross the blood-brain and blood-testis barriers and localize in those tissues. These results, along with recent reports suggesting that tungsten is a tumor promoter, raises serious concerns as to the long-term health effects of exposure to tungsten and tungsten-based compounds.

  15. A kinetic study of the redox reactions of complex cyanides of iron, molybdenum and tungsten with compounds of the group VI A elements

    International Nuclear Information System (INIS)

    Dennis, C.R.

    1981-01-01

    The kinetic study arises out of the fact that few is known about redox kinetics of complex cyanides of molybdenum and tungsten. The redox kinetics of the complex cyanides of iron with organic and inorganic compounds are well known in organic chemistry. This comparitive study is done to obtain more information on redox reactions of complex cyanides of molybdenum and tungsten considering its greater applicability in organic and inorganic chemistry because of the propitious reduction potential of this complex cyanide in acidic and alkaline mediums. Various redox systems are kinetically investigated regarding the influence of the oxidising agent, reducing agent hydrogen ions and alkaline-metal ions on the reaction rate. A reaction mechanism is proposed for every system

  16. Formation of carbon containing layers on tungsten test limiters

    International Nuclear Information System (INIS)

    Rubel, M.; Philipps, V.; Huber, A.; Tanabe, T.

    1999-01-01

    Tungsten test limiters of mushroom shape and a plasma facing area of approximately 100 cm 2 were exposed at the TEXTOR-94 tokamak to a number of deuterium fuelled discharges performed under various operation conditions. Two types of limiters were tested: a sole tungsten limiter and a twin limiter consisting of two halves, one made of tungsten and another of graphite. The exposed surfaces were examined with ion beam analysis methods and laser profilometry. The formation of some deposition zones was observed near the edges of the limiters. The deuterium-to-carbon concentration ratio was in the range from 0.04 to 0.11 and around 0.2 for the sole tungsten and the twin limiter, respectively. Significant amounts of the co-deposited tungsten and silicon atoms were found on the graphite part of the twin limiter indicating the formation of mixed W-C-Si compounds. (orig.)

  17. Electronic structure of nanoparticles of substoichometric hexagonal tungsten oxides

    International Nuclear Information System (INIS)

    Khyzhun, O Y; Solonin, Y M

    2007-01-01

    X-ray photoelectron spectroscopy (XPS), X-ray emission spectroscopy (XES) and X-ray absorption spectroscopy (XAS) methods were used to study the electronic structure of hexagonal h-WO 3 and h-WO 2.8 nanoparticles. For comparison, nanopowder substoichiometric monoclinic tungsten oxides with close content of oxygen atoms, namely m-WO 3 and m-WO 2.77 compounds, were also investigated. For the mentioned oxides, XPS valence-band and corelevel spectra, XES O Kα bands and XAS W L III and O 1s edges were derived. The XPS valence-band spectra and O Kα emission bands in the mentioned hexagonal and monoclinic tungsten oxides were compared on a common energy scale. Both the O Kα bands and XPS valence-band spectra broaden somewhat in the sequences h-WO 3 → h-WO 2.8 and m-WO 3 → m-WO 2.77 , with the half-widths of the spectra being somewhat higher for the hexagonal oxides as compared with those for the monoclinic compounds. The effective positive charge state of tungsten atoms in h-WO 2.8 is very close to that in m-WO 2.77 , but the negative charge states of oxygen atoms are close to each other for all the tungsten oxides under consideration

  18. Tungsten

    International Nuclear Information System (INIS)

    Eschnauer, H.

    1978-01-01

    There is no substitute for tungsten in its main field of application so that the demand will not decrease, but there is a need for further important applications. If small variations are left out of account, a small but steady increase in the annual tungsten consumption can be expected. The amount of tungsten available will increase due to the exploritation of new deposits and the extension of existing mines. This tendency will probably be increased by the world-wide prospection. It is hard to make an assessment of the amount of tungsten are obtained in the People's Republic of china, the purchases of Eastern countries in the West, and the sales policy of the USA; pice forecasts are therefore hard to make. A rather interesting subject with regard to the tungsten cycle as a whole is the reprocessing of tungsten-containing wastes. (orig.) [de

  19. Method of making a long life high current density cathode from tungsten and iridium powders using a quaternary compound as the impregnant

    International Nuclear Information System (INIS)

    Branovich, L.E.; Smith, B.; Freemen, G.L.; Eckart, D.W.

    1990-01-01

    This patent describes a method of making a long life high current density cathode. It is suitable for operation in microwave devices. It is made from tungsten and iridium powders using a quaternary compound including barium, oxygen, a metal selected from the group consisting of osmium, iridium, rhodium, and rhenium, and a metal selected from the group consisting of strontium, calcium, scandium, and titanium as the impregnant

  20. Phase equilibrium study on system uranium-plutonium-tungsten-carbon

    International Nuclear Information System (INIS)

    Ugajin, Mitsuhiro

    1976-11-01

    Metallurgical properties of the U-Pu-W-C system have been studied with emphasis on phases and reactions. Free energy of compound formation, carbon activity and U/Pu segregation in the W-doped carbide fuel are estimated using phase diagram data. The results indicate that tungsten metal is useful as a thermochemical stabilizer of the carbide fuel. Tungsten has high temperature stability in contact with uranium carbide and mixed uranium-plutonium carbide. (auth.)

  1. Codeposition of either molybdenum or tungsten with the metals of iron group 8. The citric acid influence on codeposition of nickel and tungsten from sulphamic electrolytes

    International Nuclear Information System (INIS)

    Bernotas, A.; Kadziauskiene, V.; Jasulaitiene, V.

    1995-01-01

    The influence of citric acid on codeposition of Ni and W from sulphamic electrolytes was investigated by measuring the hydrogen content in electro deposits and determining the current efficiency and the alloy composition by chemical analysis and X-ray spectroscopy. The reduction of W(VI) to W(0) in the electrolyte with and without citric acid was found to proceed through the formation of tungsten compounds of intermediate oxidation state. It is supposed that an increased amount of tungsten in the alloys with the increase of citric acid concentration in the electrolyte (to 0.042 mol/l) is caused by a large amount of W(IV) at the cathodic surface. The further increase of the concentration of citric acid in the electrolyte causes a decrease of tungsten amount in the alloy, because the blocking of the metallic surface of Ni and W by W compounds of intermediate oxidation state makes the reduction of W(VI) to W(0) more difficult. (author). 8 refs., 3 figs., 1 tab

  2. Tungsten and tungsten alloys by powder metallurgy

    International Nuclear Information System (INIS)

    Belhadjhamida, A.; German, R.M.

    1991-01-01

    Tungsten has a historical link with powder metallurgy and there is continued progress in expanding the available compositions and processing options. This paper starts with an introduction to the history of tungsten powder metallurgy and use this as a basis for analyzing some of the current trends. The literature base in tungsten processing is expanding and includes new alloys, microstructures, and processing routes. A few examples will be emphasize here to produce a frame work for this program, including description of sintering mechanisms for tungsten, liquid phase sintering advances, hot consolidation fundamentals, and options for complex shaping using powder injection modeling. For this base, subsequent presentations will expand on these fundamental advances

  3. The effect of phosphorus on the formation of tungsten dioxide: A novel morphology

    International Nuclear Information System (INIS)

    Hegedus, E.; Neugebauer, J.

    1999-01-01

    The industrial production of tungsten is based on the hydrogen reduction of tungsten oxides, ammonium paratungstate (APT) or ammonium tungsten oxide bronze (ATOB). Hydrogen reduction is applied when high purity tungsten is required and when the addition of other elements or compounds (dopants) is desired for modification of the properties of the metal powder. The first stage of the reduction is finished when WO 2 is formed and it seems that the efficient incorporation of the additives starts mainly at this reduction step. The study reported here was undertaken to investigate the effect of phosphorus dope on the morphology of the intermediate tungsten dioxide and analyze its influence on the grain size of the final tungsten metal powder. The authors observed star shaped morphology of WO 2 , a structure which has not been describe in the literature. Contrary to the well-known cauliflower shaped tungsten dioxide, these starlets are not pseudomorphic to the initial ATOB particles; they grow separately and have a great influence on the grain size of the final metal powder

  4. Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO—potassium doped tungsten wire

    Science.gov (United States)

    Riesch, J.; Han, Y.; Almanstötter, J.; Coenen, J. W.; Höschen, T.; Jasper, B.; Zhao, P.; Linsmeier, Ch; Neu, R.

    2016-02-01

    For the next step fusion reactor the use of tungsten is inevitable to suppress erosion and allow operation at elevated temperature and high heat loads. Tungsten fibre-reinforced composites overcome the intrinsic brittleness of tungsten and its susceptibility to operation embrittlement and thus allow its use as a structural as well as an armour material. That this concept works in principle has been shown in recent years. In this contribution we present a development approach towards its use in a future fusion reactor. A multilayer approach is needed addressing all composite constituents and manufacturing steps. A huge potential lies in the optimization of the tungsten wire used as fibre. We discuss this aspect and present studies on potassium doped tungsten wire in detail. This wire, utilized in the illumination industry, could be a replacement for the so far used pure tungsten wire due to its superior high temperature properties. In tensile tests the wire showed high strength and ductility up to an annealing temperature of 2200 K. The results show that the use of doped tungsten wire could increase the allowed fabrication temperature and the overall working temperature of the composite itself.

  5. Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO—potassium doped tungsten wire

    International Nuclear Information System (INIS)

    Riesch, J; Han, Y; Höschen, T; Zhao, P; Neu, R; Almanstötter, J; Coenen, J W; Jasper, B; Linsmeier, Ch

    2016-01-01

    For the next step fusion reactor the use of tungsten is inevitable to suppress erosion and allow operation at elevated temperature and high heat loads. Tungsten fibre-reinforced composites overcome the intrinsic brittleness of tungsten and its susceptibility to operation embrittlement and thus allow its use as a structural as well as an armour material. That this concept works in principle has been shown in recent years. In this contribution we present a development approach towards its use in a future fusion reactor. A multilayer approach is needed addressing all composite constituents and manufacturing steps. A huge potential lies in the optimization of the tungsten wire used as fibre. We discuss this aspect and present studies on potassium doped tungsten wire in detail. This wire, utilized in the illumination industry, could be a replacement for the so far used pure tungsten wire due to its superior high temperature properties. In tensile tests the wire showed high strength and ductility up to an annealing temperature of 2200 K. The results show that the use of doped tungsten wire could increase the allowed fabrication temperature and the overall working temperature of the composite itself. (paper)

  6. Tungsten foil laminate for structural divertor applications - Joining of tungsten foils

    Science.gov (United States)

    Reiser, Jens; Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan; Mrotzek, Tobias; Hoffmann, Andreas; Armstrong, D. E. J.; Yi, Xiaoou

    2013-05-01

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  7. Development and characterisation of a tungsten-fibre reinforced tungsten composite

    International Nuclear Information System (INIS)

    Riesch, Johann

    2012-01-01

    In tungsten-fibre reinforced tungsten, tungsten wire is combined with a tungsten matrix. The outstanding ductility of the fibres and extrinsic mechanisms of energy dissipation lead to an intense toughening. With extensive analytical and experimental investigations a manufacturing method based on chemical vapour infiltration is developed and first material is produced. The toughening mechanisms are shown by means of sophisticated mechanical experiments i.a. X-ray microtomography.

  8. Precipitation formation in recrystallized nickel-plated non-sag tungsten wire

    International Nuclear Information System (INIS)

    Lai, Z.H.

    1994-01-01

    It is well established that some metals, such as palladium and nickel, can easily penetrate into tungsten by fast diffusion via crystal defects such as grain boundaries and dislocations. As a result of the fast penetration of these so called activators the recrystallization temperature of heavily drawn non-sag tungsten wire can be lower from about 2,000 C to about 1,000 C, thus the application of the tungsten wire, serving as reinforcement material in metal matrix composites used at high temperatures, is limited. An interesting question is in which form these activators exist in the recrystallized tungsten wire. It is generally believed that W-Ni intermediate compounds could form in the recrystallized material, presumably at grain boundaries. The free energy difference between the pure tungsten fibbers and the precipitating W(Ni) solid solution was suggested as the chemical driving force which governed the recrystallization process. The presence of nickel in small particles had also been observed in recrystallized grains of nickel plated tungsten wires using scanning electron microscopy (SEM) and secondary ion mass spectroscopy. These particles were considered to be nickel rich precipitates. However, a detailed investigation of the precipitation process has not been reported. In the present work an investigation of the structure, composition and distribution of nickel rich particles precipitated in recrystallized grains of nickel plated heavily drawn non-sage tungsten wires was carried out using analytical electron microscopy (AEM)

  9. Characterization of molecular and elemental impurities in tungsten hexafluoride

    International Nuclear Information System (INIS)

    Streusand, B.J.; Yost, V.E.; Govorchin, S.W.; Fry, R.C.; Padula, F.J.; Hughes, S.K.

    1990-01-01

    Analysis of WF 6 is a very difficult process because of the reactivity of the compound, the low detection limits required by its use in semiconductor processing, and by the presence of large amounts of tungsten in the analyte. It is not possible to perform elemental analysis with low detection limits directly on WF 6 or on hydrolyzed WF 6 . However, it is possible to remove the interfering tungsten by physical and chemical separation techniques. This paper discusses how the analysis of molecular impurities in WF 6 may be accomplished directly in the gas phase by infrared spectroscopy and by gas chromatography

  10. Tungsten foil laminate for structural divertor applications – Joining of tungsten foils

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Jens, E-mail: jens.reiser@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Mrotzek, Tobias; Hoffmann, Andreas [PLANSEE SE, Reutte (Austria); Armstrong, D.E.J.; Yi, Xiaoou [University of Oxford, Department of Materials (United Kingdom)

    2013-05-15

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  11. High-energy, high-rate consolidation of tungsten and tungsten-based composite powders

    Energy Technology Data Exchange (ETDEWEB)

    Raghunathan, S.K.; Persad, C.; Bourell, D.L.; Marcus, H.L. (Center for Materials Science and Engineering, Univ. of Texas, Austin (USA))

    1991-01-20

    Tungsten and tungsten-based heavy alloys are well known for their superior mechanical properties at elevated temperatures. However, unalloyed tungsten is difficult to consolidate owing to its very high melting temperature (3683 K). The additions of small amounts of low-melting elements such as iron, nickel, cobalt and copper, facilitate the powder processing of dense heavy alloys at moderate temperatures. Energetic high-current pulses have been used recently for powder consolidation. In this paper, the use of a homopolar generator as a power source to consolidate selected tungsten and tungsten-based alloys is examined. Various materials were consolidated including unalloyed tungsten, W-Nb, W-Ni, and tungsten heavy alloy with boron carbide. The effect of process parameters such as pressure and specific energy input on the consolidation of different alloy systems is described in terms of microstructure and property relationships. (orig.).

  12. Gas-driven permeation of deuterium through tungsten and tungsten alloys

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, Dean A., E-mail: dabuche@sandia.gov [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States); Karnesky, Richard A. [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States); Fang, Zhigang Zak; Ren, Chai [University of Utah, Department of Metallurgical Engineering, Salt Lake City, UT 84112 (United States); Oya, Yasuhisa [Shizuoka University, Graduate School of Science, Shizuoka (Japan); Otsuka, Teppei [Kyushu University, Department of Advanced Energy Engineering Science, Fukuoka (Japan); Yamauchi, Yuji [Hokkaido University, Third Division of Quantum Science and Engineering, Faculty of Engineering, Sapporo (Japan); Whaley, Josh A. [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States)

    2016-11-01

    Highlights: • We have designed and performed initial studies on a high temperature gas-driven permeation cell capable of operating at temperatures up to 1150 °C and at pressures between 0.1–1 atm. • Permeation measurements on ITER grade tungsten compare well with past studies by Frauenfelder and Zahkarov in the temperature range from 500 to 1000 °C. • First permeation measurements on Ti dispersoid-strengthened ultra-fine grained tungsten show higher permeation at 500 °C, but very similar permeation with ITER tungsten at 1000 °C. Diffusion along grain boundaries may be playing a role for this type of material. - Abstract: To address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150 °C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungsten being developed in the US. Experiments were performed at 500–1000 °C and 0.1–1.0 atm D{sub 2} pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (< 10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000 °C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation

  13. Physical-analytical model for cesium/oxygen coadsorption on tungsten

    International Nuclear Information System (INIS)

    Rasor, N.S.

    1992-01-01

    In this paper a physical-analytical model is formulated for computing the emission and vaporization properties of a surface immersed in a multi-species vapor. The evaporation and condensation processes are assumed to be identical to those for an equilibrium adsorbed phase in equilibrium with its vapor, permitting statistical mechanical computation of the sticking coefficient for the practical non-equilibrium condensation condition. Two classes of adsorption sites are defined corresponding to superficial and interstitial coadsorption. The work function is computed by a self-consistent summation over the dipole moments of the various coadsorbed species in their mutual electric field. The model adequately describes observed emission and evaporation from tungsten surfaces immersed in pure cesium vapor and in pure oxygen vapor. Using available and estimated properties for 17 species of cesium, oxygen, tungsten and their compounds, the computed work function for tungsten immersed in Cs/O vapor is compared with limited available experimental data, and the basic phenomenology of Cs/O coadsorption electrodes is discussed

  14. Further development of the tungsten-fibre reinforced tungsten composite

    Energy Technology Data Exchange (ETDEWEB)

    Gietl, Hanns; Hoeschen, Till; Riesch, Johann [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Aumann, Martin; Coenen, Jan [Forschungszentrum Juelich, IEK4, 52425 Juelich (Germany); Huber, Philipp [Lehrstuhl fuer Textilmaschinenbau und Institut fuer Textiltechnik (ITA), 52062 Aachen (Germany); Neu, Rudolf [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Technische Universitaet Muenchen, 85748 Garching (Germany)

    2016-07-01

    For the use in a fusion device tungsten has a unique property combination. The brittleness below the ductile-to-brittle transition temperature and the embrittlement during operation e.g. by overheating, neutron irradiation are the main drawbacks for the use of pure tungsten. Tungsten fibre-reinforced tungsten composites utilize extrinsic mechanisms to improve the toughness. After proofing that this idea works in principle the next step is the conceptual proof for the applicability in fusion reactors. This will be done by producing mock-ups and testing them in cyclic high heat load tests. For this step all constituents of the composite, which are fibre, matrix and interface, and all process steps need to be investigated. Tungsten fibres are investigated by means of tension tests to find the optimum diameter and pretreatment. New interface concepts are investigated to meet the requirements in a fusion reactor, e.g. high thermal conductivity, low activation. In addition weaving processes are evaluated for their use in the fibre preform production. This development is accompanied by an extensive investigation of the materials properties e.g. single fibre tension tests.

  15. Deuterium trapping in tungsten

    Science.gov (United States)

    Poon, Michael

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  16. Deuterium trapping in tungsten

    International Nuclear Information System (INIS)

    Poon, M.

    2004-01-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D 2 molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  17. Deuterium trapping in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Poon, M

    2004-07-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D{sub 2} molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  18. The determination of iron, chromium, titanium, and tungsten by x-ray-fluorescence spectrometry

    International Nuclear Information System (INIS)

    Austen, C.E.

    1977-01-01

    An accurate and precise method is described for the determination of iron and chromium in chromite, iron and titanium in ilmenite, and tungsten in tungsten ores. Samples are prepared for analysis by fusion with sodium peroxide or sodium tetraborate and leaching of the melt in a solution of tartaric or hydrochloric acid. Matrix correction and calibration are achieved by means of the single-standard calibration method with reference solutions prepared from compounds of the elements determined

  19. Effect of Annealing on Tungsten Oxide Thin Films for Acetone Gas ...

    Indian Academy of Sciences (India)

    11

    Abstract: The gas sensing properties and topology of tungsten oxide thin films ..... Figure 3: Atomic force microscopy images of sensing film for (a) as-deposited (a) .... the surface, it forms compounds with the oxygen ions species present on the ...

  20. Mechanism of the electrochemical hydrogen reaction on smooth tungsten carbide and tungsten electrodes

    International Nuclear Information System (INIS)

    Wiesener, K.; Winkler, E.; Schneider, W.

    1985-01-01

    The course of the electrochemical hydrogen reaction on smooth tungsten-carbide electrodes in hydrogen saturated 2.25 M H 2 SO 4 follows a electrochemical sorption-desorption mechanism in the potential range of -0.4 to +0.1 V. At potentials greater than +0.1 V the hydrogen oxidation is controlled by a preliminary chemical sorption step. Concluding from the similar behaviour of tungsten-carbide and tungsten electrodes after cathodic pretreatment, different tungsten oxides should be involved in the course of the hydrogen reaction on tungsten carbide electrodes. (author)

  1. Tungsten Alloy Outgassing Measurements

    CERN Document Server

    Rutherfoord, John P; Shaver, L

    1999-01-01

    Tungsten alloys have not seen extensive use in liquid argon calorimeters so far. Because the manufacturing process for tungsten is different from the more common metals used in liquid argon there is concern that tungsten could poison the argon thereby creating difficulties for precision calorimetry. In this paper we report measurements of outgassing from the tungsten alloy slugs proposed for use in the ATLAS FCal module and estimate limits on potential poisoning with reasonable assumptions. This estimate gives an upper limit poisoning rate of tungsten slugs.

  2. Effects of process parameters on tungsten boride production from WO{sub 3} by self propagating high temperature synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yazici, Sertac [Metallurgical and Materials Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469 (Turkey); Derin, Bora, E-mail: bderin@itu.edu.tr [Metallurgical and Materials Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469 (Turkey)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer We produced tungsten boride compounds by SHS method. Black-Right-Pointing-Pointer Mg containing byproducts were leached out by using a hot aqueous HCl media. Black-Right-Pointing-Pointer The ratio of W{sub 2}B{sub 5}/WB was found to be {approx}2.0 containing minor phases of W{sub 2}B and W. - Abstract: In the present study, the production parameters of tungsten boride compounds by self-propagating high-temperature synthesis (SHS) method and following leaching process were investigated. In the SHS stage, the products consisting of tungsten borides, magnesium oxide, magnesium borate, and also minor compounds were obtained by using different initial molar ratios of WO{sub 3}, Mg and B{sub 2}O{sub 3} as starting materials. In the leaching step, Mg containing byproducts, i.e. MgO and Mg{sub 3}B{sub 2}O{sub 6}, existed in the selected SHS product synthesized at 1:8:2.5 initial molar ratio of WO{sub 3}:Mg:B{sub 2}O{sub 3} were leached out by using aqueous HCl solution to obtain clean tungsten boride compounds at different experimental parameters which are time, acid concentration and temperature. The acid leaching experiments of the SHS product showed that optimum leaching conditions could be achieved by using 5.8 M HCl at 1/10 S/L ratio and the temperature of 80 Degree-Sign C for 60 min.

  3. Tensile behaviour of drawn tungsten wire used in tungsten fibre-reinforced tungsten composites

    International Nuclear Information System (INIS)

    Riesch, J; Feichtmayer, A; Fuhr, M; Gietl, H; Höschen, T; Neu, R; Almanstötter, J; Coenen, J W; Linsmeier, Ch

    2017-01-01

    In tungsten fibre-reinforced tungsten composites (W f /W) the brittleness problem of tungsten is solved by utilizing extrinsic toughening mechanisms. The properties of the composite are very much related to the properties of the drawn tungsten wire used as fibre reinforcements. Its high strength and capability of ductile deformation are ideal properties facilitating toughening of W f /W. Tensile tests have been used for determining mechanical properties and study the deformation and the fracture behaviour of the wire. Tests of as-fabricated and straightened drawn wires with a diameter between 16 and 150 μ m as well as wire electrochemically thinned to a diameter of 5 μ m have been performed. Engineering stress–strain curves and a microscopic analysis are presented with the focus on the ultimate strength. All fibres show a comparable stress–strain behaviour comprising necking followed by a ductile fracture. A reduction of the diameter by drawing leads to an increase of strength up to 4500 MPa as a consequence of a grain boundary hardening mechanism. Heat treatment during straightening decreases the strength whereas electrochemical thinning has no significant impact on the mechanical behaviour. (paper)

  4. Thermodynamics of the hydrogen-carbon-oxygen-tungsten system, as applied to the manufacture of tungsten and tungsten carbide

    International Nuclear Information System (INIS)

    Schwenke, G.K.

    2001-01-01

    The thermodynamics of the quaternary hydrogen-carbon oxygen-tungsten system and its binary and ternary sub-systems are reviewed. Published thermodynamic data are evaluated, and expression for free energies of formation are chosen. These expressions are integrated with and equilibrium-calculating algorithm, producing a powerful tool for understanding and improving the manufacture of tungsten and tungsten carbide. Three examples are presented: reduction/carburization of tungstic oxide with hydrogen, carbon, and methane. (author)

  5. Tungsten foil laminate for structural divertor applications – Analyses and characterisation of tungsten foil

    International Nuclear Information System (INIS)

    Reiser, Jens; Rieth, Michael; Dafferner, Bernhard; Hoffmann, Andreas; Yi Xiaoou; Armstrong, David E.J.

    2012-01-01

    It has been attempted for several years to synthesise a tungsten material with a low brittle-to-ductile transition temperature and a high fracture toughness that can be used for structural parts. It was shown in our previous work that tungsten foil is ductile at room temperature and that this ductility can be transformed to bulk by synthesising a tungsten laminate. In this work we want to focus on tungsten foil and assess the microstructure as well as the mechanical properties of the foil. The assessment of the microstructure of 0.1 mm tungsten foil will be performed using electron microscopy. It will be shown that the grains of the tungsten foil have a dimension of 0.5 μm × 3 μm × 15 μm and a clear texture in (1 0 0) 〈0 1 1〉. This texture becomes even more pronounced by annealing. Three-point-bending tests with tungsten foil, as-received, will define the barriers: ductile at room temperature and brittle in liquid nitrogen (−196 °C). This shows that the ductility is a thermally activated process. Recrystallised tungsten foil (annealed for 1 h/2700 °C) shows ductile material behaviour at 200 °C. The paper closes with a discussion on the reasons of the ductility of 0.1 mm tungsten foil. These might be the ultra fine grained (UFG) microstructure or, in other words, a nano microstructure (see tungsten foil as-received), the high amount of mobile edge dislocations, and/or the foil effect, which means that dislocations can move to the surface and are annihilated (see tungsten foil recrystallised).

  6. Engineered Surface Properties of Porous Tungsten from Cryogenic Machining

    Science.gov (United States)

    Schoop, Julius Malte

    Porous tungsten is used to manufacture dispenser cathodes due to it refractory properties. Surface porosity is critical to functional performance of dispenser cathodes because it allows for an impregnated ceramic compound to migrate to the emitting surface, lowering its work function. Likewise, surface roughness is important because it is necessary to ensure uniform wetting of the molten impregnate during high temperature service. Current industry practice to achieve surface roughness and surface porosity requirements involves the use of a plastic infiltrant during machining. After machining, the infiltrant is baked and the cathode pellet is impregnated. In this context, cryogenic machining is investigated as a substitutionary process for the current plastic infiltration process. Along with significant reductions in cycle time and resource use, surface quality of cryogenically machined un-infiltrated (as-sintered) porous tungsten has been shown to significantly outperform dry machining. The present study is focused on examining the relationship between machining parameters and cooling condition on the as-machined surface integrity of porous tungsten. The effects of cryogenic pre-cooling, rake angle, cutting speed, depth of cut and feed are all taken into consideration with respect to machining-induced surface morphology. Cermet and Polycrystalline diamond (PCD) cutting tools are used to develop high performance cryogenic machining of porous tungsten. Dry and pre-heated machining were investigated as a means to allow for ductile mode machining, yet severe tool-wear and undesirable smearing limited the feasibility of these approaches. By using modified PCD cutting tools, high speed machining of porous tungsten at cutting speeds up to 400 m/min is achieved for the first time. Beyond a critical speed, brittle fracture and built-up edge are eliminated as the result of a brittle to ductile transition. A model of critical chip thickness ( hc ) effects based on cutting

  7. High temperature diffusion of hafnium in tungsten and a tungsten-hafnium carbide alloy

    International Nuclear Information System (INIS)

    Ozaki, Y.; Zee, R.H.

    1994-01-01

    Refractory metals and ceramics are used extensively in energy systems due to their high temperature properties. This is particularly important in direct conversion systems where thermal to electric conversion efficiency is a direct function of temperature. Tungsten, which has the highest melting temperature among elemental metals, does not possess sufficient creep resistance at temperature above 1,600 K. Different dispersion strengthened tungsten alloys have been developed to extend the usefulness of tungsten to higher temperatures. One of these alloys, tungsten with 0.4 mole percent of finely dispersed HfC particles (W-HfC), has the optimum properties for high temperature applications. Hafnium carbide is used as the strengthening agent due to its high chemical stability and its compatibility with tungsten. The presence of HfC particles retards the rate of grain growth as well as restricting dislocation motion. Both of which are beneficial for creep resistance. The long term behavior of this alloy depends largely on the evolution of its microstructure which is governed by the diffusion of its constituents. Data on the diffusion of carbon in tungsten and tungsten self-diffusion are available, but no direct measurements have been made on the diffusion of hafnium in tungsten. The only diffusion data available are estimated from a coarsening study and these data are highly unreliable. In this study, the diffusion behavior of hafnium in pure tungsten and in a W-HfC alloy was directly measured by means of Secondary Ion Mass Spectroscopy (SIMS). The selection of the W-HfC alloy is due to its importance in high temperature engineering applications, and its higher recrystallization temperature. The presence of HfC particles in tungsten restricts grain growth resulting in better high temperature creep resistance. The higher recrystallization temperature allows measurements to be made over a wider range of temperatures at a relatively constant grain size

  8. Plasma etching of patterned tungsten

    International Nuclear Information System (INIS)

    Franssila, S.

    1993-01-01

    Plasma etching of tungsten is discussed from the viewpoint of thin film structure and integrated circuit process engineering. The emphasis is on patterned tungsten etching for silicon device and X-ray mask fabrication. After introducing tungsten etch chemistries and mechanisms, microstructural aspects of tungsten films (crystal structure, grain size, film density, defects, impurities) in relation to etching are discussed. Approaches to etch process optimization are presented, and the current state-of-the-art of patterned tungsten etching is reviewed. (orig.)

  9. Development of quantitative atomic modeling for tungsten transport study using LHD plasma with tungsten pellet injection

    Science.gov (United States)

    Murakami, I.; Sakaue, H. A.; Suzuki, C.; Kato, D.; Goto, M.; Tamura, N.; Sudo, S.; Morita, S.

    2015-09-01

    Quantitative tungsten study with reliable atomic modeling is important for successful achievement of ITER and fusion reactors. We have developed tungsten atomic modeling for understanding the tungsten behavior in fusion plasmas. The modeling is applied to the analysis of tungsten spectra observed from plasmas of the large helical device (LHD) with tungsten pellet injection. We found that extreme ultraviolet (EUV) emission of W24+ to W33+ ions at 1.5-3.5 nm are sensitive to electron temperature and useful to examine the tungsten behavior in edge plasmas. We can reproduce measured EUV spectra at 1.5-3.5 nm by calculated spectra with the tungsten atomic model and obtain charge state distributions of tungsten ions in LHD plasmas at different temperatures around 1 keV. Our model is applied to calculate the unresolved transition array (UTA) seen at 4.5-7 nm tungsten spectra. We analyze the effect of configuration interaction on population kinetics related to the UTA structure in detail and find the importance of two-electron-one-photon transitions between 4p54dn+1- 4p64dn-14f. Radiation power rate of tungsten due to line emissions is also estimated with the model and is consistent with other models within factor 2.

  10. Development of quantitative atomic modeling for tungsten transport study Using LHD plasma with tungsten pellet injection

    International Nuclear Information System (INIS)

    Murakami, I.; Sakaue, H.A.; Suzuki, C.; Kato, D.; Goto, M.; Tamura, N.; Sudo, S.; Morita, S.

    2014-10-01

    Quantitative tungsten study with reliable atomic modeling is important for successful achievement of ITER and fusion reactors. We have developed tungsten atomic modeling for understanding the tungsten behavior in fusion plasmas. The modeling is applied to the analysis of tungsten spectra observed from currentless plasmas of the Large Helical Device (LHD) with tungsten pellet injection. We found that extreme ultraviolet (EUV) lines of W 24+ to W 33+ ions are very sensitive to electron temperature (Te) and useful to examine the tungsten behavior in edge plasmas. Based on the first quantitative analysis of measured spatial profile of W 44+ ion, the tungsten concentration is determined to be n(W 44+ )/n e = 1.4x10 -4 and the total radiation loss is estimated as ∼4 MW, of which the value is roughly half the total NBI power. (author)

  11. Study of the tungsten bronze Ag0.01WO3 using positron annihilation method

    International Nuclear Information System (INIS)

    Dryzek, J.; Dryzek, E.; Placzek, A.

    1992-01-01

    The study of the positron annihilation and the Seebeck effect was performed on silver doped tungsten trioxide of composition Ag 0.01 WO 3 and the tungsten trioxide phase: WO 2.90 (W 20 O 58 ). Both methods point out that there are some clusters of Ag + ions in the first compound and oxygen vacancies in the second case. The clusters have some internal substructure. The measurements of the Seebeck effect showed that Ag 0.01 WO 3 is normal n-type semiconductor whereas WO 2.90 exhibits metal-like properties

  12. Textbook tests with tungsten

    CERN Multimedia

    Barbara Warmbein

    2010-01-01

    CERN's linear collider detector group joins forces with CALICE in building the world's first tungsten hadronic calorimeter.   Hadronic calorimeter prototype made of tungsten for the linear collider detector being equipped with CALICE scintillators. In a hall for test beam experiments at CERN, next to the CLOUD climate experiment and an irradiation facility, sits a detector prototype that is in many ways a first. It's the first ever hadronic sandwich calorimeter (HCal) prototype made of tungsten. It's the first prototype for a detector for the Compact Linear Collider Study CLIC, developed by the linear collider detector R&D group (LCD group) at CERN. And it's the first piece of hardware that results directly from the cooperation between CLIC and ILC detector study groups. Now its makers are keen to see first particle showers in their detector. The tungsten calorimeter has just moved from a workshop at CERN, where it was assembled from finely polished tungsten squares and triangles, into the ...

  13. Toughness enhancement of tungsten reinforced with short tungsten fibres

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhang, L.H. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Fang, Q.F., E-mail: qffang@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Zhang, T.; Wang, X.P.; Hao, T.; Liu, C.S. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-04-06

    The feasibility and toughening efficiency of the short tungsten fibre reinforcement on tungsten were investigated in W{sub f}/W composites fabricated by powder metallurgy method of spark plasma sintering. Fibres in the composites presented a Z-free laminar structure. Partial recrystallization of fibre grains occurred but fibre crack or damage was not detected. Fracture energy of W{sub f}/W composites was estimated in tensile tests, and the results indicated great toughness improvement over pure tungsten in virtue of frictional pullout and plastic deformation of fibres, and matrix-fibres interfacial debonding since 873 K. The specimen with mass fraction of 10% and fibre diameter of 100 µm exhibits the largest elongation of 9±1.1% and the highest ultimate strength of 482±13 MPa at 873 K.

  14. Crystallization kinetics of amorphous aluminum-tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    Car, T.; Radic, N. [Rugjer Boskovic Inst., Zagreb (Croatia). Div. of Mater. Sci.; Ivkov, J. [Institute of Physics, Bijenicka 46, P.O.B. 304, HR-10000 Zagreb (Croatia); Babic, E.; Tonejc, A. [Faculty of Sciences, Physics Department, Bijenicka 32, P.O.B. 162, HR-10000 Zagreb (Croatia)

    1999-01-01

    Crystallization kinetics of the amorphous Al-W thin films under non-isothermal conditions was examined by continuous in situ electrical resistance measurements in vacuum. The estimated crystallization temperature of amorphous films in the composition series of the Al{sub 82}W{sub 18} to Al{sub 62}W{sub 38} compounds ranged from 800 K to 920 K. The activation energy for the crystallization and the Avrami exponent were determined. The results indicated that the crystallization mechanism in films with higher tungsten content was a diffusion-controlled process, whereas in films with the composition similar to the stoichiometric compound (Al{sub 4}W), the interface-controlled crystallization probably occurred. (orig.) With 4 figs., 1 tab., 26 refs.

  15. Preparation and characterization of dimeric and tetrameric clusters of molybdenum and tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, T.R.

    1981-10-01

    The cyclo-addition of two Mo/sub 2/Cl/sub 4/(P(C/sub 6/H/sub 5/)/sub 3/)/sub 2/(CH/sub 3/OH)/sub 2/ molecules has produced a new type of tetrameric molybdenum cluster, Mo/sub 4/Cl/sub 8/L/sub 4/. Structural characterization of this dimer revealed weak molybdenum-methanol bonding which was consistent with the observed reactivity of the compound. New synthetic methods were devised for the preparation of Mo/sub 4/X/sub 8/L/sub 4/ clusters where X = Cl, Br, I and L = PR/sub 3/, Po/sub 3/, RCN, CH/sub 3/OH. A scheme for the metal-metal bonding in these clusters was presented which was in agreement with the known structural features of Mo/sub 4/Cl/sub 8/(PR/sub 3/)/sub 4/, R = C/sub 2/H/sub 5/, n-C/sub 4/H/sub 9/. The preparation of the analogous W/sub 4/Cl/sub 8/(PR/sub 3/)/sub 4/ cluster from WCl/sub 4/ was accomplished by application of techniques used in the molybdenum syntheses. The single crystal x-ray structure revealed slight differences from the molybdenum analog which were rationalized in terms of the known behavior in dimeric tungsten and molybdenum species. The attempted preparation of a tetrameric tungsten cluster from W/sub 2/(mhp)/sub 4/ was unsuccessful (mhp = anion of 2-methyl-6-hydroxypyridine). Instead, the new tungsten dimer, W/sub 2/Cl/sub 2/(mhp)/sub 3/, was isolated which possessed a metal-metal bond order of 3.5. The x-ray crystal structure of the dimer revealed that the chlorine atoms were situated cis, one bound to each tungsten. Cyclic voltammetry showed that the compound could be reversibly reduced, presumably to a W/sub 2//sup 4 +/ dimer containing a quadruple metal-metal bond.

  16. Tungsten Filament Fire

    Science.gov (United States)

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  17. Tungsten behaviour under anodic polarization

    International Nuclear Information System (INIS)

    Vas'ko, A.T.; Patsyuk, F.N.

    1980-01-01

    Electrochemical investigations have been carried out to identify the state of elements of the tungsten galvanic coating. Active zones on anode polarization curves in the hydrogen region of galvanic tungsten are established. The difference in the behaviour of monocrystal and galvanic tungsten electrodes is shown to be connected with the oxidation of hydrogen in the galvanic sediment

  18. Helium bubble bursting in tungsten

    International Nuclear Information System (INIS)

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-01-01

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz

  19. Scanning tunneling microscopy measurements of the spin Hall effect in tungsten films by using iron-coated tungsten tips

    Science.gov (United States)

    Xie, Ting; Dreyer, Michael; Bowen, David; Hinkel, Dan; Butera, R. E.; Krafft, Charles; Mayergoyz, Isaak

    2018-05-01

    Scanning tunneling microscopy experiments using iron-coated tungsten tips and current-carrying tungsten films have been conducted. An asymmetry of the tunneling current with respect to the change of the direction of the bias current through a tungsten film has been observed. It is argued that this asymmetry is a manifestation of the spin Hall effect in the current-carrying tungsten film. Nanoscale variations of this asymmetry across the tungsten film have been studied by using the scanning tunneling microscopy technique.

  20. Scanning tunneling microscopy measurements of the spin Hall effect in tungsten films by using iron-coated tungsten tips

    Directory of Open Access Journals (Sweden)

    Ting Xie

    2018-05-01

    Full Text Available Scanning tunneling microscopy experiments using iron-coated tungsten tips and current-carrying tungsten films have been conducted. An asymmetry of the tunneling current with respect to the change of the direction of the bias current through a tungsten film has been observed. It is argued that this asymmetry is a manifestation of the spin Hall effect in the current-carrying tungsten film. Nanoscale variations of this asymmetry across the tungsten film have been studied by using the scanning tunneling microscopy technique.

  1. Micro-powder injection moulding of tungsten

    International Nuclear Information System (INIS)

    Zeep, B.

    2007-12-01

    For He-cooled Divertors as integral components of future fusion power plants, about 300000 complex shaped tungsten components are to be fabricated. Tungsten is the favoured material because of its excellent properties (high melting point, high hardness, high sputtering resistance, high thermal conductivity). However, the material's properties cause major problems for large scale production of complex shaped components. Due to the resistance of tungsten to mechanical machining, new fabrication technologies have to be developed. Powder injection moulding as a well established shaping technology for a large scale production of complex or even micro structured parts might be a suitable method to produce tungsten components for fusion applications but is not yet commercially available. The present thesis is dealing with the development of a powder injection moulding process for micro structured tungsten components. To develop a suitable feedstock, the powder particle properties, the binder formulation and the solid load were optimised. To meet the requirements for a replication of micro patterned cavities, a special target was to define the smallest powder particle size applicable for micro-powder injection moulding. To investigate the injection moulding performance of the developed feedstocks, experiments were successfully carried out applying diverse cavities with structural details in micro dimension. For debinding of the green bodies, a combination of solvent debinding and thermal debinding has been adopted for injection moulded tungsten components. To develop a suitable debinding strategy, a variation of the solvent debinding time, the heating rate and the binder formulation was performed. For investigating the thermal consolidation behaviour of tungsten components, sinter experiments were carried out applying tungsten powders suitable for micro-powder injection moulding. First mechanical tests of the sintered samples showed promising material properties such as a

  2. Impact of residual by-products from tungsten film deposition on process integration due to nonuniformity of the tungsten film

    CERN Document Server

    Sidhwa, A; Gandy, T; Melosky, S; Brown, W; Ang, S; Naseem, H; Ulrich, R

    2002-01-01

    The effects of residual by products from a tungsten film deposition process and their impact on process integration due to the nonuniformity of the tungsten film were investigated in this work. The tungsten film deposition process involves three steps: nucleation, stabilization, and tungsten bulk fill. Six experiments were conducted in search for a solution to the problem. The resulting data suggest that excess nitrogen left in the chamber following the tungsten nucleation step, along with residual by products, causes a shift in the tungsten film uniformity during the tungsten bulk fill process. Data reveal that, due to the residual by products, an abnormal grain growth occurs causing a variation in the tungsten thickness across the wafer during the bulk fill step. Although several possible solutions were revealed by the experiments, potential integration problems limited the acceptable solutions to one. The solution chosen was the introduction of a 10 s pumpdown immediately following the nucleation step. Thi...

  3. Characterization and performances of cobalt-tungsten and molybdenum-tungsten carbides as anode catalyst for PEFC

    International Nuclear Information System (INIS)

    Izhar, Shamsul; Yoshida, Michiko; Nagai, Masatoshi

    2009-01-01

    The preparation of carbon-supported cobalt-tungsten and molybdenum-tungsten carbides and their activity as an anode catalyst for a polymer electrolyte fuel cell were investigated. The electrocatalytic activity for the hydrogen oxidation reaction over the catalysts was evaluated using a single-stack fuel cell and a rotating disk electrode. The characterization of the catalysts was performed by XRD, temperature-programmed carburization, temperature-programmed reduction and X-ray photoelectron spectroscopy. The maximum power densities of the 30 wt% 873 K-carburized cobalt-tungsten and molybdenum-tungsten mixed with Ketjen carbon (cobalt-tungsten carbide (CoWC)/Ketjen black (KB) and molybdenum-tungsten carbide (MoWC)/KB) were 15.7 and 12.0 mW cm -2 , respectively, which were 14 and 11%, compared to the in-house membrane electrode assembly (MEA) prepared from a 20 wt% Pt/C catalyst. The CoWC/KB catalyst exhibited the highest maximum power density compared to the MoWC/KB and WC/KB catalysts. The 873 K-carburized CoW/KB catalyst formed the oxycarbided and/or carbided CoW that are responsible for the excellent hydrogen oxygen reaction

  4. Irradiation effects in tungsten-copper laminate composite

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, L.M., E-mail: garrisonlm@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Katoh, Y. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Snead, L.L. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Byun, T.S. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Reiser, J.; Rieth, M. [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2016-12-01

    Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410–780 °C and fast neutron fluences of 0.02–9.0 × 10{sup 25} n/m{sup 2}, E > 0.1 MeV, 0.0039–1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 °C. After only 0.0039 dpa this was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 °C. For elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile. - Highlights: • Fusion reactors need a tough, ductile tungsten plasma-facing material. • The unirradiated tungsten-copper laminate is more ductile than tungsten alone. • After neutron irradiation, the composite has significantly less ductility. • The tungsten behavior appears to dominate the overall composite behavior.

  5. An investigation of tungsten by neutron activation techniques

    International Nuclear Information System (INIS)

    Svetsreni, R.

    1978-01-01

    This investigation used neutron from Plutonium-Beryllium source (5 curie) to analyse the amount of tungsten in tungsten oxide which was extracted from tungsten ores, slag and tungsten alloy of tungsten iron and carbon. The technique of neutron activation analysis with NaI(Tl) gamma detector 3'' x 3'' and 1024 multichannel analyzer. The dilution technique was used by mixing Fe 2 O 3 or pure sand into the sample before irradiation. In this study self shielding effect in the analysis of tungsten was solved and the detection limit of the tungsten in the sample was about 0.5%

  6. Hydrogen permeation properties of plasma-sprayed tungsten

    International Nuclear Information System (INIS)

    Anderl, R.A.; Pawelko, R.J.; Hankins, M.R.; Longhurst, G.R.; Neiser, R.A.

    1994-01-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D + 3 ion beam with fluxes of similar 6.5x10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity. ((orig.))

  7. Hydrogen permeation properties of plasma-sprayed tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Pawelko, R.J. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Hankins, M.R. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Longhurst, G.R. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Neiser, R.A. (Sandia National Laboratories, Albuquerque, NM 87185 (United States))

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D[sup +][sub 3] ion beam with fluxes of similar 6.5x10[sup 19] D/m[sup 2] s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity. ((orig.))

  8. Kinetics of low pressure chemical vapor deposition of tungsten silicide from dichlorocilane reduction of tungsten hexafluoride

    International Nuclear Information System (INIS)

    Srinivas, D.; Raupp, G.B.; Hillman, J.

    1990-01-01

    The authors report on experiments to determine the intrinsic surface reaction rate dependences and film properties' dependence on local reactant partial pressures and wafer temperature in low pressure chemical vapor deposition (LPCVD) of tungsten silicide from dichlorosilane reduction of tungsten hexafluoride. Films were deposited in a commercial-scale Spectrum CVD cold wall single wafer reactor under near differential, gradientless conditions. Over the range of process conditions investigated, deposition rate was found to be first order in dichlorosillane and negative second order in tungsten hexafluoride partial pressure. The apparent activation energy in the surface reaction limited regime was found to be 70-120 kcal/mol. The silicon to tungsten ratio of as deposited silicide films ranged from 1.1 to 2.4, and increased with increasing temperature and dichlorosillane partial pressure, and decreased with increasing tungsten hexafluoride pressure. These results suggest that the apparent silicide deposition rate and composition are controlled by the relative rates of at least two competing reactions which deposit stoichiometric tungsten silicides and/or silicon

  9. Hydrogen retention properties of polycrystalline tungsten and helium irradiated tungsten

    International Nuclear Information System (INIS)

    Hino, T.; Koyama, K.; Yamauchi, Y.; Hirohata, Y.

    1998-01-01

    The hydrogen retention properties of a polycrystalline tungsten and tungsten irradiated by helium ions with an energy of 5 keV were examined by using an ECR ion irradiation apparatus and a technique of thermal desorption spectroscopy, TDS. The polycrystalline tungsten was irradiated at RT with energetic hydrogen ions, with a flux of 10 15 H cm -2 and an energy of 1.7 keV up to a fluence of 5 x 10 18 H cm -2 . Subsequently, the amount of retained hydrogen was measured by TDS. The heating temperature was increased from RT to 1000 C, and the heating rate was 50 C min -1 . Below 1000 C, two distinct hydrogen desorption peaks were observed at 200 C and 400 C. The retained amount of hydrogen was observed to be five times smaller than that of graphite, but the concentration in the implantation layer was comparable with that of graphite. Also, the polycrystalline tungsten was irradiated with 5 keV helium ions up to a fluence of 1.4 x 10 18 He cm -2 , and then re-irradiated with 1.7 keV hydrogen ions. The amount of retained hydrogen in this later experiment was close to the value in the case without prior helium ion irradiation. However, the amount of hydrogen which desorbed around the low temperature peak, 200 C, was largely enhanced. The desorption amount at 200 C saturated for the helium fluence of more than 5 x 10 17 He cm -2 . The present data shows that the trapping state of hydrogen is largely changed by the helium ion irradiation. Additionally, 5 keV helium ion irradiation was conducted on a sample pre-implanted with hydrogen ions to simulate a helium ion impact desorption of hydrogen retained in tungsten. The amount of the hydrogen was reduced as much as 50%. (orig.)

  10. Fractographic peculiarities of cermet tungsten fracture

    International Nuclear Information System (INIS)

    Stepanenko, V.A.; Babak, A.V.; Uskov, E.I.

    1982-01-01

    Effect of test temperature on fracture peculiarities of cermets tungsten with initial cellular structure of deformation is shown. Tungsten crack resistance increases at temperatures to Tsub(x) (ductile-brittle transition temperature) and decreases at temperatures above Tsub(x). The degree of ceramics tungsten plasticity realization depends on its crack resistance

  11. Tungsten wire and tubing joined by nickel brazing

    Science.gov (United States)

    1965-01-01

    Thin tungsten wire and tungsten tubing are brazed together using a contacting coil of nickel wire heated to its melting point in an inert-gas atmosphere. This method is also effective for brazing tungsten to tungsten-rhenium parts.

  12. Micro creep mechanisms of tungsten

    International Nuclear Information System (INIS)

    Levoy, R.; Hugon, I.; Burlet, H.; Baillin, X.; Guetaz, L.

    2000-01-01

    Due to its high melting point (3410 deg C), tungsten offers good mechanical properties at elevated temperatures for several applications in non-oxidizing environment. The creep behavior of tungsten is well known between 1200 and 2500 deg C and 10 -3 to 10 -1 strain. However, in some applications when dimensional stability of components is required, these strains are excessive and it is necessary to know the creep behavior of the material for micro-strains (between 10 -4 and 10 -6 ). Methods and devices used to measure creep micro-strains are presented, and creep equations (Norton and Chaboche laws) were developed for wrought, annealed and recrystallized tungsten. The main results obtained on tungsten under low stresses are: stress exponent 1, symmetry of micro-strains in creep-tension and creep-compression, inverse creep (threshold stress), etc. TEM, SEM and EBSD studies allow interpretation of the micro-creep mechanism of tungsten under low stresses and low temperature (∼0.3 K) like the Harper-Dorn creep. In Harper-Dorn creep, micro-strains are associated with the density and the distribution of dislocations existing in the crystals before creep. At 975 deg C, the initial dislocation structure moves differently whether or not a stress is applied. To improve the micro-creep behavior of tungsten, a heat treatment is proposed to create the optimum dislocation structure. (authors)

  13. Recrystallization and embrittlement of sintered tungsten

    International Nuclear Information System (INIS)

    Bega, N.D.; Babak, A.V.; Uskov, E.I.

    1982-01-01

    The recrystallization of sintered tungsten with a cellular structure of deformation is studied as related to its embrittlement. It is stated that in case of preliminary recrystallization the sintered tungsten crack resistance does not depend on the testing temperature. The tungsten crack resistance is shown to lower with an increase of the structure tendency to primary recrystallization [ru

  14. Tungsten-induced carcinogenesis in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Laulicht, Freda; Brocato, Jason; Cartularo, Laura; Vaughan, Joshua; Wu, Feng; Kluz, Thomas; Sun, Hong [Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987 (United States); Oksuz, Betul Akgol [Genome Technology Center, New York University Langone Medical Center, New York, NY 10016 (United States); Shen, Steven [Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY 10016 (United States); Peana, Massimiliano; Medici, Serenella; Zoroddu, Maria Antonietta [Department of Chemistry and Pharmacy, University of Sassari, Sassari (Italy); Costa, Max, E-mail: Max.Costa@nyumc.org [Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987 (United States)

    2015-10-01

    Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten's ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer-related pathways in transformed clones as determined by RNA sequencing. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data show the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. - Highlights: • Tungsten (W) induces cell transformation and increases migration in vitro. • W increases xenograft growth in nude mice. • W altered the expression of cancer-related genes such as those involved in leukemia. • Some of the dysregulated leukemia genes include, CD74, CTGF, MST4, and HOXB5. • For the first time, data is presented that demonstrates tungsten's carcinogenic potential.

  15. Environmental fate of tungsten from military use

    International Nuclear Information System (INIS)

    Clausen, Jay L.; Korte, Nic

    2009-01-01

    This manuscript describes the distribution, fate and transport of tungsten used in training rounds at three small arms ranges at Camp Edwards on the Massachusetts Military Reservation (MMR), USA. Practice with tungsten/nylon rounds began in 2000 subsequent to a 1997 US Environmental Protection Agency ban on training with lead. Training with the tungsten rounds was halted in 2005 because of concerns regarding tungsten's environmental mobility and potential toxicity. This study, therefore, examines how tungsten partitions in the environment when fired on a small arms training range. Soil sampling revealed surface soil concentrations, highest at the berm face, up to 2080 mg/kg. Concentrations decreased rapidly with depth-at least by an order of magnitude by 25 cm. Nonetheless, tungsten concentrations remained above background to at least 150 cm. Pore-water samples from lysimeters installed in berm areas revealed a range of concentrations (< 1-400 mg/L) elevated with respect to background although there was no discernable trend with depth. Groundwater monitoring well samples collected approximately 30 m below ground surface showed tungsten (0.001-0.56 mg/L) attributable to range use

  16. ITER tungsten divertor design development and qualification program

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, T., E-mail: takeshi.hirai@iter.org [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint Paul lez Durance (France); Escourbiac, F.; Carpentier-Chouchana, S.; Fedosov, A.; Ferrand, L.; Jokinen, T.; Komarov, V.; Kukushkin, A.; Merola, M.; Mitteau, R.; Pitts, R.A.; Shu, W.; Sugihara, M. [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint Paul lez Durance (France); Riccardi, B. [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Suzuki, S. [JAEA, Fusion Research and Development Directorate JAEA, 801-1 Mukouyama, Naka, Ibaragi 311-0193 (Japan); Villari, R. [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, I-00044 Frascati, Rome (Italy)

    2013-10-15

    Highlights: • Detailed design development plan for the ITER tungsten divertor. • Latest status of the ITER tungsten divertor design. • Brief overview of qualification program for the ITER tungsten divertor and status of R and D activity. -- Abstract: In November 2011, the ITER Council has endorsed the recommendation that a period of up to 2 years be set to develop a full-tungsten divertor design and accelerate technology qualification in view of a possible decision to start operation with a divertor having a full-tungsten plasma-facing surface. To ensure a solid foundation for such a decision, a full tungsten divertor design, together with a demonstration of the necessary high performance tungsten monoblock technology should be completed within the required timescale. The status of both the design and technology R and D activity is summarized in this paper.

  17. Hydrogen permeation properties of plasma-sprayed tungsten*1

    Science.gov (United States)

    Anderl, R. A.; Pawelko, R. J.; Hankins, M. R.; Longhurst, G. R.; Neiser, R. A.

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D 3+ ion beam with fluxes of ˜6.5 × 10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity.

  18. Vapor-transport of tungsten and its geologic application

    Energy Technology Data Exchange (ETDEWEB)

    Shibue, Y [Hyogo Univ. of Teacher Education, Hyogo (Japan)

    1988-11-10

    The volatility of tungsten in a hydrous system at elevated temperatures and pressures was examined, and a tentative model for the enrichment of tungsten in hydrothermal solutions for the deposits related to granitic activities was proposed. To produce vapor-saturated solution, 17 or 15ml of 20wt% NaCl solution was introduced into an autoclave. Ca(OH){sub 2} for tungsten and H{sub 2}WO{sub 4} for base metals were used as vapor-captures, and run products were identified by X-ray powder diffractometry. The results suggested that the ratio of tungsten to base metals was higher in a vapor phase than in a liquid phase, and more enrichment of tungsten in the vapor phase occurred at higher temperature and pressure under the coexistence of the vapor and liquid phase. The tentative model emphasizing the vapor-transport of tungsten could explain the presence of tungsten deposits without large mineralization of base metals. Geological schematic model for the generation of the hydrothermal solution enriched in tungsten compared with base metals was illustrated based on above mentioned results. 21 refs., 3 figs.

  19. Environmental fate of tungsten from military use

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Jay L. [Research and Development Center, Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, New Hampshire, 03755 (United States)], E-mail: Jay.L.Clausen@erdc.usace.army.mil; Korte, Nic [1946 Clover Ct., Grand Junction, Colorado, 81506 (United States)

    2009-04-01

    This manuscript describes the distribution, fate and transport of tungsten used in training rounds at three small arms ranges at Camp Edwards on the Massachusetts Military Reservation (MMR), USA. Practice with tungsten/nylon rounds began in 2000 subsequent to a 1997 US Environmental Protection Agency ban on training with lead. Training with the tungsten rounds was halted in 2005 because of concerns regarding tungsten's environmental mobility and potential toxicity. This study, therefore, examines how tungsten partitions in the environment when fired on a small arms training range. Soil sampling revealed surface soil concentrations, highest at the berm face, up to 2080 mg/kg. Concentrations decreased rapidly with depth-at least by an order of magnitude by 25 cm. Nonetheless, tungsten concentrations remained above background to at least 150 cm. Pore-water samples from lysimeters installed in berm areas revealed a range of concentrations (< 1-400 mg/L) elevated with respect to background although there was no discernable trend with depth. Groundwater monitoring well samples collected approximately 30 m below ground surface showed tungsten (0.001-0.56 mg/L) attributable to range use.

  20. Tungsten Speciation in Firing Range Soils

    Science.gov (United States)

    2011-01-01

    satisfactorily, such as: which tungsten mineral phase is present in soil and to what extent is adsorption important in regu- lating soil solution concentrations... soil solution rather than discrete mineral phases. Information provided in this report will assist the following organizations in future decision...the soil solution ERDC TR-11-1 43 must affect tungsten speciation in other ways. The precipitation of soil minerals also would limit tungsten

  1. Strain aging in tungsten heavy alloys

    International Nuclear Information System (INIS)

    Dowding, R.J.; Tauer, K.J.

    1991-01-01

    This paper reports on tungsten heavy alloys which are two-phase mixtures of body center cubic (BCC) tungsten surrounded by a face center cubic (FCC) matrix. The matrix is most often composed of nickel and iron in a ratio of 70:30 but, occasionally, the matrix may also contain cobalt or copper. Nickel, however, is always the primary matrix component. The tungsten heavy alloy is fabricated through powder metallurgy techniques. Elemental powders are blended, pressed to shape, and sintered. Depending upon the tungsten content, the sintering temperatures are usually in the range of 1450 degrees C to 1525 degrees C. These temperatures are high enough that, as a result, the matrix is at the liquid phase and the process is known as liquid phase sintering. At the liquid phase temperature, the matrix becomes saturated with tungsten, but this does not change the FCC character of the matrix. The sintering is usually done in a hydrogen atmosphere furnace in order to reduce the oxides on the tungsten powder surfaces and create clean, active surfaces which will enhance the adherence between the tungsten and the matrix. The hydrogen atmosphere also creates the presence of excess dissolved hydrogen in the alloy. It has been shown that the hydrogen degrades the toughness and ductility of the heavy alloy. A post-sintering vacuum heat treatment is generally required to insure that there is no residual hydrogen present. The as-sintered tensile strength of a 90% tungsten, 7% nickel, 3% iron alloy (90W) is in the range of 800 to 940 MPa and can be increased significantly by cold working, usually rolling or swaging. Swaging to reductions in area of 20% can result in tensile strengths of 1250 MPa or more. As the strength increases, the elongation, which may have been 30% or more, decreases to less than 5%

  2. High-purity tungsten powder: spheroidizing, properties and use in electronics

    International Nuclear Information System (INIS)

    Kapustin, V.I.; Burov, I.V.

    1999-01-01

    A study was made on the method of spheroidizing of tungsten powder in plasma of super high-frequency (SHF) discharge for formation of matrices, cathodes with regular porous structure. Kinetics of interphase interaction in the basic W-Y 2 O 3 cathode system was investigated. Possibility of using small additions of Re 2 Yintermetallic compound as an activator of emission-active component of cathodes was analyzed, High efficiency of plasma SHF-treatment with the use of laminar plasma flow is shown [ru

  3. Chemically deposited tungsten fibre-reinforced tungsten – The way to a mock-up for divertor applications

    Directory of Open Access Journals (Sweden)

    J. Riesch

    2016-12-01

    Full Text Available The development of advanced materials is essential for sophisticated energy systems like a future fusion reactor. Tungsten fibre-reinforced tungsten composites (Wf/W utilize extrinsic toughening mechanisms and therefore overcome the intrinsic brittleness of tungsten at low temperature and its sensitivity to operational embrittlement. This material has been successfully produced and tested during the last years and the focus is now put on the technological realisation for the use in plasma facing components of fusion devices. In this contribution, we present a way to utilize Wf/W composites for divertor applications by a fabrication route based on the chemical vapour deposition (CVD of tungsten. Mock-ups based on the ITER typical design can be realized by the implementation of Wf/W tiles. A concept based on a layered deposition approach allows the production of such tiles in the required geometry. One fibre layer after the other is positioned and ingrown into the W-matrix until the final sample size is reached. Charpy impact tests on these samples showed an increased fracture energy mainly due to the ductile deformation of the tungsten fibres. The use of Wf/W could broaden the operation temperature window of tungsten significantly and mitigate problems of deep cracking occurring typically in cyclic high heat flux loading. Textile techniques are utilized to optimise the tungsten wire positioning and process speed of preform production. A new device dedicated to the chemical deposition of W enhances significantly, the available machine time for processing and optimisation. Modelling shows that good deposition results are achievable by the use of a convectional flow and a directed temperature profile in an infiltration process.

  4. Tungsten disilicide (WSi{sub 2}). Synthesis, characterization, and prediction of new crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Lukovic, Jelena; Zagorac, Dejan; Zagorac, Jelena; Jordanov, Dragana; Matovic, Branko [Institute of Nuclear Sciences Vinca, Materials Science Laboratory, University of Belgrade (Serbia); Materials Science Laboratory, Center for the Synthesis, Processing and Characterization of Materials for Use in Extreme Conditions, Belgrade (Serbia); Schoen, J. Christian [Materials Science Laboratory, Max Planck Institute for Solid State Research, Stuttgart (Germany); Volkov-Husovic, Tatjana [Faculty of Technology and Metallurgy, Department for Metallurgical Engineering, University of Belgrade (Serbia)

    2017-12-13

    Transition metal silicides have attracted great attention due to their potential applications in microelectronics, ceramics, and the aerospace industry. In this study, experimental and theoretical investigations of tungsten based silicides were performed. Tungsten disilicide (WSi{sub 2}) was synthesized by simple thermal treatment at 1350 C for 4 h in an argon atmosphere. These optimal synthesis conditions were obtained by variation of temperatures and times of heating, and the structure of the final synthesized compound was determined by XRPD analysis. In addition, new modifications for WSi{sub 2} were proposed and investigated using first-principles calculations within density-functional theory (DFT). Both LDA and PBE calculations show excellent agreement with experimental observations and previous calculations for the existing modifications, where available. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Fabrication of tungsten wire needles

    International Nuclear Information System (INIS)

    Roder, A.

    1983-02-01

    Fine point needles for field emissoin are conventionally produced by electrolytically or chemically etching tungsten wire. Points formed in this manner have a typical tip radius of about 0.5 microns and a cone angle of some 30 degrees. The construction of needle matrix detector chambers has created a need for tungsten needles whose specifications are: 20 mil tungsten wire, 1.5 inch total length, 3 mm-long taper (resulting in a cone angle of about 5 degrees), and 25 micron-radius point (similar to that found on sewing needles). In the process described here for producing such needles, tungsten wire, immersed in a NaOH solution and in the presence of an electrode, is connected first to an ac voltage and then to a dc supply, to form a taper and a point on the end of the wire immersed in the solution. The process parameters described here are for needles that will meet the above specifications. Possible variations will be discussed under each approprite heading

  6. The tungsten powder study of the dispenser cathode

    International Nuclear Information System (INIS)

    Bao Jixiu; Wan Baofei

    2006-01-01

    The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes has been investigated for the different grain morphologies. It is shown that a fully cleaning step of the tungsten powder is so necessary that the tungsten powder will be reduction of oxide in hydrogen atmosphere above 700 deg. C. The porosity of the tungsten matrix distributes more even and the closed pore is fewer, the average granule size of the tungsten powder distributes more convergent. The porosity of the tungsten matrix and the evaporation of the activator are bigger and the pulse of the cathode is smaller when the granularity is bigger by the analysis of the electronic microscope and diode experiment

  7. The tungsten powder study of the dispenser cathode

    Science.gov (United States)

    Bao, Ji-xiu; Wan, Bao-fei

    2006-06-01

    The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes has been investigated for the different grain morphologies. It is shown that a fully cleaning step of the tungsten powder is so necessary that the tungsten powder will be reduction of oxide in hydrogen atmosphere above 700 °C. The porosity of the tungsten matrix distributes more even and the closed pore is fewer, the average granule size of the tungsten powder distributes more convergent. The porosity of the tungsten matrix and the evaporation of the activator are bigger and the pulse of the cathode is smaller when the granularity is bigger by the analysis of the electronic microscope and diode experiment.

  8. Tungsten or Wolfram: Friend or Foe?

    Science.gov (United States)

    Zoroddu, Maria A; Medici, Serenella; Peana, Massimiliano; Nurchi, Valeria M; Lachowicz, Joanna I; Laulicht-Glickc, Freda; Costa, Max

    2018-01-01

    Tungsten or wolfram was regarded for many years as an enemy within the tin smelting and mining industry, because it conferred impurity or dirtiness in tin mining. However, later it was considered an amazing metal for its strength and flexibility, together with its diamond like hardness and its melting point which is the highest of any metal. It was first believed to be relatively inert and an only slightly toxic metal. Since early 2000, the risk exerted by tungsten alloys, its dusts and particulates to induce cancer and several other adverse effects in animals as well as humans has been highlighted from in vitro and in vivo experiments. Thus, it becomes necessary to take a careful look at all the most recent data reported in the scientific literature, covering the years 2001-2016. In fact, the findings indicate that much more attention should be devoted to thoroughly investigate the toxic effects of tungsten and the involved mechanisms of tungsten metal or tungsten metal ions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Bronzes and relative compounds

    International Nuclear Information System (INIS)

    Uehlls, A.

    1987-01-01

    Preparation and the crystal structure of bronzes based on complex oxides of transition (Ti, V, Nb, Ta, Mo, W, Re, Ru and etc.) and alkali metals, as well as oxides of some other elements (Sr, In, La and etc.) are described. Peculiarities of formation of the structure of tetragonal, tungsten, molybdenum, vanadium bronzes and their analogs depending on the chemical composition of these compounds are considered

  10. Thermal Spray Coating of Tungsten for Tokamak Device

    International Nuclear Information System (INIS)

    Jiang Xianliang; Gitzhofer, F; Boulos, M I

    2006-01-01

    Thermal spray, such as direct current (d.c.) plasma spray or radio frequency induced plasma spray, was used to deposit tungsten coatings on the copper electrodes of a tokamak device. The tungsten coating on the outer surface of one copper electrode was formed directly through d.c. plasma spraying of fine tungsten powder. The tungsten coating/lining on the inner surface of another copper electrode could be formed indirectly through induced plasma spraying of coarse tungsten powder. Scanning electron microscopy (SEM) was used to examine the cross section and the interface of the tungsten coating. Energy Dispersive Analysis of X-ray (EDAX) was used to analyze the metallic elements attached to a separated interface. The influence of the particle size of the tungsten powder on the density, cracking behavior and adhesion of the coating is discussed. It is found that the coarse tungsten powder with the particle size of 45 ∼ 75 μm can be melted and the coating can be formed only by using induced plasma. The coating deposited from the coarse powder has much higher cohesive strength, adhesive strength and crack resistance than the coating made from the fine powder with a particle size of 5 μm

  11. Operation of ASDEX Upgrade with tungsten coated walls

    International Nuclear Information System (INIS)

    Rohde, V.

    2002-01-01

    An alternative for low-Z materials in the main chamber of a future fusion device are high-Z materials, but the maximal tolerable concentration in the plasma core is restricted. A step by step approach to employ tungsten at the central column of ASDEX Upgrade was started in 1999. Meanwhile almost the whole central column is covered with tiles, which were coated by PVD with tungsten. Up to now 9000 s of plasma discharge covering all relevant scenarios were performed. Routine operation of ASDEX Upgrade was not affected by the tungsten. Typical concentrations below 10 -5 were found. The tungsten concentration is mostly connected to the transport into the core plasma, not to the tungsten erosion. It can be demonstrated, that additional central heating can eliminate the tungsten accumulation. These experiments demonstrate the compatibility of fusion plasmas with W plasma facing components under reactor relevant conditions. The erosion pattern found by post mortem analysis indicates that the main effect is ion sputtering. The main erosion of tungsten seems to occur during plasma ramp-up and ramp-down. (author)

  12. Synthesis and electrical characterization of tungsten oxide nanowires

    Institute of Scientific and Technical Information of China (English)

    Huang Rui; Zhu Jing; Yu Rong

    2009-01-01

    Tungsten oxide nanowires of diameters ranging from 7 to 200 nm are prepared on a tungsten rod substrate by using the chemical vapour deposition (CVD) method with vapour-solid (VS) mechanism. Tin powders are used to control oxygen concentration in the furnace, thereby assisting the growth of the tungsten oxide nanowires. The grown tungsten oxide nanowires are determined to be of crystalline W18O49. Ⅰ-Ⅴ curves are measured by an in situ transmission electron microscope (TEM) to investigate the electrical properties of the nanowires. All of the Ⅰ-Ⅴ curves observed are symmetric, which reveals that the tungsten oxide nanowires are semiconducting. Quantitative analyses of the experimental I V curves by using a metal-semiconductor-metal (MSM) model give some intrinsic parameters of the tungsten oxide nanowires, such as the carrier concentration, the carrier mobility and the conductivity.

  13. Tungsten Targets the Tumor Microenvironment to Enhance Breast Cancer Metastasis

    Science.gov (United States)

    Bolt, Alicia M.; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M.; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K.

    2015-01-01

    The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients’ years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans. PMID:25324207

  14. Processing of tungsten scrap into powders by electroerosion disintegration

    International Nuclear Information System (INIS)

    Fominskii, L.P.; Leuchuk, M.V.; Myuller, A.S.; Tarabrina, V.P.

    1985-01-01

    Utilization of tungsten and tungsten alloy swarf and other waste and also of rejected and worn parts is a matter of great importance in view of the shortage of this metal. The authors examine the electroerosion (EE) disintegration of tungsten in water as a means of utilizing swarf and other loose waste. Unlike chemical methods, EE disintegration ensures ecological purity since there are no effluent waters or toxic discharges. Swarf and trimmings of rods of diameters up to 20 mm obtained after the lathe-turning of tungsten bars sintered from PVN and PVV tungsten powders were disintegrated in water at room temperature between tungsten electrodes. The phase composition of the powder was studied using FeK /SUB alpha/ radiation, by x-ray diffraction methods in a DRON-2 diffractometer with a graphite monochromator on the secondary beam. When tungsten is heated to boiling during EE disintegration, the impurities present in it can evaporate and burn out. Thus, tungsten powder produced by EE disintegration can be purer than the starting metal

  15. Solvent extraction in analytical chemistry of tungsten (Review)

    International Nuclear Information System (INIS)

    Ivanov, V.M.; Busev, A.I.; Sokolova, T.A.

    1975-01-01

    The use of extraction for isolating and concentrating tungsten with subsequent determination by various methods is considered. For tungsten extractants of all types are employed: neutral, basic and acidic. Neutral extractants are used for isolating and concentrating tungsten, basic and acidic ones are employed, as a rule, for the isolation and subsequent determination of tungsten. This type of extractants is highly promising, since, selectively extracting tungsten, they allow its simultaneous determination. Neutral extractants are oxygen-containing solvents, TBP; basic extractants are aniline, pyridine, 1-naphthylamine, trialkylbenzylammoniumanitrate. As acidic reagents use is made of 8-oxyquinoline and its derivatives, oximes and hydroxamic acids, β-diketones, carbaminates. In the extraction radioactive isotope 185 W is employed

  16. Surface energy anisotropy of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R; Grenga, H E [Georgia Inst. of Tech., Atlanta (USA). School of Chemical Engineering

    1976-10-01

    Field-ion microscopy was used to study the faceting behavior and/or surface energy anisotropy of tungsten in vacuum and in hydrogen. In vacuum below 1700 K the activation energy for (110) facet growth agreed with values previously reported for surface diffusion on tungsten. The observed anisotropy values at 0.5 Tsub(m), where Tsub(m) is the absolute melting temperature of tungsten (approximately 3680 K), were different from those previously reported at higher temperatures and more nearly agreed with broken bond calculations based on Mie potential using m=5, n=8, and a 1.5% lattice expansion. Hydrogen appeared to have a negligible effect on surface energy anisotropy, but did preferentially increase surface diffusion rates on (310) regions.

  17. Investigation of Surface Alkylation Strategy in SOMC: In Situ Generation of a Silica-Supported Tungsten Methyl Catalyst for Cyclooctane Metathesis

    KAUST Repository

    Hamieh, Ali Imad Ali

    2016-07-28

    An efficient and potentially scalable method is described for the synthesis of the silica-supported complexes [(≡Si-O-)WMe5] and [(≡Si-O-)WMe2(≡CH)] obtained by in situ alkylation of the surface-grafted tungsten chloride [(≡Si-O-)WCl5] (1). [(≡Si-O-)WCl5] can be readily prepared by the reaction of commercially available and stable tungsten hexachloride WCl6 with partially dehydroxylated silica at 700 °C (SiO2-700). Further reaction with ZnMe2 at room temperature rapidly forms a mixture of surface-alkylated tungsten complexes. They were fully characterized by microanalysis, FTIR, mass balance, and solid-state NMR (1H, 13C, 1H-13C HETCOR, 1H-1H double quantum and triple quantum) and identified as [(≡Si-O-)WMe5] and another product, [(≡Si-O-)WMe2(≡CH)]. The latter might have been generated by partial decomposition of the tungsten methyl chloride compound, which is formed during the stepwise alkylation of [(≡Si-O-)WCl5]. DFT calculations were carried out to check the relative stability of the tungsten methyl chloride intermediates and the feasibility of the reaction and corroborate the experimental results. This tungsten complex and its derivative were found to be active catalysts for the metathesis of cyclooctane. © 2016 American Chemical Society.

  18. Investigation of Surface Alkylation Strategy in SOMC: In Situ Generation of a Silica-Supported Tungsten Methyl Catalyst for Cyclooctane Metathesis

    KAUST Repository

    Hamieh, Ali Imad Ali; Dey, Raju; Samantaray, Manoja; Abdel-Azeim, Safwat; Abou-Hamad, Edy; Chen, Yin; Pelletier, Jeremie; Cavallo, Luigi; Basset, Jean-Marie

    2016-01-01

    An efficient and potentially scalable method is described for the synthesis of the silica-supported complexes [(≡Si-O-)WMe5] and [(≡Si-O-)WMe2(≡CH)] obtained by in situ alkylation of the surface-grafted tungsten chloride [(≡Si-O-)WCl5] (1). [(≡Si-O-)WCl5] can be readily prepared by the reaction of commercially available and stable tungsten hexachloride WCl6 with partially dehydroxylated silica at 700 °C (SiO2-700). Further reaction with ZnMe2 at room temperature rapidly forms a mixture of surface-alkylated tungsten complexes. They were fully characterized by microanalysis, FTIR, mass balance, and solid-state NMR (1H, 13C, 1H-13C HETCOR, 1H-1H double quantum and triple quantum) and identified as [(≡Si-O-)WMe5] and another product, [(≡Si-O-)WMe2(≡CH)]. The latter might have been generated by partial decomposition of the tungsten methyl chloride compound, which is formed during the stepwise alkylation of [(≡Si-O-)WCl5]. DFT calculations were carried out to check the relative stability of the tungsten methyl chloride intermediates and the feasibility of the reaction and corroborate the experimental results. This tungsten complex and its derivative were found to be active catalysts for the metathesis of cyclooctane. © 2016 American Chemical Society.

  19. Chemical behavior of tungsten trifluorophosphines following neutron activation

    International Nuclear Information System (INIS)

    Bottomley, L.D.; Clark, R.J.

    1988-01-01

    The chemical reactions that follow neutron capture have been studied for a series of tungsten trifluorophosphine carbonyls. The molecular distribution of 187 W was determined by gas chromatographic separation using scintillation detection. The chemical behavior of these compounds was examined in the condensed phase and the gas phase, both with and without excess PF 3 or CO. The retention of the parent species was measured as well as the formation of any scrambled species W(PF 3 ) x (CO) 6-x in all experiments. The results of irradiations done in condensed phase with no excess ligands were modeled by a Simplex iterative routine to calculate the distribution of recoil fragments. (orig.)

  20. High Heat Load Properties of Ultra Fine Grain Tungsten

    International Nuclear Information System (INIS)

    Zhou, Z.; Du, J.; Ge, C.; Linke, J.; Pintsuk, G.; Song, S.X.

    2007-01-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 μm, 1 μm and 3 μm were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m 2 respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m 2 . Particle erosions occurred for tungsten with 3 μm size at 0.33 GW/m 2 and for tungsten with 0.2 and 1 μm size at 0.55 GW/m 2 . The weight loss of tungsten with 0.2, 1 and 3 μm size are 2,0.1,0.6 mg respectively at 0.88 GW/m 2 . The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 μm size has the best performance. (authors)

  1. High Heat Load Properties of Ultra Fine Grain Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Du, J.; Ge, C. [Lab. of Special Ceramic and P/M, University of Science and Technology, 100083 Beijing (China); Linke, J.; Pintsuk, G. [FZJ-Forschungszentrum Juelich GmbH, Association Euratom-FZJ, Institut fur Plasmaphysik, Postfach 1913, D-52425 Juelich (Germany); Song, S.X. [Research Center on Fusion Materials (RCFM), University of Science and Technology Beijing (USTB), 100083 Beijing (China)

    2007-07-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 {mu}m, 1 {mu}m and 3 {mu}m were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m{sup 2} respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m{sup 2}. Particle erosions occurred for tungsten with 3 {mu}m size at 0.33 GW/m{sup 2} and for tungsten with 0.2 and 1 {mu}m size at 0.55 GW/m{sup 2}. The weight loss of tungsten with 0.2, 1 and 3 {mu}m size are 2,0.1,0.6 mg respectively at 0.88 GW/m{sup 2}. The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 {mu}m size has

  2. The influence of Fe content on spreading ability of tungsten heavy alloys matrix on tungsten surface

    Directory of Open Access Journals (Sweden)

    A. Krzyńska

    2011-07-01

    Full Text Available The results of experimental study of tungsten spreading ability with W-Ni-Co-Fe matrix are presented. The aim of these investigations was to see how Fe concentration in W – Ni – Co matrix influences the wettability of tungsten grains during liquid phase sintering. Four green compact specimens containing 50%W, 10%Co and Ni + Fe = 40% but with different Ni to Fe ratio were prepared. The cylindrical specimen 5mm diameter and 5mm height were put on clean pure tungsten substrate and then 20 minutes heated at 1520oC in hydrogen atmosphere. After heating the specimens were carefully measured and then the specimens for structure observations were prepared. It was concluded, that increase of Fe content decrease the melting temperature of W – Ni – Co alloy. The melting point decrease caused by Fe content increase substantially the spreading ability of tungsten substrate with W – Ni – Co alloy. Metallography investigations showed some microstructure changes in “reaction zone” identified in tungsten substrate – (WNi40-xCo10Fex interface. The results of the study confirmed our earlier observations that even relative small Fe addition promotes Weight Heavy Alloys (WHA liquid phase sintering.

  3. Tungsten--carbide critical assembly

    International Nuclear Information System (INIS)

    Hansen, G.E.; Paxton, H.C.

    1975-06-01

    The tungsten--carbide critical assembly mainly consists of three close-fitting spherical shells: a highly enriched uranium shell on the inside, a tungsten--carbide shell surrounding it, and a steel shell on the outside. Ideal critical specifications indicate a rather low computed value of k/sub eff/. Observed and calculated fission-rate distributions for 235 U, 238 U, and 237 Np are compared, and calculated leakage neutrons per fission in various energy groups are given. (U.S.)

  4. Electrokinetic treatment of firing ranges containing tungsten-contaminated soils

    International Nuclear Information System (INIS)

    Braida, Washington; Christodoulatos, Christos; Ogundipe, Adebayo; Dermatas, Dimitris; O'Connor, Gregory

    2007-01-01

    Tungsten-based alloys and composites are being used and new formulations are being considered for use in the manufacturing of different types of ammunition. The use of tungsten heavy alloys (WHA) in new munitions systems and tungsten composites in small caliber ammunition could potentially release substantial amounts of this element into the environment. Although tungsten is widely used in industrial and military applications, tungsten's potential environmental and health impacts have not been thoroughly addressed. This necessitates the research and development of remedial technologies to contain and/or remove tungsten from soils that may serve as a source for water contamination. The current work investigates the feasibility of using electrokinetics for the remediation of tungsten-contaminated soils in the presence of other heavy metals of concern such as Cu and Pb with aim to removing W from the soil while stabilizing in situ, Pb and Cu

  5. Structure of tungsten electrodeposited from oxide chloride-fluoride molten salts

    International Nuclear Information System (INIS)

    Pavlovskij, V.A.; Reznichenko, V.A.

    1998-01-01

    Investigation results on the influence of electrolysis parameters and electrolyte composition on tungsten cathode deposit structure are presented. The electrolysis was performed in NaCl-NaF-WO 3 molten salts using tungsten and tungsten coated molybdenum cathodes. Morphological and metallographic studies of tungsten crystals were carrier out. Tungsten deposits were obtained in the form of crystalline conglomerates, sponge and high dispersity powder

  6. Tungsten carbide and tungsten-molybdenum carbides as automobile exhaust catalysts

    International Nuclear Information System (INIS)

    Leclercq, L.; Daubrege, F.; Gengembre, L.; Leclercq, G.; Prigent, M.

    1987-01-01

    Several catalyst samples of tungsten carbide and W, Mo mixed carbides with different Mo/W atom ratios, have been prepared to test their ability to remove carbon monoxide, nitric oxide and propane from a synthetic exhaust gas simulating automobile emissions. Surface characterization of the catalysts has been performed by X-ray photoelectron spectroscopy (XPS) and selective chemisorption of hydrogen and carbon monoxide. Tungsten carbide exhibits good activity for CO and NO conversion, compared to a standard three-way catalyst based on Pt and Rh. However, this W carbide is ineffective in the oxidation of propane. The Mo,W mixed carbides are markedly different having only a very low activity. 9 refs.; 10 figs.; 5 tabs

  7. Detection and reduction of tungsten contamination in ion implantation processes

    International Nuclear Information System (INIS)

    Polignano, M.L.; Galbiati, A.; Grasso, S.; Mica, I.; Barbarossa, F.; Magni, D.

    2016-01-01

    In this paper, we review the results of some studies addressing the problem of tungsten contamination in implantation processes. For some tests, the implanter was contaminated by implantation of wafers with an exposed tungsten layer, resulting in critical contamination conditions. First, DLTS (deep level transient spectroscopy) measurements were calibrated to measure tungsten contamination in ion-implanted samples. DLTS measurements of tungsten-implanted samples showed that the tungsten concentration increases linearly with the dose up to a rather low dose (5 x 10 10 cm -2 ). Tungsten deactivation was observed when the dose was further increased. Under these conditions, ToF-SIMS revealed tungsten at the wafer surface, showing that deactivation was due to surface segregation. DLTS calibration could therefore be obtained in the linear dose regime only. This calibration was used to evaluate the tungsten contamination in arsenic implantations. Ordinary operating conditions and critical contamination conditions of the equipment were compared. A moderate tungsten contamination was observed in samples implanted under ordinary operating conditions. This contamination was easily suppressed by a thin screen oxide. On the contrary, implantations in critical conditions of the equipment resulted in a relevant tungsten contamination, which could be reduced but not suppressed even by a relatively thick screen oxide (up to 150 Aa). A decontamination process consisting of high dose implantations of dummy wafers was tested for its efficiency to remove tungsten and titanium contamination. This process was found to be much more effective for titanium than for tungsten. Finally, DLTS proved to be much more sensitive that TXRF (total reflection X-ray fluorescence) in detecting tungsten contamination. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Detection and reduction of tungsten contamination in ion implantation processes

    Energy Technology Data Exchange (ETDEWEB)

    Polignano, M.L.; Galbiati, A.; Grasso, S.; Mica, I.; Barbarossa, F.; Magni, D. [STMicroelectronics, Agrate Brianza (Italy)

    2016-12-15

    In this paper, we review the results of some studies addressing the problem of tungsten contamination in implantation processes. For some tests, the implanter was contaminated by implantation of wafers with an exposed tungsten layer, resulting in critical contamination conditions. First, DLTS (deep level transient spectroscopy) measurements were calibrated to measure tungsten contamination in ion-implanted samples. DLTS measurements of tungsten-implanted samples showed that the tungsten concentration increases linearly with the dose up to a rather low dose (5 x 10{sup 10} cm{sup -2}). Tungsten deactivation was observed when the dose was further increased. Under these conditions, ToF-SIMS revealed tungsten at the wafer surface, showing that deactivation was due to surface segregation. DLTS calibration could therefore be obtained in the linear dose regime only. This calibration was used to evaluate the tungsten contamination in arsenic implantations. Ordinary operating conditions and critical contamination conditions of the equipment were compared. A moderate tungsten contamination was observed in samples implanted under ordinary operating conditions. This contamination was easily suppressed by a thin screen oxide. On the contrary, implantations in critical conditions of the equipment resulted in a relevant tungsten contamination, which could be reduced but not suppressed even by a relatively thick screen oxide (up to 150 Aa). A decontamination process consisting of high dose implantations of dummy wafers was tested for its efficiency to remove tungsten and titanium contamination. This process was found to be much more effective for titanium than for tungsten. Finally, DLTS proved to be much more sensitive that TXRF (total reflection X-ray fluorescence) in detecting tungsten contamination. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Tungsten oxide nanowires grown on amorphous-like tungsten films

    International Nuclear Information System (INIS)

    Dellasega, D; Pezzoli, A; Russo, V; Passoni, M; Pietralunga, S M; Nasi, L; Conti, C; Vahid, M J; Tagliaferri, A

    2015-01-01

    Tungsten oxide nanowires have been synthesized by vacuum annealing in the range 500–710 °C from amorphous-like tungsten films, deposited on a Si(100) substrate by pulsed laser deposition (PLD) in the presence of a He background pressure. The oxygen required for the nanowires formation is already adsorbed in the W matrix before annealing, its amount depending on deposition parameters. Nanowire crystalline phase and stoichiometry depend on annealing temperature, ranging from W_1_8O_4_9-Magneli phase to monoclinic WO_3. Sufficiently long annealing induces the formation of micrometer-long nanowires, up to 3.6 μm with an aspect ratio up to 90. Oxide nanowire growth appears to be triggered by the crystallization of the underlying amorphous W film, promoting their synthesis at low temperatures. (paper)

  10. Tungsten as First Wall Material in Fusion Devices

    International Nuclear Information System (INIS)

    Kaufmann, M.

    2006-01-01

    In the PLT tokamak with a tungsten limiter strong cooling of the central plasma was observed. Since then mostly graphite has been used as limiter or target plate material. Only a few tokamaks (limiter: FTU, TEXTOR; divertor: Alcator C-Mod, ASDEX Upgrade) gained experience with high-Z-materials. With the observed strong co- deposition of tritium together with carbon in JET and as a result of design studies of fusion reactors, it became clear that in the long run tungsten is the favourite for the first-wall material. Tungsten as a plasma facing material requires intensive research in all areas, i.e. in plasma physics, plasma wall-interaction and material development. Tungsten as an impurity in the confined plasma reveals considerable differences to carbon. Strong radiation at high temperatures, in connection with mostly a pronounced inward drift forms a particular challenge. Turbulent transport plays a beneficial role in this regard. The inward drift is an additional problem in the pedestal region of H-mode plasmas in ITER-like configurations. The erosion by low energy hydrogen atoms is in contrast to carbon small. However, erosion by fast particles from heating measures and impurity ions, accelerated in the sheath potential, play an important role in the case of tungsten. Radiation by carbon in the plasma boundary reduces the load to the target plates. Neon or Argon as substitutes will increase the erosion of tungsten. So far experiments have demonstrated that in most scenarios the tungsten content in the central plasma can be kept sufficiently small. The material development is directed to the specific needs of existing or future devices. In ASDEX Upgrade, which will soon be a divertor experiment with a complete tungsten first-wall, graphite tiles are coated with tungsten layers. In ITER, the solid tungsten armour of the target plates has to be castellated because of its difference in thermal expansion compared to the cooling structure. In a reactor the technical

  11. Radiative capture of slow electrons by tungsten surface

    International Nuclear Information System (INIS)

    Artamonov, O.M.; Belkina, G.M.; Samarin, S.N.; Yakovlev, I.I.

    1987-01-01

    Isochromatic spectra of radiation capture of slow electrons by the surface of mono- and polycrystal tungsten recorded on 322 and 405 nm wave lengths are presented. The effect of oxygen adsorption on isochromates of the (110) face of tungsten monocrystal is investigated. The obtained isochromatic spectra are compared with energy band structure of tungsten. Based on the analysis of the obtained experimental results it is assumed that optical transition to the final state at the energy of 7.3 eV relatively to Fermi level is conditioned by surface states of the tungsten face (110)

  12. Morphology of Si/tungsten-silicides/Si interlayers

    International Nuclear Information System (INIS)

    Theodore, N.; Secco d'Aragona, F.; Blackstone, S.

    1992-01-01

    Tungsten and tungsten-silicides are of interest for semiconductor technology because of their refractory nature, low electrical-resistivity and high electromigration-resistance. This paper presents the first formation of buried tungsten-silicide layers in silicon, by proximity adhesion. The interlayers, created by a combination of chemical vapor-deposition (CVD) and proximity-adhesion were studied using transmission electron-microscopy (TEM). The behavior of the layers in the presence and absence of an adjacent silicon-dioxide interlayer was also investigated. Buried silicide layers were successfully formed with or without the adjacent silicon-dioxide. The silicide formed continuous layers with single grains encompassing the width of the interlayer. Individual grains were globular, with cusps at grain boundaries. This caused interlayer-thicknesses to be non-uniform, with lower thickness values being present at the cusps. Occasional voids were observed at grain-boundary cusps. The voids were smaller and less frequent in the presence of an adjacent oxide-layer, due to flow of the oxide during proximity adhesion. Electron-diffraction revealed a predominance of tungsten-disilicide in the interlayers, with some free tungsten being present. Stresses in the silicide layers caused occasional glide dislocations to propagate into the silicon substrate beneath the interlayers. The dislocations propagate only ∼100 nm into the substrate and therefore should not be detrimental to use of the buried layers. Occasional precipitates were observed at the end of glide-loops. These possibly arise due to excess tungsten from the interlayer diffusion down the glide dislocation to finally precipitate out as tungsten-silicide

  13. Surface morphologies of He-implanted tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Bannister, M.E., E-mail: bannisterme@ornl.gov [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6371 (United States); Meyer, F.W.; Hijazi, H. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6371 (United States); Unocic, K.A.; Garrison, L.M.; Parish, C.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2016-09-01

    Surface morphologies of tungsten surfaces, both polycrystalline and single-crystal [1 1 0], were investigated using SEM and FIB/SEM techniques after implantations at elevated surfaces temperatures (1200–1300 K) using well-characterized, mono-energetic He ion beams with a wide range of ion energies (218 eV–250 keV). Nanofuzz was observed on polycrystalline tungsten (PCW) following implantation of 100-keV He ions at a flux threshold of 0.9 × 10{sup 16} cm{sup −2} s{sup −1}, but not following 200-keV implantations with similar fluxes. No nanofuzz formation was observed on single-crystal [1 1 0] tungsten (SCW), despite fluxes exceeding those demonstrated previously to produce nanofuzz on polycrystalline tungsten. Pre-damaging the single-crystal tungsten with implanted C impurity interstitials did not significantly affect the surface morphologies resulting from the high-flux He ion implantations. The main factor leading to the different observed surface structures for the pristine and C-implanted single-crystal W samples appeared to be the peak He ion flux characterizing the different exposures. It was speculated that nanofuzz formation was not observed for any SCW target exposures because of increased incubation fluences required for such targets.

  14. The gate oxide integrity of CVD tungsten polycide

    International Nuclear Information System (INIS)

    Wu, N.W.; Su, W.D.; Chang, S.W.; Tseng, M.F.

    1988-01-01

    CVD tungsten polycide has been demonstrated as a good gate material in recent very large scale integration (VLSI) technology. CVD tungsten silicide offers advantages of low resistivity, high temperature stability and good step coverage. On the other hand, the polysilicon underlayer preserves most characteristics of the polysilicon gate and acts as a stress buffer layer to absorb part of the thermal stress origin from the large thermal expansion coefficient of tungsten silicide. Nevertheless, the gate oxide of CVD tungsten polycide is less stable or reliable than that of polysilicon gate. In this paper, the gate oxide integrity of CVD tungsten polycide with various thickness combinations and different thermal processes have been analyzed by several electrical measurements including breakdown yield, breakdown fluence, room temperature TDDB, I-V characteristics, electron traps and interface state density

  15. Comparative Investigation of Tungsten Fibre Nets Reinforced Tungsten Composite Fabricated by Three Different Methods

    Directory of Open Access Journals (Sweden)

    Linhui Zhang

    2017-07-01

    Full Text Available Tungsten fibre nets reinforced tungsten composites (Wf/W containing four net layers were fabricated by spark plasma sintering (SPS, hot pressing (HP and cold rolling after HP (HPCR, with the weight fraction of fibres being 17.4%, 10.5% and 10.5%, respectively. The relative density of the HPCRed samples is the highest (99.8% while that of the HPed composites is the lowest (95.1%. Optical and scanning electron microscopy and electron back scattering diffraction were exploited to characterize the microstructure, while tensile and hardness tests were used to evaluate the mechanical properties of the samples. It was found that partial recrystallization of fibres occurred after the sintering at 1800 °C. The SPSed and HPed Wf/W composites begin to exhibit plastic deformation at 600 °C with tensile strength (TS of 536 and 425 MPa and total elongation at break (TE of 11.6% and 23.0%, respectively, while the HPCRed Wf/W composites exhibit plastic deformation at around 400 °C. The TS and TE of the HPCRed Wf/W composites at 400 °C are 784 MPa and 8.4%, respectively. The enhanced mechanical performance of the Wf/W composites over the pure tungsten can be attributed to the necking, cracking, and debonding of the tungsten fibres.

  16. A solid tungsten divertor for ASDEX Upgrade

    International Nuclear Information System (INIS)

    Herrmann, A; Greuner, H; Jaksic, N; Böswirth, B; Maier, H; Neu, R; Vorbrugg, S

    2011-01-01

    The conceptual design of a solid tungsten divertor for ASDEX Upgrade (AUG) is presented. The Div-III design is compatible with the existing divertor structure. It re-establishes the energy and heat receiving capability of a graphite divertor and overcomes the limitations of tungsten coatings. In addition, a solid tungsten divertor allows us to investigate erosion and bulk deuterium retention as well as test castellation and target tilting. The design criteria as well as calculations of forces due to halo and eddy currents are presented. The thermal properties of the proposed sandwich structure are calculated with finite element method models. After extensive testing of a target tile in the high heat flux test facility GLADIS, two solid tungsten tiles were installed in AUG for in-situ testing.

  17. Corrosion of high-density sintered tungsten alloys. Part 2

    International Nuclear Information System (INIS)

    Batten, J.J.; Moore, B.T.

    1988-12-01

    The behaviour of four high-density sintered tungsten alloys has been evluated and compared with that of pure tungsten. Rates of corrosion during the cyclic humidity and the salt mist tests were ascertained from weight loss measurements. Insight into the corrosion mechanism was gained from the nature of the corrosion products and an examination of the corroded surfaces. In the tests, the alloy 95% W, 2.5% Ni, 1.5% Fe was the most corrosion resistant. The data showed that copper as an alloying element accelerates corrosion of tungsten alloys. Both attack on the tungsten particles and the binder phase were observed together with tungsten grain loss. 6 refs., 3 tabs.,

  18. Substructure and electrical resistivity analyses of pure tungsten sheet

    International Nuclear Information System (INIS)

    Trybus, C.L.; Sellers, C.H.; Anderl, R.A.

    1991-01-01

    The substructure of pure tungsten sheet (0.025 mm thick) is examined and quantified by transmission electron microscopy (TEM). Dislocation populations and arrangements are evaluated for as-worked and various annealed conditions of the tungsten sheet. The worked (rolled) tungsten substructure was nonhomogeneous, consisting of areas of very high and low dislocation densities. These results are correlated to resistivity measurements of the tungsten sheet following thermal cycling to 1200 degrees C to determine the substructural changes as a function of temperature. The comparison between the two characterization techniques is used to examine the relationship between structural and electronic properties in tungsten. 15 refs., 6 figs., 2 tabs

  19. Tungsten transport in the plasma edge at ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Janzer, Michael Arthur

    2015-04-30

    The Plasma Facing Components (PFC) will play a crucial role in future deuterium-tritium magnetically confined fusion power plants, since they will be subject to high energy and particle loads, but at the same time have to ensure long lifetimes and a low tritium retention. These requirements will most probably necessitate the use of high-Z materials such as tungsten for the wall materials, since their erosion properties are very benign and, unlike carbon, capture only little tritium. The drawback with high-Z materials is, that they emit strong line radiation in the core plasma, which acts as a powerful energy loss mechanism. Thus, the concentration of these high-Z materials has to be controlled and kept at low levels in order to achieve a burning plasma. Understanding the transport processes in the plasma edge is essential for applying the proper impurity control mechanisms. This control can be exerted either by enhancing the outflux, e.g. by Edge Localized Modes (ELM), since they are known to expel impurities from the main plasma, or by reducing the influx, e.g. minimizing the tungsten erosion or increasing the shielding effect of the Scrape Off Layer (SOL). ASDEX Upgrade (AUG) has been successfully operating with a full tungsten wall for several years now and offers the possibility to investigate these edge transport processes for tungsten. This study focused on the disentanglement of the frequency of type-I ELMs and the main chamber gas injection rate, two parameters which are usually linked in H-mode discharges. Such a separation allowed for the first time the direct assessment of the impact of each parameter on the tungsten concentration. The control of the ELM frequency was performed by adjusting the shape of the plasma, i.e. the upper triangularity. The radial tungsten transport was investigated by implementing a modulated tungsten source. To create this modulated source, the linear dependence of the tungsten erosion rate at the Ion Cyclotron Resonance

  20. Synthesis of high purity tungsten nanoparticles from tungsten heavy alloy scrap by selective precipitation and reduction route

    International Nuclear Information System (INIS)

    Kamal, S.S. Kalyan; Sahoo, P.K.; Vimala, J.; Shanker, B.; Ghosal, P.; Durai, L.

    2016-01-01

    In this paper we report synthesis of tungsten nanoparticles of high purity >99.7 wt% from heavy alloy scrap using a novel chemical route of selective precipitation and reduction. The effect of Poly(vinylpyrrolidone) polymer on controlling the particle size is established through FTIR spectra and corroborated with TEM images, wherein the average size decreased form 210 to 45 nm with increasing PVP content from zero to 2 g under different experimental conditions. This process is economical as raw material is a scrap and the efficiency of the reaction is >95%. - Highlights: • Tungsten nanoparticles were synthesized from tungsten heavy alloy scrap. • A novel chemical route of precipitation and reduction with Poly(vinylpyrrolidone) polymer as stabilizer is reported. • The average size decreased form 210 to 45 nm with increasing PVP content from zero to 2 g. • High pure tungsten nanoparticles of >99.7% purity could be synthesized using this route. • Efficiency of the reaction is >95%.

  1. Characterization of porous tungsten by microhardness

    International Nuclear Information System (INIS)

    Selcuk, C.; Wood, J.V.; Morley, N.; Bentham, R.

    2001-01-01

    One of the applications of tungsten is as high current density dispenser cathode in the form of porous tungsten. It is used as a cathode after being impregnated with an electron emissive material so pore distribution in the part is the most important parameter for its function as a uniform and controlled porosity will lead to a better performance. In this study, application of microhardness as a characterization method for uniformity of the pore distribution and homogeneity of the structure is introduced. Optical microscopy and SEM is used to relate the results and porous tungsten structure for a better understanding of the method applied. (author)

  2. Microstructure and tensile properties of tungsten at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tielong [Laboratory for Nuclear Materials, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Dai, Yong, E-mail: yong.dai@psi.ch [Laboratory for Nuclear Materials, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Lee, Yongjoong [European Spallation Source, Tunavägen 24, 223 63 Lund (Sweden)

    2016-01-15

    In order to support the development of the 5 MW spallation target for the European Spallation Source, the effect of fabrication process on microstructure, ductile-to-brittle transition temperature (DBTT), tensile and fracture behaviour of powder-metallurgy pure tungsten materials has been investigated. A hot-rolled (HR) tungsten piece of 12 mm thickness and a hot-forged (HF) piece of about 80 mm thickness were used to simulate the thin and thick blocks in the target. The two tungsten pieces were characterized with metallography analysis, hardness measurement and tensile testing. The HR piece exhibits an anisotropic grain structure with an average size of about 330 × 140 × 40 μm in rolling, long transverse and short transverse (thickness) directions. The HF piece possesses a bimodal grain structure with about 310 × 170 × 70 μm grain size in deformed part and about 25 μm sized grains remained from sintering process. Hardness (HV0.2) of the HR piece is slightly greater than that of the HF one. The ductility of the HR tungsten specimens is greater than that of the HF tungsten. For the HF tungsten piece, specimens with small grains in gauge section manifest lower ductility but higher strength. The DBTT evaluated from the tensile results is 250–300 °C for the HR tungsten and about 350 °C for the HF tungsten. - Highlights: • This work was conducted to support the development of the 5 MW spallation target for the European Spallation Source. • The effect of fabrication process on microstructure, ductile-to-brittle transition temperature and tensile behaviour was studied with hot-rolled and hot-forged tungsten. • The tungsten materials were characterized with metallography analysis, hardness measurement and tensile test in a temperature range of 25–500 °C. • The results indicate that the HR tungsten has better mechanical properties in terms of greater ductility and lower ductile-to-brittle transition temperature.

  3. Quenching and recovery experiments on tungsten

    International Nuclear Information System (INIS)

    Rasch, K.D.; Siegel, R.W.; Schultz, H.

    1976-01-01

    A short summary is given of new results concerning transmission electron microscopy and resistivity measurements on quenched tungsten. These results give evidence for the first time that the quenching and annealing of high purity tungsten leads to vacancy--defect clustering resulting in small voids observable in the electron microscope. 21 references

  4. Process for separation of tungsten and molybdenum by extraction

    International Nuclear Information System (INIS)

    Zelikman, A.N.; Voldman, G.M.; Rumyantsev, V.K.; Ziberov, G.N.; Kagermanian, V.S.

    1976-01-01

    A process for the separation of tungsten and molybdenum by extraction involves the addition of HCl or HNO 3 to an aqueous solution containing tungsten and molybdenum to obtain a pH from 0.5 to 4.3, and introduction of a stabilizer comprising water-soluble phosphorus salts and a complexing agent, hydrogen peroxide, in an amount from 1.5 to 2 mole per 1 g-atom of the total content of tungsten and molybdenum. Then molybdenum is selectively extracted from the resulting aqueous solution with tri-n-butylphosphate with equal volumetric proportioning of the aqueous and organic solutions. Re-extraction of molybdenum and partially tungsten is carried out from the organic extracting agent with an alkali or soda solution. The process makes possible the preparation of tungsten solution containing no more than 0.001 g/l of molybdenum, and an increase in the degree of extraction of tungsten and molybdenum

  5. Surface studies of tungsten erosion and deposition in JT-60U

    International Nuclear Information System (INIS)

    Ueda, Y.; Fukumoto, M.; Nishikawa, M.; Tanabe, T.; Miya, N.; Arai, T.; Masaki, K.; Ishimoto, Y.; Tsuzuki, K.; Asakura, N.

    2007-01-01

    In order to study tungsten erosion and migration in JT-60U, 13 W tiles have been installed in the outer divertor region and tungsten deposition on graphite tiles was measured. Dense local tungsten deposition was observed on a CFC tile toroidally adjacent to the W tiles, which resulted from prompt ionization and short range migration of tungsten along field lines. Tungsten deposition with relatively high surface density was found on an inner divertor tile around standard inner strike positions and on an outer wing tile of a dome. On the outer wing tile, tungsten deposition was relatively high compared with carbon deposition. In addition, roughly uniform tungsten depth distribution near the upper edge of the inner divertor tile was observed. This could be due to lift-up of strike point positions in selected 25 shots and tungsten flow in the SOL plasma

  6. Tritium Decay Helium-3 Effects in Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Merrill, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructural evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible tritium

  7. Tungsten metallizing alumina--yttria ceramics

    International Nuclear Information System (INIS)

    Cowan, R.E.; Stoddard, S.D.

    1977-03-01

    The ease with which high-alumina bodies may be metallized with tungsten is improved by additions of yttria to the alumina. Mechanisms of this bonding process were studied by use of optical and electron microscopy, electron microprobe, and tensile tests. Variables studied included yttria content of the body and the firing temperature during metallizing. The study showed that a reaction between the tungsten and the yttrogarnet grain boundary phase markedly improved adherence

  8. Physical metallurgy of tungsten. Metallovedenie vol'frama

    Energy Technology Data Exchange (ETDEWEB)

    Savitskii, E M; Povarova, K B; Makarov, P V

    1978-01-01

    The physico-chemical principles of the interaction between tungsten and the elements of the periodic chart are systematized and summarized, and a description is given of the physical and mechanical properties of tungsten and its alloys. An examination is made of the nature of cold brittleness and methods of increasing the plasticity of alloys, means of producing tungsten, methods of purification, alloying, thermal and mechanical processing, and a survey is made of the contemporary use of tungsten and its alloys in advanced sectors of modern technology. The book is designed for personnel at scientific-research institutes, design bureaus and plants, engaged in the development, technology, and use of alloys of refractory metals as well as for instructors, graduate students and senior students taking metal studies and machine building courses, and aeronautical institutions of higher learning. 431 references, 11 tables.

  9. Selective CVD tungsten on silicon implanted SiO/sub 2/

    International Nuclear Information System (INIS)

    Hennessy, W.A.; Ghezzo, M.; Wilson, R.H.; Bakhru, H.

    1988-01-01

    The application range of selective CVD tungsten is extended by its coupling to the ion implantation of insulating materials. This article documents the results of selective CVD tungsten using silicon implanted into SiO/sub 2/ to nucleate the tungsten growth. The role of implant does, energy, and surface preparation in achieving nucleation are described. SEM micrographs are presented to demonstrate the selectivity of this process. Measurements of the tungsten film thickness and sheet resistance are provided for each of the experimental variants corresponding to successful deposition. RBS and XPS analysis are discussed in terms of characterizing the tungsten/oxide interface and to evaluate the role of the silicon implant in the CVD tungsten mechanism. Utilizing this method a desired metallization pattern can be readily defined with lithography and ion implantation, and accurately replicated with a layer of CVD tungsten. This approach avoids problems usually associated with blanket deposition and pattern transfer, which are particularly troublesome for submicron VLSI technology

  10. Combustion of powdery tungsten in pyrotechnic mixtures

    International Nuclear Information System (INIS)

    Ivanov, G.V.; Reshetov, A.A.; Viktorenko, A.M.; Surkov, V.G.; Karmadonov, L.N.

    1982-01-01

    The basic regularities of tungsten burning (powder 2-5 μm) with oxidizers most typical for pyrotechnics: nitrates, lead and barium peroxides (powder, 2-8 μm) and potassium perchlorate (powder, 2-8 μm) are studied. Dependences of burning rate as a function of pressure and ratio of components are established. It is supposed that tungsten burning in mixtures with the mentioned nitrates is a complex and multistage process the rate of which is determined by tungsten dissolution in nitrate melts. Analysis of burning products using available methods is complex

  11. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    International Nuclear Information System (INIS)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap; Tanemura, Masaki

    2016-01-01

    The synthesis of large-area monolayer tungsten disulphide (WS 2 ) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS 2 crystals using tungsten hexachloride (WCl 6 ) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl 6 in ethanol was drop-casted on SiO 2 /Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS 2 crystals on the substrate. The crystal geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS 2 single crystalline monolayer can be grown using the WCl 6 precursor. Our finding shows an easier and effective approach to grow WS 2 monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction

  12. High Purity Tungsten Spherical Particle Preparation From WC-Co Spent Hard Scrap

    Directory of Open Access Journals (Sweden)

    Han Chulwoong

    2015-06-01

    Full Text Available Tungsten carbide-cobalt hard metal scrap was recycled to obtain high purity spherical tungsten powder by a combined hydrometallurgy and physical metallurgy pathway. Selective leaching of tungsten element from hard metal scrap occurs at solid / liquid interface and therefore enlargement of effective surface area is advantageous. Linear oxidation behavior of Tungsten carbide-cobalt and the oxidized scrap is friable to be pulverized by milling process. In this regard, isothermally oxidized Tungsten carbide-cobalt hard metal scrap was mechanically broken into particles and then tungsten trioxide particle was recovered by hydrometallurgical method. Recovered tungsten trioxide was reduced to tungsten particle in a hydrogen environment. After that, tungsten particle was melted and solidified to make a spherical one by RF (Ratio Frequency thermal plasma process. Well spherical tungsten micro-particle was successfully obtained from spent scrap. In addition to the morphological change, thermal plasma process showed an advantage for the purification of feedstock particle.

  13. Tungsten-based composite materials for fusion reactor shields

    International Nuclear Information System (INIS)

    Greenspan, E.; Karni, Y.

    1985-01-01

    Composite tungsten-based materials were recently proposed for the heavy constituent of compact fusion reactor shields. These composite materials will enable the incorporation of tungsten - the most efficient nonfissionable inelastic scattering (as well as good neutron absorbing and very good photon attenuating) material - in the shield in a relatively cheap way and without introducing voids (so as to enable minimizing the shield thickness). It is proposed that these goals be achieved by bonding tungsten powder, which is significantly cheaper than high-density tungsten, with a material having the following properties: good shielding ability and relatively low cost and ease of fabrication. The purpose of this work is to study the effectiveness of the composite materials as a function of their composition, and to estimate the economic benefit that might be gained by the use of these materials. Two materials are being considered for the binder: copper, second to tungsten in its shielding ability, and iron (or stainless steel), the common fusion reactor shield heavy constituent

  14. Computer simulations for thorium doped tungsten crystals

    International Nuclear Information System (INIS)

    Eberhard, Bernd

    2009-01-01

    Tungsten has the highest melting point among all metals in the periodic table of elements. Furthermore, its equilibrium vapor pressure is by far the lowest at the temperature given. Thoria, ThO 2 , as a particle dopant, results in a high temperature creep resistant material. Moreover, thorium covered tungsten surfaces show a drastically reduced electronic work function. This results in a tremendous reduction of tip temperatures of cathodes in discharge lamps, and, therefore, in dramatically reduced tungsten vapor pressures. Thorium sublimates at temperatures below those of a typical operating cathode. For proper operation, a diffusional flow of thorium atoms towards the surface has to be maintained. This atomic flux responds very sensitively on the local microstructure, as grain boundaries as well as dislocation cores offer ''short circuit paths'' for thorium atoms. In this work, we address some open issues of thoriated tungsten. A molecular dynamics scheme (MD) is used to derive static as well as dynamic material properties which have their common origin in the atomistic behavior of tungsten and thorium atoms. The interatomic interactions between thorium and tungsten atoms are described within the embedded atom model (EAM). So far, in literature no W-Th interaction potentials on this basis are described. As there is no alloying system known between thorium and tungsten, we have determined material data for the fitting of these potentials using ab-initio methods. This is accomplished using the full potential augmented plane wave method (FLAPW), to get hypothetical, i.e. not occurring in nature, ''alloy'' data of W-Th. In order to circumvent the limitations of classical (NVE) MD schemes, we eventually couple our model systems to external heat baths or volume reservoirs (NVT, NPT). For the NPT ensemble, we implemented a generalization of the variable cell method in combination with the Langevin piston, which results in a set of Langevin equations, i.e. stochastic

  15. Tungsten deposition by hydrogen-atom reaction with tungsten hexafluoride

    International Nuclear Information System (INIS)

    Lee, W.W.

    1991-01-01

    Using gaseous hydrogen atoms with WF 6 , tungsten atoms can be produced in a gas-phase reaction. The atoms then deposit in a near-room temperature process, which results in the formation of tungsten films. The W atoms (10 10 -10 11 /cm 3 ) were measured in situ by atomic absorption spectroscopy during the CVD process. Deposited W films were characterized by Auger electron spectroscopy, Rutherford backscattering, and X-ray diffraction. The surface morphology of the deposited films and filled holes was studied using scanning electron microscopy. The deposited films were highly adherent to different substrates, such as Si, SiO 2 , Ti/Si, TiN/Si and Teflon. The reaction mechanism and kinetics were studied. The experimental results indicated that this method has three advantages compared to conventional CVD or PECVD: (1) film growth occurs at low temperatures; (2) deposition takes place in a plasma-free environment; and (3) a low level of impurities results in high-quality adherent films

  16. Modeling of hydrogen desorption from tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Guterl, J., E-mail: jguterl@ucsd.edu [University of California, San Diego, La Jolla, CA 92093 (United States); Smirnov, R.D. [University of California, San Diego, La Jolla, CA 92093 (United States); Krasheninnikov, S.I. [University of California, San Diego, La Jolla, CA 92093 (United States); Nuclear Research National University MEPhI, Moscow 115409 (Russian Federation); Uberuaga, B.; Voter, A.F.; Perez, D. [Los Alamos National Laboratory, Los Alamos, NM 8754 (United States)

    2015-08-15

    Hydrogen retention in metallic plasma-facing components is among key-issues for future fusion devices. For tungsten, which has been chosen as divertor material in ITER, hydrogen desorption parameters experimentally measured for fusion-related conditions show large discrepancies. In this paper, we therefore investigate hydrogen recombination and desorption on tungsten surfaces using molecular dynamics simulations and accelerated molecular dynamics simulations to analyze adsorption states, diffusion, hydrogen recombination into molecules, and clustering of hydrogen on tungsten surfaces. The quality of tungsten hydrogen interatomic potential is discussed in the light of MD simulations results, showing that three body interactions in current interatomic potential do not allow to reproduce hydrogen molecular recombination and desorption. Effects of surface hydrogen clustering on hydrogen desorption are analyzed by introducing a kinetic model describing the competition between surface diffusion, clustering and recombination. Different desorption regimes are identified and reproduce some aspects of desorption regimes experimentally observed.

  17. Substitution of thoriated tungsten electrodes in Switzerland

    International Nuclear Information System (INIS)

    Kunz, H.; Piller, G.

    2006-01-01

    Thoriated tungsten electrodes are frequently used for inert gas welding (TIG/WIG). The use of these electrodes can lead to doses which are well above the limit for the general population (1mSv/year). This has been shown by different investigations, for example from the ''Berufsgenossenschaft''. With these findings in mind, the regulatory authorities (Swiss Federal Office of Public Health (SFOPH) and Swiss National Accident Insurance Association (Suva)) started in 1999 to examine the justification of thoriated tungsten electrodes and a possible substitution with products containing no radioactive material. Up to this time, the use of thoriated tungsten electrodes could be justified since no thorium-free products leading to comparable results were available on the market. This was also the reason why the SFOPH approved several types of these electrodes. Discussions with formation centers for welding and inquiries made at welding shops, trading companies and producers showed that in the mean-time thorium-free products with comparable welding specifications and results became available on the market. Since the 1 January 2004, thoriated tungsten electrodes can only be used if the user has obtained the corresponding license from the SFOPH. The use of thoriated tungsten electrodes is thus not completely forbidden, but very strict conditions have to be fulfilled. Up to now and due to the involvement of the relevant partners, the substitution process has not met any problem. Neither trading companies nor users made any opposition and no request for obtaining a license for thoriated tungsten electrodes was made. (orig.)

  18. Effect of neutron irradiation on the microstructure of tungsten

    Directory of Open Access Journals (Sweden)

    M. Klimenkov

    2016-12-01

    Full Text Available Two grades of pure tungsten, single and polycrystalline, were irradiated for 282 days in the HFR reactor, Petten, at 900 °C to an average damage level of 1.6dpa. Each grade of tungsten was investigated using the transmission electron microscope (TEM to assess the effect of neutron irradiation on tungsten microstructure. Investigations revealed the formation of faceted cavities, whose diameter varies from 4 to 14nm in both materials. The cavities are homogeneously distributed only inside single crystalline tungsten. The local distribution of cavities in polycrystalline tungsten is strongly influenced by grain boundaries. The number densities of cavities were measured to be 4×1021 m−3 for polycrystalline and 2.5×1021 m−3 for single crystalline tungsten. This corresponds to volumetric densities of 0.45% and 0.33% respectively. High-resolution transmission electron microscopy (HRTEM revealed that faces of cavities are oriented in (110 plane. Analytical investigations showed precipitation of rhenium and osmium produced by a transmutation reaction around cavities and at grain boundaries.

  19. Effect of tungsten doping on catalytic properties of niobium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Franciane P.; Nogueira, Andre E. [Departamento de Quimica, Universidade Federal de Lavras, Lavras-MG (Brazil); Patricio, Patricia S.O., E-mail: patriciapatricio@cefetmg.br [Centro Federal de Educacao Tecnologica, CEFET, Belo Horizonte, MG (Brazil); Oliveira, Luiz C.A. [Departamento de Quimica, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2012-04-15

    A novel material based on niobia (Nb{sub 2}O{sub 5}) was synthesized to oxidize an organic compound in aqueous medium in the presence of H{sub 2}O{sub 2} after chemical modifications. Niobia was modified by doping with tungsten and also treating with H{sub 2}O{sub 2} in order to maximize the oxidative properties of this oxide. The analysis of the products from methylene blue dye oxidation with electro spray ionization mass spectrometry (ESI-MS) showed that the dye was successively oxidized to different intermediate compounds. The successive hydroxylation during this oxidation strongly suggests that highly reactive hydroxyl radicals are generated involving H{sub 2}O{sub 2} on the W-doped niobia grain surface. These results strongly suggest that the H{sub 2}O{sub 2} can regenerate in situ the peroxo group remaining active the system. (author)

  20. Vaporization of tungsten-metal in steam at high temperatures

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.C.

    2000-01-01

    The vaporization of tungsten from the APT spallation target dominates the radiological source term for unmitigated target overheating accidents. Chemical reactions of tungsten with steam which persist to tungsten temperatures as low as 800 C result in the formation of a hydrated tungsten-oxide which has a high vapor pressure and is readily convected in a flowing atmosphere. This low-temperature vaporization reaction essentially removes the oxide film that forms on the tungsten-metal surface as soon as it forms, leaving behind a fresh metallic surface for continued oxidation and vaporization. Experiments were conducted to measure the oxidative vaporization rates of tungsten in steam as part of the effort to quantify the MT radiological source term for severe target accidents. Tests were conducted with tungsten rods (1/8 inch diameter, six inches long) heated to temperatures from approximately 700 C to 1350 C in flowing steam which was superheated to 140 C. A total of 19 experiments was conducted. Fifteen tests were conducted by RF induction heating of single tungsten rods held vertical in a quartz glass retort. Four tests were conducted in a vertically-mounted tube furnace for the low temperature range of the test series. The aerosol which was generated and transported downstream from the tungsten rods was collected by passing the discharged steam through a condenser. This procedure insured total collection of the steam along with the aerosol from the vaporization of the rods. The results of these experiments revealed a threshold temperature for tungsten vaporization in steam. For the two tests at the lowest temperatures which were tested, approximately 700 C, the tungsten rods were observed to oxidize without vaporization. The remainder of the tests was conducted over the temperature range of 800 C to 1350 C. In these tests, the rods were found to have lost weight due to vaporization of the tungsten and the missing weight was collected in the downstream condensate

  1. Fabrication and evaluation of chemically vapor deposited tungsten heat pipe.

    Science.gov (United States)

    Bacigalupi, R. J.

    1972-01-01

    A network of lithium-filled tungsten heat pipes is being considered as a method of heat extraction from high temperature nuclear reactors. The need for material purity and shape versatility in these applications dictates the use of chemically vapor deposited (CVD) tungsten. Adaptability of CVD tungsten to complex heat pipe designs is shown. Deposition and welding techniques are described. Operation of two lithium-filled CVD tungsten heat pipes above 1800 K is discussed.

  2. Comparison of four tungsten alloys for use as ultrasonic thermometer sensors

    International Nuclear Information System (INIS)

    Arave, A.E.

    1975-06-01

    Four tungsten alloy materials were evaluated for use as ultrasonic sensors: (a) tungsten, (b) tungsten-1 percent thoria, (c) tungsten-2 percent thoria, and (d) tungsten-26 percent rhenium. Four parameters were checked: (1) temperature sensitivity, (2) signal attenuation as a function of temperature, (3) temperature sensitivity as a function of frequency, and (4) relative signal attenuation as a function of frequency. The temperature sensors were designed for the Loss-of-Fluid Test (LOFT) and Power Burst Facility (PBF) reactors. (U.S.)

  3. Adhesion of non-selective CVD tungsten to silicon dioxide

    International Nuclear Information System (INIS)

    Woodruff, D.W.; Wilson, R.H.; Sanchez-Martinez, R.A.

    1986-01-01

    Adhesion of non-selective, CVD tungsten to silicon dioxide is a critical issue in the development of tungsten as a metalization for VLSI circuitry. Without special adhesion promoters, tungsten deposited from WF/sub 6/ and H/sub 2/ has typically failed a standard tape test over all types of silicon oxides and nitrides. The reasons for failure of thin films, and CVD tungsten in particular are explored along with standard techniques for improving adhesion of thin films. Experiments are reported which include a number of sputtered metals as adhesion promoters, as well as chemical and plasma treatment of the oxide surface. Sputtered molybdenum is clearly the superior adhesion promoting layer from these tests. Traditional adhesion layers such as chromium or titanium failed as adhesion layers for CVD tungsten possibly due to chemical reactions between the WF/sub 6/ and Cr or Ti

  4. New doped tungsten cathodes. Applications to power grid tubes

    International Nuclear Information System (INIS)

    Cachard, J. de; Cadoret, K; Martinez, L.; Veillet, D.; Millot, F.

    2001-01-01

    Thermionic emission behavior of tungsten/tungsten carbide modified with rare earth (La, Ce, Y) oxides is examined on account of suitability to deliver important current densities in a thermo-emissive set up and for long lifetime. Work functions of potential cathodes have been determined from Richardson plots for La 2 O 3 doped tungsten and for tungsten covered with variable compositions rare earth tungstates. The role of platinum layers covering the cathode was also examined. Given all cathodes containing mainly lanthanum oxides were good emitters, emphasis was put on service lifetime. Comparisons of lifetime in tungsten doped with rare earth oxides and with rare earth tungstates show that microstructure of the operating cathodes may play the major role in the research of very long lifetime cathodes. Based on these results, tests still running show lifetime compatible with power grid tubes applications. (author)

  5. Deuterium transport and trapping in polycrystalline tungsten

    International Nuclear Information System (INIS)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R.; Pawelko, R.J.; Trybus, C.L.; Sellers, C.H.

    1992-01-01

    This paper reports that deuterium permeation studies for polycrystalline tungsten foil have been conducted to provide data for estimating tritium transport and trapping in tungsten-clad divertors proposed for advanced fusion-reactor concepts. Based on a detailed transmission electron microscopy (TEM) microstructural characterization of the specimen material and on analyses of permeation data measured at temperatures ranging form 610 to 823 K for unannealed and annealed tungsten foil (25 μm thick), the authors note the following key results: deuterium transport in tungsten foil is dominated by extensive trapping that varies inversely with prior anneal temperatures of the foil material, the reduction in the trapped fraction correlates with a corresponding elimination of a high density of dislocations in cell-wall structures introduced during the foil fabrication process, trapping behavior in these foils can be modelled using trap energies between 1.3 eV and 1.5 eV and trap densities ranging from 1 x 10 -5 atom fraction

  6. Corrosion of high-density sintered tungsten alloys

    International Nuclear Information System (INIS)

    Batten, J.J.; Moore, B.T.

    1989-01-01

    In comparative corrosion tests, the corrosion resistance of an Australian tungsten alloy (95% W, 3.5% Ni, 1.5% Fe) was found to be superior to three other tungsten alloys and, under certain conditions, even more corrosion-resistant than pure tungsten. Corrosion resistance was evaluated after immersion in both distilled water and 5% sodium chloride solutions, and in cyclic humidity and salt mist environments. For all but the Australian alloy, the rate of corrosion in sodium chloride solution was markedly less than that in distilated water. In all cases, alloys containing copper had the greatest corrosion rates. Corrosion mechanisms were investigated using a scanning electron microscope, analysis of corrosion products and galvanic corrosion studies. For the alloys, corrosion was attributed primarily to a galvanic reaction. Whether the tungsten or binder phase of the alloy became anodic, and thus was attacked preferentially, depended upon alloy composition and corrosion environment. 16 refs., 4 tabs., 4 figs

  7. Incorporation of tungsten metal fibers in a metal and ceramic matrix

    Directory of Open Access Journals (Sweden)

    V. Brozek

    2017-01-01

    Full Text Available Tungsten fibers have high tensile strength but a poor oxidation resistance at elevated temperatures. Using this first characteristic and to prevent oxidation of tungsten coated composite materials in which the primary requirement: reinforcement against destruction or deformation, was studied on tungsten fibers and tungsten wires which were coated by applying the metal and ceramic powders via plasma spraying device in plasma generator WSP®. Deposition took place in an atmosphere of Ar + 7 % H2, sufficient to reduce the oxidized trace amounts of tungsten.

  8. Computer simulations for thorium doped tungsten crystals

    Energy Technology Data Exchange (ETDEWEB)

    Eberhard, Bernd

    2009-07-17

    Tungsten has the highest melting point among all metals in the periodic table of elements. Furthermore, its equilibrium vapor pressure is by far the lowest at the temperature given. Thoria, ThO{sub 2}, as a particle dopant, results in a high temperature creep resistant material. Moreover, thorium covered tungsten surfaces show a drastically reduced electronic work function. This results in a tremendous reduction of tip temperatures of cathodes in discharge lamps, and, therefore, in dramatically reduced tungsten vapor pressures. Thorium sublimates at temperatures below those of a typical operating cathode. For proper operation, a diffusional flow of thorium atoms towards the surface has to be maintained. This atomic flux responds very sensitively on the local microstructure, as grain boundaries as well as dislocation cores offer ''short circuit paths'' for thorium atoms. In this work, we address some open issues of thoriated tungsten. A molecular dynamics scheme (MD) is used to derive static as well as dynamic material properties which have their common origin in the atomistic behavior of tungsten and thorium atoms. The interatomic interactions between thorium and tungsten atoms are described within the embedded atom model (EAM). So far, in literature no W-Th interaction potentials on this basis are described. As there is no alloying system known between thorium and tungsten, we have determined material data for the fitting of these potentials using ab-initio methods. This is accomplished using the full potential augmented plane wave method (FLAPW), to get hypothetical, i.e. not occurring in nature, ''alloy'' data of W-Th. In order to circumvent the limitations of classical (NVE) MD schemes, we eventually couple our model systems to external heat baths or volume reservoirs (NVT, NPT). For the NPT ensemble, we implemented a generalization of the variable cell method in combination with the Langevin piston, which results in a

  9. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    Energy Technology Data Exchange (ETDEWEB)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp; Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2016-02-01

    The synthesis of large-area monolayer tungsten disulphide (WS{sub 2}) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS{sub 2} crystals using tungsten hexachloride (WCl{sub 6}) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl{sub 6} in ethanol was drop-casted on SiO{sub 2}/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS{sub 2} crystals on the substrate. The crystal geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS{sub 2} single crystalline monolayer can be grown using the WCl{sub 6} precursor. Our finding shows an easier and effective approach to grow WS{sub 2} monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction.

  10. Ab initio and DFT benchmarking of tungsten nanoclusters and tungsten hydrides

    International Nuclear Information System (INIS)

    Skoviera, J.; Novotny, M.; Cernusak, I.; Oda, T.; Louis, F.

    2015-01-01

    We present several benchmark calculations comparing wave-function based methods and density functional theory for model systems containing tungsten. They include W 4 cluster as well as W 2 , WH and WH 2 molecules. (authors)

  11. Gleeble Testing of Tungsten Samples

    Science.gov (United States)

    2013-02-01

    temperature on an Instron load frame with a 222.41 kN (50 kip) load cell . The samples were compressed at the same strain rate as on the Gleeble...ID % RE Initial Density (cm 3 ) Density after Compression (cm 3 ) % Change in Density Test Temperature NT1 0 18.08 18.27 1.06 1000 NT3 0...4.1 Nano-Tungsten The results for the compression of the nano-tungsten samples are shown in tables 2 and 3 and figure 5. During testing, sample NT1

  12. Method of synthesizing tungsten nanoparticles

    Science.gov (United States)

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  13. In-situ field-ion microscope study of the recovery behavior of heavy metal ion-irradiated tungsten, tungsten (rhenium) alloys and molybdenum

    International Nuclear Information System (INIS)

    Nielsen, C.H.

    1977-06-01

    Three field ion microscope (FIM) experiments were carried out to study the annealing behavior of heavy ion irradiated tungsten, tungsten (rhenium) alloys and molybdenum. The first experiment dealt with the stage I long-range migration of tungsten self interstitial atoms (SIAs) in high purity tungsten of resistivity ratio, R = 24,000 (R = rho 300 /rho 4 . 2 , where rho 300 and rho 4 . 2 are the room temperature and 0 0 C resistivities). The FIM specimens were irradiated in situ at 18 K with 30 keV W + ions to an average dose of 5 x 10 12 ions cm -2 and subsequently examined by the pulsed-field evaporation technique. The second experiment dealt with the phenomenon of impurity atom trapping of SIAs during long-range migration. It was shown that rhenium atoms in a tungsten matrix tend to capture tungsten SIAs and remain bound up to temperatures as high as 390 K. The final experiment was concerned with the low temperature annealing kinetics of irradiated molybdenum. High purity molybdenum of resistivity ratio R = 5700 was irradiated at 10 K with 30 keV Mo + ions to a dose of approximately 5 x 10 12 ions cm -2 . The results indicated that the electric field has only a minimal effect on the SIA annealing kinetics. This tends to strengthen the contention that the molybdenum SIA becomes mobile at 32 K

  14. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition

    International Nuclear Information System (INIS)

    Sharma, Uttam; Chauhan, Sachin S; Sharma, Jayshree; Sanyasi, A K; Ghosh, J; Choudhary, K K; Ghosh, S K

    2016-01-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m 2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS. (paper)

  15. Recovery of Tungsten and Molybdenum from Low-Grade Scheelite

    Science.gov (United States)

    Li, Yongli; Yang, Jinhong; Zhao, Zhongwei

    2017-10-01

    With most high-quality tungsten ores being exhausted, the enhancement of low-grade scheelite concentrates processing has attracted a great deal of attention. The objective of this study is to develop a method to maximize the recovery tungsten and molybdenum from a low-grade scheelite via a new acid leaching process followed by solvent extraction. Under optimal conditions (350 g/L H2SO4, 95°C, and 2 h), approximately 99.8% of tungsten and 98% of molybdenum were leached out. In the subsequent solvent extraction process, more than 99% of the tungsten and molybdenum were extracted with a co-extraction system (50% TBP, 30% HDEHP, and 10% 2-octanol in kerosene) using a three-stage cross-flow extraction. The raffinate can be recycled for the next leaching process after replenishing the H2SO4 to the initial value (approximately 350 g/L). Based on these results, a conceptual flowsheet is presented to recover tungsten and molybdenum from the low-grade scheelite.

  16. Tungsten and refractory metals 3, proceedings

    International Nuclear Information System (INIS)

    Bose, A.; Dowding, R.J.

    1996-01-01

    The Third International Conference on Tungsten and Refractory Metals was held in Greater Washington DC at the McLean Hilton, McLean Virginia, on November 15--16, 1995. This meeting was the third in a series of conferences held in the Washington DC area. The first meeting was in 1992 and was entitled ''International Conference on Tungsten and Tungsten Alloys.'' In 1994, the scope of the meeting was expanded to include other refractory metals such as molybdenum, iridium, rhenium, tantalum and niobium. The tremendous success of that meeting was the primary motivation for this Conference. The broader scope (the inclusion of other refractory metals and alloys) of the Conference was kept intact for this meeting. In fact, it was felt that the developments in the technology of these materials required a common forum for the interchange of current research information. The papers presented in this meeting examined the rapid advancements in the technology of refractory metals, with special emphasis on the processing, structure, and properties. Among the properties there was emphasis on both quasi-static and dynamic rates. Another topic that received considerable interest was the area of refractory carbides and tungsten-copper composites. One day of concurrent session was necessary to accommodate all of the presentations

  17. Electrospark doping of steel with tungsten

    International Nuclear Information System (INIS)

    Denisova, Yulia; Shugurov, Vladimir; Petrikova, Elizaveta; Seksenalina, Malika; Ivanova, Olga; Ikonnikova, Irina; Kunitsyna, Tatyana; Vlasov, Victor; Klopotov, Anatoliy; Ivanov, Yuriy

    2016-01-01

    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensional approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties

  18. Electrospark doping of steel with tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Denisova, Yulia, E-mail: yukolubaeva@mail.ru; Shugurov, Vladimir, E-mail: shugurov@opee.hcei.tsc.ru [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); Petrikova, Elizaveta, E-mail: elizmarkova@yahoo.com [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 36 Lenin Str. Tomsk, 634050 (Russian Federation); Seksenalina, Malika, E-mail: sportmiss@bk.ru [National Research Tomsk Polytechnic University, 30 Lenin Str. Tomsk, 634050 (Russian Federation); Ivanova, Olga, E-mail: ivaov@mail.ru; Ikonnikova, Irina, E-mail: irinaikonnikova@yandex.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq. Tomsk, 634003 (Russian Federation); Kunitsyna, Tatyana, E-mail: kma11061990@mail.ru; Vlasov, Victor, E-mail: rector@tsuab.ru [National Research Tomsk Polytechnic University, 30 Lenin Str. Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, 2 Solyanaya Sq. Tomsk, 634003 (Russian Federation); Klopotov, Anatoliy, E-mail: klopotovaa@tsuab.ru [National Research Tomsk State University, 36 Lenin Str. Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, 2 Solyanaya Sq. Tomsk, 634003 (Russian Federation); Ivanov, Yuriy, E-mail: yufi55@mail.ru [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 36 Lenin Str. Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Str. Tomsk, 634050 (Russian Federation)

    2016-01-15

    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensional approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties.

  19. Joining of Tungsten Armor Using Functional Gradients

    International Nuclear Information System (INIS)

    John Scott O'Dell

    2006-01-01

    The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.

  20. Problems of tungsten crack resistance optimization

    International Nuclear Information System (INIS)

    Babak, A.V.; Uskov, E.I.

    1986-01-01

    Technically pure and precipitation-hardening tungsten is studied for its crack resistance in the initial and hardened states at the temperatures of 20...2000 deg C. Results of the study are presented. It is shown that hardening of tungsten base alloys in oil from the temperature corresponding to the upper boundary of the temperature region of ductile-brittle transition increases a crack propagation resistance of the studied materias at elevated and high temperatures

  1. Characterization of plasma coated tungsten heavy alloy

    International Nuclear Information System (INIS)

    Bose, A.; Kapoor, D.; Lankford, J. Jr.; Nicholls, A.E.

    1996-01-01

    The detrimental environmental impact of Depleted Uranium-based penetrators have led to tremendous development efforts in the area of tungsten heavy alloy based penetrators. One line of investigation involves the coating of tungsten heavy alloys with materials that are prone to shear localization. Plasma spraying of Inconel 718 and 4340 steel have been used to deposit dense coatings on tungsten heavy alloy substrates. The aim of the investigation was to characterize the coating primarily in terms of its microstructure and a special push-out test. The paper describes the results of the push-out tests and analyzes some of the possible failure mechanisms by carrying out microstructural characterization of the failed rings obtained from the push out tests

  2. Pulse current electrodeposition of tungsten coatings on V–4Cr–4Ti alloy

    International Nuclear Information System (INIS)

    Jiang, Fan; Zhang, Yingchun; Li, Xuliang

    2015-01-01

    Highlights: • Tungsten coatings were successfully electroplated on vanadium alloy substrate. • Tungsten coatings consisted of two sub-layers. • Tungsten coatings plated at lower duty cycle has a better surface quality. • High heat flux property of tungsten coatings was investigated. • Helium ion irradiation property of tungsten coatings was investigated. - Abstract: Tungsten coatings with high (2 2 0)-orientation were formed on V alloy substrate by pulse current electrodeposition in air atmosphere. The coatings’ microstructure, crystal structure and adhesive strength between coatings and substrates were investigated. It could be observed the tungsten coatings consisted of two sub-layers with the inner tooth-like layer, and the outer columnar layer. The tungsten coatings deposited at lower duty cycle have a better surface quality with a little change in the adhesive strength. The tungsten coating was exposed to electron beam with power density of 200 MW/m 2 in the thermal shock test, the tungsten crystal grain surface melt, the microcracks are found among the crystal grains. Exfoliation, flaking and dense needle-like holes were observed on the tungsten coating after irradiation with helium ions at an energy of 65 keV and an implanted dose of 22.67 × 10 18 cm −2

  3. Tungsten/copper composite deposits produced by a cold spray

    International Nuclear Information System (INIS)

    Kang, Hyun-Ki; Kang, Suk Bong

    2003-01-01

    An agglomerated tungsten/copper composite powder was both cold sprayed and plasma sprayed onto a mild steel substrate for electronic package applications. Most pores resulting from the spraying were found in the vicinity of the tungsten-rich regions of the final product. The levels of porosity varied with the amount of tungsten present. No copper oxidation was found at the cold-sprayed deposit, but relatively high copper oxidation was observed at the plasma-sprayed deposit

  4. Behavior of porous tungsten under shock compression at room temperature

    International Nuclear Information System (INIS)

    Dandekar, D.P.; Lamothe, R.M.

    1977-01-01

    This work reports the results of room-temperature shock-compression experiments on porous tungsten. The porous tungsten was fabricated by sintering 1-μm tungsten particles. The initial density of the material was 15290 kg/m 3 . Around 97% of the pores in the material were interconnected. The main features of the results are as follows: (1) porous tungsten behaves as a linear elastic material to 1.43 GPa; (2) the shock wave following the elastic precursor is unstable in the material in the stress range 1.43--2.7 GPa; (3) a stable two-wave structure is established at and above 6.4 GPa; (4) the response of porous tungsten is accurately described by the Mie-Grueneisen equation of state at stresses above 4.9 GPa, the stress at which the voids suffer a complete extinction in the material; (5) the deformations induced in the material due to shock compression are irreversible; (6) the recentered Hugoniot of porous tungsten becomes stiffer with the increasing magnitude of initial compressive stress

  5. Molecular dynamics study of grain boundary diffusion of hydrogen in tungsten

    International Nuclear Information System (INIS)

    Von Toussaint, U; Gori, S; Manhard, A; Höschen, T; Höschen, C

    2011-01-01

    Understanding the influence of the microstructure of tungsten on hydrogen transport is crucial for the use of tungsten as first-wall material in fusion reactors. Here, we report the results of molecular dynamics and transition state studies on the influence of grain boundaries in tungsten on the transport of hydrogen. An exhaustive mapping of possible minimum activation energy migration trajectories for hydrogen as the trace impurity reveals a strongly modified activation energy distribution in the neighborhood of grain boundaries together with an altered connectivity matrix. The results indicate that grain boundaries in polycrystalline tungsten may provide an important transport channel, especially for neutron-damaged tungsten.

  6. Surface composition of carburized tungsten trioxide and its catalytic activity

    International Nuclear Information System (INIS)

    Nakazawa, M.; Okamoto, H.

    1985-01-01

    The surface composition and electronic structure of carburized tungsten trioxide are investigated using x-ray photoelectron spectroscopy (XPS). The relationship between the surface composition and the catalytic activity for methanol electro-oxidation is clarified. The tungsten carbide concentration in the surface layer increases with the carburization time. The formation of tungsten carbide enhances the catalytic activity. On the other hand, the presence of free carbon or tungsten trioxide in the surface layer reduces the activity remarkably. It is also shown that, the higher the electronic density of states near the Fermi level, the higher the catalytic activity

  7. Study of tungsten based positron moderators

    International Nuclear Information System (INIS)

    Lucio, O.G. de; Pérez, M.; Mendoza, U.; Morales, J.G.; Cruz, J.C.; DuBois, R.D.

    2015-01-01

    Positrons and how they interact with matter has a growing interest in many fields. Most of their uses require the production of slow positron beams with a well-defined energy, but since these particles are usually generated by means of a radioactive source, they are fast and with a broad distribution of energies. For this reason it is necessary to moderate them to lower energies via inelastic collisions. Then, they can be accelerated to the desired energies. This requires the use of a moderator. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency and relatively low cost. In this work we present different methods of producing transmission tungsten-based moderators, with particular interest in a combination of tungsten thin foils and grids. We also show results about the characterization of these moderators by ion beam analysis and microscopy techniques along with their relative moderation efficiencies

  8. Study of tungsten based positron moderators

    Energy Technology Data Exchange (ETDEWEB)

    Lucio, O.G. de; Pérez, M.; Mendoza, U.; Morales, J.G.; Cruz, J.C. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México DF (Mexico); DuBois, R.D. [Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2015-07-01

    Positrons and how they interact with matter has a growing interest in many fields. Most of their uses require the production of slow positron beams with a well-defined energy, but since these particles are usually generated by means of a radioactive source, they are fast and with a broad distribution of energies. For this reason it is necessary to moderate them to lower energies via inelastic collisions. Then, they can be accelerated to the desired energies. This requires the use of a moderator. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency and relatively low cost. In this work we present different methods of producing transmission tungsten-based moderators, with particular interest in a combination of tungsten thin foils and grids. We also show results about the characterization of these moderators by ion beam analysis and microscopy techniques along with their relative moderation efficiencies.

  9. OEDGE modeling for the planned tungsten ring experiment on DIII-D

    Directory of Open Access Journals (Sweden)

    J.D. Elder

    2017-08-01

    Full Text Available The OEDGE code is used to model tungsten erosion and transport for experiments with toroidal rings of high-Z metal tiles in the DIII-D tokamak. Such modeling is needed for both experimental and diagnostic design to have estimates of the expected core and edge tungsten density and to understand the various factors contributing to the uncertainties in these calculations. OEDGE simulations are performed using the planned experimental magnetic geometries and plasma conditions typical of both L-mode and inter-ELM H-mode discharges in DIII-D. OEDGE plasma reconstruction based on specific representative discharges for similar geometries is used to determine the plasma conditions applied to tungsten plasma impurity simulations. A new model for tungsten erosion in OEDGE was developed which imports charge-state resolved carbon impurity fluxes and impact energies from a separate OEDGE run which models the carbon production, transport and deposition for the same plasma conditions as the tungsten simulations. These values are then used to calculate the gross tungsten physical sputtering due to carbon plasma impurities which is then added to any sputtering by deuterium ions; tungsten self-sputtering is also included. The code results are found to be dependent on the following factors: divertor geometry and closure, the choice of cross-field anomalous transport coefficients, divertor plasma conditions (affecting both tungsten source strength and transport, the choice of tungsten atomic physics data used in the model (in particular ionization rate for W-atoms, and the model of the carbon flux and energy used for calculating the tungsten source due to sputtering. Core tungsten density is found to be of order 1015m−3 (excluding effects of any core transport barrier and with significant variability depending on the other factors mentioned with density decaying into the scrape off layer. For the typical core density in the plasma conditions examined of 2 to 4

  10. Dense Pure Tungsten Fabricated by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Dianzheng Wang

    2017-04-01

    Full Text Available Additive manufacturing using tungsten, a brittle material, is difficult because of its high melting point, thermal conductivity, and oxidation tendency. In this study, pure tungsten parts with densities of up to 18.53 g/cm3 (i.e., 96.0% of the theoretical density were fabricated by selective laser melting. In order to minimize balling effects, the raw polyhedral tungsten powders underwent a spheroidization process before laser consolidation. Compared with polyhedral powders, the spherical powders showed increased laser absorptivity and packing density, which helped in the formation of a continuous molten track and promoted densification.

  11. On the shear strength of tungsten nano-structures with embedded helium

    International Nuclear Information System (INIS)

    Smirnov, R.D.; Krasheninnikov, S.I.

    2013-01-01

    Modification of plastic properties of tungsten nano-structures under shear stress load due to embedded helium atoms is studied using molecular dynamics modelling. The modelling demonstrates that the yield strength of tungsten nano-structures reduces significantly with increasing embedded helium concentration. At high helium concentrations (>10 at%), the yield strength decreases to values characteristic to the pressure in helium nano-bubbles, which are formed in tungsten under such conditions and thought to be responsible for the formation of nano-fuzz on tungsten surfaces irradiated with helium plasma. It is also shown that tungsten plastic flow strongly facilitates coagulation of helium clusters to larger bubbles. The temperature dependencies of the yield strength are obtained. (letter)

  12. Mechanistic, kinetic, and processing aspects of tungsten chemical mechanical polishing

    Science.gov (United States)

    Stein, David

    This dissertation presents an investigation into tungsten chemical mechanical polishing (CMP). CMP is the industrially predominant unit operation that removes excess tungsten after non-selective chemical vapor deposition (CVD) during sub-micron integrated circuit (IC) manufacture. This work explores the CMP process from process engineering and fundamental mechanistic perspectives. The process engineering study optimized an existing CMP process to address issues of polish pad and wafer carrier life. Polish rates, post-CMP metrology of patterned wafers, electrical test data, and synergy with a thermal endpoint technique were used to determine the optimal process. The oxidation rate of tungsten during CMP is significantly lower than the removal rate under identical conditions. Tungsten polished without inhibition during cathodic potentiostatic control. Hertzian indenter model calculations preclude colloids of the size used in tungsten CMP slurries from indenting the tungsten surface. AFM surface topography maps and TEM images of post-CMP tungsten do not show evidence of plow marks or intergranular fracture. Polish rate is dependent on potassium iodate concentration; process temperature is not. The colloid species significantly affects the polish rate and process temperature. Process temperature is not a predictor of polish rate. A process energy balance indicates that the process temperature is predominantly due to shaft work, and that any heat of reaction evolved during the CMP process is negligible. Friction and adhesion between alumina and tungsten were studied using modified AFM techniques. Friction was constant with potassium iodate concentration, but varied with applied pressure. This corroborates the results from the energy balance. Adhesion between the alumina and the tungsten was proportional to the potassium iodate concentration. A heuristic mechanism, which captures the relationship between polish rate, pressure, velocity, and slurry chemistry, is presented

  13. Helium-induced hardening effect in polycrystalline tungsten

    Science.gov (United States)

    Kong, Fanhang; Qu, Miao; Yan, Sha; Zhang, Ailin; Peng, Shixiang; Xue, Jianming; Wang, Yugang

    2017-09-01

    In this paper, helium induced hardening effect of tungsten was investigated. 50 keV He2+ ions at fluences vary from 5 × 1015 cm-2 to 5 × 1017 cm-2 were implanted into polycrystalline tungsten at RT to create helium bubble-rich layers near the surface. The microstructure and mechanical properties of the irradiated specimens were studied by TEM and nano-indentor. Helium bubble rich layers are formed in near surface region, and the layers become thicker with the rise of fluences. Helium bubbles in the area of helium concentration peak are found to grow up, while the bubble density is almost unchanged. Obvious hardening effect is induced by helium implantation in tungsten. Micro hardness increases rapidly with the fluence firstly, and more slowly when the fluence is above 5 × 1016 cm-2. The hardening effect of tungsten can be attributed to helium bubbles, which is found to be in agreement with the Bacon-Orowan stress formula. The growing diameter is the major factor rather than helium bubbles density (voids distance) in the process of helium implantation at fluences below 5 × 1017 cm-2.

  14. A study of scandia and rhenium doped tungsten matrix dispenser cathode

    Science.gov (United States)

    Wang, Jinshu; Li, Lili; Liu, Wei; Wang, Yanchun; Zhao, Lei; Zhou, Meiling

    2007-10-01

    Scandia and rhenium doped tungsten powders were prepared by solid-liquid doping combined with two-step reduction method. The experimental results show that scandia was distributed evenly on the surface of tungsten particles. The addition of scandia and rhenium could decrease the particle size of doped tungsten, for example, the tungsten powders doped with Sc 2O 3 and Re had the average size of about 50 nm in diameter. By using this kind of powder, scandia and rhenium doped tungsten matrix with the sub-micrometer sized tungsten grains was obtained. This kind of matrix exhibited good anti-bombardment insensitivity at high temperature. The emission property result showed that high space charge limited current densities of more than 60 A/cm 2 at 900 °C could be obtained for this cathode. A Ba-Sc-O multilayer about 100 nm in thickness formed at the surface of cathode after activation led to the high emission property.

  15. Behavior of tungsten carbide in water stabilized plasma

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Matějíček, Jiří; Neufuss, Karel

    2007-01-01

    Roč. 7, č. 4 (2007), s. 213-220 ISSN 1335-8987 R&D Projects: GA ČR(CZ) GA104/05/0540 Institutional research plan: CEZ:AV0Z20430508 Keywords : water stabilized plasma * tungsten carbide * tungsten hemicarbide * decarburization Subject RIV: BL - Plasma and Gas Discharge Physics

  16. Measurement of ion species produced due to bombardment of 450 eV N{sub 2}{sup +} ions with hydrocarbons-covered surface of tungsten: Formation of tungsten nitride

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. [Atomic Physics Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005 (India); Bhatt, P. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Kumar, A. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Singh, B.K.; Singh, B.; Prajapati, S. [Atomic Physics Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005 (India); Shanker, R., E-mail: shankerorama@gmail.com [Atomic Physics Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005 (India)

    2016-08-01

    A laboratory experiment has been performed to study the ions that are produced due to collisions of 450 eV N{sub 2}{sup +} ions with a hydrocarbons-covered surface of polycrystalline tungsten at room temperature. Using a TOF mass spectrometry technique, the product ions formed in these collisions have been detected, identified and analyzed. Different ion–surface reaction processes, namely, neutralization, reflection, surface induced dissociation, surface induced chemical reactions and desorption are observed and discussed. Apart from the presence of desorbed aliphatic hydrocarbon and other ions, the mass spectra obtained from the considered collisions show the formation and sputtering of tungsten nitride (WN). A layer of WN on tungsten surface is known to decrease the sputtering of bulk tungsten in fusion devices more effectively than when the tungsten is bombarded with other seeding gases (He, Ar). It is further noted that there is a negligible diffusion of N in the bulk tungsten at room temperature.

  17. Tungsten coatings electro-deposited on CFC substrates from oxide molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ningbo; Zhang, Yingchun, E-mail: zycustb@163.com; Lang, Shaoting; Jiang, Fan; Wang, Lili

    2014-12-15

    Tungsten is considered as plasma facing material in fusion devices because of its high melting point, its good thermal conductivity, its low erosion rate and its benign neutron activation properties. On the other hand, carbon based materials like C/C fiber composites (CFC) have been used for plasma facing materials (PFMs) due to their high thermal shock resistance, light weight and high strength. Tungsten coatings on CFC substrates are used in the JET divertor in the frame of the JET ITER-like wall project, and have been prepared by plasma spray (PS) and other techniques. In this study, tungsten coatings were electro-deposited on CFC from Na{sub 2}WO{sub 4}–WO{sub 3} molten salt under various deposition parameters at 900 °C in air. In order to obtain tungsten coatings with excellent performance, the effects of pulse duration ratio and pulse current density on microstructures and crystal structures of tungsten coatings were investigated by X-ray diffraction (XRD, Rigaku Industrial Co., Ltd., D/MAX-RB) and a scanning electron microscope (SEM, JSM 6480LV). It is found that the pulsed duration ratio and pulse current density had a significant influence on tungsten nucleation and electro-crystallization phenomena. SEM observation revealed that intact, uniform and dense tungsten coatings formed on the CFC substrates. Both the average grain size and thickness of the coating increased with the pulsed current density. The XRD results showed that the coatings consisted of a single phase of tungsten with the body centered cubic (BCC) structure. The oxygen content of electro-deposited tungsten coatings was lower than 0.05%, and the micro-hardness was about 400 HV.

  18. Advanced smart tungsten alloys for a future fusion power plant

    Science.gov (United States)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Mao, Y.; Coenen, J. W.; Bram, M.; Gonzalez-Julian, J.

    2017-06-01

    The severe particle, radiation and neutron environment in a future fusion power plant requires the development of advanced plasma-facing materials. At the same time, the highest level of safety needs to be ensured. The so-called loss-of-coolant accident combined with air ingress in the vacuum vessel represents a severe safety challenge. In the absence of a coolant the temperature of the tungsten first wall may reach 1200 °C. At such a temperature, the neutron-activated radioactive tungsten forms volatile oxide which can be mobilized into atmosphere. Smart tungsten alloys are being developed to address this safety issue. Smart alloys should combine an acceptable plasma performance with the suppressed oxidation during an accident. New thin film tungsten-chromium-yttrium smart alloys feature an impressive 105 fold suppression of oxidation compared to that of pure tungsten at temperatures of up to 1000 °C. Oxidation behavior at temperatures up to 1200 °C, and reactivity of alloys in humid atmosphere along with a manufacturing of reactor-relevant bulk samples, impose an additional challenge in smart alloy development. First exposures of smart alloys in steady-state deuterium plasma were made. Smart tungsten-chroimium-titanium alloys demonstrated a sputtering resistance which is similar to that of pure tungsten. Expected preferential sputtering of alloying elements by plasma ions was confirmed experimentally. The subsequent isothermal oxidation of exposed samples did not reveal any influence of plasma exposure on the passivation of alloys.

  19. Crack resistance of tungsten strengthened by dispersed refractory oxides

    International Nuclear Information System (INIS)

    Babak, A.V.; Uskov, E.I.

    1984-01-01

    Investigation results are presented for crack resistance of commercial tungsten, obtained during specimen testing at temperatures of 20 deg C to Tsub(cr) (upper boundary of temperature range of ductile-brittle transition). Comparison of s-n diagrams and temperature dependences of crack resistance are conducted for commercial tungsten and tungsten strengthened by refractory oxides. It is shown that dispersion hardening increases crack resistance in the temperature range of 20 to 2000 deg C but the upper boundary of ductile-brittle shifts to the side of higher temperatures

  20. Dissimilar Joining of Stainless Steel and 5083 Aluminum Alloy Sheets by Gas Tungsten Arc Welding-Brazing Process

    Science.gov (United States)

    Cheepu, Muralimohan; Srinivas, B.; Abhishek, Nalluri; Ramachandraiah, T.; Karna, Sivaji; Venkateswarlu, D.; Alapati, Suresh; Che, Woo Seong

    2018-03-01

    The dissimilar joining using gas tungsten arc welding - brazing of 304 stainless steel to 5083 Al alloy had been conducted with the addition of Al-Cu eutectic filler metal. The interface microstructure formation between filler metal and substrates, and spreading of the filler metal were studied. The interface microstructure between filler metal and aluminum alloy characterized that the formation of pores and elongated grains with the initiation of micro cracks. The spreading of the liquid braze filler on stainless steel side packed the edges and appeared as convex shape, whereas a concave shape has been formed on aluminum side. The major compounds formed at the fusion zone interface were determined by using X-ray diffraction techniques and energy-dispersive X-ray spectroscopy analysis. The micro hardness at the weld interfaces found to be higher than the substrates owing to the presence of Fe2Al5 and CuAl2 intermetallic compounds. The maximum tensile strength of the weld joints was about 95 MPa, and the tensile fracture occurred at heat affected zone on weak material of the aluminum side and/or at stainless steel/weld seam interface along intermetallic layer. The interface formation and its effect on mechanical properties of the welds during gas tungsten arc welding-brazing has been discussed.

  1. Electron work function of stepped tungsten surfaces

    International Nuclear Information System (INIS)

    Krahl-Urban, B.

    1976-03-01

    The electron work function of tungsten (110) vicinal faces was measured with the aid of thermionic emission, and its dependence on the crystallographic orientation and the surface structure was investigated. The thermionic measurements were evaluated with the aid of the Richardson plot. The real temperature of the emitting tungsten faces was determined with an accuracy of +- 0.5% in the range between 2,200 and 2,800 K. The vicinal faces under investigation have been prepared with an orientation exactness of +- 15'. In the tungsten (110) vicinal faces under investigation, a strong dependence of the temperature coefficient d PHI/dT of the work function on the crystallographic orientation was found. A strong influence of the edge structure as well as of the step density on the temperature coefficient was observed. (orig./HPOE) [de

  2. Element 74, the Wolfram Versus Tungsten Controversy

    Energy Technology Data Exchange (ETDEWEB)

    Holden,N.E.

    2008-08-11

    Two and a quarter centuries ago, a heavy mineral ore was found which was thought to contain a new chemical element called heavy stone (or tungsten in Swedish). A few years later, the metal was separated from its oxide and the new element (Z=74) was called wolfram. Over the years since that time, both the names wolfram and tungsten were attached to this element in various countries. Sixty years ago, IUPAC chose wolfram as the official name for the element. A few years later, under pressure from the press in the USA, the alternative name tungsten was also allowed by IUPAC. Now the original, official name 'wolfram' has been deleted by IUPAC as one of the two alternate names for the element. The history of this controversy is described here.

  3. Development and optimisation of tungsten armour geometry for ITER divertor

    International Nuclear Information System (INIS)

    Makhankov, A.; Mazul, I.; Safronov, V.; Yablokov, N.

    1998-01-01

    The plasma facing components (PFC) of the future thermonuclear reactor in great extend determine the time of non-stop operation of the reactor. In current ITER project the most of the divertor PFC surfaces are covered by tungsten armour. Therefore selection of tungsten grade and attachment scheme for joining the tungsten armour to heat sink is a matter of great importance. Two attachment schemes for highly loaded components (up to 20 MW/m 2 ) are described in this paper. The small size mock-ups were manufactured and successfully tested at heat fluxes up to 30 MW/m 2 in screening test and up to 20 MW/m 2 at thermal fatigue test. One mock-up with four different tungsten grades was tested by consequent thermal shock (15 MJ/m 2 at 50 μs) and thermal cycling loading (15 MW/m 2 ). The damages that could lead to mock-up failure were not found but the behaviour of tungsten grades was quite different. (author)

  4. Emission property of scandia and Re doped tungsten matrix dispenser cathode

    International Nuclear Information System (INIS)

    Wang Jinshu; Wang Yanchun; Liu Wei; Li Lili; Wang Yiman; Zhou Meiling

    2008-01-01

    Scandia and rhenium doped tungsten powders have been prepared by solid-liquid doping combined with two-step reduction method. The experimental results show that scandia distributes evenly in the doped tungsten powder. Moreover, the addition of scandia and rhenium could decrease the particle size of tungsten. By using this kind of powder, scandia and rhenium doped tungsten matrix with sub-micrometer sized tungsten grains and a uniform distribution of Sc 2 O 3 together with high pore density has been obtained. The emission property result shows that high space charge limited current density of more than 30 A/cm 2 at 850 deg. C has been obtained for this cathode. This excellent emission capability results from an active layer uniformly covering the sub-micron structure framework of the cathodes

  5. Evaporation of tungsten in vacuum at low hydrogen and water vapor pressures

    International Nuclear Information System (INIS)

    Andrievskij, R.A.; Galkin, E.A.; Khromonozhkin, V.V.

    1981-01-01

    The results of experimental investigations of tungsten evaporation rates in the temperature range 1650-2500 K, partial hydrogen and water vapours pressures 1x10 -5 -10 Pa are presented. Experi-- mental plant, equipment employed and radiometric technique of tungsten evaporation study are described. The dependences of evaporation rate and probabilities of tungsten oxidation by residual vacuum water vapours and dependences of tungsten evaporation rate on partial hydrogen and water vapours pressures are determined [ru

  6. Color in 'tungsten trioxide' thin films

    International Nuclear Information System (INIS)

    Gerard, P.; Deneuville, A.; Hollinger, G.; Duc, Tran Minh

    1977-01-01

    We show that evaporated tungsten trioxide amorphous layers commonly used in electrochromic displays actually have the composition WO_2_._7H_y (0.2< y<0.5). We emphasize that coloration of virgin transparent films can be obtained without injection of any external ion into the layer, and further that around a critical substoichiometry by sputtering, namely, WO_2_._5, one can prepare blue virgin layers without any hydrogen. The effect of substoichiometry on the valence of tungsten atoms has been followed by XPS measurements of sputtered layers.

  7. Color in ''tungsten trioxide'' thin films

    International Nuclear Information System (INIS)

    Gerard, P.; Deneuville, A.; Hollinger, G.; Tran Minh Duc

    1977-01-01

    We show that evaporated tungsten trioxide amorphous layers commonly used in electrochromic displays actually have the composition WO/sub 2.7/H/sub y/ (0.2< y<0.5). We emphasize that coloration of virgin transparent films can be obtained without injection of any external ion into the layer, and further that around a critical substoichiometry by sputtering, namely, WO/sub 2.5/, one can prepare blue virgin layers without any hydrogen. The effect of substoichiometry on the valence of tungsten atoms has been followed by XPS measurements of sputtered layers

  8. Microstructure, mechanical behaviour and fracture of pure tungsten wire after different heat treatments

    DEFF Research Database (Denmark)

    Zhao, P.; Riesch, J.; Höschen, T.

    2017-01-01

    Plastic deformation of tungsten wire is an effective source of toughening tungsten fibre-reinforced tungsten composites (Wf/W) and other tungsten fibre-reinforced composites. To provide a reference for optimization of those composites, unconstrained pure tungsten wire is studied after various hea...... a rather different microstructure. As-fabricated wire and wire recrystallized at 1273 K for 3 h show fine grains with a high aspect ratio and a substantial plastic deformability: a clearly defined tensile strength, high plastic work, similar necking shape, and the characteristic knife...

  9. Microscopic investigations of chemo-mechanical polishing of tungsten

    International Nuclear Information System (INIS)

    Lim, Min Soo; Heide, Paul A.W. van der; Perry, Scott S.; Galloway, Heather C.; Koeck, Deborah C.

    2004-01-01

    The influence of aqueous solutions of KNO 3 , KClO 3 , and KIO 3 on tungsten surfaces has been investigated in terms of the degree of surface oxidation, metal dissolution and interfacial friction. The surface properties of tungsten films have been measured ex-situ with X-ray photoelectron spectroscopy and in situ with atomic force microscopy. Measurements of the surface composition reveal a greater degree of oxidation for surfaces treated in solutions of KIO 3 in comparison to the other solutions. This increase in surface oxidation is correlated to a greater rate of localized film dissolution that occurs under the action of the scanning probe tip. In turn, the process of material removal is the predominant origin of the higher interfacial friction measured at tungsten surfaces immersed in KIO 3 solutions, as compared to KClO 3 and KNO 3 solutions. Collectively, these measurements portray a fundamental pathway of material removal at tungsten surfaces in the presence of oxidizing species and highlight complementary roles of chemical and mechanical action

  10. Microscopic investigations of chemo-mechanical polishing of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Min Soo; Heide, Paul A.W. van der; Perry, Scott S.; Galloway, Heather C.; Koeck, Deborah C

    2004-06-15

    The influence of aqueous solutions of KNO{sub 3}, KClO{sub 3}, and KIO{sub 3} on tungsten surfaces has been investigated in terms of the degree of surface oxidation, metal dissolution and interfacial friction. The surface properties of tungsten films have been measured ex-situ with X-ray photoelectron spectroscopy and in situ with atomic force microscopy. Measurements of the surface composition reveal a greater degree of oxidation for surfaces treated in solutions of KIO{sub 3} in comparison to the other solutions. This increase in surface oxidation is correlated to a greater rate of localized film dissolution that occurs under the action of the scanning probe tip. In turn, the process of material removal is the predominant origin of the higher interfacial friction measured at tungsten surfaces immersed in KIO{sub 3} solutions, as compared to KClO{sub 3} and KNO{sub 3} solutions. Collectively, these measurements portray a fundamental pathway of material removal at tungsten surfaces in the presence of oxidizing species and highlight complementary roles of chemical and mechanical action.

  11. Large area synthesis, characterization, and anisotropic etching of two dimensional tungsten disulfide films

    International Nuclear Information System (INIS)

    Mutlu, Zafer; Ozkan, Mihrimah; Ozkan, Cengiz S.

    2016-01-01

    Emergent properties of tungsten disulfide at the quantum confinement limit hold promise for electronic and optoelectronic applications. Here we report on the large area synthesis of atomically thin tungsten disulfide films with strong photoluminescence properties via sulfurization of the pre-deposited tungsten films. Detailed characterization of the pre-deposited tungsten films and tungsten disulfide films are performed using microscopy and spectroscopy methods. By directly heating tungsten disulfide films in air, we have shown that the films tend to be etched into a series of triangular shaped pits with the same orientations, revealing the anisotropic etching behavior of tungsten disulfide edges. Moreover, the dimensions of the triangular pits increase with the number of layers, suggesting a thickness dependent behavior of etching in tungsten disulfide films. This method offers a promising new avenue for engineering the edge structures of tungsten disulfide films. - Highlights: • Large-scale synthesis of WS_2 films is achieved via sulfurization of W films. • Annealing of W films leads to a substantial improvement in the quality of WS_2 films. • WS_2 films show laser power dependent photoluminescence characteristics. • WS_2 films are etched with well-oriented triangular pits upon annealing in air. • Anisotropic oxidative etching is greatly affected by the thickness of WS_2 films.

  12. RF induction plasma spheroidization of tungsten powders

    International Nuclear Information System (INIS)

    Gu Zhogntao; Ye Gaoying; Liu Chuandong; Tong Honghui

    2009-01-01

    Irregularly-shaped tungsten powders (average granular sizes of 512 μm) have been spheroidized by radio frequency (RF)induction plasma. The effects of feed rate, mode of material dispersion, particle size on spheroidization efficiency are investigated. Experimental results show that the spheroidization efficiency decreases rapidly when the feed rate increases to more than 95 g/min. Only 30% spheroidization efficiency is gained at the feed rate of 135.75 g/min. The spheroidization efficiency is also affected by the flow rate of carrier gas. When the flow rate of carrier gas is 0.12 m 3 /h, the dispersion effect is the best, and the spheroidization efficiency is almost 100%. The apparent density of tungsten powders increases a bit with the increase of spheroidization efficiency. And the particle size uniformity of spheroidized tungsten powders is in accordance with that of original powders. (authors)

  13. Trends in tungsten coil atomic spectrometry

    Science.gov (United States)

    Donati, George L.

    Renewed interest in electrothermal atomic spectrometric methods based on tungsten coil atomizers is a consequence of a world wide increasing demand for fast, inexpensive, sensitive, and portable analytical methods for trace analysis. In this work, tungsten coil atomic absorption spectrometry (WCAAS) and tungsten coil atomic emission spectrometry (WCAES) are used to determine several different metals and even a non-metal at low levels in different samples. Improvements in instrumentation and new strategies to reduce matrix effects and background signals are presented. Investigation of the main factors affecting both WCAAS and WCAES analytical signals points to the importance of a reducing, high temperature gas phase in the processes leading to atomic cloud generation. Some more refractory elements such as V and Ti were determined for the first time by double tungsten coil atomic emission spectrometry (DWCAES). The higher temperatures provided by two atomizers in DWCAES also allowed the detection of Ag, Cu and Sn emission signals for the first time. Simultaneous determination of several elements by WCAES in relatively complex sample matrices was possible after a simple acid extraction. The results show the potential of this method as an alternative to more traditional, expensive methods for fast, more effective analyses and applications in the field. The development of a new metallic atomization cell is also presented. Lower limits of detection in both WCAAS and WCAES determinations were obtained due to factors such as better control of background signal, smaller, more isothermal system, with atomic cloud concentration at the optical path for a longer period of time. Tungsten coil-based methods are especially well suited to applications requiring low sample volume, low cost, sensitivity and portability. Both WCAAS and WCAES have great commercial potential in fields as diverse as archeology and industrial quality control. They are simple, inexpensive, effective

  14. Chromium and molybdenum diffusion in tungsten single crystals

    International Nuclear Information System (INIS)

    Klotsman, S.M.; Koloskov, V.M.; Osetrov, S.V.; Polikarpova, I.P.; Tatarinova, G.N.; Timofeev, A.N.

    1989-01-01

    Consideration is given to results of measuring temperature dependences of diffusion coefficients of homovalent impurities of chromium and molybdenum in tungsten single crystals. It is concluded that the difference of activation energies of selfdiffusion and impurity diffusion in the system 'tungsten-homovalent impurity' is conditioned by interaction of screened potentials of impurity and vacancy with Lazarus-Le Claire model

  15. Simulation of cracks in tungsten under ITER specific heat loads

    International Nuclear Information System (INIS)

    Peschany, S.

    2006-01-01

    The problem of high tritium retention in co-deposited carbon layers on the walls of ITER vacuum chamber motivates investigation of materials for the divertor armour others than carbon fibre composite (CFC). Tungsten is most probable material for CFC replacement as the divertor armour because of high vaporisation temperature and heat conductivity. In the modern ITER design tungsten is a reference material for the divertor cover, except for the separatrix strike point armoured with CFC. As divertor armour, tungsten should withstand severe heat loads at off-normal ITER events like disruptions, ELMs and vertical displacement events. Experiments on tungsten heating with plasma streams and e-beams have shown an intense crack formation at the surface of irradiated sample [ V.I. Tereshin, A.N. Bandura, O.V. Byrka et al. Repetitive plasma loads typical for ITER type-I ELMs: Simulation at QSPA Kh-50.PLASMA 2005. ed. By Sadowski M.J., AIP Conference Proceedings, American Institute of Physics, 2006, V 812, p. 128-135., J. Linke. Private communications.]. The reason for tungsten cracking under severe heat loads is thermo stress. It appears as due to temperature gradient in solid tungsten as in resolidified layer after cooling down. Both thermo stresses are of the same value, but the gradiental stress is compressive and the stress in the resolidified layer is tensile. The last one is most dangerous for crack formation and it was investigated in this work. The thermo stress in tungsten that develops during cooling from the melting temperature down to room temperature is ∼ 8-16 GPa. Tensile strength of tungsten is much lower, < 1 GPa at room temperature, and at high temperatures it drops at least for one order of magnitude. As a consequence, various cracks of different characteristic scales appear at the heated surface of the resolidified layer. For simulation of the cracks in tungsten the numeric code PEGASUS-3D [Pestchanyi and I. Landman. Improvement of the CFC structure to

  16. Surface studies of barium and barium oxide on tungsten and its application to understanding the mechanism of operation of an impregnated tungsten cathode

    Science.gov (United States)

    Forman, R.

    1976-01-01

    Surface studies have been made of multilayer and monolayer films of barium and barium oxide on a tungsten substrate. The purpose of the investigation was to synthesize the surface conditions that exist on an activated impregnated tungsten cathode and obtain a better understanding of the mechanism of operation of such cathodes. The techniques employed in these measurements were Auger spectroscopy and work-function measurements. The results of this study show that the surface of an impregnated cathode is identical to that observed for a synthesized monolayer or partial monolayer of barium on oxidized tungsten by evaluating Auger spectra and work-function measurements. Data obtained from desorption studies of barium monolayers on a tungsten substrate in conjunction with Auger and work-function results have been interpreted to show that throughout most of its life an impreganated cathode has a partial monolayer, rather than a monolayer, of barium on its surface.

  17. Microstructural study of tungsten influence on Co-Cr alloys

    International Nuclear Information System (INIS)

    Karaali, A.; Mirouh, K.; Hamamda, S.; Guiraldenq, P.

    2005-01-01

    Alloying elements, such as W, Mo, Mn,..., are of a great importance in the preoxidation of dental alloys and, consequently, on the ceramic/metal bond quality. This study deals with the effect of tungsten addition on the microstructural state of Co-Cr dental alloys, before the ceramisation process. These materials were prepared by unidirectional solidification. Their characterization has been carried out, using transmission electron microscopy (TEM) and X-ray diffraction. It shows that the addition of tungsten up to 8 wt.% induces structural transformations, which are believed to be linked to the added amount of tungsten

  18. Tungsten anode tubes with K-edge filters for mammography

    Energy Technology Data Exchange (ETDEWEB)

    Beaman, S.; Lillicrap, S.C. (Wessex Regional Medical Physics Service, Bath (UK)); Price, J.L. (Jarvis Screening Centre, Guildford (UK))

    1983-10-01

    Optimum X-ray energies for mammography have previously been calculated using the maximum signal to noise ratio (SNR) per unit dose to the breast, or the minimum exposure for constant SNR. Filters having absorption edges at appropriate energy positions have been used to modify the shape of tungsten anode spectra towards the calculated optimum. The suitability of such spectra for practical use has been assessed by comparing the film image quality and the incident breast dose obtained using a K-edge filtered tungsten anode tube with that obtained using a molybdenum anode. Image quality has been assessed by using a 'random' phantom and by comparing mammograms where one breast was radiographed using a filtered tungsten anode tube and the other using a standard molybdenum anode unit. Relative breast doses were estimated from both ionisation chamber measurements with a phantom and thermoluminescent dosimetry measurements on the breast. Film image quality assessment indicated that the filtered tungsten anode tube gave results not significantly different from those obtained with a molybdenum anode tube for a tissue thickness of about 4 cm and which were better for larger breast thicknesses. Doses could be reduced to between one-half and one-third with the filtered tungsten anode tube.

  19. Tungsten anode tubes with K-edge filters for mammography

    International Nuclear Information System (INIS)

    Beaman, S.; Lillicrap, S.C.; Price, J.L.

    1983-01-01

    Optimum X-ray energies for mammography have previously been calculated using the maximum signal to noise ratio (SNR) per unit dose to the breast, or the minimum exposure for constant SNR. Filters having absorption edges at appropriate energy positions have been used to modify the shape of tungsten anode spectra towards the calculated optimum. The suitability of such spectra for practical use has been assessed by comparing the film image quality and the incident breast dose obtained using a K-edge filtered tungsten anode tube with that obtained using a molybdenum anode. Image quality has been assessed by using a 'random' phantom and by comparing mammograms where one breast was radiographed using a filtered tungsten anode tube and the other using a standard molybdenum anode unit. Relative breast doses were estimated from both ionisation chamber measurements with a phantom and thermoluminescent dosimetry measurements on the breast. Film image quality assessment indicated that the filtered tungsten anode tube gave results not significantly different from those obtained with a molybdenum anode tube for a tissue thickness of abut 4 cm and which were better for larger breast thicknesses. Doses could be reduced to between one-half and one-third with the filtered tungsten anode tube. (U.K.)

  20. Development and electrochemical characterization of Ni‐P coated tungsten incorporated electroless nickel coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shibli, S.M.A., E-mail: smashibli@yahoo.com; Chinchu, K.S.

    2016-08-01

    Ni‐P-W alloy and composite coatings were prepared by incorporation of sodium tungstate/tungsten and Ni‐P coated tungsten into electroless nickel bath respectively. Good inter-particle interactions among the depositing elements i.e. Ni and P with the incorporating tungsten particles were achieved by means of pre-coated tungsten particle by electroless nickel covering prior to its addition into the electroless bath. The pre-coated tungsten particles got incorporated uniformly into the Ni-P matrix of the coating. The particles and the coatings were characterized at different stages by different techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The electroless Ni-P coating incorporated with pre-coated tungsten exhibited considerably high hardness, thickness and deposition rate. The performance and corrosion resistance characteristics of the composite coating incorporated with the nickel coated tungsten were found to be superior over other conventional Ni-P-W ternary alloy coatings currently reported. - Highlights: • An amorphous Ni-P coating was effectively formed on tungsten particles. • Electroless ternary Ni-P-W composite coatings were successfully prepared. • Enhancement in the inter-particle interaction in the Ni-P composite matrix was achieved. • Efficient and uniform incorporation of the composite in the internal layer was evident. • The tungsten incorporated coating possessed effective barrier protection.

  1. Cleaning and outgassing studies of machinable tungsten for beamline safety shutters

    International Nuclear Information System (INIS)

    Liu, C.; Ryding, D.; Nielsen, R.W.; Kruy, T.L.; Kuzay, T.M.

    1996-01-01

    Machinable tungsten blocks are used as safety shutters in the front ends and the beamlines at the Advanced Photon Source (APS). The machinable tungsten used is characterized as a UHV-compatible metal by the vendor and was developed through a joint research effort with the APS. However, because of the inherent porosity in the sintered tungsten metal, it may present a vacuum problem and has to be subjected to strict vacuum testing before it is put on the beamlines. We have chosen specially heat-treated machinable tungsten with a density of 18 g/cm 3 for safety shutters. In-house-developed, environmentally friendly vacuum cleaning procedures were used. In this paper, we present results of thermal outgassing tests for machinable tungsten safety shutter sets. Each set consists of five blocks and has a total area of 4500 cm 2 . A cleaning procedure using alkaline detergent ultrasonic washes, deionized water rinses, and a 500 degree C vacuum furnace baking was used before outgassing measurements. Outgassing rates 10 hours after initial pump down at room temperature reached ∼1.60x10 -10 Torr·l·s -1 ·cm -2 for machinable tungsten and ∼1.56x10 -10 Torr·l·s -1 ·cm -2 for the stainless steel vacuum chamber. The outgassing rate of machinable tungsten 24 hours after an in situ 48 h bake at 160 degree C is also comparable to that of the stainless steel vacuum chamber. The importance of a 500 degree C vacuum furnace baking has been confirmed by outgassing studies for machinable tungsten sets that were not subject to vacuum furnace baking. copyright 1996 American Institute of Physics

  2. Tungsten-microdiamond composites for plasma facing components

    International Nuclear Information System (INIS)

    Livramento, V.; Nunes, D.; Correia, J.B.; Carvalho, P.A.; Mardolcar, U.; Mateus, R.; Hanada, K.; Shohoji, N.; Fernandes, H.; Silva, C.; Alves, E.

    2011-01-01

    Tungsten is considered as one of promising candidate materials for plasma facing component in nuclear fusion reactors due to its resistance to sputtering and high melting point. High thermal conductivity is also a prerequisite for plasma facing components under the unique service environment of fusion reactor characterised by the massive heat load, especially in the divertor area. The feasibility of mechanical alloying of nanodiamond and tungsten, and the consolidation of the composite powders with Spark Plasma Sintering (SPS) was previously demonstrated. In the present research we report on the use of microdiamond instead of nanodiamond in such composites. Microdiamond is more favourable than nanodiamond in view of phonon transport performance leading to better thermal conductivity. However, there is a trade off between densification and thermal conductivity as the SPS temperature increases tungsten carbide formation from microdiamond is accelerated inevitably while the consolidation density would rise.

  3. Stress in tungsten carbide-diamond like carbon multilayer coatings

    NARCIS (Netherlands)

    Pujada, B.R.; Tichelaar, F.D.; Janssen, G.C.A.M.

    2007-01-01

    Tungsten carbide-diamond like carbon (WC-DLC) multilayer coatings have been prepared by sputter deposition from a tungsten-carbide target and periodic switching on and off of the reactive acetylene gas flow. The stress in the resulting WC-DLC multilayers has been studied by substrate curvature.

  4. Tungsten alloy research at the US Army Materials Technology Laboratory

    International Nuclear Information System (INIS)

    Dowding, R.J.

    1991-01-01

    This paper reports that recent research into tungsten heavy alloys at the U. S. Army Materials Technology Laboratory (MTL) has explored many areas of processing and process development. The recrystallization and respheroidization of tungsten grains in a heavily cold worked heavy alloy has been examined and resulted in the identification of a method of grain refinement. Another area of investigation has been lightly cold worked. It was determined that it was possible to increase the strength and hardness of the tungsten grains by proper hat treatment. MTL has been involved in the Army's small business innovative research (SBIR) program and several programs have been funded. Included among these are a method of coating the tungsten powders with the alloying elements and the development of techniques of powder injection molding of heavy alloys

  5. Effect of two-stage sintering process on microstructure and mechanical properties of ODS tungsten heavy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyong H. [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Taejon 305-701 (Korea, Republic of); Cha, Seung I. [International Center for Young Scientists, National Institute for Materials Science 1-1, Namiki, Tsukuba 305-0044 (Japan); Ryu, Ho J. [DUPIC, Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yusong-gu, Taejon 305-353 (Korea, Republic of); Hong, Soon H. [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Taejon 305-701 (Korea, Republic of)], E-mail: shhong@kaist.ac.kr

    2007-06-15

    Oxide dispersion strengthened (ODS) tungsten heavy alloys have been considered as promising candidates for advanced kinetic energy penetrator due to their characteristic fracture mode compared to conventional tungsten heavy alloy. In order to obtain high relative density, the ODS tungsten heavy alloy needs to be sintered at higher temperature for longer time, however, induces growth of tungsten grains. Therefore, it is very difficult to obtain controlled microstructure of ODS tungsten heavy alloy having fine tungsten grains with full densification. In this study, two-stage sintering process, consisted of primary solid-state sintering and followed by secondary liquid phase sintering, was introduced for ODS tungsten heavy alloys. The mechanically alloyed 94W-4.56Ni-1.14Fe-0.3Y{sub 2}O{sub 3} powders are solid-state sintered at 1300-1450 deg. C for 1 h in hydrogen atmosphere, and followed by liquid phase sintering temperature at 1465-1485 deg. C for 0-60 min. The microstructure of ODS tungsten heavy alloys showed high relative density above 97%, with contiguous tungsten grains after primary solid-state sintering. The microstructure of solid-state sintered ODS tungsten heavy alloy was changed into spherical tungsten grains embedded in W-Ni-Fe matrix during secondary liquid phase sintering. The two-stage sintered ODS tungsten heavy alloy from mechanically alloyed powders showed finer microstructure and higher mechanical properties than conventional liquid phase sintered alloy. The mechanical properties of ODS tungsten heavy alloys are dependent on the microstructural parameters such as tungsten grain size, matrix volume fraction and tungsten/tungsten contiguity, which can be controlled through the two-stage sintering process.

  6. FABRICATION OF GAS-FILLED TUNGSTEN-COATED GLASS SHELLS

    International Nuclear Information System (INIS)

    NIKROO, A; BAUGH, W; STEINMAN, D.A.

    2003-09-01

    OAK-B135 Deuterium (D 2 ) filled glass shells coated with a high Z element are needed for high energy density (HED) experiments by researchers at Los Alamos National Laboratory. They report here on our initial attempt to produce such shells. Glass shells made using the drop tower technique were coated with gold, palladium or tungsten, or a mixture of two of these elements. It was found that gold and palladium coatings did not stick well to the glass and resulted in poor or delaminated films. Tungsten coatings resulted in films suitable for these targets. Bouncing of shells during coating resulted in uniform tungsten coatings, but the surface of such coatings were filled with small nodules. Proper agitation of shells using a tapping technique resulted in smooth films with minimal particulate contamination. For coating rates of ∼ 0.15 (micro)m/hr coatings with ∼ 2 nm RMS surface finish could be deposited. The surface roughness of coatings at higher rates, 0.7 (micro)m/hr, was considerably worse (∼ 100 nm RMS). The columnar structure of the coatings allowed permeation filling of the tungsten coated glass shells with deuterium at 300 C

  7. Study of thermoelectron emission of oxidized tungsten sponge in cesium atom flow

    International Nuclear Information System (INIS)

    Tursunmetov, K.A.; Sabirov, A.K.

    1993-01-01

    Thermoelectron emission of a tungsten sponge with 30-40% porosity is studied. The tungsten sponge is produced of fine-grain tungsten powder (diameter - 1-2 μm) according to standard technology. It is shown that tungsten sponge oxidation at T=1000 K with subsequent heating in vacuum at T=1100 K allows one to obtain the minimal stable and reproducible work function at the level of 1.03-1.05 eV in a flux of cesium atoms. Estimations show that effective emitting surface is 15-20 times as much as the polycrystal surface

  8. Morphological characterisation and spectroscopic studies of the corrosion behaviour of tungsten heavy alloys

    International Nuclear Information System (INIS)

    Ogundipe, A.; Greenberg, B.; Braida, W.; Christodoulatos, C.; Dermatas, D.

    2006-01-01

    Tungsten-based alloys have been used in a wide variety of industrial and military applications. These alloys are composed mainly of tungsten (88-95%) with various combinations of nickel, cobalt, iron and copper usually making up the remaining fraction. The corrosion behaviours of five munitions grade tungsten alloys of interest have been examined using immersion tests and wet-dry cycle tests to determine the mechanisms involved in the release of the metallic components. Analyses carried out using SEM, EDS and grazing incidence XRD techniques, show the release of tungsten as well as alloying elements due to galvanic corrosion resulting from the difference in electrode potential between the tungsten phase and the binder phase in all cases studied. The extent of corrosion was directly related with the dissolution of tungsten in the binder phase during the sintering stage of manufacture. In W-Ni-Co-Fe alloys binder phase corrosion was observed while the relatively noble tungsten phase was less affected. The reverse was observed for a W-Cu alloy

  9. Tape cast isotropic, fine-grained tungsten for thermo-cyclic loading applications

    Energy Technology Data Exchange (ETDEWEB)

    Sommerer, Mathias, E-mail: Mathias.Sommerer@tum.de [Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, Technische Universität München, Boltzmannstr. 15, 85748 Garching (Germany); Li, Muyuan [Max-Planck-Institut für Plasma Physik, Boltzmannstraße 2, 85748 Garching (Germany); Werner, Ewald [Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, Technische Universität München, Boltzmannstr. 15, 85748 Garching (Germany); Dewitz, Hubertus von; Walter, Steffen; Lampenscherf, Stefan [Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, 81730 München (Germany); Arnold, Thomas [Siemens Healthcare GmbH, Henkestr. 127, 91052 Erlangen (Germany)

    2016-04-15

    Highlights: • The tape casting process for tungsten is described. • A set-up of a HHF test facility for standing anodes is presented. • The thermo-cyclic behavior of tape cast tungsten and a reference is investigated. • The evolution of crack patterns is described in dependency of HHF-loadings. • The surface roughness of X-ray anodes is related to the microstructural evolution. - Abstract: This paper introduces tape casting as a new route for the production of isotropic and fine-grained tungsten components. Microstructural and thermal properties of tape cast tungsten samples are determined. Thermal shock behavior according to the thermo-cyclic loading of standing X-ray anodes is investigated and compared to the behavior of a rolled tungsten grade. The development of surface roughness during the thermal shock loading is discussed in relation to the development of the grain structure and crack pattern. The fine-grained and stable microstructure of the tape cast material exhibits less roughening under such test conditions.

  10. Electrocatalysis on tungsten carbide

    International Nuclear Information System (INIS)

    Fleischmann, R.

    1975-01-01

    General concepts of electrocatalysis, the importance of the equilibrium rest potential and its standardization on polished WC-electrodes, the influence of oxygen in the catalysts upon the oxidation of hydrogen, and the attained results of the hydrogen oxidation on tungsten carbide are treated. (HK) [de

  11. Experimental study of parallel multi-tungsten wire Z-pinch

    International Nuclear Information System (INIS)

    Huang Xianbin; China Academy of Engineering Physics, Mianyang; Lin Libin; Yang Libing; Deng Jianjun; Gu Yuanchao; Ye Shican; Yue Zhengpu; Zhou Shaotong; Li Fengping; Zhang Siqun

    2005-01-01

    The study of three parallel tungsten wire loads and five parallel tungsten wire loads implosion experiment on accelerator 'Yang' are reported. Tungsten wires (φ17 μm) with separation of 1 mm were used. The pinch was driven by a 350 kA peak current, 80 ns 10%-90% rise time. By means of pinhole camera and X-ray diagnostics technology, a non-uniform plasma column is formed among the wires and soft X-ray pulse are observed. the change of load current are analyzed, the development of sausage instability and kink instability, 'hot spot' effect and dispersion spot for plasma column are also discussed. (authors)

  12. Loss of shear strength in polycrystalline tungsten under shock compression

    International Nuclear Information System (INIS)

    Dandekar, D.P.

    1976-01-01

    A reexamination of existing data on shock compression of polycrystalline tungsten at room temperature indicates that tungsten may be an exception to the common belief that metals do not behave like elastic-isotropic solids under shock compression

  13. Separation of Rhenium (VII) from Tungsten (VI)

    International Nuclear Information System (INIS)

    Vucina, J.; Lukic, D.; Stoiljkovic, M.; Milosevic, M.; Orlic, M.

    2004-01-01

    Examined were the conditions for an effective separation of tungsten (VI) and rhenium (VII) on alumina if the solution of 0.20 mol dm -3 NaCl, ph=2.6 is used as the aqueous phase. Under the given experimental conditions alumina was found to be much better adsorbent for tungsten than for rhenium. The breakthrough and saturation capacities of alumina at pH=2 are 24 and 78 mg W/g Al 2 O 3 , respectively. With the increase of pH these values decrease. So, at pH=6 they are only 4 and 13 mg W/g Al 2 O 3 respectively. The elution volume for rhenium for the given column dimensions and quantity of the adsorbent is about 16 ml. These results were confirmed by the experiments of the radiological separations. Tungsten-187 remains firmly bound to the alumina. The radionuclide purity of the eluted 186'188 Re at pH=2 is very high. (authors)

  14. Information extraction from FN plots of tungsten microemitters

    Energy Technology Data Exchange (ETDEWEB)

    Mussa, Khalil O. [Department of Physics, Mu' tah University, Al-Karak (Jordan); Mousa, Marwan S., E-mail: mmousa@mutah.edu.jo [Department of Physics, Mu' tah University, Al-Karak (Jordan); Fischer, Andreas, E-mail: andreas.fischer@physik.tu-chemnitz.de [Institut für Physik, Technische Universität Chemnitz, Chemnitz (Germany)

    2013-09-15

    Tungsten based microemitter tips have been prepared both clean and coated with dielectric materials. For clean tungsten tips, apex radii have been varied ranging from 25 to 500 nm. These tips were manufactured by electrochemical etching a 0.1 mm diameter high purity (99.95%) tungsten wire at the meniscus of two molar NaOH solution. Composite micro-emitters considered here are consisting of a tungsten core coated with different dielectric materials—such as magnesium oxide (MgO), sodium hydroxide (NaOH), tetracyanoethylene (TCNE), and zinc oxide (ZnO). It is worthwhile noting here, that the rather unconventional NaOH coating has shown several interesting properties. Various properties of these emitters were measured including current–voltage (IV) characteristics and the physical shape of the tips. A conventional field emission microscope (FEM) with a tip (cathode)–screen (anode) separation standardized at 10 mm was used to electrically characterize the electron emitters. The system was evacuated down to a base pressure of ∼10{sup −8}mbar when baked at up to ∼180°C overnight. This allowed measurements of typical field electron emission (FE) characteristics, namely the IV characteristics and the emission images on a conductive phosphorus screen (the anode). Mechanical characterization has been performed through a FEI scanning electron microscope (SEM). Within this work, the mentioned experimental results are connected to the theory for analyzing Fowler–Nordheim (FN) plots. We compared and evaluated the data extracted from clean tungsten tips of different radii and determined deviations between the results of different extraction methods applied. In particular, we derived the apex radii of several clean and coated tungsten tips by both SEM imaging and analyzing FN plots. The aim of this analysis is to support the ongoing discussion on recently developed improvements of the theory for analyzing FN plots related to metal field electron emitters, which in

  15. Information extraction from FN plots of tungsten microemitters

    International Nuclear Information System (INIS)

    Mussa, Khalil O.; Mousa, Marwan S.; Fischer, Andreas

    2013-01-01

    Tungsten based microemitter tips have been prepared both clean and coated with dielectric materials. For clean tungsten tips, apex radii have been varied ranging from 25 to 500 nm. These tips were manufactured by electrochemical etching a 0.1 mm diameter high purity (99.95%) tungsten wire at the meniscus of two molar NaOH solution. Composite micro-emitters considered here are consisting of a tungsten core coated with different dielectric materials—such as magnesium oxide (MgO), sodium hydroxide (NaOH), tetracyanoethylene (TCNE), and zinc oxide (ZnO). It is worthwhile noting here, that the rather unconventional NaOH coating has shown several interesting properties. Various properties of these emitters were measured including current–voltage (IV) characteristics and the physical shape of the tips. A conventional field emission microscope (FEM) with a tip (cathode)–screen (anode) separation standardized at 10 mm was used to electrically characterize the electron emitters. The system was evacuated down to a base pressure of ∼10 −8 mbar when baked at up to ∼180°C overnight. This allowed measurements of typical field electron emission (FE) characteristics, namely the IV characteristics and the emission images on a conductive phosphorus screen (the anode). Mechanical characterization has been performed through a FEI scanning electron microscope (SEM). Within this work, the mentioned experimental results are connected to the theory for analyzing Fowler–Nordheim (FN) plots. We compared and evaluated the data extracted from clean tungsten tips of different radii and determined deviations between the results of different extraction methods applied. In particular, we derived the apex radii of several clean and coated tungsten tips by both SEM imaging and analyzing FN plots. The aim of this analysis is to support the ongoing discussion on recently developed improvements of the theory for analyzing FN plots related to metal field electron emitters, which in

  16. A supercritical carbon dioxide plasma process for preparing tungsten oxide nanowires

    International Nuclear Information System (INIS)

    Kawashima, Ayato; Nomura, Shinfuku; Toyota, Hiromichi; Takemori, Toshihiko; Mukasa, Shinobu; Maehara, Tsunehiro

    2007-01-01

    A supercritical carbon dioxide (CO 2 ) plasma process for fabricating one-dimensional tungsten oxide nanowires coated with amorphous carbon is presented. High-frequency plasma was generated in supercritical carbon dioxide at 20 MPa by using tungsten electrodes mounted in a supercritical cell, and subsequently an organic solvent was introduced with supercritical carbon dioxide into the plasma. Electron microscopy and Raman spectroscopy investigations of the deposited materials showed the production of tungsten oxide nanowires with or without an outer layer. The nanowires with an outer layer exhibited a coaxial structure with an outer concentric layer of amorphous carbon and an inner layer of tungsten oxide with a thickness and diameter of 20-30 and 10-20 nm, respectively

  17. Deuterium Depth Profile in Neutron-Irradiated Tungsten Exposed to Plasma

    International Nuclear Information System (INIS)

    Shimada, Masashi; Cao, G.; Hatano, Y.; Oda, T.; Oya, Y.; Hara, M.; Calderoni, P.

    2011-01-01

    The effect of radiation damage has been mainly simulated using high-energy ion bombardment. The ions, however, are limited in range to only a few microns into the surface. Hence, some uncertainty remains about the increase of trapping at radiation damage produced by 14 MeV fusion neutrons, which penetrate much farther into the bulk material. With the Japan-US joint research project: Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), the tungsten samples (99.99 % pure from A.L.M.T., 6mm in diameter, 0.2mm in thickness) were irradiated to high flux neutrons at 50 C and to 0.025 dpa in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL). Subsequently, the neutron-irradiated tungsten samples were exposed to a high-flux deuterium plasma (ion flux: 1021-1022 m-2s-1, ion fluence: 1025-1026 m-2) in the Tritium Plasma Experiment (TPE) at the Idaho National Laboratory (INL). First results of deuterium retention in neutron-irradiated tungsten exposed in TPE have been reported previously. This paper presents the latest results in our on-going work of deuterium depth profiling in neutron-irradiated tungsten via nuclear reaction analysis. The experimental data is compared with the result from non neutron-irradiated tungsten, and is analyzed with the Tritium Migration Analysis Program (TMAP) to elucidate the hydrogen isotope behavior such as retention and depth distribution in neutron-irradiated and non neutron-irradiated tungsten.

  18. Development of tungsten coatings for the corrosion protection of alumina-based ceramics

    International Nuclear Information System (INIS)

    Arons, R.M.; Dusek, J.T.; Hafstrom, J.W.

    1979-01-01

    A means of applying tungsten coatings to an alumina based ceramic is described. A slurry of pure tungsten was prepared and applied by brush coating or slip casting on the alumina-3 wt % Yt small crucible. The composite was fired and a very dense ceramic crucible with a crack free tungsten coating was produced

  19. Simulation of residual thermostress in tungsten after repetitive ELM-like heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Pestchanyi, S., E-mail: serguei.pestchanyi@kit.edu [Karlsruhe Institute of Technology, IHM (Germany); Garkusha, I. [Institute of Plasma Physics of the NSC KIPT, Kharkov (Ukraine); Landman, I. [Karlsruhe Institute of Technology, IHM (Germany)

    2011-10-15

    Brittle destruction of tungsten armour under action of edge localised modes of plasma instabilities (ELMs) in ITER is an important issue determining the lifetime of the divertor. Besides, cracking of the armour produces tungsten dust with characteristic size of 1-10 {mu}m flying from the armour surface with velocities up to 10 m/s. Influx of the tungsten dust into the ITER confinement decreases the temperature of the plasma, reduces the thermonuclear gain and even may run the confinement into disruption. This paper describes experiments in QSPA-Kh50 plasma gun and modeling, which has been performed for providing more insight into the physics of tungsten cracking under action of ELMs and for confirmation of the important result on stabilization of the crack development at the tungsten armour surface, predicted in our previous paper - the same authors, 2010. The threshold value of energy density deposition for start of tungsten cracking has been measured as 0.3 MJ/m{sup 2} after 5-10 shots. From analytical considerations three times smaller threshold value has been predicted with increasing number of shots.

  20. Simulation of residual thermostress in tungsten after repetitive ELM-like heat loads

    International Nuclear Information System (INIS)

    Pestchanyi, S.; Garkusha, I.; Landman, I.

    2011-01-01

    Brittle destruction of tungsten armour under action of edge localised modes of plasma instabilities (ELMs) in ITER is an important issue determining the lifetime of the divertor. Besides, cracking of the armour produces tungsten dust with characteristic size of 1-10 μm flying from the armour surface with velocities up to 10 m/s. Influx of the tungsten dust into the ITER confinement decreases the temperature of the plasma, reduces the thermonuclear gain and even may run the confinement into disruption. This paper describes experiments in QSPA-Kh50 plasma gun and modeling, which has been performed for providing more insight into the physics of tungsten cracking under action of ELMs and for confirmation of the important result on stabilization of the crack development at the tungsten armour surface, predicted in our previous paper - the same authors, 2010. The threshold value of energy density deposition for start of tungsten cracking has been measured as 0.3 MJ/m 2 after 5-10 shots. From analytical considerations three times smaller threshold value has been predicted with increasing number of shots.

  1. Growth study and photocatalytic properties of Co-doped tungsten oxide mesocrystals

    International Nuclear Information System (INIS)

    Sun, Shibin; Chang, Xueting; Li, Zhenjiang

    2012-01-01

    Cobalt-doped tungsten oxide mesocrystals with different morphologies have been successfully generated using a solvothermal method with tungsten hexachloride and cobalt chloride salts as precursors. The resulting mesocrystals were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Brunauer–Emmet–Teller analysis of nitrogen sorptometer, and UV–vis diffuse reflectance spectroscopy. The photocatalytic properties of the cobalt-doped tungsten oxide mesocrystals were evaluated on the basis of their ability to degrade methyl orange in an aqueous solution under simulated sunlight irradiation. Results showed that the cobalt doping had obvious effect on the morphologies of the final products, and lenticular and blocky cobalt-doped tungsten oxide mesocrystals could be obtained with 1.0 wt.% and 2.0 wt.% cobalt doping, respectively. The cobalt-doped tungsten oxides exhibited superior photocatalytic activities to that of the undoped tungsten oxide. - Graphical abstract: Schematic illustrations of the growth of the bundled nanowires, lenticular mesocrystals, and blocky mesocrystals. Highlights: ► Co-doped W 18 O 49 mesocrystals were synthesized using a solvothermal method. ► The Co doping has obvious effect on the morphology of the final mesocrystals. ► The Co-doped W 18 O 49 exhibited superior photocatalytic activity to the undoped W 18 O 49 .

  2. Spectroscopic modeling for tungsten EUV spectra

    International Nuclear Information System (INIS)

    Murakami, Izumi; Kato, Daiji; Sakaue, Hiroyuki A.; Suzuki, Chihiro; Morita, Shigeru; Goto, Motoshi; Sasaki, Akira; Nakamura, Nobuyuki; Yamamoto, Norimasa; Koike, Fumihiro

    2014-01-01

    We have constructed an atomic model for tungsten extreme ultraviolet (EUV) spectra to reconstruct characteristic spectral feature of unresolved transition array (UTA) observed at 4-7 nm for tungsten ions. In the tungsten atomic modeling, we considered fine-structure levels with the quantum principal number n up to 6 as the atomic structure and calculated the electron-impact collision cross sections by relativistic distorted-wave method, using HULLAC atomic code. We measured tungsten EUV spectra in Large Helical Device (LHD) and Compact Electron Beam Ion Trap device (CoBIT) and compared them with the model calculation. The model successfully explain series of emission peaks at 1.5-3.5 nm as n=5-4 and 6-4 transitions of W"2"4"+ - W"3"2"+ measured in CoBIT and LHD and the charge state distributions were estimated for LHD plasma. The UTA feature observed at 4-7 nm was also successfully reconstructed with our model. The peak at ∼5 nm is produced mainly by many 4f-4d transition of W"2"2"+ - W"3"5"+ ions, and the second peak at ∼6 nm is produced by 4f-4d transition of W"2"5"+ - W"2"8"+ ions, and 4d-4p inner-shell transitions, 4p"54d"n"+"1 - 4p"64d"n, of W"2"9"+ - W"3"5"+ ions. These 4d-4p inner-shell transitions become strong since we included higher excited states such as 4p"54d"n4f state, which ADAS atomic data set does not include for spectroscopic modeling with fine structure levels. (author)

  3. Hydrogen and helium trapping in tungsten deposition layers formed by RF plasma sputtering

    International Nuclear Information System (INIS)

    Kazunari Katayama; Kazumi Imaoka; Takayuki Okamura; Masabumi Nishikawa

    2006-01-01

    Understanding of tritium behavior in plasma facing materials is an important issue for fusion reactor from viewpoints of fuel control and radiation safety. Tungsten is used as a plasma facing material in the divertor region of ITER. However, investigation of hydrogen isotope behavior in tungsten deposition layer is not sufficient so far. It is also necessary to evaluate an effect of helium on a formation of deposition layer and an accumulation of hydrogen isotopes because helium generated by fusion reaction exists in fusion plasma. In this study, tungsten deposition layers were formed by sputtering method using hydrogen and helium RF plasma. An erosion rate and a deposition rate of tungsten were estimated by weight measurement. Hydrogen and helium retention were investigated by thermal desorption method. Tungsten deposition was performed using a capacitively-coupled RF plasma device equipped with parallel-plate electrodes. A tungsten target was mounted on one electrode which is supplied with RF power at 200 W. Tungsten substrates were mounted on the other electrode which is at ground potential. The plasma discharge was continued for 120 hours where pressure of hydrogen or helium was controlled to be 10 Pa. The amounts of hydrogen and helium released from deposition layers was quantified by a gas chromatograph. The erosion rate of target tungsten under helium plasma was estimated to be 1.8 times larger than that under hydrogen plasma. The deposition rate on tungsten substrate under helium plasma was estimated to be 4.1 times larger than that under hydrogen plasma. Atomic ratio of hydrogen to tungsten in a deposition layer formed by hydrogen plasma was estimated to be 0.17 by heating to 600 o C. From a deposition layer formed by helium plasma, not only helium but also hydrogen was released by heating to 500 o C. Atomic ratios of helium and hydrogen to tungsten were estimated to be 0.080 and 0.075, respectively. The trapped hydrogen is probably impurity hydrogen

  4. Simulating evaporation of surface atoms of thorium-alloyed tungsten in strong electronic fields

    International Nuclear Information System (INIS)

    Bochkanov, P.V.; Mordyuk, V.S.; Ivanov, Yu.I.

    1984-01-01

    By the Monte Carlo method simulating evaporation of surface atoms of thorium - alloyed tungsten in strong electric fields is realized. The strongest evaporation of surface atoms of pure tungsten as compared with thorium-alloyed tungsten in the contentration range of thorium atoms in tungsten matrix (1.5-15%) is shown. The evaporation rate increases with thorium atoms concentration. Determined is in relative units the surface atoms evaporation rate depending on surface temperature and electric field stront

  5. On the rational technology of low-grade tungsten raw material reprocessing

    International Nuclear Information System (INIS)

    Verevkin, G.V.; Kulmukhamedov, G.K.; Perlov, P.M.; Zelikman, A.N.; Ivanov, I.M.; Medvedev, V.V.

    1989-01-01

    The most rational technology for autoclave alkali reprocessing is presented. It lies in selective extraction of tungsten from alkali, containing the excess soda. It is shown that deep purification of tungsten from silicon, phosphorus and arsenic impurities takes place during tungsten extraction out of alkaline media. The important advantage of alkaline extraction technology is the exclusion of acid usage, possibility of soda regeneration and liquidation of acid flows, which solves the ecological problems

  6. Ion cyclotron resonance heating for tungsten control in various JET H-mode scenarios

    Science.gov (United States)

    Goniche, M.; Dumont, R. J.; Bobkov, V.; Buratti, P.; Brezinsek, S.; Challis, C.; Colas, L.; Czarnecka, A.; Drewelow, P.; Fedorczak, N.; Garcia, J.; Giroud, C.; Graham, M.; Graves, J. P.; Hobirk, J.; Jacquet, P.; Lerche, E.; Mantica, P.; Monakhov, I.; Monier-Garbet, P.; Nave, M. F. F.; Noble, C.; Nunes, I.; Pütterich, T.; Rimini, F.; Sertoli, M.; Valisa, M.; Van Eester, D.; Contributors, JET

    2017-05-01

    Ion cyclotron resonance heating (ICRH) in the hydrogen minority scheme provides central ion heating and acts favorably on the core tungsten transport. Full wave modeling shows that, at medium power level (4 MW), after collisional redistribution, the ratio of power transferred to the ions and the electrons vary little with the minority (hydrogen) concentration n H/n e but the high-Z impurity screening provided by the fast ions temperature increases with the concentration. The power radiated by tungsten in the core of the JET discharges has been analyzed on a large database covering the 2013-2014 campaign. In the baseline scenario with moderate plasma current (I p = 2.5 MA) ICRH modifies efficiently tungsten transport to avoid its accumulation in the plasma centre and, when the ICRH power is increased, the tungsten radiation peaking evolves as predicted by the neo-classical theory. At higher current (3-4 MA), tungsten accumulation can be only avoided with 5 MW of ICRH power with high gas injection rate. For discharges in the hybrid scenario, the strong initial peaking of the density leads to strong tungsten accumulation. When this initial density peaking is slightly reduced, with an ICRH power in excess of 4 MW,very low tungsten concentration in the core (˜10-5) is maintained for 3 s. MHD activity plays a key role in tungsten transport and modulation of the tungsten radiation during a sawtooth cycle is correlated to the fishbone activity triggered by the fast ion pressure gradient.

  7. Physical mechanisms related to the degradation of LPCVD tungsten contacts at elevated temperatures

    International Nuclear Information System (INIS)

    Shenai, K.; Lewis, N.; Smith, G.A.; McConnell, M.D.; Burrell, M.

    1990-01-01

    The thermal stability of LPCVD (low pressure chemical vapor deposition) tungsten contacts to n-type silicon is studied at elevated temperatures in excess of 650 degrees C. The process variants studied include silicon doping, tungsten thickness, and post tungsten deposition dielectric stress temperatures. Detailed measurements of Kelvin contact resistance were made at room temperature as well as at elevated temperatures up to 165 degrees C. The tungsten contact resistance degradation at elevated stress temperatures is correlated with worm hole formation in silicon and the formation and diffusion of tungsten silicide. Extensive analytical measurements were used to characterize the material transformation at elevated stress temperatures to understand the physical mechanisms causing contact degradation

  8. TIG (Tungsten Inert Gas) welding

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    After having recalled the Tungsten Inert Gas process principle and the different alternative TIG processes, the author explains the advantages and limits of this process. The applications and recent developments are given. (O.M.)

  9. Synthesis, structure and properties of oxo- and dioxochloride complexes of molybdenum(VI) and tungsten(VI) with 8-oxyquinoline

    International Nuclear Information System (INIS)

    Abramenko, V.L.; Sergienko, V.S.; Egorova, O.A.

    2005-01-01

    Complexes of oxo- and dioxochlorides of molybdenum(VI) and tungsten(VI) with 8-oxyquinoline of molecular and intracomplex type are synthesized and studied by the method of IR spectroscopy. The complexes have octahedral structure. It is proposed that 8-oxyquinoline in molecular complexes is coordinated by central atom through nitrogen atom of heterocycle, but in intracomplex compounds - through heterocyclic nitrogen atom and oxygen atom of deprotonated OH-group. Thermal stability of the complexes is studied [ru

  10. Fabrication of tungsten probe for hard tapping operation in atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Guebum, E-mail: hanguebum@live.co.kr [Department of Physics and Optical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, Indiana 47803 (United States); Department of Mechanical Design and Robot Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743 (Korea, Republic of); Ahn, Hyo-Sok, E-mail: hsahn@seoultech.ac.kr [Manufacturing Systems and Design Engineering Programme, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743 (Korea, Republic of)

    2016-02-15

    We propose a method of producing a tungsten probe with high stiffness for atomic force microscopy (AFM) in order to acquire enhanced phase contrast images and efficiently perform lithography. A tungsten probe with a tip radius between 20 nm and 50 nm was fabricated using electrochemical etching optimized by applying pulse waves at different voltages. The spring constant of the tungsten probe was determined by finite element analysis (FEA), and its applicability as an AFM probe was evaluated by obtaining topography and phase contrast images of a Si wafer sample partly coated with Au. Enhanced hard tapping performance of the tungsten probe compared with a commercial Si probe was confirmed by conducting hard tapping tests at five different oscillation amplitudes on single layer graphene grown by chemical vapor deposition (CVD). To analyze the damaged graphene sample, the test areas were investigated using tip-enhanced Raman spectroscopy (TERS). The test results demonstrate that the tungsten probe with high stiffness was capable of inducing sufficient elastic and plastic deformation to enable obtaining enhanced phase contrast images and performing lithography, respectively. - Highlights: • We propose a method of producing highly stiff tungsten probes for hard tapping AFM. • Spring constant of tungsten probe is determined by finite element method. • Enhanced hard tapping performance is confirmed. • Tip-enhanced Raman spectroscopy is used to identify damage to graphene.

  11. Fabrication of tungsten probe for hard tapping operation in atomic force microscopy

    International Nuclear Information System (INIS)

    Han, Guebum; Ahn, Hyo-Sok

    2016-01-01

    We propose a method of producing a tungsten probe with high stiffness for atomic force microscopy (AFM) in order to acquire enhanced phase contrast images and efficiently perform lithography. A tungsten probe with a tip radius between 20 nm and 50 nm was fabricated using electrochemical etching optimized by applying pulse waves at different voltages. The spring constant of the tungsten probe was determined by finite element analysis (FEA), and its applicability as an AFM probe was evaluated by obtaining topography and phase contrast images of a Si wafer sample partly coated with Au. Enhanced hard tapping performance of the tungsten probe compared with a commercial Si probe was confirmed by conducting hard tapping tests at five different oscillation amplitudes on single layer graphene grown by chemical vapor deposition (CVD). To analyze the damaged graphene sample, the test areas were investigated using tip-enhanced Raman spectroscopy (TERS). The test results demonstrate that the tungsten probe with high stiffness was capable of inducing sufficient elastic and plastic deformation to enable obtaining enhanced phase contrast images and performing lithography, respectively. - Highlights: • We propose a method of producing highly stiff tungsten probes for hard tapping AFM. • Spring constant of tungsten probe is determined by finite element method. • Enhanced hard tapping performance is confirmed. • Tip-enhanced Raman spectroscopy is used to identify damage to graphene.

  12. Ductile tungsten-nickel alloy and method for making same

    Science.gov (United States)

    Snyder, Jr., William B.

    1976-01-01

    The present invention is directed to a ductile, high-density tungsten-nickel alloy which possesses a tensile strength in the range of 100,000 to 140,000 psi and a tensile elongation of 3.1 to 16.5 percent in 1 inch at 25.degree.C. This alloy is prepared by the steps of liquid phase sintering a mixture of tungsten-0.5 to 10.0 weight percent nickel, heat treating the alloy at a temperature above the ordering temperature of approximately 970.degree.C. to stabilize the matrix phase, and thereafter rapidly quenching the alloy in a suitable liquid to maintain the matrix phase in a metastable, face-centered cubic, solid- solution of tungsten in nickel.

  13. Erosion and migration of tungsten employed at the central column heat shield of ASDEX Upgrade

    International Nuclear Information System (INIS)

    Krieger, K.; Gong, X.; Balden, M.; Hildebrandt, D.; Maier, H.; Rohde, V.; Roth, J.; Schneider, W.

    2002-01-01

    In ASDEX Upgrade, tungsten was employed as plasma facing material at the central column heat shield in the plasma main chamber. The campaign averaged tungsten erosion flux was determined by measuring the difference of the W-layer thickness before and after the experimental campaign using ion beam analysis methods. The observed lateral variation and the total amount of eroded tungsten are attributed to erosion by impact of ions from the scrape-off layer plasma. Migration and redeposition of eroded tungsten were investigated by quantitative analysis of deposited tungsten on collector probes and wall samples. The obtained results, as well as the spectroscopically observed low tungsten plasma penetration probability, indicate that a major fraction of the eroded tungsten migrates predominantly through direct transport channels in the outer plasma scrape-off layer without entering the confined plasma

  14. Investigation of composition of the products of thermal processing of tungsten concentrate

    International Nuclear Information System (INIS)

    Sokol, I.V.; Krasnova, T.V.

    1994-01-01

    The composition of the products of carbidization of tungsten concentrate has been investigated. A method ha sbeen developed for chemcial phase analysis of multicomponent powders based on tungsten carbides. The prepared powders have been used for the manufacture of electrode tools based on a tungsten-copper preudoalloy, which can be for dimensional electroerosion treatment of hard alloys and electrodes for electric-spark alloying

  15. Tungsten oxide nanowires grown on graphene oxide sheets as high-performance electrochromic material

    International Nuclear Information System (INIS)

    Chang, Xueting; Sun, Shibin; Dong, Lihua; Hu, Xiong; Yin, Yansheng

    2014-01-01

    Graphical abstract: Electrochromic mechanism of tungsten oxide nanowires-reduced graphene oxide composite. - Highlights: • A novel inorganic-nano-carbon hybrid composite was prepared. • The hybrid composite has sandwich-like structure. • The hybrid composite exhibited high-quality electrohcromic performance. - Abstract: In this work, we report the synthesis of a novel hybrid electrochromic composite through nucleation and growth of ultrathin tungsten oxide nanowires on graphene oxide sheets using a facile solvothermal route. The competition between the growth of tungsten oxide nanowires and the reduction of graphene oxide sheets leads to the formation of sandwich-structured tungsten oxide-reduced graphene oxide composite. Due to the strongly coupled effect between the ultrathin tungsten oxide nanowires and the reduced graphene oxide nanosheets, the novel electrochromic composite exhibited high-quality electrochromic performance with fast color-switching speed, good cyclic stability, and high coloration efficiency. The present tungsten oxide-reduced graphene oxide composite represents a new approach to prepare other inorganic-reduced graphene oxide hybrid materials for electrochemical applications

  16. Controlled tungsten melting and droplet ejection studies in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Krieger, K; Lunt, T; Dux, R; Janzer, A; Müller, H W; Potzel, S; Pütterich, T; Yang, Z

    2011-01-01

    Tungsten rods of 1×1×3 mm 3 were exposed in single H-mode discharges at the outer divertor target plate of ASDEX Upgrade using the divertor manipulator system. Melting of the W rod at a pre-defined time was induced by moving the initially far away outer strike point close to the W-rod position. Visible light emissions of both the W pin and consecutively ejected W droplets were recorded by two fast cameras with crossed viewing cones. The time evolution of the local W source at the pin location was measured by spectroscopic observation of the WI line emission at 400.9 nm and compared to the subsequent increase of tungsten concentration in the confined plasma derived from tungsten vacuum UV line emission. Combining these measurements with the total amount of released tungsten due to the pin melt events and ejected droplets allowed us to derive an estimate of the screening factor for this type of tungsten source. The resulting values of the tungsten divertor retention in the range 10-20 agree with those found in previous studies using a W source of sublimated W(CO) 6 vapour at the same exposure location. Ejected droplets were found to be always accelerated in the general direction of the plasma flow, attributed to friction forces and to rocket forces. Furthermore, the vertically inclined target plates cause the droplets, which are repelled by the target plate surface potential due to their electric charge, to move upwards against gravity due to the centrifugal force component parallel to the target plate.

  17. Thermal response of plasma sprayed tungsten coating to high heat flux

    International Nuclear Information System (INIS)

    Liu, X.; Yang, L.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.; Xu, Z.

    2004-01-01

    In order to investigate the thermal response of tungsten coating on carbon and copper substrates by vacuum plasma spray (VPS) or inert gas plasma spray (IPS), annealing and cyclic heat load experiments of these coatings were conducted. It is indicated that the multi-layered tungsten and rhenium interface of VPS-W/CFC failed to act as a diffusion barrier at elevated temperature and tungsten carbides were developed after 1 h incubation time when annealing temperature was higher than 1600 deg. C. IPS-W/Cu and W/C without an intermediate bonding layer were failed by the detachment of the tungsten coating at 900 and 1200 deg. C annealing for several hours, respectively. Cyclic heat load of electron beam with 35 MW/m 2 and 3-s pulse duration indicated that IPS-W/Cu samples failed with local detachment of the tungsten coating within 200 cycles and IPS-W/C showed local cracks by 300 cycles, but VPS-W/CFC withstood 1000 cycles without visible damages. However, crack creation and propagation in VPS-W/CFC were also observed under higher heat load

  18. Thermal shock behaviour of different tungsten grades under varying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, Oliver Marius

    2012-07-19

    Thermonuclear fusion power plants are a promising option to ensure the energy supply for future generations, but in many fields of research enormous challenges have to be faced. A major step on the way to the prototype fusion reactor DEMO will be ITER which is build in Cadarache, southern France. One of the most critical issues is the field of in-vessel materials and components, in particular the plasma facing materials (PFM). PFMs that will be used in a device like ITER have to withstand severe environmental conditions in terms of steady state and transient thermal loads as well as high particle fluxes such as hydrogen, helium and neutrons. Candidate wall materials are beryllium, tungsten and carbon based materials like CFC (carbon fibre composite). Tungsten is the most promising material for an application in the divertor region with very severe loading conditions and it will most probably also be used as PFM for DEMO. Hence, this work focuses on the investigation of the thermal shock response of different tungsten grades in order to understand the damage mechanisms and to identify material parameters which influence this behaviour under ITER and DEMO relevant operation conditions. Therefore the microstructure and the mechanical and thermal properties of five industrially manufactured tungsten grades were characterised. All five tungsten grades were exposed to transient thermal events with very high power densities of up to 1.27 GWm{sup -2} at varying base temperatures between RT and 600 C in the electron beam device JUDITH 1. The pulse numbers were limited to a maximum of 1000 in order to avoid immoderate workload on the test facility and to have enough time to cover a wide range of loading conditions. The results of this damage mapping enable to define different damage and cracking thresholds for the investigated tungsten grades and to identify certain material parameters which influence the location of these thresholds and the distinction of the induced

  19. Thermal shock behaviour of different tungsten grades under varying conditions

    International Nuclear Information System (INIS)

    Wirtz, Oliver Marius

    2012-01-01

    Thermonuclear fusion power plants are a promising option to ensure the energy supply for future generations, but in many fields of research enormous challenges have to be faced. A major step on the way to the prototype fusion reactor DEMO will be ITER which is build in Cadarache, southern France. One of the most critical issues is the field of in-vessel materials and components, in particular the plasma facing materials (PFM). PFMs that will be used in a device like ITER have to withstand severe environmental conditions in terms of steady state and transient thermal loads as well as high particle fluxes such as hydrogen, helium and neutrons. Candidate wall materials are beryllium, tungsten and carbon based materials like CFC (carbon fibre composite). Tungsten is the most promising material for an application in the divertor region with very severe loading conditions and it will most probably also be used as PFM for DEMO. Hence, this work focuses on the investigation of the thermal shock response of different tungsten grades in order to understand the damage mechanisms and to identify material parameters which influence this behaviour under ITER and DEMO relevant operation conditions. Therefore the microstructure and the mechanical and thermal properties of five industrially manufactured tungsten grades were characterised. All five tungsten grades were exposed to transient thermal events with very high power densities of up to 1.27 GWm -2 at varying base temperatures between RT and 600 C in the electron beam device JUDITH 1. The pulse numbers were limited to a maximum of 1000 in order to avoid immoderate workload on the test facility and to have enough time to cover a wide range of loading conditions. The results of this damage mapping enable to define different damage and cracking thresholds for the investigated tungsten grades and to identify certain material parameters which influence the location of these thresholds and the distinction of the induced damages

  20. Granite-related Yangjiashan tungsten deposit, southern China

    Science.gov (United States)

    Xie, Guiqing; Mao, Jingwen; Li, Wei; Fu, Bin; Zhang, Zhiyuan

    2018-04-01

    The Yangjiashan scheelite-bearing deposit (38,663 metric tons of WO3 with an average ore grade of 0.70% WO3) is hosted in quartz veins in a biotite monzogranite intrusion and surrounding slate in the Xiangzhong Metallogenic Province of southern China. The monzogranite has a zircon SHRIMP U-Pb age of 406.6 ± 2.8 Ma (2σ, n = 20, MSWD = 1.4). Cassiterite coexisting with scheelite yields a weighted mean 206Pb/238U age of 409.8 ± 5.9 Ma (2σ, n = 30, MSWD = 0.20), and molybdenite intergrown with scheelite yields a weighted mean Re-Os age of 404.2 ± 3.2 Ma (2σ, n = 3, MSWD = 0.10). These results suggest that the Yangjiashan tungsten deposit is temporally related to the Devonian intrusion. The δD and calculated δ18OH2O values of quartz intergrown with scheelite range from - 87 to - 68‰, and - 1.2 to 3.4‰, respectively. Sulfides have a narrow range of δ34S values of - 2.9 to - 0.7‰ with an average value of - 1.6‰ (n = 16). The integration of geological, stable isotope, and geochronological data, combined with the quartz-muscovite greisen style of ore, supports a magmatic-hydrothermal origin for the tungsten mineralization. Compared to the more common tungsten skarn, quartz-wolframite vein, and porphyry tungsten deposits, as well as orogenic gold deposits worldwide, the Yangjiashan tungsten deposit is an unusual example of a granite-related, gold-poor, scheelite-bearing quartz vein type of deposit. The calcium needed for the formation of scheelite is derived from the sericitization of calcic plagioclase in the monzogranite and Ca-bearing psammitic country rocks, and the relatively high pH, reduced and Ca-rich mineralizing fluid may be the main reasons for the formation of scheelite rather than wolframite at Yangjiashan.

  1. Comparison of deuterium retention for ion-irradiated and neutron-irradiated tungsten

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Kobayashi, Makoto; Okuno, Kenji; Shimada, Masashi; Calderoni, Pattrick; Oda, Takuji; Hara, Masanori; Hatano, Yuji; Watanabe, Hideo

    2014-01-01

    The behavior of D retentions for Fe 2+ irradiated tungsten with the damage of 0.025-3 dpa was compared with that for neutron irradiated tungsten with 0.025 dpa. The D 2 TDS spectra for Fe 2+ irradiated tungsten consisted of two desorption stages at 450 K and 550 K although that for neutron irradiated tungsten was composed of three stages and addition desorption stage was found around 750 K. The desorption rate of major desorption stage at 550 K increased as the number of dpa by Fe 2+ irradiation increased. In addition, the first desorption stage at 450 K was only found for the damaged samples, indicating that the second stage would be based on intrinsic defects or vacancy produced by Fe 2+ irradiation and the first stage should be the accumulation of D in mono vacancy leading to the lower activation energy, where the dislocation loop and vacancy was produced. The third one was only found for the neutron irradiation, showing the D trapping by void or vacancy cluster and the diffusion effect is also contributed due to high FWHM of TDS spectrum. It can be said that the D 2 TDS spectra for Fe 2+ -irradiated tungsten could not represent that for neutron-irradiated one, showing that the deuterium trapping and desorption mechanism for neutron-irradiated tungsten has a difference from that for ion-irradiated one. (author)

  2. Growth study and photocatalytic properties of Co-doped tungsten oxide mesocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shibin [College of Logistics Engineering, Shanghai Maritime University, Shanghai 200135 (China); College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China); Chang, Xueting, E-mail: xuetingchang@yahoo.cn [College of Logistics Engineering, Shanghai Maritime University, Shanghai 200135 (China); Li, Zhenjiang [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China)

    2012-11-15

    Cobalt-doped tungsten oxide mesocrystals with different morphologies have been successfully generated using a solvothermal method with tungsten hexachloride and cobalt chloride salts as precursors. The resulting mesocrystals were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Brunauer-Emmet-Teller analysis of nitrogen sorptometer, and UV-vis diffuse reflectance spectroscopy. The photocatalytic properties of the cobalt-doped tungsten oxide mesocrystals were evaluated on the basis of their ability to degrade methyl orange in an aqueous solution under simulated sunlight irradiation. Results showed that the cobalt doping had obvious effect on the morphologies of the final products, and lenticular and blocky cobalt-doped tungsten oxide mesocrystals could be obtained with 1.0 wt.% and 2.0 wt.% cobalt doping, respectively. The cobalt-doped tungsten oxides exhibited superior photocatalytic activities to that of the undoped tungsten oxide. - Graphical abstract: Schematic illustrations of the growth of the bundled nanowires, lenticular mesocrystals, and blocky mesocrystals. Highlights: Black-Right-Pointing-Pointer Co-doped W{sub 18}O{sub 49} mesocrystals were synthesized using a solvothermal method. Black-Right-Pointing-Pointer The Co doping has obvious effect on the morphology of the final mesocrystals. Black-Right-Pointing-Pointer The Co-doped W{sub 18}O{sub 49} exhibited superior photocatalytic activity to the undoped W{sub 18}O{sub 49}.

  3. Two component tungsten powder injection molding – An effective mass production process

    International Nuclear Information System (INIS)

    Antusch, Steffen; Commin, Lorelei; Mueller, Marcus; Piotter, Volker; Weingaertner, Tobias

    2014-01-01

    Tungsten and tungsten-alloys are presently considered to be the most promising materials for plasma facing components for future fusion power plants. The Karlsruhe Institute of Technology (KIT) divertor design concept for the future DEMO power plant is based on modular He-cooled finger units and the development of suitable mass production methods for such parts was needed. A time and cost effective near-net-shape forming process with the advantage of shape complexity, material utilization and high final density is Powder Injection Molding (PIM). This process allows also the joining of two different materials e.g. tungsten with a doped tungsten alloy, without brazing. The complete technological process of 2-Component powder injection molding for tungsten materials and its application on producing real DEMO divertor parts, characterization results of the finished parts e.g. microstructure, hardness, density and joining zone quality are discussed in this contribution

  4. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting

    KAUST Repository

    Garcia Esparza, Angel T.

    2012-12-17

    Tungsten carbide exhibits platinum-like behavior, which makes it an interesting potential substitute for noble metals in catalytic applications. Tungsten carbide nanocrystals (≈5 nm) are directly synthesized through the reaction of tungsten precursors with mesoporous graphitic C3N 4 (mpg-C3N4) as the reactive template in a flow of inert gas at high temperatures. Systematic experiments that vary the precursor compositions and temperatures used in the synthesis selectively generate different compositions and structures for the final nanocarbide (W 2C or WC) products. Electrochemical measurements demonstrate that the WC phase with a high surface area exhibits both high activity and stability in hydrogen evolution over a wide pH range. The WC sample also shows excellent hydrogen oxidation activity, whereas its activity in oxygen reduction is poor. These tungsten carbides are successful cocatalysts for overall water splitting and give H2 and O2 in a stoichiometric ratio from H 2O decomposition when supported on a Na-doped SrTiO3 photocatalyst. Herein, we present tungsten carbide (on a small scale) as a promising and durable catalyst substitute for platinum and other scarce noble-metal catalysts in catalytic reaction systems used for renewable energy generation. Platinum replacement: The phase-controlled synthesis of tungsten carbide nanoparticles from the nanoconfinement of a mesoporous graphite C 3N4 (mpg-C3N4) reactive template is shown. The nanomaterials catalyze hydrogen evolution/oxidation reactions, but are inactive in the oxygen reduction reaction. Tungsten carbide is an effective cocatalyst for photocatalytic overall water splitting (see picture). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting

    KAUST Repository

    Garcia Esparza, Angel T.; Cha, Dong Kyu; Ou, Yiwei; Kubota, Jun; Domen, Kazunari; Takanabe, Kazuhiro

    2012-01-01

    Tungsten carbide exhibits platinum-like behavior, which makes it an interesting potential substitute for noble metals in catalytic applications. Tungsten carbide nanocrystals (≈5 nm) are directly synthesized through the reaction of tungsten precursors with mesoporous graphitic C3N 4 (mpg-C3N4) as the reactive template in a flow of inert gas at high temperatures. Systematic experiments that vary the precursor compositions and temperatures used in the synthesis selectively generate different compositions and structures for the final nanocarbide (W 2C or WC) products. Electrochemical measurements demonstrate that the WC phase with a high surface area exhibits both high activity and stability in hydrogen evolution over a wide pH range. The WC sample also shows excellent hydrogen oxidation activity, whereas its activity in oxygen reduction is poor. These tungsten carbides are successful cocatalysts for overall water splitting and give H2 and O2 in a stoichiometric ratio from H 2O decomposition when supported on a Na-doped SrTiO3 photocatalyst. Herein, we present tungsten carbide (on a small scale) as a promising and durable catalyst substitute for platinum and other scarce noble-metal catalysts in catalytic reaction systems used for renewable energy generation. Platinum replacement: The phase-controlled synthesis of tungsten carbide nanoparticles from the nanoconfinement of a mesoporous graphite C 3N4 (mpg-C3N4) reactive template is shown. The nanomaterials catalyze hydrogen evolution/oxidation reactions, but are inactive in the oxygen reduction reaction. Tungsten carbide is an effective cocatalyst for photocatalytic overall water splitting (see picture). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Influence of recrystallization on thermal shock resistance of various tungsten grades

    International Nuclear Information System (INIS)

    Uytdenhouwen, I.; Decreton, M.; Hirai, T.; Linke, J.; Pintsuk, G.; Oost, G. van

    2007-01-01

    Thermal shock resistance of various tungsten grades (different manufacturing technologies and heat treatments) was examined under plasma disruption conditions, especially in the cracking regime, i.e. below the melting threshold. The tests have been simulated with the electron beam test facility JUDITH. The comparison of the thermal shock resistance showed that sintered tungsten appeared to be better than the deformed tungsten material and clear degradation after recrystallization was found. Damage processes linked to the mechanical properties of W are discussed

  7. Determination of tungsten and tin ions after preconcentration by flotation

    International Nuclear Information System (INIS)

    Dietze, U.; Kunze, S.

    1990-01-01

    A highly sensitive and selective combined method of flotation followed by spectrophotometry/d.c. polarography for the determination of tungsten and tin ions in acid and alkaline waste waters and hydrometallurgical solutions is presented here. Both kinds of ions are coprecipitated in the analyte solution with zirconium hydroxide after addition of ZrOCl 2 solution and ammonia. Afterwards, the collector precipitate is separated from the aqueous phase and preconcentrated by flotation for which sodium oleate and a frother are added. The precipitate is dissolved in a small amount of acid, with the organic reagents being destroyed by oxidation. The enrichment factor of the proposed technique is 100, with variations possible. Recovery is 94 % for tungsten and 99 % for tin. Spectrophotometry of the thiocyanate complex and d.c. polarography are applied as determination techniques for tungsten and tin, respectively. Detection limits attainable by this technique are 6 ng.ml -1 for tungsten and 5 ng.ml -1 for tin for the initial sample. (Authors)

  8. Tungsten and carbon surface change under high dose plasma exposure

    International Nuclear Information System (INIS)

    Martynenko, Y.V.; Khripunov, B.I.; Petrov, V.B.

    2009-01-01

    Study of surface composition dynamics has been made on the LENTA linear plasma simulator. Experiments have been made on tungsten and carbon materials subjected to steady-state plasma exposure. The achieved ion doses on the surface were 10 21 ion cm -2 . WL 10 tungsten containing 1% of La2O3 oxide and titanium-doped graphite RG-T were studied. The following experimental conditions were varied in these experiments: energy of ions, surface temperature, working gas. Irradiations of tungsten WL 10 were executed in deuterium plasma at low ion energies (about 20 eV) and at 200 eV for temperatures below 340 K. Graphite RG-T was exposed at 1300 K. Elevated surface temperature (about 1050K) was also characteristic of experiments on tungsten sample under nitrogen plasma impact (simulated inter-ELMs condition). Surface microstructure modification has been observed and surface composition changes were found on the materials showing influence of high dose plasma irradiations on element redistribution in the near surface layers. (author)

  9. Study of mechanoactivation of tungsten-molybdenum containing raw material in gas-jet mill

    International Nuclear Information System (INIS)

    Agnokov, T.Sh.; Gorobets, L.Zh.; Martynenko, V.P.; Fedorov, Yu.P.; Krakhmaleva, M.T.; Sokolova, L.A.

    1988-01-01

    Investigation is aimed at intensifying autoclave-soda leaching of tungsten-molybdenum-containing raw material. Connection of reactivity and physicochemical properties of crushed tungsten-molybdenum-containing products under different gas-jet crushing parameters is investigated. Optimal technological indices of hydrometallurgical reprocessing of tungsten-molybdenum-containing raw materials and products processed by gas-jet technique are given. The results obtained point out to perspectiveness of applying gas-jet technique of thermomechanical processing for intensifying and increasing the quality of tungsten- and molybdenum-containing raw materials and products of hydrometallurgical production

  10. Charge-density-wave instabilities expected in monophosphate tungsten bronzes

    International Nuclear Information System (INIS)

    Canadell, E.; Whangbo, M.

    1991-01-01

    On the basis of tight-binding band calculations, we examined the electronic structures of the tungsten oxide layers found in the monophosphate tungsten bronze (MPTB) phases. The Fermi surfaces of these MPTB phases consist of five well-nested one- and two-dimensional pieces. We calculated the nesting vectors of these Fermi surfaces and discussed the expected charge-density-wave instabilities

  11. Ductile tungsten-nickel-alloy and method for manufacturing same

    Science.gov (United States)

    Ludwig, Robert L.

    1978-01-01

    The tensile elongation of a tungsten-nickel-iron alloy containing essentially 95 weight percent reprocessed tungsten, 3.5 weight percent nickel, and 1.5 weight percent iron is increased from a value of less than about 1 percent up to about 23 percent by the addition of less than 0.5 weight percent of a reactive metal consisting of niobium and zirconium.

  12. Thermal-treatment effect on the photoluminescence and gas-sensing properties of tungsten oxide nanowires

    International Nuclear Information System (INIS)

    Sun, Shibin; Chang, Xueting; Li, Zhenjiang

    2010-01-01

    Single-crystalline non-stoichiometric tungsten oxide nanowires were initially prepared using a simple solvothermal method. High resolution transmission electron microscopy (HRTEM) investigations indicate that the tungsten oxide nanowires exhibit various crystal defects, including stacking faults, dislocations, and vacancies. A possible defect-induced mechanism was proposed to account for the temperature-dependent morphological evolution of the tungsten oxide nanowires under thermal processing. Due to the high specific surface areas and non-stoichiometric crystal structure, the original tungsten oxide nanowires were highly sensitive to ppm level ethanol at room temperature. Thermal treatment under dry air condition was found to deteriorate the selectivity of room-temperature tungsten oxide sensors, and 400 o C may be considered as the top temperature limit in sensor applications for the solvothermally-prepared nanowires. The photoluminescence (PL) characteristics of tungsten oxide nanowires were also strongly influenced by thermal treatment.

  13. Thermal-treatment effect on the photoluminescence and gas-sensing properties of tungsten oxide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shibin [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong (China); Chang, Xueting [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, Shandong (China); Li, Zhenjiang, E-mail: zjli126@126.com [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong (China)

    2010-09-15

    Single-crystalline non-stoichiometric tungsten oxide nanowires were initially prepared using a simple solvothermal method. High resolution transmission electron microscopy (HRTEM) investigations indicate that the tungsten oxide nanowires exhibit various crystal defects, including stacking faults, dislocations, and vacancies. A possible defect-induced mechanism was proposed to account for the temperature-dependent morphological evolution of the tungsten oxide nanowires under thermal processing. Due to the high specific surface areas and non-stoichiometric crystal structure, the original tungsten oxide nanowires were highly sensitive to ppm level ethanol at room temperature. Thermal treatment under dry air condition was found to deteriorate the selectivity of room-temperature tungsten oxide sensors, and 400 {sup o}C may be considered as the top temperature limit in sensor applications for the solvothermally-prepared nanowires. The photoluminescence (PL) characteristics of tungsten oxide nanowires were also strongly influenced by thermal treatment.

  14. Information extraction from FN plots of tungsten microemitters.

    Science.gov (United States)

    Mussa, Khalil O; Mousa, Marwan S; Fischer, Andreas

    2013-09-01

    Tungsten based microemitter tips have been prepared both clean and coated with dielectric materials. For clean tungsten tips, apex radii have been varied ranging from 25 to 500 nm. These tips were manufactured by electrochemical etching a 0.1 mm diameter high purity (99.95%) tungsten wire at the meniscus of two molar NaOH solution. Composite micro-emitters considered here are consisting of a tungsten core coated with different dielectric materials-such as magnesium oxide (MgO), sodium hydroxide (NaOH), tetracyanoethylene (TCNE), and zinc oxide (ZnO). It is worthwhile noting here, that the rather unconventional NaOH coating has shown several interesting properties. Various properties of these emitters were measured including current-voltage (IV) characteristics and the physical shape of the tips. A conventional field emission microscope (FEM) with a tip (cathode)-screen (anode) separation standardized at 10 mm was used to electrically characterize the electron emitters. The system was evacuated down to a base pressure of ∼10(-8) mbar when baked at up to ∼180 °C overnight. This allowed measurements of typical field electron emission (FE) characteristics, namely the IV characteristics and the emission images on a conductive phosphorus screen (the anode). Mechanical characterization has been performed through a FEI scanning electron microscope (SEM). Within this work, the mentioned experimental results are connected to the theory for analyzing Fowler-Nordheim (FN) plots. We compared and evaluated the data extracted from clean tungsten tips of different radii and determined deviations between the results of different extraction methods applied. In particular, we derived the apex radii of several clean and coated tungsten tips by both SEM imaging and analyzing FN plots. The aim of this analysis is to support the ongoing discussion on recently developed improvements of the theory for analyzing FN plots related to metal field electron emitters, which in particular

  15. Mechanism of vacancy formation induced by hydrogen in tungsten

    Directory of Open Access Journals (Sweden)

    Yi-Nan Liu

    2013-12-01

    Full Text Available We report a hydrogen induced vacancy formation mechanism in tungsten based on classical molecular dynamics simulations. We demonstrate the vacancy formation in tungsten due to the presence of hydrogen associated directly with a stable hexagonal self-interstitial cluster as well as a linear crowdion. The stability of different self-interstitial structures has been further studied and it is particularly shown that hydrogen plays a crucial role in determining the configuration of SIAs, in which the hexagonal cluster structure is preferred. Energetic analysis has been carried out to prove that the formation of SIA clusters facilitates the formation of vacancies. Such a mechanism contributes to the understanding of the early stage of the hydrogen blistering in tungsten under a fusion reactor environment.

  16. Materials Survey: Tungsten

    Science.gov (United States)

    1956-12-01

    Columbia, from which tungsten production is planned approximately 60 miles east fromSkagway, were estimated at the end of 1951 to be Alaska. Reserves...of the principal mines inimportant producers. 1952 halted expansion programs planned by Production in Argentina reached a maxi- Patiffo Mines and...government.Concentrates International Mining Co. (W. R. Grace & from small producers are collected and Co.), La Paz; Chojlla Mine; type ore-- marketed by Banco Minero

  17. Concentration dependent hydrogen diffusion in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Ahlgren, T., E-mail: tommy.ahlgren@helsinki.fi; Bukonte, L.

    2016-10-15

    The diffusion of hydrogen in tungsten is studied as a function of temperature, hydrogen concentration and pressure using Molecular Dynamics technique. A new analysis method to determine diffusion coefficients that accounts for the random oscillation of atoms around the equilibrium position is presented. The results indicate that the hydrogen migration barrier of 0.25 eV should be used instead of the presently recommended value of 0.39 eV. This conclusion is supported by both experiments and density functional theory calculations. Moreover, the migration volume at the saddle point for H in W is found to be positive: ΔV{sub m} ≈ 0.488 Å{sup 3}, leading to a decrease in the diffusivity at high pressures. At high H concentrations, a dramatic reduction in the diffusion coefficient is observed, due to site blocking and the repulsive H-H interaction. The results of this study indicates that high flux hydrogen irradiation leads to much higher H concentrations in tungsten than expected. - Highlights: • The recommended value of 0.39 eV for the H in W migration barrier should be changed to 0.25 eV. • The random oscillation of atoms around the equilibrium position can be dealt with in diffusion simulations. • Hydrogen diffusion in tungsten is highly concentration dependent.

  18. Effect of tungsten on tensile properties and flow behaviour of RAFM steel

    Energy Technology Data Exchange (ETDEWEB)

    Vanaja, J., E-mail: jvanaja@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Laha, K.; Nandagopal, M. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sam, Shiju [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India); Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India)

    2013-02-15

    Effect of tungsten in the range of 1–2 wt.% on tensile properties and flow behaviour of 9Cr–W–Ta–V Reduced Activation Ferritic–Martensitic (RAFM) steel has been investigated. The tungsten in the investigated range was found to have only minor effect on the tensile properties of the steel over the temperature range of 300–873 K and at a strain rate of 3 × 10{sup −3} s{sup −1}. The tensile flow behaviour of the RAFM steels was adequately described by the Voce’s constitutive equation. The tensile strength of the steels were predicted well from the parameters of the Voce’s constitutive equation. The Voce’s strain hardening parameter ‘n{sub v}’ was found to be quite sensitive to the tungsten content and predicted the onset of dislocation climbing process at relatively higher testing temperature with the increase in tungsten content. The equivalence between tensile and creep deformations and the influence of tungsten have been discussed.

  19. Effect of tungsten on tensile properties and flow behaviour of RAFM steel

    International Nuclear Information System (INIS)

    Vanaja, J.; Laha, K.; Nandagopal, M.; Sam, Shiju; Mathew, M.D.; Jayakumar, T.; Rajendra Kumar, E.

    2013-01-01

    Effect of tungsten in the range of 1–2 wt.% on tensile properties and flow behaviour of 9Cr–W–Ta–V Reduced Activation Ferritic–Martensitic (RAFM) steel has been investigated. The tungsten in the investigated range was found to have only minor effect on the tensile properties of the steel over the temperature range of 300–873 K and at a strain rate of 3 × 10 −3 s −1 . The tensile flow behaviour of the RAFM steels was adequately described by the Voce’s constitutive equation. The tensile strength of the steels were predicted well from the parameters of the Voce’s constitutive equation. The Voce’s strain hardening parameter ‘n v ’ was found to be quite sensitive to the tungsten content and predicted the onset of dislocation climbing process at relatively higher testing temperature with the increase in tungsten content. The equivalence between tensile and creep deformations and the influence of tungsten have been discussed

  20. Design of characteristic parameters for controlling tungsten tip profile during electrochemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Le Duy Cuong; Duong, Thanh Hung; Kim, Huyn Chul [Inje University, Gimhae (Korea, Republic of)

    2014-05-15

    Micro/nano-scale tungsten tips fabricated by electrochemical etching have many diverse industrial applications. The characteristic parameters of the tungsten tip profile include apex radius, taper angle, and aspect ratio. These parameters are governed by many factors including applied voltage, concentration of the electrolyte (potassium hydroxide) solution, and diameter of the inner gold ring. However, a systematic investigation with the aim of determining the best conditions for fabricating micro/nano-scale tips with desired profiles has not been carried out yet. This study is aimed at obtaining controllable tungsten tip -particularly with respect to the radius of curvature and aspect ratio of tips (taper angle)-by altering the experimental conditions. A series of experiments were executed and the results were aggregated and analyzed using response surface methodology in order to identify the relationships between the tungsten tip characteristics and input parameters. The method proposed herein would prove to be suitable for a variety of applications in industries that require tungsten tips with a specific profile.

  1. Numerical simulation of CFC and tungsten target erosion in ITER-FEAT divertor

    International Nuclear Information System (INIS)

    Filatov, V.

    2003-01-01

    Physical, chemical and thermal surface erosion for water-cooled target armoured by CFC and tungsten is simulated by numerical code ERosion OF Immolated Layer (EROFIL-1). Some calculation results on the CFC and tungsten vertical target (VT) erosion in the ITER-FEAT divertor are presented for various operation modes (normal operations, slow transients, ELMs and disruptions). The main erosion mechanisms of CFC armour are the chemical and sublimation ones. Maximum erosion depth per 3000 cycles during normal operations and slow transients is of 2.7 mm at H phase and of 13.5 mm at DT phase. An evaluation of VT tungsten armour erosion per 3000 cycles of H and DT operations shows that no physical or chemical erosion as well as no melting are expected for tungsten armour at normal operations and slow transients. The tungsten armour melting at 2x10 6 ELMs is not allowable. The 300 disruptions are not dangerous in view of evaporation

  2. Design of characteristic parameters for controlling tungsten tip profile during electrochemical etching

    International Nuclear Information System (INIS)

    Le Duy Cuong; Duong, Thanh Hung; Kim, Huyn Chul

    2014-01-01

    Micro/nano-scale tungsten tips fabricated by electrochemical etching have many diverse industrial applications. The characteristic parameters of the tungsten tip profile include apex radius, taper angle, and aspect ratio. These parameters are governed by many factors including applied voltage, concentration of the electrolyte (potassium hydroxide) solution, and diameter of the inner gold ring. However, a systematic investigation with the aim of determining the best conditions for fabricating micro/nano-scale tips with desired profiles has not been carried out yet. This study is aimed at obtaining controllable tungsten tip -particularly with respect to the radius of curvature and aspect ratio of tips (taper angle)-by altering the experimental conditions. A series of experiments were executed and the results were aggregated and analyzed using response surface methodology in order to identify the relationships between the tungsten tip characteristics and input parameters. The method proposed herein would prove to be suitable for a variety of applications in industries that require tungsten tips with a specific profile

  3. Recovery of Tungsten Surface with Fiber-Form Nanostructure by Plasmas Exposures

    International Nuclear Information System (INIS)

    Miyamoto, Takanori; Takamura, Shuichi; Kurishita, Hiroaki

    2013-01-01

    One of the serious concerns for tungsten materials in fusion devices is the radiation defects caused by helium plasma irradiation since helium is a fusion product. The fiber-formed nanostructure is thought to have a possible weakness against the plasma heat flux on the plasma-facing component and also may destroy the reflectivity of optical mirrors. In this paper an interesting method for the recovery of such tungsten surfaces is shown. The recovery process depends on the grade and manufacturing process of tungsten materials. (fusion engineering)

  4. A fracture mechanics study of tungsten failure under high heat flux loads

    International Nuclear Information System (INIS)

    Li, Muyuan

    2015-01-01

    The performance of fusion devices is highly dependent on plasma-facing components. Tungsten is the most promising candidate material for armors in plasma-facing components in ITER and DEMO. However, the brittleness of tungsten below the ductile-to-brittle transition temperature is very critical to the reliability of plasma-facing components. In this work, thermo-mechanical and fracture behaviors of tungsten are predicted numerically under fusion relevant thermal loadings.

  5. Electronic Structure Control of Tungsten Oxide Activated by Ni for Ultrahigh-Performance Supercapacitors.

    Science.gov (United States)

    Meng, Tian; Kou, Zongkui; Amiinu, Ibrahim Saana; Hong, Xufeng; Li, Qingwei; Tang, Yongfu; Zhao, Yufeng; Liu, Shaojun; Mai, Liqiang; Mu, Shichun

    2018-04-17

    Tuning the electron structure is of vital importance for designing high active electrode materials. Here, for boosting the capacitive performance of tungsten oxide, an atomic scale engineering approach to optimize the electronic structure of tungsten oxide by Ni doping is reported. Density functional theory calculations disclose that through Ni doping, the density of state at Fermi level for tungsten oxide can be enhanced, thus promoting its electron transfer. When used as electrode of supercapacitors, the obtained Ni-doped tungsten oxide with 4.21 at% Ni exhibits an ultrahigh mass-specific capacitance of 557 F g -1 at the current density of 1 A g -1 and preferable durability in a long-term cycle test. To the best of knowledge, this is the highest supercapacitor performance reported so far in tungsten oxide and its composites. The present strategy demonstrates the validity of the electronic structure control in tungsten oxide via introducing Ni atoms for pseudocapacitors, which can be extended to other related fields as well. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Preparation and characterization of tungsten-loaded titanium dioxide photocatalyst for enhanced dye degradation

    International Nuclear Information System (INIS)

    Saepurahman; Abdullah, M.A.; Chong, F.K.

    2010-01-01

    Tungsten-loaded TiO 2 photocatalyst has been successfully prepared and characterized. TEM analysis showed that the photocatalysts were nanosize with the tungsten species forming layers of coverage on the surface of TiO 2 , but not in clustered form. This was confirmed by XRD and FT-Raman analyses where tungsten species were well dispersed at lower loading ( 3 at higher loadings (>12 mol%). In addition, loading with tungsten could stabilize the anatase phase from transforming into inactive rutile phase and did not shift the optical absorption to the visible region as shown by DRUV-vis analysis. PZC value of TiO 2 was found at 6.4, but the presence of tungsten at 6.5 mol% WO 3 , decreased the PZC value to 3. Tungsten-loaded TiO 2 was superior to unmodified TiO 2 with 2-fold increase in degradation rate of methylene blue, and equally effective for the degradation of different class of dyes such as methyl violet and methyl orange at 1 mol% WO 3 loading.

  7. Synthesis and optical properties of Au decorated colloidal tungsten oxide nanoparticles

    International Nuclear Information System (INIS)

    Tahmasebi, Nemat; Mahdavi, Seyed Mohammad

    2015-01-01

    Highlights: • Tungsten oxide nanoparticles were prepared by pulsed laser ablation (PLA). • A very fine metallic Au particles or coating are decorated on the surface of tungsten oxide nanoparticles. • UV–Vis spectroscopy shows an absorption peak at ∼530 nm which is due to SPR effect of gold. • After exposing to hydrogen gas, Au/WO_3 colloidal nanoparticles show excellent gasochromic coloring. - Abstract: In this study, colloidal tungsten oxide nanoparticles were fabricated by pulsed laser ablation of tungsten target using the first harmonic of a Nd:YAG laser (1064 nm) in deionized water. After ablation, a 0.33 g/lit HAuCl_4 aqueous solution was added into as-prepared colloidal nanoparticles. In this process, Au"3"+ ions were reduced to decorate gold metallic state (Au"0) onto colloidal tungsten oxide nanoparticles surface. The morphology and chemical composition of the synthesized nanoparticles were studied by AFM, XRD, TEM and XPS techniques. UV–Vis analysis reveals a distinct absorption peak at ∼530 nm. This peak can be attributed to the surface plasmon resonance (SPR) of Au and confirms formation of gold state. Moreover, X-ray photoelectron spectroscopy reveals that Au ions’ reduction happens after adding HAuCl_4 solution into as-prepared colloidal tungsten oxide nanoparticles. Transmission electron microscope shows that an Au shell has been decorated onto colloidal WO_3 nanoparticles. Noble metal decorated tungsten oxide nanostructure could be an excellent candidate for photocatalysis, gas sensing and gasochromic applications. Finally, the gasochromic behavior of the synthesized samples was investigated by H_2 and O_2 gases bubbling into the produced colloidal Au/WO_3 nanoparticles. Synthesized colloidal nanoparticles show excellent coloration contrast (∼80%) through NIR spectra.

  8. OPAL Silicon Tungsten Luminometer

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. The Silicon Tungsten Luminometer was part of OPAL's calorimeter which was used to measure the energy of particles. Most particles end their journey in calorimeters. These detectors measure the energy deposited when particles are slowed down and stopped.

  9. Tritium retention properties of tungsten, graphite and co-deposited carbon film

    International Nuclear Information System (INIS)

    Nobuta, Y.; Hatano, Y.; Matsuyama, M.; Abe, S.; Akamaru, S.; Yamauchi, Y.; Hino, T.; Suzuki, S.; Akiba, M.

    2014-01-01

    DT + ion irradiation was performed on polycrystalline tungsten, graphite and carbon film and both the amount of retained tritium and the reduction of retained tritium after preservation in vacuum were investigated using an IP technique and BIXS. In addition, the relationship between the retention properties of tritium and the microstructure of graphite and carbon film were studied with Raman spectroscopy. The amount of retained tritium in tungsten was smaller than in both graphite and carbon film. After 1 keV of DT + irradiation, graphite showed no reduction of the amount of retained tritium after six months preservation while that of carbon film decreased by approximately 20% after 40 days preservation. It was suggested that this difference might be associated with differences in the microstructure between graphite and carbon film. In tungsten, the amount of retained tritium decreased to approximately half after 18 days preservation. As the incident energy of implanted tritium to tungsten increased, the decrease in tritium retention during preservation became slower. Tungsten's properties of releasing tritium while preserved in vacuum would be a useful tool for the reduction/removal of retained tritium

  10. Hydrogen gas driven permeation through tungsten deposition layer formed by hydrogen plasma sputtering

    International Nuclear Information System (INIS)

    Uehara, Keiichiro; Katayama, Kazunari; Date, Hiroyuki; Fukada, Satoshi

    2015-01-01

    Highlights: • H permeation tests for W layer formed by H plasma sputtering are performed. • H permeation flux through W layer is larger than that through W bulk. • H diffusivity in W layer is smaller than that in W bulk. • The equilibrium H concentration in W layer is larger than that in W bulk. - Abstract: It is important to evaluate the influence of deposition layers formed on plasma facing wall on tritium permeation and tritium retention in the vessel of a fusion reactor from a viewpoint of safety. In this work, tungsten deposition layers having different thickness and porosity were formed on circular nickel plates by hydrogen RF plasma sputtering. Hydrogen permeation experiment was carried out at the temperature range from 250 °C to 500 °C and at hydrogen pressure range from 1013 Pa to 101,300 Pa. The hydrogen permeation flux through the nickel plate with tungsten deposition layer was significantly smaller than that through a bare nickel plate. This indicates that a rate-controlling step in hydrogen permeation was not permeation through the nickel plate but permeation though the deposition layer. The pressure dependence on the permeation flux differed by temperature. Hydrogen permeation flux through tungsten deposition layer is larger than that through tungsten bulk. From analysis of the permeation curves, it was indicated that hydrogen diffusivity in tungsten deposition layer is smaller than that in tungsten bulk and the equilibrium hydrogen concentration in tungsten deposition layer is enormously larger than that in tungsten bulk at same hydrogen pressure.

  11. Construction of Tungsten Halogen, Pulsed LED, and Combined Tungsten Halogen-LED Solar Simulators for Solar Cell I-V Characterization and Electrical Parameters Determination

    Directory of Open Access Journals (Sweden)

    Anon Namin

    2012-01-01

    Full Text Available I-V characterization of solar cells is generally done under natural sunlight or solar simulators operating in either a continuous mode or a pulse mode. Simulators are classified on three features of irradiance, namely, spectral match with respect to air mass 1.5, spatial uniformity, and temporal stability. Commercial solar simulators use Xenon lamps and halogen lamps, whereas LED-based solar simulators are being developed. In this work, we build and test seven simulators for solar cell characterization, namely, one tungsten halogen simulator, four monochromatic (red, green, blue, and white LED simulators, one multicolor LED simulator, and one tungsten halogen-blue LED simulator. The seven simulators provide testing at nonstandard test condition. High irradiance from simulators is obtained by employing elevated supply voltage to tungsten halogen lamps and high pulsing voltages to LEDs. This new approach leads to higher irradiance not previously obtained from tungsten halogen lamps and LEDs. From I-V curves, electrical parameters of solar cell are made and corrected based on methods recommended in the IEC 60891 Standards. Corrected values obtained from non-STC measurements are in good agreement with those obtained from Class AAA solar simulator.

  12. Hydrogen Release From 800-MeV Proton-Irradiated Tungsten

    International Nuclear Information System (INIS)

    Oliver, Brian M.; Venhaus, Thomas J.; Causey, Rion A.; Garner, Francis A.; Maloy, Stuart A.

    2002-01-01

    Tungsten irradiated in spallation neutron sources such as those proposed for the Accelerator Production of Tritium (APT) project, or in proposed fusion reactors, will contain large quantities of generated helium and hydrogen gas. In the APT, spallation neutrons would be generated by the interaction of high energy (∼1 GeV) protons with solid tungsten rods or cylinders. In fusion reactors, tungsten used in a tokamak diverter will contain hydrogen, as well as deuterium and tritium diffusing in from the plasma-facing surface. The release kinetics of these gases during various off-normal scenarios involving loss of coolant and afterheat-induced rises in temperature is of particular interest for both applications. To determine the release kinetics of hydrogen from tungsten, tungsten rods irradiated with 800 MeV protons in the Los Alamos Neutron Science Center (LANCE) to high exposures as part of the APT project have been examined. Hydrogen evolution from the tungsten was measured using a dedicated mass spectrometer system by subjecting the specimens to an essentially linear temperature ramp from ∼323 K to ∼1473 K. Release profiles are compared with predictions obtained using the Tritium Migration Analysis Program (TMAP4). Input parameters for the modeling, consisting of diffusivity, recombination rate coefficient, and trapping, are discussed. The measurements show that for high proton doses, the majority of the hydrogen is released gradually, starting at about 900 K and reaching a maximum at about 1400 K, where it drops fairly rapidly. Comparisons with TMAP show reasonable agreement at high proton dose using a trap value of 1.4 eV and a trap density of 3%. There is also a small release fraction occurring at ∼600 K which predominates at lower proton doses, and which is relatively independent of dose. This lower-temperature release is predicted by TMAP if no traps are assumed, suggesting that this release may represent an adsorbed surface component

  13. Tungsten versus depleted uranium for armour-piercing penetrators

    International Nuclear Information System (INIS)

    Johnson, P.K.

    1983-01-01

    Tungsten alloys have been widely used in the production of armour-piercing (AP) penetrators for defense purposes for the past 40 years. In recent years, however, depleted uranium (DU) has also been utilised for this application. Both materials exhibit high density and strength, two properties necessary for kinetic-energy projectiles to penetrate armour on tanks and other vehicles. The facts, however, support the view that tungsten can and should be utilised as the primary material for most armour-defeating ordnance applications. (author)

  14. Titrimetric determination of tungsten in its alloys with tantalum

    International Nuclear Information System (INIS)

    Elinson, S.V.; Nezhnova, T.I.

    1982-01-01

    Titrimetric method of tungsten determination in tantalum base alloys has been developed. The method permits to determine 5-10% tungsten in the alloys with relative standard deviation of 0.013. The conditions are created by application of precipitation from homogeieous solutions or by the method of appearing reagents at pH values, which condition gradual hydrolytic precipitation of tantalum, and sodium tungstate remains in the solution and is not sorbed on tantalum hydroxide. After separation of tantalum oxide tungsten is precipitated in the form of lead tungstate by the excess of ti trated solution of lead salt during boiling and then at the background of lead tungstate precipitate without its separation lead excess is titrated by EDTA in the presence of mixed indicator-4-(2-pyridylazo)resocinol and xylenole orange in acetate buffer solution

  15. Phase II Tungsten Fate-and Transport Study for Camp Edwards

    Science.gov (United States)

    2010-02-01

    cubic meters degrees Fahrenheit (oF-32)/1.8 degrees Celsius (oC) feet 0.3048 meters gallons (U.S. liquid) 3.785412 E-03 liters inches 0.0254 meters...1 Desorption/dissolution of tungsten 451 39 8.1 2 Sorption of sodium tungstate and desorption/dissolution of tungsten and sodium tungstate 124

  16. Pitfalls of tungsten multileaf collimator in proton beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Moskvin, Vadim; Cheng, Chee-Wai; Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States) and Indiana University Health Proton Therapy Center (Formerly Midwest Proton Radiotherapy Institute), Bloomington, Indiana 47408 (United States)

    2011-12-15

    Purpose: Particle beam therapy is associated with significant startup and operational cost. Multileaf collimator (MLC) provides an attractive option to improve the efficiency and reduce the treatment cost. A direct transfer of the MLC technology from external beam radiation therapy is intuitively straightforward to proton therapy. However, activation, neutron production, and the associated secondary cancer risk in proton beam should be an important consideration which is evaluated. Methods: Monte Carlo simulation with FLUKA particle transport code was applied in this study for a number of treatment models. The authors have performed a detailed study of the neutron generation, ambient dose equivalent [H*(10)], and activation of a typical tungsten MLC and compared with those obtained from a brass aperture used in a typical proton therapy system. Brass aperture and tungsten MLC were modeled by absorber blocks in this study, representing worst-case scenario of a fully closed collimator. Results: With a tungsten MLC, the secondary neutron dose to the patient is at least 1.5 times higher than that from a brass aperture. The H*(10) from a tungsten MLC at 10 cm downstream is about 22.3 mSv/Gy delivered to water phantom by noncollimated 200 MeV beam of 20 cm diameter compared to 14 mSv/Gy for the brass aperture. For a 30-fraction treatment course, the activity per unit volume in brass aperture reaches 5.3 x 10{sup 4} Bq cm{sup -3} at the end of the last treatment. The activity in brass decreases by a factor of 380 after 24 h, additional 6.2 times after 40 days of cooling, and is reduced to background level after 1 yr. Initial activity in tungsten after 30 days of treating 30 patients per day is about 3.4 times higher than in brass that decreases only by a factor of 2 after 40 days and accumulates to 1.2 x 10{sup 6} Bq cm{sup -3} after a full year of operation. The daily utilization of the MLC leads to buildup of activity with time. The overall activity continues to increase

  17. Process for reclaiming tungsten from a hazardous waste

    International Nuclear Information System (INIS)

    Scheithauer, R.A.; MacInnis, M.B.; Miller, M.J.; Vanderpool, C.D.

    1984-01-01

    A process is disclosed wherein tungsten is recovered from hazardous waste material containing said tungsten, arsenic, and other impurities which can consist of magnesium, phosphorus, and silicon and the resulting waste is treated to render it nonhazardous according to EPA standards for arsenic. Said process involves digesting said hazardous waste material in an aqueous solution of an alkali metal hydroxide, adjusting the pH of the resulting solution to about 11.0 to about 13.0 with NaOH to precipitate essentially all of the magnesium and silicon species, filtering the digestion mix to remove the solids from said resulting solution which contains about 80 to about 100% of said tungsten and essentially none of said magnesium and said silicon, slurrying the hazardous solids in hot water, and adding to the slurry a ferric salt solution to precipitate ferric hydroxide, filtering this mixture to give a solid which passes the EPA standard test for solids with respect to arsenic

  18. Optimum tungsten content in high strength 9 to 12% chromium containing creep resistant steels

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Muraki, T.; Mimura, H.

    2000-01-01

    Tungsten containing ferritic creep resistant steels are the candidate materials for ultra-super-critical fossil power plant because of their high creep rupture strength. But the strengthening mechanisms by tungsten addition have not yet been completely studied. In this report, creep rupture time and creep strain rate measurement decided the optimum tungsten content in 9 to 12% chromium ferritic steels. The precipitation behavior of Laves phase and the precise discussion of creep strain rate analyses explain the contribution of Laves phase at the lath boundary and the contribution of tungsten in solid solution. P92 contains the optimum amount of tungsten and chromium, 1.8 mass% and 9 mass% respectively judging from the creep rupture strength point of view. (orig.)

  19. Review on the explosive consolidation methods to fabricate tungsten based PFMs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuming, E-mail: wangshuming@ustb.edu.cn; Sun, Chongxiao; Guo, Wenhao; Yan, Qingzhi; Zhou, Zhangjian; Zhang, Yingchun; Shen, Weiping; Ge, Changchun

    2014-12-15

    Tungsten is one of the best candidates for plasma-facing materials in the fusion reactors, owing to its many unique properties. In the development of tungsten-based Plasma Facing Materials/Components (PFMs/PFCs), materials scientists have explored many different, innovative preparation and processing routes to meet the requirement of International Thermonuclear Experimental Reactor (ITER). Some explosive consolidation technology intrinsic characteristics, which make it suitable for powder metallurgy (powders consolidation) and PFMs production, are the high pressure processing, highly short heating time and can be considered as a highly competitive green technology. In this work, an overview of explosive consolidation techniques applied to fabricate tungsten-based PFMs is presented. Emphasis is given to describe the main characteristics and potentialities of the explosive sintering, explosive consolidation techniques. The aspects presented and discussed in this paper indicate the explosive consolidation processes as a promising and competitive technology for tungsten-based PFMs processing.

  20. Molecular dynamics and density functional simulations of tungsten nanostructure formation by helium plasma irradiation

    International Nuclear Information System (INIS)

    Ito, A.M.; Takayama, A.; Oda, Y.

    2014-10-01

    For the purposes of long-term use of tungsten diverter walls, it is necessary to suppress the surface deterioration due to the helium ash which induces the formations of helium bubbles and tungsten fuzzy nanostructures. In the present paper, the formation mechanisms of helium bubbles and tungsten fuzzy nanostructures were explained by the four-step process which is composed of the penetration process, the diffusion and agglomeration process, the helium bubble growth process and the tungsten fuzzy nanostructure formation process. The first to third step processes of the four-step process were investigated by using binary collision approximation, density functional theory and molecular dynamics, respectively. Furthermore, newly developed molecular dynamics and Monte-Carlo hybrid simulation has successfully reproduced the early formation process of tungsten fuzzy nanostructure. From these simulations, we here suggest the following key mechanisms of the formations of helium bubbles and tungsten fuzzy nanostructures: (1) By comparison between helium, neon, argon and hydrogen, the noble gas atoms can agglomerate limitlessly not only at a vacancy but also at an interstitial site. In particular, at the low incident energy, only helium atoms bring about the nucleation for helium bubble. (2) In the helium bubble growth process, the strain of the tungsten material around a helium atom is released as a dislocation loop, which is regarded as the loop punching phenomenon. (3) In the tungsten nanostructure formation process, the bursting of a helium bubble forms cavity and convexity in the surface. The helium bubbles tend to be grown and to burst at the cavity region, and then the difference of height between the cavity and convexity on the surface are enhanced. Consequently, the tungsten fuzzy nanostructure is formed. (author)

  1. Detailed electromagnetic analysis for optimization of a tungsten divertor plate for JET

    International Nuclear Information System (INIS)

    Sadakov, S.; Bondarchuk, E.; Doinikov, N.; Kitaev, B.; Kozhukhovskaya, N.; Maximiva, I.; Hirai, T.; Mertens, P.; Neubauer, O.; Obidenko, T.

    2006-01-01

    The ITER-like wall project at JET involves the replacement of the divertor tiles by either tungsten-coated carbon fibre composite (CFC) or solid tungsten. The background is a full replacement of CFC in order to avoid tritium retention due to co-deposition of carbon. In a R-and-D phase (T.Hirai et al., R-and-D on full tungsten divertor and beryllium wall for JET ITER-like Wall Project.), both tungsten coating and solid tungsten are investigated. Tungsten has a high electrical conductivity, exceeding that of graphite or CFC by two orders of magnitude. This drawback has to be compensated by a proper design (Ph. Mertens et al., Conceptual Design for a Bulk Tungsten Divertor Tile in JET (both citations: this conference)). This report shows how detailed electromagnetic consideration has influenced the design of the solid tungsten divertor for JET. Patterns and sum values were calculated for: (1) eddy currents induced by variation of two orthogonal magnetic fields; (2) toroidal eddy current induced by variation of the poloidal magnetic flux, (3) eddy-current related loads in three orthogonal magnetic fields; (4) Halo current pattern for two cases; (5) Halo-current related loads in three orthogonal magnetic fields; (6) the worst loads combinations; (7) stresses in fixtures. Analytical and numerical methods were combined and cross-checked. The load-bearing septum replacement plate (LB-SRP) which is currently used in the JET divertor consists of two large CFC tiles attached to two superimposed Inconel frames, namely wedge and adapter. The present design is quite loaded by eddy-currents and does not allow for simple replacement of the CFC with solid tungsten. A tree-like shape, which excludes large contours of eddy currents, is proposed. In realization of the tree-like shape, the wedge has a narrow middle part, elongated in radial direction, and eight wings, elongated in toroidal direction. Eight feet form the Halo current path. Each wing carries one tungsten lamellae stack

  2. In vivo corrosion, tumor outcome, and microarray gene expression for two types of muscle-implanted tungsten alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, B.E. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, B434 Mulberry Road, Aberdeen Proving Ground, MD 21005-5609 (United States); Roszell, L.E. [U.S. Army Institute of Public Health, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010‐5403 (United States); Murr, L.E.; Ramirez, D.A. [Department of Metallurgical and Materials Engineering, University of Texas, El Paso, TX 79968 (United States); Demaree, J.D. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, B434 Mulberry Road, Aberdeen Proving Ground, MD 21005-5609 (United States); Klotz, B.R. [Dynamic Science Inc., Aberdeen Proving Ground, MD 21005‐5609 (United States); Rosencrance, A.B.; Dennis, W.E. [U.S. Army Center for Environmental Health Research, Department of Chemistry, Ft. Detrick, MD 21702‐5010 (United States); Bao, W. [SAS Institute, Inc. SAS Campus Drive, Cary, NC 27513 (United States); Perkins, E.J. [U.S. Army Engineer Research and Development Center, 3909 Hall Ferry Road, Vicksburg MS 39180 (United States); Dillman, J.F. [U.S. Army Medical Research Institute of Chemical Defense, 3100 Ricketts Point Road, Aberdeen Proving Ground, MD 21010‐5400 (United States); Bannon, D.I., E-mail: desmond.bannon@us.army.mil [U.S. Army Institute of Public Health, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010‐5403 (United States)

    2012-11-15

    Tungsten alloys are composed of tungsten microparticles embedded in a solid matrix of transition metals such as nickel, cobalt, or iron. To understand the toxicology of these alloys, male F344 rats were intramuscularly implanted with pellets of tungsten/nickel/cobalt, tungsten/nickel/iron, or pure tungsten, with tantalum pellets as a negative control. Between 6 and 12 months, aggressive rhabdomyosarcomas formed around tungsten/nickel/cobalt pellets, while those of tungsten/nickel/iron or pure tungsten did not cause cancers. Electron microscopy showed a progressive corrosion of the matrix phase of tungsten/nickel/cobalt pellets over 6 months, accompanied by high urinary concentrations of nickel and cobalt. In contrast, non-carcinogenic tungsten/nickel/iron pellets were minimally corroded and urinary metals were low; these pellets having developed a surface oxide layer in vivo that may have restricted the mobilization of carcinogenic nickel. Microarray analysis of tumors revealed large changes in gene expression compared with normal muscle, with biological processes involving the cell cycle significantly up‐regulated and those involved with muscle development and differentiation significantly down‐regulated. Top KEGG pathways disrupted were adherens junction, p53 signaling, and the cell cycle. Chromosomal enrichment analysis of genes showed a highly significant impact at cytoband 7q22 (chromosome 7) which included mouse double minute (MDM2) and cyclin‐dependant kinase (CDK4) as well as other genes associated with human sarcomas. In conclusion, the tumorigenic potential of implanted tungsten alloys is related to mobilization of carcinogenic metals nickel and cobalt from corroding pellets, while gene expression changes in the consequent tumors are similar to radiation induced animal sarcomas as well as sporadic human sarcomas. -- Highlights: ► Tungsten/nickel/cobalt, tungsten/nickel/iron, and pure tungsten were studied. ► Male Fischer rats implanted with

  3. In vivo corrosion, tumor outcome, and microarray gene expression for two types of muscle-implanted tungsten alloys

    International Nuclear Information System (INIS)

    Schuster, B.E.; Roszell, L.E.; Murr, L.E.; Ramirez, D.A.; Demaree, J.D.; Klotz, B.R.; Rosencrance, A.B.; Dennis, W.E.; Bao, W.; Perkins, E.J.; Dillman, J.F.; Bannon, D.I.

    2012-01-01

    Tungsten alloys are composed of tungsten microparticles embedded in a solid matrix of transition metals such as nickel, cobalt, or iron. To understand the toxicology of these alloys, male F344 rats were intramuscularly implanted with pellets of tungsten/nickel/cobalt, tungsten/nickel/iron, or pure tungsten, with tantalum pellets as a negative control. Between 6 and 12 months, aggressive rhabdomyosarcomas formed around tungsten/nickel/cobalt pellets, while those of tungsten/nickel/iron or pure tungsten did not cause cancers. Electron microscopy showed a progressive corrosion of the matrix phase of tungsten/nickel/cobalt pellets over 6 months, accompanied by high urinary concentrations of nickel and cobalt. In contrast, non-carcinogenic tungsten/nickel/iron pellets were minimally corroded and urinary metals were low; these pellets having developed a surface oxide layer in vivo that may have restricted the mobilization of carcinogenic nickel. Microarray analysis of tumors revealed large changes in gene expression compared with normal muscle, with biological processes involving the cell cycle significantly up‐regulated and those involved with muscle development and differentiation significantly down‐regulated. Top KEGG pathways disrupted were adherens junction, p53 signaling, and the cell cycle. Chromosomal enrichment analysis of genes showed a highly significant impact at cytoband 7q22 (chromosome 7) which included mouse double minute (MDM2) and cyclin‐dependant kinase (CDK4) as well as other genes associated with human sarcomas. In conclusion, the tumorigenic potential of implanted tungsten alloys is related to mobilization of carcinogenic metals nickel and cobalt from corroding pellets, while gene expression changes in the consequent tumors are similar to radiation induced animal sarcomas as well as sporadic human sarcomas. -- Highlights: ► Tungsten/nickel/cobalt, tungsten/nickel/iron, and pure tungsten were studied. ► Male Fischer rats implanted with

  4. On tungsten technologies and qualification for DEMO

    International Nuclear Information System (INIS)

    Laan, J. van der; Hegeman, H.; Wouters, O.; Luzginova, N.; Jonker, B.; Van der Marck, S.; Opschoor, J.; Wang, J.; Dowling, G.; Stuivenga, M.; Carton, E.

    2009-01-01

    Tungsten alloys are considered prime candidates for the in-vessel components directly facing the plasma. For example, in the HEMJ helium cooled divertor design tiles may be operated at temperatures up to 1700 deg. C, supported by a structure partially consisting of tungsten at temperatures from 600 to 1000 deg. C, and connected to a HT steel structure. The tungsten armoured primary wall is operated at 500-900 deg. C. Irradiation doses will be few tens dpa at minimum, but FPR requirements for plants availability will stretch these targets. Recently injection moulding technology was developed for pure tungsten and representative parts were manufactured for ITER monobloc divertors and DEMO HEMJ thimbles. The major advantages for this technology are the efficient use of material feedstock/resources and the intrinsic possibility to produce near-finished product, avoiding machining processes that are costly and may introduce surface defects deteriorating the component in service performance. It is well suited for mass-manufacturing of components as well known in e.g. lighting industries. To further qualify this material technology various specimen types were produced with processing parameters identical to the components, and tested successfully, showing the high potential for implementation in (fusion) devices. Furthermore, the engineering approach can clearly be tailored away from conventional design and manufacturing technologies based on bulk materials. The technology is suitable for shaping of new W-alloys and W-ODS variants as well. Basically this technology allows a particular qualification trajectory. There is no need to produce large batches of material during the material development and optimization stage. For the verification of irradiation behaviour in the specific neutron spectra, there is a further attractive feature to use e.g. isotope tailored powders to adjust to available irradiation facilities like MTR's. In addition the ingrowth of transmutation

  5. Tungsten nano-tendril growth in the Alcator C-Mod divertor

    International Nuclear Information System (INIS)

    Wright, G.M.; Brunner, D.; Labombard, B.; Lipschultz, B.; Terry, J.L.; Whyte, D.G.; Baldwin, M.J.; Doerner, R.P.

    2012-01-01

    Growth of tungsten nano-tendrils (‘fuzz’) has been observed for the first time in the divertor region of a high-power density tokamak experiment. After 14 consecutive helium L-mode discharges in Alcator C-Mod, the tip of a tungsten Langmuir probe at the outer strike point was fully covered with a layer of nano-tendrils. The thickness of the individual nano-tendrils (50–100 nm) and the depth of the layer (600 ± 150 nm) are consistent with observations from experiments on linear plasma devices. The observation of tungsten fuzz in a tokamak may have important implications for material erosion, dust formation, divertor lifetime and tokamak operations in next-step devices. (letter)

  6. Displacement disorder and reconstruction of the (001) face of tungsten

    International Nuclear Information System (INIS)

    Egorushkin, V.E.; Kul'ment'ev, A.I.; Savushkin, E.V.

    1992-01-01

    The reconstruction of the (001) border of tungsten is examined taking into consideration random static displacements of surface atoms in the high-temperature (1 x 1) phase. A microscopic model is proposed, in which the creation of c(2 x 2) phase is described as a transition of the Jahn-Teller type and an ordering of static displacements. It is shown that displacement disorder induces instability of (001) tungsten with respect to reconstruction. The effect of a uniform electric field on a disordered reconstructing surface is examined. A possible reason is given for pronounced differences in the results of investigations of the structural conversion of the (001) face in tungsten when different experimental methods are used

  7. Tungsten transport and sources control in JET ITER-like wall H-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fedorczak, N., E-mail: nicolas.fedorczak@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Monier-Garbet, P. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Pütterich, T. [MPI für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Brezinsek, S. [Institute of Energy and Climate Research, Forschungszentrum Jlich, Assoc EURATOM-FZJ, Jlich (Germany); Devynck, P.; Dumont, R.; Goniche, M.; Joffrin, E. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Lerche, E. [Association EURATOM-Belgian State, LPP-ERM-KMS, TEC partner, Brussels (Belgium); Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Lipschultz, B. [York Plasma Institute, University of York, Heslington, York YO10 5DD (United Kingdom); Luna, E. de la [Laboratorio Nacional de Fusin, Asociacin EURATOM/CIEMAT, 28040 Madrid (Spain); Maddison, G. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Maggi, C. [MPI für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Matthews, G. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Nunes, I. [Istituto de plasmas e fusao nuclear, Lisboa (Portugal); Rimini, F. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Solano, E.R. [Laboratorio Nacional de Fusin, Asociacin EURATOM/CIEMAT, 28040 Madrid (Spain); Tamain, P. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Tsalas, M. [Association EURATOM-Hellenic Republic, NCSR Demokritos 153 10, Attica (Greece); Vries, P. de [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-08-15

    A set of discharges performed with the JET ITER-like wall is investigated with respect to control capabilities on tungsten sources and transport. In attached divertor regimes, increasing fueling by gas puff results in higher divertor recycling ion flux, lower divertor tungsten source, higher ELM frequency and lower core plasma radiation, dominated by tungsten ions. Both pedestal flushing by ELMs and divertor screening (including redeposition) are possibly responsible. For specific scenarios, kicks in plasma vertical position can be employed to increase the ELM frequency, which results in slightly lower core radiation. The application of ion cyclotron radio frequency heating at the very center of the plasma is efficient to increase the core electron temperature gradient and flatten electron density profile, resulting in a significantly lower central tungsten peaking. Beryllium evaporation in the main chamber did not reduce the local divertor tungsten source whereas core radiation was reduced by approximately 50%.

  8. Controlled nanostructuration of polycrystalline tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    Girault, B. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), LUNAM Universite, Universite de Nantes, Centrale Nantes, CRTT, 37 Bd de l' Universite, BP 406, 44602 Saint-Nazaire Cedex (France); Eyidi, D.; Goudeau, P.; Guerin, P.; Bourhis, E. Le; Renault, P.-O. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Sauvage, T. [CEMHTI/CNRS (UPR 3079 CNRS), Universite d' Orleans, 3A rue de la Ferollerie, 45071 Orleans Cedex 2 (France)

    2013-05-07

    Nanostructured tungsten thin films have been obtained by ion beam sputtering technique stopping periodically the growing. The total thickness was maintained constant while nanostructure control was obtained using different stopping periods in order to induce film stratification. The effect of tungsten sublayers' thicknesses on film composition, residual stresses, and crystalline texture evolution has been established. Our study reveals that tungsten crystallizes in both stable {alpha}- and metastable {beta}-phases and that volume proportions evolve with deposited sublayers' thicknesses. {alpha}-W phase shows original fiber texture development with two major preferential crystallographic orientations, namely, {alpha}-W<110> and unexpectedly {alpha}-W<111> texture components. The partial pressure of oxygen and presence of carbon have been identified as critical parameters for the growth of metastable {beta}-W phase. Moreover, the texture development of {alpha}-W phase with two texture components is shown to be the result of a competition between crystallographic planes energy minimization and crystallographic orientation channeling effect maximization. Controlled grain size can be achieved for the {alpha}-W phase structure over 3 nm stratification step. Below, the {beta}-W phase structure becomes predominant.

  9. Shear strength of shock-loaded polycrystalline tungsten

    International Nuclear Information System (INIS)

    Asay, J.R.; Chhabildas, L.C.; Dandekar, D.P.

    1980-01-01

    Previous experiments have suggested that tungsten undergoes a significant loss of shear strength when shock loaded to stresses greater than 7 GPa. In order to investigate this effect in more detail, a series of experiments was conducted in which polycrystalline tungsten was first shock loaded to approximately 10 GPa and then either unloaded or reloaded from the shocked state. Analysis of measured time-resolved wave profiles indicates that during initial compression to 9.7 GPa, the shear stress in polycrystalline tungsten increases to a maximum value of 1.1 GPA near a longitudinal stress of 5 GPa, but decreases to a final value of 0.8 GPa for stresses approaching 10 GPa. During reloading from a longitudinal stress of 9.7 GPa to a final value of approx.14 GPa, the shear stress increases to a peak value of 1.2 GPa and softens to 1.0 GPa in the final state. During unloading from the shocked state, the initial response is elastic with a strong Baushinger effect. Examination of a recovered sample shows evidence for both deformation slipping and twinning, which may be responsible for the observed softening

  10. Matrix composition effects on the tensile properties of tungsten-molybdenum heavy alloys

    International Nuclear Information System (INIS)

    Bose, A.; German, R.N.

    1990-01-01

    Tungsten-base heavy alloys are liquid-phase sintered from mixed tungsten, nickel, and iron powders. The sintered product is a composite consisting of interlaced tungsten and solidified matrix (W-Ni-Fe) phases. These alloys are most useful in applications requiring high density, strength, and toughness. The design of improved tungsten heavy alloys has been the subject of several research investigations. Much success has taken place through improved processing, but parallel compositional studies have resulted in new microstructure-property combinations. As part of these investigations, the Ni/Fe ratio has been varied, with the general conclusion that optimal strength and ductility occur with a ratio between 2 and 4. Brittle intermetallic phases can form outside of this composition range. Historically, a 7/3 Ni/Fe ratio has been selected for processing studies. Recently, others reported higher ductilities and impact energies for 90 and 93 pct W heavy alloys with the 8/2 Ni/Fe ratio. Alternatively, these alloys can be strengthened by both solid solution and grain size refinement through incorporation of molybdenum, tantalum, or rhenium. These additions are soluble in both the tungsten and matrix phases and retard solution-reprecipitation during liquid phase sintering. In this study, the alloy composition was varied in the nickel/iron ratio and molybdenum was partially substituted for tungsten. The sintered tensile properties are assessed vs these compositional variations

  11. Effect on structure and mechanical property of tungsten irradiated by high intensity pulsed ion beam

    Science.gov (United States)

    Mei, Xianxiu; Zhang, Xiaonan; Liu, Xiaofei; Wang, Younian

    2017-09-01

    The anti-thermal radiation performance of tungsten was investigated by high intensity pulsed ion beam technology. The ion beam was mainly composed of Cn+ (70%) and H+ (30%) at an acceleration voltage of 250 kV under different energy densities for different number of pulses. GIXRD analysis showed that no obvious phase structural changes occurred on the tungsten, and microstress generated. SEM analysis exhibited that there was no apparent irradiation damage on the surface of tungsten at the low irradiation frequency (3 times and 10 times) and at the low energy density (0.25 J/cm2 and 0.7 J/cm2). Cracks appeared on the surface of tungsten after 100-time and 300-time irradiation. Shedding phenomenon even appeared on the surface of tungsten at the energy densities of 1.4 J/cm2 and 2.0 J/cm2. The surface nano-hardness of tungsten decreased with the increase of the pulse times and the energy density. The tungsten has good anti-thermal radiation properties under certain heat load environment.

  12. Hydrogen release from 800 MeV proton-irradiated tungsten

    Science.gov (United States)

    Oliver, B. M.; Venhaus, T. J.; Causey, R. A.; Garner, F. A.; Maloy, S. A.

    2002-12-01

    Tungsten irradiated in spallation neutron sources, such as those proposed for the accelerator production of tritium (APT) project, will contain large quantities of generated helium and hydrogen gas. Tungsten used in proposed fusion reactors will also be exposed to neutrons, and the generated protium will be accompanied by deuterium and tritium diffusing in from the plasma-facing surface. The release kinetics of these gases during various off-normal scenarios involving loss of coolant and after heat-induced rises in temperature are of particular interest for both applications. To determine the release kinetics of hydrogen from tungsten, tungsten rods irradiated with 800 MeV protons in the Los Alamos Neutron Science Center (LANSCE) to high exposures as part of the APT project have been examined. Hydrogen evolution from the tungsten has been measured using a dedicated mass-spectrometer system by subjecting the specimens to an essentially linear temperature ramp from ˜300 to ˜1500 K. Release profiles are compared with predictions obtained using the Tritium Migration Analysis Program (TMAP4). The measurements show that for high proton doses, the majority of the hydrogen is released gradually, starting at about 900 K and reaching a maximum at about 1400 K, where it drops fairly rapidly. Comparisons with TMAP show quite reasonable agreement using a trap energy of 1.4 eV and a trap density of ˜7%. There is a small additional release fraction occurring at ˜550 K, which is believed to be associated with low-energy trapping at or near the surface, and, therefore, was not included in the bulk TMAP model.

  13. Hydrogen release from 800 MeV proton-irradiated tungsten

    International Nuclear Information System (INIS)

    Oliver, B.M.; Venhaus, T.J.; Causey, R.A.; Garner, F.A.; Maloy, S.A.

    2002-01-01

    Tungsten irradiated in spallation neutron sources, such as those proposed for the accelerator production of tritium (APT) project, will contain large quantities of generated helium and hydrogen gas. Tungsten used in proposed fusion reactors will also be exposed to neutrons, and the generated protium will be accompanied by deuterium and tritium diffusing in from the plasma-facing surface. The release kinetics of these gases during various off-normal scenarios involving loss of coolant and after heat-induced rises in temperature are of particular interest for both applications. To determine the release kinetics of hydrogen from tungsten, tungsten rods irradiated with 800 MeV protons in the Los Alamos Neutron Science Center (LANSCE) to high exposures as part of the APT project have been examined. Hydrogen evolution from the tungsten has been measured using a dedicated mass-spectrometer system by subjecting the specimens to an essentially linear temperature ramp from ∼300 to ∼1500 K. Release profiles are compared with predictions obtained using the Tritium Migration Analysis Program (TMAP4). The measurements show that for high proton doses, the majority of the hydrogen is released gradually, starting at about 900 K and reaching a maximum at about 1400 K, where it drops fairly rapidly. Comparisons with TMAP show quite reasonable agreement using a trap energy of 1.4 eV and a trap density of ∼7%. There is a small additional release fraction occurring at ∼550 K, which is believed to be associated with low-energy trapping at or near the surface, and, therefore, was not included in the bulk TMAP model

  14. Hydrogen release from 800 MeV proton-irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, B.M. E-mail: brian.oliver@pnl.gov; Venhaus, T.J.; Causey, R.A.; Garner, F.A.; Maloy, S.A

    2002-12-01

    Tungsten irradiated in spallation neutron sources, such as those proposed for the accelerator production of tritium (APT) project, will contain large quantities of generated helium and hydrogen gas. Tungsten used in proposed fusion reactors will also be exposed to neutrons, and the generated protium will be accompanied by deuterium and tritium diffusing in from the plasma-facing surface. The release kinetics of these gases during various off-normal scenarios involving loss of coolant and after heat-induced rises in temperature are of particular interest for both applications. To determine the release kinetics of hydrogen from tungsten, tungsten rods irradiated with 800 MeV protons in the Los Alamos Neutron Science Center (LANSCE) to high exposures as part of the APT project have been examined. Hydrogen evolution from the tungsten has been measured using a dedicated mass-spectrometer system by subjecting the specimens to an essentially linear temperature ramp from {approx}300 to {approx}1500 K. Release profiles are compared with predictions obtained using the Tritium Migration Analysis Program (TMAP4). The measurements show that for high proton doses, the majority of the hydrogen is released gradually, starting at about 900 K and reaching a maximum at about 1400 K, where it drops fairly rapidly. Comparisons with TMAP show quite reasonable agreement using a trap energy of 1.4 eV and a trap density of {approx}7%. There is a small additional release fraction occurring at {approx}550 K, which is believed to be associated with low-energy trapping at or near the surface, and, therefore, was not included in the bulk TMAP model.

  15. Quantum-Accurate Molecular Dynamics Potential for Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Mitchell; Thompson, Aidan P.

    2017-03-01

    The purpose of this short contribution is to report on the development of a Spectral Neighbor Analysis Potential (SNAP) for tungsten. We have focused on the characterization of elastic and defect properties of the pure material in order to support molecular dynamics simulations of plasma-facing materials in fusion reactors. A parallel genetic algorithm approach was used to efficiently search for fitting parameters optimized against a large number of objective functions. In addition, we have shown that this many-body tungsten potential can be used in conjunction with a simple helium pair potential1 to produce accurate defect formation energies for the W-He binary system.

  16. In vitro profiling of epigenetic modifications underlying heavy metal toxicity of tungsten-alloy and its components

    International Nuclear Information System (INIS)

    Verma, Ranjana; Xu, Xiufen; Jaiswal, Manoj K.; Olsen, Cara; Mears, David; Caretti, Giuseppina; Galdzicki, Zygmunt

    2011-01-01

    Tungsten-alloy has carcinogenic potential as demonstrated by cancer development in rats with intramuscular implanted tungsten-alloy pellets. This suggests a potential involvement of epigenetic events previously implicated as environmental triggers of cancer. Here, we tested metal induced cytotoxicity and epigenetic modifications including H3 acetylation, H3-Ser10 phosphorylation and H3-K4 trimethylation. We exposed human embryonic kidney (HEK293), human neuroepithelioma (SKNMC), and mouse myoblast (C2C12) cultures for 1-day and hippocampal primary neuronal cultures for 1-week to 50-200 μg/ml of tungsten-alloy (91% tungsten/6% nickel/3% cobalt), tungsten, nickel, and cobalt. We also examined the potential role of intracellular calcium in metal mediated histone modifications by addition of calcium channel blockers/chelators to the metal solutions. Tungsten and its alloy showed cytotoxicity at concentrations > 50 μg/ml, while we found significant toxicity with cobalt and nickel for most tested concentrations. Diverse cell-specific toxic effects were observed, with C2C12 being relatively resistant to tungsten-alloy mediated toxic impact. Tungsten-alloy, but not tungsten, caused almost complete dephosphorylation of H3-Ser10 in C2C12 and hippocampal primary neuronal cultures with H3-hypoacetylation in C2C12. Dramatic H3-Ser10 dephosphorylation was found in all cobalt treated cultures with a decrease in H3 pan-acetylation in C2C12, SKNMC and HEK293. Trimethylation of H3-K4 was not affected. Both tungsten-alloy and cobalt mediated H3-Ser10 dephosphorylation were reversed with BAPTA-AM, highlighting the role of intracellular calcium, confirmed with 2-photon calcium imaging. In summary, our results for the first time reveal epigenetic modifications triggered by tungsten-alloy exposure in C2C12 and hippocampal primary neuronal cultures suggesting the underlying synergistic effects of tungsten, nickel and cobalt mediated by changes in intracellular calcium homeostasis and

  17. Experimental study of tungsten transport properties in T-10 plasma

    Science.gov (United States)

    Krupin, V. A.; Nurgaliev, M. R.; Klyuchnikov, L. A.; Nemets, A. R.; Zemtsov, I. A.; Dnestrovskij, A. Yu.; Sarychev, D. V.; Lisitsa, V. S.; Shurygin, V. A.; Leontiev, D. S.; Borschegovskij, A. A.; Grashin, S. A.; Ryjakov, D. V.; Sergeev, D. S.; Mustafin, N. A.; Trukhin, V. M.; Solomatin, R. Yu.; Tugarinov, S. N.; Naumenko, N. N.

    2017-06-01

    First experimental results of tungsten transport investigation in OH and ECRH plasmas in the T-10 tokamak with W-limiter and movable Li-limiter are presented. It is shown that tungsten tends to accumulate (a joint process of cumulation and peaking) near the plasma axis in ohmic regimes. The cumulation of W is enhanced in discharges with high values of the parameter γ ={{\\bar{n}}\\text{e}}\\centerdot {{\\bar{Z}}\\text{eff}}\\centerdot I\\text{pl}-1.5 that coincides with accumulation conditions of light and medium impurities in T-10 plasmas. Experiments with Li-limiter show the immeasurable level of Li3+ (0.3-0.5% of n e) of T-10 CXRS diagnostics because of the low inflow of Li with respect to other light impurities. Nevertheless, the strong influence of lithium on inflow of light and tungsten impurities is observed. In discharges with lithized walls, vanishing of light impurities occurs and values of {{Z}\\text{eff}}≈ 1 are obtained. It is also shown that the tungsten density in the plasma center decreases by 15 to 20 times while the W inflow reduces only by 2 to 4 times. In lithized discharges with high γ, the flattening of the tungsten density profile occurs and its central concentration decreases up to 10 times during the on-axis ECRH. This effect is observed together with the increase of the W inflow by 3 to 4 times at the ECRH stage.

  18. A review of penetration mechanisms and dynamic properties of tungsten and depleted uranium penetrators

    International Nuclear Information System (INIS)

    Andrew, S.P.; Caligiuri, R.D.; Eiselstein, L.E.

    1991-01-01

    Kinetic energy penetrators must posses the best possible combination of hardness, stiffness, strength, and fracture toughness characteristics to be effective against modern armor systems. Over the last decade, depleted uranium (DU) and tungsten alloys have been the materials of choice for kinetic energy penetrators. Du and tungsten perform abut the same against semi-infinite targets, and DU outperforms tungsten penetrators in oblique, spaced array targets, but because of environmental and subsequent cost concerns, effort has focused on improving the performance of tungsten penetrators over the last few years. However, despite recent improvements in material properties, the penetration performance of tungsten still lags behind that of DU. One possible reason is the difference in deformation mechanisms at the leading edge of the penetrator during the penetration process-DU alloys tend to shear band and sharpen as they penetrate the target material, whereas tungsten penetrators tend to mushroom and blunt. As a first step to determine whether shear banding is truly the reason for superior DU performance, a review of the fabrication, high strain-rate properties, and penetration phenomena of penetrators manufactured from both tungsten and DU alloys. Specifically, the effects of composition, processing, and heat treatment on material properties and penetration mechanisms of these alloys are discussed

  19. Underwater explosive compaction-sintering of tungsten-copper coating on a copper surface

    Science.gov (United States)

    Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Chen, Saiwei

    2018-01-01

    This study investigated underwater explosive compaction-sintering for coating a high-density tungsten-copper composite on a copper surface. First, 50% W-50% Cu tungsten-copper composite powder was prepared by mechanical alloying. The composite powder was pre-compacted and sintered by hydrogen. Underwater explosive compaction was carried out. Finally, a high-density tungsten-copper coating was obtained by diffusion sintering of the specimen after explosive compaction. A simulation of the underwater explosive compaction process showed that the peak value of the pressure in the coating was between 3.0 and 4.8 GPa. The hardness values of the tungsten-copper layer and the copper substrate were in the range of 87-133 and 49 HV, respectively. The bonding strength between the coating and the substrate was approximately 100-105 MPa.

  20. Ultraviolet radiation and blue-light emissions from spotlights incorporating tungsten halogen lamps

    CERN Document Server

    MacKinlay, Alistair F; Whillock, M J

    1989-01-01

    This report summarises measurements of the ultraviolet radiation and blue-light emissions from eleven 'desk-top' tungsten halogen (quartz) lamps and one 'floor-standing' tungsten halogen (quartz) lamp available in the UK. Values of occupational hazard weighted and erythemally weighted ultraviolet radiation irradiance and measurements and relevant calculations of blue-light hazards are presented. It is concluded that the safety design of some desk-top tungsten halogen lamps is inadequate to prevent unnecessary exposure of the skin to potentially harmful ultraviolet radiation. It is recommended that all tungsten halogen lamps should have sufficient filtration to reduce their ultraviolet emissions to an acceptably low level. As long as the comfort aversion responses of the eye are respected, direct viewing of the lamps examined should not constitute a retinal hazard.

  1. Ultraviolet radiation and blue-light emissions from spotlights incorporating tungsten halogen lamps

    International Nuclear Information System (INIS)

    McKinlay, A.F.; Whillock, M.J.; Meulemans, C.C.E.

    1989-07-01

    This report summarises measurements of the ultraviolet radiation and blue-light emissions from eleven 'desk-top' tungsten halogen (quartz) lamps and one 'floor-standing' tungsten halogen (quartz) lamp available in the UK. Values of occupational hazard weighted and erythemally weighted ultraviolet radiation irradiance and measurements and relevant calculations of blue-light hazards are presented. It is concluded that the safety design of some desk-top tungsten halogen lamps is inadequate to prevent unnecessary exposure of the skin to potentially harmful ultraviolet radiation. It is recommended that all tungsten halogen lamps should have sufficient filtration to reduce their ultraviolet emissions to an acceptably low level. As long as the comfort aversion responses of the eye are respected, direct viewing of the lamps examined should not constitute a retinal hazard. (author)

  2. Factors affecting the deformation of tungsten (a literature survey)

    International Nuclear Information System (INIS)

    Ludwig, R.L.

    1978-01-01

    Background information relative to wrought tungsten forming was required in support of development studies. Seven principal areas of tungsten metallurgy were of interest: fabrication methods, delamination, recrystallization, heat treatment, fracture characteristics, impurity effects, and surface treatments. Pertinent information in Metal Abstracts from 1967 to mid 1977 was summarized for each area. Only a few papers were reviewed in their entirety; the great majority of information was derived from abstracts of the papers. 61 references

  3. A review of chromium, molybdenum, and tungsten alloys

    International Nuclear Information System (INIS)

    Klopp, W.D.

    1975-01-01

    The mechanical properties of chromium, molybdenum, and tungsten alloys are reviewed, with particular emphasis on high-temperature strength and low-temperature ductility. Precipitate strengthening is highly effective at 0.4-0.8 Tsub(m) in these metals, with HfC being most effective in tungsten and molybdenum, and Ta(B,C) most effective in chromium. Low-temperature ductility can be improved by alloying to promote rhenium ductilizing or solution softening. The low-temperature mechanical properties of these alloys appear related to electronic interactions rather than to the usual metallurgical considerations. (Auth.)

  4. Viscoelastic model of tungsten 'fuzz' growth

    International Nuclear Information System (INIS)

    Krasheninnikov, S I

    2011-01-01

    A viscoelastic model of fuzz growth is presented. The model describes the main features of tungsten fuzz observed in experiments. It gives estimates of fuzz growth rate and temperature range close to experimental ones.

  5. Fracture and Residual Characterization of Tungsten Carbide Cobalt Coatings on High Strength Steel

    National Research Council Canada - National Science Library

    Parker, Donald S

    2003-01-01

    Tungsten carbide cobalt coatings applied via high velocity oxygen fuel thermal spray deposition are essentially anisotropic composite structures with aggregates of tungsten carbide particles bonded...

  6. Hydrogen retention in carbon-tungsten co-deposition layer formed by hydrogen RF plasma

    International Nuclear Information System (INIS)

    Katayama, K.; Kawasaki, T.; Manabe, Y.; Nagase, H.; Takeishi, T.; Nishikawa, M.

    2006-01-01

    Carbon-tungsten co-deposition layers (C-W layers) were formed by sputtering method using hydrogen or deuterium RF plasma. The deposition rate of the C-W layer by deuterium plasma was faster than that by hydrogen plasma, where the increase of deposition rate of tungsten was larger than that of carbon. This indicates that the isotope effect on sputtering-depositing process for tungsten is larger than that for carbon. The release curve of hydrogen from the C-W layer showed two peaks at 400 deg. C and 700 deg. C. Comparing the hydrogen release from the carbon deposition layer and the tungsten deposition layer, it is considered that the increase of the release rate at 400 deg. C is affected by tungsten and that at 700 deg. C is affected by carbon. The obtained hydrogen retention in the C-W layers which have over 60 at.% of carbon was in the range between 0.45 and 0.16 as H/(C + W)

  7. Molecular basis of carcinogenicity of tungsten alloy particles

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Robert M.; Williams, Tim D.; Waring, Rosemary H.; Hodges, Nikolas J., E-mail: n.hodges@bham.ac.uk

    2015-03-15

    The tungsten alloy of 91% tungsten, 6% nickel and 3% cobalt (WNC 91–6–3) induces rhabdomyosarcoma when implanted into a rat thigh muscle. To investigate whether this effect is species-specific human HSkMc primary muscle cells were exposed to WNC 91–6–3 particles and responses were compared with those from a rat skeletal muscle cell line (L6-C11). Toxicity was assessed by the adenylate kinase assay and microscopy, DNA damage by the Comet assay. Caspase 3 enzyme activity was measured and oligonucleotide microarrays were used for transcriptional profiling. WNC 91–6–3 particles caused toxicity in cells adjacent to the particles and also increased DNA strand breaks. Inhibition of caspase 3 by WNC 91–6–3 occurred in rat but not in human cells. In both rat and human cells, the transcriptional response to WNC 91–6–3 showed repression of transcripts encoding muscle-specific proteins with induction of glycolysis, hypoxia, stress responses and transcripts associated with DNA damage and cell death. In human cells, genes encoding metallothioneins were also induced, together with genes related to angiogenesis, dysregulation of apoptosis and proliferation consistent with pre-neoplastic changes. An alloy containing iron, WNF 97–2–1, which is non-carcinogenic in vivo in rats, did not show these transcriptional changes in vitro in either species while the corresponding cobalt-containing alloy, WNC 97–2–1 elicited similar responses to WNC 91–6–3. Tungsten alloys containing both nickel and cobalt therefore have the potential to be carcinogenic in man and in vitro assays coupled with transcriptomics can be used to identify alloys, which may lead to tumour formation, by dysregulation of biochemical processes. - Highlights: • Use of transcriptomics to identify likely carcinogenic tungsten alloys in vitro • Cobalt containing alloys cause oxidative stress, DNA-damage and perturb apoptosis. • Presence of cobalt causes changes in gene expression

  8. Fracture peculiarities in ceramic tungsten at different temperatures in vacuum

    International Nuclear Information System (INIS)

    Uskov, E.I.; Babak, A.V.

    1981-01-01

    Stress-strain diagrams and results of metallographic analyses are presented for the ceramic tungsten samples tested for fracture toughness under conditions of eccentric tension at different temperatures (20...1600 deg C) in vacuum. The tungsten fracture is shown to be of brittle nature within the whole temperature range studied, but the fracture process has its own peculiarities at different test temperatures

  9. The electrodeposition of niobium on tungsten

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1977-03-01

    The electrodeposition of niobium on a tungsten substrate has been demonstrated by electrolysis of an alkali metal fluoride melt. The deposit produced was non-porous, coherent and formed a good bond to the substrate. (author)

  10. Processing by both classical and mechanosynthesis routes and characterization of a new solid solution of tungsten-bronze structure ceramics

    International Nuclear Information System (INIS)

    Khachane, M.; Moure, A.; Elaatmani, M.; Zegzouti, A.; Daoud, M.; Castro, A.

    2006-01-01

    A new family of ferroelectric compounds with Ba 2-x Na 1+x Li x Nb 5 O 15 composition (0 ≤ x ≤ 1) and tetragonal tungsten-bronze structure is processed for the first time. This new family of materials derived from Ba 2 NaNb 5 O 15 compound was processed by classical solid-state reaction and by mechanosynthesis. The powders prepared by these two routes were characterized by X-ray diffraction (at room and high temperature), differential thermal analysis, thermogravimetry and scanning electron microscopy. The results confirm the formation of the solid solution in the whole range of composition. The influence of Li addition on the dielectric permittivity and losses and on the ferro-paraelectric transition temperature is also studied

  11. Structural stability of super duplex stainless weld metals and its dependence on tungsten and copper

    International Nuclear Information System (INIS)

    Nilsson, J.O.; Wilson, A.; Huhtala, T.; Karlsson, L.; Jonsson, P.

    1996-01-01

    Three different superduplex stainless weld metals have been produced using manual metal arc welding under identical welding conditions. The concentration of the alloying elements tungsten and copper corresponded to the concentrations in commercial superduplex stainless steels (SDSS). Aging experiments in the temperature range 700 C to 1,110 C showed that the formation of intermetallic phase was enhanced in tungsten-rich weld metal and also dissolved at higher temperatures compared with tungsten-poor and tungsten-free weld metals. It could be inferred from time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams produced in the present investigation that the critical cooling rate to avoid 1 wt pct of intermetallic phase was 2 times faster for tungsten-rich weld metal. Microanalysis in combination with thermodynamic calculations showed that tungsten was accommodated in χ phase, thereby decreasing the free energy. Experimental evidence supports the view that the formation of intermetallic phase is enhanced in tungsten-rich weld metal, owing to easier nucleation of nonequilibrium χ phase compared with σ phase. The formation of secondary austenite (γ 2 ) during welding was modeled using the thermodynamic computer program Thermo-Calc. Satisfactory agreement between theory and practice was obtained. Thermo-Calc was capable of predicting observed lower concentrations of chromium and nitrogen in γ 2 compared with primary austenite. The volume fraction of γ 2 was found to be significantly higher in tungsten-rich and tungsten + copper containing weld metal. The results could be explained by a higher driving force for precipitation of γ 2 in these

  12. Structural stability of super duplex stainless weld metals and its dependence on tungsten and copper

    Science.gov (United States)

    Nilsson, J.-O.; Huhtala, T.; Jonsson, P.; Karlsson, L.; Wilson, A.

    1996-08-01

    Three different superduplex stainless weld metals have been produced using manual metal arc welding under identical welding conditions. The concentration of the alloying elements tungsten and copper corresponded to the concentrations in commercial superduplex stainless steels (SDSS). Aging experiments in the temperature range 700 °C to 1110 °C showed that the formation of intermetallic phase was enhanced in tungsten-rich weld metal and also dissolved at higher temperatures compared with tungsten-poor and tungsten-free weld metals. It could be inferred from time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams produced in the present investigation that the critical cooling rate to avoid 1 wt pct of intermetallic phase was 2 times faster for tungsten-rich weld metal. Microanalysis in combination with thermodynamic calculations showed that tungsten was accommodated in χ phase, thereby decreasing the free energy. Experimental evidence supports the view that the formation of intermetallic phase is enhanced in tungsten-rich weld metal, owing to easier nucleation of nonequilibrium χ phase compared with σ phase. The formation of secondary austenite (γ2) during welding was modeled using the thermodynamic computer program Thermo-Calc. Satisfactory agreement between theory and practice was obtained. Thermo-Calc was capable of predicting observed lower concentrations of chromium and nitrogen in γ2 compared with primary austenite. The volume fraction of γ2 was found to be significantly higher in tungsten-rich and tungsten + copper containing weld metal. The results could be explained by a higher driving force for precipitation of γ2 in these.

  13. HYDROGEN VACANCY INTERACTION IN TUNGSTEN

    NARCIS (Netherlands)

    FRANSENS, [No Value; ELKERIEM, MSA; PLEITER, F

    1991-01-01

    Hydrogen-vacancy interaction in tungsten was investigated by means of the perturbed angular correlation technique, using the isotope In-111 as a probe. Hydrogen trapping at an In-111-vacancy cluster manifests itself as a change of the local electric field gradient, which gives rise to an observable

  14. Tungsten: A Preliminary Environmental Risk Assessment

    Science.gov (United States)

    2011-05-01

    Tungsten Effects on Soil Microbial Communities BUILDING STRONG® Actinobacteria Bacteroidetes Firmicutes alpha-Proteobacteria beta-Proteobacteria gamma...Persistence of Actinobacteria & gamma- Proteobacteria • Actinobacteria – includes the actinomycetes  γ-Proteobacteria – includes a variety of microbes

  15. On the problem of high temperature embrittlement of tungsten

    International Nuclear Information System (INIS)

    Babak, A.V.; Uskov, E.I.

    1983-01-01

    The paper presents results of a complex physicomechanical study of tungsten crack resistance. The presence of a descending portion of curve in a temperature range from Tsub(x)sup(b) to 2 000 deg C is a characteristic feature of Ksub(Ic) temperature dependence. Changes in the tungsten physical state under isotherma heating were analysed on the basis of the results of metallographic, X-ray and electron fractographic studies. Certain results obtained are shown to be contradicting

  16. Study on the high temperature crack resistance of tungsten

    International Nuclear Information System (INIS)

    Uskov, E.I.; Babak, A.V.

    1983-01-01

    The possibility of a multiple use of tungsten specimens in crack resistance tests in the temperature range of 600-2000 deg C is studied. It is established experimentally that the minimum length of growth of a main crack is 1x10 -4 m for the most effective repeated use of specimens. A flow diagram of mechanical tests is suggested for investigating high temperature tungsten crack resistance and estimating the degree of weakening the grain-boundary bond

  17. Hydrothermal synthesis of electrode materials pyrochlore tungsten trioxide film

    Science.gov (United States)

    Guo, Jingdong; Li, Yingjeng James; Stanley Whittingham, M.

    Hydrothermal synthesis methods have been successfully used to prepare new transition-metal oxides for cathodes in electrochemical devices such as lithium batteries and electrochromic windows. The tungsten oxides were the first studied, but the method has been extended to the oxides of molybdenum, vanadium and manganese. Sodium tungsten oxide films with the pyrochlore structure have been prepared on gold/alumina and indium-doped tin oxide substrates. These films reversibly and rapidly intercalate lithium and hydrogen ions.

  18. Electrodeposition of metallic tungsten coating from binary oxide molten salt on low activation steel substrate

    International Nuclear Information System (INIS)

    Liu, Y.H.; Zhang, Y.C.; Jiang, F.; Fu, B.J.; Sun, N.B.

    2013-01-01

    Tungsten is considered a promising plasma facing armor material for future fusion devices. An electrodeposited metallic tungsten coating from Na 2 WO 4 –WO 3 binary oxide molten salt on low activation steel (LAS) substrate was investigated in this paper. Tungsten coatings were deposited under various pulsed currents conditions at 1173 K in atmosphere. Cathodic current density and pulsed duty cycle were investigated for pulsed current electrolysis. The crystal structure and microstructure of tungsten coatings were characterized by X-ray diffractometry, scanning electron microscopy, and energy X-ray dispersive analysis techniques. The results indicated that pulsed current density and duty cycle significantly influence tungsten nucleation and electro-crystallization phenomena. The average grain size of the coating becomes much larger with increasing cathodic current density, which demonstrates that appropriate high cathodic current density can accelerate the growth of grains on the surface of the substrate. The micro-hardness of tungsten coatings increases with the increasing thickness of coatings; the maximum micro-hardness is 482 HV. The prepared tungsten coatings have a smooth surface, a porosity of less than 1%, and an oxygen content of 0.024 wt%

  19. Electrodeposition of metallic tungsten coating from binary oxide molten salt on low activation steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y. H. [School of Materials Science and Engineering, University of Science and Technology BeiJing, Beijing (China); State Nuclear Power Research Institute, Xicheng District, Beijing (China); Zhang, Y.C., E-mail: zycustb@163.com [School of Materials Science and Engineering, University of Science and Technology BeiJing, Beijing (China); Jiang, F.; Fu, B. J.; Sun, N. B. [School of Materials Science and Engineering, University of Science and Technology BeiJing, Beijing (China)

    2013-11-15

    Tungsten is considered a promising plasma facing armor material for future fusion devices. An electrodeposited metallic tungsten coating from Na{sub 2}WO{sub 4}–WO{sub 3} binary oxide molten salt on low activation steel (LAS) substrate was investigated in this paper. Tungsten coatings were deposited under various pulsed currents conditions at 1173 K in atmosphere. Cathodic current density and pulsed duty cycle were investigated for pulsed current electrolysis. The crystal structure and microstructure of tungsten coatings were characterized by X-ray diffractometry, scanning electron microscopy, and energy X-ray dispersive analysis techniques. The results indicated that pulsed current density and duty cycle significantly influence tungsten nucleation and electro-crystallization phenomena. The average grain size of the coating becomes much larger with increasing cathodic current density, which demonstrates that appropriate high cathodic current density can accelerate the growth of grains on the surface of the substrate. The micro-hardness of tungsten coatings increases with the increasing thickness of coatings; the maximum micro-hardness is 482 HV. The prepared tungsten coatings have a smooth surface, a porosity of less than 1%, and an oxygen content of 0.024 wt%.

  20. Optically Polarized Conduction-Band Electrons in Tungsten Observed by Spin-Polarized Photoemission

    DEFF Research Database (Denmark)

    Zürcher, P.; Meier, F.; Christensen, N. E.

    1979-01-01

    Along the (100) direction of tungsten, interband transitions induced by circularly polarized light of energy 1.5 eV......Along the (100) direction of tungsten, interband transitions induced by circularly polarized light of energy 1.5 eV...

  1. Corrosion of high-density sintered tungsten alloys. Part 1

    International Nuclear Information System (INIS)

    Batten, J.J.; McDonald, I.G.; Moore, B.T.; Silva, V.M.

    1988-10-01

    The corrosion behaviour of four tungsten alloys has been evaluated through weight loss measurements after total immersion in both distilled water insight into the mechanism of corrosion was afforded by an examination of the and 5% sodium chloride solutions. Some insight the mechanism of corrosion was afforded by using the Scanning Electron Microscopy and through an analysis of the corrosion products. Pure tungsten and all the alloys studied underwent corrosion during the tests, and in each case the rare of corrosion in sodium chloride solution was markedly less than that in distilled water. A 95% W, 3.5% Ni, 1.5% Fe alloy was found to be the most corrosion resistant of the alloys under the experimental conditions. Examination of the data shows that for each of the tests, copper as an alloying element accelerates corrosion of tungsten alloys. 9 refs., 7 tabs., 12 figs

  2. Hybrid simulation research on formation mechanism of tungsten nanostructure induced by helium plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Atsushi M., E-mail: ito.atsushi@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Takayama, Arimichi; Oda, Yasuhiro [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Tamura, Tomoyuki; Kobayashi, Ryo; Hattori, Tatsunori; Ogata, Shuji [Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Ohno, Noriyasu; Kajita, Shin [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yajima, Miyuki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Noiri, Yasuyuki [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yoshimoto, Yoshihide [University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Saito, Seiki [Kushiro National College of Technology, Kushiro, Hokkaido 084-0916 (Japan); Takamura, Shuichi [Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392 (Japan); Murashima, Takahiro [Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-Ward, Sendai 980-8578 (Japan); Miyamoto, Mitsutaka [Shimane University, Matsue, Shimane 690-8504 (Japan); Nakamura, Hiroaki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-08-15

    The generation of tungsten fuzzy nanostructure by exposure to helium plasma is one of the important problems for the use of tungsten material as divertor plates in nuclear fusion reactors. In the present paper, the formation mechanisms of the helium bubble and the tungsten fuzzy nanostructure were investigated by using several simulation methods. We proposed the four-step process which is composed of penetration step, diffusion and agglomeration step, helium bubble growth step, and fuzzy nanostructure formation step. As the fourth step, the formation of the tungsten fuzzy nanostructure was successfully reproduced by newly developed hybrid simulation combining between molecular dynamics and Monte-Carlo method. The formation mechanism of tungsten fuzzy nanostructure observed by the hybrid simulation is that concavity and convexity of the surface are enhanced by the bursting of helium bubbles in the region around the concavity.

  3. Status of technology R&D for the ITER tungsten divertor monoblock

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, T., E-mail: takeshi.hirai@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Escourbiac, F.; Barabash, V.; Durocher, A.; Fedosov, A.; Ferrand, L.; Jokinen, T.; Komarov, V.; Merola, M.; Carpentier-Chouchana, S. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Arkhipov, N. [Project Center ITER, 1, Building 3, Kurchatov Sq., 123182 Moscow (Russian Federation); Kuznetcov, V.; Volodin, A. [NIIEFA, 3 doroga na Metallostroy, Metallostroy, St. Petersburg 196641 (Russian Federation); Suzuki, S.; Ezato, K.; Seki, Y. [JAEA, Fusion Research and Development Directorate JAEA, 801-1 Mukouyama, Naka, Ibaragi 311-0193 (Japan); Riccardi, B.; Bednarek, M.; Gavila, P. [F4E, c/Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain)

    2015-08-15

    In order to develop and validate the high performance tungsten monoblock technology, the full-tungsten divertor qualification program was defined. As the first step, small-scale mock-ups were manufactured and successfully tested under the required high heat flux loads. The test results demonstrated that the technology is available in Japan and Europe. Post-tests observation of the loaded W monoblocks showed generation of self-castellation – a crack along coolant tube axis. The cause of the self-castellation was discussed and a tungsten material characterization program is being developed with the objective to understand mechanical properties that influence the occurrence of the self-castellation.

  4. Study of neutron induced outgassing from tungsten alloy for ATLAS FCAL

    CERN Document Server

    Leroy, C; Cheplakov, A P; Golikov, V; Golubyh, S M; Kulagin, E; Kukhtin, V; Luschikov, V

    1999-01-01

    The use of sintered tungsten alloy slugs as absorber in the ATLAS Forward Calorimeter (FCAL) raised concern that it could possibly poison the liquid argon during the detector operation in the hard radiation environment expected at LHC. A vacuum container filled with tungsten slugs was exposed to the fast neutron fluence of 1.5$\\cdot$10$^{16}$~n~cm$^{-2}$ at the IBR-30 reactor of JINR, Dubna. The residual gas pressure was analysed. The study was completed by mass spectrometer measurements. An upper limit value of 0.1~ppm was determined for the pollution of liquid argon in FCAL due to outgassing from tungsten slugs under irradiation.

  5. Corrosion of tungsten microelectrodes used in neural recording applications.

    Science.gov (United States)

    Patrick, Erin; Orazem, Mark E; Sanchez, Justin C; Nishida, Toshikazu

    2011-06-15

    In neuroprosthetic applications, long-term electrode viability is necessary for robust recording of the activity of neural populations used for generating communication and control signals. The corrosion of tungsten microwire electrodes used for intracortical recording applications was analyzed in a controlled bench-top study and compared to the corrosion of tungsten microwires used in an in vivo study. Two electrolytes were investigated for the bench-top electrochemical analysis: 0.9% phosphate buffered saline (PBS) and 0.9% PBS containing 30 mM of hydrogen peroxide. The oxidation and reduction reactions responsible for corrosion were found by measurement of the open circuit potential and analysis of Pourbaix diagrams. Dissolution of tungsten to form the tungstic ion was found to be the corrosion mechanism. The corrosion rate was estimated from the polarization resistance, which was extrapolated from the electrochemical impedance spectroscopy data. The results show that tungsten microwires in an electrolyte of PBS have a corrosion rate of 300-700 μm/yr. The corrosion rate for tungsten microwires in an electrolyte containing PBS and 30 mM H₂O₂ is accelerated to 10,000-20,000 μm/yr. The corrosion rate was found to be controlled by the concentration of the reacting species in the cathodic reaction (e.g. O₂ and H₂O₂). The in vivo corrosion rate, averaged over the duration of implantation, was estimated to be 100 μm/yr. The reduced in vivo corrosion rate as compared to the bench-top rate is attributed to decreased rate of oxygen diffusion caused by the presence of a biological film and a reduced concentration of available oxygen in the brain. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. The high temperature impact response of tungsten and chromium

    Science.gov (United States)

    Zaretsky, E. B.; Kanel, G. I.

    2017-09-01

    The evolution of elastic-plastic shock waves has been studied in pure polycrystalline tungsten and chromium at room and elevated temperatures over propagation distances ranging from 0.05 to 3 mm (tungsten) and from 0.1 to 2 mm (chromium). The use of fused silica windows in all but one experiment with chromium and in several high temperature experiments with tungsten led to the need for performing shock and optic characterization of these windows over the 300-1200 K temperature interval. Experiments with tungsten and chromium samples showed that annealing of the metals transforms the initial ramping elastic wave into a jump-like wave, substantially increasing the Hugoniot elastic limits of the metals. With increased annealing time, the spall strength of the two metals slightly increases. Both at room and at high temperatures, the elastic precursor in the two metals decays in two distinct regimes. At propagation distances smaller than ˜1 mm (tungsten) or ˜0.5 mm (chromium), decay is fast, with the dislocation motion and multiplication being controlled by phonon viscous drag. At greater distances, the rate of decay becomes much lower, with control of the plastic deformation being passed to the thermally activated generation and motion of dislocation double-kinks. The stress at which this transition takes place virtually coincides with the Peierls stress τP of the active glide system. Analysis of the annealing effects in both presently and previously studied BCC metals (i.e., Ta, V, Nb, Mo, W, and Cr) and of the dependencies of their normalized Peierls stresses τP(θ) /τP(0 ) on the normalized temperature θ=T /Tm allows one to conclude that the non-planar, split into several glide planes, structure of the dislocation core in these metals is mainly responsible for their plastic deformation features.

  7. Conceptual design for a bulk tungsten divertor tile in JET

    International Nuclear Information System (INIS)

    Mertens, Ph.; Hirai, T.; Linke, J.; Neubauer, O.; Pintsuk, G.; Philipps, V.; Sadakov, S.; Samm, U.; Schweer, B.

    2007-01-01

    The ITER-like Wall project (ILW) for JET aims at providing the plasma chamber of the tokamak with an environment of mixed materials which will be relevant for the actual first wall construction on ITER. Tungsten plays a key role in the divertor cladding. For the central tile, also called LB-SRP for 'load-bearing septum replacement plate', bulk tungsten is envisaged in order to cope with the high heat loads expected (up to 10 MW/m 2 for 10 s). The outer strike-point in the divertor will be positioned on this tile for the most relevant configurations. Forschungszentrum Juelich (FZJ) has developed a conceptual design based on an assembly of tungsten blades or lamellae. An appropriate interface with the base carrier of JET, on which modules of two tiles are positioned and fixed by remote handling procedures, is a substantial part of the integral design. Important issues are the electromagnetic forces and expected temperature distributions. Material choices combine tungsten, TZM TM , Inconel and ceramic parts. The completed design has been finalised in a proposal to the ILW project, with utmost ITER-relevance

  8. Incorporation of tungsten metal fibers in a metal and ceramic matrix

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Vokáč, M.; Kolísko, J.; Pokorný, P.; Kubatík, Tomáš František

    2017-01-01

    Roč. 56, 1-2 (2017), s. 79-82 ISSN 0543-5846 Institutional support: RVO:61389021 Keywords : tungsten wires * tungsten fibers * plasma spraying * metallic coatings * ceramic coatings Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics http://hrcak.srce.hr/168890

  9. Experimental mechanistic investigation of the nanostructuring of tungsten with low energy helium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fiflis, P., E-mail: fiflis1@illinois.edu; Connolly, N.; Ruzic, D.N.

    2016-12-15

    Helium ion bombardment of tungsten at temperatures between approximately one third and one half of its melting point has shown growth of nanostructures colloquially referred to as “fuzz”. The nanostructures take the form of thin tendrils of diameter about 30 nm and grow out of the bulk material. Tungsten will and does compose one of the key materials for plasma facing components (PFCs) in fusion reactors. The formation of nanostructured fuzz layers on PFCs would be detrimental to the performance of the reactor, and must therefore be avoided. Previous experiments have shown evidence that tungsten fuzz is initially grown by loop punching of helium bubbles created in the bulk. However, once the tendrils grow to sufficient length, the tendrils should intercept the entire helium flux, halting the production of fuzz. Fuzz continues to grow though. To increase the understanding of the mechanisms of tungsten fuzz formation, and thereby aid the avoidance of its production, a series of tests were performed to examine the validity of several theories regarding later stage tungsten fuzz growth. Tests showed that the fuzz formation was dependent solely on the bombardment of helium ions, and not on electric fields, or adatom diffusion. Experiments employing a tungsten coated molybdenum sample indicate the presence of a strong mixing layer and strongly suggest that tungsten fuzz growth continues to occur from the bottom up even as the tendrils grow in size. Tests also show a similarity between different metals exposed to helium ion fluxes where the ratio of bubble diameter to tendril diameter is constant.

  10. Experimental mechanistic investigation of the nanostructuring of tungsten with low energy helium plasmas

    International Nuclear Information System (INIS)

    Fiflis, P.; Connolly, N.; Ruzic, D.N.

    2016-01-01

    Helium ion bombardment of tungsten at temperatures between approximately one third and one half of its melting point has shown growth of nanostructures colloquially referred to as “fuzz”. The nanostructures take the form of thin tendrils of diameter about 30 nm and grow out of the bulk material. Tungsten will and does compose one of the key materials for plasma facing components (PFCs) in fusion reactors. The formation of nanostructured fuzz layers on PFCs would be detrimental to the performance of the reactor, and must therefore be avoided. Previous experiments have shown evidence that tungsten fuzz is initially grown by loop punching of helium bubbles created in the bulk. However, once the tendrils grow to sufficient length, the tendrils should intercept the entire helium flux, halting the production of fuzz. Fuzz continues to grow though. To increase the understanding of the mechanisms of tungsten fuzz formation, and thereby aid the avoidance of its production, a series of tests were performed to examine the validity of several theories regarding later stage tungsten fuzz growth. Tests showed that the fuzz formation was dependent solely on the bombardment of helium ions, and not on electric fields, or adatom diffusion. Experiments employing a tungsten coated molybdenum sample indicate the presence of a strong mixing layer and strongly suggest that tungsten fuzz growth continues to occur from the bottom up even as the tendrils grow in size. Tests also show a similarity between different metals exposed to helium ion fluxes where the ratio of bubble diameter to tendril diameter is constant.

  11. Tungsten oxide thin films obtained by anodisation in low electrolyte concentration

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Nadja B.D. da [Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Capão do Leão, s/n, Pelotas, RS (Brazil); Pazinato, Julia C.O. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 Porto Alegre, RS (Brazil); Sombrio, Guilherme; Pereira, Marcelo B.; Boudinov, Henri [Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 Porto Alegre, RS (Brazil); Gündel, André; Moreira, Eduardo C. [Universidade Federal do Pampa, Travessa 45, 1650 Bagé, RS (Brazil); Garcia, Irene T.S., E-mail: irene.garcia@ufrgs.br [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 Porto Alegre, RS (Brazil)

    2015-03-02

    Tungsten oxide nanostructured films were grown on tungsten substrates by anodisation under a fixed voltage and with sodium fluoride as electrolyte. The effect of the anion chloride and the influence of the modifying agent disodium hydrogen phosphate in the tungsten oxide films were also investigated. The structural characterisation of the films was performed by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The band gap was determined through diffuse reflectance spectroscopy. The thin films were photoluminescent and emitted in the range of 300 to 630 nm when irradiated at 266 nm. The synthesised films efficiently degraded of methyl orange dye in the presence of hydrogen peroxide and 250 nm radiation. The modifying agent was responsible for the improvement of the photocatalytic activity. Films with similar photocatalytic performance were obtained when the system sodium fluoride and disodium hydrogen phosphate were replaced by sodium chloride. The porous structure and low band gap values were responsible for the photocatalytic behaviour. - Highlights: • Tungsten oxide thin films were obtained by anodisation of tungsten in aqueous media. • The performance of the NaCl, NaF and NaF/Na{sub 2}HPO{sub 4} as electrolytes was investigated. • The relation between structure and optical behaviour has been discussed. • Films obtained with NaCl and NaF/Na{sub 2}HPO{sub 4} present similar photocatalytic activity.

  12. Research and development of tungsten electrodes added with rare earth oxides

    International Nuclear Information System (INIS)

    Zuoren Nie; Ying Chen; Meiling Zhou; Tieyong Zuo

    2001-01-01

    The recent research and development of tungsten electrodes used in TIG and Plasma technologies are introduced, and the tungsten materials as well as the effects of rare earth oxides are specially discussed. in W-La 2 O 3 , W-CeO 2 , W-Y 2 O 3 and W-ThO 2 electrode materials, the W-2.2mass%La 2 O 3 electrode exhibited the best properties when the current is of little or middle volume, and when the electrodes are used in large current, the W-Y 2 O 3 electrode is the best. By a comparative study between the tungsten electrodes activated with single metal oxides, as above-mentioned, and those containing two or three rare earth oxides, namely La 2 O 3 , CeO 2 and Y 2 O 3 , it was indicated that the welding arc properties of the tungsten electrodes activated with combined rare earth oxides additions is superior than that of the electrodes containing single oxides as above mentioned. It was also shown that the operating properties of tungsten electrodes depend intensively on the rare earth oxides contained in the electrodes, and the actions of rare earth oxides during arcing are the most important factors to the electrodes' operating properties, temperature, work function as well as the arc stability. (author)

  13. High strength tungsten heavy alloys with molybdenum additions

    International Nuclear Information System (INIS)

    Bose, A.; Sims, D.M.; German, R.M.

    1987-01-01

    Tungsten heavy alloys are candidates for numerous applications based on the unique combination of high density, high strength, and high ductility coupled with excellent machinability. Though there has been considerable research on heavy alloys, the primary focus has been on the ductility. These alloys are well suited for ballistic uses due to their high densities and it is expected that for superior ballistic performance, a high hardness, high strength and moderate ductility alloy would be ideal. The major goal of this investigation was to obtain heavy alloys with hardness greater than HRA 72. It is evident from the phase diagrams that molybdenum, which goes into solution in tungsten, nickel and iron, could act as a potential strengthening addition. With this in view, tungsten heavy alloys with molybdenum additions were fabricated from mixed elemental powders. A baseline composition of 90W-7Ni-3Fe was chosen to its good elongation and moderate strength. The molybdenum additions were made by replacing the tungsten. Compared to the baseline properties with no molybdenum addition, the strength and hardness showed a continuous increase with molybdenum addition. The ductility of the alloy continued to decrease with increasing molybdenum content, but even with 16% wt. % molybdenum of the elongation was still around 6%. An interesting facet of these alloying additions is the grain refinement that is brought about by adding to molybdenum to the system. The grain refinement is related to the lower solubility of tunbsten in the matrix due to partial displacement by molybdenum

  14. Chemically vapor-deposited tungsten: its high temperature strength and ductility

    International Nuclear Information System (INIS)

    Bryant, W.A.

    1977-01-01

    The high temperature tensile ductility (as measured by total elongation normal to the growth direction) of chemically vapor-deposited tungsten was found to be significantly greater than previously reported. A correlation was found between ductility and void content. However, voids were found to have essentially no effect on the high temperature strength of this material, which is considerably weaker than powder metallurgy tungsten. (Auth.)

  15. Separation of tungsten and rhenium on alumina

    Directory of Open Access Journals (Sweden)

    MILOVAN SM. STOILJKOVIC

    2004-09-01

    Full Text Available The conditions for the efficient separation of tungsten(VI and rhenium (VII on alumina were established. The distribution coefficients Kd for tungstate and perrhenate anions, as well as the separation factors a (a = KdWO42-/Kd ReO4- were determined using hydrochloric or nitric acid as the aqueous media. A solution of sodium chloride in the pH range 2–6 was also examined. Under all the tested experimental conditions, alumina is a much better adsorbent for tungsten than for rhenium. The obtained results indicated that the best separation of these two elements is achieved when 0.01– 0.1 mol dm-3 HCl or 1.0 mol dm-3 HNO3 are used as the aqueous media. If NaCl is used as the aqueous phase, the best separation is achieved with 0.20 mol dm-3 NaCl, pH 4–6. Under these experimental conditions, the breakthrough and saturation capacities of alumina for tungsten at pH 4 are 17 and 26 mg W/g Al2O3, respectively. With increasing pH, these values decrease. Thus, at pH 6 they are only 4 and 13 mg W/g Al2O3, respectively.

  16. Preliminary result on quantitative analysis using Zn-like tungsten EUV spectrum in Large Helical Device

    International Nuclear Information System (INIS)

    Morita, Shigeru; Dong, Chunfeng; Wang, Erhui

    2013-01-01

    Tungsten study through visible, vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) spectroscopy has been recently started in Large Helical Device (LHD) for developing the diagnostic method in International Thermonuclear Experimental Reactor (ITER) and understanding the tungsten transport in helical system. In order to study the tungsten spectra from core plasmas of LHD, several tungsten spectra are observed in EUV range by injecting a carbon pellet with tungsten. Zn-like tungsten spectrum with 4p-4s transition is clearly identified at 60.9Å in high-temperature phase (T_e ≥ 2.3 keV) of NBI discharges in addition to several unresolved transition arrays with 6g-4f, 5g-4f, 5f-4d, 5g-4f, 4f-4d and 4d-4p transitions in range of 10-70Å. Radial profile of the Zn-like tungsten is also successfully observed with enough intensity in order of 10"1"6 photons.cm"-"2.s"-"1. The radial emissivity profile reconstructed from the chord-integrated intensity profile is analyzed with combination of HULLAC code for emission coefficient calculation of the Zn-like transition and impurity transport code included ADPAK code for calculation of ionization and recombination rate coefficients. Thus, a total tungsten ion density of 3.5x10"1"0 cm"-"3 at the plasma center is reasonably obtained in discharge with central electron density of 4x10"1"3 cm"-"3 as the first experimental trial. The present result demonstrates that the Zn-like 4p-4s transition is applicable to the tungsten diagnostics in high-temperature plasmas. (author)

  17. Production And Characterization Of Tungsten-Based Positron Moderators

    International Nuclear Information System (INIS)

    Lucio, O. G. de; Morales, J. G.; Cruz-Manjarrez, H.

    2011-01-01

    Experiments of interest in Atomic Physics require production of well-defined low-energy positron beams through a moderation process of high-energy positrons, which can be produced by either the use of a radioactive source or by accelerator based pair production process. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency, high work function and relatively low cost. In this work we present different methods to produce tungsten-based candidate moderators in a variety of shapes. We also present results from characterizing these candidate moderators by ion beam analysis and microscopy techniques.

  18. The dynamical mechanical properties of tungsten under compression at working temperature range of divertors

    International Nuclear Information System (INIS)

    Zhu, C.C.; Song, Y.T.; Peng, X.B.; Wei, Y.P.; Mao, X.; Li, W.X.; Qian, X.Y.

    2016-01-01

    In the divertor structure of ITER and EAST with mono-block module, tungsten plays not only a role of armor material but also a role of structural material, because electromagnetic (EM) impact will be exerted on tungsten components in VDEs or CQ. The EM loads can reach to 100 MN, which would cause high strain rates. In addition, directly exposed to high-temperature plasma, the temperature regime of divertor components is complex. Aiming at studying dynamical response of tungsten divertors under EM loads, an experiment on tungsten employed in EAST divertors was performed using a Kolsky bar system. The testing strain rates and temperatures is derived from actual working conditions, which makes the constitutive equation concluded by using John-Cook model and testing data very accurate and practical. The work would give a guidance to estimate the dynamical response, fatigue life and damage evolution of tungsten divertor components under EM impact loads. - Graphical abstract: From the comparison between the experimental curves and the predicted curves calculated by adopting the corrected m, it is very clear that the new model is of great capability to explain the deformation behavior of the tungsten material under dynamic compression at high temperatures. (EC, PC and PCM refers to experimental curve, predicted curve and predicted curve with a corrected m. Different colors represent different scenarios.). - Highlights: • Test research on dynamic properties of tungsten at working temperature range and strain rate range of divertors. • Constitutive equation descrbing strain hardening, strain rate hardening and temperature softening. • A guidance to estimate dynamical response and damage evolution of tungsten divertor components under impact.

  19. Volatility from copper and tungsten alloys for fusion reactor applications

    International Nuclear Information System (INIS)

    Smolik, G.R.; Neilson, R.M. Jr.; Piet, S.J.

    1989-01-01

    Accident scenarios for fusion power plants present the potential for release and transport of activated constituents volatilized from first wall and structural materials. The extent of possible mobilization and transport of these activated species, many of which are ''oxidation driven'', is being addressed by the Fusion Safety Program at the Idaho National Engineering Laboratory (INEL). This report presents experimental measurements of volatilization from a copper alloy in air and steam and from a tungsten alloy in air. The major elements released included zinc from the copper alloy and rhenium and tungsten from the tungsten alloy. Volatilization rates of several constituents of these alloys over temperatures ranging from 400 to 1200 degree C are presented. These values represent release rates recommended for use in accident assessment calculations. 8 refs., 3 figs., 5 tabs

  20. Hydrogen blister formation on cold-worked tungsten with layered structure

    International Nuclear Information System (INIS)

    Nishijima, Dai; Sugimoto, Takanori; Takamura, Shuichi; Ye, Minyou; Ohno, Noriyasu

    2005-01-01

    Low-energy ( 10 21 m -2 s -1 ) hydrogen plasma exposures were performed on cold-worked powder metallurgy tungsten (PM-W), recrystallized cold-worked PM-W and hot-worked PM-W. Large blisters with a diameter of approximately 100-200 μm were observed only on the surface of cold-worked PM-W. The blister formation mechanism has not been clarified thus far. PM-W has a consisting of 1-μm-thick layers, which is formed by press-roll processing. A detailed observation of the cross section of those blisters shows for the first time that the blisters are formed by cleaving the upper layer along the stratified layer. These experimental results indicate that the manufacturing process of tungsten material is one of the key factors for blister formation on the tungsten surface. (author)

  1. Durability of adhesive bonds to uranium alloys, tungsten, tantalum, and thorium

    International Nuclear Information System (INIS)

    Childress, F.G.

    1975-01-01

    Long-term durability of epoxy bonds to alloys of uranium (U-Nb and Mulberry), nickel-plated uranium, thorium, tungsten, tantalum, tantalum--10 percent tungsten, and aluminum was evaluated. Significant strengths remain after ten years of aging; however, there is some evidence of bond deterioration with uranium alloys and thorium stored in ambient laboratory air

  2. Programming voltage reduction in phase change memory cells with tungsten trioxide bottom heating layer/electrode

    International Nuclear Information System (INIS)

    Rao Feng; Song Zhitang; Gong Yuefeng; Wu Liangcai; Feng Songlin; Chen, Bomy

    2008-01-01

    A phase change memory cell with tungsten trioxide bottom heating layer/electrode is investigated. The crystalline tungsten trioxide heating layer promotes the temperature rise in the Ge 2 Sb 2 Te 5 layer which causes the reduction in the reset voltage compared to a conventional phase change memory cell. Theoretical thermal simulation and calculation for the reset process are applied to understand the thermal effect of the tungsten trioxide heating layer/electrode. The improvement in thermal efficiency of the PCM cell mainly originates from the low thermal conductivity of the crystalline tungsten trioxide material.

  3. Suppression of tungsten accumulation during ELMy H-mode by lower hybrid wave heating in the EAST tokamak

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2017-08-01

    Full Text Available EAST tokamak has been equipped with upper tungsten divertor since 2014. The tungsten accumulation has been often observed in NBI-heated H-mode discharges suggesting deleterious tungsten confinement in the plasma core. It causes not only H-L back transition but also plasma disruption in several discharges. Suppression of the tungsten accumulation is therefore the most important issue in EAST to achieve a long pulse H-mode discharge. In order to study the tungsten behavior in the long pulse discharge, tungsten spectra have been measured at 20–140Å. The tungsten density, nw, is evaluated from the intensity of tungsten unresolved transition array (W-UTA in a wavelength range of 45–70Å which is composed of several ionization stages of tungsten, e.g. W27+-W45+ at Te0∼2.5keV. It is found that the tungsten accumulation can be suppressed when the 4.6GHz LHW with PLHW∼0.8MW is superimposed on the NBI phase (PNBI= 1.9MW. During the superimposed phase the ELM frequency, fELM, increases from ∼30Hz to ∼60Hz and the tungsten density is halved compared to the NBI-heated discharge. The H-mode discharge can be thus steadily sustained for longer period. It is found that the nw is a large function of the ratio of LHW power to the total injection power, PLHW/(PLHW+PNBI, and the nw can be reduced, at least, in an order of magnitude smaller than that in NBI-heated discharges at PLHW/(PLHW+PNBI≥0.8. The result strongly suggests a possible way toward the steady H-mode discharge.

  4. Sequential and simultaneous thermal and particle exposure of tungsten

    International Nuclear Information System (INIS)

    Steudel, I; Huber, A; Kreter, A; Linke, J; Sergienko, G; Unterberg, B; Wirtz, M

    2016-01-01

    The broad array of expected loading conditions in a fusion reactor such as ITER necessitates high requirements on the plasma facing materials (PFMs). Tungsten, the PFM for the divertor region, the most affected part of the in-vessel components, must thus sustain severe, distinct exposure conditions. Accordingly, comprehensive experiments investigating sequential and simultaneous thermal and particle loads were performed on double forged pure tungsten, not only to investigate whether the thermal and particle loads cause damage but also if the sequence of exposure maintains an influence. The exposed specimens showed various kinds of damage such as roughening, blistering, and cracking at a base temperature where tungsten could be ductile enough to compensate the induced stresses exclusively by plastic deformation (Pintsuk et al 2011 J. Nucl. Mater. 417 481–6). It was found out that hydrogen has an adverse effect on the material performance and the loading sequence on the surface modification. (paper)

  5. Tungsten recrystallization and cracking under ITER-relevant heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Budaev, V.P., E-mail: Budaev@mail.ru [NRC «Kurchatov Institute», Akademika Kurchatova pl., Moscow (Russian Federation); Martynenko, Yu.V. [NRC «Kurchatov Institute», Akademika Kurchatova pl., Moscow (Russian Federation); National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow (Russian Federation); Karpov, A.V.; Belova, N.E. [NRC «Kurchatov Institute», Akademika Kurchatova pl., Moscow (Russian Federation); Zhitlukhin, A.M. [SRC RF TRINITI, Moscow Region (Russian Federation); Klimov, N.S., E-mail: klimov@triniti.ru [SRC RF TRINITI, Moscow Region (Russian Federation); National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow (Russian Federation); Podkovyrov, V.L.; Barsuk, V.A.; Putrik, A.B.; Yaroshevskaya, A.D. [SRC RF TRINITI, Moscow Region (Russian Federation); Giniyatulin, R.N. [Efremov Institute, St. Petersburg (Russian Federation); Safronov, V.M. [Institution «Project Center ITER», Moscow (Russian Federation); SRC RF TRINITI, Moscow Region (Russian Federation); Khimchenko, L.N. [Institution «Project Center ITER», Moscow (Russian Federation)

    2015-08-15

    The tungsten surface structure was analyzed after the test in the QSPA-T under heat loads relevant to those expected in the ITER during disruptions. Repeated pulses lead to the melting and the resolidification of the tungsten surface layer of ∼50 μm thickness. There is ∼50 μm thickness intermediate layer between the original structure and the resolidified layer. The intermediate layer is recrystallized and has a random grains’ orientation whereas the resolidified layer and basic structure have texture with preferable orientation 〈1 0 0〉 normal to the surface. The cracks which were normal to the surface were observed in the resolidified layer as well as the cracks which were parallel to the surface at the depth up to 300 μm. Such cracks can result in the brittle destruction which is a hazard for the full tungsten divertor of the ITER. The theoretical analysis of the crack formation reasons and a possible consequence for the ITER are given.

  6. Mechanical properties and structural of metal-ceramic tungsten heterogeneity

    International Nuclear Information System (INIS)

    Gnuchev, V.S.; Zasimchuk, E.Eh.; Kas'yan, K.N.; Kravchenko, V.S.; Rabinovich, E.M.; Kharchenko, V.K.; Sheina, I.V.

    1978-01-01

    The influence of the grain size and the structure nonuniformity of cermet tungsten has been studied on its stre--ngth properties at temperatures of 500, 1000, and 1500 deg C. It has been shown that at a high temperature, the samples having a coarse-grained structure (about 50/m) preserve a high level of strength with an elevated plasticity. In the samples having the fine-grained (about 16/m) and the coarse-grained (about 114/m) structure, an abrupt decrease in the plasticity is observed along with a decrease in the strength. By investigating the influence of the annealing conditions on the structure of tungsten, the temperature range of the secondary recrystallization (about 2000 to 2200 deg C) has been established. The rolling temperature of sintered tungsten does not exceed 1700 deg C; thus a supposition is made that the structural nonuniformity of the material is attributable to the process of primary recrystallization and the amount of admixtures present

  7. Closed-cage tungsten oxide clusters in the gas phase.

    Science.gov (United States)

    Singh, D M David Jeba; Pradeep, T; Thirumoorthy, Krishnan; Balasubramanian, Krishnan

    2010-05-06

    During the course of a study on the clustering of W-Se and W-S mixtures in the gas phase using laser desorption ionization (LDI) mass spectrometry, we observed several anionic W-O clusters. Three distinct species, W(6)O(19)(-), W(13)O(29)(-), and W(14)O(32)(-), stand out as intense peaks in the regular mass spectral pattern of tungsten oxide clusters suggesting unusual stabilities for them. Moreover, these clusters do not fragment in the postsource decay analysis. While trying to understand the precursor material, which produced these clusters, we found the presence of nanoscale forms of tungsten oxide. The structure and thermodynamic parameters of tungsten clusters have been explored using relativistic quantum chemical methods. Our computed results of atomization energy are consistent with the observed LDI mass spectra. The computational results suggest that the clusters observed have closed-cage structure. These distinct W(13) and W(14) clusters were observed for the first time in the gas phase.

  8. Implantation driven permeation behavior of deuterium through pure tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hirofumi E-mail: nakamura@tpl.tokai.jaeri.go.jp; Hayashi, Takumi; Nishi, Masataka; Arita, Makoto; Okuno, Kenji

    2001-09-01

    Implantation driven permeation behavior of deuterium through pure tungsten has been investigated to estimate the amount of tritium permeation through its barrier in a thermo-nuclear fusion device. The permeation experiments were performed on pure tungsten foil of 25 {mu}m thickness under conditions of incident flux of 1.9x10{sup 18}-1.1x10{sup 19} D{sup +}/m{sup 2}s, incident ion energy of 200-2000 eV, and specimen temperature of 512-660 K. As a result of this steady-state permeation experiment, the rate-determining process of deuterium permeation was found to be controlled by diffusion at both implanted and permeated sides. On the other hand, transient permeation was strongly affected by trap effect in the specimen. Simulation analysis using TMAP code on transient permeation behavior indicates the existence of a trap site with a trap energy of nearly 1eV and with a trap density of over several ten's ppm in tungsten.

  9. Implantation driven permeation behavior of deuterium through pure tungsten

    International Nuclear Information System (INIS)

    Nakamura, Hirofumi; Hayashi, Takumi; Nishi, Masataka; Arita, Makoto; Okuno, Kenji

    2001-01-01

    Implantation driven permeation behavior of deuterium through pure tungsten has been investigated to estimate the amount of tritium permeation through its barrier in a thermo-nuclear fusion device. The permeation experiments were performed on pure tungsten foil of 25 μm thickness under conditions of incident flux of 1.9x10 18 -1.1x10 19 D + /m 2 s, incident ion energy of 200-2000 eV, and specimen temperature of 512-660 K. As a result of this steady-state permeation experiment, the rate-determining process of deuterium permeation was found to be controlled by diffusion at both implanted and permeated sides. On the other hand, transient permeation was strongly affected by trap effect in the specimen. Simulation analysis using TMAP code on transient permeation behavior indicates the existence of a trap site with a trap energy of nearly 1eV and with a trap density of over several ten's ppm in tungsten

  10. Suppression of cavitation in melted tungsten by doping with lanthanum oxide

    International Nuclear Information System (INIS)

    Yuan, Y.; Lu, G.H.; Xu, B.; Fu, B.Q.; Xu, H.Y.; Li, C.; Jia, Y.Z.; Qu, S.L.; Liu, W.; Greuner, H.; Böswirth, B.; Luo, G.-N.

    2014-01-01

    Melting and boiling behaviour of pure tungsten and 1 wt% lanthanum-oxide-doped tungsten (WL10) are investigated, focusing on the material selection with respect to material loss induced by cavitation. Melting experiments under high heat loads are carried out in the high heat flux facility GLADIS. Pulsed hydrogen neutral beams with heat flux of 10 and 23 MW m −2 are applied onto the adiabatically loaded samples for intense surface melting. Melt layer of the two tungsten grades exhibit different microstructure characteristics. Substantive voids owing to cavitation in the liquid phase are observed in pure W and lead to porous resolidified material. However, little cavitation bubbles can be found in the dense resolidified layer of WL10. In order to find out the gaseous sources, vapour collection is performed and the components are subsequently detected. Based on the observations and analyses, the microstructure evolutions corresponding to melting and vapourization behaviour of the two tungsten grades are tentatively described, and furthermore, the underlying mechanisms of cavitation in pure W and its suppression in WL10 are discussed. (paper)

  11. Tungsten - rhenium alloys wire: overview of thermomechanical processing and properties data

    International Nuclear Information System (INIS)

    Bryskin, B.

    2001-01-01

    The scope of this study encompasses the compositional modifications of the tungsten-rhenium dual system (W-3/5 Re up to W-27 Re) as well as some of the tungsten-molybdenum-rhenium ternary system. The alloys of interest are considered with a specific representation of powder metallurgy route based on doped or undoped tungsten vs. vacuum melted materials. This paper constitutes an in-depth review of structural and mechanical properties and systematic compilation of challenges necessary to provide the quality consistency of severely drawn filaments. The issue of thermomechanical processing trends is addressed as an important part of W-Re fabrication technology to achieve further improvement in design properties of rod and wire. (author)

  12. Fracture mechanical analysis of tungsten armor failure of a water-cooled divertor target

    Energy Technology Data Exchange (ETDEWEB)

    Li, Muyuan; Werner, Ewald [Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, Technische Universität München, Boltzmannstr. 15, 85748 Garching (Germany); You, Jeong-Ha, E-mail: you@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2014-11-15

    Highlights: • The FEM-based VCE method and XFEM were employed for computing K{sub I} (or J-integral) and predicting progressive cracking, respectively. • The most probable pattern of crack formation is radial cracking in the tungsten armor block. • The most probable site of cracking is the upper interfacial region of the tungsten armor block adjacent to the top position of the copper interlayer. • The initiation of a major crack becomes likely, only when the strength of tungsten armor block is significantly reduced from its original strength. - Abstract: The inherent brittleness of tungsten at low temperature and the embrittlement by neutron irradiation are its most critical weaknesses for fusion applications. In the current design of the ITER and DEMO divertor, the high heat flux loads during the operation impose a strong constraint on the structure–mechanical performance of the divertor. Thus, the combination of brittleness and the thermally induced stress fields due to the high heat flux loads raises a serious reliability issue in terms of the structural integrity of tungsten armor. In this study, quantitative estimates of the vulnerability of the tungsten monoblock armor cracking under stationary high heat flux loads are presented. A comparative fracture mechanical investigation has been carried out by means of two different types of computational approaches, namely, the extended finite element method (XFEM) and the finite element method (FEM)-based virtual crack tip extension (VCE) method. The fracture analysis indicates that the most probable pattern of crack formation is radial cracking in the tungsten armor starting from the interface to tube and the most probable site of cracking is the upper interfacial region of the tungsten armor adjacent to the top position of the copper interlayer. The strength threshold for crack initiation and the high heat flux load threshold for crack propagation are evaluated based on XFEM simulations and computations

  13. Synthesis, Consolidation and Characterization of Sol-gel Derived Tantalum-Tungsten Oxide Thermite Composites

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, O [Univ. of California, Davis, CA (United States)

    2010-06-01

    Energetic composite powders consisting of sol-gel (SG) derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The SG derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO3) energetic composite was consolidated to a density of 9.17 g·cm-3 or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy.

  14. Study on the oxidation and reduction of tungsten surface for sub-50 nm patterning process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Kyu; Nam, Seok Woo; Cho, Sung Il; Jhon, Myung S.; Min, Kyung Suk; Kim, Chan Kyu; Jung, Ho Bum; Yeom, Geun Young [Memory Division Semiconductor Business, Samsung Electronics, San No. 16 Banwol-Ri, Taean-Eup, Hwasung-City, Gyeonggi-Do 449-711, South Korea and Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Memory Division Semiconductor Business, Samsung Electronics, San No. 16 Banwol-Ri, Taean-Eup, Hwasung-City, Gyeonggi-Do 449-711 (Korea, Republic of); Department of Chemical Engineering and Data Storage Systems Center, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2012-11-15

    The oxidation characteristics of tungsten line pattern during the carbon-based mask-layer removal process using oxygen plasmas have been investigated for sub-50 nm patterning processes, in addition to the reduction characteristics of the WO{sub x} layer formed on the tungsten line surface using hydrogen plasmas. The surface oxidation of tungsten lines during the mask layer removal process could be minimized by using low-temperature (300 K) plasma processing for the removal of the carbon-based material. Using this technique, the thickness of WO{sub x} on the tungsten line could be decreased to 25% compared to results from high-temperature processing. The WO{sub x} layer could also be completely removed at a low temperature of 300 K using a hydrogen plasma by supplying bias power to the tungsten substrate to provide a activation energy for the reduction. When this oxidation and reduction technique was applied to actual 40-nm-CD device processing, the complete removal of WO{sub x} formed on the sidewall of tungsten line could be observed.

  15. The dynamical mechanical properties of tungsten under compression at working temperature range of divertors

    Science.gov (United States)

    Zhu, C. C.; Song, Y. T.; Peng, X. B.; Wei, Y. P.; Mao, X.; Li, W. X.; Qian, X. Y.

    2016-02-01

    In the divertor structure of ITER and EAST with mono-block module, tungsten plays not only a role of armor material but also a role of structural material, because electromagnetic (EM) impact will be exerted on tungsten components in VDEs or CQ. The EM loads can reach to 100 MN, which would cause high strain rates. In addition, directly exposed to high-temperature plasma, the temperature regime of divertor components is complex. Aiming at studying dynamical response of tungsten divertors under EM loads, an experiment on tungsten employed in EAST divertors was performed using a Kolsky bar system. The testing strain rates and temperatures is derived from actual working conditions, which makes the constitutive equation concluded by using John-Cook model and testing data very accurate and practical. The work would give a guidance to estimate the dynamical response, fatigue life and damage evolution of tungsten divertor components under EM impact loads.

  16. The DAMPE silicon tungsten tracker

    CERN Document Server

    Gallo, Valentina; Asfandiyarov, R; Azzarello, P; Bernardini, P; Bertucci, B; Bolognini, A; Cadoux, F; Caprai, M; Domenjoz, M; Dong, Y; Duranti, M; Fan, R; Franco, M; Fusco, P; Gargano, F; Gong, K; Guo, D; Husi, C; Ionica, M; Lacalamita, N; Loparco, F; Marsella, G; Mazziotta, M N; Mongelli, M; Nardinocchi, A; Nicola, L; Pelleriti, G; Peng, W; Pohl, M; Postolache, V; Qiao, R; Surdo, A; Tykhonov, A; Vitillo, S; Wang, H; Weber, M; Wu, D; Wu, X; Zhang, F; De Mitri, I; La Marra, D

    2017-01-01

    The DArk Matter Particle Explorer (DAMPE) satellite has been successfully launched on the 17th December 2015. It is a powerful space detector designed for the identification of possible Dark Matter signatures thanks to its capability to detect electrons and photons with an unprecedented energy resolution in an energy range going from few GeV up to 10 TeV. Moreover, the DAMPE satellite will contribute to a better understanding of the propagation mechanisms of high energy cosmic rays measuring the nuclei flux up to 100 TeV. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is made of twelve layers of single-sided AC-coupled silicon micro-strip detectors for a total silicon area of about 7 $m^2$ . To promote the conversion of incident photons into electron-positron pairs, tungsten foils are inserted into the supporting structure. In this document, a detailed description of the STK constructi...

  17. Evaluation of eye shields made of tungsten and aluminum in high-energy electron beams

    International Nuclear Information System (INIS)

    Weaver, Randi D.; Gerbi, Bruce J.; Dusenbery, Kathryn E.

    1998-01-01

    Purpose: To protect the lens and cornea of the eye when treating the eyelid with electrons, we designed a tungsten and aluminum eye shield that protected both the lens and cornea, and also limited the amount of backscatter to the overlying eyelid when using electron beam therapy. Methods and Materials: Custom curved tungsten eye shields, 2 mm and 3 mm thick, were placed on Kodak XV film on 8 cm polystyrene and irradiated to evaluate the transmission through the shields. To simulate the thickness of the eyelid and to hold the micro-TLDs, an aquaplast mold was made to match the curvature of the eye shields. Backscatter was measured by placing the micro-TLDs on the beam entrance side to check the dose to the underside of the eyelid. Measurements were done with no aluminum, 0.5, and 1.0 mm of aluminum on top of the tungsten eye shields. The measurements were repeated with 2- and 3-mm flat pieces of lead to determine both the transmission and the backscatter dose for this material. Results: Tungsten proved to be superior to lead for shielding the underlying structures and for reducing backscatter. At 6 MeV, a 3-mm flat slab of tungsten plus 0.5 mm of aluminum, resulted in .042 Gy under the shield when 1.00 Gy is delivered to d max . At 6 MeV for a 3-mm lead plus 0.5-mm aluminum, .046 Gy was measured beneath the shield, a 9.5% decrease with the tungsten. Backscatter was also decreased from 1.17 to 1.13 Gy, a 4% decrease, when using tungsten plus 0.5 mm of aluminum vs. the same thickness of lead. Measurements using 9 MeV were performed in the same manner. With 3 mm tungsten and 0.5 mm of aluminum, at 3 mm depth the dose was .048 Gy compared to .079 Gy with lead and aluminum (39% decrease). Additionally, the backscatter dose was 3% less using tungsten. Simulating the lens dose 3 mm beyond the shield for the 2-mm and 3-mm custom curved tungsten eye shields plus 0.5 mm of aluminum was .030 and .024 Gy, respectively, using 6 MeV (20% decrease). Using 9-MeV electrons, the dose

  18. A molecular dynamics study of helium bombardments on tungsten nanoparticles

    Science.gov (United States)

    Li, Min; Hou, Qing; Cui, Jiechao; Wang, Jun

    2018-06-01

    Molecular dynamics simulations were conducted to study the bombardment process of a single helium atom on a tungsten nanoparticle. Helium atoms ranging from 50 eV to 50 keV were injected into tungsten nanoparticles with a diameter in the range of 2-12 nm. The retention and reflection of projectiles and sputtering of nanoparticles were calculated at various times. The results were found to be relative to the nanoparticle size and projectile energy. The projectile energy of 100 eV contributes to the largest retention of helium atoms in tungsten nanoparticles. The most obvious difference in reflection exists in the range of 3-10 keV. Around 66% of sputtering atoms is in forward direction for projectiles with incident energy higher than 10 keV. Moreover, the axial direction of the nanoparticles was demonstrated to influence the bombardment to some degree.

  19. Synthesis of Tungsten Diselenide Nanoparticles by Chemical Vapor Condensation Method

    Directory of Open Access Journals (Sweden)

    Oleg V. Tolochko

    2015-09-01

    Full Text Available Crystalline tungsten diselenide (WSe2 nanoparticles have been synthesized by a gas phase reaction using tungsten hexacarbonyl and elemental selenium as precursors. The WSe2 nanoparticle morphology varies from the spherical shape to flake-like layered structures. Mean size in smaller dimension are less than 5 nm and the number of layers decreased linearly with decreasing of reaction time and concentration of carbonyl in the gas phase. The mean value of interlayer distance in <0001> direction is comparable with the microscopic values. The selenium-to-tungsten atomic ratios of 2.07, 2.19 and 2.19 were determined respectively, approach to the stoichiometric ratio of 2:1. Main impurities are oxygen and carbon and strongly interrelated with carbonyl concentration in the gas phase.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7356

  20. Near UV-visible line emission from tungsten highly-charged ions in Large Helical Device

    International Nuclear Information System (INIS)

    Kato, D.; Sakaue, H.A.; Murakami, I.; Goto, M.; Oishi, T.; Morita, S.; Fujii, K.; Nakamura, N.; Koike, F.; Sasaki, Akira; Ding, X.-B.; Dong, C.-Z.

    2015-01-01

    Wavelengths of emission lines from tungsten highly-charged ions have been precisely measured in near UV-visible range (320 - 356 nm and 382 - 402 nm) at Large Helical Device (LHD) by tungsten pellet injection. The tungsten emission lines were assigned based on its line-integrated intensity profiles on a poloidal cross section. The ground-term magnetic-dipole (M1) lines of W 26+,27+ and an M1 line of a metastable excited state of W 28+ , whose wavelengths have been determined by measurements using electron-beam-ion-traps (EBITs), are identified in the LHD spectra. The present results partially compliment wavelength data of tungsten highly-charged ions in the near UV-visible range. (author)

  1. Influence of structures on fracture and fracture toughness of cemented tungsten carbides

    International Nuclear Information System (INIS)

    Zhao, W.; Zhang, X.

    1987-01-01

    A study was made of the influence of structures on fracture and fracture toughness of cemented tungsten carbides with different compositions and grain sizes. The measurement of the fracture toughness of cemented tungsten carbide was carried out using single edge notched beam. The microstructural parameters and the proportion for each fracture mode on the fracture surface were obtained. The brittle fracture of the alloy is mainly due to the interfacial decohesion fracture following the interface of the carbide crystals. It has been observed that there are localized fractures region ahead of the crack tip. The morphology of the crack propagation path as well as the slip structure in the cobalt phase of the deformed region have been investigated. In addition, a study of the correlation between the plane strain fracture toughness and microstructural parameters, such as mean free path of the cobalt phase, tungsten carbide grain size and the contiguity of tungsten carbide crystals was also made

  2. Characterization of a Cobalt-Tungsten Interconnect

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Caspersen, Michael

    2012-01-01

    is to act both as a diffusion barrier for chromium and provide better protection against high temperature oxidation than a pure cobalt coating. This work presents a characterization of a cobalt-tungsten alloy coating electrodeposited on the ferritic steel Crofer 22 H which subsequently was oxidized in air......A ferritic steel interconnect for a solid oxide fuel cell must be coated in order to prevent chromium evaporation from the steel substrate. The Technical University of Denmark and Topsoe Fuel Cell have developed an interconnect coating based on a cobalt-tungsten alloy. The purpose of the coating...... for 300 h at 800 °C. The coating was characterized with Glow Discharge Optical Spectroscopy (GDOES), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The oxidation properties were evaluated by measuring weight change of coated samples of Crofer 22 H and Crofer 22 APU as a function...

  3. Dosimetric evaluation of lead and tungsten eye shields in electron beam treatment

    International Nuclear Information System (INIS)

    Shiu, Almon S.; Tung, Samuel S.; Gastorf, Robert J.; Hogstrom, Kenneth R.; Morrison, William H.; Peters, Lester J.

    1996-01-01

    Purpose: The purpose of this study is to report that commercially available eye shields (designed for orthovoltage x-rays) are inadequate to protect the ocular structures from penetrating electrons for electron beam energies equal to or greater than 6 MeV. Therefore, a prototype medium size tungsten eye shield was designed and fabricated. The advantages of the tungsten eye shield over lead are discussed. Methods and Materials: Electron beams (6-9 MeV) are often used to irradiate eyelid tumors to curative doses. Eye shields can be placed under the eyelids to protect the globe. Film and thermoluminescent dosimeters (TLDs) were used within a specially constructed polystyrene eye phantom to determine the effectiveness of various commercially available internal eye shields (designed for orthovoltage x-rays). The same procedures were used to evaluate a prototype medium size tungsten eye shield (2.8 mm thick), which was designed and fabricated for protection of the globe from penetrating electrons for electron beam energy equal to 9 MeV. A mini-TLD was used to measure the dose enhancement due to electrons backscattered off the tungsten eye shield, both with or without a dental acrylic coating that is required to reduce discomfort, permit sterilization of the shield, and reduce the dose contribution from backscattered electrons. Results: Transmission of a 6 MeV electron beam through a 1.7 mm thick lead eye shield was found to be 50% on the surface (cornea) of the phantom and 27% at a depth of 6 mm (lens). The thickness of lead required to stop 6-9 MeV electron beams is impractical. In place of lead, a prototype medium size tungsten eye shield was made. For 6 to 9 MeV electrons, the doses measured on the surface (cornea) and at 6 mm (lens) and 21 mm (retina) depths were all less than 5% of the maximum dose of the open field (4 x 4 cm). Electrons backscattered off a tungsten eye shield without acrylic coating increased the lid dose from 85 to 123% at 6 MeV and 87 to 119% at

  4. Correlation of microstructure and compressive properties of amorphous matrix composites reinforced with tungsten continuous fibers or porous foams

    International Nuclear Information System (INIS)

    Son, Chang-Young; Lee, Sang-Bok; Lee, Sang-Kwan; Kim, Choongnyun Paul; Lee, Sunghak

    2010-01-01

    Zr-based amorphous alloy matrix composites reinforced with tungsten continuous fibers or porous foams were fabricated without pores or defects by liquid pressing process, and their microstructures and compressive properties were investigated. About 65-70 vol.% of tungsten reinforcements were homogeneously distributed inside the amorphous matrix. The compressive test results indicated that the tungsten-reinforced composites showed considerable plastic strain as the compressive load was sustained by fibers or foams. Particularly in the tungsten porous foam-reinforced composite, the compressive stress continued to increase according to the work hardening after the yielding, thereby leading to the maximum strength of 2764 MPa and the plastic strain of 39.4%. This dramatic increase in strength and ductility was attributed to the simultaneous and homogeneous deformation at tungsten foams and amorphous matrix since tungsten foams did not show anisotropy and tungsten/matrix interfaces were excellent.

  5. Optimization of armour geometry and bonding techniques for tungsten-armoured high heat flux components

    International Nuclear Information System (INIS)

    Giniyatulin, R.N.; Komarov, V.L.; Kuzmin, E.G.; Makhankov, A.N.; Mazul, I.V.; Yablokov, N.A.; Zhuk, A.N.

    2002-01-01

    Joining of tungsten with copper-based cooling structure and armour geometry optimization are the major aspects in development of the tungsten-armoured plasma facing components (PFC). Fabrication techniques and high heat flux (HHF) tests of tungsten-armoured components have to reflect different PFC designs and acceptable manufacturing cost. The authors present the recent results of tungsten-armoured mock-ups development based on manufacturing and HHF tests. Two aspects were investigated--selection of armour geometry and examination of tungsten-copper bonding techniques. Brazing and casting tungsten-copper bonding techniques were used in small mock-ups. The mock-ups with armour tiles (20x5x10, 10x10x10, 20x20x10, 27x27x10) mm 3 in dimensions were tested by cyclic heat fluxes in the range of (5-20) MW/m 2 , the number of thermal cycles varied from hundreds to several thousands for each mock-up. The results of the tests show the applicability of different geometry and different bonding technique to corresponding heat loading. A medium-scale mock-up 0.6-m in length was manufactured and tested. HHF tests of the medium-scale mock-up have demonstrated the applicability of the applied bonding techniques and armour geometry for full-scale PFC's manufacturing

  6. CALICE silicon-tungsten electromagnetic calorimeter

    Indian Academy of Sciences (India)

    A highly granular electromagnetic calorimeter prototype based on tungsten absorber and sampling units equipped with silicon pads as sensitive devices for signal collection is under construction. The full prototype will have in total 30 layers and be read out by about 10000 Si cells of 1 × 1 cm2. A first module consisting of 14 ...

  7. Preparation of tungsten coatings on graphite by electro-deposition via Na2WO4–WO3 molten salt system

    International Nuclear Information System (INIS)

    Sun, Ning-bo; Zhang, Ying-chun; Jiang, Fan; Lang, Shao-ting; Xia, Min

    2014-01-01

    Highlights: • Tungsten coatings on graphite were firstly obtained by electro-deposition method via Na 2 WO 4 –WO 3 molten salt system. • Uniform and dense tungsten coatings could be easily prepared in each face of the sample, especially the complex components. • The obtained tungsten coatings are with high purity, ultra-low oxygen content (about 0.022 wt%). • Modulate pulse parameters can get tungsten coatings with different thickness and hardness. - Abstract: Tungsten coating on graphite substrate is one of the most promising candidate materials as the ITER plasma facing components. In this paper, tungsten coatings on graphite substrates were fabricated by electro-deposition from Na 2 WO 4 –WO 3 molten salt system at 1173 K in atmosphere. Tungsten coatings with no impurities were successfully deposited on graphite substrates under various pulsed current densities in an hour. By increasing the current density from 60 mA cm −2 to 120 mA cm −2 an increase of the average size of tungsten grains, the thickness and the hardness of tungsten coatings occurs. The average size of tungsten grains can reach 7.13 μm, the thickness of tungsten coating was in the range of 28.8–51 μm, and the hardness of coating was higher than 400 HV. No cracks or voids were observed between tungsten coating and graphite substrate. The oxygen content of tungsten coating is about 0.022 wt%

  8. Simple preparation of tungsten supported carbon nanoreactors for specific applications: Adsorption, catalysis and electrochemical activity

    Energy Technology Data Exchange (ETDEWEB)

    Mayani, Vishal J.; Mayani, Suranjana V.; Kim, Sang Wook, E-mail: swkim@dongguk.ac.kr

    2015-08-01

    Graphical abstract: - Highlights: • Tungsten carbon composites have shown great recognition in catalysis and electrochemistry. • W-carbon composites are prepared by template replication and W-doping on carbon cage. • Nanocomposites offer enormous assurance as adsorbent, electrode and heterogeneous catalyst. - Abstract: Porous carbon supported tungsten carbide nanoreactors, two sizes (∼25 and 170 nm), were designed using economical petroleum pitch residue followed by tungsten (W) doping. X-ray diffractions showed both carbon tungsten composites (CTC-25 and CTC-170) contained tungsten subcarbide (W{sub 2}C) and monocarbide (WC) as the major and minor crystalline phases, respectively. The present study provides a multiple perspective of carbon tungsten composites (CTCs) for methanol oxidation (as an electrode), adsorption (as an adsorbent) and degradation (as a solid catalyst) of methylene blue (MB). The operational electrodes were designed from both CTCs and used as a catalyst in an electrocatalysis process. The electrocatalysts exhibited high and stable catalytic performance (CTCE-25 > CTCE-170) in methanol electro-oxidation. The newly synthesized W-doped carbon nanoreactors were used successfully as an adsorbent for MB and a heterogeneous catalyst for MB oxidation. Ordered CTC-25 and CTC-170 exhibited dynamic MB adsorption within 15 min and complete oxidation of MB in 25–40 min. A synergetic effect between tungsten carbide and the carbon cage framework was noted.

  9. Comparative study of tungsten and lead as gamma ray shielding material

    International Nuclear Information System (INIS)

    Wang Jian; Zou Shuliang

    2011-01-01

    This article firstly compares the tungsten and lead's physical properties, price and environmental performance, then calculates the thickness of tungsten and lead with the gamma ray 10% transmission when the photon energy are 0.1 MeV, 0.2 MeV, 0.5, 1 MeV and 1.25 MeV, and makes a comparison chart. Finally, it establishes a commonly used shielding model, through which to validate whether the thickness of theoretical calculation can achieve an effective shielding effect by MCNP program. The results showers that tungsten as a new type of shielding material has a lot of advantages, which shielding ability is far higher than the lead. Thus it provides the reference to choose the suitable shielding materials in special occasions. (authors)

  10. A Silica-Supported Monoalkylated Tungsten Dioxo Complex Catalyst for Olefin Metathesis

    KAUST Repository

    Maity, Niladri

    2018-02-15

    A well-defined silica-supported monoalkylated tungsten dioxo complex [(Si-O-)W(=O)(CH-Bu)] was prepared by treatment of highly dehydroxylated silica (SiO: silica treated at 700 °C under high vacuum) with an ionic precursor complex [NEt][W(=O)(CH-Bu)]. The identity of the resulting neutral monoalkylated tungsten dioxo surface complex was established by means of elemental microanalysis and spectroscopic studies (IR, solid-state NMR, Raman, and X-ray absorption spectroscopies). The supported tungsten complex was found to act as a precatalyst for the self-metathesis of 1-octene in a batch reactor. The mechanistic implications of this reaction are discussed with the support of DFT calculations highlighting the potential occurrence of thus-far unexplored mechanistic pathways.

  11. In situ observation of structural change of nanostructured tungsten during annealing

    International Nuclear Information System (INIS)

    Yajima, Miyuki; Yoshida, Naoaki; Kajita, Shin; Tokitani, Masayuki; Baba, Tomotsugu; Ohno, Noriyasu

    2014-01-01

    Deformation of fiberform nanostructure and the dynamic behavior of helium (He) bubbles in fuzz tungsten (W) during annealing have been investigated by means of in situ cross-section observation using transmission electron microscopy and He desorption rate observation using thermal desorption spectroscopy (TDS). Thermal recovery of the nanostructure, such as shrinkage and coalescence of fine structure, annihilation of He bubbles, and large desorption of He gas, occurred around 1073–1173 K. The activation energy of He was estimated from a TDS peak that appeared around 300–400 K by using the Kissinger–Akahira–Sunose model-free-kinetics method. In addition, the TDS results of fiberform nanostructured tungsten were compared with those of tungsten samples irradiated with a high-energy He ion beam

  12. A Silica-Supported Monoalkylated Tungsten Dioxo Complex Catalyst for Olefin Metathesis

    KAUST Repository

    Maity, Niladri; Barman, Samir; Minenkov, Yury; Ould-Chikh, Samy; Abou-Hamad, Edy; Ma, Tao; Qureshi, Ziyauddin; Cavallo, Luigi; D'Elia, Valerio; Gates, Bruce C.; Basset, Jean-Marie

    2018-01-01

    A well-defined silica-supported monoalkylated tungsten dioxo complex [(Si-O-)W(=O)(CH-Bu)] was prepared by treatment of highly dehydroxylated silica (SiO: silica treated at 700 °C under high vacuum) with an ionic precursor complex [NEt][W(=O)(CH-Bu)]. The identity of the resulting neutral monoalkylated tungsten dioxo surface complex was established by means of elemental microanalysis and spectroscopic studies (IR, solid-state NMR, Raman, and X-ray absorption spectroscopies). The supported tungsten complex was found to act as a precatalyst for the self-metathesis of 1-octene in a batch reactor. The mechanistic implications of this reaction are discussed with the support of DFT calculations highlighting the potential occurrence of thus-far unexplored mechanistic pathways.

  13. Co-deposition of rhodium and tungsten films for the first-mirror on ITER

    International Nuclear Information System (INIS)

    Marot, Laurent; Steiner, Roland; Gantenbein, Markus; Mathys, Daniel; Meyer, Ernst

    2011-01-01

    The detailed characterizations of rhodium/tungsten films prepared by co-deposition using a dual magnetron sputtering have been carried out on silicon substrates at room temperature. Effects of the tungsten incorporated in the film on the chemical bonding state, optical reflectivity and crystallinity were investigated using X-ray photoelectron spectroscopy (XPS), reflectivity measurements, X-rays diffraction (XRD) and scanning electron microscopy (SEM). The incorporation of tungsten changes the films crystalline structure i.e. leading to Rh 3 W formation. The reflectivity of the films decreases linearly with the decrease of rhodium concentration. XPS and ultraviolet photoemission spectroscopy (UPS) measurements show a positive shift of the core level binding energy of rhodium which is coupled to a shift of the Rh d-band ΔE d away from the Fermi level. Opposite shifts are observed for tungsten.

  14. SINTERED REFRACTORY TUNGSTEN ALLOYS. Gesinterte hochschmelzende wolframlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Kieffer, R.; Sedlatschek, K.; Braun, H.

    1971-12-15

    Dependence of the melting point of the refractory metals on their positions in the periodic system - alloys of tungsten with other refractory metals - sintering of the alloys - processing of the alloys - technological properties.

  15. A W−Ne interatomic potential for simulation of neon implantation in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Backman, Marie; Juslin, Niklas; Huang, Guiyang [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996-2300 (United States); Wirth, Brian D., E-mail: bdwirth@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996-2300 (United States); P.O. Box 2008, MS-6003, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2016-08-15

    An interatomic pair potential for W−Ne is developed for atomistic molecular dynamics simulations of neon implantation in tungsten. The new potential predicts point defect energies and binding energies of small clusters that are in good agreement with electronic structure calculations. Molecular dynamics simulations of small neon clusters in tungsten show that trap mutation, in which an interstitial neon cluster displaces a tungsten atom from its lattice site, occurs for clusters of three or more neon atoms. However, near a free surface, trap mutation can occur at smaller sizes, including even a single neon interstitial in close proximity to a (100) or (110) surface.

  16. Microstructure, optical, and electrochromic properties of sol-gel nanoporous tungsten oxide films

    Science.gov (United States)

    Djaoued, Yahia; Ashrit, P. V.; Badilescu, S.; Bruning, R.

    2003-08-01

    Porous tungsten oxide films have been prepared by a nonhydrolitic sol-gel method using poly(ethylene glycol) (PEG) as a structure directing agent. The method entails the hydrolysis of an ethanolic solution of tungsten ethoxide (formed by the reaction of WCl6 with ethanol) followed by condensation and polymerization at the PEG-tungsten oxide oligometers interface. A highly porous WO3 framework was obtained after PEG was burned off by calcination at a relativley low temperature. AFM images of the films treated thermally show an ordered material rather than microscopic particulates. Both fibrilar nanostructures and striped phase can be obtained via this approach, depending on the concentration of PEG in the coating solution. XRD data from the fibrils indicate that they are crystalline with very small crystals, whereas the striped phases obtained with 20% PEG correspond to two crystalline phases, one, the stoichiometric WO3 and the other one an oxygen deficient phase, containing larger crystals (~28 nm). The results show that PEG promotes the formation of oxygen deficient phases and delays crystallization. Compared to WO3 with no PEG, the optical and electrochromic properties of the macroporous tungsten oxide films appear to be significantly improved. The formation of organized nanostructures is tentatively accounted for by the strong hydrogen bonding interactions between PEG and the tungsten oxide oligomers.

  17. The Microstructure and Properties of Super Martensitic Stainless Steel Microalloyed with Tungsten and Copper

    Science.gov (United States)

    Ye, Dong; Li, Jun; Liu, Yu-Rong; Yong, Qi-Long; Su, Jie; Cao, Jian-Chun; Tao, Jing-Mei; Zhao, Kun-Yu

    2011-06-01

    The microstructure and properties of super martensitic stainless steel (SMSS) microalloyed with tungsten and copper were studied by means of optical microscopy, dilatometer, X-ray diffraction, and tensile tests. The results showed that the microstructure of SMSS, after quenching and tempering, was a typical biphase structure with tempered martensite and reversed austenite dispersedly distributed in the martensite matrix. W and Cu were added into the SMSS to reduce the transformation temperature (Ms) and improve the strength and hardness of the matrix by grain refining and solid solution strengthening. Thermocalc calculations confirmed that M23C6 compound and Laves phase were precipitated during tempering in the investigated steel. Compared with the traditional SMSS, the steel microalloyed with W and Cu performed better mechanical properties.

  18. Improvement of organic compounds labelling method with the use of thermally activated tritium gas

    International Nuclear Information System (INIS)

    Nejman, L.A.; Smolyakov, V.S.; Antropova, L.P.

    1982-01-01

    Use of a support (various types of papers) is recommended for organic compounds labelling by tritium gas activated at a hot tungsten filament. This improvement increases chemical and radiochemical yields and makes the experiment simpler and faster. Generally labelled triethyloxonium tetra-fluoroborate, ethyl-p-aminobenzoate, p-aminobenzoic acid (Na-salt), A-factor (a natural regulator of streptomycin biosynthesis), decapeptide angiotensin I, phospholipid 1, 2 - dimyristoyl-sn-glycero-3--phosphocholine and E. coli tRNAs have been prepared by this method. Molar radioactivity of the labelled compounds is in the range of 1-200 GBg/mmole [ru

  19. Surface tungsten reduction during thermal decomposition of ammonium paratungstate tetrahydrate in oxidising atmosphere: A paradox?

    International Nuclear Information System (INIS)

    Fait, Martin J.G.; Radnik, Jörg; Lunk, Hans-Joachim

    2016-01-01

    Highlights: • Detection of reduced tungsten ions at the solid’s surface in oxidising atmosphere. • Detection of gaseous ammonia liberated as oxidising agent. • Detection of ammonia’s oxidation products. • Quantification of the ammonia/tungsten redox process. - Abstract: The interaction of ammonia, liberated during thermal decomposition of ammonium paratungstate tetrahydrate in oxidising atmosphere, with tungsten has been studied employing a conventional microbalance combined with MS (Setaram’s instrument Sensys). Applying XPS a partial reduction of tungsten at the surface with the minimal tungsten oxidation number of +5.3 for a sample generated at 293 °C was detected. The balancing oxidation of ammonia to nitrogen/nitrogen oxides has been proven by MS. An amount of 0.049 mol e"− per mol W was transferred which resulted in an ammonia conversion degree from 2.1 mol% (NO_2 formation) to 3.0 mol% (N_2 formation).

  20. Surface tungsten reduction during thermal decomposition of ammonium paratungstate tetrahydrate in oxidising atmosphere: A paradox?

    Energy Technology Data Exchange (ETDEWEB)

    Fait, Martin J.G., E-mail: martin.fait@catalysis.de [Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock (Germany); Radnik, Jörg [Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock (Germany); Lunk, Hans-Joachim [2858 Lake RD, Towanda, PA 18848 (United States)

    2016-06-10

    Highlights: • Detection of reduced tungsten ions at the solid’s surface in oxidising atmosphere. • Detection of gaseous ammonia liberated as oxidising agent. • Detection of ammonia’s oxidation products. • Quantification of the ammonia/tungsten redox process. - Abstract: The interaction of ammonia, liberated during thermal decomposition of ammonium paratungstate tetrahydrate in oxidising atmosphere, with tungsten has been studied employing a conventional microbalance combined with MS (Setaram’s instrument Sensys). Applying XPS a partial reduction of tungsten at the surface with the minimal tungsten oxidation number of +5.3 for a sample generated at 293 °C was detected. The balancing oxidation of ammonia to nitrogen/nitrogen oxides has been proven by MS. An amount of 0.049 mol e{sup −} per mol W was transferred which resulted in an ammonia conversion degree from 2.1 mol% (NO{sub 2} formation) to 3.0 mol% (N{sub 2} formation).

  1. Processing of tungsten csrap into powders by electroerosion dispersion

    International Nuclear Information System (INIS)

    Fominskij, L.P.; Myuller, A.S.; Levchuk, M.V.; Tarabrina, V.P.

    1985-01-01

    A powder produced by electroerosion dispersion in water from tungsten chips and rod cuttings is studied for its properties and structure. Powder particles are mainly of spherical shape, their predominant size is 2-4 μm. A fraction of -63 μm comprises a basic mass of the powder (up to 80%), an ultrafine (to 40 μm) phase of WO which is isolated by decantation comprises about 3.5% of its mass. The powder particles are low oxidized, have a fine-grain microstructure and consist of tungsten with admixture of β-W (to 30%). A fraction of total oxygen mass in the mixture of fractio s 0.74%. The powder containing less than 0.25% of oxygen is produced by decantation of the oxide phase. The product purity is determined exclusively by the purity of the raw material. Prior to producing articles it is recommended to anneal the powder either in the inert atmosphere or in the reduced medium at 750 deg C for β-W to transfer into common tungsten

  2. He-cooled divertor for DEMO. Fabrication technology for tungsten cooling fingers

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, J.; Norajitra, P.; Widak, V.; Krauss, W. [Forschungszentrum Karlsruhe GmbH (Germany)

    2008-07-01

    A modular helium-cooled divertor design based on the multi-jet impingement concept (HEMJ) has been developed for the ''post-ITER'' demonstration reactor (DEMO) at the Forschungszentrum Karlsruhe [1, 2]. The main function of the divertor is to keep the plasma free from impurities by catching particles, such as fusion ash and eroded particles from the first wall. From the divertor surface, a maximum heat load of 10 MW/m{sup 2} at least has to be removed. The whole divertor is split up into a number of cassettes (48 according to the latest design studies [3]). Each cassette is cooled separately. The target plates are provided with several cooling fingers to keep the thermal stresses low. Each cooling finger consists of a tungsten tile which is brazed to a thimble-like cap made of a tungsten alloy W-1%La2O3 (WL10) underneath. The thimble has to be connected to the ODS EUROFER steel structure, which is accomplished by brazing again. The tungsten/tungsten brazing is exposed to 1200 C operation temperature while the tungsten/steel brazing joint must withstand 700 C operating temperature. Cooling of the finger is achieved by multi-jet impingement with helium. The inlet temperature of helium is 600 C and rises up to 700 C at the outlet. With this kind of cooling, a mean heat transfer coefficient of 35.000 W/(m{sup 2*}K) can be reached. This compact report will focus on the manufacturing of such a cooling finger unit at FZK. It will cover the machining of the tungsten tile as well as of the thimble and, the brazing of the parts. The major aim of this activity is, on the one hand, to obtain functioning mock-ups with high quality and high reliability, in particular in terms of minimising the surface roughness, cracks, and micro-cracks. On the other hand, effort should also be laid on realising the mass production from economic point of view. (orig.)

  3. Effects of fibre-form nanostructures on particle emissions from a tungsten surface in plasmas

    International Nuclear Information System (INIS)

    Takamura, S.; Miyamoto, T.; Ohno, N.

    2012-01-01

    The effects of fibre-form nanostructure of a tungsten surface on both electron emission and sputtering in helium/argon plasmas are represented. Generally, a nano-fibre forest, the so-called ‘fuzz’, made of tungsten with helium gas inside is found to have the tendency of suppressing the particle emission substantially. The electron emission comes from the impact of high-energy primary electrons. In addition, a deeply biased tungsten target, which inhibits the influx of even energetic primary electrons, seems to produce an electron emission, and it may be suppressed on the way to nanostructure formation on the surface of the W target. Such an emission process is discussed here. The sputtering yield of the He-damaged tungsten surface with the fibre-form nanostructure depends on the surface morphology while the sputtering itself changes the surface morphology, so that the time evolutions of sputtering yield from the W surface with an originally well-developed nanostructure are found to show a minimum in sputtering yield, which is about a half for the fresh nanostructured tungsten and roughly one-fifth of the yield for the original flat normal tungsten surface. The surface morphology at that time is, for the first time, made clear with field emission scanning electron microscopy observation. The physical mechanism for the appearance of such a minimum in sputtering yield is discussed. (paper)

  4. Advanced Electrochemical Machining (ECM) for tungsten surface micro-structuring in blanket applications

    International Nuclear Information System (INIS)

    Holstein, Nils; Krauss, Wolfgang; Konys, Jürgen; Heuer, Simon; Weber, Thomas

    2016-01-01

    Highlights: • Electrochemical Machining is an appropriate tool for tungsten shaping. • Progress in shaping achieved by combination of ECM with advanced micro-lithography. • Application in First Wall for connection of plasma facing material to breeder blanket. • Successful development of adhesion promotors by ECM for plasma spraying interlayers. • Microstructure electrochemical manufacturing of tungsten in sizes of 100 μm achieved. - Abstract: Plasma facing components for fusion applications must have to exhibit long-term stability under extreme physical conditions, and therefore any material imperfections caused by mechanical and/or thermal stresses in the shaping processes cannot be tolerated due to a high risk of possible technical failures under fusion conditions. To avoid such defects, the method of Electrochemical Machining (ECM) enables a complete defect-free processing of removal of tungsten material during the desired shaping, also for high penetration depths. Furthermore, supported by lithographic mask pretreatment, three-dimensional distinct geometric structures can be positive-imaged via the directional galvanic dissolution applying M-ECM process into the tungsten bulk material. New required applications for tungsten components, e.g. as adhesion promotors in W-surfaces to enable sure grip and bonding of thick plasma-spraying layers for blanket components, will define the way of further miniaturization of well-established millimeter dimensioned M-ECM shaping processes to dimensions of 100 μm and furthermore down to 50 μm. Besides current M-ECM limits the article describes inevitable needs of further developments for mask resists, mask materials and the resulting ECM parameters, to reach the needed accuracy in tungsten microstructure. The achieved progress and observed correlations of processing parameters will be manifested by produced demonstrators made by the new “μM”-ECM process.

  5. Advanced Electrochemical Machining (ECM) for tungsten surface micro-structuring in blanket applications

    Energy Technology Data Exchange (ETDEWEB)

    Holstein, Nils, E-mail: nils.holstein@kit.edu [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Baden-Württemberg (Germany); Krauss, Wolfgang; Konys, Jürgen [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Baden-Württemberg (Germany); Heuer, Simon; Weber, Thomas [Research Center Jülich, Institute of Energy- and Climate Research – Plasma Physics (IEK-4), D-52425 Jülich (Germany)

    2016-11-01

    Highlights: • Electrochemical Machining is an appropriate tool for tungsten shaping. • Progress in shaping achieved by combination of ECM with advanced micro-lithography. • Application in First Wall for connection of plasma facing material to breeder blanket. • Successful development of adhesion promotors by ECM for plasma spraying interlayers. • Microstructure electrochemical manufacturing of tungsten in sizes of 100 μm achieved. - Abstract: Plasma facing components for fusion applications must have to exhibit long-term stability under extreme physical conditions, and therefore any material imperfections caused by mechanical and/or thermal stresses in the shaping processes cannot be tolerated due to a high risk of possible technical failures under fusion conditions. To avoid such defects, the method of Electrochemical Machining (ECM) enables a complete defect-free processing of removal of tungsten material during the desired shaping, also for high penetration depths. Furthermore, supported by lithographic mask pretreatment, three-dimensional distinct geometric structures can be positive-imaged via the directional galvanic dissolution applying M-ECM process into the tungsten bulk material. New required applications for tungsten components, e.g. as adhesion promotors in W-surfaces to enable sure grip and bonding of thick plasma-spraying layers for blanket components, will define the way of further miniaturization of well-established millimeter dimensioned M-ECM shaping processes to dimensions of 100 μm and furthermore down to 50 μm. Besides current M-ECM limits the article describes inevitable needs of further developments for mask resists, mask materials and the resulting ECM parameters, to reach the needed accuracy in tungsten microstructure. The achieved progress and observed correlations of processing parameters will be manifested by produced demonstrators made by the new “μM”-ECM process.

  6. Magnetization curves of sintered heavy tungsten alloys for applications in MRI-guided radiotherapy

    International Nuclear Information System (INIS)

    Kolling, Stefan; Oborn, Bradley M.; Keall, Paul J.; Horvat, Joseph

    2014-01-01

    Purpose: Due to the current interest in MRI-guided radiotherapy, the magnetic properties of the materials commonly used in radiotherapy are becoming increasingly important. In this paper, measurement results for the magnetization (BH) curves of a range of sintered heavy tungsten alloys used in radiation shielding and collimation are presented. Methods: Sintered heavy tungsten alloys typically contain >90 % tungsten and 0 and the BH curve derived. Results: The iron content of the alloys was found to play a dominant role, directly influencing the magnetizationM and thus the nonlinearity of the BH curve. Generally, the saturation magnetization increased with increasing iron content of the alloy. Furthermore, no measurable magnetization was found for all alloys without iron content, despite containing up to 6% of nickel. For two samples from different manufacturers but with identical quoted nominal elemental composition (95% W, 3.5% Ni, 1.5% Fe), a relative difference in the magnetization of 11%–16% was measured. Conclusions: The measured curves show that the magnetic properties of sintered heavy tungsten alloys strongly depend on the iron content, whereas the addition of nickel in the absence of iron led to no measurable effect. Since a difference in the BH curves for two samples with identical quoted nominal composition from different manufacturers was observed, measuring of the BH curve for each individual batch of heavy tungsten alloys is advisable whenever accurate knowledge of the magnetic properties is crucial. The obtained BH curves can be used in FEM simulations to predict the magnetic impact of sintered heavy tungsten alloys

  7. Laser-assisted nanostructuring of Tungsten in liquid environment

    Energy Technology Data Exchange (ETDEWEB)

    Barmina, E.V., E-mail: barminaev@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Stratakis, E. [Institute of Electronic Structure and Laser, Foundation for Research and Technology, Hellas (IESL-FORTH), P.O. Box 1527, Heraklion 711 10 (Greece); Materials Science and Technology Department, University of Crete, Heraklion 710 03 (Greece); Barberoglou, M. [Institute of Electronic Structure and Laser, Foundation for Research and Technology, Hellas (IESL-FORTH), P.O. Box 1527, Heraklion 711 10 (Greece); Physics Department, University of Crete, Heraklion 714 09 (Greece); Stolyarov, V.N.; Stolyarov, I.N. [Roentgenprom, 35 Lenin str., Protvino, 1442281 Moscow region (Russian Federation); Fotakis, C. [Institute of Electronic Structure and Laser, Foundation for Research and Technology, Hellas (IESL-FORTH), P.O. Box 1527, Heraklion 711 10 (Greece); Physics Department, University of Crete, Heraklion 714 09 (Greece); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation)

    2012-05-15

    Formation of surface nanostructures on Tungsten target immersed into liquids is experimentally studied under its exposure to femtosecond laser pulses with different durations. In particular, nanotexturing of Tungsten upon its exposure to delayed femtosecond pulses is investigated. Two different types of morphological features are observed, namely periodic ripples and nanostructures. Field emission scanning electron microscopy shows that the density of nanostructures as well as their morphology depends on the time delay between pulses and reaches its maximum at 1 ps delay. Thermionic emission of nano-structured W cathode is investigated. The work function of nanostructured W surface is measured to be 0.3 eV lower than that of the pristine surface.

  8. A problem to be solved for tungsten diagnostics through EUV spectroscopy in fusion devices

    International Nuclear Information System (INIS)

    Morita, S.; Murakami, I.; Sakaue, H.A.; Dong, C.F.; Goto, M.; Kato, D.; Oishi, T.; Huang, X.L.; Wang, E.H.

    2013-01-01

    Tungsten spectra have been observed from Large Helical Device (LHD) in extreme ultraviolet (EUV) wavelength ranges of 10-650Å. When the electron temperature is less than 2keV, the EUV spectra from plasma core are dominated by unresolved transition array (UTA) composing of a lot of spectral lines, e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W"+"2"4"-"+"3"3 in 15-35Å. In order to understand the UTA spectrum, the EUV spectra measured from LHD plasmas are compared to those measured from Compact electron Beam Ion Trap (CoBIT), in which the electron beam is operated with monoenergetic energy of E_e ≤ 2keV. The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The collisional-radiative (C-R) model has been developed to explain the UTA spectra from LHD in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database to examine the ionization balance determined by ionization and recombination rate coefficients. If the electron temperature is higher than 2keV, Zn-like WXLV (W"4"4"+) and Cu-like WXLVI (W"4"5"+) spectra can be observed in LHD. Such ions of W"4"4"+ and W"4"5"+ can exhibit much simpler atomic configuration compared to other ionization stages of tungsten. Quantitative analysis of the tungsten density is attempted for the first time on the radial profile of Zn-like WXLV (W"4"4"+) 4p-4s transition measured at 60.9Å, based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5x10"1"0 cm"-"3 at the plasma center of LHD is reasonably obtained. Finally, the present problem for tungsten diagnostics in fusion plasmas is summarized. (author)

  9. Tool life of ceramic wedges during precise turning of tungsten

    Directory of Open Access Journals (Sweden)

    Legutko Stanislaw

    2017-01-01

    Full Text Available Properties, application and machinability of tungsten and its alloys have been demonstrated. The comparison of the tool life and wear of the wedges made of SiAlON and whisker ceramics during the precise turning at different cutting parameters have been presented. The CNC lathe DMG CTX 310 Ecoline and tungsten of 99.7 % purity were used during the experiments. Only the wedge of whisker ceramics has proved to be sufficiently suitable and only for relatively low cutting speeds.

  10. On-chip microplasma reactors using carbon nanofibres and tungsten oxide nanowires as electrodes

    NARCIS (Netherlands)

    Agiral, A.; Groenland, A.W.; Chinthaginjala, J.K.; Kumar Chinthaginjala, J.; Seshan, Kulathuiyer; Lefferts, Leonardus; Gardeniers, Johannes G.E.

    2008-01-01

    Carbon nanofibres (CNFs) and tungsten oxide (W18O49) nanowires have been incorporated into a continuous flow type microplasma reactor to increase the reactivity and efficiency of the barrier discharge at atmospheric pressure. CNFs and tungsten oxide nanowires were characterized by high-resolution

  11. Surface studies of thermionic cathodes and the mechanism of operation of an impregnated tungsten cathode

    International Nuclear Information System (INIS)

    Forman, R.

    1976-09-01

    The surface properties of conventional impregnated cathodes were investigated by the use of Auger spectroscopy and work function measurements, and these were compared with a synthesized barium- or barium oxide coated tungsten surface. The barium- and barium oxide coated surfaces were prepared by evaporating barium onto a tungsten surface that can be heated to elevated temperatures. Multilayer or monolayer coverages can be investigated using this technique. The results of this study show that the surface of an impregnated tungsten cathode is identical to that observed for a synthesized monolayer or partial monolayer of barium on partially oxidized tungsten, using the criteria of identical Auger patterns and work functions. Desorption measurements of barium from a tungsten surface were also made. These results in conjunction with Auger and work function data were interpreted to show that throughout most of its life an impregnated cathode operating in the range of 1100 C has a partial monolayer rather than a monolayer of barium on its surface

  12. Self-castellation of tungsten monoblock under high heat flux loading and impact of material properties

    Directory of Open Access Journals (Sweden)

    S. Panayotis

    2017-08-01

    Full Text Available In the full-tungsten divertor qualification program at ITER Organization, macro-cracks, so called self-castellation were found in a fraction of tungsten monoblocks during cyclic high heat flux loading at 20MW/m2. The number of monoblocks with macro-cracks varied with the tungsten products used as armour material. In order to understand correlation between the macro-crack appearance and W properties, an activity to characterize W monoblock materials was launched at the IO. The outcome highlighted that the higher the recrystallization resistance, the lower the number of cracks detected during high heat flux tests. Thermo-mechanical finite element modelling demonstrated that the maximum surface temperature ranges from 1800 °C to 2200 °C and in this range recrystallization of tungsten occurred. Furthermore, it indicated that loss of strength due to recrystallization is responsible for the development of macro-cracks in the tungsten monoblock.

  13. Electronic structure of indium-tungsten-oxide alloys and their energy band alignment at the heterojunction to crystalline silicon

    Science.gov (United States)

    Menzel, Dorothee; Mews, Mathias; Rech, Bernd; Korte, Lars

    2018-01-01

    The electronic structure of thermally co-evaporated indium-tungsten-oxide films is investigated. The stoichiometry is varied from pure tungsten oxide to pure indium oxide, and the band alignment at the indium-tungsten-oxide/crystalline silicon heterointerface is monitored. Using in-system photoelectron spectroscopy, optical spectroscopy, and surface photovoltage measurements, we show that the work function of indium-tungsten-oxide continuously decreases from 6.3 eV for tungsten oxide to 4.3 eV for indium oxide, with a concomitant decrease in the band bending at the hetero interface to crystalline silicon than indium oxide.

  14. On the kinetics of high-temperature interaction of tungsten with light hydrocarbons

    International Nuclear Information System (INIS)

    Kharatyan, S.L.; Chatilyan, A.A.; Merzhanov, A.G.

    1989-01-01

    Comparative investigation of tungsten carbidizing treatment in ethylene, acetylene and methane media at T=1750-2500 deg C and p=2-10 Torr is carried out by the electrothermographical method. In all cases interaction is shown to proceed in stages due to step-by-step formation of carbide phases of tungsten W 2 C and WC as well as pyrocarbon. It is established that efficiency of carbidizing treatment is turned out to be maximum in methane medium in spite of great absolute values of ethylene and acetylene pyrolysis velocities on the surface of tungsten carbides in comparison with methane. Criterion of carburizing capability of hydrocarbous relatively to a metal is given on the basis of the results obtained

  15. Investigation of tungsten mass transfer in rarefied air oxygen and water vapors

    International Nuclear Information System (INIS)

    Evsikov, A.S.; Makeev, A.A.; Lyubimova, L.L.; Sinyavskij, V.V.

    1989-01-01

    The results of experimental investigations of oxygen and water vapor effect on the rate of tungsten evaporation are presented. Methods for carrying out an experiment are presented. The experiments are carried out at the 2600 degC tungsten wire temperature and the pressure of oxygen and water vapors (2x10 -3 -5) Pa. Registration of final products of mass transfer is carried out by the DRON-2.0 diffractometer using a detachable substrate. Empirical dependence taking into account oxygen and water vapor effect on the rate of tungsten evaporation is suggested. It is marked that air oxygen and water vapor increase evaporation rate uniformly the difference is observed only in final products of interaction

  16. Temperature and distortion transients in gas tungsten-arc weldments

    International Nuclear Information System (INIS)

    Glickstein, S.S.; Friedman, E.

    1979-10-01

    An analysis and test program to develop a fundamental understanding of the gas tungsten-arc welding process has been undertaken at the Bettis Atomic Power Laboratory to develop techniques to determine and control the various welding parameters and weldment conditions so as to result in optimum weld response characteristics. These response characteristics include depth of penetration, weld bead configuration, weld bead sink and roll, distortion, and cracking sensitivity. The results are documented of that part of the program devoted to analytical and experimental investigations of temperatures, weld bead dimensions, and distortions for moving gas tungsten-arc welds applied to Alloy 600 plates

  17. A study of uranium adsorption to single-crystal tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Samin, Adib; Hastings, Aaron; Zhang, Jinsuo, E-mail: jzhang@osu.edu

    2015-12-15

    In this study we explore the adsorption of uranium to the (110) plane of tungsten. Potential functions were constructed to describe the interaction of adsorbed uranium atoms with the tungsten surface and the lateral interaction between adsorbed uranium atoms. Next, the behavior of the uranium adlayer under different conditions was studied through a Monte Carlo simulation of the grand canonical Hamiltonian in an off-lattice model. Our results are consistent with available studies in the literature. The simulation results indicate that the temperature and dipole–dipole interactions play an important role in governing the adsorption process.

  18. A study of uranium adsorption to single-crystal tungsten

    International Nuclear Information System (INIS)

    Samin, Adib; Hastings, Aaron; Zhang, Jinsuo

    2015-01-01

    In this study we explore the adsorption of uranium to the (110) plane of tungsten. Potential functions were constructed to describe the interaction of adsorbed uranium atoms with the tungsten surface and the lateral interaction between adsorbed uranium atoms. Next, the behavior of the uranium adlayer under different conditions was studied through a Monte Carlo simulation of the grand canonical Hamiltonian in an off-lattice model. Our results are consistent with available studies in the literature. The simulation results indicate that the temperature and dipole–dipole interactions play an important role in governing the adsorption process.

  19. Helium effects on tungsten surface morphology and deuterium retention

    International Nuclear Information System (INIS)

    Ueda, Y.; Peng, H.Y.; Lee, H.T.; Ohno, N.; Kajita, S.; Yoshida, N.; Doerner, R.; De Temmerman, G.; Alimov, V.; Wright, G.

    2013-01-01

    Recent experimental results on tungsten surface morphology, especially nano-structure (fuzz), induced by helium plasma exposure at temperatures between 1000 K and 2000 K are reviewed. This structure was firstly reported in 2006. In this review, most of experimental results reported so far including characteristics and formation conditions of the nano-structure in both linear plasma devices and magnetic confinement devices, erosion and arcing by steady-state plasma exposure and ELM-like pulsed heat or pulsed plasma exposure by a laser and a plasma gun are summarized. In addition, He effects on D retention under simultaneous D/He irradiation on tungsten are presented

  20. FEM investigation and thermo-mechanic tests of the new solid tungsten divertor tile for ASDEX Upgrade

    International Nuclear Information System (INIS)

    Jaksic, Nikola; Greuner, Henri; Herrmann, Albrecht

    2013-01-01

    Highlights: • New solid tungsten divertor for fusion experiment ASDEX Upgrade. • Design validation in the high heat flux (HHF) test facility GLADIS (Garching Large Divertor Sample Test Facility). • FEA simulation. -- Abstract: A new solid tungsten divertor for the fusion experiment ASDEX Upgrade is under construction at present. A new divertor tile design has been developed to improve the thermal performance of the current divertor made of tungsten coated fine grain graphite. Compared to thin tungsten coatings, divertor tiles made of massive tungsten allow to extend the operational range and to study the plasma material interaction of tungsten in more detail. The improved design for the solid tungsten divertor was tested on different full scale prototypes with a hydrogen ion beam. The influence of a possible material degradation due to thermal cracking or recrystallization can be studied. Furthermore, intensive Finite Element Method (FEM) numerical analysis with the respective test parameters has been performed. The elastic–plastic calculation was applied to analyze thermal stress and the observed elastic and plastic deformation during the heat loading. Additionally, the knowledge gained by the tests and especially by the numerical analysis has been used to optimize the shape of the divertor tiles and the accompanying divertor support structure. This paper discusses the main results of the high heat flux tests and their numerical simulations. In addition, results from some special structural mechanic analysis by means of FEM tools are presented. Finally, first results from the numerical lifecycle analysis of the current tungsten tiles will be reported

  1. Electronic transport in tungsten and iron-doped tungsten below 1 K

    International Nuclear Information System (INIS)

    Uher, C.; Khoshnevisan, M.; Pratt, W.P. Jr.; Bass, J.

    1979-01-01

    The electric resistivity rho and the thermoelectric ratio G have been measured for zone-refined single crystals of both tungsten and iron-doped tungsten from 5 K down to 40 mK. The samples had residual resistance ratios RRR ranging from 1750 to 90,000. The observed behavior is conveniently divided into two classes, ''normal'' and ''anomalous.'' Completely normal behavior was displayed by only three W samples with high RRRs. The Fe-doped W and the remaining W samples contained one or more anomalies. Normal behavior is that which would be expected for W containing impurities with no internal degrees of freedom. In normal behavior rho decreased monotonically with decreasing temperature and was consistent with the equation rho=rho 0 +AT 2 below about 1.5K. In normal behavior, G was positive and constant below about 0.5 K, increased in magnitude as T rose to 4 or 5 K, and then began to decrease, becoming negative above about 7 K. The anomalous class displayed at least one of three anomalies: (1) a minimum in the electrical resistivity, with an approximately logarithmic variation with T at temperatures below the minimum; (2) a positive contribution to G which increased in magnitude with decreasing temperature approximately at T/sup -1/2/ from about 4 K down to at least 0.5 K; and (3) a negative contribution to G which set in at about 0.5 K, varied approximately as log T, and dominated G at the lowest temperatures

  2. Tensile behavior of unnotched and notched tungsten--copper laminar composites

    International Nuclear Information System (INIS)

    Hoffman, C.A.

    1976-06-01

    Relations were studied between the tensile strengths of unnotched and of notched, and elastic moduli of unnotched laminar sheet or foil composites and the amounts of reinforcement. Tungsten was used as the reinforcement and copper as the matrix, and the tests were run at room temperature. Three thicknesses of tungsten (i.e., 0.00254, 0.0127, and 0.0254 cm (0.001, 0.005, and 0.010 in) were used, and the nominal volume fraction of tungsten was varied from about 0.05 to 0.95. It was found that the tensile strength of the unnotched specimens could be related to the amount of reinforcement, as could the elastic moduli, and that these values could be predicted by use of the rule of mixtures. The tensile strengths of the notched laminar composites could be predicted by use of the rule of mixtures using strengths for notched constituents, provided notch effects did not predominate. (Author)

  3. High-temperature oxidation of tungsten covered by layer of glass-enamel melt

    International Nuclear Information System (INIS)

    Vasnetsova, V.B.; Shardakov, N.T.; Kudyakov, V.Ya.; Deryabin, V.A.

    1997-01-01

    Corrosion losses of tungsten covered by the layer of glass-enamel melt were determined at 800, 850, 900, 950 deg C. It is shown that the rate of high-temperature oxidation of tungsten decreases after application of glass-enamel melt on its surface. This is probably conditioned by reduction of area of metal interaction with oxidizing atmosphere

  4. Kr-Ar and Rb-Sr dating and the genesis of tungsten at the Clea tungsten skarn property, Selwyn Mountains, Yukon Territory

    International Nuclear Information System (INIS)

    Godwin, C.I.; Armstrong, R.L.; Tompson, K.M.

    1980-01-01

    Tungsten skarn deposits on the Clea property in the Selwyn Mountains, Y.T., are related genetically to a quartz monzonite stock, about 500 metres in diameter at the surface. Lower Paleozoic sedimentary rocks are metamorphosed for a distance of 3 km from the stock. Tugnsten-bearing skarn mineralization within the altered sedimentary rocks is of two types: sulphide-rich pods and calc-silicate beds. The most significant sheelite concentration is in calc-silicate beds near or adjacent to the quartz monzonite stock. Discordant K-Ar and Rb-Sr isotopic dates indicate that the stock is probably of early Late Cretaceous age, 94 Ma or slightly older, and that it cooled slowly. High initial 87 Sr/ 86 Sr ratios and disequilibrium relationships between K-feldspar phenocrysts and groundmass minerals in the porphyritic phase of the granite rock, and between different granite rock specimens, indicate contamination of crystallizing magma by old sialic continental crust which extends westward under the Selwyn Basin. This study is significant to regional tungsten exploration. Granite rocks associated with tungsten deposits, in this part of the Canadian Cordillera at least, appear to have specific isotope characteristics that indicate they were generated at a specific time and in a particular way. (auth)

  5. Solid-state sintering of tungsten heavy alloys

    International Nuclear Information System (INIS)

    Gurwell, W.E.

    1994-10-01

    Solid-state sintering is a technologically important step in the fabrication of tungsten heavy alloys. This work addresses practical variables affecting the sinterability: powder particle size, powder mixing, and sintering temperature and time. Compositions containing 1 to 10 micrometer (μM) tungsten (W) powders can be fully densified at temperatures near the matrix solidus. Blending with an intensifier bar provided good dispersion of elemental powders and good as-sintered mechanical properties under adequate sintering conditions. Additional ball milling increases powder bulk density which primarily benefits mold and die filling. Although fine, 1 μm W powder blends have high sinterability, higher as-sintered ductilities are reached in shorter sintering times with coarser, 5 μm W powder blends; 10μm W powder blends promise the highest as-sintered ductilities due to their coarse microstructural W

  6. Self diffusion in tungsten

    International Nuclear Information System (INIS)

    Mundy, J.N.; Rothman, S.J.; Lam, N.Q.; Nowicki, L.J.; Hoff, H.A.

    1978-01-01

    The lack of understanding of self-diffusion in Group VI metals together with the wide scatter in the measured values of tungsten self-diffusion has prompted the present measurements to be made over a wide temperature range (1/2Tsub(m) to Tsub(m)). The diffusion coefficients have been measured in the temperature range 1430-2630 0 C. The present measurements show non-linear Arrhenius behavior but a reliable two-exponential fit of the data should await further measurements. (Auth.)

  7. Spectroscopic Investigations of Highly Charged Tungsten Ions - Atomic Spectroscopy and Fusion Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, Joel [Lund Univ. (Sweden)

    2010-05-01

    The spectra of highly charged tungsten ions have been investigated using x-ray and extreme ultraviolet spectroscopy. These heavy ions are of interest in relativistic atomic structure theory, where high-precision wavelength measurements benchmark theoretical approaches, and in magnetic fusion research, where the ions may serve to diagnose high-temperature plasmas. The work details spectroscopic investigations of highly charged tungsten ions measured at the Livermore electron beam ion trap (EBIT) facility. Here, the EBIT-I and SuperEBIT electron beam ion traps have been employed to create, trap, and excite tungsten ions of M- and L-shell charge states. The emitted spectra have been studied in high resolution using crystal, grating, and x-ray calorimeter spectrometers. In particular, wavelengths of n = 0 M-shell transitions in K-like W55+ through Ne-like W64+, and intershell transitions in Zn-like W44+ through Co-like W47+ have been measured. Special attention is given to the Ni-like W46+ ion, which has two strong electric-dipole forbidden transitions that are of interest for plasma diagnostics. The EBIT measurements are complemented by spectral modeling using the Flexible Atomic Code (FAC), and predictions for tokamak spectra are presented. The L-shell tungsten ions have been studied at electron-beam energies of up to 122 keV and transition energies measured in Ne-like W64+ through Li-like W71+. These spectra constitute the physics basis in the design of the ion-temperature crystal spectrometer for the ITER tokamak. Tungsten particles have furthermore been introduced into the Sustained Spheromak Physics Experiment (SSPX) spheromak in Livermore in order to investigate diagnostic possibilities of extreme ultraviolet tungsten spectra for the ITER divertor. The spheromak measurement and spectral modeling using FAC suggest that tungsten ions in charge states around Er-like W6+ could be useful for

  8. Simulation of tungsten armour cracking due to small ELMs in ITER

    International Nuclear Information System (INIS)

    Pestchanyi, S.; Garkusha, I.; Landman, I.

    2010-01-01

    Simulations of tungsten armour cracking under small ELM-like plasma heat load, which does not cause surface melting, have been performed using the PEGASUS-3D code. A dedicated series of experiments have been performed in the QSPA-Kh50 facility for measurements of the unknown tungsten thermophysical properties and for verification of the PEGASUS-3D simulation results. The simulations revealed that a cellular crack network with average mesh size Λ ∼ 0.5 mm formed after first ELMs and the pattern does not change further. With increasing number of repetitive ELMs loads, the average crack width Δ(n) has a maximum value Δ m . The ratio of Δ m /Λ is equal to the tungsten thermal expansion at the maximum surface temperature. Δ(n) tends to this value exponentially. The number of ELMs n m needed for Δ stabilization depends on the ELMs energy density and time duration, n m ∼ 300 for the simulated ELMs of 0.45 MJ/m 2 and 0.25 ms duration. The PEGASUS-3D code is prepared for simulations of tungsten armour damage under action of ELMs of various energy deposition and time duration. These parameters of ELMs depend on ITER regimes of operation and on how successful will be the efforts on ELMs mitigation.

  9. The WEST project: Current status of the ITER-like tungsten divertor

    International Nuclear Information System (INIS)

    Missirlian, M.; Bucalossi, J.; Corre, Y.; Ferlay, F.; Firdaouss, M.; Garin, P.; Grosman, A.; Guilhem, D.; Gunn, J.; Languille, P.; Lipa, M.; Richou, M.; Tsitrone, E.

    2014-01-01

    Highlights: • We presented the ITER-like W components occurred for the WEST divertor. • The main features including key elements of the design were detailed. • The main results of studies investigating the integration constraints or issues were reported. • The WEST ITER-like divertor design reached a mature stage to enable the launching of the procurement phase. - Abstract: The WEST (W – for tungsten – Environment in Steady-state Tokamak) project is an upgrade of Tore Supra from a limiter based tokamak with carbon PFCs into an X-point divertor tokamak with full-tungsten armour while keeping its long discharge capability. The WEST project will primarily offer the key capability of testing for the first time the ITER technology in real plasma environment. In particular, the main divertor (i.e. the lower divertor) of the WEST project will be based on actively cooled tungsten monoblock components and will follow as closely as possible the design and the assembling technology, foreseen for the ITER divertor units. The current design of WEST ITER-like tungsten divertor has now reached a mature stage following the 2013 WEST Final Design Review. This paper presents the key elements of the design, reports the technological requirements and reviews the main design and integration issues

  10. The WEST project: Current status of the ITER-like tungsten divertor

    Energy Technology Data Exchange (ETDEWEB)

    Missirlian, M., E-mail: marc.missirlian@cea.fr; Bucalossi, J.; Corre, Y.; Ferlay, F.; Firdaouss, M.; Garin, P.; Grosman, A.; Guilhem, D.; Gunn, J.; Languille, P.; Lipa, M.; Richou, M.; Tsitrone, E.

    2014-10-15

    Highlights: • We presented the ITER-like W components occurred for the WEST divertor. • The main features including key elements of the design were detailed. • The main results of studies investigating the integration constraints or issues were reported. • The WEST ITER-like divertor design reached a mature stage to enable the launching of the procurement phase. - Abstract: The WEST (W – for tungsten – Environment in Steady-state Tokamak) project is an upgrade of Tore Supra from a limiter based tokamak with carbon PFCs into an X-point divertor tokamak with full-tungsten armour while keeping its long discharge capability. The WEST project will primarily offer the key capability of testing for the first time the ITER technology in real plasma environment. In particular, the main divertor (i.e. the lower divertor) of the WEST project will be based on actively cooled tungsten monoblock components and will follow as closely as possible the design and the assembling technology, foreseen for the ITER divertor units. The current design of WEST ITER-like tungsten divertor has now reached a mature stage following the 2013 WEST Final Design Review. This paper presents the key elements of the design, reports the technological requirements and reviews the main design and integration issues.

  11. Surface self-diffusion behavior of individual tungsten adatoms on rhombohedral clusters

    International Nuclear Information System (INIS)

    Yang Jianyu; Hu Wangyu; Tang Jianfeng

    2011-01-01

    The diffusion of single tungsten adatoms on the surfaces of rhombohedral clusters is studied by means of molecular dynamics and the embedded atom method. The energy barriers for the adatom diffusing across and along the step edge between a {110} facet and a neighboring {110} facet are calculated using the nudged elastic band method. We notice that the tungsten adatom diffusion across the step edge has a much higher barrier than that for face-centered cubic metal clusters. The result shows that diffusion from the {110} facet to a neighboring {110} facet could not take place at low temperatures. In addition, the calculated energy barrier for an adatom diffusing along the step edge is lower than that for an adatom on the flat (110) surface. The results show that the adatom could diffuse easily along the step edge, and could be trapped by the facet corner. Taking all of this evidence together, we infer that the {110} facet starts to grow from the facet corner, and then along the step edge, and finally toward the {110} facet center. So the tungsten rhombohedron can grow epitaxially along the {110} facet one facet at a time and the rhombohedron should be the stable structure for both large and small tungsten clusters. (paper)

  12. A density-functional theory approach to the existence and stability of molybdenum and tungsten sesquioxide polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Nils; Dronskowski, Richard [RWTH Aachen Univ. (Germany). Inst. fuer Anorganische Chemie; RWTH Aachen Univ. (Germany). Juelich-Aachen Research Alliance; Reimann, Christoph; Bredow, Thomas [Bonn Univ. (Germany). Inst. fuer Physikalische und Theoretische Chemie; Weber, Dominik; Luedtke, Tobias; Lerch, Martin [Berlin Technische Univ. (Germany). Inst. fuer Chemie

    2017-03-01

    The sesquioxides of molybdenum and tungsten have been reported as thin films or on surfaces as early as 1971, but the preparation of bulk materials and their crystal structures are still unknown up to the present day. We present a systematic ab initio approach to their possible syntheses and crystal structures applying complementary methods and basis-set types. For both compounds, the corundum structure is the most stable and does not display any imaginary frequencies. Calculations targeted at a high-pressure synthesis starting from the stable oxides and metals predict a reaction pressure of 15 GPa for Mo{sub 2}O{sub 3} and over 60 GPa for W{sub 2}O{sub 3}.

  13. Kinetics of the tungsten hexafluoride-silane reaction for the chemical vapor deposition of tungsten

    International Nuclear Information System (INIS)

    Gokce, Huseyin.

    1991-01-01

    In this study, the kinetics of the low-pressure chemical vapor deposition (LPCVD) of tungsten by silane reduction of tungsten hexafluoride on Si(100) surfaces was studied. A single-wafer, cold-wall reactor was sued for the experiments. The SiH 4 /WF 6 ratio was 1.0. The pressure and temperature range were 1-10 torr and 137-385 degree C, respectively. Kinetic data were obtained in the absence of mass-transfer effects. The film thicknesses were measured by gravimetry. Scanning electron microscopy (SEM), Auger electron spectroscopy (AES), x-ray diffraction (XRD), and resistivity measurements were used to analyze the W films. For the horizontal substrate position and 4-minute reaction times, the apparent activation energies were determined to be 0.35 eV/atom for 10 torr, 0.17 eV/atom for 3 torr, and 0.08 eV/atom for 1 torr. Lower temperatures and higher pressures produced porous films, while higher temperatures and lower pressures resulted in continuous films with smoother surfaces. As the Si-W interface, a W(110) preferential orientation was observed. As the W films grew thicker, W orientation switched from (110) to (100). Apparent activation energy seems to change with thickness

  14. Chemical processes, desired and undesired, in the selective chemical vapor deposition of tungsten

    International Nuclear Information System (INIS)

    Wilson, R.H.

    1988-01-01

    The deposition of tungsten by the hydrogen reduction of tungsten hexafluoride is discussed in the context of its application in integrated circuits. The overall reaction is relatively simple; however, numerous competing reactions and their implications are discussed. In addition, those areas which could benefit from further investigation are identified

  15. Genotoxic Changes to Rodent Cells Exposed in Vitro to Tungsten, Nickel, Cobalt and Iron

    Directory of Open Access Journals (Sweden)

    Stephanie Bardack

    2014-03-01

    Full Text Available Tungsten-based materials have been proposed as replacements for depleted uranium in armor-penetrating munitions and for lead in small-arms ammunition. A recent report demonstrated that a military-grade composition of tungsten, nickel, and cobalt induced a highly-aggressive, metastatic rhabdomyosarcoma when implanted into the leg muscle of laboratory rats to simulate a shrapnel wound. The early genetic changes occurring in response to embedded metal fragments are not known. In this study, we utilized two cultured rodent myoblast cell lines, exposed to soluble tungsten alloys and the individual metals comprising the alloys, to study the genotoxic effects. By profiling cell transcriptomes using microarray, we found slight, yet distinct and unique, gene expression changes in rat myoblast cells after 24 h metal exposure, and several genes were identified that correlate with impending adverse consequences of ongoing exposure to weapons-grade tungsten alloy. These changes were not as apparent in the mouse myoblast cell line. This indicates a potential species difference in the cellular response to tungsten alloy, a hypothesis supported by current findings with in vivo model systems. Studies examining genotoxic-associated gene expression changes in cells from longer exposure times are warranted.

  16. Post-examination of helium-cooled tungsten components exposed to DEMO specific cyclic thermal loads

    International Nuclear Information System (INIS)

    Ritz, G.; Hirai, T.; Linke, J.; Norajitra, P.; Giniyatulin, R.; Singheiser, L.

    2009-01-01

    A concept of helium-cooled tungsten finger module was developed for the European DEMO divertor. The concept was realized and tested under DEMO specific cyclic thermal loads up to 10 MW/m 2 . The modules were examined carefully before and after loading by metallography and microstructural analyses. While before loading mainly discrete and shallow cracks were found on the tungsten surface due to the manufacturing process, dense crack networks were observed at the loaded surfaces due to the thermal stress. In addition, cracks occurred in the structural, heat sink part and propagated along the grains orientation of the deformed tungsten material. Facilitated by cracking, the molten brazing metal between the tungsten plasma facing material and the W-La 2 O 3 heat sink, that could not withstand the operational temperatures, infiltrated the tungsten components and, due to capillary forces, even reached the plasma facing surface through the cracks. The formed cavity in the brazed layer reduced the heat conduction and the modules were further damaged due to overheating during the applied heat loads. Based on this detailed characterization and possible improvements of the design and of the manufacturing routes are discussed.

  17. Distribution of induced activity in tungsten targets

    International Nuclear Information System (INIS)

    Donahue, R.J.; Nelson, W.R.

    1988-09-01

    Estimates are made of the induced activity created during high-energy electron showers in tungsten, using the EGS4 code. Photon track lengths, neutron yields and spatial profiles of the induced activity are presented. 8 refs., 9 figs., 1 tab

  18. Binary-collision-approximation-based simulation of noble gas irradiation to tungsten materials

    International Nuclear Information System (INIS)

    Saito, Seiki; Takayama, Arimichi; Ito, Atsushi M.; Nakamura, Hiroaki

    2013-01-01

    To reveal the possibility of fuzz formation of tungsten material under noble gas irradiation, helium, neon, and argon atom injections into tungsten materials are performed by binary-collision-approximation-based simulation. The penetration depth is strongly depends on the structure of the target material. Therefore, the penetration depth for amorphous and bcc crystalline structure is carefully investigated in this paper

  19. Refining waste hardmetals into tungsten oxide nanosheets via facile method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhifei; Zheng, Guangwei; Wang, Jinshu, E-mail: wangjsh@bjut.edu.cn; Li, Hongyi, E-mail: lhy06@bjut.edu.cn; Wu, Junshu; Du, Yucheng [Beijing University of Technology, Key Laboratory of Advanced Functional Materials, School of Materials Science and Engineering (China)

    2016-04-15

    A new hydrothermal system has been designed to recycle waste WC–Co hardmetal with low cobalt (Co) content (3 %). In the solution system, nitric acid was designed to dissolve Co, H{sub 2}O{sub 2} served as oxidant to accelerate the oxidation of the WC–Co hardmetals, and fluorine (F{sup −}) was designed to dissolve and recrystallize generated tungsten oxides, which were found to possess a layered structure using scanning electron microscopy and transmission electron microscopy. The obtained tungsten oxides were identified as WO{sub 3}·0.33H{sub 2}O by X-ray diffraction and their specific surface area was measured as 89.2 m{sup 2} g{sup −1} via N{sub 2} adsorption–desorption techniques. The present layered structure tungsten oxides exhibited a promising capability for removing lead ion (Pb{sup 2+}) and organic species, such as methyl blue. The adsorption model was found to be in agreement with Langmuir isotherm model. Given the facile synthesis procedure and promising properties of final products, this new approach should have great potential for refining some other waste hardmetals or tungsten products.Graphical AbstractA new hydrothermal system was designed to recycle waste hardmetal with low cobalt content. Through this method, waste hardmetal was refined into WO{sub 3}·0.33H{sub 2}O nanosheets which shows excellent adsorption capacities toward methylene blue and lead ion (Pb{sup 2+}).

  20. Tungsten Ions in Plasmas: Statistical Theory of Radiative-Collisional Processes

    Directory of Open Access Journals (Sweden)

    Alexander V. Demura

    2015-05-01

    Full Text Available The statistical model for calculations of the collisional-radiative processes in plasmas with tungsten impurity was developed. The electron structure of tungsten multielectron ions is considered in terms of both the Thomas-Fermi model and the Brandt-Lundquist model of collective oscillations of atomic electron density. The excitation or ionization of atomic electrons by plasma electron impacts are represented as photo-processes under the action of flux of equivalent photons introduced by E. Fermi. The total electron impact single ionization cross-sections of ions Wk+ with respective rates have been calculated and compared with the available experimental and modeling data (e.g., CADW. Plasma radiative losses on tungsten impurity were also calculated in a wide range of electron temperatures 1 eV–20 keV. The numerical code TFATOM was developed for calculations of radiative-collisional processes involving tungsten ions. The needed computational resources for TFATOM code are orders of magnitudes less than for the other conventional numerical codes. The transition from corona to Boltzmann limit was investigated in detail. The results of statistical approach have been tested by comparison with the vast experimental and conventional code data for a set of ions Wk+. It is shown that the universal statistical model accuracy for the ionization cross-sections and radiation losses is within the data scattering of significantly more complex quantum numerical codes, using different approximations for the calculation of atomic structure and the electronic cross-sections.

  1. Precipitation and ion floatation of molybdenum, tungsten, copper, and cobalt compounds by cetyltrimethylammonium bromide and sodium diethyldithiocarbamate

    International Nuclear Information System (INIS)

    Strizhko, V.S.; Shekhirev, D.V.; Ignatkina, V.A.; Alimova, R.Eh.

    1996-01-01

    Experimental data are presented on application of ion-flotation in purification of low-concentration (less than 10 -3 M) acid solutions from molybdenum, tungsten, copper and cobalt ions. Two collectors, i.e. DEDC and CTMAB have been tested, their optimal consumption is determined. It is shown that CTMAB provides for selective purification from Mo and W ions and allows foam product with little water on flotation in a column to be obtained. But the achieved residual W and Mo concentration of 20 to 10 mg/l require deeper finishing purification in order to meet a sanitary permissible limiting concentration value employing other methods. DEDC provides for sufficient purification from nonferrous metal ions but does not possess selectivity with respect to some metals. The obtained results have shown the possibility to apply ion-flotation in concentration of metal ions in foam product in the process of waste water purification with further finishing purification up to a sanitary permissible limiting concentration value. 14 refs.; 3 figs.; 1 tab

  2. Effect of temperature and geometric parameters on elastic properties of tungsten nanowire: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sourav, E-mail: ssaha09@me.buet.ac.bd; Mojumder, Satyajit; Mahboob, Monon [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Islam, M. Zahabul [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-07-12

    Tungsten is a promising material and has potential use as battery anode. Tungsten nanowires are gaining attention from researchers all over the world for this wide field of application. In this paper, we investigated effect of temperature and geometric parameters (diameter and aspect ratio) on elastic properties of Tungsten nanowire. Aspect ratios (length to diameter ratio) considered are 8:1, 10:1, and 12:1 while diameter of the nanowire is varied from 1-4 nm. For 2 nm diameter sample (aspect ratio 10:1), temperature is varied (10 K ~ 1500 K) to observe elastic behavior of Tungsten nanowire under uniaxial tensile loading. EAM potential is used for molecular dynamic simulation. We applied constant strain rate of 10{sup 9} s{sup −1} to deform the nanowire. Elastic behavior is expressed through stress vs. strain plot. We also investigated the fracture mechanism of tungsten nanowire and radial distribution function. Investigation suggests peculiar behavior of Tungsten nanowire in nano-scale with double peaks in stress vs. strain diagram. Necking before final fracture suggests that actual elastic behavior of the material is successfully captured through atomistic modeling.

  3. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE

    International Nuclear Information System (INIS)

    Shimada, Masashi; Hatano, Y.; Calderoni, P.; Oda, T.; Oya, Y.; Sokolov, M.; Zhang, K.; Cao, G.; Kolasinski, R.; Sharpe, J.P.

    2011-01-01

    With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 x 10 21 m -2 s -1 , ion fluence: 4 x 10 25 m -2 ) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.

  4. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE

    Science.gov (United States)

    Shimada, Masashi; Hatano, Y.; Calderoni, P.; Oda, T.; Oya, Y.; Sokolov, M.; Zhang, K.; Cao, G.; Kolasinski, R.; Sharpe, J. P.

    2011-08-01

    With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 × 1021 m-2 s-1, ion fluence: 4 × 1025 m-2) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.

  5. Solvent Extraction of Tungsten(VI) from Moderate Hydrochloric Acid Solutions with LIX 63

    Energy Technology Data Exchange (ETDEWEB)

    Truong, Hoai Thanh; Lee, Man Seung [Mokpo National University, Jeollanamdo (Korea, Republic of); Kim, Yong Hwan [Incheon Technology Service Centre, Incheon (Korea, Republic of)

    2017-06-15

    The solvent extraction of tungsten(VI) from hydrochloric acid solutions using 5,8-diethyl-7-hydroxydodecan-6-one oxime (LIX 63) was analyzed in solutions having an initial pH range from 2 to 5, by varying the concentration of metal and extractant. In our experimental range, the cationic exchange reaction as well as the solvation reaction occurred simultaneously. The cation exchange reaction was identified by applying a slope analysis method to the extraction data. The existence of cationic tungsten(VI) species was confirmed by ion exchange experiments with Diphonix resin at pH 3. Further study is needed to identify the nature of this tungsten cationic species.

  6. Comparison of 2-Octanol and Tributyl Phosphate in Recovery of Tungsten from Sulfuric-Phosphoric Acid Leach Solution of Scheelite

    Science.gov (United States)

    Liao, Yulong; Zhao, Zhongwei

    2018-04-01

    Tungsten was recovered from sulfuric-phosphoric acid leach solution of scheelite using 2-octanol and tributyl phosphate (TBP). Approximately 76% of the tungsten and less than 6.2% of the iron were extracted when using 70% 2-octanol, showing good selectivity for tungsten over iron; the tungsten extraction could not be significantly enhanced using a three-stage countercurrent simulation test. Moreover, more than 99.2% of the W and 91.0% of the Fe were extracted when using 70% TBP, showing poor selectivity, but after pretreating the leach solution with iron powder, less than 5.5% of the Fe was extracted. The loaded phases were stripped using deionized water and ammonia solution. The maximum stripping rate of tungsten from loaded 2-octanol was 45.6% when using water, compared with only 13.1% from loaded TBP. Tungsten was efficiently stripped from loaded phases using ammonia solution without formation of Fe(OH)3 precipitate. Finally, a flow sheet for recovery of tungsten with TBP is proposed.

  7. Hydrofluoric–nitric–sulphuric-acid surface treatment of tungsten for carbon fibre-reinforced composite hybrids in space applications

    Energy Technology Data Exchange (ETDEWEB)

    Kanerva, M., E-mail: Mikko.Kanerva@aalto.fi [Aalto University, School of Engineering, Department of Applied Mechanics, P.O.B. 14300, FI-00076 Aalto (Finland); Johansson, L.-S.; Campbell, J.M. [Aalto University, School of Chemical Technology, Department of Forest Products Technology, P.O.B. 16300, FI-00076 Aalto (Finland); Revitzer, H. [Aalto University, School of Chemical Technology, Department of Chemistry, P.O.B. 16300, FI-00076 Aalto (Finland); Sarlin, E. [Tampere University of Technology, Department of Materials Science, P.O.B. 589, FI-33101 Tampere (Finland); Brander, T.; Saarela, O. [Aalto University, School of Engineering, Department of Applied Mechanics, P.O.B. 14300, FI-00076 Aalto (Finland)

    2015-02-15

    Highlights: • XPS and AFM analysis of the effect of hydrofluoric–nitric–sulphuric-acid on tungsten. • Dreiling's model established 54.4% thinning of WO{sub 3} due to 67 s treatment. • Strain energy release rate increased ≈8.4 J/m{sup 2} at the interface. • Failure loci analysis expressed the oxide and carbon fibre surfaces as weak points. - Abstract: Hybrid material systems, such as combinations of tungsten foils and carbon fibre-reinforced plastic (CFRP), are replacing metal alloy concepts in spacecraft enclosures. However, a good adhesion between the tungsten oxide scale and the epoxy resin used is required. Here, the effects of a hydrofluoric–nitric–sulphuric-acid (HFNS) treatment on tungsten oxides and subsequent adhesion to CFRP are analysed using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fracture testing. The work shows that HFNS treatment results in decreased oxygen content, over 50% thinner tungsten trioxide (WO{sub 3}) layer and increased nano-roughness on thin tungsten foils. Fracture testing established a 39% increase in the average critical strain for tungsten–CFRP specimens after HFNS treatment was carried out on tungsten. The effect of the oxide scale modification regarding the critical strain energy release rate was ΔG{sub c}≈ 8.4 J/m{sup 2}.

  8. Self-castellation of tungsten monoblock under high heat flux loading and impact of material properties

    OpenAIRE

    Panayotis, S.; Hirai, T.; Wirtz, Marius; Barabash, V.; Durocher, A.; Escourbiac, F.; Linke, J.; Loewenhoff, Th.; Merola, M.; Pintsuk, G.; Uytdenhouwen, I.

    2017-01-01

    In the full-tungsten divertor qualification program at ITER Organization, macro-cracks, so called self-castellation were found in a fraction of tungsten monoblocks during cyclic high heat flux loading at 20MW/m2. The number of monoblocks with macro-cracks varied with the tungsten products used as armour material. In order to understand correlation between the macro-crack appearance and W properties, an activity to characterize W monoblock materials was launched at the IO. The outcome highligh...

  9. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    Science.gov (United States)

    Morita, S.; Dong, C. F.; Goto, M.; Kato, D.; Murakami, I.; Sakaue, H. A.; Hasuo, M.; Koike, F.; Nakamura, N.; Oishi, T.; Sasaki, A.; Wang, E. H.

    2013-07-01

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W+24-+33, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam (≤2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W44+) 4p-4s transition at 60.9Å based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5×1010cm-3 at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W26+) at 3893.7Å is identified as the ground-term fine-structure transition of 4f23H5-3H4. The possibility of α particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.

  10. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    International Nuclear Information System (INIS)

    Morita, S.; Goto, M.; Murakami, I.; Dong, C. F.; Kato, D.; Sakaue, H. A.; Oishi, T.; Hasuo, M.; Koike, F.; Nakamura, N.; Sasaki, A.; Wang, E. H.

    2013-01-01

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W +24-+33 , measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam (≤2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W 44+ ) 4p-4s transition at 60.9Å based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5×10 10 cm −3 at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W 26+ ) at 3893.7Å is identified as the ground-term fine-structure transition of 4f 23 H 5 - 3 H 4 . The possibility of α particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed

  11. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    Energy Technology Data Exchange (ETDEWEB)

    Morita, S.; Goto, M.; Murakami, I. [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Dong, C. F.; Kato, D.; Sakaue, H. A.; Oishi, T. [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Hasuo, M. [Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 606-8501 (Japan); Koike, F. [Physics Laboratory, School of Medicine, Kitasato University, Sagamihara 252-0374 (Japan); Nakamura, N. [Institute of Laser Science, University of Electro-Communications, Tokyo 182-8585 (Japan); Sasaki, A. [Quantum Beam Science Directorate, Japan Atomic Energy Research Agency, Kizugawa 619-0215, Kyoto (Japan); Wang, E. H. [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan)

    2013-07-11

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W{sup +24-+33}, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam ({<=}2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W{sup 44+}) 4p-4s transition at 60.9A based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5 Multiplication-Sign 10{sup 10}cm{sup -3} at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W{sup 26+}) at 3893.7A is identified as the ground-term fine-structure transition of 4f{sup 23}H{sub 5}-{sup 3}H{sub 4}. The possibility of {alpha} particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.

  12. Soft X-ray radiation parameters of nested tungsten wire array

    International Nuclear Information System (INIS)

    Ning Jiamin; Jiang Shilun; Xu Rongkun; Xu Zeping; Li Zhenghong; Yang Jianlun

    2011-01-01

    Implosions with nested tungsten wire array were performed at the Angara-5-1 facility in Russian Research Centre. The experimental results of nested tungsten wire array are compared with those of single array. Radiation parameters of nested array are discussed based on four different dynamic models. When the implosions of outer and inner wire arrays are synchronized,the relatively uniform distribution of inner layer plasma will improve the uniformity of outer layer plasma. As compared with single array, nested array has an increase of 32% in X-ray radiation power. (authors)

  13. First-principles study on migration of vacancy in tungsten

    International Nuclear Information System (INIS)

    Oda, Yasuhiro; Ito, Atsushi M.; Takayama, Arimichi; Nakamura, Hiroaki

    2014-03-01

    We calculated di-vacancy binding energies and migration energies of mono-vacancy and di-vacancy in tungsten material using DFT calculation. The mono-vacancy diffuses in [111] direction easily rather than in [001] direction. The migration energies of di-vacancies are almost the same value of the mono-vacancy. The migration of di-vacancy is approximately the same as the migration of mono-vacancy. The di-vacancy binding energies are almost zero or negative. The interactions between two vacancies in tungsten material are repulsive from the second to fifth nearest-neighbor. The vacancies are difficult to aggregate since di-vacancy is less stable than mono-vacancy. (author)

  14. Smart tungsten alloys as a material for the first wall of a future fusion power plant

    Science.gov (United States)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch.; Rasinski, M.; Kreter, A.; Unterberg, B.; Coenen, J. W.; Du, H.; Mayer, J.; Garcia-Rosales, C.; Calvo, A.; Ordas, N.

    2017-06-01

    Tungsten is currently deemed as a promising plasma-facing material (PFM) for the future power plant DEMO. In the case of an accident, air can get into contact with PFMs during the air ingress. The temperature of PFMs can rise up to 1200 °C due to nuclear decay heat in the case of damaged coolant supply. Heated neutron-activated tungsten forms a volatile radioactive oxide which can be mobilized into the atmosphere. New self-passivating ‘smart’ alloys can adjust their properties to the environment. During plasma operation the preferential sputtering of lighter alloying elements will leave an almost pure tungsten surface facing the plasma. During an accident the alloying elements in the bulk are forming oxides thus protecting tungsten from mobilization. Good plasma performance and the suppression of oxidation are required for smart alloys. Bulk tungsten (W)-chroimum (Cr)-titanium (Ti) alloys were exposed together with pure tungsten (W) samples to the steady-state deuterium plasma under identical conditions in the linear plasma device PSI 2. The temperature of the samples was ~576 °C-715 °C, the energy of impinging ions was 210 eV matching well the conditions expected at the first wall of DEMO. Weight loss measurements demonstrated similar mass decrease of smart alloys and pure tungsten samples. The oxidation of exposed samples has proven no effect of plasma exposure on the oxidation resistance. The W-Cr-Ti alloy demonstrated advantageous 3-fold lower mass gain due to oxidation than that of pure tungsten. New yttrium (Y)-containing thin film systems are demonstrating superior performance in comparison to that of W-Cr-Ti systems and of pure W. The oxidation rate constant of W-Cr-Y thin film is 105 times less than that of pure tungsten. However, the detected reactivity of the bulk smart alloy in humid atmosphere is calling for a further improvement.

  15. Role of hydrogen in altering the electrical properties of gold, titanium, and tungsten films

    International Nuclear Information System (INIS)

    Rodbell, K.P.; Ficalora, P.J.

    1989-01-01

    Hydrogen was found to alter the electrical properties of gold (Au), titanium (Ti), and tungsten (W) thin films deposited on SiO 2 /Si substrates. Specifically, the addition of H 2 was found to reduce both hillock growth and the rate of electromigration in Au and Ti films. The resistance and 1/f noise of unpassivated Au, Ti, and W films was also found to decrease in H 2 . The influence of H 2 adsorption, absorption, compound formation, and film crystal structure [Au (fcc), Ti (hcp), and W (bcc)] on the rate of electromigration is explored. The data suggest that a modification of the stress state at the metal film/substrate interface is responsible for the decreased resistance, 1/f noise, and electromigration rates observed in H 2

  16. Ultrasonically Assisted Single Point Diamond Turning of Optical Mold of Tungsten Carbide

    Directory of Open Access Journals (Sweden)

    Zhanjie Li

    2018-02-01

    Full Text Available To realize high efficiency, low/no damage and high precision machining of tungsten carbide used for lens mold, a high frequency ultrasonic vibration cutting system was developed at first. Then, tungsten carbide was precisely machined with a polycrystalline diamond (PCD tool assisted by the self-developed high frequency ultrasonic vibration cutting system. Tool wear mechanism was investigated in ductile regime machining of tungsten carbide. The cutter back-off phenomenon in the process was analyzed. The subsequent experimental results of ultra-precision machining with a single crystal diamond tool showed that: under the condition of high frequency ultrasonic vibration cutting, nano-scale surface roughness can be obtained by the diamond tool with smaller tip radius and no defects like those of ground surface were found on the machined surface. Tool wear mechanisms of the single crystal diamond tool are mainly abrasive wear and micro-chipping. To solve the problem, a method of inclined ultrasonic vibration cutting with negative rake angle was put forward according to force analysis, which can further reduce tool wear and roughness of the machined surface. The investigation was important to high efficiency and quality ultra-precision machining of tungsten carbide.

  17. SPS Fabrication of Tungsten-Rhenium Alloys in Support of NTR Fuels Development

    International Nuclear Information System (INIS)

    Webb, Jonathan A.; Charit, Indrajit; Sparks, Cory; Butt, Darryl P.; Frary, Megan; Carroll, Mark

    2011-01-01

    Tungsten metal slugs were fabricated via Spark Plasma Sintering (SPS) of powdered metals at temperatures ranging from 1575 K to 1975 K and hold times of 5 minutes to 30 minutes, using powders with an average diameter of 7.8 ?m. Sintered tungsten specimens were found to have relative densities ranging from 83 % to 94 % of the theoretical density for tungsten. Consolidated specimens were also tested for their Vickers Hardness Number (VHN), which was fitted as a function of relative density; the fully consolidated VHN was extrapolated to be 381.45 kg/mm2. Concurrently, tungsten and rhenium powders with average respective diameters of 0.5 ?m and 13.3 ?m were pre-processed either by High-Energy-Ball-Milling (HEBM) or by homogeneous mixing to yield W-25at.%Re mixtures. The powder batches were sintered at temperatures of 1975 K and 2175 K for hold times ranging from 0 minutes to 60 minutes yielding relative densities ranging from 94% to 97%. The combination of HEBM and sintering showed a significant decrease in the inter-metallic phases compared to that of the homogenous mixing and sintering.

  18. Gas tungsten arc welder

    International Nuclear Information System (INIS)

    Christiansen, D.W.; Brown, W.F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable grinder, co-axial with the electrode, is provided in the enclosure for refurbishing the used electrode between welds. The specification also discloses means for loading of the cladding with fuel pellets and for placement of reflectors, gas capsules and end caps. Gravity feed conveyor and inerting means are also described. (author)

  19. Technique for investigation on tungsten crack resistance

    International Nuclear Information System (INIS)

    Uskov, E.I.; Babak, A.V.

    1983-01-01

    The possibility of using the linear destruction mechanic for the estimation of tungsten crack resistance in a wide range of temperatures has been studied and grounded. Values critical of stress intensity factors in the 20-2000 deg C temperature range are given

  20. Dynamic control of low-Z material deposition and tungsten erosion by strike point sweeping on DIII-D

    Directory of Open Access Journals (Sweden)

    J. Guterl

    2017-08-01

    Full Text Available Carbon deposition on tungsten between ELMs was investigated in DIII-D in semi-attached/detached H-mode plasma conditions using fixed outer strike point (OSP positions. Carbon deposition during plasma exposure of tungsten was monitored in-situ by measuring the reflectivity of the tungsten sample surface. No significant carbon deposition, i.e., without strong variations of the reflectivity, was observed during these experiments including discharges at high densities. In contrast, ERO modeling predicts a significant carbon deposition on the tungsten surface for those high density plasma conditions. The surface reflectivity decreases with methane injection, consistent with increased carbon coverage, as expected. The sweeping of OSP leads to a pronounced increase of the surface reflectivity, suggesting that the strike point sweeping may provide an effective means to remove carbon coating from tungsten surface. The ERO modeling however predicts again a regime of carbon deposition for these experiments. The discrepancies between carbon deposition regime predicted by the ERO model and the experimental observations suggest that carbon erosion during ELMs may significantly affect carbon deposition on tungsten.

  1. Tungsten - Yttrium Based Nuclear Structural Materials

    Science.gov (United States)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  2. Tungsten tetraboride, an inexpensive superhard material

    Science.gov (United States)

    Mohammadi, Reza; Lech, Andrew T.; Xie, Miao; Weaver, Beth E.; Yeung, Michael T.; Tolbert, Sarah H.; Kaner, Richard B.

    2011-01-01

    Tungsten tetraboride (WB4) is an interesting candidate as a less expensive member of the growing group of superhard transition metal borides. WB4 was successfully synthesized by arc melting from the elements. Characterization using powder X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) indicates that the as-synthesized material is phase pure. The zero-pressure bulk modulus, as measured by high-pressure X-ray diffraction for WB4, is 339 GPa. Mechanical testing using microindentation gives a Vickers hardness of 43.3 ± 2.9 GPa under an applied load of 0.49 N. Various ratios of rhenium were added to WB4 in an attempt to increase hardness. With the addition of 1 at.% Re, the Vickers hardness increased to approximately 50 GPa at 0.49 N. Powders of tungsten tetraboride with and without 1 at.% Re addition are thermally stable up to approximately 400 °C in air as measured by thermal gravimetric analysis. PMID:21690363

  3. Effect of grain boundary microcracks on crack resistance of annealed tungsten

    International Nuclear Information System (INIS)

    Babak, A.V.; Uskov, E.I.

    1984-01-01

    Effect of grain boundary microcracks in tungsten, produced by the method of powder sintering, on its crack resistance after annealing at T=2200 deg C, has been considered. On the basis of complex physncomechanical study of tungsten crack resistance it is shown, that the value of ultimate tensile stress does not depend on temperature. The presence of grain boundary cracks in such material (in the limits from 2 to 8%) does not produce effect on its crack resistance

  4. Tungsten effect over co-hydrotalcite catalysts to produce hydrogen from bio-ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, J.L.; Ortiz, M.A.; Luna, R.; Nuno, L. [Univ. Autonoma Metropolitana-Azcapozalco, Mexico City (Mexico). Dept. de Energia; Fuentes, G.A. [Univ. Autonoma Metropolitana-Iztapalapa, Mexico City (Mexico). Dept. de IPH; Salmones, J.; Zeifert, B. [Inst. Politecnico Nacional, Mexico City (Mexico); Vazquez, A. [Inst. Mexicano del Petroleo, Mexico City (Mexico)

    2010-07-15

    The use of bioethanol has been considered for generating hydrogen via catalytic reforming. The reaction of ethanol with stream is strongly endothermic and produces hydrogen (H{sub 2}) and carbon dioxide (CO{sub 2}). However, undesirable products such as carbon monoxide (CO) and methane (CH{sub 4}) may also form during the reaction. This paper reported on the newly found stabilization effect of tungsten over the Co-hydrotalcite catalysts to produce H{sub 2} from ethanol in steam reforming. The catalysts were characterized by nitrogen (N{sub 2}) physisorption (BET area), X-ray diffraction, Infrared, Raman and UV-vis spectroscopies. Catalytic evaluations were determined using a fixed bed reactor with a water/ethanol mol ratio of 4 at 450 degrees C. The tungsten concentration studied was from 0.5 to 3 wt percent. The intensity of crystalline reflections of the Co-hydrotalcite catalysts decreased as tungsten concentration increased. Infrared spectroscopy was used to determine the superficial chemical groups, notably -OH, H{sub 2}O, Al-OH, Mg-OH, W-O-W and CO{sub 3}{sup 2.} The highest H{sub 2} production and the best catalytic stability was found in catalysts with low tungsten. The smallest pore volume of this catalyst could be related with long residence times of ethanol in the pores. Tungsten promoted the conversion for the Co-hydrotalcite catalysts. The reaction products were H{sub 2}, CO{sub 2}, CH{sub 3}CHO, CH{sub 4} and C{sub 2}H{sub 4} and the catalysts did not produce CO. 33 refs., 2 tabs., 10 figs.

  5. Heat load and deuterium plasma effects on SPS and WSP tungsten

    Directory of Open Access Journals (Sweden)

    Vilémová Monika

    2015-06-01

    Full Text Available Tungsten is a prime choice for armor material in future nuclear fusion devices. For the realization of fusion, it is necessary to address issues related to the plasma–armor interactions. In this work, several types of tungsten material were studied, i.e. tungsten prepared by spark plasma sintering (SPS and by water stabilized plasma spraying (WSP technique. An intended surface porosity was created in the samples to model hydrogen/helium bubbles. The samples were subjected to a laser heat loading and a radiation loading of deuterium plasma to simulate edge plasma conditions of a nuclear fusion device (power density of 108 W/cm2 and 107 W/cm2, respectively, in the pulse intervals up to 200 ns. Thermally induced changes in the morphology and the damage to the studied surfaces are described. Possible consequences for the fusion device operation are pointed out.

  6. Tungsten and other heavy metal contamination in aquatic environments receiving wastewater from semiconductor manufacturing

    International Nuclear Information System (INIS)

    Hsu, Shih-Chieh; Hsieh, Hwey-Lian; Chen, Chang-Po; Tseng, Chun-Mao; Huang, Shou-Chung; Huang, Chou-Hao; Huang, Yi-Tang; Radashevsky, Vasily; Lin, Shuen-Hsin

    2011-01-01

    Through analyses of water and sediments, we investigate tungsten and 14 other heavy metals in a stream receiving treated effluents from a semiconductor manufacturer-clustered science park in Taiwan. Treated effluents account for ∼50% of total annual river discharge and <1% of total sediment discharge. Dissolved tungsten concentrations in the effluents abnormally reach 400 μg/L, as compared to the world river average concentration of <0.1 μg/L. Particulate tungsten concentrations are up to 300 μg/g in suspended and deposited sediments, and the corresponding enrichment factors are three orders of magnitude higher than average crust composition. Surprisingly, the estimated amount of tungsten exported to the adjacent ocean is 23.5 t/yr, which can approximate the amount from the Yangtze River should it be unpolluted. This study highlights the urgency of investigating the biological effect of such contamination.

  7. Hypervelocity impact of tungsten cubes on spaced armour

    International Nuclear Information System (INIS)

    Chandel, Pradeep S; Sood, Dharmanshu; Kumar, Rajeev; Sharma, Prince; Sewak, Bhupinder; Bhardwaj, Vikas; Athwal, Manoj; Mangla, Vikas; Biswas, Ipsita; Singh, Manjit

    2012-01-01

    The paper summarizes the experimental observations and simulation studies of damage potential of tungsten alloy cubes on relatively thin mild steel spaced armour target plates in the velocity regime 1300 – 4000 ms −1 using Two Stage Light Gas Gun technique. The cubes of size 9.5 mm and 12 mm having mass 15 g and 30 g respectively were made to impact normally on three target plates of size 300 mm × 300 mm of thickness 4, 4 and 10 mm at 100 mm distance apart. Flash radiography has been used to image the projectile-target interaction in the nitrogen environment at 300 mbar vacuum at room temperature. The results reveal clear perforation by 9.5 mm cube in all the three target plates up to impact velocity of about 2000 m/s. While 12 mm cube can perforate the spaced armour upto impact velocity of 4000 m/s. This shows that 9.5mm tungsten alloy cube is not effective beyond 2000 m/s while 12 mm tungsten alloy cube can defeat the spaced armour upto 4000 m/s. The simulation studies have been carried out using Autodyn 3D nonlinear code using Lagrange solver at velocities 1200 – 4000 m/s. The simulation results are in good agreement with the experimental findings.

  8. Influence of grain boundaries on the fracture toughness of tungsten alloys

    International Nuclear Information System (INIS)

    Gludovatz, B.; Faleschini, M.; Pippan, R.; Hoffmann, A.

    2007-01-01

    Full text of publication follows: Tungsten and tungsten alloys are possible candidates for future fusion reactors because of their high melting points, high thermal conductivity and their high erosion resistance. Since these materials have a body-centered cubic (bcc) structure, they show a typical change in fracture behaviour from brittle at low temperatures to ductile at high temperatures. For that reason the fracture behaviour of pure tungsten (W), potassium doped tungsten (AKS) and tungsten with 1 wt% La 2 O 3 (WL10) was studied, taking into account the influence of temperature and fabrication condition. Especially AKS has been studied to investigate the longitudinal splitting of the AKS-wires, the crack propagation direction with the lowest fracture toughness. This alloy subjected to intense deformation leads to a material with an elongated grain structure after recrystallization because of the potassium bubbles. Fracture toughness has been investigated by means of 3-point bending (3PB) specimens, double cantilever beam (DCB) specimens and compact tension (CT) specimens. Tests were performed in the range -196 deg. C to more than 1000 deg. C. Though all these materials show an expected increase in fracture toughness with increasing temperature, influences like texture, chemical composition, grain boundary segregation and dislocation density seem to have an extreme influence on the obtained results. These influences can especially be seen in the fracture behaviour and morphology, where two kinds of fracture can occur: on one hand the trans-crystalline and on the other hand the intercrystalline fracture. Therefore techniques like electron backscatter diffraction, auger electron spectroscopy and X-ray line profile analysis were used to determine the parameter influencing fracture toughness. Also new testing techniques have been devised and successfully applied. Additional tests like an 'in-situ EBSD' technique for investigating the formation of dislocations during

  9. Oxalic acid induced hydrothermal synthesis of single crystalline tungsten oxide nanorods

    International Nuclear Information System (INIS)

    Patil, V.B.; Adhyapak, P.V.; Suryavanshi, S.S.; Mulla, I.S.

    2014-01-01

    Highlights: • We report synthesis of 1D tungsten oxide using a hydrothermal route at 170 °C. • Oxalic acid plays an important role in the formation of 1D nanostructure. • Monoclinic transforms to hexagonal phase with increment in reaction duration. -- Abstract: One-dimensional single-crystalline tungsten oxide nanorods have been synthesized by the hydrothermal technique. The controlled morphology of tungsten oxide was obtained by using sodium tungstate and oxalic acid as an organic inducer. The reaction was carried out at 170 °C for 24, 48 and 72 h. The obtained tungsten oxides were investigated by using XRD, SEM and HRTEM techniques. In order to understand the role of organic inducer on the shape, size and phase formation of WO 3 was prepared with and without organic inducer. On heating of sodium tungstate without organic inducer for 72 h at 170 °C in the hydrothermal unit we obtain nanoparticles of monoclinic WO 3 , however, on addition of oxalic acid a single phase hexagonal WO 3 with distinct nanorods was formed. On addition of oxalic acid a systematic emergence of nanorod-like morphology was obtained with incrementing reaction times from 24 h to 48 h. The 72 h reaction generates self-assembled 20–30 nm diameter and 4–5 μm long h-WO 3 bundles of nanorods. The XRD studies show hexagonal structure of tungsten oxide, while SAED reveals its single crystalline nature. The photoluminescence (PL) emission spectrum shows a characteristic blue emission peak at 3 eV (410 nm). Raman spectra provide the evidence of hexagonal structure with stretching vibrations (830 cm −1 ) for 72 h of heating at 170 °C

  10. Oxalic acid induced hydrothermal synthesis of single crystalline tungsten oxide nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Patil, V.B. [School of Physical Sciences, Solapur University, Solapur 413255 (India); Adhyapak, P.V. [Centre for Materials for Electronic Technology (C-MET), Pune 411008 (India); Suryavanshi, S.S., E-mail: sssuryavanshi@rediffmail.com [School of Physical Sciences, Solapur University, Solapur 413255 (India); Mulla, I.S., E-mail: ismulla2001@gmail.com [Emeritus Scientist (CSIR), Centre for Materials for Electronic Technology (C-MET), Pune 411008 (India)

    2014-03-25

    Highlights: • We report synthesis of 1D tungsten oxide using a hydrothermal route at 170 °C. • Oxalic acid plays an important role in the formation of 1D nanostructure. • Monoclinic transforms to hexagonal phase with increment in reaction duration. -- Abstract: One-dimensional single-crystalline tungsten oxide nanorods have been synthesized by the hydrothermal technique. The controlled morphology of tungsten oxide was obtained by using sodium tungstate and oxalic acid as an organic inducer. The reaction was carried out at 170 °C for 24, 48 and 72 h. The obtained tungsten oxides were investigated by using XRD, SEM and HRTEM techniques. In order to understand the role of organic inducer on the shape, size and phase formation of WO{sub 3} was prepared with and without organic inducer. On heating of sodium tungstate without organic inducer for 72 h at 170 °C in the hydrothermal unit we obtain nanoparticles of monoclinic WO{sub 3}, however, on addition of oxalic acid a single phase hexagonal WO{sub 3} with distinct nanorods was formed. On addition of oxalic acid a systematic emergence of nanorod-like morphology was obtained with incrementing reaction times from 24 h to 48 h. The 72 h reaction generates self-assembled 20–30 nm diameter and 4–5 μm long h-WO{sub 3} bundles of nanorods. The XRD studies show hexagonal structure of tungsten oxide, while SAED reveals its single crystalline nature. The photoluminescence (PL) emission spectrum shows a characteristic blue emission peak at 3 eV (410 nm). Raman spectra provide the evidence of hexagonal structure with stretching vibrations (830 cm{sup −1}) for 72 h of heating at 170 °C.

  11. Nitrogen implantation in tungsten and migration in the fusion experiment ASDEX upgrade

    International Nuclear Information System (INIS)

    Meisl, Gerd Korbinian

    2015-01-01

    The implantation of nitrogen ions into tungsten was studied in laboratory experiments to understand the interaction of nitrogen containing fusion plasmas with tungsten walls. The resulting model of W-N interaction was tested by experiments in the tokamak ASDEX Upgrade. Using the measurements from these experiments as boundary condition, nitrogen transport and re-distribution in the plasma were modeled by self-consistent WallDYN-DIVIMP simulations.

  12. Effect of mixing on the rheology and particle characteristics of tungsten-based powder injection molding feedstock

    International Nuclear Information System (INIS)

    Suri, Pavan; Atre, Sundar V.; German, Randall M.; Souza, Jupiter P. de

    2003-01-01

    This study investigates the effect of mixing technique and particle characteristics on the rheology and agglomerate dispersion of tungsten-based powder injection molding (PIM) feedstock. Experiments were conducted with as-received (agglomerated) and rod-milled (deagglomerated) tungsten powder mixed in a paraffin wax-polypropylene binder. Increase in the mixing shear rate decreased the agglomerate size of the agglomerated tungsten powder, decreased the viscosity, and improved the flow stability of the feedstock, interpreted as increased homogeneity of the feedstock. Higher solids volume fraction, lower mixing torques, and improved homogeneity were observed with deagglomerated tungsten powder, emphasizing the importance of particle characteristics and mixing procedures in the PIM process. Hydrodynamic stress due to mixing and the cohesive strength of the tungsten agglomerate were calculated to understand the mechanism of deagglomeration and quantify the effect of mixing. It was concluded that deagglomeration occurs due to a combination of rupture and erosion with the local hydrodynamic stresses exceeding the cohesive strength of the agglomerate

  13. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Masashi, E-mail: Masashi.Shimada@inl.gov [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Hatano, Y. [Hydrogen Isotope Research Center, University of Toyama, Toyama 930-8555 (Japan); Calderoni, P. [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Oda, T. [Department of Nuclear Engineering and Management, The University of Tokyo, Tokyo 113-8656 (Japan); Oya, Y. [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka 422-8529 (Japan); Sokolov, M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zhang, K. [Hydrogen Isotope Research Center, University of Toyama, Toyama 930-8555 (Japan); Cao, G. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI 53706 (United States); Kolasinski, R. [Hydrogen and Metallurgical Science Department, Sandia National Laboratories, Livermore, CA 94551 (United States); Sharpe, J.P. [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2011-08-01

    With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 x 10{sup 21} m{sup -2} s{sup -1}, ion fluence: 4 x 10{sup 25} m{sup -2}) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.

  14. Tritium decay helium-3 effects in tungsten

    Directory of Open Access Journals (Sweden)

    M. Shimada

    2017-08-01

    Full Text Available Tritium (T implanted by plasmas diffuses into bulk material, especially rapidly at elevated temperatures, and becomes trapped in neutron radiation-induced defects in materials that act as trapping sites for the tritium. The trapped tritium atoms will decay to produce helium-3 (3He atoms at a half-life of 12.3 years. 3He has a large cross section for absorbing thermal neutrons, which after absorbing a neutron produces hydrogen (H and tritium ions with a combined kinetic energy of 0.76 MeV through the 3He(n,HT nuclear reaction. The purpose of this paper is to quantify the 3He produced in tungsten by tritium decay compared to the neutron-induced helium-4 (4He produced in tungsten. This is important given the fact that helium in materials not only creates microstructural damage in the bulk of the material but alters surface morphology of the material effecting plasma-surface interaction process (e.g. material evolution, erosion and tritium behavior of plasma-facing component materials. Effects of tritium decay 3He in tungsten are investigated here with a simple model that predicts quantity of 3He produced in a fusion DEMO FW based on a neutron energy spectrum found in literature. This study reveals that: (1 helium-3 concentration was equilibrated to ∼6% of initial/trapped tritium concentration, (2 tritium concentration remained approximately constant (94% of initial tritium concentration, and (3 displacement damage from 3He(n,HT nuclear reaction became >1 dpa/year in DEMO FW.

  15. GENERATION, TRANSPORT AND DEPOSITION OF TUNGSTEN-OXIDE AEROSOLS AT 1000 C IN FLOWING AIR-STEAM MIXTURES.

    Energy Technology Data Exchange (ETDEWEB)

    GREENE,G.A.; FINFROCK,C.C.

    2001-10-01

    Experiments were conducted to measure the rates of oxidation and vaporization of pure tungsten rods in flowing air, steam and air-steam mixtures in laminar flow. Also measured were the downstream transport of tungsten-oxide condensation aerosols and their region of deposition, including plateout in the superheated flow tube, rainout in the condenser and ambient discharge which was collected on an array of sub-micron aerosol filters. The nominal conditions of the tests, with the exception of the first two tests, were tungsten temperatures of 1000 C, gas mixture temperatures of 200 C and wall temperatures of 150 C to 200 C. It was observed that the tungsten oxidation rates were greatest in all air and least in all steam, generally decreasing non-linearly with increasing steam mole fraction. The tungsten oxidation rates in all air were more than five times greater than the tungsten oxidation rates in all steam. The tungsten vaporization rate was zero in all air and increased with increasing steam mole fraction. The vaporization rate became maximum at a steam mole fraction of 0.85 and decreased thereafter as the steam mole fraction was increased to unity. The tungsten-oxide was transported downstream as condensation aerosols, initially flowing upwards from the tungsten rod through an 18-inch long, one-inch diameter quartz tube, around a 3.5-inch radius, 90{sup o} bend and laterally through a 24-inch horizontal run. The entire length of the quartz glass flow path was heated by electrical resistance clamshell heaters whose temperatures were individually controlled and measured. The tungsten-oxide plateout in the quartz tube was collected, nearly all of which was deposited at the end of the heated zone near the entrance to the condenser which was cold. The tungsten-oxide which rained out in the condenser as the steam condensed was collected with the condensate and weighed after being dried. The aerosol smoke which escaped the condenser was collected on the sub

  16. Thermal performance prediction of UO2 pellet partly containing 9%w tungsten network

    International Nuclear Information System (INIS)

    Suwardi

    2008-01-01

    Sintered UO 2 exhibits very stable in reactor core compared to UC, UN, U metal and its alloys. However, its thermal conductivity is very low (2.about.5 W/m K), that limits its performance. UO 2 pellet containing Tungsten network invented by Song improves considerably its conductivity. The paper reports an analysis of thermal performance for UO 2 pellet that contains partly or wholly with 9% b. of Tungsten. The tungsten network having a high melting point and excellent thermal conductivity is continuously formed around UO 2 grains. Since the presence of network decreases the amount of fissile material and the burn up of fissile material is higher in the near surface zone of pellet but high temperature zone that releases low conductivity fission gas to the gap located in inner part of pellet, the analysis has been done for different outer radial-portion of tungsten-free pellet. The analysis takes into account the correction factor for pellet conductivity related to both pore and temperature distribution and high burn up effect. The gap conductance has been considered invariable since decrease caused by wider gap size related to lower pellet expansion is compensated by increase caused by fewer of refractory fission gas released. The results (47 kw/m, 40% burnup) show temperature decrease in all of pellet position containing W network. Pellet containing 9%b. tungsten network lower consecutively its center line temperature from 1578 to 1406, 1292, 1231, 1192, 1111, and 1038 deg C for 0, 50, 67, 75, 80, 90, and 100 % portion of network. An 80 to 90 % portion of inner pellet containing tungsten network can be considered a best fuel design. This preliminary analysis is prospective and more realistic one is recommended. (author)

  17. Analytical methods for the determination of tungsten

    International Nuclear Information System (INIS)

    Topping, J.J.

    1978-01-01

    Methods developed and employed in the recent literature (1969 to 1975) for the detection and determination of tungsten in a wide variety of matrices are reviewed. This paper is a supplement to the books, monographs and review papers which deal with the earlier literature. (author)

  18. Characterization of ITER tungsten qualification mock-ups exposed to high cyclic thermal loads

    Energy Technology Data Exchange (ETDEWEB)

    Pintsuk, Gerald, E-mail: g.pintsuk@fz-juelich.de [Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Bednarek, Maja; Gavila, Pierre [Fusion for Energy, E-08019 Barcelona (Spain); Gerzoskovitz, Stefan [Plansee SE, Innovation Services, 6600 Reutte (Austria); Linke, Jochen [Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Lorenzetto, Patrick; Riccardi, Bruno [Fusion for Energy, E-08019 Barcelona (Spain); Escourbiac, Frederic [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 Saint Paul lez Durance (France)

    2015-10-15

    Highlights: • Mechanical deformation of CuCrZr in case a thermal barrier layer has been formed due to impurity content in the cooling water. • Crack formation at the W/Cu interface starting at the block edge. • Porosity formation in the pure Cu interlayer. • Microstructural changes in tungsten down to the W/Cu interface, which indicates also high temperatures for the pure Cu interlayer. • Macrocrack formation in tungsten which is assumed to be ductile at the initiation point and brittle when proceeding toward the cooling tube. - Abstract: High heat flux tested small-scale tungsten monoblock mock-ups (5000 cycles at 10 MW/m{sup 2} and up to 1000 cycles at 20 MW/m{sup 2}) manufactured by Plansee and Ansaldo were characterized by metallographic means. Therein, the macrocrack formation and propagation in tungsten, its recrystallization behavior and the surface response to different heat load facilities were investigated. Furthermore, debonding at the W/Cu interface, void formation in the soft copper interlayer and microcrack formation at the inner surface of the CuCrZr cooling tube were found.

  19. In-situ imaging of tungsten surface modification under ITER-like transient heat loads

    Directory of Open Access Journals (Sweden)

    A.A. Vasilyev

    2017-08-01

    Full Text Available Experimental research on behavior of rolled tungsten plates under intense transient heat loads generated by a powerful (a total power of up to 7 MW long-pulse (0.1–0.3ms electron beam with full irradiation area of 2 cm2 was carried out. Imaging of the sample by the fast CCD cameras in the NIR range and with illumination by the 532nm continuous-wave laser was applied for in-situ surface diagnostics during exposure. In these experiments tungsten plates were exposed to heat loads 0.5–1MJ/m2 with a heat flux factor (Fhf close to and above the melting threshold of tungsten at initial room temperature. Crack formation and crack propagation under the surface layer were observed during multiple exposures. Overheated areas with excessive temperature over surrounding surface of about 500K were found on severely damaged samples more than 5ms after beam ending. The application of laser illumination enables to detect areas of intense tungsten melting near crack edges and crack intersections.

  20. The determination of molybdenum and tungsten in resin by x-ray-fluorescence spectrometry

    International Nuclear Information System (INIS)

    Eddy, B.T.

    1985-01-01

    This report describes a method using X-ray-fluorescence spectrometry for the determination of molybdenum and tungsten in ion-exchange resins. The dried resin is milled with sand, binder, and an internal-standard mixture before being briquetted. Niobium and zinc are used as the internal standards for molybdenum and tungsten respectively. Intensity measurements are made with the gold anode tube. Corrections are made for the interference of the Mo Kα analytical line on the background intensities used for the Mo Kα and Nb Kα lines. The precision of the analysis for molybdenum ranges from a relative standard deviation 0,02 at 5 mg/g to 0.045 at 55μg/g; for tungsten, the relative standard deviation ranges from 0,04 at 5 mg/g to 0,055 at 55μg/g. The limits of determination in the original resin sample were found to be 40μg/g for molybdenum and 80μg/g for tungsten. The laboratory method is given in an appendix

  1. Experimental and numerical simulations of ELM-like transient damage behaviors to different grade tungsten and tungsten alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Lian, Youyun; Chen, Lei; Chen, Zhenkui; Chen, Jiming; Duan, Xuru [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Fan, Jinlian [Central South University, Changsha 410083 (China); Song, Jiupeng [Xiamen Honglu Tungsten & Molybdenum Industry Co., Ltd, Xiamen (China)

    2015-08-15

    Transient heat loads, such as plasma disruptions and ELMs, could induce plastic deformations, cracking, melting, even fatigue cracks and creep of tungsten (W) surface. A high purity W, CVD-W coating, TiC dispersion strengthened and K doped tungsten alloys were tested in a 60 kW electron-beam facility by simulating the transient load events under different base temperatures. It was found that CVD-W, W-TiC and W-K alloys have higher crack thresholds than high purity W, meanwhile CVD-W is more sensitive to the crack disappearing at elevated base temperatures. On the other hand, repetitive pulse loading like ELMs can induce serious network cracks even the power density was quite lower than the crack threshold determined by a single shot. The ABAQUS code was used to simulate the crack behaviors of ITER grade pure W by a single shot and a FE-SAFE code was adopted to estimate the fatigue life under ELMs-like loads. A good agreement with experiment results was found.

  2. Simulation of tungsten armour cracking due to small ELMs in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Pestchanyi, S., E-mail: sergey.pestchanyi@ihm.fzk.de [Forschungszentrum Karlsruhe, IHM (Germany); Garkusha, I. [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Landman, I. [Forschungszentrum Karlsruhe, IHM (Germany)

    2010-12-15

    Simulations of tungsten armour cracking under small ELM-like plasma heat load, which does not cause surface melting, have been performed using the PEGASUS-3D code. A dedicated series of experiments have been performed in the QSPA-Kh50 facility for measurements of the unknown tungsten thermophysical properties and for verification of the PEGASUS-3D simulation results. The simulations revealed that a cellular crack network with average mesh size {Lambda} {approx} 0.5 mm formed after first ELMs and the pattern does not change further. With increasing number of repetitive ELMs loads, the average crack width {Delta}(n) has a maximum value {Delta}{sub m}. The ratio of {Delta}{sub m}/{Lambda} is equal to the tungsten thermal expansion at the maximum surface temperature. {Delta}(n) tends to this value exponentially. The number of ELMs n{sub m} needed for {Delta} stabilization depends on the ELMs energy density and time duration, n{sub m} {approx} 300 for the simulated ELMs of 0.45 MJ/m{sup 2} and 0.25 ms duration. The PEGASUS-3D code is prepared for simulations of tungsten armour damage under action of ELMs of various energy deposition and time duration. These parameters of ELMs depend on ITER regimes of operation and on how successful will be the efforts on ELMs mitigation.

  3. Hot tungsten plate based ionizer for cesium plasma in a multi-cusp field experiment

    International Nuclear Information System (INIS)

    Patel, Amitkumar D.; Sharma, Meenakshee; Ramasubramanian, Narayanan; Chattopadhyay, Prabal K.

    2015-01-01

    In a newly proposed basic experiment, contact-ionized cesium ions will be confined by a multi cups magnetic field configuration. The cesium ion will be produced by impinging collimated neutral atoms on an ionizer consisting of the hot tungsten plate. The temperature of the tungsten plate will also be made high enough (∼2700 K) such that it will contribute electrons also to the plasma. It is expected that at this configuration the cesium plasma would be really quiescent and would be free from even the normal drift waves observed in the classical Q-machines. For the ionizer a design based on F. F. Chen's design was made. This ionizer is very fine machining and exotic material like Tungsten plate, Molybdenum screws, rings, and Boron Nitride ceramics etc. The fine and careful machining of these materials was very hard. In this paper, the experience about to join the tungsten wire to molybdenum plate and alloy of tantalum and molybdenum ring is described. In addition experimental investigations have been made to measure 2D temperature distribution profile of the Tungsten hot plate using infrared camera and the uniformity of temperature distribution over the hot plate surface is discussed. (author)

  4. Synthesis and nature of heterogeneous catalysts of low-valent tungsten supported on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, A.; Hucul, D.A.

    1980-01-01

    Temperature-programed decomposition of catalysts prepared from zero-valent W(CO)/sub 6/ and alumina under rigorously air-free conditions showed a low-temperature carbon monoxide desorption peak at 110/sup 0/-172/sup 0/C, depending on alumina pretreatment, in which a relatively stable surface W(CO)/sub 3/ complex was formed; and a high-temperature carbon monoxide desorption peak at 257/sup 0/ to > 400/sup 0/C, which gave zero-valent tungsten if the ratio of hydroxyl groups of alumina to tungsten surface complexes was low, and hexavalent tungsten if the ratio was high. Up to about half the W(CO)/sub 6/ sublimated from the alumina during activation.

  5. TIG (Tungsten Inert Gas) welding; Le soudage TIG

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-09-15

    After having recalled the Tungsten Inert Gas process principle and the different alternative TIG processes, the author explains the advantages and limits of this process. The applications and recent developments are given. (O.M.)

  6. Failure study of helium-cooled tungsten divertor plasma-facing units tested at DEMO relevant steady-state heat loads

    International Nuclear Information System (INIS)

    Ritz, G; Pintsuk, G; Linke, J; Hirai, T; Norajitra, P; Reiser, J; Giniyatulin, R; Makhankov, A; Mazul, I

    2009-01-01

    Tungsten was selected as armor material for the helium-cooled divertor in future DEMO-type fusion reactors and fusion power plants. After realizing the design and testing of them under cyclic thermal loads of up to ∼14 MW m -2 , the tungsten divertor plasma-facing units were examined by metallography; they revealed failures such as cracks at the thermal loaded and as-machined surfaces, as well as degradation of the brazing layers. Furthermore, in order to optimize the machining processes, the quality of tungsten surfaces prepared by turning, milling and using a diamond cutting wheel were examined. This paper presents a metallographic examination of the tungsten plasma-facing units as well as technical studies and the characterization on machining of tungsten and alternative brazing joints.

  7. Failure study of helium-cooled tungsten divertor plasma-facing units tested at DEMO relevant steady-state heat loads

    Science.gov (United States)

    Ritz, G.; Hirai, T.; Norajitra, P.; Reiser, J.; Giniyatulin, R.; Makhankov, A.; Mazul, I.; Pintsuk, G.; Linke, J.

    2009-12-01

    Tungsten was selected as armor material for the helium-cooled divertor in future DEMO-type fusion reactors and fusion power plants. After realizing the design and testing of them under cyclic thermal loads of up to ~14 MW m-2, the tungsten divertor plasma-facing units were examined by metallography; they revealed failures such as cracks at the thermal loaded and as-machined surfaces, as well as degradation of the brazing layers. Furthermore, in order to optimize the machining processes, the quality of tungsten surfaces prepared by turning, milling and using a diamond cutting wheel were examined. This paper presents a metallographic examination of the tungsten plasma-facing units as well as technical studies and the characterization on machining of tungsten and alternative brazing joints.

  8. Development of positron annihilation spectroscopy for investigating deuterium decorated voids in neutron-irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.N., E-mail: chase.taylor@inl.gov [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Shimada, M.; Merrill, B.J. [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Akers, D.W. [Experimental Programs, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Hatano, Y. [Hydrogen Isotope Research Center, University of Toyama, Toyama 930-8555 (Japan)

    2015-08-15

    The present work is a continuation of a recent research to develop and optimize positron annihilation spectroscopy (PAS) for characterizing neutron-irradiated tungsten. Tungsten samples were exposed to neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and damaged to 0.025 and 0.3 dpa. Subsequently, they were exposed to deuterium plasmas in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory. The implanted deuterium was desorbed through sample heating to 900 °C, and Doppler broadening (DB)-PAS was performed both before and after heating. Results show that deuterium impregnated tungsten is identified as having a smaller S-parameter. The S-parameter increases after deuterium desorption. Microstructural changes also occur during sample heating. These effects can be isolated from deuterium desorption by comparing the S-parameters from the deuterium-free back face with the deuterium-implanted front face. The application of using DB-PAS to examine deuterium retention in tungsten is examined.

  9. Development of positron annihilation spectroscopy for investigating deuterium decorated voids in neutron-irradiated tungsten

    Science.gov (United States)

    Taylor, C. N.; Shimada, M.; Merrill, B. J.; Akers, D. W.; Hatano, Y.

    2015-08-01

    The present work is a continuation of a recent research to develop and optimize positron annihilation spectroscopy (PAS) for characterizing neutron-irradiated tungsten. Tungsten samples were exposed to neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and damaged to 0.025 and 0.3 dpa. Subsequently, they were exposed to deuterium plasmas in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory. The implanted deuterium was desorbed through sample heating to 900 °C, and Doppler broadening (DB)-PAS was performed both before and after heating. Results show that deuterium impregnated tungsten is identified as having a smaller S-parameter. The S-parameter increases after deuterium desorption. Microstructural changes also occur during sample heating. These effects can be isolated from deuterium desorption by comparing the S-parameters from the deuterium-free back face with the deuterium-implanted front face. The application of using DB-PAS to examine deuterium retention in tungsten is examined.

  10. Oxidation behaviour of silicon-free tungsten alloys for use as the first wall material

    Science.gov (United States)

    Koch, F.; Brinkmann, J.; Lindig, S.; Mishra, T. P.; Linsmeier, Ch

    2011-12-01

    The use of self-passivating tungsten alloys as armour material of the first wall of a fusion power reactor may be advantageous concerning safety issues. In earlier studies good performance of the system W-Cr-Si was demonstrated. Thin films of such alloys showed a strongly reduced oxidation rate compared to pure tungsten. However, the formation of brittle tungsten silicides may be disadvantageous for the powder metallurgical production of bulk W-Cr-Si alloys if a good workability is needed. This paper shows the results of screening tests to identify suitable silicon-free alloys with distinguished self-passivation and a potentially good workability. Of all the tested systems W-Cr-Ti alloys showed the most promising results. The oxidation rate was even lower than the one of W-Cr-Si alloys, the reduction factor was about four orders of magnitude compared to pure tungsten. This performance could be conserved even if the content of alloying elements was reduced.

  11. Oxidation behaviour of silicon-free tungsten alloys for use as the first wall material

    International Nuclear Information System (INIS)

    Koch, F; Brinkmann, J; Lindig, S; Mishra, T P; Linsmeier, Ch

    2011-01-01

    The use of self-passivating tungsten alloys as armour material of the first wall of a fusion power reactor may be advantageous concerning safety issues. In earlier studies good performance of the system W-Cr-Si was demonstrated. Thin films of such alloys showed a strongly reduced oxidation rate compared to pure tungsten. However, the formation of brittle tungsten silicides may be disadvantageous for the powder metallurgical production of bulk W-Cr-Si alloys if a good workability is needed. This paper shows the results of screening tests to identify suitable silicon-free alloys with distinguished self-passivation and a potentially good workability. Of all the tested systems W-Cr-Ti alloys showed the most promising results. The oxidation rate was even lower than the one of W-Cr-Si alloys, the reduction factor was about four orders of magnitude compared to pure tungsten. This performance could be conserved even if the content of alloying elements was reduced.

  12. Effect of rhenium irradiations on the mechanical properties of tungsten for nuclear fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Aneeqa, E-mail: aneeqa.khan-3@postgrad.manchester.ac.uk [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL (United Kingdom); Elliman, Robert; Corr, Cormac [Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601 (Australia); Lim, Joven J.H.; Forrest, Andrew [School of Materials, The University of Manchester, M13 9PL (United Kingdom); Mummery, Paul [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL (United Kingdom); Evans, Llion M. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom)

    2016-08-15

    As-received and annealed tungsten samples were irradiated at a temperature of 400 °C with Re and W ions to peak concentrations of 1600 appm (atomic parts per million) and damage levels of 40 dpa (displacements per atom). Mechanical properties were investigated using nanoindentation, and the orientation and depth dependence of irradiation damage was investigated using Electron Back Scatter Diffraction (EBSD). Following irradiation there was a 13% increase in hardness in the as received sheet and a 23% increase in the annealed material for both tungsten and rhenium irradiation. The difference between the tungsten and rhenium irradiated samples was negligible, suggesting that for the concentrations and damage levels employed, the presence of rhenium does not have a significant effect on the hardening mechanism. Energy dependent EBSD of annealed samples provided information about the depth distribution of the radiation damage in individual tungsten grains and confirmed that the radiation damage is orientation dependant.

  13. Production of polyoxoboronate as novel boron compound

    International Nuclear Information System (INIS)

    Yanagie, Hironobu; Mitsui, Sayaka; Ogata, Aya

    2006-01-01

    Polyoxometalates are negatively charged inorganic substances which contain early transitional metal ions such as tungsten, molybdenum, making a cluster with the surrounding oxygen atoms. We prepared novel boron compound, (H 15 [V 12 10 B 32 O 84 Na 4 ]·13H 2 O; 10 B32), as the structure of polyoxometalates. With thermal neutron irradiation, 10 B32 shows cytotoxic effect on the proliferation of AsPC-1 cells in colony formation assay. On BNCT model mice bearing AsPC-1, 10 B32 shows tumor growth suppression, as well. These results indicate that 10 B32 has anti-tumor activity being functioned as a novel neutron capture agent. (author)

  14. Consolidation of tungsten disilicide by plasma spraying

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Matějíček, Jiří; Rohan, Pavel; Janča, J.

    2007-01-01

    Roč. 52, č. 3 (2007), s. 311-320 ISSN 0001-7043 R&D Projects: GA ČR(CZ) GA104/05/0540 Institutional research plan: CEZ:AV0Z20430508 Keywords : Water stabilized plasma * tungsten disilicide * plasma deposition * thermal spray coatings Subject RIV: JJ - Other Materials

  15. Influence of tungsten on the carbon nanotubes growth by CVD process

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Mariano [Instituto de Fisicoquimica de Materiales, Ambiente y Energia, CONICET-UBA, Pabellon II, Ciudad Universitaria (1428) Bs As (Argentina); LP and MC, Dep. De Fisica, FCEyN-UBA, Pabellon 1, Ciudad Universitaria (1428) Bs As (Argentina)], E-mail: mescobar@qi.fcen.uba.ar; Rubiolo, Gerardo H. [LP and MC, Dep. De Fisica, FCEyN-UBA, Pabellon 1, Ciudad Universitaria (1428) Bs As (Argentina); Unidad de Actividad Materiales, CNEA, Av. Gral. Paz 1499, San Martin (1650), Bs As (Argentina); Moreno, M. Sergio [Centro Atomico Bariloche, (8400) S.C. de Bariloche, Rio Negro (Argentina); Goyanes, Silvia [LP and MC, Dep. De Fisica, FCEyN-UBA, Pabellon 1, Ciudad Universitaria (1428) Bs As (Argentina); Candal, Roberto [Instituto de Fisicoquimica de Materiales, Ambiente y Energia, CONICET-UBA, Pabellon II, Ciudad Universitaria (1428) Bs As (Argentina)

    2009-06-24

    The effect of tungsten (W) on the growth of multi-walled carbon nanotubes (MWNTs) using the chemical vapour deposition (CVD) process over a metal Fe-W catalyst incorporated into a silica matrix is reported. A W molar content in Fe/SiO{sub 2} up to 10% was studied. The incorporation of only 2% of W substantially modifies the crystalline phases and the crystalline degree of the catalyst during the MWNTs synthesis. This fact seems to have a strong influence on the type and yield of the carbonaceous species obtained by the CVD of acetylene, at 600 deg. C and 180 Torr, over each catalyst. Tungsten interacts with iron within the matrix, diminishing the catalytic activity of the metal nanoparticles, and both, carbon nanotubes and carbon nanofibers, are obtained when tungsten is present. The results obtained support the hypothesis of a base growth model for carbon nanotubes indicating a strong interaction between silica matrix and Fe/W nanoparticles, independently of the content of W.

  16. Influence of tungsten on the carbon nanotubes growth by CVD process

    International Nuclear Information System (INIS)

    Escobar, Mariano; Rubiolo, Gerardo H.; Moreno, M. Sergio; Goyanes, Silvia; Candal, Roberto

    2009-01-01

    The effect of tungsten (W) on the growth of multi-walled carbon nanotubes (MWNTs) using the chemical vapour deposition (CVD) process over a metal Fe-W catalyst incorporated into a silica matrix is reported. A W molar content in Fe/SiO 2 up to 10% was studied. The incorporation of only 2% of W substantially modifies the crystalline phases and the crystalline degree of the catalyst during the MWNTs synthesis. This fact seems to have a strong influence on the type and yield of the carbonaceous species obtained by the CVD of acetylene, at 600 deg. C and 180 Torr, over each catalyst. Tungsten interacts with iron within the matrix, diminishing the catalytic activity of the metal nanoparticles, and both, carbon nanotubes and carbon nanofibers, are obtained when tungsten is present. The results obtained support the hypothesis of a base growth model for carbon nanotubes indicating a strong interaction between silica matrix and Fe/W nanoparticles, independently of the content of W.

  17. The Effect of Ion Energy and Substrate Temperature on Deuterium Trapping in Tungsten

    Science.gov (United States)

    Roszell, John Patrick Town

    Tungsten is a candidate plasma facing material for next generation magnetic fusion devices such as ITER and there are major operational and safety issues associated with hydrogen (tritium) retention in plasma facing components. An ion gun was used to simulate plasma-material interactions under various conditions in order to study hydrogen retention characteristics of tungsten thus enabling better predictions of hydrogen retention in ITER. Thermal Desorption Spectroscopy (TDS) was used to measure deuterium retention from ion irradiation while modelling of TDS spectra with the Tritium Migration Analysis Program (TMAP) was used to provide information about the trapping mechanisms involved in deuterium retention in tungsten. X-ray Photoelectron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS) were used to determine the depth resolved composition of specimens used for irradiation experiments. Carbon and oxygen atoms will be among the most common contaminants within ITER. C and O contamination in polycrystalline tungsten (PCW) specimens even at low levels (˜0.1%) was shown to reduce deuterium retention by preventing diffusion of deuterium into the bulk of the specimen. This diffusion barrier was also responsible for the inhibition of blister formation during irradiations at 500 K. These observations may provide possible mitigation techniques for problems associated with tritium retention and mechanical damage to plasma facing components caused by hydrogen implantation. Deuterium trapping in PCW and single crystal tungsten (SCW) was studied as a function of ion energy and substrate temperature. Deuterium retention was shown to decrease with decreasing ion energy below 100 eV/D+. Irradiation of tungsten specimens with 10 eV/D+ ions was shown to retain up to an order of magnitude less deuterium than irradiation with 500 eV/D+ ions. Furthermore, the retention mechanism for deuterium was shown to be consistent across the entire energy range studied (10-500 e

  18. Polaron interaction energies in reduced tungsten trioxide

    International Nuclear Information System (INIS)

    Iguchi, E.; Salje, E.; Tilley, R.J.D.

    1981-01-01

    Consideration of the properties of reduced tungsten trioxide suggest that the mobile charge carriers are polarons. As it is uncertain how the presence of polarons will influence the microstructures of the crystallographic shear (CS) planes present in reduced tungsten trioxide we have calculated both the polaron-CS plane and polaron-polaron interaction energy for a variety of circumstances. Three CS plane geometries were considered, (102), (103), and (001) CS plane arrays, and the nominal compositions of the crystals ranged from WO 2 70 to WO 3 0 . The polarons were assumed to have radii from 0.6 to 1.0 nm and the polaron-CS plane electrostatic interaction was assumed to be screened. The results suggest that for the most part the total interaction energy is small and is unlikely to be of major importance in controlling the microstructures found in CS planes. However, at very high polaron densities the interaction energy could be appreciable and may have some influence on the existence range of CS phases

  19. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples

    Science.gov (United States)

    Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.

    2014-11-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.

  20. Conceptual Design for a Bulk Tungsten Divertor Tile in JET

    International Nuclear Information System (INIS)

    Mertens, P.; Neubauer, O.; Philipps, V.; Schweer, B.; Samm, U.; Hirai, T.; Sadakov, S.

    2006-01-01

    With ITER on the verge of being build, the ITER-like Wall project (ILW) for JET aims at providing the plasma chamber of the tokamak with an environment of mixed materials which will be relevant to the support of decisions to the first wall construction and, from the point of view of plasma physics, to the corresponding investigations of possible plasma configuration and plasma-wall interaction. In both respects, tungsten plays a key role in the divertor cladding whereas beryllium will be used for the vessel's first wall. For the central tile, also called LB-SRP for '' Load-Bearing Septum Replacement Plate '', resort to bulk tungsten is envisaged in order to cope with the high loads expected (up to 10 MW/m 2 for about 10 s). This is indeed the preferred plasma-facing component for positioning the outer strike-point in the divertor. Forschungszentrum Juelich has developed a conceptual design for this tile, based on an assembly of tungsten blades or lamellae. It was selected in the frame of an extensive R-and-D study in search of a suitable, inertially cooled component(T. Hirai et al., R-and-D on full tungsten divertor and beryllium wall for JET ITER-like Wall Project: this conference). As reported elsewhere, the design is actually driven by electromagnetic considerations in the first place(S. Sadakov et al., Detailed electromagnetic analysis for optimisation of a tungsten divertor plate for JET: this conference). The lamellae are grouped in four stacks per tile which are independently attached to an equally re-designed supporting structure. A so-called adapter plate, also a new design, takes care of an appropriate interface to the base carrier of JET, onto which modules of two tiles are positioned and screwed by remote handling (RH) procedures. The compatibility of the design on the whole with RH requirements is another essential ingredient which was duly taken into account throughout. The concept and the underlying philosophy will be presented along with important

  1. Cationic Tungsten(VI) Penta-Methyl Complex: Synthesis, Characterization and its Application in Olefin Metathesis Reaction

    KAUST Repository

    Dey, Raju; Samantaray, Manoja; Callens, Emmanuel; Hamieh, Ali Imad Ali; Emwas, Abdul-Hamid M.; Abou-Hamad, Edy; Kavitake, Santosh Giridhar; Basset, Jean-Marie

    2016-01-01

    Tungsten-hexa-methyl readily reacts with B(C6F5)3 in dichloromethane and generates the corresponding well-defined cationic tungsten-penta-methyl complex which was identified precisely by 1H NMR, 13C NMR, 1H-13C NMR correlation spectroscopy. Unlike WMe6, this cationic complex has low energy barrier to form tungsten carbene intermediate, which was further supported by the fact that WMe6 alone has no activity in olefin metathesis reaction whereas the cationic complex shows catalytic activity for self-metathesis of 1-octene.

  2. Cationic Tungsten(VI) Penta-Methyl Complex: Synthesis, Characterization and its Application in Olefin Metathesis Reaction

    KAUST Repository

    Dey, Raju

    2016-04-13

    Tungsten-hexa-methyl readily reacts with B(C6F5)3 in dichloromethane and generates the corresponding well-defined cationic tungsten-penta-methyl complex which was identified precisely by 1H NMR, 13C NMR, 1H-13C NMR correlation spectroscopy. Unlike WMe6, this cationic complex has low energy barrier to form tungsten carbene intermediate, which was further supported by the fact that WMe6 alone has no activity in olefin metathesis reaction whereas the cationic complex shows catalytic activity for self-metathesis of 1-octene.

  3. Nitridation of one-dimensional tungsten oxide nanostructures: Changes in structure and photoactivity

    KAUST Repository

    Varga, Tamás

    2017-10-12

    In the search for stable, visible light active photoelectrodes, hydrothermally synthesized tungsten oxide nanowires were modified via nitrogen incorporation into their structure. To this end, nanowires were heat-treated in ammonia/nitrogen atmosphere at different temperatures. This procedure caused transitions in their structure that were investigated along with the photoelectrochemical properties of the samples. Results were subsequently compared to the reference samples treated in inert nitrogen atmosphere. Morphological changes and structural transitions were followed by transmission and scanning electron microscopy and X-ray diffraction. Bandgap energies were determined from the UV–vis spectra of the materials, while photoelectrochemical properties were tested by linear sweep photovoltammetry and electrochemical impedance spectroscopy. Pristine tungsten oxide nanowires were first transformed into tungsten oxynitride and then tungsten nitride during high-temperature calcination in ammonia atmosphere. Electron microscopic investigation revealed that, along with phase transition, the initial fibrous morphology gradually converted into nanosheets. Simultaneously, bandgap energies significantly decreased in the calcination process, too. Photoelectrochemical measurements demonstrated that photoactivity in the treated samples was not improved by the decrease of the bandgap. This behavior might be explained with the deterioration of charge carrier transport properties of the materials due to the increased number of structural defects (acting as trap states), and current ongoing work aims to verify this notion.

  4. High-pressure synthesis of fully occupied tetragonal and cubic tungsten bronze oxides

    Energy Technology Data Exchange (ETDEWEB)

    Ikeuchi, Yuya; Takatsu, Hiroshi; Tassel, Cedric; Goto, Yoshihiro; Murakami, Taito; Kageyama, Hiroshi [Graduate School of Engineering, Kyoto University (Japan)

    2017-05-15

    A high-pressure reaction yielded the fully occupied tetragonal tungsten bronze K{sub 3}W{sub 5}O{sub 15} (K{sub 0.6}WO{sub 3}). The terminal phase shows an unusual transport property featuring slightly negative temperature-dependence in resistivity (dρ/dT<0) and a large Wilson ratio of R{sub W}=3.2. Such anomalous metallic behavior possibly arises from the low-dimensional electronic structure with a van Hove singularity at the Fermi level and/or from enhanced magnetic fluctuations by geometrical frustration of the tungsten sublattice. The asymmetric nature of the tetragonal tungsten bronze K{sub x}WO{sub 3}-K{sub 0.6-y}Ba{sub y}WO{sub 3} phase diagram implies that superconductivity for x≤0.45 originates from the lattice instability because of potassium deficiency. A cubic perovskite KWO{sub 3} phase was also identified as a line phase - in marked contrast to Na{sub x}WO{sub 3} and Li{sub x}WO{sub 3} with varying quantities of x (<1). This study presents a versatile method by which the solubility limit of tungsten bronze oxides can be extended. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Influence of temperature and heat treatment on crack resistance of ceramic tungsten

    International Nuclear Information System (INIS)

    Uskov, E.I.; Babak, A.V.; Bega, N.D.

    1983-01-01

    The effect of testing temperature in the range from 20 to 2000 deg C, and recrystallization annealing at 2200 deg C on crack resistance of ceramic tungsten in vacuum, is investigated. The extension diagrams thus obtained have been treated in accordance with the standard technique. The value of the critical crack loading and the stress intensity coefficient have been determined. Structural changes have been controlled with X-ray structural methods. Crack resistance of tungsten increases in the test temperature range from 20 deg C to Tsub(x) which is connected with the increase of mobility of screw components of dislocation loops. At the temperature more than Tsub(x) the plasticity growth of ceramic tungsten takes place simultaneously with grain boundary embrittlement. Recrystallization annealing at 2200 deg C creates the structure resistant to temperature effect; crack resistance being minimum

  6. In situ transmission electron microscope observation of the formation of fuzzy structures on tungsten

    International Nuclear Information System (INIS)

    Miyamoto, M; Watanabe, T; Nagashima, H; Nishijima, D; Doerner, R P; Krasheninnikov, S I; Sagara, A; Yoshida, N

    2014-01-01

    To investigate the formation processes of tungsten nano-structures, so called fuzz, in situ transmission electron microscope observations during helium ion irradiation and high temperature annealing have been performed. The irradiation with 3 keV He + from room temperature to 1273 K is found to cause high-density helium bubbles in tungsten with no significant change in the surface structure. At higher temperatures, surface morphology changes were observed even without helium irradiation due probably to surface diffusion of tungsten atoms driven by surface tension. It is clearly shown that this morphology change is enhanced with helium irradiation, i.e. the formation of helium bubbles. (paper)

  7. Tuning the morphology, stability and photocatalytic activity of TiO2 nanocrystal colloids by tungsten doping

    International Nuclear Information System (INIS)

    Xu, Haiping; Liao, Jianhua; Yuan, Shuai; Zhao, Yin; Zhang, Meihong; Wang, Zhuyi; Shi, Liyi

    2014-01-01

    Graphical abstract: - Highlights: • W 6+ -doped TiO 2 nanocrystal colloids were prepared by hydrothermal methods. • The properties of TiO 2 nanocrystal colloids can be tuned by tungsten doping. • W 6+ -doped TiO 2 nanocrystal colloids show higher stability and dispersity. • W 6+ -doped TiO 2 nanocrystal colloids show higher photocatalytic activity. - Abstract: The effects of tungsten doping on the morphology, stability and photocatalytic activity of TiO 2 nanocrystal colloids were investigated. The nanostructure, chemical state of Ti, W, O, and the properties of tungsten doped TiO 2 samples were investigated carefully by TEM, XRD, XPS, UV–vis, PL and photocatalytic degradation experiments. And the structure–activity relationship was discussed according to the analysis and measurement results. The analysis results reveal that the morphology, zeta potential and photocatalytic activity of TiO 2 nanocrystals can be easily tuned by changing the tungsten doping concentration. The tungsten doped TiO 2 colloid combines the characters of high dispersity and high photocatalytic activity

  8. Tungsten determination in heat resistant nickel-base-alloys by the method of atomic absorption

    International Nuclear Information System (INIS)

    Gregorczyk, S.; Wycislik, A.

    1980-01-01

    A method of atomic absorption was developed. It allows for the tungsten to be determined in heatresistant nickel-base-alloys within the range 0.01 to 7%. It consists in precipitating tungsten acid in the presence of alkaloids with its following decomposition by hydrofluoric acid in the teflon bomb. (author)

  9. Influence of surface morphology and microstructure on performance of CVD tungsten coating under fusion transient thermal loads

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Youyun, E-mail: lianyy@swip.ac.cn [Southwestern Institute of Physics, Chengdu (China); Liu, Xiang; Wang, Jianbao; Feng, Fan [Southwestern Institute of Physics, Chengdu (China); Lv, Yanwei; Song, Jiupeng [China National R& D Center for Tungsten Technology, Xiamen Tungsten Co. Ltd, 361026 Xiamen (China); Chen, Jiming [Southwestern Institute of Physics, Chengdu (China)

    2016-12-30

    Highlights: • Thick CVD-W coatingswere deposited at a rapid growth rate. • The polished CVD-W coatings have highly textured structure and exhibited a very strong preferred orientation. • The polished CVD tungsten coatings show superior thermal shock resistance as compared with that of the as-deposited coatings. • The crack formation of the polished CVD-W was almost suppressed at an elevated temperature. - Abstract: Thick tungsten coatings have been deposited by chemical vapor deposition (CVD) at a rapid growth rate. A series of tungsten coatings with different thickness and surface morphology were prepared. The surface morphology, microstructure and preferred orientation of the CVD tungsten coatings were investigated. Thermal shock analyses were performed by using an electron beam facility to study the influence of the surface morphology and the microstructure on the thermal shock resistance of the CVD tungsten coatings. Repetitive (100 pulses) ELMs-like thermal shock loads were applied at various temperatures between room temperature and 600 °C with pulse duration of 1 ms and an absorbed power density of up to 1 GW/m{sup 2}. The results of the tests demonstrated that the specific surface morphology and columnar crystal structure of the CVD tungsten have significant influence on the surface cracking threshold and crack propagation of the materials. The CVD tungsten coatings with a polished surface show superior thermal shock resistance as compared with that of the as-deposited coatings with a rough surface.

  10. Brazing molybdenum and tungsten for high temperature service

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Turner, W.C.; Hoffman, C.G.

    1978-01-01

    Investigations were conducted to develop vacuum brazes for molybdenum and tungsten which can be used in seal joint applications up to 1870 K (1597 C, 2907 F). Joints were attempted in molybdenum, tungsten and tungsten--molybdenum. The braze materials included: Ti--10Cr powder, Ti--30V wire, Ti--65V wire, V wire, Ni electroplate, MoB--50MoC powder mixture, V--50Mo powder mixture, Mo--15MoB 2 powder mixture and Mo--49V--15MoB 2 powder mixture. Braze temperature ranged from 1900 K (1627 C, 2961 F) to 2530 K, (2257 C, 4095 F), and leak-tight joints were made with all braze materials except Ti--10Cr. After heat treatments up to 1870 K (1597 C, 2907 F) Kirkendall voiding was found to cause leakage of some of the joints made with only substitutional alloying elements. However, adding base metal powders to the braze or narrowing the root opening eliminated this problem. Kirkendall voiding was not a problem when interstitial elements were a major ingredient in the braze material. Shear testing of Ti--65V, V, MoB--50MoC and V--50Mo brazed molybdenum at 1670 K (1397 C, 2547 F) indicated strengths equal to or better than the base metal. Ti--65V, V--50Mo and MoB--50MoC brazed joints were exposed to basalt at 1670 K (1397 C, 2547 F) for 3 h without developing leaks

  11. Preparation of tungsten coatings on graphite by electro-deposition via Na{sub 2}WO{sub 4}–WO{sub 3} molten salt system

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ning-bo [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang, Ying-chun, E-mail: zycustb@163.com [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Jiang, Fan; Lang, Shao-ting [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Xia, Min [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Institute of Powder Metallurgy and Advanced Ceramics, Southwest Jiaotong University, 111, 1st Section, Northern 2nd Ring Road, Chengdu (China)

    2014-11-15

    Highlights: • Tungsten coatings on graphite were firstly obtained by electro-deposition method via Na{sub 2}WO{sub 4}–WO{sub 3} molten salt system. • Uniform and dense tungsten coatings could be easily prepared in each face of the sample, especially the complex components. • The obtained tungsten coatings are with high purity, ultra-low oxygen content (about 0.022 wt%). • Modulate pulse parameters can get tungsten coatings with different thickness and hardness. - Abstract: Tungsten coating on graphite substrate is one of the most promising candidate materials as the ITER plasma facing components. In this paper, tungsten coatings on graphite substrates were fabricated by electro-deposition from Na{sub 2}WO{sub 4}–WO{sub 3} molten salt system at 1173 K in atmosphere. Tungsten coatings with no impurities were successfully deposited on graphite substrates under various pulsed current densities in an hour. By increasing the current density from 60 mA cm{sup −2} to 120 mA cm{sup −2} an increase of the average size of tungsten grains, the thickness and the hardness of tungsten coatings occurs. The average size of tungsten grains can reach 7.13 μm, the thickness of tungsten coating was in the range of 28.8–51 μm, and the hardness of coating was higher than 400 HV. No cracks or voids were observed between tungsten coating and graphite substrate. The oxygen content of tungsten coating is about 0.022 wt%.

  12. OEDGE Modeling of Collector Probe measurements in L-mode from the DIII-D tungsten ring campaign

    Science.gov (United States)

    Elder, J. D.; Stangeby, P. C.; Unterberg, Z.; Donovan, D.; Wampler, W. R.; Watkins, J.; Abrams, T.; McLean, A. G.

    2017-10-01

    During the tungsten ring campaign on DIII-D, a collector probe system with multiple diameter, dual-facing collector rods was inserted into the far scrape off layer (SOL) near the outer midplane to measure the plasma tungsten content. For most probes more tungsten was observed on the side connected along field lines to the inner divertor, with the larger probes showing largest divertor-facing asymmetries The OEDGE code is used to model the tungsten erosion, transport and deposition. It has been enhanced with (i) a peripheral particle transport and deposition model to record the impurity content in the peripheral region outside the regular mesh, and (ii) a collector probe model. The OEDGE results approximately reproduce both the divertor-facing asymmetries and the radial decay of each collector probe profile. The effect of changing impurity transport assumptions and wall location are examined. The measured divertor-facing asymmetries imply a higher tungsten density in the plasma upstream of the probe; this was expected theoretically from the effect of the parallel ion temperature gradient force driving upstream transport of tungsten from the outer divertor and was also found in the code analysis. Work supported by the US Department of Energy under DE-FC02-04ER54698, DE-NA0003525, DE-AC05-00OR22725, and DE-AC52-07NA27344.

  13. Geochronology, petrogenesis and metallogeny of Piaotang granitoids in the tungsten deposit region of South China

    International Nuclear Information System (INIS)

    He Zhenyu; Xu Xisheng; Wang Xudong; Yu Yao; Zou Haibo

    2010-01-01

    The tungsten deposit region of South China is well known as the world's leading tungsten (W) producer. The Piaotang tungsten deposit in the region is such a representative large-scale quartz vein type tungsten polymetallic deposit that is closely associated with granitoids. In the present study we present precise LA-ICP-MS zircon U-Pb dating and LA-MC-ICPMS zircon Hf isotopic data for the samples from exposed quartz diorite body and buried granite stock in the Piaotang tungsten deposit area. Zircon U-Pb dating results indicate that the quartz diorite body was formed in Early Paleozoic time at 439±2 Ma, whereas the granite body was emplaced in EarlyYanshanian time at 158±3 Ma. Both the quartz diorite and granite have negative ε Hf (t) values, with similar two-stage zircon Hf model ages ranging from 1.8 to 2.1 Ga. Through integration of our new data with the isotope data of Precambrian basement rocks in western Cathaysia, we suggest that the Paleoproterozoic Hf model ages (1.8-2.1 Ga) might be an average age which resulted from mixing of continental materials of different ages. Both the Piaotang Early Paleozoic quartz diorite and Early Yanshanian granite are produced by reworking of the heterogeneous Neoproterozoic crust. Our zircon ages, together with the geochemical data and geological features and ore-forming ages of this tungsten deposit, indicate that the buried Early Yanshanian granite, rather than the exposed quartz diorite, is genetically associated with tungsten mineralization. The distinct metallogeny difference between the Piaotang Early Paleozoic quartz diorite and Early Yanshanian granite can be ascribed to the different degrees of magma differentiation. The Early Yanshanian granite is highly differentiated rock and similar to the other W-Sn deposits generating granitoids in South China. The extents of magma differentiation depend on the tectonic setting and the mechanism of magma generation. On the basis of the relationship between two different

  14. Partial thermodynamic functions of hydrogen in complex hydrated vanadium(5) and tungsten(6) oxides

    International Nuclear Information System (INIS)

    Volkov, V.L.; Zakharova, G.S.

    2003-01-01

    The partial thermodynamic characteristics of hydrogen in the complex hydrated vanadium(5) and tungsten(6) oxides, obtained through the sol-gel method, of the general formula H 2 V 12-y W y O 31+δ ·nH 2 O (0 ≤ x ≤ 0.33) are determined through the emf method. The changes in these values (ΔG-bar(H 2 ), ΔH-bar(H 2 ) and ΔS-bar(H 2 )) in dependence on the compound composition are discussed. It is established that ΔG-bar(H 2 ) phases, amorphous to X-rays are determined by the ΔS-bar(H 2 ) value and crystalline ones by ΔH-bar(H 2 ). The scheme of the phase relationships of the H 2 O-H-WO 3 -V 2 O 5 system, whereto the given phases are related are presented [ru

  15. Selective Production of Renewable para-Xylene by Tungsten Carbide Catalyzed Atom-Economic Cascade Reactions.

    Science.gov (United States)

    Dai, Tao; Li, Changzhi; Li, Lin; Zhao, Zongbao Kent; Zhang, Bo; Cong, Yu; Wang, Aiqin

    2018-02-12

    Tungsten carbide was employed as the catalyst in an atom-economic and renewable synthesis of para-xylene with excellent selectivity and yield from 4-methyl-3-cyclohexene-1-carbonylaldehyde (4-MCHCA). This intermediate is the product of the Diels-Alder reaction between the two readily available bio-based building blocks acrolein and isoprene. Our results suggest that 4-MCHCA undergoes a novel dehydroaromatization-hydrodeoxygenation cascade process by intramolecular hydrogen transfer that does not involve an external hydrogen source, and that the hydrodeoxygenation occurs through the direct dissociation of the C=O bond on the W 2 C surface. Notably, this process is readily applicable to the synthesis of various (multi)methylated arenes from bio-based building blocks, thus potentially providing a petroleum-independent solution to valuable aromatic compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High-temperature brazing for reliable tungsten-CFC joints

    International Nuclear Information System (INIS)

    Koppitz, Th; Pintsuk, G; Reisgen, U; Remmel, J; Hirai, T; Sievering, R; Rojas, Y; Casalegno, V

    2007-01-01

    The joining of tungsten and carbon-based materials is demanding due to the incompatibility of their chemical and thermophysical properties. Direct joining is unfeasible by the reason of brittle tungsten carbide formation. High-temperature brazing has been investigated in order to find a suitable brazing filler metal (BFM) which successfully acts as an intermediary between the incompatible properties of the base materials. So far only low Cr-alloyed Cu-based BFMs provide the preferential combination of good wetting action on both materials, tolerable interface reactions, and a precipitation free braze joint. Attempts to implement a higher melting metal (e.g. Pd, Ti, Zr) as a BFM have failed up to now, because the formation of brittle precipitations and pores in the seam were inevitable. But the wide metallurgical complexity of this issue is regarded to offer further joining potential

  17. Low-temperature transport in ultra-thin tungsten films

    Energy Technology Data Exchange (ETDEWEB)

    Chiatti, Olivio [Neue Materialien, Institut fuer Physik, Humboldt-Univ. Berlin (Germany); London Centre for Nanotechnology, University College London (United Kingdom); Nash, Christopher; Warburton, Paul [London Centre for Nanotechnology, University College London (United Kingdom)

    2012-07-01

    Tungsten-containing films, fabricated by focused-ion-beam-induced chemical vapour deposition, are known to have an enhanced superconducting transition temperature compared to bulk tungsten, and have been investigated previously for film thickness down to 25 nm. In this work, by using ion-beam doses below 50 pC/{mu}m{sup 2} on a substrate of amorphous silicon, we have grown continuous films with thickness below 20 nm. The electron transport properties were investigated at temperatures down to 350 mK and in magnetic fields up to 3 T, parallel and perpendicular to the films. The films in this work are closer to the limit of two-dimensional systems and are superconducting at low temperatures. Magnetoresistance measurements yield upper critical fields of the order of 1 T, and the resulting coherence length is smaller than the film thickness.

  18. Hydrocarbon deposition in gaps of tungsten and graphite tiles in Experimental Advanced Superconducting Tokamak edge plasma parameters

    International Nuclear Information System (INIS)

    Xu Qian; Yang Zhongshi; Luo Guangnan

    2015-01-01

    The three-dimensional (3D) Monte Carlo code PIC-EDDY has been utilized to investigate the mechanism of hydrocarbon deposition in gaps of tungsten tiles in the Experimental Advanced Superconducting Tokamak (EAST), where the sheath potential is calculated by the 2D in space and 3D in velocity particle-in-cell method. The calculated results for graphite tiles using the same method are also presented for comparison. Calculation results show that the amount of carbon deposited in the gaps of carbon tiles is three times larger than that in the gaps of tungsten tiles when the carbon particles from re-erosion on the top surface of monoblocks are taken into account. However, the deposition amount is found to be larger in the gaps of tungsten tiles at the same CH 4 flux. When chemical sputtering becomes significant as carbon coverage on tungsten increases with exposure time, the deposition inside the gaps of tungsten tiles would be considerable. (author)

  19. The Effectof Underwater Explosion on the Kinetics of Alkaline Leaching of Roasted Tungsten Carbide Scraps for Recycling

    OpenAIRE

    BAIK, Seung Woo; SHIBAYAMA, Atsushi; MURATA, Kenji; FUJITA, Toyohisa

    2004-01-01

    Wasted tungsten scraps are important resources for recycling, however, the mechanical recycle process of tungsten has a difficulty for recycling due to its mechanical strength. Underwater explosion fracturing technique was designed for solving this problem. The kinetics for alkaline leaching of roasted tungsten alloy scraps with different size distribution prepared by two ways of crushing technique has been investigated to evaluate the effect of the underwater explosion-crushing. The merit of...

  20. Dislocation-mediated strain hardening in tungsten: Thermo-mechanical plasticity theory and experimental validation

    Science.gov (United States)

    Terentyev, Dmitry; Xiao, Xiazi; Dubinko, A.; Bakaeva, A.; Duan, Huiling

    2015-12-01

    A self-consistent thermo-mechanical model to study the strain-hardening behavior of polycrystalline tungsten was developed and validated by a dedicated experimental route. Dislocation-dislocation multiplication and storage, as well dislocation-grain boundary (GB) pinning were the major mechanisms underlying the evolution of plastic deformation, thus providing a link between the strain hardening behavior and material's microstructure. The microstructure of the polycrystalline tungsten samples has been thoroughly investigated by scanning and electron microscopy. The model was applied to compute stress-strain loading curves of commercial tungsten grades, in the as-received and as-annealed states, in the temperature range of 500-1000 °C. Fitting the model to the independent experimental results obtained using a single crystal and as-received polycrystalline tungsten, the model demonstrated its capability to predict the deformation behavior of as-annealed samples in a wide temperature range and applied strain. The relevance of the dislocation-mediated plasticity mechanisms used in the model have been validated using transmission electron microscopy examination of the samples deformed up to different amounts of strain. On the basis of the experimental validation, the limitations of the model are determined and discussed.