WorldWideScience

Sample records for tungsten coil atomizer

  1. Determination of Cd in urine by cloud point extraction-tungsten coil atomic absorption spectrometry.

    Science.gov (United States)

    Donati, George L; Pharr, Kathryn E; Calloway, Clifton P; Nóbrega, Joaquim A; Jones, Bradley T

    2008-09-15

    Cadmium concentrations in human urine are typically at or below the 1 microgL(-1) level, so only a handful of techniques may be appropriate for this application. These include sophisticated methods such as graphite furnace atomic absorption spectrometry and inductively coupled plasma mass spectrometry. While tungsten coil atomic absorption spectrometry is a simpler and less expensive technique, its practical detection limits often prohibit the detection of Cd in normal urine samples. In addition, the nature of the urine matrix often necessitates accurate background correction techniques, which would add expense and complexity to the tungsten coil instrument. This manuscript describes a cloud point extraction method that reduces matrix interference while preconcentrating Cd by a factor of 15. Ammonium pyrrolidinedithiocarbamate and Triton X-114 are used as complexing agent and surfactant, respectively, in the extraction procedure. Triton X-114 forms an extractant coacervate surfactant-rich phase that is denser than water, so the aqueous supernatant is easily removed leaving the metal-containing surfactant layer intact. A 25 microL aliquot of this preconcentrated sample is placed directly onto the tungsten coil for analysis. The cloud point extraction procedure allows for simple background correction based either on the measurement of absorption at a nearby wavelength, or measurement of absorption at a time in the atomization step immediately prior to the onset of the Cd signal. Seven human urine samples are analyzed by this technique and the results are compared to those found by the inductively coupled plasma mass spectrometry analysis of the same samples performed at a different institution. The limit of detection for Cd in urine is 5 ngL(-1) for cloud point extraction tungsten coil atomic absorption spectrometry. The accuracy of the method is determined with a standard reference material (toxic metals in freeze-dried urine) and the determined values agree with

  2. Evaluation of a tungsten coil atomization-laser-induced fluorescence detection approach for trace elemental analysis

    International Nuclear Information System (INIS)

    Ezer, Muhsin; Elwood, Seth A.; Jones, Bradley T.; Simeonsson, Josef B.

    2006-01-01

    The analytical utility of a tungsten (W)-coil atomization-laser-induced fluorescence (LIF) approach has been evaluated for trace level measurements of elemental chromium (Cr), arsenic (As), selenium (Se), antimony (Sb), lead (Pb), tin (Sn), copper (Cu), thallium (Tl), indium (In), cadmium (Cd), zinc (Zn) and mercury (Hg). Measurements of As, Cr, In, Se, Sb, Pb, Tl, and Sn were performed by laser-induced fluorescence using a single dye laser operating near 460 nm whose output was converted by frequency doubling and stimulated Raman scattering to wavelengths ranging from 196 to 286 nm for atomic excitation. Absolute limits of detection (LODs) of 1, 0.3, 0.3, 0.2, 1, 6, 1, 0.2 and 0.8 pg and concentration LODs of 100, 30, 30, 20, 100, 600, 100, 20, and 80 pg/mL were achieved for As, Se, Sb, Sn, In, Cu, Cr, Pb and Tl, respectively. Determinations of Hg, Pb, Zn and Cd were performed using two-color excitation approaches and resulted in absolute LODs of 2, 30, 5 and 0.6 pg, respectively, and concentration LODs of 200, 3000, 500 and 60 pg/mL, respectively. The sensitivities achieved by the W-coil LIF approaches compare well with those reported by W-coil atomic absorption spectrometry, graphite furnace atomic absorption spectrometry, and graphite furnace electrothermal atomization-LIF approaches. The accuracy of the approach was verified through the analysis of a multielement reference solution containing Sb, Pb and Tl which each had certified performance acceptance limits of 19.6-20.4 μg/mL. The determined concentrations were 20.05 ± 2.60, 20.70 ± 2.27 and 20.60 ± 2.46 μg/mL, for Sb, Pb and Tl, respectively. The results demonstrate that W-coil LIF provides good analytical performance for trace analyses due to its high sensitivity, linearity, and capability to measure multiple elements using a single tunable laser and suggest that the development of portable W-coil LIF instrumentation using compact, solid-state lasers is feasible

  3. Evaluation of a tungsten coil atomization-laser-induced fluorescence detection approach for trace elemental analysis.

    Science.gov (United States)

    Ezer, Muhsin; Elwood, Seth A; Jones, Bradley T; Simeonsson, Josef B

    2006-06-30

    The analytical utility of a tungsten (W)-coil atomization-laser-induced fluorescence (LIF) approach has been evaluated for trace level measurements of elemental chromium (Cr), arsenic (As), selenium (Se), antimony (Sb), lead (Pb), tin (Sn), copper (Cu), thallium (Tl), indium (In), cadmium (Cd), zinc (Zn) and mercury (Hg). Measurements of As, Cr, In, Se, Sb, Pb, Tl, and Sn were performed by laser-induced fluorescence using a single dye laser operating near 460 nm whose output was converted by frequency doubling and stimulated Raman scattering to wavelengths ranging from 196 to 286 nm for atomic excitation. Absolute limits of detection (LODs) of 1, 0.3, 0.3, 0.2, 1, 6, 1, 0.2 and 0.8 pg and concentration LODs of 100, 30, 30, 20, 100, 600, 100, 20, and 80 pg/mL were achieved for As, Se, Sb, Sn, In, Cu, Cr, Pb and Tl, respectively. Determinations of Hg, Pb, Zn and Cd were performed using two-color excitation approaches and resulted in absolute LODs of 2, 30, 5 and 0.6 pg, respectively, and concentration LODs of 200, 3000, 500 and 60 pg/mL, respectively. The sensitivities achieved by the W-coil LIF approaches compare well with those reported by W-coil atomic absorption spectrometry, graphite furnace atomic absorption spectrometry, and graphite furnace electrothermal atomization-LIF approaches. The accuracy of the approach was verified through the analysis of a multielement reference solution containing Sb, Pb and Tl which each had certified performance acceptance limits of 19.6-20.4 microg/mL. The determined concentrations were 20.05+/-2.60, 20.70+/-2.27 and 20.60+/-2.46 microg/mL, for Sb, Pb and Tl, respectively. The results demonstrate that W-coil LIF provides good analytical performance for trace analyses due to its high sensitivity, linearity, and capability to measure multiple elements using a single tunable laser and suggest that the development of portable W-coil LIF instrumentation using compact, solid-state lasers is feasible.

  4. Direct determination of sodium, potassium, chromium and vanadium in biodiesel fuel by tungsten coil atomic emission spectrometry

    International Nuclear Information System (INIS)

    Dancsak, Stacia E.; Silva, Sidnei G.; Nóbrega, Joaquim A.; Jones, Bradley T.; Donati, George L.

    2014-01-01

    Graphical abstract: -- Highlights: •Direct analysis of biodiesel on a tungsten coil atomizer. •Determination of Na, K, Cr and V by tungsten coil atomic emission spectrometry. •Sample dilution with methanol or ethanol. •Ten-microliter sample aliquots and limits of detection between 20 and 90 μg kg −1 . •Low consumption of reagents, samples and gases in a 140 s per run procedure. -- Abstract: High levels of sodium and potassium can be present in biodiesel fuel and contribute to corrosion, reduced performance and shorter engine lifetime. On the other hand, trace amounts of chromium and vanadium can increase the emission of pollutants during biodiesel combustion. Sample viscosity, immiscibility with aqueous solutions and high carbon content can compromise biodiesel analyzes. In this work, tungsten filaments extracted from microscope light bulbs are used to successively decompose biodiesel's organic matrix, and atomize and excite the analytes to determine sodium, potassium, chromium and vanadium by tungsten coil atomic emission spectrometry (WCAES). No sample preparation other than simple dilution in methanol or ethanol is required. Direct analysis of 10-μL sample aliquots using heating cycles with less than 150 s results in limits of detection (LOD) as low as 20, 70, 70 and 90 μg kg −1 for Na, K, Cr and V, respectively. The procedure's accuracy is checked by determining Na and K in a biodiesel reference sample and carrying out spike experiments for Cr and V. No statistically significant differences were observed between reference and determined values for all analytes at a 95% confidence level. The procedure was applied to three different biodiesel samples and concentrations between 6.08 and 95.6 mg kg −1 for Na and K, and between 0.22 and 0.43 mg kg −1 for V were obtained. The procedure is simple, fast and environmentally friendly. Small volumes of reagents, samples and gases are used and no residues are generated. Powers of detection are

  5. Interfase y software de control para operar en sincronismo un automuestreador y un atomizador electrotérmico por filamento de tungsteno en espectrofotometría de absorción atómica Development of interface and software for synchronous operation of an autosampler and a tungsten coil electrothermal atomizer coupled to an atomic absorption spectophotometer

    Directory of Open Access Journals (Sweden)

    J. Neira

    1998-07-01

    Full Text Available The interface and software for synchronous control of an autosampler and an electrothermal tungsten coil atomizer in atomic absorption spectrophotometry were developed. The control of the power supply, the trigger of the Read function of the spectrophotometer and the automatic operation of the autosampler was performed by software written in "TurboBasic". The system was evaluated by comparison of the repeatability of peak-height absorbances obtained in the atomization of lead by consecutive 10-µl injections of solutions (prepared in 0.2% v/v HNO3 using autosampler and manual sample introduction, and also by long term operation.

  6. Biodegradation of tungsten embolisation coils used in children

    International Nuclear Information System (INIS)

    Kampmann, Christoph; Abidini, Moji; Wenzel, Anke; Wippermann, Carl-Friedrich; Habermehl, Pirmin; Knuf, Markus; Brzezinska, Rita; Schumacher, Reinhard

    2002-01-01

    It has been suggested that tungsten coils (TCs) may corrode 30 months after transcatheter embolisation (TCE). The aim of this study was to follow up children after TCE of aorto-pulmonary collaterals (APCs) with TCs.Materials and methods. Successful TCE of 99 APCs was performed in children using 152 TCs. Chest radiographs were obtained on the day after the procedure, after 3-6 months and 9-12 months, and yearly thereafter.Results. Mean follow-up was 39.3 months. After 9-12 months, radiographs revealed a decrease in radio-opacity and reduction of coil width in 29 (37.6%) of 77 APCs. After a mean of 25 months (range 13-51 months), there was loss of visibility in 44 (57.2%) of 77 TCs and a reduction in 29 (37.6%) of 77. After a mean of 39.3 months, all TCs showed decrease or loss of radio-opacity. Exponential function predicts complete biodegradation of 95% of TCs within 10 years after TCE (r2=0.923). After a mean of 28.4 months, repeat catheterisation was performed in 24 APCs with TCs with decreased or lost radio-opacity. Recanalisation had occurred in 58.3%. Dissolution occurred in 57.2% of TCs within a mean of 25 months, and within 39.3 months all TCs showed decrease or loss of radio-opacity. Recanalisation of closed APCs occurred in 58.3%. (orig.)

  7. Development of quantitative atomic modeling for tungsten transport study Using LHD plasma with tungsten pellet injection

    International Nuclear Information System (INIS)

    Murakami, I.; Sakaue, H.A.; Suzuki, C.; Kato, D.; Goto, M.; Tamura, N.; Sudo, S.; Morita, S.

    2014-10-01

    Quantitative tungsten study with reliable atomic modeling is important for successful achievement of ITER and fusion reactors. We have developed tungsten atomic modeling for understanding the tungsten behavior in fusion plasmas. The modeling is applied to the analysis of tungsten spectra observed from currentless plasmas of the Large Helical Device (LHD) with tungsten pellet injection. We found that extreme ultraviolet (EUV) lines of W 24+ to W 33+ ions are very sensitive to electron temperature (Te) and useful to examine the tungsten behavior in edge plasmas. Based on the first quantitative analysis of measured spatial profile of W 44+ ion, the tungsten concentration is determined to be n(W 44+ )/n e = 1.4x10 -4 and the total radiation loss is estimated as ∼4 MW, of which the value is roughly half the total NBI power. (author)

  8. Development of quantitative atomic modeling for tungsten transport study using LHD plasma with tungsten pellet injection

    Science.gov (United States)

    Murakami, I.; Sakaue, H. A.; Suzuki, C.; Kato, D.; Goto, M.; Tamura, N.; Sudo, S.; Morita, S.

    2015-09-01

    Quantitative tungsten study with reliable atomic modeling is important for successful achievement of ITER and fusion reactors. We have developed tungsten atomic modeling for understanding the tungsten behavior in fusion plasmas. The modeling is applied to the analysis of tungsten spectra observed from plasmas of the large helical device (LHD) with tungsten pellet injection. We found that extreme ultraviolet (EUV) emission of W24+ to W33+ ions at 1.5-3.5 nm are sensitive to electron temperature and useful to examine the tungsten behavior in edge plasmas. We can reproduce measured EUV spectra at 1.5-3.5 nm by calculated spectra with the tungsten atomic model and obtain charge state distributions of tungsten ions in LHD plasmas at different temperatures around 1 keV. Our model is applied to calculate the unresolved transition array (UTA) seen at 4.5-7 nm tungsten spectra. We analyze the effect of configuration interaction on population kinetics related to the UTA structure in detail and find the importance of two-electron-one-photon transitions between 4p54dn+1- 4p64dn-14f. Radiation power rate of tungsten due to line emissions is also estimated with the model and is consistent with other models within factor 2.

  9. Electronic state of europium atoms on surface of oxidized tungsten

    CERN Document Server

    Davydov, S Y

    2001-01-01

    The energy scheme of the europium atoms adsorption system on the tungsten surface, coated with the oxygen monolayer, is considered. The evaluations of the europium adatoms charged state on the oxidized tungsten surface are performed. It is established, that europium, adsorbed at the oxidized tungsten surface, is a positive ion with the charge close to the unit. The zonal scheme of the Eu-O/W adsorption system for the europium low and high concentrations is proposed

  10. General Atomic's superconducting toroidal field coil concept

    International Nuclear Information System (INIS)

    Alcorn, J.; Purcell, J.

    1978-01-01

    General Atomic's concept for a superconducting toroidal field coil is presented. The concept is generic for large tokamak devices, while a specific design is indicated for a 3.8 meter (major radius) ignition/burn machine. The concept utilizes bath cooled NbTi conductor to generate a peak field of 10 tesla at 4.2 K. The design is simple and straightforward, requires a minimum of developmental effort, and draws extensively upon the perspective of past experience in the design and construction of large superconducting magnets for high energy physics. Thus, the primary emphasis is upon economy, reliability, and expeditious construction scheduling. (author)

  11. Changes of incompletely embolized aneurysm with tungsten coils : an experimental study in dogs

    International Nuclear Information System (INIS)

    Yu, In Kyu; Han, Moon Hee; Kim, Sung Hyun; Won, Hyung Jin; Chang, Kee Hyun; Yeon, Kyung Mo; Choe, Ghee Young; Kim, Sam Soo

    1999-01-01

    To evaluate changes of residual aneurysms according to the size of aneurysmal neck and thrombogenicity of a tungsten coil after incomplete embolization of experimental lateral aneurysms. Eleven experimental lateral aneurysms with different aneurysmal neck size were created in the common carotid arteries of mongrel dogs. They were then divided into narrow-neck(n=3), wide-neck(n=6) and spontaneously thrombosed control(n=2) groups. After confirmation of aneurysmal patency, incomplete embolizations of varying degrees (about 30% to near total occlusion) were performed using 5mm-diameter tungsten coils. Angiography was performed immediately before and after, and one and six weeks after embolizations. The size of residual aneurysm was measured on each angiogram. After the last angiography embolized aneurysms were excised and examined under light and electron microscopes. On angiograms obtained 6 weeks after embolization, all residual narrow neck aneurysms were completely occluded, whereas in those with a wide-neck, therre was either no change (n=4) or a slight increase in size(n=2). On light microscopy, all narrow-neck aneurysms showed total organized fibrosis while all control aneurysms and half those with a wide neck showed unorganized thrombi. The embolized group showed a higher degree of organization in the aneurysmal cavity than did the control group. Neointima formation was seen in all embolized aneurysms, but no aneurysm showed foreign body reaction. On electron microscopy, uniform thickness of plasma coatings was noted on the surface of the tungsten coils. A wide-neck residual aneurysm may persist or increase in size, while one with a narrow-neck can be thrombosed after incomplete embolization with tungsten coils in a lateral aneurym. Careful consideration might be necessary in the embolization of wide-neck aneurysms. With plasma coatings on its surface and organized fibrosis, tungsten coil can be an useful for embolization of an aneurysm

  12. Hot-wire assisted atomic layer deposition of Tungsten films

    NARCIS (Netherlands)

    Yang, Mengdi

    2018-01-01

    This thesis aims to establish a novel technique of atomic layer deposition (ALD) for the future ultra-large-scale integration (ULSI) of microelectronics. We developed a hot-wire assisted ALD (HWALD), where a heated tungsten (W) filament is utilized instead of a plasma to generate radicals. HWALD is

  13. Calibration of fiber-optic shock pyrometer using high-power coiled tungsten lamp

    Science.gov (United States)

    Fat'yanov, O. V.; Asimow, P. D.

    2015-06-01

    Comparison of all known calibration sources indicates that coiled standards of spectral irradiance, despite their very non-uniform brightness, are currently the best practical choice for accurate shock temperature measurements above 3000 K by optical pyrometry. We review all three documented methods of shock pyrometer calibration to a coiled lamp and show that only one technique, with no fiber-optics employed, is free of major radiometric errors. We report the development of a new, accurate to 5% and precise to 1-1.5% calibration procedure for the modified Caltech 6-channel, 3-ns temporal resolution combined open beam and fiber-coupled instrument. A designated central area of an 0.7x demagnified image of 900 W coiled-coil lamp filament is used, cross-calibrated against a NIST-traceable tungsten ribbon lamp. The results of two slightly different cross-calibrations are reported and the procedure to characterize the difference between the static and dynamic response of NewFocus 1801 amplified photodetectors. The most essential requirements for error-free calibration of a fiber-optic pyrometer using a coiled irradiance standard lamp are discussed. All these conditions are validated in actual radiometric tests and shock temperature experiments on single-crystal NaCl and MgO.

  14. Atomic absorption spectrometry using tungsten and molybdenum tubes as metal atomizer

    International Nuclear Information System (INIS)

    Kaneco, Satoshi; Katsumata, Hideyuki; Ohta, Kiyohisa; Suzuki, Tohru

    2007-01-01

    We have developed a metal tube atomizer for the electrothermal atomization atomic absorption spectrometry (ETA-AAS). Tungsten, molybdenum, platinum tube atomizers were used as the metal atomizer for ETA-AAS. The atomization characteristics of various metals using these metal tube atomizers were investigated. The effects of heating rate of atomizer, atomization temperature, pyrolysis temperature, argon purge gas flow rate and hydrogen addition on the atomic absorption signal were investigated for the evaluation of atomization characteristics. Moreover, ETA-AAS with metal tube atomizer has been combined with the slurry-sampling techniques. Ultrasonic slurry-sampling ETA-AAS with metal tube atomizer were effective for the determination of trace metal elements in biological materials, calcium drug samples, herbal medicine samples, vegetable samples and fish samples. Furthermore, a preconcentration method of trace metals involving adsorption on a metal wire has been applied to ETA-AAS with metal tube atomizer. (author)

  15. Temporal analysis of Z-Gradient coil eddy currents in tungsten collimator with different resistivities for SPECT/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Samoudi, Amine [INTEC, Ghent University/iMinds, Ghent (Belgium); Van Audenhaege, Karen [ELIS, Ghent University/iMinds, Ghent (Belgium); Vermeeren, Günter [INTEC, Ghent University/iMinds, Ghent (Belgium); Poole, Micahel [INM-4, Forschungszentrum Jülich GmbH, Jülich (Germany); Martens, Luc [INTEC, Ghent University/iMinds, Ghent (Belgium); Van Holen, Roel [ELIS, Ghent University/iMinds, Ghent (Belgium); Joseph, Wout [INTEC, Ghent University/iMinds, Ghent (Belgium)

    2014-07-29

    Combining Single Photon Emission Computed Tomography (SPECT) with Magnetic Resonance Imaging (MRI) results in an interaction of the time-varying magnetic field gradients with the highly conducting tungsten collimator, which generates a secondary magnetic field causing spatial distortions in reconstructed MR images. Accurate simulations are important for the characterization of these eddy currents and to further optimize the gradient coils and the collimator design.

  16. Tungsten

    International Nuclear Information System (INIS)

    Eschnauer, H.

    1978-01-01

    There is no substitute for tungsten in its main field of application so that the demand will not decrease, but there is a need for further important applications. If small variations are left out of account, a small but steady increase in the annual tungsten consumption can be expected. The amount of tungsten available will increase due to the exploritation of new deposits and the extension of existing mines. This tendency will probably be increased by the world-wide prospection. It is hard to make an assessment of the amount of tungsten are obtained in the People's Republic of china, the purchases of Eastern countries in the West, and the sales policy of the USA; pice forecasts are therefore hard to make. A rather interesting subject with regard to the tungsten cycle as a whole is the reprocessing of tungsten-containing wastes. (orig.) [de

  17. Tungsten determination in heat resistant nickel-base-alloys by the method of atomic absorption

    International Nuclear Information System (INIS)

    Gregorczyk, S.; Wycislik, A.

    1980-01-01

    A method of atomic absorption was developed. It allows for the tungsten to be determined in heatresistant nickel-base-alloys within the range 0.01 to 7%. It consists in precipitating tungsten acid in the presence of alkaloids with its following decomposition by hydrofluoric acid in the teflon bomb. (author)

  18. Deuterium removal from radiation damage in tungsten by isotopic exchange with hydrogen atomic beam

    Science.gov (United States)

    Ogorodnikova, O. V.; Markelj, S.; Efimov, V. S.; Gasparyan, Yu M.

    2016-09-01

    The tungsten samples were pre-irradiated with self-ions to create radiation-induced defects and then exposed to the deuterium atomic beam. The deuterium removal was studied by isotopic exchange with atomic hydrogen beam. Modification of the deuterium depth profile in self-ion irradiated tungsten under isotopic exchange up to a depth of 6 μm was measured in- situ by nuclear reaction analysis. The total deuterium retention after isotopic exchange was measured by thermal desorption spectroscopy. It is shown that the efficiency of the deuterium removal increases with increasing of the hydrogen incident flux, incident energy and temperature of the tungsten sample.

  19. Advanced All-Gas Chemical Generation of Atomic Iodine for a COIL, and Testing the COIL Operation Including This Method of Atomic Iodine Generation

    National Research Council Canada - National Science Library

    Kodymova, Jarmila; Spalek, Otomar; Jirasek, Vit; Censky, Miroslav

    2004-01-01

    This report results from a contract tasking Academy of Sciences as follows: The Grantee will investigate advanced methods for chemical generation of atomic iodine for a Chemical Oxygen-Iodine Laser (COIL...

  20. Fabrication of tungsten probe for hard tapping operation in atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Guebum, E-mail: hanguebum@live.co.kr [Department of Physics and Optical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, Indiana 47803 (United States); Department of Mechanical Design and Robot Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743 (Korea, Republic of); Ahn, Hyo-Sok, E-mail: hsahn@seoultech.ac.kr [Manufacturing Systems and Design Engineering Programme, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743 (Korea, Republic of)

    2016-02-15

    We propose a method of producing a tungsten probe with high stiffness for atomic force microscopy (AFM) in order to acquire enhanced phase contrast images and efficiently perform lithography. A tungsten probe with a tip radius between 20 nm and 50 nm was fabricated using electrochemical etching optimized by applying pulse waves at different voltages. The spring constant of the tungsten probe was determined by finite element analysis (FEA), and its applicability as an AFM probe was evaluated by obtaining topography and phase contrast images of a Si wafer sample partly coated with Au. Enhanced hard tapping performance of the tungsten probe compared with a commercial Si probe was confirmed by conducting hard tapping tests at five different oscillation amplitudes on single layer graphene grown by chemical vapor deposition (CVD). To analyze the damaged graphene sample, the test areas were investigated using tip-enhanced Raman spectroscopy (TERS). The test results demonstrate that the tungsten probe with high stiffness was capable of inducing sufficient elastic and plastic deformation to enable obtaining enhanced phase contrast images and performing lithography, respectively. - Highlights: • We propose a method of producing highly stiff tungsten probes for hard tapping AFM. • Spring constant of tungsten probe is determined by finite element method. • Enhanced hard tapping performance is confirmed. • Tip-enhanced Raman spectroscopy is used to identify damage to graphene.

  1. Measuring the dynamic polarizability of tungsten atom via electrical wire explosion in vacuum

    Science.gov (United States)

    Shi, Huantong; Zou, Xiaobing; Wang, Xinxin

    2018-02-01

    Electrical explosion of wire provides a practical approach to the experimental measurement of dynamic polarizability of metal atoms with high melting and boiling temperatures. With the help of insulation coating, a section of tungsten wire was transformed to the plasma state while the near electrode region was partially vaporized, which enabled us to locate the "neutral-region" (consisting of gaseous atoms) in the Mach-Zehnder interferogram. In this paper, the polarizability of the tungsten atom at 532 nm was reconstructed based on a technique previously used for the same purpose, and the basic preconditions of the measurement were verified in detail, including the existence of the neutral region, conservation of linear density of tungsten during wire expansion, and neglect of the vaporized insulation coating. The typical imaging time varied from 80 ns to as late as 200 ns and the reconstructed polarizability of the tungsten atom was 16 ± 1 Å3, which showed good statistical consistency and was also in good agreement with the previous results.

  2. Development of the chemical oxygen-iodine laser (COIL) with chemical generation of atomic iodine

    Czech Academy of Sciences Publication Activity Database

    Kodymová, Jarmila; Špalek, Otomar; Jirásek, Vít; Čenský, Miroslav; Hager, G. D.

    2003-01-01

    Roč. 77, - (2003), s. 331-336 ISSN 0947-8396 R&D Projects: GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z1010914 Keywords : atomic iodine * atomic chlorine * chemical oxygen-iodine laser(COIL) Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.220, year: 2003

  3. Spectroscopic Investigations of Highly Charged Tungsten Ions - Atomic Spectroscopy and Fusion Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, Joel [Lund Univ. (Sweden)

    2010-05-01

    The spectra of highly charged tungsten ions have been investigated using x-ray and extreme ultraviolet spectroscopy. These heavy ions are of interest in relativistic atomic structure theory, where high-precision wavelength measurements benchmark theoretical approaches, and in magnetic fusion research, where the ions may serve to diagnose high-temperature plasmas. The work details spectroscopic investigations of highly charged tungsten ions measured at the Livermore electron beam ion trap (EBIT) facility. Here, the EBIT-I and SuperEBIT electron beam ion traps have been employed to create, trap, and excite tungsten ions of M- and L-shell charge states. The emitted spectra have been studied in high resolution using crystal, grating, and x-ray calorimeter spectrometers. In particular, wavelengths of n = 0 M-shell transitions in K-like W55+ through Ne-like W64+, and intershell transitions in Zn-like W44+ through Co-like W47+ have been measured. Special attention is given to the Ni-like W46+ ion, which has two strong electric-dipole forbidden transitions that are of interest for plasma diagnostics. The EBIT measurements are complemented by spectral modeling using the Flexible Atomic Code (FAC), and predictions for tokamak spectra are presented. The L-shell tungsten ions have been studied at electron-beam energies of up to 122 keV and transition energies measured in Ne-like W64+ through Li-like W71+. These spectra constitute the physics basis in the design of the ion-temperature crystal spectrometer for the ITER tokamak. Tungsten particles have furthermore been introduced into the Sustained Spheromak Physics Experiment (SSPX) spheromak in Livermore in order to investigate diagnostic possibilities of extreme ultraviolet tungsten spectra for the ITER divertor. The spheromak measurement and spectral modeling using FAC suggest that tungsten ions in charge states around Er-like W6+ could be useful for

  4. Effect of deposited tungsten on deuterium accumulation in beryllium in contact with atomic deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Sharapov, V.M.; Gavrilov, L.E. [Institute of Physical Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); Kulikauskas, V.S.

    1998-01-01

    Usually ion or plasma beam is used for the experiment with beryllium which simulates the interaction of plasma with first wall in fusion devices. However, the use of thermal or subthermal atoms of hydrogen isotopes seems to be useful for that purpose. Recently, the authors have studied the deuterium accumulation in beryllium in contact with atomic deuterium. The experimental setup is shown, and is explained. By means of elastic recoil detection (ERD) technique, it was shown that in the exposure to D atoms at 740 K, deuterium is distributed deeply into the bulk, and is accumulated up to higher concentration than the case of the exposure to molecular deuterium. The depth and concentration of deuterium distribution depend on the exposure time, and those data are shown. During the exposure to atomic deuterium, oxide film grew on the side of a sample facing plasma. In order to understand the mechanism of deuterium trapping, the experiment was performed using secondary ion mass spectrometry (SIMS) and residual gas analysis (RGA). The influence that the tungsten deposit from the heated cathode exerted to the deuterium accumulation in beryllium in contact with atomic deuterium was investigated. These results are reported. (K.I.)

  5. Highly conductive and flexible nylon-6 nonwoven fiber mats formed using tungsten atomic layer deposition.

    Science.gov (United States)

    Kalanyan, Berç; Oldham, Christopher J; Sweet, William J; Parsons, Gregory N

    2013-06-12

    Low-temperature vapor-phase tungsten atomic layer deposition (ALD) using WF6 and dilute silane (SiH4, 2% in Ar) can yield highly conductive coatings on nylon-6 microfiber mats, producing flexible and supple nonwovens with conductivity of ∼1000 S/cm. We find that an alumina nucleation layer, reactant exposure, and deposition temperature all influence the rate of W mass uptake on 3D fibers, and film growth rate is calibrated using high surface area anodic aluminum oxide. Transmission electron microscopy (TEM) reveals highly conformal tungsten coatings on nylon fibers with complex "winged" cross-section. Using reactant gas "hold" sequences during the ALD process, we conclude that reactant species can transport readily to reactive sites throughout the fiber mat, consistent with conformal uniform coverage observed by TEM. The conductivity of 1000 S/cm for the W-coated nylon is much larger than found in other conductive nonwovens. We also find that the nylon mats maintain 90% of their conductivity after being flexed around cylinders with radii as small as 0.3 cm. Metal ALD coatings on nonwovens make possible the solvent-free functionalization of textiles for electronic applications.

  6. Atomic layer deposition synthesis of platinum-tungsten carbide core-shell catalysts for the hydrogen evolution reaction.

    Science.gov (United States)

    Hsu, Irene J; Kimmel, Yannick C; Jiang, Xiaoqiang; Willis, Brian G; Chen, Jingguang G

    2012-01-25

    Pt was deposited onto tungsten carbide powders using atomic layer deposition to produce core-shell catalysts for the hydrogen evolution reaction (HER). The Pt loading on these catalysts was reduced nearly ten-fold compared to a bulk Pt catalyst while equivalent HER activities were observed. This journal is © The Royal Society of Chemistry 2012

  7. Atomically thin heterostructures based on single-layer tungsten diselenide and graphene.

    Science.gov (United States)

    Lin, Yu-Chuan; Chang, Chih-Yuan S; Ghosh, Ram Krishna; Li, Jie; Zhu, Hui; Addou, Rafik; Diaconescu, Bogdan; Ohta, Taisuke; Peng, Xin; Lu, Ning; Kim, Moon J; Robinson, Jeremy T; Wallace, Robert M; Mayer, Theresa S; Datta, Suman; Li, Lain-Jong; Robinson, Joshua A

    2014-12-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. In order to engineer pristine layers and their interfaces, epitaxial growth of such heterostructures is required. We report the direct growth of crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG) grown from silicon carbide. Raman spectroscopy, photoluminescence, and scanning tunneling microscopy confirm high-quality WSe2 monolayers, whereas transmission electron microscopy shows an atomically sharp interface, and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that an additional barrier to carrier transport beyond the expected WSe2/EG band offset exists due to the interlayer gap, which is supported by theoretical local density of states (LDOS) calculations using self-consistent density functional theory (DFT) and nonequilibrium Green's function (NEGF).

  8. Selective Production of Renewable para-Xylene by Tungsten Carbide Catalyzed Atom-Economic Cascade Reactions.

    Science.gov (United States)

    Dai, Tao; Li, Changzhi; Li, Lin; Zhao, Zongbao Kent; Zhang, Bo; Cong, Yu; Wang, Aiqin

    2018-02-12

    Tungsten carbide was employed as the catalyst in an atom-economic and renewable synthesis of para-xylene with excellent selectivity and yield from 4-methyl-3-cyclohexene-1-carbonylaldehyde (4-MCHCA). This intermediate is the product of the Diels-Alder reaction between the two readily available bio-based building blocks acrolein and isoprene. Our results suggest that 4-MCHCA undergoes a novel dehydroaromatization-hydrodeoxygenation cascade process by intramolecular hydrogen transfer that does not involve an external hydrogen source, and that the hydrodeoxygenation occurs through the direct dissociation of the C=O bond on the W 2 C surface. Notably, this process is readily applicable to the synthesis of various (multi)methylated arenes from bio-based building blocks, thus potentially providing a petroleum-independent solution to valuable aromatic compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Evaluation of Analysis Conditions for Laser-Pulsed Atom Probe Tomography: Example of Cemented Tungsten Carbide.

    Science.gov (United States)

    Peng, Zirong; Choi, Pyuck-Pa; Gault, Baptiste; Raabe, Dierk

    2017-04-01

    Cemented tungsten carbide has been analyzed using laser-pulsed atom probe tomography (APT). The influence of experimental parameters, including laser pulse energy, pulse repetition rate, and specimen base temperature, on the acquired data were evaluated from different aspects, such as mass spectrum, chemical composition, noise-to-signal ratio, and multiple events. Within all the applied analysis conditions, only 1 MHz pulse repetition rate led to a strong detector saturation effect, resulting in a largely biased chemical composition. A comparative study of the laser energy settings showed that an ~12 times higher energy was required for the less focused green laser of the LEAPTM 3000X HR system to achieve a similar evaporation field as the finer spot ultraviolet laser of the LEAPTM 5000 XS system.

  10. Atomically Thin Heterostructures Based on Single-Layer Tungsten Diselenide and Graphene

    KAUST Repository

    Lin, Yu-Chuan

    2014-11-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. In order to engineer pristine layers and their interfaces, epitaxial growth of such heterostructures is required. We report the direct growth of crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG) grown from silicon carbide. Raman spectroscopy, photoluminescence, and scanning tunneling microscopy confirm high-quality WSe2 monolayers, whereas transmission electron microscopy shows an atomically sharp interface, and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that an additional barrier to carrier transport beyond the expected WSe2/EG band offset exists due to the interlayer gap, which is supported by theoretical local density of states (LDOS) calculations using self-consistent density functional theory (DFT) and nonequilibrium Green\\'s function (NEGF).

  11. Atom probe field ion microscope study of the range and diffusivity of helium in tungsten

    International Nuclear Information System (INIS)

    Wagner, A.

    1978-08-01

    A time-of-flight (TOF) atom-probe field-ion microscope (FIM) specifically designed for the study of defects in metals is described. With this automated system 600 TOF min -1 can be recorded and analyzed. Performance tests of the instrument demonstrated that (1) the seven isotopes of molybdenum and the five isotopes of tungsten can be clearly resolved; and (2) the concentration and spatial distribution of all constitutents present at levels greater than 0.05 at. % in a W--25 at. % Re, Mo--1.0 at. % Ti, Mo--1.0 at. % Ti--0.08 at. % Zr (TZM), a low swelling stainless steel (LS1A) and a metallic glass (Metglas 2826) can be measured. The effect of the rate of field evaporation on the quantitative atom probe analysis of a Mo--1.0 at. % Ti alloy and a Mo--1.0 at. % Ti--0.08 at. % Zr alloy was investigated. As the field evaporation rate increased the measured Ti concentration was found to also increase. A simple qualitative model was proposed to explain the observation. The spatial distribution of titanium in a fast neutron irradiated Mo--1.0 at. % Ti alloy has been investigated. No evidence of Ti segregation to the voids was detected nor has any evidence of significant resolution of Ti from the TiC precipitates been detected. A small amount of segregation of carbon to a void was detected

  12. Direct determination of cadmium in foods by solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry using a tungsten coil trap

    Science.gov (United States)

    Zhang, Ying; Mao, Xuefei; Liu, Jixin; Wang, Min; Qian, Yongzhong; Gao, Chengling; Qi, Yuehan

    2016-04-01

    In this work, a solid sampling device consisting of a tungsten coil trap, porous carbon vaporizer and on-line ashing furnace of a Ni-Cr coil was interfaced with inductively coupled plasma mass spectrometry (ICP-MS). A modified double gas circuit system was employed that was composed of carrier and supplemental gas lines controlled by separate gas mass flow controllers. For Cd determination in food samples using the assembled solid sampling ICP-MS, the optimal ashing and vaporization conditions, flow rate of the argon-hydrogen (Ar/H2) (v:v = 24:1) carrier gas and supplemental gas, and minimum sampling mass were investigated. Under the optimized conditions, the limit of quantification was 0.5 pg and the relative standard deviation was within a 10.0% error range (n = 10). Furthermore, the mean spiked recoveries for various food samples were 99.4%-105.9% (n = 6). The Cd concentrations measured by the proposed method were all within the certified values of the reference materials or were not significantly different (P > 0.05) from those of the microwave digestion ICP-MS method, demonstrating the good accuracy and precision of the solid sampling ICP-MS method for Cd determination in food samples.

  13. In situ NRA study of hydrogen isotope exchange in self-ion damaged tungsten exposed to neutral atoms

    Science.gov (United States)

    Markelj, S.; Založnik, A.; Schwarz-Selinger, T.; Ogorodnikova, O. V.; Vavpetič, P.; Pelicon, P.; Čadež, I.

    2016-02-01

    Isotope exchange was studied in-situ by Nuclear Reaction Analysis in the bulk of self-ion damaged tungsten at 600 K. Both variations of isotope exchange of H by D and of D by H were measured. The deuterium isothermal desorption was also studied and evaluated in order to be able to resolve the self-desorption from the isotope exchange at 600 K. The isotope exchange was also studied on the surface by Elastic Recoil Detection Analysis at 480 K and 380 K. The exchange mechanism was effective both on the surface and in the bulk of damaged tungsten. A simple model was introduced to describe the exchange efficiency on the surface and in the bulk obtaining the exchange cross sections on the surface and in bulk. In both cases an isotope effect was observed, where the exchange of H atoms by D atoms was more efficient than for the reverse sequence.

  14. In situ NRA study of hydrogen isotope exchange in self-ion damaged tungsten exposed to neutral atoms

    International Nuclear Information System (INIS)

    Markelj, S.; Založnik, A.; Schwarz-Selinger, T.; Ogorodnikova, O.V.; Vavpetič, P.; Pelicon, P.; Čadež, I.

    2016-01-01

    Isotope exchange was studied in-situ by Nuclear Reaction Analysis in the bulk of self-ion damaged tungsten at 600 K. Both variations of isotope exchange of H by D and of D by H were measured. The deuterium isothermal desorption was also studied and evaluated in order to be able to resolve the self-desorption from the isotope exchange at 600 K. The isotope exchange was also studied on the surface by Elastic Recoil Detection Analysis at 480 K and 380 K. The exchange mechanism was effective both on the surface and in the bulk of damaged tungsten. A simple model was introduced to describe the exchange efficiency on the surface and in the bulk obtaining the exchange cross sections on the surface and in bulk. In both cases an isotope effect was observed, where the exchange of H atoms by D atoms was more efficient than for the reverse sequence. - Highlights: • First study of isotope exchange on surface and in bulk of self-ion damaged tungsten by exposure to neutral atoms. • In situ study by ion beam techniques NRA and ERDA. • Modelling of the isotope exchange mechanism.

  15. Stability of concentration-related self-interstitial atoms in fusion material tungsten

    Science.gov (United States)

    Hong, Zhang; Shu-Long, Wen; Min, Pan; Zheng, Huang; Yong, Zhao; Xiang, Liu; Ji-Ming, Chen

    2016-05-01

    Based on the density functional theory, we calculated the structures of the two main possible self-interstitial atoms (SIAs) as well as the migration energy of tungsten (W) atoms. It was found that the difference of the and formation energies is 0.05-0.3 eV. Further analysis indicated that the stability of SIAs is closely related to the concentration of the defect. When the concentration of the point defect is high, SIAs are more likely to exist, SIAs are the opposite. In addition, the vacancy migration probability and self-recovery zones for these SIAs were researched by making a detailed comparison. The calculation provided a new viewpoint about the stability of point defects for self-interstitial configurations and would benefit the understanding of the control mechanism of defect behavior for this novel fusion material. Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. A0920502051411-5 and 2682014ZT30), the Program of International Science and Technology Cooperation, China (Grant No. 2013DFA51050), the National Magnetic Confinement Fusion Science Program, China (Grant Nos. 2011GB112001 and 2013GB110001), the National High Technology Research and Development Program of China (Grant No. 2014AA032701), the National Natural Science Foundation of China (Grant No. 11405138), the Southwestern Institute of Physics Funds, China, the Western Superconducting Technologies Company Limited, China, the Qingmiao Plan of Southwest Jiaotong University, China (Grant No. A0920502051517-6), and the China Postdoctoral Science Foundation (Grant No. 2014M560813).

  16. The effect of vanadium-carbon monolayer on the adsorption of tungsten and carbon atoms on tungsten-carbide (0001 surface

    Directory of Open Access Journals (Sweden)

    Moitra A.

    2011-01-01

    Full Text Available We report a first-principles calculations to study the effect of a vanadium-carbon (VC monolayer on the adsorption process of tungsten (W and carbon (C atoms onto tungsten-carbide (WC (0001 surface. The essential configuration for the study is a supercell of hexagonal WC with a (0001 surface. When adding the VC monolayer, we employed the lowest energy configuration by examining various configurations. The total energy of the system is computed as a function of the W or C adatoms’ height from the surface. The adsorption of a W and C adatom on a clean WC (0001 surface is compared with that of a W and C adatom on a WC (0001 surface with VC monolayer. The calculations show that the adsorption energy increased for both W and C adatoms in presence of the VC monolayer. Our results provide a fundamental understanding that can explain the experimentally observed phenomena of inhibited grain growth during sintering of WC or WC-Co powders in presence of VC.

  17. An indirect sequential determination of phosphorus and arsenic in high-purity tungsten and its compounds by atomic-absorption spectrophotometry

    International Nuclear Information System (INIS)

    Tekula-Buxbaum, P.

    1981-01-01

    An indirect atomic-absorption spectrophotometric method based on selective extraction of heteropolymolybdic acids has been developed for determination of small quantities of P and As in high-purity tungsten metal and tungsten compounds. The method is suitable for determination of 5-100 ppm of phosphorus and arsenic. The relative standard deviation is 38-5% for P and 31-3% for As, depending on the concentrations. (auth.)

  18. Boron carbide coating deposition on tungsten substrates from atomic fluxes of boron and carbon

    Science.gov (United States)

    Sadovskiy, Y.; Begrambekov, L.; Ayrapetov, A.; Gretskaya, I.; Grunin, A.; Dyachenko, M.; Puntakov, N.

    2016-09-01

    A device used for both coating deposition and material testing is presented in the paper. By using lock chambers, sputtering targets are easily exchanged with sample holder thus allowing testing of deposited samples with high power density electron or ion beams. Boron carbide coatings were deposited on tungsten samples. Methods of increasing coating adhesion are described in the paper. 2 μm boron carbide coatings sustained 450 heating cycles from 100 to 900 C. Ion beam tests have shown satisfactory results.

  19. The Study of Electric Discharge Initiated Pulsed COIL with Volume Generation of Atomic Iodine

    National Research Council Canada - National Science Library

    Yuryshev, Nikolai

    2001-01-01

    ...: The experiments with pulsed COIL initiated with a longitudinal electric discharge showed the initiation length up to 60 cm is available in the active medium conditions close to that of cw laser...

  20. COIL Operation with All-Gas Chemical Generation of Atomic Iodine

    National Research Council Canada - National Science Library

    Kodymova, Jarmila

    2005-01-01

    ...) Experimental investigation of kinetics of atomic iodine generation via F atoms based on the chemical reaction of F2 with NO, and a sequential reaction of F with HI performed on a small-scale device...

  1. Atomic layer deposited nanocrystalline tungsten carbides thin films as a metal gate and diffusion barrier for Cu metallization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Beom; Kim, Soo-Hyun, E-mail: soohyun@ynu.ac.kr [School of Materials Science and Engineering, Yeungnam University, Gyeongsan-si 712-749 (Korea, Republic of); Han, Won Seok [UP Chemical 576, Chilgoedong, Pyeongtaek-si, Gyeonggi-do 459-050 (Korea, Republic of); Lee, Do-Joong [School of Engineering, Brown University, Providence, Rhode Island 02912 (United States)

    2016-07-15

    Tungsten carbides (WC{sub x}) thin films were deposited on thermally grown SiO{sub 2} substrates by atomic layer deposition (ALD) using a fluorine- and nitrogen-free W metallorganic precursor, tungsten tris(3-hexyne) carbonyl [W(CO)(CH{sub 3}CH{sub 2}C ≡ CCH{sub 2}CH{sub 3}){sub 3}], and N{sub 2} + H{sub 2} plasma as the reactant at deposition temperatures between 150 and 350 °C. The present ALD-WC{sub x} system showed an ALD temperature window between 200 and 250 °C, where the growth rate was independent of the deposition temperature. Typical ALD characteristics, such as self-limited film growth and a linear dependency of the film grown on the number of ALD cycles, were observed, with a growth rate of 0.052 nm/cycle at a deposition temperature of 250 °C. The ALD-WC{sub x} films formed a nanocrystalline structure with grains, ∼2 nm in size, which consisted of hexagonal W{sub 2}C, WC, and nonstoichiometric cubic β-WC{sub 1−x} phase. Under typical deposition conditions at 250 °C, an ALD-WC{sub x} film with a resistivity of ∼510 μΩ cm was deposited and the resistivity of the ALD-WC{sub x} film could be reduced even further to ∼285 μΩ cm by further optimizing the reactant pulsing conditions, such as the plasma power. The step coverage of ALD-WC{sub x} film was ∼80% on very small sized and dual trenched structures (bottom width of 15 nm and aspect ratio of ∼6.3). From ultraviolet photoelectron spectroscopy, the work function of the ALD-WC{sub x} film was determined to be 4.63 eV. Finally, the ultrathin (∼5 nm) ALD-WC{sub x} film blocked the diffusion of Cu, even up to 600 °C, which makes it a promising a diffusion barrier material for Cu interconnects.

  2. Influence of binders on infrared laser ablation of powdered tungsten carbide pressed pellets in comparison with sintered tungsten carbide hardmetals studied by inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hola, Marketa [Research Centre for Environmental Chemistry and Ecotoxicology and Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic); Otruba, Vitezslav [Research Centre for Environmental Chemistry and Ecotoxicology and Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic); Kanicky, Viktor [Research Centre for Environmental Chemistry and Ecotoxicology and Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic)]. E-mail: viktork@chemi.muni.cz

    2006-05-15

    Laser ablation (LA) was studied as a sample introduction technique for the analysis of powdered and sintered tungsten carbides (WC/Co) by inductively coupled plasma optical emission spectrometry (ICP-OES). The possibility to work with powdered and compact materials with close chemical composition provided the opportunity to compare LA sampling of similar substances in different forms that require different preparation procedures. Powdered WC/Co precursors of sintered hardmetals were prepared for the ablation as pressed pellets with and without powdered silver as a binder, while sintered hardmetal blocks were embedded into a resin to obtain discs, which were then smoothed and polished. A Q-switched Nd:YAG laser operated at its fundamental wavelength of 1064 nm with a pulse frequency of 10 Hz and maximum pulse energy of 220 mJ was used. A single lens was used for the laser beam focusing. An ablation cell (14 cm{sup 3}) mounted on a PC-controlled XY-translator was connected to an ICP spectrometer Jobin Yvon 170 Ultrace (laterally viewed ICP, mono- and polychromator) using a 1.5-m tubing (4 mm i.d.). Ablation was performed in a circular motion (2 mm diameter). Close attention was paid to the study of the crater parametres depending on hardness, cohesion and Ag binder presence in WC/Co samples. The influence of the Co content on the depth and structure of the ablation craters of the binderless pellets was also studied. Linear calibration plots of Nb, Ta and Ti were obtained for cemented WC/Co samples, binderless and binder-containing pellets. Relative widths of uncertainty intervals about the centroids vary between {+-} 3% and {+-} 7%, and exceptionally reach a value above 10%. The lowest determinable quantities (LDQ) of Nb, Ta and Ti calculated from the calibration lines were less than 0.5% (m/m). To evaluate the possibility of quantitative elemental analysis by LA-ICP-OES, two real sintered WC/Co samples and two real samples of powdered WC/Co materials were analysed

  3. ARCIMBOLDO on coiled coils.

    Science.gov (United States)

    Caballero, Iracema; Sammito, Massimo; Millán, Claudia; Lebedev, Andrey; Soler, Nicolas; Usón, Isabel

    2018-03-01

    ARCIMBOLDO solves the phase problem by combining the location of small model fragments using Phaser with density modification and autotracing using SHELXE. Mainly helical structures constitute favourable cases, which can be solved using polyalanine helical fragments as search models. Nevertheless, the solution of coiled-coil structures is often complicated by their anisotropic diffraction and apparent translational noncrystallographic symmetry. Long, straight helices have internal translational symmetry and their alignment in preferential directions gives rise to systematic overlap of Patterson vectors. This situation has to be differentiated from the translational symmetry relating different monomers. ARCIMBOLDO_LITE has been run on single workstations on a test pool of 150 coiled-coil structures with 15-635 amino acids per asymmetric unit and with diffraction data resolutions of between 0.9 and 3.0 Å. The results have been used to identify and address specific issues when solving this class of structures using ARCIMBOLDO. Features from Phaser v.2.7 onwards are essential to correct anisotropy and produce translation solutions that will pass the packing filters. As the resolution becomes worse than 2.3 Å, the helix direction may be reversed in the placed fragments. Differentiation between true solutions and pseudo-solutions, in which helix fragments were correctly positioned but in a reverse orientation, was found to be problematic at resolutions worse than 2.3 Å. Therefore, after every new fragment-placement round, complete or sparse combinations of helices in alternative directions are generated and evaluated. The final solution is once again probed by helix reversal, refinement and extension. To conclude, density modification and SHELXE autotracing incorporating helical constraints is also exploited to extend the resolution limit in the case of coiled coils and to enhance the identification of correct solutions. This study resulted in a specialized mode

  4. Atomic structure and work function of the metal-film systems: lithium-(011) face of tungsten or molybdenum

    International Nuclear Information System (INIS)

    Kanash, O.V.; Fedorus, A.G.

    1984-01-01

    The atomic structure and phase transitions in lithium films and also the variation of the work function under lithium adsorption on the (011) face of W or Mo are studied by the low electron diffraction and contact potential difference methods in a wide range of submonolayer coverage. In the low coverage range (theta 5/9), identical sets of anisotropic structures are formed on both substrates which are specific for localized adsorption. In the coverage range between 1/4 for W (011) or 1/6 for Mo (011) and 5/9 (for both substrates) the film grows by virtue of two consecutive first order phase transitions. In the remaining theta region the film compression proceeds continuously. A model of mixing of cells of various sizes is used to explain the continuity of the compression process. At low coverage the film atomic structure corresponds to a predominant effect of dipole-dipole interaction betWeen the adatoms, whereas at high coverage it corresponds to an indirect interaction. The temperature stability of the films at different theta is studied. The effect of the film structure on the work function and surface diffusion is discussed

  5. Current-induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance.

    Science.gov (United States)

    Wang, Mengxing; Cai, Wenlong; Cao, Kaihua; Zhou, Jiaqi; Wrona, Jerzy; Peng, Shouzhong; Yang, Huaiwen; Wei, Jiaqi; Kang, Wang; Zhang, Youguang; Langer, Jürgen; Ocker, Berthold; Fert, Albert; Zhao, Weisheng

    2018-02-14

    Perpendicular magnetic tunnel junctions based on MgO/CoFeB structures are of particular interest for magnetic random-access memories because of their excellent thermal stability, scaling potential, and power dissipation. However, the major challenge of current-induced switching in the nanopillars with both a large tunnel magnetoresistance ratio and a low junction resistance is still to be met. Here, we report spin transfer torque switching in nano-scale perpendicular magnetic tunnel junctions with a magnetoresistance ratio up to 249% and a resistance area product as low as 7.0 Ω µm 2 , which consists of atom-thick W layers and double MgO/CoFeB interfaces. The efficient resonant tunnelling transmission induced by the atom-thick W layers could contribute to the larger magnetoresistance ratio than conventional structures with Ta layers, in addition to the robustness of W layers against high-temperature diffusion during annealing. The critical switching current density could be lower than 3.0 MA cm -2 for devices with a 45-nm radius.

  6. Rope coiling

    Indian Academy of Sciences (India)

    Sitichoke Amnuanpol

    2017-10-19

    Oct 19, 2017 ... In rope coiling the centre of the circle is static. How- ever, it evolves in time as seen in the curling of .... friction force between the rope and the plane, because no significant changes in the coiling radius R and ... friction force relative to the axial compressive forces,. i.e. gravitational force and inertial force, ...

  7. Rope coiling

    Indian Academy of Sciences (India)

    We present the results of the combined experimental and theoretical investigation of rope coiling arising from the buckling instability. The shape of the rope is perfectly circular in the coiling region and is straight in the region below the feeding point. In between these two distant regions, the rope assumes a catenary-like ...

  8. α/β coiled coils

    Science.gov (United States)

    Hartmann, Marcus D; Mendler, Claudia T; Bassler, Jens; Karamichali, Ioanna; Ridderbusch, Oswin; Lupas, Andrei N; Hernandez Alvarez, Birte

    2016-01-01

    Coiled coils are the best-understood protein fold, as their backbone structure can uniquely be described by parametric equations. This level of understanding has allowed their manipulation in unprecedented detail. They do not seem a likely source of surprises, yet we describe here the unexpected formation of a new type of fiber by the simple insertion of two or six residues into the underlying heptad repeat of a parallel, trimeric coiled coil. These insertions strain the supercoil to the breaking point, causing the local formation of short β-strands, which move the path of the chain by 120° around the trimer axis. The result is an α/β coiled coil, which retains only one backbone hydrogen bond per repeat unit from the parent coiled coil. Our results show that a substantially novel backbone structure is possible within the allowed regions of the Ramachandran space with only minor mutations to a known fold. DOI: http://dx.doi.org/10.7554/eLife.11861.001 PMID:26771248

  9. Structural specificity in coiled-coil interactions

    OpenAIRE

    Grigoryan, Gevorg; Keating, Amy E.

    2008-01-01

    Coiled coils have a rich history in the field of protein design and engineering. Novel structures, such as the first 7-helix coiled coil, continue to provide surprises and insights. Large-scale data sets quantifying the influence of systematic mutations on coiled-coil stability are a valuable new asset to the area. Scoring methods based on sequence and/or structure can predict interaction preferences in coiled-coil-mediated bZIP transcription factor dimerization. Experimental and computationa...

  10. High-resolution structures of a heterochiral coiled coil.

    Science.gov (United States)

    Mortenson, David E; Steinkruger, Jay D; Kreitler, Dale F; Perroni, Dominic V; Sorenson, Gregory P; Huang, Lijun; Mittal, Ritesh; Yun, Hyun Gi; Travis, Benjamin R; Mahanthappa, Mahesh K; Forest, Katrina T; Gellman, Samuel H

    2015-10-27

    Interactions between polypeptide chains containing amino acid residues with opposite absolute configurations have long been a source of interest and speculation, but there is very little structural information for such heterochiral associations. The need to address this lacuna has grown in recent years because of increasing interest in the use of peptides generated from d amino acids (d peptides) as specific ligands for natural proteins, e.g., to inhibit deleterious protein-protein interactions. Coiled-coil interactions, between or among α-helices, represent the most common tertiary and quaternary packing motif in proteins. Heterochiral coiled-coil interactions were predicted over 50 years ago by Crick, and limited experimental data obtained in solution suggest that such interactions can indeed occur. To address the dearth of atomic-level structural characterization of heterochiral helix pairings, we report two independent crystal structures that elucidate coiled-coil packing between l- and d-peptide helices. Both structures resulted from racemic crystallization of a peptide corresponding to the transmembrane segment of the influenza M2 protein. Networks of canonical knobs-into-holes side-chain packing interactions are observed at each helical interface. However, the underlying patterns for these heterochiral coiled coils seem to deviate from the heptad sequence repeat that is characteristic of most homochiral analogs, with an apparent preference for a hendecad repeat pattern.

  11. Ejector COIL

    Science.gov (United States)

    Nikolaev, Valeriy D.; Svistun, Michael I.; Zagidullin, Marsel V.

    2004-06-01

    The historical ejector-like chemical oxygen iodine laser (COIL) contribution at the Lebedev Physical Institute, Samara Branch is briefly presented. Two possible schemes of such COIL which provide the high exhaust pressure are considered. The high-pressure hot driver nitrogen is carrier of iodine vapor in the first scheme. In the second version the additional nozzles with the low-pressure secondary nitrogen are employed for injection iodine vapor but the pure high-pressure driver nitrogen has the room temperature. The last COIL version was investigated in Lebedev Physical Institute in more detail and results of these investigations are presented. This ejector nozzle bank generates gain medium with high Mach number, low temperature and high gain. A high chemical efficiency up to 25% and the potential pressure recovery up to 90 torr have been achieved simultaneously.

  12. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  13. 30 MJ superconducting coil design and fabrication. Report No. GA-A16104

    International Nuclear Information System (INIS)

    Purcell, J.R.

    1980-09-01

    The Bonneville 30 MJ superconducting stabilizing coil is being constructed by General Atomic under contract to LASL. Upon completion of the design, General Atomic began the procurement of materials and is now ready to start coil winding

  14. tungsten tetracarbonyl

    Indian Academy of Sciences (India)

    37

    Click here to view linked References. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52 ... These methods, such as atomic layer deposition (ALD), photochemical deposition [11], physical vapor ...

  15. Tungsten Alloy Outgassing Measurements

    CERN Document Server

    Rutherfoord, John P; Shaver, L

    1999-01-01

    Tungsten alloys have not seen extensive use in liquid argon calorimeters so far. Because the manufacturing process for tungsten is different from the more common metals used in liquid argon there is concern that tungsten could poison the argon thereby creating difficulties for precision calorimetry. In this paper we report measurements of outgassing from the tungsten alloy slugs proposed for use in the ATLAS FCal module and estimate limits on potential poisoning with reasonable assumptions. This estimate gives an upper limit poisoning rate of tungsten slugs.

  16. Coiled-Coil Design: Updated and Upgraded.

    Science.gov (United States)

    Woolfson, Derek N

    2017-01-01

    α-Helical coiled coils are ubiquitous protein-folding and protein-interaction domains in which two or more α-helical chains come together to form bundles. Through a combination of bioinformatics analysis of many thousands of natural coiled-coil sequences and structures, plus empirical protein engineering and design studies, there is now a deep understanding of the sequence-to-structure relationships for this class of protein architecture. This has led to considerable success in rational design and what might be termed in biro de novo design of simple coiled coils, which include homo- and hetero-meric parallel dimers, trimers and tetramers. In turn, these provide a toolkit for directing the assembly of both natural proteins and more complex designs in protein engineering, materials science and synthetic biology. Moving on, the increased and improved use of computational design is allowing access to coiled-coil structures that are rare or even not observed in nature, for example α-helical barrels, which comprise five or more α-helices and have central channels into which different functions may be ported. This chapter reviews all of these advances, outlining improvements in our knowledge of the fundamentals of coiled-coil folding and assembly, and highlighting new coiled coil-based materials and applications that this new understanding is opening up. Despite considerable progress, however, challenges remain in coiled-coil design, and the next decade promises to be as productive and exciting as the last.

  17. Process for separation of tungsten and molybdenum by extraction

    International Nuclear Information System (INIS)

    Zelikman, A.N.; Voldman, G.M.; Rumyantsev, V.K.; Ziberov, G.N.; Kagermanian, V.S.

    1976-01-01

    A process for the separation of tungsten and molybdenum by extraction involves the addition of HCl or HNO 3 to an aqueous solution containing tungsten and molybdenum to obtain a pH from 0.5 to 4.3, and introduction of a stabilizer comprising water-soluble phosphorus salts and a complexing agent, hydrogen peroxide, in an amount from 1.5 to 2 mole per 1 g-atom of the total content of tungsten and molybdenum. Then molybdenum is selectively extracted from the resulting aqueous solution with tri-n-butylphosphate with equal volumetric proportioning of the aqueous and organic solutions. Re-extraction of molybdenum and partially tungsten is carried out from the organic extracting agent with an alkali or soda solution. The process makes possible the preparation of tungsten solution containing no more than 0.001 g/l of molybdenum, and an increase in the degree of extraction of tungsten and molybdenum

  18. Crystallographic study on oligonucleotide coiled-coils

    OpenAIRE

    Luchi, Daniela de

    2008-01-01

    En la presente tesis doctoral se han realizado estudios estructurales de DNA. Estudios previos han demostrado que los coiled-coils de d(ATATATATATAT) y d(ATATATATAT) tienen unos parámetros geométricos muy diferentes. El objetivo de esta tesis es aclarar las propiedades de los coiled-coils.Con esta finalidad se han estudiado por cristalografía de Rayos X oligonucleótidos con diferentes secuencias y con extremos cohesivos que fijen la geometría de los coiled-coils. Se han utilizado oligonucleót...

  19. Irradiation effects in tungsten-copper laminate composite

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, L.M., E-mail: garrisonlm@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Katoh, Y. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Snead, L.L. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Byun, T.S. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Reiser, J.; Rieth, M. [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2016-12-01

    Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410–780 °C and fast neutron fluences of 0.02–9.0 × 10{sup 25} n/m{sup 2}, E > 0.1 MeV, 0.0039–1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 °C. After only 0.0039 dpa this was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 °C. For elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile. - Highlights: • Fusion reactors need a tough, ductile tungsten plasma-facing material. • The unirradiated tungsten-copper laminate is more ductile than tungsten alone. • After neutron irradiation, the composite has significantly less ductility. • The tungsten behavior appears to dominate the overall composite behavior.

  20. Predicting coiled coils by use of pairwise residue correlations.

    OpenAIRE

    Berger, B; Wilson, D B; Wolf, E; Tonchev, T; Milla, M; Kim, P S

    1995-01-01

    A method is presented that predicts coiled-coil domains in protein sequences by using pairwise residue correlations obtained from a (two-stranded) coiled-coil database of 58,217 amino acid residues. A program called PAIRCOIL implements this method and is significantly better than existing methods at distinguishing coiled coils from alpha-helices that are not coiled coils. The database of pairwise residue correlations suggests structural features that stabilize or destabilize coiled coils.

  1. Evolutionary patterns in coiled-coils.

    Science.gov (United States)

    Surkont, Jaroslaw; Pereira-Leal, Jose B

    2015-01-10

    Models of protein evolution are used to describe evolutionary processes, for phylogenetic analyses and homology detection. Widely used general models of protein evolution are biased toward globular domains and lack resolution to describe evolutionary processes for other protein types. As three-dimensional structure is a major constraint to protein evolution, specific models have been proposed for other types of proteins. Here, we consider evolutionary patterns in coiled-coil forming proteins. Coiled-coils are widespread structural domains, formed by a repeated motif of seven amino acids (heptad repeat). Coiled-coil forming proteins are frequently rods and spacers, structuring both the intracellular and the extracellular spaces that often form protein interaction interfaces. We tested the hypothesis that due to their specific structure the associated evolutionary constraints differ from those of globular proteins. We showed that substitution patterns in coiled-coil regions are different than those observed in globular regions, beyond the simple heptad repeat. Based on these substitution patterns we developed a coiled-coil specific (CC) model that in the context of phylogenetic reconstruction outperforms general models in tree likelihood, often leading to different topologies. For multidomain proteins containing both a coiled-coil region and a globular domain, we showed that a combination of the CC model and a general one gives higher likelihoods than a single model. Finally, we showed that the model can be used for homology detection to increase search sensitivity for coiled-coil proteins. The CC model, software, and other supplementary materials are available at http://www.evocell.org/cgl/resources (last accessed January 29, 2015). © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Superhard Rhenium/Tungsten Diboride Solid Solutions.

    Science.gov (United States)

    Lech, Andrew T; Turner, Christopher L; Lei, Jialin; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B

    2016-11-02

    Rhenium diboride (ReB 2 ), containing corrugated layers of covalently bonded boron, is a superhard metallic compound with a microhardness reaching as high as 40.5 GPa (under an applied load of 0.49 N). Tungsten diboride (WB 2 ), which takes a structural hybrid between that of ReB 2 and AlB 2 , where half of the boron layers are planar (as in AlB 2 ) and half are corrugated (as in ReB 2 ), has been shown not to be superhard. Here, we demonstrate that the ReB 2 -type structure can be maintained for solid solutions of tungsten in ReB 2 with tungsten content up to a surprisingly large limit of nearly 50 atom %. The lattice parameters for the solid solutions linearly increase along both the a- and c-axes with increasing tungsten content, as evaluated by powder X-ray and neutron diffraction. From micro- and nanoindentation hardness testing, all of the compositions within the range of 0-48 atom % W are superhard, and the bulk modulus of the 48 atom % solid solution is nearly identical to that of pure ReB 2 . These results further indicate that ReB 2 -structured compounds are superhard, as has been predicted from first-principles calculations, and may warrant further studies into additional solid solutions or ternary compounds taking this structure type.

  3. Mechanism of yttrium atom formation in electrothermal atomization from metallic and metal-carbide surfaces of a heated graphite atomizer in atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Wahab, H.S.; Chakrabarti, C.L.

    1981-01-01

    Mechanism of Y atom formation from pyrocoated graphite, tantalum and tungsten metal surfaces of a graphite tube atomizer has been studied and a mechanism for the formation for Y atoms is proposed for the first time. (author)

  4. Tungsten Filament Fire

    Science.gov (United States)

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  5. Textbook tests with tungsten

    CERN Multimedia

    Barbara Warmbein

    2010-01-01

    CERN's linear collider detector group joins forces with CALICE in building the world's first tungsten hadronic calorimeter.   Hadronic calorimeter prototype made of tungsten for the linear collider detector being equipped with CALICE scintillators. In a hall for test beam experiments at CERN, next to the CLOUD climate experiment and an irradiation facility, sits a detector prototype that is in many ways a first. It's the first ever hadronic sandwich calorimeter (HCal) prototype made of tungsten. It's the first prototype for a detector for the Compact Linear Collider Study CLIC, developed by the linear collider detector R&D group (LCD group) at CERN. And it's the first piece of hardware that results directly from the cooperation between CLIC and ILC detector study groups. Now its makers are keen to see first particle showers in their detector. The tungsten calorimeter has just moved from a workshop at CERN, where it was assembled from finely polished tungsten squares and triangles, into the ...

  6. Programming protein self assembly with coiled coils

    Science.gov (United States)

    Dietz, Hendrik; Bornschlögl, Thomas; Heym, Roland; König, Frauke; Rief, Matthias

    2007-11-01

    The controlled assembly of protein domains into supramolecular structures will be an important prerequisite for the use of functional proteins in future nanotechnology applications. Coiled coils are multimerization motifs whose dimerization properties can be programmed by amino acid sequence. Here, we report programmed supramolecular self-assembly of protein molecules using coiled coils and directly demonstrate its potential on the single molecule level by AFM force spectroscopy. We flanked two different model proteins, Ig27 from human cardiac titin and green fluorescent protein (GFP), by coiled coil binding partners and studied the capability of these elementary building blocks to self-assemble into linear chains. Simple sterical constraints are shown to control the assembly process, providing evidence that many proteins can be assembled with this method. An application for this technique is the design of polyproteins for single molecule force spectroscopy with an integrated force-calibration standard.

  7. Computer simulations for thorium doped tungsten crystals

    Energy Technology Data Exchange (ETDEWEB)

    Eberhard, Bernd

    2009-07-17

    Tungsten has the highest melting point among all metals in the periodic table of elements. Furthermore, its equilibrium vapor pressure is by far the lowest at the temperature given. Thoria, ThO{sub 2}, as a particle dopant, results in a high temperature creep resistant material. Moreover, thorium covered tungsten surfaces show a drastically reduced electronic work function. This results in a tremendous reduction of tip temperatures of cathodes in discharge lamps, and, therefore, in dramatically reduced tungsten vapor pressures. Thorium sublimates at temperatures below those of a typical operating cathode. For proper operation, a diffusional flow of thorium atoms towards the surface has to be maintained. This atomic flux responds very sensitively on the local microstructure, as grain boundaries as well as dislocation cores offer ''short circuit paths'' for thorium atoms. In this work, we address some open issues of thoriated tungsten. A molecular dynamics scheme (MD) is used to derive static as well as dynamic material properties which have their common origin in the atomistic behavior of tungsten and thorium atoms. The interatomic interactions between thorium and tungsten atoms are described within the embedded atom model (EAM). So far, in literature no W-Th interaction potentials on this basis are described. As there is no alloying system known between thorium and tungsten, we have determined material data for the fitting of these potentials using ab-initio methods. This is accomplished using the full potential augmented plane wave method (FLAPW), to get hypothetical, i.e. not occurring in nature, ''alloy'' data of W-Th. In order to circumvent the limitations of classical (NVE) MD schemes, we eventually couple our model systems to external heat baths or volume reservoirs (NVT, NPT). For the NPT ensemble, we implemented a generalization of the variable cell method in combination with the Langevin piston, which results in a

  8. Computer simulations for thorium doped tungsten crystals

    International Nuclear Information System (INIS)

    Eberhard, Bernd

    2009-01-01

    Tungsten has the highest melting point among all metals in the periodic table of elements. Furthermore, its equilibrium vapor pressure is by far the lowest at the temperature given. Thoria, ThO 2 , as a particle dopant, results in a high temperature creep resistant material. Moreover, thorium covered tungsten surfaces show a drastically reduced electronic work function. This results in a tremendous reduction of tip temperatures of cathodes in discharge lamps, and, therefore, in dramatically reduced tungsten vapor pressures. Thorium sublimates at temperatures below those of a typical operating cathode. For proper operation, a diffusional flow of thorium atoms towards the surface has to be maintained. This atomic flux responds very sensitively on the local microstructure, as grain boundaries as well as dislocation cores offer ''short circuit paths'' for thorium atoms. In this work, we address some open issues of thoriated tungsten. A molecular dynamics scheme (MD) is used to derive static as well as dynamic material properties which have their common origin in the atomistic behavior of tungsten and thorium atoms. The interatomic interactions between thorium and tungsten atoms are described within the embedded atom model (EAM). So far, in literature no W-Th interaction potentials on this basis are described. As there is no alloying system known between thorium and tungsten, we have determined material data for the fitting of these potentials using ab-initio methods. This is accomplished using the full potential augmented plane wave method (FLAPW), to get hypothetical, i.e. not occurring in nature, ''alloy'' data of W-Th. In order to circumvent the limitations of classical (NVE) MD schemes, we eventually couple our model systems to external heat baths or volume reservoirs (NVT, NPT). For the NPT ensemble, we implemented a generalization of the variable cell method in combination with the Langevin piston, which results in a set of Langevin equations, i.e. stochastic

  9. How isopolyanions self-assemble and condense into a 2D tungsten oxide crystal: HRTEM imaging of atomic arrangement in an intermediate new hexagonal phase

    Science.gov (United States)

    Chemseddine, A.; Bloeck, U.

    2008-10-01

    The structure and structural evolution of tungstic acid solutions, sols and gels are investigated by high-resolution electron microscopy (HRTEM). Acidification of sodium tungstate solutions, through a proton exchange resin, is achieved in a way that ensures homogeneity in size and shape of intermediate polytungstic species. Gelation is shown to involve polycondensation followed by a self-assembling process of polytungstic building blocks leading to sheets with a layered hexagonal structure. Single layers of this new metastable phase are composed of three-, four- and six-membered rings of WO 6 octahedra located in the same plane. This is the first time that a 2D oxide crystal is isolated and observed by direct atomic resolution. Further ageing and structural evolution leading to single sheets of 2D ReO 3-type structure is directly observed by HRTEM. Based on this atomic level imaging, a model for the formation of the oxide network structure involving a self-assembling process of tritungstic based polymeric chain is proposed. The presence of tritungstic groups and their packing in electrochromic WO 3 films made by different techniques is discussed.

  10. Spectroscopic modeling for tungsten EUV spectra

    International Nuclear Information System (INIS)

    Murakami, Izumi; Kato, Daiji; Sakaue, Hiroyuki A.; Suzuki, Chihiro; Morita, Shigeru; Goto, Motoshi; Sasaki, Akira; Nakamura, Nobuyuki; Yamamoto, Norimasa; Koike, Fumihiro

    2014-01-01

    We have constructed an atomic model for tungsten extreme ultraviolet (EUV) spectra to reconstruct characteristic spectral feature of unresolved transition array (UTA) observed at 4-7 nm for tungsten ions. In the tungsten atomic modeling, we considered fine-structure levels with the quantum principal number n up to 6 as the atomic structure and calculated the electron-impact collision cross sections by relativistic distorted-wave method, using HULLAC atomic code. We measured tungsten EUV spectra in Large Helical Device (LHD) and Compact Electron Beam Ion Trap device (CoBIT) and compared them with the model calculation. The model successfully explain series of emission peaks at 1.5-3.5 nm as n=5-4 and 6-4 transitions of W 24+ - W 32+ measured in CoBIT and LHD and the charge state distributions were estimated for LHD plasma. The UTA feature observed at 4-7 nm was also successfully reconstructed with our model. The peak at ∼5 nm is produced mainly by many 4f-4d transition of W 22+ - W 35+ ions, and the second peak at ∼6 nm is produced by 4f-4d transition of W 25+ - W 28+ ions, and 4d-4p inner-shell transitions, 4p 5 4d n+1 - 4p 6 4d n , of W 29+ - W 35+ ions. These 4d-4p inner-shell transitions become strong since we included higher excited states such as 4p 5 4d n 4f state, which ADAS atomic data set does not include for spectroscopic modeling with fine structure levels. (author)

  11. Positron simulations of defects in tungsten containing hydrogen and helium

    International Nuclear Information System (INIS)

    Troev, T.; Popov, E.; Staikov, P.; Nankov, N.; Yoshiie, T.

    2009-01-01

    An understanding of the behavior of defects containing hydrogen or helium in tungsten is an important issue. Here the properties of defects in tungsten containing hydrogen or helium atoms have been investigated by model positron lifetime quantum-mechanical simulations. The electron and positron wave functions have been obtained in the local density approximation to the two-component density-functional theory. The calculated values of the positron lifetime correlate with the magnitude of the electron density. The vacancy-clusters without hydrogen or helium are active positron traps. The lattice relaxation of atoms around vacancy reduces the effective vacancy volume and decrease the positron lifetime at a vacancy. The hydrogen and helium atoms are trapped in tungsten by lattice vacancies and nano-voids. It was established that positron lifetime depends on the density of gas atoms inside the nano-void. Hydrogen and helium presence in the larger nano-voids considerably decrease the positron lifetime.

  12. Electrochemical properties of tungsten oxysulphide thin films as ...

    Indian Academy of Sciences (India)

    Unknown

    1⋅2 V. X-ray photoelectron spectroscopy measurements were performed on different compounds in both inter- calated (Li1WO1⋅05S2 ... during the first discharge–charge cycle. The analysis of both the W4f and the S2p peaks has shown that the redox processes involve not only the tungsten atoms but also sulphur atoms.

  13. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp.

    Science.gov (United States)

    Fat'yanov, O V; Asimow, P D

    2015-10-01

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30,000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  14. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    Science.gov (United States)

    Fat'yanov, O. V.; Asimow, P. D.

    2015-10-01

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  15. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    Energy Technology Data Exchange (ETDEWEB)

    Fat’yanov, O. V., E-mail: fatyan1@gps.caltech.edu; Asimow, P. D., E-mail: asimow@gps.caltech.edu [Division of Geological and Planetary Sciences 252-21, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-10-15

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  16. Biomaterials Made from Coiled-Coil Peptides.

    Science.gov (United States)

    Conticello, Vincent; Hughes, Spencer; Modlin, Charles

    The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.

  17. Point Defect Calculations in Tungsten

    National Research Council Canada - National Science Library

    Danilowicz, Ronald

    1968-01-01

    .... The vacancy migration energy for tungsten was calculated. The calculated value of 1.73 electron volts, together with experimental data, suggests that vacancies migrate in stage III recovery in tungsten...

  18. The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer

    Science.gov (United States)

    Sanchez, Jacint G.; Okreglicka, Katarzyna; Chandrasekaran, Viswanathan; Welker, Jordan M.; Sundquist, Wesley I.; Pornillos, Owen

    2014-01-01

    Tripartite motif (TRIM) proteins make up a large family of coiled-coil-containing RING E3 ligases that function in many cellular processes, particularly innate antiviral response pathways. Both dimerization and higher-order assembly are important elements of TRIM protein function, but the atomic details of TRIM tertiary and quaternary structure have not been fully understood. Here, we present crystallographic and biochemical analyses of the TRIM coiled-coil and show that TRIM proteins dimerize by forming interdigitating antiparallel helical hairpins that position the N-terminal catalytic RING domains at opposite ends of the dimer and the C-terminal substrate-binding domains at the center. The dimer core comprises an antiparallel coiled-coil with a distinctive, symmetric pattern of flanking heptad and central hendecad repeats that appear to be conserved across the entire TRIM family. Our studies reveal how the coiled-coil organizes TRIM25 to polyubiquitylate the RIG-I/viral RNA recognition complex and how dimers of the TRIM5α protein are arranged within hexagonal arrays that recognize the HIV-1 capsid lattice and restrict retroviral replication. PMID:24550273

  19. Binary-collision-approximation-based simulation of noble gas irradiation to tungsten materials

    International Nuclear Information System (INIS)

    Saito, Seiki; Takayama, Arimichi; Ito, Atsushi M.; Nakamura, Hiroaki

    2013-01-01

    To reveal the possibility of fuzz formation of tungsten material under noble gas irradiation, helium, neon, and argon atom injections into tungsten materials are performed by binary-collision-approximation-based simulation. The penetration depth is strongly depends on the structure of the target material. Therefore, the penetration depth for amorphous and bcc crystalline structure is carefully investigated in this paper

  20. Cooling and dehumidifying coils

    International Nuclear Information System (INIS)

    Murthy, M.V.K.

    1988-01-01

    The operating features of cooling and dehumidifying coils and their constructional details are discussed. The heat transfer relations as applicable to the boiling refrigerant and a single phase fluid are presented. Methods of accounting for the effect of moisture condensation on the air side heat transfer coefficient and the fin effectiveness are explained. The logic flow necessary to analyze direct expansion coils and chilled water coils is discussed

  1. Excitation energies, radiative and autoionization rates, dielectronic satellite lines, and dielectronic recombination rates for excited states of Rb-like W from Kr-like W [Relativistic atomic data for Rb-like tungsten

    International Nuclear Information System (INIS)

    Safronova, University I.; Safronova, A. S.; Beiersdorfer, P.

    2016-01-01

    Energy levels, radiative transition probabilities, and autoionization rates for [Ni]4s 2 4p 6 nl, [Ni]4s 2 4p 5 4l ′ nl (l ′ =d,f,n = 4–7), [Ni]4s4p 6 4l ′ nl, (l ′ =d,f,n = 4–7), [Ni]4s 2 4p 5 5l ′ nl (n = 5–7), and [Ni]4s4p 6 6l ′ nl (n = 6–7) states in Rb-like tungsten (W37+) are calculated using the relativistic many-body perturbation theory method (RMBPT code) and the Hartree–Fock-relativistic method (COWAN code). Autoionizing levels above the [Ni]4s 2 4p 6 threshold are considered. It is found that configuration mixing among [Ni]4s 2 4p 5 4l ′ nl and [Ni]4s4p 6 4l ′ nl plays an important role for all atomic characteristics. Branching ratios relative to the first threshold and intensity factors are calculated for satellite lines, and dielectronic recombination (DR) rate coefficients are determined for the [Ni]4s 2 4p 6 nl (n = 4–7) singly excited states, as well as the [Ni]4s 2 4p 5 4dnl, [Ni]4s 2 4p 5 4fnl, [Ni]4s4p 6 4dnl, [Ni]4s 2 4p 6 4fnl, (n = 4–6), and [Ni]4s 2 4p 5 5l ′ 5l doubly excited nonautoionizing states in Rb-like W37+ ion. Contributions from the [Ni]4s24p 6 4fnl (n = 6–7), [Ni]4s 2 4p 5 5l ′ nl (n = 5–6), and [Ni]4s 2 4p 5 6l ′ nl (n = 6–7) doubly excited autoionizing states are evaluated numerically. The high-n state (with n up to 500) contributions are very important for high temperatures. These contributions are determined by using a scaling procedure. Synthetic dielectronic satellite spectra from Rb-like W are simulated in a broad spectral range from 8 to 70 Å. Here, these calculations provide highly accurate values for a number of W 37+ properties useful for a variety of applications including for fusion applications.

  2. Micro- and nano-volume samples by electrothermal, near-torch vaporization sample introduction using removable, interchangeable and portable rhenium coiled-filament assemblies and axially-viewed inductively coupled plasma-atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Badiei, Hamid R.; Lai, Bryant; Karanassios, Vassili

    2012-11-15

    An electrothermal, near-torch vaporization (NTV) sample introduction for micro- or nano-volume samples is described. Samples were pipetted onto coiled-filament assemblies that were purposely developed to be removable and interchangeable and were dried and vaporized into a small-volume vaporization chamber that clips onto any ICP torch with a ball joint. Interchangeable assemblies were also constructed to be small-size (e.g., less than 3 cm long with max diameter of 0.65 cm) and light-weight (1.4 g) so that they can be portable. Interchangeable assemblies with volume-capacities in three ranges (i.e., < 1 {mu}L, 1-10 {mu}L and 10-100 {mu}L) were fabricated and used. The horizontally-operated NTV sample introduction was interfaced to an axially-viewed ICP-AES (inductively coupled plasma-atomic emission spectrometry) system and NTV was optimized using ICP-AES and 8 elements (Pb, Cd, Zn, V, Ba, Mg, Be and Ca). Precision was 1.0-2.3% (peak height) and 1.1-2.4% (peak area). Detection limits (obtained using 5 {mu}L volumes) expressed in absolute-amounts ranged between 4 pg for Pb to 0.3 fg ({approx} 5 million atoms) for Ca. Detection limits expressed in concentration units (obtained using 100 {mu}L volumes of diluted, single-element standard solutions) were: 50 pg/mL for Pb; 10 pg/mL for Cd; 9 pg/mL for Zn; 1 pg/mL for V; 0.9 pg/mL for Ba; 0.5 pg/mL for Mg; 50 fg/mL for Be; and 3 fg/mL for Ca. Analytical capability and utility was demonstrated using the determination of Pb in pg/mL levels of diluted natural water Certified Reference Material (CRM) and the determination of Zn in 80 nL volumes of the liquid extracted from an individual vesicle. It is shown that portable and interchangeable assemblies with dried sample residues on them can be transported without analyte loss (for the concentrations tested), thus opening up the possibility for 'taking part of the lab to the sample' applications, such as testing for Cu concentration-compliance with the lead

  3. Tissue Distribution of Tungsten in Mice Following Oral Exposure to Sodium Tungstate

    Science.gov (United States)

    2010-08-31

    implantable devices, like prostheses in orthopedic and maxillofacial surgery,1 dental implants,2 intravascular embolization coils3 and mechanic heart...tungsten load. Catheter Cardiovasc. Interv. 62, 380–384. 4 Aagaard, J. (2004) The Carbomedics aortic heart valve prosthesis : a review. J

  4. Electrocatalysis on tungsten carbide

    International Nuclear Information System (INIS)

    Fleischmann, R.

    1975-01-01

    General concepts of electrocatalysis, the importance of the equilibrium rest potential and its standardization on polished WC-electrodes, the influence of oxygen in the catalysts upon the oxidation of hydrogen, and the attained results of the hydrogen oxidation on tungsten carbide are treated. (HK) [de

  5. Gas tungsten arc welder

    Science.gov (United States)

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  6. The coiled coil motif in polymer drug delivery systems.

    Science.gov (United States)

    Pechar, Michal; Pola, Robert

    2013-01-01

    The coiled coil is a superhelical structural protein motif that has been thoroughly investigated in recent years. Because of the relatively well-understood principles that determine the properties of coiled coil peptides and proteins, macromolecular systems containing the coiled coil motif have been suggested for various applications. This short review focuses on hybrid polymer coiled coil systems designed for drug delivery purposes. After a short introduction, the most important features of the coiled coils (stability, association number, oligomerization selectivity and orientation of helices) are described, and the factors influencing these characteristics are discussed. Several examples of the most interesting biomedical applications of the polymer-coiled coil systems (according to the authors' opinion) are presented. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Molecular dynamics studies of PEGylated α-helical coiled coils and their self-assembled micelles.

    Science.gov (United States)

    Woo, Sun Young; Lee, Hwankyu

    2014-07-29

    We performed coarse-grained (CG) molecular dynamics simulations of trimeric α-helical coiled coils grafted with poly(ethylene glycol) (PEG) of different sizes and conjugate positions and the self-assembled micelle of amphiphilic trimers. The CG model for the trimeric coiled coil is verified by comparing the α-helical structure and interhelical distance with those calculated from all-atom simulations. In CG simulations of PEGylated trimers, the end-to-end distances and radii of gyration of PEGs grafted to the sides of peptides become shorter than those of free PEGs in water, which agrees with experiments. This shorter size of the grafted PEGs is also confirmed by calculating the thickness of the PEG layer, which is less than the size of the mushroom. These indicate the adsorption of PEG chains onto coiled coils since hydrophobic residues in the exterior sites of coiled coils tend to be less exposed to water and thus interact with PEGs, leading to the compact conformation of adsorbed PEGs. Simulations of the self-assembly of amphiphilic trimers show that the randomly distributed trimers self-assemble to micelles. The outer radius and hydrodynamic radius of the micelle, which were calculated respectively from radial densities and diffusion coefficients, are ∼7 nm, in agreement with the experimental value of ∼7.5 nm, while the aggregation number of amphiphilic molecules per micelle is lower than the experimentally proposed value. These simulations predict the experimentally measured size of PEGs grafted to the trimeric coiled coils and their self-assembled amphiphilic micelles and suggest that the aggregation number of the micelle may be lower, which needs to be confirmed by experiments.

  8. Compact stellarator coils

    International Nuclear Information System (INIS)

    Pomphrey, N.; Berry, L.A.; Boozer, A.H.

    2001-01-01

    Experimental devices to study the physics of high-beta (β>∼4%), low aspect ratio (A<∼4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility, and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, we have made several innovations that may be useful in future stellarator design efforts. These include: the use of Singular Value Decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a Control Matrix Method for identifying which few of the many detailed elements of the stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of Genetic Algorithms for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the tradeoff between physics objective and engineering constraints; the development of a new coil optimization code for designing modular coils, and the identification of a 'natural' basis for describing current sheet distributions. (author)

  9. Liquid rope coiling

    NARCIS (Netherlands)

    Ribe, N.M.; Habibi, M.; Bonn, D.

    2012-01-01

    A thin stream or rope of viscous fluid falling from a sufficient height onto a surface forms a steadily rotating helical coil. Tabletop laboratory experiments in combination with a numerical model for slender liquid ropes reveal that finite-amplitude coiling can occur in four distinct regimes

  10. Molecular basis of coiled-coil oligomerization-state specificity.

    Science.gov (United States)

    Ciani, Barbara; Bjelic, Saša; Honnappa, Srinivas; Jawhari, Hatim; Jaussi, Rolf; Payapilly, Aishwarya; Jowitt, Thomas; Steinmetz, Michel O; Kammerer, Richard A

    2010-11-16

    Coiled coils are extensively and successfully used nowadays to rationally design multistranded structures for applications, including basic research, biotechnology, nanotechnology, materials science, and medicine. The wide range of applications as well as the important functions these structures play in almost all biological processes highlight the need for a detailed understanding of the factors that control coiled-coil folding and oligomerization. Here, we address the important and unresolved question why the presence of particular oligomerization-state determinants within a coiled coil does frequently not correlate with its topology. We found an unexpected, general link between coiled-coil oligomerization-state specificity and trigger sequences, elements that are indispensable for coiled-coil formation. By using the archetype coiled-coil domain of the yeast transcriptional activator GCN4 as a model system, we show that well-established trimer-specific oligomerization-state determinants switch the peptide's topology from a dimer to a trimer only when inserted into the trigger sequence. We successfully confirmed our results in two other, unrelated coiled-coil dimers, ATF1 and cortexillin-1. We furthermore show that multiple topology determinants can coexist in the same trigger sequence, revealing a delicate balance of the resulting oligomerization state by position-dependent forces. Our experimental results should significantly improve the prediction of the oligomerization state of coiled coils. They therefore should have major implications for the rational design of coiled coils and consequently many applications using these popular oligomerization domains.

  11. Divertor coil device

    International Nuclear Information System (INIS)

    Hanai, Satoru.

    1990-01-01

    The present invention concerns a divertor coil device used in a tokamak type thermonuclear device and the object thereof is to reduce thermal loads in the heat receiving portion. An auxiliary power source is disposed, in addition to a main power source, for supplying main electric current for changing electric current ratio between each of the divertor coils. Then, the null point for forming plasmas is made controllable. As a result, a power source for a part of coils connected to the auxiliary power source of the divertor coils can be changed by controlling the voltage of the auxiliary power source. Accordingly, the electric current distribution in the divertor coils is changed and the position for the null point high thermal load region can be moved laterally. The area of the heat receiving portion can be increased by moving the high thermal load region, thereby decreasing the thermal load density. (I.S.)

  12. Tungsten as First Wall Material in Fusion Devices

    International Nuclear Information System (INIS)

    Kaufmann, M.

    2006-01-01

    In the PLT tokamak with a tungsten limiter strong cooling of the central plasma was observed. Since then mostly graphite has been used as limiter or target plate material. Only a few tokamaks (limiter: FTU, TEXTOR; divertor: Alcator C-Mod, ASDEX Upgrade) gained experience with high-Z-materials. With the observed strong co- deposition of tritium together with carbon in JET and as a result of design studies of fusion reactors, it became clear that in the long run tungsten is the favourite for the first-wall material. Tungsten as a plasma facing material requires intensive research in all areas, i.e. in plasma physics, plasma wall-interaction and material development. Tungsten as an impurity in the confined plasma reveals considerable differences to carbon. Strong radiation at high temperatures, in connection with mostly a pronounced inward drift forms a particular challenge. Turbulent transport plays a beneficial role in this regard. The inward drift is an additional problem in the pedestal region of H-mode plasmas in ITER-like configurations. The erosion by low energy hydrogen atoms is in contrast to carbon small. However, erosion by fast particles from heating measures and impurity ions, accelerated in the sheath potential, play an important role in the case of tungsten. Radiation by carbon in the plasma boundary reduces the load to the target plates. Neon or Argon as substitutes will increase the erosion of tungsten. So far experiments have demonstrated that in most scenarios the tungsten content in the central plasma can be kept sufficiently small. The material development is directed to the specific needs of existing or future devices. In ASDEX Upgrade, which will soon be a divertor experiment with a complete tungsten first-wall, graphite tiles are coated with tungsten layers. In ITER, the solid tungsten armour of the target plates has to be castellated because of its difference in thermal expansion compared to the cooling structure. In a reactor the technical

  13. Micro- and nano-volume samples by electrothermal, near-torch vaporization sample introduction using removable, interchangeable and portable rhenium coiled-filament assemblies and axially-viewed inductively coupled plasma-atomic emission spectrometry

    Science.gov (United States)

    Badiei, Hamid R.; Lai, Bryant; Karanassios, Vassili

    2012-11-01

    An electrothermal, near-torch vaporization (NTV) sample introduction for micro- or nano-volume samples is described. Samples were pipetted onto coiled-filament assemblies that were purposely developed to be removable and interchangeable and were dried and vaporized into a small-volume vaporization chamber that clips onto any ICP torch with a ball joint. Interchangeable assemblies were also constructed to be small-size (e.g., less than 3 cm long with max diameter of 0.65 cm) and light-weight (1.4 g) so that they can be portable. Interchangeable assemblies with volume-capacities in three ranges (i.e., inductively coupled plasma-atomic emission spectrometry) system and NTV was optimized using ICP-AES and 8 elements (Pb, Cd, Zn, V, Ba, Mg, Be and Ca). Precision was 1.0-2.3% (peak height) and 1.1-2.4% (peak area). Detection limits (obtained using 5 μL volumes) expressed in absolute-amounts ranged between 4 pg for Pb to 0.3 fg (~ 5 million atoms) for Ca. Detection limits expressed in concentration units (obtained using 100 μL volumes of diluted, single-element standard solutions) were: 50 pg/mL for Pb; 10 pg/mL for Cd; 9 pg/mL for Zn; 1 pg/mL for V; 0.9 pg/mL for Ba; 0.5 pg/mL for Mg; 50 fg/mL for Be; and 3 fg/mL for Ca. Analytical capability and utility was demonstrated using the determination of Pb in pg/mL levels of diluted natural water Certified Reference Material (CRM) and the determination of Zn in 80 nL volumes of the liquid extracted from an individual vesicle. It is shown that portable and interchangeable assemblies with dried sample residues on them can be transported without analyte loss (for the concentrations tested), thus opening up the possibility for "taking part of the lab to the sample" applications, such as testing for Cu concentration-compliance with the lead-copper rule of the Environmental Protection Agency. It is also shown that interchangeable assemblies with volume-capacities in the ranges mentioned above can be used interchangeably in the

  14. Irradiation effects in tungsten-copper laminate composite

    Science.gov (United States)

    Garrison, L. M.; Katoh, Y.; Snead, L. L.; Byun, T. S.; Reiser, J.; Rieth, M.

    2016-12-01

    Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410-780 °C and fast neutron fluences of 0.02-9.0 × 1025 n/m2, E > 0.1 MeV, 0.0039-1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 °C. After only 0.0039 dpa this was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 °C. For elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile.

  15. Irradiation effects in tungsten-copper laminate composite

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, L. M.; Katoh, Y.; Snead, L. L.; Byun, T. S.; Reiser, J.; Rieth, M.

    2016-12-01

    Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410-780°C and fast neutron fluences of 0.02-9.0×1025 n/m2, E>0.1 MeV, 0.0039-1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22°C. After only 0.0039 dpa this was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22°C. For elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile.

  16. Open coil traction system.

    Science.gov (United States)

    Vibhute, Pavankumar Janardan

    2012-01-01

    Sliding mechanics have become a popular method for space closure, with the development of preadjusted edgewise appliances. Furthermore, various space closing auxiliaries have been developed and extensively evaluated for their clinical efficiency. Their effectiveness is enhanced with optimum force magnitude and low load deflection rate/force decay. With the advent of nickel-titanium (Ni-Ti) springs in orthodontics, load deflection rates have been markedly reduced. To use Ni-Ti springs, clinicians have to depend upon prefabricated closed coil springs. The open coil traction system, or open coil retraction spring, is developed utilizing Ni-Ti open coil springs for orthodontic space closure. This article describes the fabrication and clinical application of the open coil traction system, which has a number of advantages. It sustains a low load deflection rate with optimum force magnitude, and its design is adjustable for a desired length and force level. It is fail-safe for both activation and deactivation (ie, it cannot be overactivated, and the decompression limit of the open coil is controlled by the operator). The open coil traction system can be offset from the mucosa to help reduce soft tissue impingement.

  17. Commercial applications for COIL

    Science.gov (United States)

    Solomon, Wayne C.; Carroll, David L.; King, D. M.; Fockler, L. A.; Stromberg, D. S.; Sexauer, M.; Milmoe, A.; Sentman, Lee H.

    2000-01-01

    The chemical oxygen-iodine laser (COIL) is a high power, fiber deliverable tool, which can be used for a number of different industrial applications. COIL is of particular interest because of its short fiber deliverable wavelength, high scaleable continuous wave power, and excellent material interaction properties. In past research the University of Illinois at Urbana-Champaign identified and decommissioning and decontamination (DD) of nuclear facilities as a primary focus for COIL technology. DD will be a major challenge in the coming decades. The use of a robotically driven fiber delivered cutting/ablation tool in contaminated areas promises to lower risks to workers for the DD mission. Further, the high cutting speed of COIL will significantly reduce the time required to cut contaminated equipment, reducing costs. The high power of COIL will permit the dismantling of thick stacks of piping and equipment as well as reactor vessels. COIL is very promising for the removal of material from contaminated surfaces, perhaps to depths thicker than an inch. Laser cutting and ablation minimizes dust and fumes, which reduces the required number of high efficiency particulate accumulator filters, thus reducing costly waste disposal. Other potential industrial applications for COIL are shipbuilding, automotive manufacturing, heavy machinery manufacturing, tasks requiring underwater cutting or welding, and there appear to be very promising applications for high powers lasers in the oil industry.

  18. Selective formation of tungsten nanowires

    Directory of Open Access Journals (Sweden)

    Bien Daniel

    2011-01-01

    Full Text Available Abstract We report on a process for fabricating self-aligned tungsten (W nanowires with polycrystalline silicon core. Tungsten nanowires as thin as 10 nm were formed by utilizing polysilicon sidewall transfer technology followed by selective deposition of tungsten by chemical vapor deposition (CVD using WF6 as the precursor. With selective CVD, the process is self-limiting whereby the tungsten formation is confined to the polysilicon regions; hence, the nanowires are formed without the need for lithography or for additional processing. The fabricated tungsten nanowires were observed to be perfectly aligned, showing 100% selectivity to polysilicon and can be made to be electrically isolated from one another. The electrical conductivity of the nanowires was characterized to determine the effect of its physical dimensions. The conductivity for the tungsten nanowires were found to be 40% higher when compared to doped polysilicon nanowires of similar dimensions.

  19. Coil spring venting arrangement

    International Nuclear Information System (INIS)

    McCugh, R.M.

    1975-01-01

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed

  20. Coiled-coils: The long and short of it.

    Science.gov (United States)

    Truebestein, Linda; Leonard, Thomas A

    2016-09-01

    Coiled-coils are found in proteins throughout all three kingdoms of life. Coiled-coil domains of some proteins are almost invariant in sequence and length, betraying a structural and functional role for amino acids along the entire length of the coiled-coil. Other coiled-coils are divergent in sequence, but conserved in length, thereby functioning as molecular spacers. In this capacity, coiled-coil proteins influence the architecture of organelles such as centrioles and the Golgi, as well as permit the tethering of transport vesicles. Specialized coiled-coils, such as those found in motor proteins, are capable of propagating conformational changes along their length that regulate cargo binding and motor processivity. Coiled-coil domains have also been identified in enzymes, where they function as molecular rulers, positioning catalytic activities at fixed distances. Finally, while coiled-coils have been extensively discussed for their potential to nucleate and scaffold large macromolecular complexes, structural evidence to substantiate this claim is relatively scarce. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.

  1. Extending the self-assembly of coiled-coil hybrids

    NARCIS (Netherlands)

    Robson Marsden, Hana

    2009-01-01

    Of the various biomolecular building blocks in use in nature, coiled-coil forming peptides are amongst those with the most potential as building blocks for the synthetic self-assembly of nanostructures. Native coiled coils have the ability to function in, and influence, complex systems composed of

  2. Disruption of Bcr-Abl coiled coil oligomerization by design.

    Science.gov (United States)

    Dixon, Andrew S; Pendley, Scott S; Bruno, Benjamin J; Woessner, David W; Shimpi, Adrian A; Cheatham, Thomas E; Lim, Carol S

    2011-08-05

    Oligomerization is an important regulatory mechanism for many proteins, including oncoproteins and other pathogenic proteins. The oncoprotein Bcr-Abl relies on oligomerization via its coiled coil domain for its kinase activity, suggesting that a designed coiled coil domain with enhanced binding to Bcr-Abl and reduced self-oligomerization would be therapeutically useful. Key mutations in the coiled coil domain of Bcr-Abl were identified that reduce homo-oligomerization through intermolecular charge-charge repulsion yet increase interaction with the Bcr-Abl coiled coil through additional salt bridges, resulting in an enhanced ability to disrupt the oligomeric state of Bcr-Abl. The mutations were modeled computationally to optimize the design. Assays performed in vitro confirmed the validity and functionality of the optimal mutations, which were found to exhibit reduced homo-oligomerization and increased binding to the Bcr-Abl coiled coil domain. Introduction of the mutant coiled coil into K562 cells resulted in decreased phosphorylation of Bcr-Abl, reduced cell proliferation, and increased caspase-3/7 activity and DNA segmentation. Importantly, the mutant coiled coil domain was more efficacious than the wild type in all experiments performed. The improved inhibition of Bcr-Abl through oligomeric disruption resulting from this modified coiled coil domain represents a viable alternative to small molecule inhibitors for therapeutic intervention.

  3. Helium bubble bursting in tungsten

    International Nuclear Information System (INIS)

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-01-01

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz

  4. A periodic table of coiled-coil protein structures.

    Science.gov (United States)

    Moutevelis, Efrosini; Woolfson, Derek N

    2009-01-23

    Coiled coils are protein structure domains with two or more alpha-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a "periodic table of coiled coils," which we have made available at http://coiledcoils.chm.bris.ac.uk/ccplus/search/periodic_table. In this table, coiled-coil assemblies are arranged in columns with increasing numbers of alpha-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.

  5. Borehole induction coil transmitter

    Science.gov (United States)

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  6. LHC bending magnet coil

    CERN Multimedia

    A short test version of coil of wire used for the LHC dipole magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair.

  7. LHCb magnet coils arrive

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Each of the two coils for the LHCb magnet comprises 15 individual monolayer 'pancakes' of identical trapezoidal racetrack shape, and is bent at 45 degrees on the two transverse sides. Each pancake consists of eight turns of conductor, wound from a single length (approx. 290 m) of extruded aluminium. The coils have arrived at CERN; one of them is seen here being unloaded above the LHCb experimental cavern.

  8. Coil protection calculator for TFTR

    International Nuclear Information System (INIS)

    Marsala, R.J.; Woolley, R.D.

    1987-01-01

    A new coil protection calculator (CPC) is presented in this paper. It is now being developed for TFTR's magnetic field coils will replace the existing coil fault detector. The existing fault detector sacrifices TFTR operating capability for simplicity. The new CPC will permit operation up to the actual coil limits by accurately and continuously computing coil parameters in real-time. The improvement will allow TFTR to operate with higher plasma currents and will permit the optimization of pulse repetition rates

  9. Hierarchical cascades of instability govern the mechanics of coiled coils: helix unfolding precedes coil unzipping.

    Science.gov (United States)

    Hamed, Elham; Keten, Sinan

    2014-07-15

    Coiled coils are a fundamental emergent motif in proteins found in structural biomaterials, consisting of α-helical secondary structures wrapped in a supercoil. A fundamental question regarding the thermal and mechanical stability of coiled coils in extreme environments is the sequence of events leading to the disassembly of individual oligomers from the universal coiled-coil motifs. To shed light on this phenomenon, here we report atomistic simulations of a trimeric coiled coil in an explicit water solvent and investigate the mechanisms underlying helix unfolding and coil unzipping in the assembly. We employ advanced sampling techniques involving steered molecular dynamics and metadynamics simulations to obtain the free-energy landscapes of single-strand unfolding and unzipping in a three-stranded assembly. Our comparative analysis of the free-energy landscapes of instability pathways shows that coil unzipping is a sequential process involving multiple intermediates. At each intermediate state, one heptad repeat of the coiled coil first unfolds and then unzips due to the loss of contacts with the hydrophobic core. This observation suggests that helix unfolding facilitates the initiation of coiled-coil disassembly, which is confirmed by our 2D metadynamics simulations showing that unzipping of one strand requires less energy in the unfolded state compared with the folded state. Our results explain recent experimental findings and lay the groundwork for studying the hierarchical molecular mechanisms that underpin the thermomechanical stability/instability of coiled coils and similar protein assemblies. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Microstructural development of tungsten and tungsten-rhenium alloys due to neutron irradiation in HFIR

    Science.gov (United States)

    Fukuda, Makoto; Yabuuchi, Kiyohiro; Nogami, Shuhei; Hasegawa, Akira; Tanaka, Teruya

    2014-12-01

    The microstructural development of pure tungsten (W) and tungsten-rhenium (Re) alloys due to neutron irradiation in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, TN, USA, was investigated in this work. The irradiation conditions were ∼1 displacements per atom (dpa) at 500 and 800 °C. After the neutron irradiation, microstructural observations were performed using a transmission electron microscope (TEM). Large amounts of precipitates identified as sigma- and chi-phases were observed in not only the W-Re alloys but also in the pure W after the neutron irradiation. The precipitates observed in the pure W were coarse and larger than those in the W-Re alloys. This was considered to be caused by the transmutation products of W and Re, namely, Re and osmium (Os), respectively, under irradiation in the HFIR with a higher contents of thermal neutron flux.

  11. Self diffusion in tungsten

    International Nuclear Information System (INIS)

    Mundy, J.N.; Rothman, S.J.; Lam, N.Q.; Nowicki, L.J.; Hoff, H.A.

    1978-01-01

    The lack of understanding of self-diffusion in Group VI metals together with the wide scatter in the measured values of tungsten self-diffusion has prompted the present measurements to be made over a wide temperature range (1/2Tsub(m) to Tsub(m)). The diffusion coefficients have been measured in the temperature range 1430-2630 0 C. The present measurements show non-linear Arrhenius behavior but a reliable two-exponential fit of the data should await further measurements. (Auth.)

  12. Gas tungsten arc welder

    International Nuclear Information System (INIS)

    Christiansen, D.W.; Brown, W.F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable grinder, co-axial with the electrode, is provided in the enclosure for refurbishing the used electrode between welds. The specification also discloses means for loading of the cladding with fuel pellets and for placement of reflectors, gas capsules and end caps. Gravity feed conveyor and inerting means are also described. (author)

  13. Development of superconducting pulsed poloidal coil in JAERI

    International Nuclear Information System (INIS)

    Shimamoto, S.; Okuno, K.; Ando, T.; Tsuji, H.

    1990-01-01

    In the Japan Atomic Energy Research Institute, (JAERI), development work on pulsed superconductors and coils started in 1979, aiming at the demonstration of the applicability of superconducting technologies to pulsed poloidal coils in a fusion reactor. Initially our effort was concentrated mainly on the development of pool-cooled large-current pulsed conductors. Over the past ten years, superconducting technology has made great progress and the forced-flow cooled coil has assumed great importance in the development work. Now the Demo Poloidal Coil Project is in progress in JAERI, and three large forced-flow cooled coils have so far been fabricated and tested. Many improvements have been achieved in ac-loss performance and mechanical characteristics. (author)

  14. Tritium decay helium-3 effects in tungsten

    Directory of Open Access Journals (Sweden)

    M. Shimada

    2017-08-01

    Full Text Available Tritium (T implanted by plasmas diffuses into bulk material, especially rapidly at elevated temperatures, and becomes trapped in neutron radiation-induced defects in materials that act as trapping sites for the tritium. The trapped tritium atoms will decay to produce helium-3 (3He atoms at a half-life of 12.3 years. 3He has a large cross section for absorbing thermal neutrons, which after absorbing a neutron produces hydrogen (H and tritium ions with a combined kinetic energy of 0.76 MeV through the 3He(n,HT nuclear reaction. The purpose of this paper is to quantify the 3He produced in tungsten by tritium decay compared to the neutron-induced helium-4 (4He produced in tungsten. This is important given the fact that helium in materials not only creates microstructural damage in the bulk of the material but alters surface morphology of the material effecting plasma-surface interaction process (e.g. material evolution, erosion and tritium behavior of plasma-facing component materials. Effects of tritium decay 3He in tungsten are investigated here with a simple model that predicts quantity of 3He produced in a fusion DEMO FW based on a neutron energy spectrum found in literature. This study reveals that: (1 helium-3 concentration was equilibrated to ∼6% of initial/trapped tritium concentration, (2 tritium concentration remained approximately constant (94% of initial tritium concentration, and (3 displacement damage from 3He(n,HT nuclear reaction became >1 dpa/year in DEMO FW.

  15. Displacement disorder and reconstruction of the (001) face of tungsten

    International Nuclear Information System (INIS)

    Egorushkin, V.E.; Kul'ment'ev, A.I.; Savushkin, E.V.

    1992-01-01

    The reconstruction of the (001) border of tungsten is examined taking into consideration random static displacements of surface atoms in the high-temperature (1 x 1) phase. A microscopic model is proposed, in which the creation of c(2 x 2) phase is described as a transition of the Jahn-Teller type and an ordering of static displacements. It is shown that displacement disorder induces instability of (001) tungsten with respect to reconstruction. The effect of a uniform electric field on a disordered reconstructing surface is examined. A possible reason is given for pronounced differences in the results of investigations of the structural conversion of the (001) face in tungsten when different experimental methods are used

  16. Synthesis of Tungsten Diselenide Nanoparticles by Chemical Vapor Condensation Method

    Directory of Open Access Journals (Sweden)

    Oleg V. Tolochko

    2015-09-01

    Full Text Available Crystalline tungsten diselenide (WSe2 nanoparticles have been synthesized by a gas phase reaction using tungsten hexacarbonyl and elemental selenium as precursors. The WSe2 nanoparticle morphology varies from the spherical shape to flake-like layered structures. Mean size in smaller dimension are less than 5 nm and the number of layers decreased linearly with decreasing of reaction time and concentration of carbonyl in the gas phase. The mean value of interlayer distance in <0001> direction is comparable with the microscopic values. The selenium-to-tungsten atomic ratios of 2.07, 2.19 and 2.19 were determined respectively, approach to the stoichiometric ratio of 2:1. Main impurities are oxygen and carbon and strongly interrelated with carbonyl concentration in the gas phase.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7356

  17. Electronic Transitions of Tungsten Monosulfide

    Science.gov (United States)

    Tsang, L. F.; Chan, Man-Chor; Zou, Wenli; Cheung, Allan S. C.

    2017-06-01

    Electronic transition spectrum of the tungsten monosulfide (WS) molecule in the near infrared region between 725 nm and 885 nm has been recorded using laser ablation/reaction free-jet expansion and laser induced fluorescence spectroscopy. The WS molecule was produced by reacting laser - ablated tungsten atoms with 1% CS_{2} seeded in argon. Fifteen vibrational bands with resolved rotational structure have been recorded and analyzed, which were organized into seven electronic transition systems. The ground state has been identified to be the X^{3}Σ^{-}(0^{+}) state, and the determined vibrational frequency, ΔG_{1/2} and bond length, r_{0}, are respectively 556.7 cm^{-1} and 2.0676 Å. In addition, vibrational bands belong to another transition system involving lower state with Ω = 1 component have also been analyzed. Least-squares fit of the measured line positions yielded molecular constants for the electronic states involved. The low-lying Λ-S states and Ω sub-states of WS have been calculated using state-averaged complete active space self-consistent field (SA-CASSCF) and followed by MRCISD+Q (internally contracted multi-reference configuration interaction with singles and doubles plus Davidson's cluster correction). The active space consists of 10 electrons in 9 orbitals corresponding to the W 5d6s and S 3p shells. The lower molecular orbitals from W 5s5p and S 3s are inactive but are also correlated, and relativistic effective core potential (RECPs) are adopted to replace the core orbitals with 60 (W) and 10 (S) core electrons, respectively. Spin-orbit coupling (SOC) is calculated via the state-interaction (SI) approach with RECP spin-orbit operators using SA-CASSCF wavefunctions, where the diagonal elements in the SOC matrix are replaced by the corresponding MRCISD+Q energies calculated above. Spectroscopic constants and potential energy curves of the ground and many low-lying Λ-S states and Ω sub-states of the WS molecule are obtained. The calculated

  18. In-situ field-ion microscope study of the recovery behavior of heavy metal ion-irradiated tungsten, tungsten (rhenium) alloys and molybdenum

    International Nuclear Information System (INIS)

    Nielsen, C.H.

    1977-06-01

    Three field ion microscope (FIM) experiments were carried out to study the annealing behavior of heavy ion irradiated tungsten, tungsten (rhenium) alloys and molybdenum. The first experiment dealt with the stage I long-range migration of tungsten self interstitial atoms (SIAs) in high purity tungsten of resistivity ratio, R = 24,000 (R = rho 300 /rho 4 . 2 , where rho 300 and rho 4 . 2 are the room temperature and 0 0 C resistivities). The FIM specimens were irradiated in situ at 18 K with 30 keV W + ions to an average dose of 5 x 10 12 ions cm -2 and subsequently examined by the pulsed-field evaporation technique. The second experiment dealt with the phenomenon of impurity atom trapping of SIAs during long-range migration. It was shown that rhenium atoms in a tungsten matrix tend to capture tungsten SIAs and remain bound up to temperatures as high as 390 K. The final experiment was concerned with the low temperature annealing kinetics of irradiated molybdenum. High purity molybdenum of resistivity ratio R = 5700 was irradiated at 10 K with 30 keV Mo + ions to a dose of approximately 5 x 10 12 ions cm -2 . The results indicated that the electric field has only a minimal effect on the SIA annealing kinetics. This tends to strengthen the contention that the molybdenum SIA becomes mobile at 32 K

  19. AAFreqCoil: a new classifier to distinguish parallel dimeric and trimeric coiled coils.

    Science.gov (United States)

    Wang, Xiaofeng; Zhou, Yuan; Yan, Renxiang

    2015-07-01

    Coiled coils are characteristic rope-like protein structures, constituted by one or more heptad repeats. Native coiled-coil structures play important roles in various biological processes, while the designed ones are widely employed in medicine and industry. To date, two major oligomeric states (i.e. dimeric and trimeric states) of a coiled-coil structure have been observed, plausibly exerting different biological functions. Therefore, exploration of the relationship between heptad repeat sequences and coiled coil structures is highly important. In this paper, we develop a new method named AAFreqCoil to classify parallel dimeric and trimeric coiled coils. Our method demonstrated its competitive performance when benchmarked based on 10-fold cross validation and jackknife cross validation. Meanwhile, the rules that can explicitly explain the prediction results of the test coiled coil can be extracted from the AAFreqCoil model for a better explanation of user predictions. A web server and stand-alone program implementing the AAFreqCoil algorithm are freely available at .

  20. On the shear strength of tungsten nano-structures with embedded helium

    International Nuclear Information System (INIS)

    Smirnov, R.D.; Krasheninnikov, S.I.

    2013-01-01

    Modification of plastic properties of tungsten nano-structures under shear stress load due to embedded helium atoms is studied using molecular dynamics modelling. The modelling demonstrates that the yield strength of tungsten nano-structures reduces significantly with increasing embedded helium concentration. At high helium concentrations (>10 at%), the yield strength decreases to values characteristic to the pressure in helium nano-bubbles, which are formed in tungsten under such conditions and thought to be responsible for the formation of nano-fuzz on tungsten surfaces irradiated with helium plasma. It is also shown that tungsten plastic flow strongly facilitates coagulation of helium clusters to larger bubbles. The temperature dependencies of the yield strength are obtained. (letter)

  1. Superconducting coil protection

    International Nuclear Information System (INIS)

    Woods, E.L.

    1975-01-01

    The protection system is based on a two-phase construction program. Phase I is the development of a reliable hardwired relay control system with a digital loop utilizing firmware and a microprocessor controller. Phase II is an expansion of the digital loop to include many heretofore unmonitored coil variables. These new monitored variables will be utilized to establish early quench detection and to formulate confirmation techniques of the quench detection mechanism. Established quench detection methods are discussed and a new approach to quench detection is presented. The new circuit is insensitive to external pulsed magnetic fields and the associated induced voltages. Reliability aspects of the coil protection system are discussed with respect to shutdowns of superconducting coil systems. Redundance and digital system methods are presented as related topics

  2. TESLA Coil Research

    Science.gov (United States)

    1992-05-01

    Sloan’s work was actually predated by the earlier work of Nikola Tesla . Sloan mistakenly identified " Tesla Coils" as lumped tuned resonators. The...Lefvw WsnJ L REPORT o]i 3. REPRT TYPE AND OATES COVEIRD May 1992 Special/Aug 1992 - May 1992 Z TITLE AND 5U§nUT S. FUNDING NUMIHRS Tesla Coil Research...STATEMENT 1211. ’ISTRIUUTION COOD Approved for public release; dis~ribution is unlimited 13. ABSTRACT (Masrmum 200 worw) High repetition rate Tesla

  3. Meiosis specific coiled-coil proteins in Shizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Okuzaki Daisuke

    2007-05-01

    Full Text Available Abstract Many meiosis-specific proteins in Schizosaccharomyces pombe contain coiled-coil motifs which play essential roles for meiotic progression. For example, the coiled-coil motifs present in Meu13 and Mcp7 are required for their function as a putative recombinase cofactor complex during meiotic recombination. Mcp6/Hrs1 and Mcp5/Num1 control horsetail chromosome movement by astral microtubule organization and anchoring dynein respectively. Dhc1 and Ssm4 are also required for horsetail chromosome movement. It is clear from these examples that the coiled-coil motif in these proteins plays an important role during the progression of cells through meiosis. However, there are still many unanswered questions on how these proteins operate. In this paper, we briefly review recent studies on the meiotic coiled-coil proteins in Sz. pombe.

  4. NET model coil test possibilities

    International Nuclear Information System (INIS)

    Erb, J.; Gruenhagen, A.; Herz, W.; Jentzsch, K.; Komarek, P.; Lotz, E.; Malang, S.; Maurer, W.; Noether, G.; Ulbricht, A.; Vogt, A.; Zahn, G.; Horvath, I.; Kwasnitza, K.; Marinucci, C.; Pasztor, G.; Sborchia, C.; Weymuth, P.; Peters, A.; Roeterdink, A.

    1987-11-01

    A single full size coil for NET/INTOR represents an investment of the order of 40 MUC (Million Unit Costs). Before such an amount of money or even more for the 16 TF coils is invested as much risks as possible must be eliminated by a comprehensive development programme. In the course of such a programme a coil technology verification test should finally prove the feasibility of NET/INTOR TF coils. This study report is almost exclusively dealing with such a verification test by model coil testing. These coils will be built out of two Nb 3 Sn-conductors based on two concepts already under development and investigation. Two possible coil arrangements are discussed: A cluster facility, where two model coils out of the two Nb 3 TF-conductors are used, and the already tested LCT-coils producing a background field. A solenoid arrangement, where in addition to the two TF model coils another model coil out of a PF-conductor for the central PF-coils of NET/INTOR is used instead of LCT background coils. Technical advantages and disadvantages are worked out in order to compare and judge both facilities. Costs estimates and the time schedules broaden the base for a decision about the realisation of such a facility. (orig.) [de

  5. Molecular dynamics and density functional simulations of tungsten nanostructure formation by helium plasma irradiation

    International Nuclear Information System (INIS)

    Ito, A.M.; Takayama, A.; Oda, Y.

    2014-10-01

    For the purposes of long-term use of tungsten diverter walls, it is necessary to suppress the surface deterioration due to the helium ash which induces the formations of helium bubbles and tungsten fuzzy nanostructures. In the present paper, the formation mechanisms of helium bubbles and tungsten fuzzy nanostructures were explained by the four-step process which is composed of the penetration process, the diffusion and agglomeration process, the helium bubble growth process and the tungsten fuzzy nanostructure formation process. The first to third step processes of the four-step process were investigated by using binary collision approximation, density functional theory and molecular dynamics, respectively. Furthermore, newly developed molecular dynamics and Monte-Carlo hybrid simulation has successfully reproduced the early formation process of tungsten fuzzy nanostructure. From these simulations, we here suggest the following key mechanisms of the formations of helium bubbles and tungsten fuzzy nanostructures: (1) By comparison between helium, neon, argon and hydrogen, the noble gas atoms can agglomerate limitlessly not only at a vacancy but also at an interstitial site. In particular, at the low incident energy, only helium atoms bring about the nucleation for helium bubble. (2) In the helium bubble growth process, the strain of the tungsten material around a helium atom is released as a dislocation loop, which is regarded as the loop punching phenomenon. (3) In the tungsten nanostructure formation process, the bursting of a helium bubble forms cavity and convexity in the surface. The helium bubbles tend to be grown and to burst at the cavity region, and then the difference of height between the cavity and convexity on the surface are enhanced. Consequently, the tungsten fuzzy nanostructure is formed. (author)

  6. Preparation method of tungsten carbide

    International Nuclear Information System (INIS)

    Jenkins, T.R.

    1976-01-01

    A method is described for the preparation of tungsten carbide in powder form from tungsten oxide powder in which the tungsten oxide is heated to 800-1,050 0 C, preferably to 850 0 C, and is reduced by the addition of carbon monoxide. The partial pressure of the CO 2 then formed must be kept below a necessary equilibrium value for the formation of the carbide. The waste gas (with max. 20 Vol% CO 2 ) is hardly reduced and is recycled in the circuit. (UWI) [de

  7. Simulation study on retention and reflection from tungsten carbide under high fluence of helium ions

    International Nuclear Information System (INIS)

    Ono, T.; Yamamura, Y.; Kawamura, T.; Kenmotsu, T.

    2000-08-01

    We have studied, by a Monte Carlo simulation code ACAT-DIFFUSE, the fluence-dependence of the amount of retained helium atoms in tungsten carbide at room temperature under helium ion bombardment. The retention behavior may be understood qualitatively in terms of irradiation-dependent diffusion coefficient assumed and range. The emission processes from tungsten carbide under helium ion irradiation derived were compared with each other. We have discussed the retention curves for incident energy of 5 keV at incident angles of 0deg and 80deg and of 500 eV at 0deg. The energy spectra of helium atoms reflected from tungsten carbide for incident energy of 500 eV at 0deg and 80deg were compared with those from graphite and tungsten. (author)

  8. Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys

    Science.gov (United States)

    Hasegawa, Akira; Fukuda, Makoto; Yabuuchi, Kiyohiro; Nogami, Shuhei

    2016-04-01

    Data on the microstructural development of tungsten (W) and tungsten rhenium (Re) alloys were obtained after neutron irradiation at 400-800 °C in the Japan Materials Testing Reactor (JMTR), the experimental fast test reactor Joyo, and the High Flux Isotope Reactor (HFIR) for irradiation damage levels in the range of 0.09-1.54 displacement per atom (dpa). Microstructural observations showed that a small amount of Re (3-5%) in W-Re alloys is effective in suppressing void formation. In W-Re alloys with Re concentrations greater than 10%, acicular precipitates are the primary structural defects. In the HFIR-irradiated specimen, in which a large amount of Re was expected to be produced by the nuclear transmutation of W to Re because of the reactor's high thermal neutron flux, voids were not observed even in pure W. The synergistic effects of displacement damage and solid transmutation elements on microstructural development are discussed, and the microstructural development of tungsten materials utilized in fusion reactors is predicted.

  9. In situ transmission electron microscope observation of the formation of fuzzy structures on tungsten

    International Nuclear Information System (INIS)

    Miyamoto, M; Watanabe, T; Nagashima, H; Nishijima, D; Doerner, R P; Krasheninnikov, S I; Sagara, A; Yoshida, N

    2014-01-01

    To investigate the formation processes of tungsten nano-structures, so called fuzz, in situ transmission electron microscope observations during helium ion irradiation and high temperature annealing have been performed. The irradiation with 3 keV He + from room temperature to 1273 K is found to cause high-density helium bubbles in tungsten with no significant change in the surface structure. At higher temperatures, surface morphology changes were observed even without helium irradiation due probably to surface diffusion of tungsten atoms driven by surface tension. It is clearly shown that this morphology change is enhanced with helium irradiation, i.e. the formation of helium bubbles. (paper)

  10. Gleeble Testing of Tungsten Samples

    Science.gov (United States)

    2013-02-01

    length of the sample. Density measurements were also taken before and after testing using Archimedes principle . Samples were also tested at room...commonly seen in body centered cubic (BCC) metals and can be attributed to dislocation mobility theories (8). The basic principles are that the...processing of nano-tungsten and nano-tungsten alloys to achieve superior strength, ductility, and fracture toughness for room temperature applications

  11. Micro creep mechanisms of tungsten

    International Nuclear Information System (INIS)

    Levoy, R.; Hugon, I.; Burlet, H.; Baillin, X.; Guetaz, L.

    2000-01-01

    Due to its high melting point (3410 deg C), tungsten offers good mechanical properties at elevated temperatures for several applications in non-oxidizing environment. The creep behavior of tungsten is well known between 1200 and 2500 deg C and 10 -3 to 10 -1 strain. However, in some applications when dimensional stability of components is required, these strains are excessive and it is necessary to know the creep behavior of the material for micro-strains (between 10 -4 and 10 -6 ). Methods and devices used to measure creep micro-strains are presented, and creep equations (Norton and Chaboche laws) were developed for wrought, annealed and recrystallized tungsten. The main results obtained on tungsten under low stresses are: stress exponent 1, symmetry of micro-strains in creep-tension and creep-compression, inverse creep (threshold stress), etc. TEM, SEM and EBSD studies allow interpretation of the micro-creep mechanism of tungsten under low stresses and low temperature (∼0.3 K) like the Harper-Dorn creep. In Harper-Dorn creep, micro-strains are associated with the density and the distribution of dislocations existing in the crystals before creep. At 975 deg C, the initial dislocation structure moves differently whether or not a stress is applied. To improve the micro-creep behavior of tungsten, a heat treatment is proposed to create the optimum dislocation structure. (authors)

  12. A comparison of interatomic potentials for modeling tungsten nanocluster structures

    International Nuclear Information System (INIS)

    Hao, Jiannan; Shu, Xiaolin; Jin, Shuo; Zhang, Xuesong; Zhang, Ying; Lu, Guang-Hong

    2017-01-01

    Molecular dynamic simulation is utilized to study the nanocluster and the fuzz structure on the PFM surface of tungsten. The polyhedral and linear cluster structures based on the icosahedron, cuboctahedron and rhombic dodecahedron are built up. Three interatomic potentials are used in calculating the relationship between the cluster energy and the number of atoms. The results are compared with first-principles calculation to show each potential’s best application scale. Furthermore, the transition between the icosahedral and the cuboctahedral clusters is observed in molecular dynamic simulation at different temperatures, which follows a critical curve for different numbers of atoms. The linear structures are proved to be stable at experimental temperatures by thermodynamics. The work presents a selection of interatomic potentials in simulating tungsten cluster systems and helps researchers understand the growth and evolution laws of clusters and the fuzz-like structure formation process in fusion devices.

  13. A comparison of interatomic potentials for modeling tungsten nanocluster structures

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiannan; Shu, Xiaolin, E-mail: shuxlin@buaa.edu.cn; Jin, Shuo; Zhang, Xuesong; Zhang, Ying; Lu, Guang-Hong

    2017-02-15

    Molecular dynamic simulation is utilized to study the nanocluster and the fuzz structure on the PFM surface of tungsten. The polyhedral and linear cluster structures based on the icosahedron, cuboctahedron and rhombic dodecahedron are built up. Three interatomic potentials are used in calculating the relationship between the cluster energy and the number of atoms. The results are compared with first-principles calculation to show each potential’s best application scale. Furthermore, the transition between the icosahedral and the cuboctahedral clusters is observed in molecular dynamic simulation at different temperatures, which follows a critical curve for different numbers of atoms. The linear structures are proved to be stable at experimental temperatures by thermodynamics. The work presents a selection of interatomic potentials in simulating tungsten cluster systems and helps researchers understand the growth and evolution laws of clusters and the fuzz-like structure formation process in fusion devices.

  14. Development work for the Japanese LCT coil and its design and construction

    International Nuclear Information System (INIS)

    Shimamoto, Susumu; Ando, Toshinari; Tsuji, Hiroshi; Yasukochi, Ko

    1984-01-01

    This paper describes design, verification tests, and construction of the Japanese test coil for the Large Coil Task (LCT). Japan Atomic Energy Research Institute (JAERI) signed on the LCT international agreement under the International Energy Agency (IEA) in 1978, and since then JAERI has been working to develop the Japanese LCT coil to explore the problems of design and construction of tokamak toroidal coil. Based on the common requirements of the LCT, the Japanese LCT coil was designed to be a pool-cooled NbTi fully-stabilized coil whose operating current is 10,220 A at 8 T. Through research and development of the Japanese LCT coil, new advances in the super-conducting coil technology were obtained, such as mechanically and chemically treated conductor surface that has high heat transfer about four times as much as usual ones, nitrogen-strengthened stainless steel that has the yield strength twice as much as usual stainless steel, NbTi filaments those have the critical current density twice as much as those before LCT, and so on. These advances have enabled to construct the Japanese LCT coil and it was completed in the spring of 1982. During the construction of the coil, new fabrication techniques were obtained to wind large current conductor into a mechanically rigid coil and thus to construct a totally stable large coil. (author)

  15. Coiled-coil networking shapes cell molecular machinery

    Science.gov (United States)

    Wang, Yongqiang; Zhang, Xinlei; Zhang, Hong; Lu, Yi; Huang, Haolong; Dong, Xiaoxi; Chen, Jinan; Dong, Jiuhong; Yang, Xiao; Hang, Haiying; Jiang, Taijiao

    2012-01-01

    The highly abundant α-helical coiled-coil motif not only mediates crucial protein–protein interactions in the cell but is also an attractive scaffold in synthetic biology and material science and a potential target for disease intervention. Therefore a systematic understanding of the coiled-coil interactions (CCIs) at the organismal level would help unravel the full spectrum of the biological function of this interaction motif and facilitate its application in therapeutics. We report the first identified genome-wide CCI network in Saccharomyces cerevisiae, which consists of 3495 pair-wise interactions among 598 predicted coiled-coil regions. Computational analysis revealed that the CCI network is specifically and functionally organized and extensively involved in the organization of cell machinery. We further show that CCIs play a critical role in the assembly of the kinetochore, and disruption of the CCI network leads to defects in kinetochore assembly and cell division. The CCI network identified in this study is a valuable resource for systematic characterization of coiled coils in the shaping and regulation of a host of cellular machineries and provides a basis for the utilization of coiled coils as domain-based probes for network perturbation and pharmacological applications. PMID:22875988

  16. Heterodimeric coiled-coil interactions of human GABAB receptor.

    Science.gov (United States)

    Burmakina, Svetlana; Geng, Yong; Chen, Yan; Fan, Qing R

    2014-05-13

    Metabotropic GABAB receptor is a G protein-coupled receptor that mediates inhibitory neurotransmission in the CNS. It functions as an obligatory heterodimer of GABAB receptor 1 (GBR1) and GABAB receptor 2 (GBR2) subunits. The association between GBR1 and GBR2 masks an endoplasmic reticulum (ER) retention signal in the cytoplasmic region of GBR1 and facilitates cell surface expression of both subunits. Here, we present, to our knowledge, the first crystal structure of an intracellular coiled-coil heterodimer of human GABAB receptor. We found that polar interactions buried within the hydrophobic core determine the specificity of heterodimer pairing. Disruption of the hydrophobic coiled-coil interface with single mutations in either subunit impairs surface expression of GBR1, confirming that the coiled-coil interaction is required to inactivate the adjacent ER retention signal of GBR1. The coiled-coil assembly buries an internalization motif of GBR1 at the heterodimer interface. The ER retention signal of GBR1 is not part of the core coiled-coil structure, suggesting that it is sterically shielded by GBR2 upon heterodimer formation.

  17. Electrospun Buckling Coils

    Science.gov (United States)

    Xin, Yu; Reneker, Darrell

    2009-03-01

    Electrospinning offers a useful way to produce fibers with micron and nanometer scale diameter. The present work deals with the buckling phenomenon characteristic of a jet impinging upon the surface of collector. A viscous jet may have either tensile or compressive forces along its axis. The periodic buckling that is often observed is attributed to the occurrence of compressive forces as the jet decelerates at the collector. With the increase of axial compressive stresses along the jet, a jet with circular cross sections first buckles by formation of sharp folds, and then by formation of coils. The resulting buckling patterns include zigzag patterns and coils that which can be controlled by changing parameters, such as density, viscosity, conductivity, voltage, polymer concentration, distance and volumetric flow rate. Uniformly buckled polymer fibers can be made at a rate of one turn per microsecond. An experimental apparatus was built to continuously collect buckling coils of nylon 6, from a water surface, into a multilayer sheet. These small ``springs'' and sheets will be tested for mechanical properties needed in biomedical applications.

  18. First-principles study of structure, electronic properties and stability of tungsten adsorption on TiC(111) surface with disordered vacancies

    Science.gov (United States)

    Ilyasov, Victor V.; Pham, Khang D.; Zhdanova, Tatiana P.; Phuc, Huynh V.; Hieu, Nguyen N.; Nguyen, Chuong V.

    2017-12-01

    In this paper, we systematically investigate the atomic structure, electronic and thermodynamic properties of adsorbed W atoms on the polar Ti-terminated TixCy (111) surface with different configurations of adsorptions using first principle calculations. The bond length, adsorption energy, and formation energy for different reconstructions of the atomic structure of the W/TixCy (111) systems were established. The effect of the tungsten coverage on the electronic structure and the adsorption mechanism of tungsten atom on the TixCy (111) are also investigated. We also suggest the possible mechanisms of W nucleation on the TixCy (111) surface. The effective charges on W atoms and nearest-neighbor atoms in the examined reconstructions were identified. Additionally, we have established the charge transfer from titanium atom to tungsten and carbon atoms which determine by the reconstruction of the local atomic and electronic structures. Our calculations showed that the charge transfer correlates with the electronegativity of tungsten and nearest-neighbor atoms. We also determined the effective charge per atom of titanium, carbon atoms, and neighboring adsorbed tungsten atom in different binding configurations. We found that, with reduction of the lattice symmetry associated with titanium and carbon vacancies, the adsorption energy increases by 1.2 times in the binding site A of W/TixCy systems.

  19. Electronic structure and Compton profiles of tungsten

    International Nuclear Information System (INIS)

    Lal Ahuja, Babu; Rathor, Ashish; Sharma, Vinit; Sharma, Yamini; Ramniklal Jani, Ashvin; Sharma, Balkrishna

    2008-01-01

    The energy bands, density of states and Compton profiles of tungsten have been computed using band structure methods, namely the spin-polarized relativistic Korringa-Kohn-Rostoker (SPR-KKR) approach as well as the linear combination of atomic orbitals with Hartree-Fock scheme and density functional theory. The full potential linearized augmented plane wave scheme to calculate these properties and the Fermi surface topology(except the momentum densities) have also been used to analyze the theoretical data on the electron momentum densities. The directional Compton profiles have been measured using a 100 mCi 241 Am Compton spectrometer. From the comparison, the measured anisotropies are found to be in good agreement with the SPR-KKR calculations. The band structure calculations are also compared with the available data. (orig.)

  20. Large coil test structural analysis

    International Nuclear Information System (INIS)

    Clinard, J.A.; Hammonds, C.J.

    1986-01-01

    The International Fusion Superconducting Magnet Test Facility (IFSMTF) at Oak Ridge National Laboratory (ORNL) is being utilized for testing of 2.5 x 3.5-m bore superconducting 8-T magnets produced by four international agencies (U.S., Euratom, Japan, and Switzerland). The definitive tests in the design configuration, six coils arranged in a compact torus, will begin in late 1985. Partial-array tests involving one US coil and the Japanese coil were completed in the fall of 1984. This presentation describes structural analysis using NASTRAN, with symmetry and superelement techniques, to predict the IFSMTF test stand and coil responses to various combinations of in-plane and out-of-plane loading conditions for both the partial-array and six-coil test configurations. Comparison to partial-array displacement and strain measurements are presented and discussed. Six-coil results and their utilization for determining safe levels of operation of the system are likewise discussed

  1. Tungsten contamination in ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Polignano, M.L., E-mail: maria.polignano@st.com; Barbarossa, F.; Galbiati, A.; Magni, D.; Mica, I.

    2016-06-15

    In this paper the tungsten contamination in ion implantation processes is studied by DLTS analysis both in typical operating conditions and after contamination of the implanter by implantation of wafers with an exposed tungsten layer. Of course the contaminant concentration is orders of magnitude higher after contamination of the implanter, but in addition our data show that different mechanisms are active in a not contaminated and in a contaminated implanter. A moderate tungsten contamination is observed also in a not contaminated implanter, however in that case contamination is completely not energetic and can be effectively screened by a very thin oxide. On the contrary, the contamination due to an implantation in a previously contaminated implanter is reduced but not suppressed even by a relatively thick screen oxide. The comparison with SRIM calculations confirms that the observed deep penetration of the contaminant cannot be explained by a plain sputtering mechanism.

  2. Hydrogen and helium trapping in tungsten deposition layers formed by RF plasma sputtering

    International Nuclear Information System (INIS)

    Kazunari Katayama; Kazumi Imaoka; Takayuki Okamura; Masabumi Nishikawa

    2006-01-01

    Understanding of tritium behavior in plasma facing materials is an important issue for fusion reactor from viewpoints of fuel control and radiation safety. Tungsten is used as a plasma facing material in the divertor region of ITER. However, investigation of hydrogen isotope behavior in tungsten deposition layer is not sufficient so far. It is also necessary to evaluate an effect of helium on a formation of deposition layer and an accumulation of hydrogen isotopes because helium generated by fusion reaction exists in fusion plasma. In this study, tungsten deposition layers were formed by sputtering method using hydrogen and helium RF plasma. An erosion rate and a deposition rate of tungsten were estimated by weight measurement. Hydrogen and helium retention were investigated by thermal desorption method. Tungsten deposition was performed using a capacitively-coupled RF plasma device equipped with parallel-plate electrodes. A tungsten target was mounted on one electrode which is supplied with RF power at 200 W. Tungsten substrates were mounted on the other electrode which is at ground potential. The plasma discharge was continued for 120 hours where pressure of hydrogen or helium was controlled to be 10 Pa. The amounts of hydrogen and helium released from deposition layers was quantified by a gas chromatograph. The erosion rate of target tungsten under helium plasma was estimated to be 1.8 times larger than that under hydrogen plasma. The deposition rate on tungsten substrate under helium plasma was estimated to be 4.1 times larger than that under hydrogen plasma. Atomic ratio of hydrogen to tungsten in a deposition layer formed by hydrogen plasma was estimated to be 0.17 by heating to 600 o C. From a deposition layer formed by helium plasma, not only helium but also hydrogen was released by heating to 500 o C. Atomic ratios of helium and hydrogen to tungsten were estimated to be 0.080 and 0.075, respectively. The trapped hydrogen is probably impurity hydrogen

  3. Coil Optimization for HTS Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    An optimization approach of HTS coils in HTS synchronous machines (SM) is presented. The optimization is aimed at high power SM suitable for direct driven wind turbines applications. The optimization process was applied to a general radial flux machine with a peak air gap flux density of ~3T...... is suitable for which coil segment is presented. Thus, the performed study gives valuable input for the coil design of HTS machines ensuring optimal usage of HTS tapes....

  4. 49 CFR 173.338 - Tungsten hexafluoride.

    Science.gov (United States)

    2010-10-01

    ... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.338 Tungsten hexafluoride. (a) Tungsten... shipped in an overpack that meets the provisions of § 173.40. (b) In place of the volumetric expansion... expansion test, must be condemned if removed from tungsten hexafluoride service. [ 74 FR 16143, Apr. 9, 2009...

  5. Helium and hydrogen trapping in tungsten deposition layers formed by helium plasma sputtering

    International Nuclear Information System (INIS)

    Katayama, K.; Imaoka, K.; Okamura, T.; Nishikawa, M.

    2007-01-01

    Tungsten deposition layers were formed by helium plasma sputtering utilizing a capacitively coupled RF plasma. For comparison, hydrogen plasma was also used for the formation of the deposition layer. It was found that non-negligible amount of helium and hydrogen were trapped in the tungsten deposition layer formed helium plasma sputtering. It is considered that the hydrogen emitted from the plasma chamber wall by helium plasma discharge was trapped in the layer. Atomic ratio of helium to tungsten (He/W) in the layer was estimated to be 0.08. This value is not quite small compared with that of hydrogen in the tungsten deposition layer formed by hydrogen plasma sputtering. The release behavior of helium from the layer formed by helium plasma sputtering was similar to that of hydrogen from the layer formed by hydrogen plasma sputtering

  6. Anodic oxide films on tungsten

    International Nuclear Information System (INIS)

    Di Paola, A.; Di Quarto, F.; Sunseri, C.

    1980-01-01

    Scanning electron microscopy was used to investigate the morphology of anodic oxide films on tungsten, obtained in various conditions of anodization. Studies were made of the growth of porous films, whose thickness increases with time and depends upon the current density. Temperature and electrolyte composition influence the film morphology. Gravimetric measurements of film dissolution at 70 0 C show that after a transient time, the rate of metal dissolution and that of film formation coincide. The porous films thicken because tungsten dissolves as WO 2 2+ and precipitates as WO 3 .H 2 O. (author)

  7. Method of synthesizing tungsten nanoparticles

    Science.gov (United States)

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  8. Large superconducting coil fabrication development

    International Nuclear Information System (INIS)

    Brown, R.L.; Allred, E.L.; Anderson, W.C.; Burn, P.B.; Deaderick, R.I.; Henderson, G.M.; Marguerat, E.F.

    1975-01-01

    Toroidal fields for some fusion devices will be produced by an array of large superconducting coils. Their size, space limitation, and field requirements dictate that they be high performance coils. Once installed, accessibility for maintenance and repairs is severely restricted; therefore, good reliability is an obvious necessity. Sufficient coil fabrication will be undertaken to develop and test methods that are reliable, fast, and economical. Industrial participation will be encouraged from the outset to insure smooth transition from development phases to production phases. Initially, practice equipment for three meter bore circular coils will be developed. Oval shape coil forms will be included in the practice facility later. Equipment that is more automated will be developed with the expectation of winding faster and obtaining good coil quality. Alternate types of coil construction, methods of winding and insulating, will be investigated. Handling and assembly problems will be studied. All technology developed must be feasible for scaling up when much larger coils are needed. Experimental power reactors may need coils having six meter or larger bores

  9. Bringing part of the lab to the field: On-site chromium speciation in seawater by electrodeposition of Cr(III)/Cr(VI) on portable coiled-filament assemblies and measurement in the lab by electrothermal, near-torch vaporization sample introduction and inductively coupled plasma-atomic emission spectrometry

    Science.gov (United States)

    Badiei, Hamid R.; McEnaney, Jennifer; Karanassios, Vassili

    2012-12-01

    A field-deployable electrochemical approach to preconcentration, matrix clean up and selective electrodeposition of Cr(III) and Cr(III) + Cr(VI) in seawater is described. Using portable, battery-operated electrochemical instrumentation, Cr species in seawater were electrodeposited in the field on portable coiled-filament assemblies made from Re. Assemblies with dried residues of Cr(III) or Cr(III) + Cr(VI) on them were transported to the lab for concentration determination by electrothermal, near-torch vaporization (NTV) sample introduction and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Electrodeposition offers selective species deposition, preconcentration and matrix clean up from seawater samples. For selective deposition, free Cr(VI) was electrodeposited at - 0.3 V and Cr(III) + Cr(VI) at - 1.6 V (both vs Ag/AgCl). Interestingly, at 0 V (vs Ag/AgCl) and in the absence of an electrodeposition potential only Cr(VI) was spontaneously and selectively adsorbed on the coil and reasons for this are given. Due to preconcentration afforded by electrodeposition, the detection limits obtained after a 60 s electrodeposition at the voltages stated above using buffered (pH = 4.7) artificial seawater spiked with either Cr(III) or Cr(VI) were 20 pg/mL for Cr(III) and 10 pg/mL for Cr(VI). For comparison, the detection limit for Cr obtained by pipetting directly on the coil 5 μL of diluted standard solution was 500 pg/mL, thus it was concluded that electrodeposition offered 40 to 60 fold improvements. Matrix clean up is required due to the high salt content of seawater and this was addressed by simply rinsing the coil with 18.2 MΩ water without any loss of Cr species. Reasons for this are provided. The method was validated in the lab using buffered artificial seawater and it was used in the field for the first time by sampling seawater, buffering it and immediately electrodepositing Cr species on portable assemblies on-site. Electrodeposition in the

  10. Triple Halo Coil: Development and Comparison with Other TMS Coils

    Science.gov (United States)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  11. Coiled Coils Ensure the Physiological Ectodomain Shedding of Collagen XVII*

    Science.gov (United States)

    Nishie, Wataru; Jackow, Joanna; Hofmann, Silke C.; Franzke, Claus-Werner; Bruckner-Tuderman, Leena

    2012-01-01

    α-Helical coiled coils, frequent protein oligomerization motifs, are commonly observed in vital proteins. Here, using collagen XVII as an example, we provide evidence for a novel function of coiled coils in the regulation of ectodomain shedding. Transmembrane collagen XVII, an epithelial cell surface receptor, mediates dermal-epidermal adhesion in the skin, and its dysfunction is linked to human skin blistering diseases. The ectodomain of this collagen is constitutively shed from the cell surface by proteinases of a disintegrin and metalloprotease family; however, the mechanisms regulating shedding remain elusive. Here, we used site-specific mutagenesis to target the coiled-coil heptad repeats within the juxtamembranous, extracellular noncollagenous 16th A (NC16A) domain of collagen XVII. This resulted in a substantial increase of ectodomain shedding, which was not mediated by disintegrin and metalloproteases. Instead, conformational changes induced by the mutation(s) unmasked a furin recognition sequence that was used for cleavage. This study shows that apart from their functions in protein oligomerization, coiled coils can also act as regulators of ectodomain shedding depending on the biological context. PMID:22761443

  12. The coiled coil motif in polymer drug delivery systems

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Pola, Robert

    2013-01-01

    Roč. 31, č. 1 (2013), s. 90-96 ISSN 0734-9750 R&D Projects: GA ČR GA203/08/0543; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : coiled coil * hydrophilic polymer * recombinant protein Subject RIV: CD - Macromolecular Chemistry Impact factor: 8.905, year: 2013

  13. Competition between Coiled-Coil Structures and the Impact on Myosin-10 Bundle Selection.

    Science.gov (United States)

    Vavra, Kevin C; Xia, Youlin; Rock, Ronald S

    2016-06-07

    Coiled-coil fusions are a useful approach to enforce dimerization in protein engineering. However, the final structures of coiled-coil fusion proteins have received relatively little attention. Here, we determine the structural outcome of adjacent parallel and antiparallel coiled coils. The targets are coiled coils that stabilize myosin-10 in single-molecule biophysical studies. We reveal the solution structure of a short, antiparallel, myosin-10 coiled-coil fused to the parallel GCN4-p1 coiled coil. Surprisingly, this structure is a continuous, antiparallel coiled coil where GCN4-p1 pairs with myosin-10 rather than itself. We also show that longer myosin-10 segments in these parallel/antiparallel fusions are dynamic and do not fold cooperatively. Our data resolve conflicting results on myosin-10 selection of actin filament bundles, demonstrating the importance of understanding coiled-coil orientation and stability. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Modelling of the soft X-ray tungsten spectra expected to be registered by GEM detection system for WEST

    Directory of Open Access Journals (Sweden)

    Syrocki Łukasz

    2016-12-01

    Full Text Available In the future International Thermonuclear Experimental Reactor (ITER, the interaction between the plasma and the tungsten chosen as the plasma-facing wall material imposes that the hot central plasma loses energy by X-ray emission from tungsten ions. On the other hand, the registered X-ray spectra provide alternative diagnostics of the plasma itself. Highly ionized tungsten emits extremely complex X-ray spectra that can be understood only after exhaustive theoretical studies. The detailed analyses will be useful for proper interpretation of soft X-ray plasma radiation expected to be registered on ITER-like machines, that is, Tungsten (W Environment in Steady-state Tokamak (WEST. The simulations of the soft X-ray spectra structures for tungsten ions have been performed using the flexible atomic code (FAC package within the framework of collisional-radiative (CR model approach for electron temperatures and densities relevant to WEST tokamak.

  15. The thermal accommodation of helium and argon on hot tungsten

    International Nuclear Information System (INIS)

    Watts, M.J.

    1977-01-01

    Experiments are described in which the momentum flux of gas atoms, remitted normal to the surface of a hot clean tungsten ribbon immersed in a low pressure of helium or argon, is measured with a torsion balance and the thermal accommodation coefficient deduced. Data are presented in which the tungsten temperature range was 700 to 1900 K for helium and 1100 to 1700 K for argon. A model is proposed which assumes that atoms impinging on and remitted from the hot tungsten ribbon conserve momentum in directions parallel to the surface. This results in a remitted flux, in the direction of the normal, greater than the cosine emission relation would predict. The resulting accommodation coefficients are then of the same order as those found using the total heat loss method. The accuracy of the reported method increases with the temperature of the hot solid. Measurement of translational thermal accommodation is possible without relying on the temperature coefficient of resistance of the solid and hence is applicable to alloys and to non-metals. For metals, which have a normal temperature coefficient of resistance, the method allows translational accommodation to be measured and internal energy accommodation to be deduced. (U.K.)

  16. Hydrogen retention properties of polycrystalline tungsten and helium irradiated tungsten

    International Nuclear Information System (INIS)

    Hino, T.; Koyama, K.; Yamauchi, Y.; Hirohata, Y.

    1998-01-01

    The hydrogen retention properties of a polycrystalline tungsten and tungsten irradiated by helium ions with an energy of 5 keV were examined by using an ECR ion irradiation apparatus and a technique of thermal desorption spectroscopy, TDS. The polycrystalline tungsten was irradiated at RT with energetic hydrogen ions, with a flux of 10 15 H cm -2 and an energy of 1.7 keV up to a fluence of 5 x 10 18 H cm -2 . Subsequently, the amount of retained hydrogen was measured by TDS. The heating temperature was increased from RT to 1000 C, and the heating rate was 50 C min -1 . Below 1000 C, two distinct hydrogen desorption peaks were observed at 200 C and 400 C. The retained amount of hydrogen was observed to be five times smaller than that of graphite, but the concentration in the implantation layer was comparable with that of graphite. Also, the polycrystalline tungsten was irradiated with 5 keV helium ions up to a fluence of 1.4 x 10 18 He cm -2 , and then re-irradiated with 1.7 keV hydrogen ions. The amount of retained hydrogen in this later experiment was close to the value in the case without prior helium ion irradiation. However, the amount of hydrogen which desorbed around the low temperature peak, 200 C, was largely enhanced. The desorption amount at 200 C saturated for the helium fluence of more than 5 x 10 17 He cm -2 . The present data shows that the trapping state of hydrogen is largely changed by the helium ion irradiation. Additionally, 5 keV helium ion irradiation was conducted on a sample pre-implanted with hydrogen ions to simulate a helium ion impact desorption of hydrogen retained in tungsten. The amount of the hydrogen was reduced as much as 50%. (orig.)

  17. HYDROGEN VACANCY INTERACTION IN TUNGSTEN

    NARCIS (Netherlands)

    FRANSENS, [No Value; ELKERIEM, MSA; PLEITER, F

    1991-01-01

    Hydrogen-vacancy interaction in tungsten was investigated by means of the perturbed angular correlation technique, using the isotope In-111 as a probe. Hydrogen trapping at an In-111-vacancy cluster manifests itself as a change of the local electric field gradient, which gives rise to an observable

  18. Vacuum Gas Tungsten Arc Welding

    Science.gov (United States)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  19. CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information

    DEFF Research Database (Denmark)

    Bartoli, Lisa; Fariselli, Piero; Krogh, Anders

    2009-01-01

    MOTIVATION: The widespread coiled-coil structural motif in proteins is known to mediate a variety of biological interactions. Recognizing a coiled-coil containing sequence and locating its coiled-coil domains are key steps towards the determination of the protein structure and function. Different...

  20. "Slinky" coils for neuromagnetic stimulation.

    Science.gov (United States)

    Zimmermann, K P; Simpson, R K

    1996-04-01

    Future advances in neuromagnetic stimulation depend significantly on the design of coils with improved focality. Although in the absence of internal current sources, no true focusing of magnetically induced currents is possible, improvements in the focality of current concentrations passing through an area of biologic tissue are achievable through variations of the shape, orientation and size of neuromagnetic stimulating coils. The "butterfly" and the "4-leaf" coils are two examples of planar designs which achieve improved focality through centralization of the maximum coil current and peripheral distribution of the return currents. We introduce the "slinky" coil design as a 3-dimensional generalization of the principle of peripheral distribution of return currents and demonstrate its advantages over planar designs.

  1. Thermal analysis of COIL

    Science.gov (United States)

    Takeuchi, Noriyuki; Sugimoto, Daichi; Tei, Kazuyoku; Fujioka, Tomoo

    2004-05-01

    Analysis of heat release into operative gas of Chemical Oxygen Iodine Laser (COIL) is discussed. Pooling reaction of oxygen molecules in the excited state, the iodine dissociation process and the interaction of them with water vapor release energy of in the excited state oxygen molecules as heat energy. As results of heat release in the plenum, a rise of the total pressure as a rise of the total temperature is observed, and in the supersonic region a rise of static pressure and a decrease of total pressure as a rise of total temperature are observed. By following our analysis technique regarding pressure data of three different nozzles, the evaluations such as energy loss in a duct from a Singlet delta Oxygen Generator (SOG) and the number of dissipated oxygen molecules for the iodine dissociation can be estimated.

  2. OEDGE modeling for the planned tungsten ring experiment on DIII-D

    Directory of Open Access Journals (Sweden)

    J.D. Elder

    2017-08-01

    Full Text Available The OEDGE code is used to model tungsten erosion and transport for experiments with toroidal rings of high-Z metal tiles in the DIII-D tokamak. Such modeling is needed for both experimental and diagnostic design to have estimates of the expected core and edge tungsten density and to understand the various factors contributing to the uncertainties in these calculations. OEDGE simulations are performed using the planned experimental magnetic geometries and plasma conditions typical of both L-mode and inter-ELM H-mode discharges in DIII-D. OEDGE plasma reconstruction based on specific representative discharges for similar geometries is used to determine the plasma conditions applied to tungsten plasma impurity simulations. A new model for tungsten erosion in OEDGE was developed which imports charge-state resolved carbon impurity fluxes and impact energies from a separate OEDGE run which models the carbon production, transport and deposition for the same plasma conditions as the tungsten simulations. These values are then used to calculate the gross tungsten physical sputtering due to carbon plasma impurities which is then added to any sputtering by deuterium ions; tungsten self-sputtering is also included. The code results are found to be dependent on the following factors: divertor geometry and closure, the choice of cross-field anomalous transport coefficients, divertor plasma conditions (affecting both tungsten source strength and transport, the choice of tungsten atomic physics data used in the model (in particular ionization rate for W-atoms, and the model of the carbon flux and energy used for calculating the tungsten source due to sputtering. Core tungsten density is found to be of order 1015m−3 (excluding effects of any core transport barrier and with significant variability depending on the other factors mentioned with density decaying into the scrape off layer. For the typical core density in the plasma conditions examined of 2 to 4

  3. Superconducting cyclotron magnet coil short

    International Nuclear Information System (INIS)

    Mallory, M.L.; Blosser, H.G.; Clark, D.J.; Launer, H.; Lawton, D.; Miller, P.; Resmini, F.

    1982-01-01

    In February 1981, a short circuit appeared in the superconducting coil of the K500 cyclotron. The short is resistive in character and therefore has no effect on steady state operation of the magnet. The resistance of the short varies, sometimes being below threshold of detection as a heat load on the cooling system and sometimes being significant. The resistance under certain conditions shows approximately cyclic phenomena with time constants in the range of seconds and other approximately cyclic phenomena which correlate with gross operating parameters of the magnet (shifting current from one coil to another at high field and lowering and raising the liquid helium level). A number of diagnostic studies of the short have been made, using 1) an array of flux sensing loops to sense the magnetic effect of the short, 2) voltage comparisons between upper and lower sections of the coil, 3) comparisons of forces in the nine member coil support system and 4) the effect of the short on the thermal charactersitics of the coil. Insulation failure or a metal chip shorting out turns have been explored in some detail but a convincing determination of the exact cause of the short may never be available, (even the extreme step of unwinding the coil having a significant probability that an imperfection with the observed characteristics would pass unnoticed). Analysis of the characteristics of the short indicated that the most serious consequence would be failure of the coils mechanical support system in the event that the magnet was quickly discharged, as in a dump or quench. To deal with this hazard, the support system has been modified by installing solid supports which prevent the coil from moving by an amount sufficient to damage the support system. We have also reexamined the data and calculations used in the original coil design and have made some additional measurements of the properties of the materials (yield strength, friction coefficient, Young's modulus) used in the

  4. The IEA Large Coil Task

    International Nuclear Information System (INIS)

    Beard, D.S.; Klose, W.; Shimamoto, S.; Vecsey, G.

    1988-01-01

    A multinational program of cooperative research, development, demonstrations, and exchanges of information on superconducting magnets for fusion was initiated in 1977 under an IEA agreement. The first major step in the development of TF magnets was called the Large Coil Task. Participants in LCT were the U.S. DOE, EURATOM, JAERI, and the Departement Federal de l'Interieur of Switzerland. The goals of LCT were to obtain experimental data, to demonstrate reliable operation of large superconducting coils, and to prove design principles and fabrication techniques being considered for the toroidal magnets of thermonuclear reactors. These goals were to be accomplished through coordinated but largely independent design, development, and construction of six test coils, followed by collaborative testing in a compact toroidal test array at fields of 8 T and higher. Under the terms of the IEA Agreement, the United States built and operated the test facility at Oak Ridge and provided three test coils. The other participants provided one coil each. Information on design and manufacturing and all test data were shared by all. The LCT team of each participant included a government laboratory and industrial partners or contractors. The last coil was completed in 1985, and the test assembly was completed in October of that year. Over the next 23 months, the six-coil array was cooled down and extensive testing was performed. Results were gratifying, as tests achieved design-point performance and well beyond. (Each coil reached a peak field of 9 T.) Experiments elucidated coil behavior, delineated limits of operability, and demonstrated coil safety. (orig./KP)

  5. Superconducting poloidal coils for STARFIRE commercial reactor

    International Nuclear Information System (INIS)

    Wang, S.T.; Evans, K. Jr.; Turner, L.R.; Huang, Y.C.; Prater, R.; Alcorn, J.

    1979-01-01

    STARFIRE is considered to be the tenth commercial tokamak power plant. A preliminary design study on its superconducting poloidal coil system is presented. Key features of the design studies are: the elimination of the ohmic heating coil; the trade-off studies of the equilibrium field coil locations; and the development of a conceptual design for the superconducting equilibrium field coils. Described are the 100 kA cryostable conductor design, the coil structure, and evaluation of the coil forces

  6. A switch from parallel to antiparallel strand orientation in a coiled-coil X-ray structure via two core hydrophobic mutations.

    Science.gov (United States)

    Malashkevich, Vladimir N; Higgins, Chelsea D; Almo, Steven C; Lai, Jonathan R

    2015-05-01

    The coiled-coil is one of the most ubiquitous and well studied protein structural motifs. Significant effort has been devoted to dissecting subtle variations of the typical heptad repeat sequence pattern that can designate larger topological features such as relative α-helical orientation and oligomer size. Here we report the X-ray structure of a model coiled-coil peptide, HA2-Del-L2seM, which forms an unanticipated core antiparallel dimer with potential sites for discrete higher-order multimerization (trimer or tetramer). In the X-ray structure, a third, partially-ordered α-helix is weakly associated with the antiparallel dimer and analytical ultracentrifugation experiments indicate the peptide forms a well-defined tetramer in solution. The HA2-Del-L2seM sequence is closely related to a parent model peptide, HA2-Del, which we previously reported adopts a parallel trimer; HA2-Del-L2seM differs by only hydrophobic leucine to selenomethione mutations and thus this subtle difference is sufficient to switch both relative α-helical topology and number of α-helices participating in the coiled-coil. Comparison of the X-ray structures of HA2-Del-L2seM (reported here) with the HA2-Del parent (reported previously) reveals novel interactions involving the selenomethionine residues that promote antiparallel coiled-coil configuration and preclude parallel trimer formation. These novel atomic insights are instructive for understanding subtle features that can affect coiled-coil topology and provide additional information for design of antiparallel coiled-coils. © 2015 Wiley Periodicals, Inc.

  7. Tensile behaviour of drawn tungsten wire used in tungsten fibre-reinforced tungsten composites

    Science.gov (United States)

    Riesch, J.; Feichtmayer, A.; Fuhr, M.; Almanstötter, J.; Coenen, J. W.; Gietl, H.; Höschen, T.; Linsmeier, Ch; Neu, R.

    2017-12-01

    In tungsten fibre-reinforced tungsten composites (Wf/W) the brittleness problem of tungsten is solved by utilizing extrinsic toughening mechanisms. The properties of the composite are very much related to the properties of the drawn tungsten wire used as fibre reinforcements. Its high strength and capability of ductile deformation are ideal properties facilitating toughening of Wf/W. Tensile tests have been used for determining mechanical properties and study the deformation and the fracture behaviour of the wire. Tests of as-fabricated and straightened drawn wires with a diameter between 16 and 150 μm as well as wire electrochemically thinned to a diameter of 5 μm have been performed. Engineering stress–strain curves and a microscopic analysis are presented with the focus on the ultimate strength. All fibres show a comparable stress–strain behaviour comprising necking followed by a ductile fracture. A reduction of the diameter by drawing leads to an increase of strength up to 4500 MPa as a consequence of a grain boundary hardening mechanism. Heat treatment during straightening decreases the strength whereas electrochemical thinning has no significant impact on the mechanical behaviour.

  8. Investigation on the structural and mechanical properties of anti-sticking sputtered tungsten chromium nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tai-Nan [Chemical Engineering Division, Institute of Nuclear Energy Research, Taiwan, ROC (China); Han, Sheng [Department of Leisure and Recreation Management, National Taichung University of Science and Technology, Taiwan, ROC (China); Weng, Ko-Wei, E-mail: kowei@nqu.edu.tw [Department of Electronic Engineering, National Quemoy University, Taiwan, ROC (China); Lee, Chin-Tan [Department of Electronic Engineering, National Quemoy University, Taiwan, ROC (China)

    2013-02-01

    Tungsten chromium nitride (WCrN) thin films are prepared by dual-gun co-sputter process. As the surface coatings on the molding die for glass forming, WCrN films show less deterioration at high temperature than the conventional CrN coating. WCrN thin films are deposited via the reactive co-sputtering of Cr/W targets. The working pressure is kept at 2.66 Pa and the argon/nitrogen ratio is 10. Applied power of chromium is fixed and the applied power of tungsten is varied. Experimental results indicate that the atomic ratio of tungsten in the films increases with the applied power of tungsten. The dominant crystalline phase is chromium nitride when the tungsten target power is below 100 W, while tungsten nitride dominates in the film structure when the tungsten target power is beyond 200 W. A dense structure with much finer particles is developed as the tungsten power is 200 W. As the power is increased to 300 W, the particles become coarser in size. The film roughness exhibits a decreasing trend at low tungsten power and then increases as the tungsten power increased up to 300 and 400 W, presumably due to the phase change from chromium nitrides to tungsten nitrides. Further annealing of the WCrN thin films is simulated as the glass molding condition to check the anti-sticking property which is a critical requirement in molding die surface coating application. The WCrN thin film coating shows good anti-sticking property at 400 °C annealing when the tungsten target power is 200 W. - Highlights: ► WCrN films are deposited by dual sputtering of pure Cr and W targets. ► The covalent bonding character of WCrN films explains the difference in hardness. ► WCrN (200 W W-target-power/400 °C-annealing) exhibits the best anti-sticking performance.

  9. Effects of Oxygen, Nitrogen and Fluorine on the Crystallinity of Tungsten by Hot-Wire Assisted ALD

    NARCIS (Netherlands)

    Yang, Mengdi; Aarnink, Antonius A.I.; Wolters, Rob A. M.; Schmitz, Jurriaan; Kovalgin, Alexey Y.

    2017-01-01

    A heated tungsten filament (wire) is well known to generate atomic hydrogen (at-H) by catalytically cracking molecular hydrogen (H2) upon contact. This mechanism is employed in our work on hot-wire (HW) assisted atomic layer deposition (HWALD), a novel energy-enhancement technique. HWALD has been

  10. Coil protection calculator for TFTR

    International Nuclear Information System (INIS)

    Marsala, R.J.; Lawson, J.E.; Persing, R.G.; Senko, T.R.; Woolley, R.D.

    1989-01-01

    A new coil protection system (CPS) is being developed to replace the existing TFTR magnetic coil fault detector. The existing fault detector sacrifices TFTR operating capability for simplicity. The new CPS, when installed in October of 1988, will permit operation up to the actual coil stress limits parameters in real-time. The computation will be done in a microprocessor based Coil Protection Calculator (CPC) currently under construction at PPL. THe new CPC will allow TFTR to operate with higher plasma currents and will permit the optimization of pulse repetition rates. The CPC will provide real-time estimates of critical coil and bus temperatures and stresses based on real-time redundant measurements of coil currents, coil cooling water inlet temperature, and plasma current. The critical parameter calculations are compared to prespecified limits. If these limits are reached or exceeded, protection action will be initiated to a hard wired control system (HCS), which will shut down the power supplies. The CPC consists of a redundant VME based microprocessor system which will sample all input data and compute all stress quantities every ten milliseconds. Thermal calculations will be approximated every 10ms with an exact solution occurring every second. The CPC features continuous cross-checking of redundant input signal, automatic detection of internal failure modes, monitoring and recording of calculated results, and a quick, functional verification of performance via an internal test system. (author)

  11. Is umbilical coiling genetically determined?

    Science.gov (United States)

    Ayala, Nina K; Ernst, Linda M; Miller, Emily S

    2018-02-21

    Abnormal umbilical cord coiling is associated with adverse perinatal outcomes; however, the etiology of the umbilical coiling pattern is poorly understood. Retrospective cohort of all twin deliveries >20 weeks in 2014. Pregnancies were dichotomized by chorionicity and the umbilical coiling index (UCI) and placental cord insertion location were compared. In cases with one or both cords hypercoiled, the direction and pattern of coiling were compared by chorionicity. A similar analysis was performed stratified by zygosity. Three hundred sisty two twin pairs were included; 26 (7.2%) monochorionic and 174 (87.0%) definitively dizygotic. Concordance in the UCI and coiling category were similar between dichorionic and monochorionic as well as dizygous and monozygous gestations, (73.2% vs 80.8%, p = 0.399 and 71.4% vs 80.8%, p = 0.399, respectively). Analyses of the coiling direction and pattern also demonstrated no difference by chorionicity or zygosity. These data do not support a genetic basis for umbilical cord coiling.

  12. Coiled Coils - A Model System for the 21st Century.

    Science.gov (United States)

    Lupas, Andrei N; Bassler, Jens

    2017-02-01

    α-Helical coiled coils were described more than 60 years ago as simple, repetitive structures mediating oligomerization and mechanical stability. Over the past 20 years, however, they have emerged as one of the most diverse protein folds in nature, enabling many biological functions beyond mechanical rigidity, such as membrane fusion, signal transduction, and solute transport. Despite this great diversity, their structures can be described by parametric equations, making them uniquely suited for rational protein design. Far from having been exhausted as a source of structural insight and a basis for functional engineering, coiled coils are poised to become even more important for protein science in the coming decades. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Cross-linking reveals laminin coiled-coil architecture

    Science.gov (United States)

    Armony, Gad; Jacob, Etai; Moran, Toot; Levin, Yishai; Mehlman, Tevie; Levy, Yaakov; Fass, Deborah

    2016-01-01

    Laminin, an ∼800-kDa heterotrimeric protein, is a major functional component of the extracellular matrix, contributing to tissue development and maintenance. The unique architecture of laminin is not currently amenable to determination at high resolution, as its flexible and narrow segments complicate both crystallization and single-particle reconstruction by electron microscopy. Therefore, we used cross-linking and MS, evaluated using computational methods, to address key questions regarding laminin quaternary structure. This approach was particularly well suited to the ∼750-Å coiled coil that mediates trimer assembly, and our results support revision of the subunit order typically presented in laminin schematics. Furthermore, information on the subunit register in the coiled coil and cross-links to downstream domains provide insights into the self-assembly required for interaction with other extracellular matrix and cell surface proteins. PMID:27815530

  14. Design of Correction Coil for ITER

    International Nuclear Information System (INIS)

    Kubo, Hiroatsu; Yoshida, Kiyoshi; Omine, Takeshi

    1998-11-01

    ITER (International Thermonuclear Experimental Reactor) project is under way among EU, Japan, Russia and US. In order to shut plasma, the magnetic field is applied by the superconducting coils in ITER. The coils which are called 'Poloidal field (PF-coil)' are installed to control the location and the cross-section shape for plasma in the vacuum vessel. Incorrect position of Magnetic field (Magnetic error) is occurred by the manufacture tolerance for PF-coil. The coils which are called 'Correction-Coil' are installed in order to correct these magnetic error around the PF-coil. The Correction Coils are consist of the 3-sets of the superconducting coil. The stress analysis for the correction coils is performed and the supporting structure of the coils are designed. The bolts for clamps and the position for clamps are examined from this analysis. (J.P.N.)

  15. Bringing part of the lab to the field: On-site chromium speciation in seawater by electrodeposition of Cr(III)/Cr(VI) on portable coiled-filament assemblies and measurement in the lab by electrothermal, near-torch vaporization sample introduction and inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Badiei, Hamid R.; McEnaney, Jennifer; Karanassios, Vassili

    2012-01-01

    A field-deployable electrochemical approach to preconcentration, matrix clean up and selective electrodeposition of Cr(III) and Cr(III) + Cr(VI) in seawater is described. Using portable, battery-operated electrochemical instrumentation, Cr species in seawater were electrodeposited in the field on portable coiled-filament assemblies made from Re. Assemblies with dried residues of Cr(III) or Cr(III) + Cr(VI) on them were transported to the lab for concentration determination by electrothermal, near-torch vaporization (NTV) sample introduction and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Electrodeposition offers selective species deposition, preconcentration and matrix clean up from seawater samples. For selective deposition, free Cr(VI) was electrodeposited at − 0.3 V and Cr(III) + Cr(VI) at − 1.6 V (both vs Ag/AgCl). Interestingly, at 0 V (vs Ag/AgCl) and in the absence of an electrodeposition potential only Cr(VI) was spontaneously and selectively adsorbed on the coil and reasons for this are given. Due to preconcentration afforded by electrodeposition, the detection limits obtained after a 60 s electrodeposition at the voltages stated above using buffered (pH = 4.7) artificial seawater spiked with either Cr(III) or Cr(VI) were 20 pg/mL for Cr(III) and 10 pg/mL for Cr(VI). For comparison, the detection limit for Cr obtained by pipetting directly on the coil 5 μL of diluted standard solution was 500 pg/mL, thus it was concluded that electrodeposition offered 40 to 60 fold improvements. Matrix clean up is required due to the high salt content of seawater and this was addressed by simply rinsing the coil with 18.2 MΩ water without any loss of Cr species. Reasons for this are provided. The method was validated in the lab using buffered artificial seawater and it was used in the field for the first time by sampling seawater, buffering it and immediately electrodepositing Cr species on portable assemblies on-site. Electrodeposition in the

  16. A new twist in the coil: functions of the coiled-coil domain of structural maintenance of chromosome (SMC) proteins.

    Science.gov (United States)

    Matityahu, Avi; Onn, Itay

    2018-02-01

    The higher-order organization of chromosomes ensures their stability and functionality. However, the molecular mechanism by which higher order structure is established is poorly understood. Dissecting the activity of the relevant proteins provides information essential for achieving a comprehensive understanding of chromosome structure. Proteins of the structural maintenance of chromosome (SMC) family of ATPases are the core of evolutionary conserved complexes. SMC complexes are involved in regulating genome dynamics and in maintaining genome stability. The structure of all SMC proteins resembles an elongated rod that contains a central coiled-coil domain, a common protein structural motif in which two α-helices twist together. In recent years, the imperative role of the coiled-coil domain to SMC protein activity and regulation has become evident. Here, we discuss recent advances in the function of the SMC coiled coils. We describe the structure of the coiled-coil domain of SMC proteins, modifications and interactions that are mediated by it. Furthermore, we assess the role of the coiled-coil domain in conformational switches of SMC proteins, and in determining the architecture of the SMC dimer. Finally, we review the interplay between mutations in the coiled-coil domain and human disorders. We suggest that distinctive properties of coiled coils of different SMC proteins contribute to their distinct functions. The discussion clarifies the mechanisms underlying the activity of SMC proteins, and advocates future studies to elucidate the function of the SMC coiled coil domain.

  17. Tungsten monocrystal cutting without distortion

    International Nuclear Information System (INIS)

    Dudkin, A.Yu.; Matveev, I.V.; Cheremisin, S.M.

    1982-01-01

    Electrolyte with high electric current localization, containing 1-3 % KOH and 2-10 % NH 3 , is suggested to use for electrochemical cutting of tungsten. A cutting device is described which includes a cathode feed mechanism based on electric heating and a circuit of automatic control of an interelectrode gap. Laue patterns obtained from a cut surface are practically the same as ones from the initial monocrystal

  18. Adsorption and condensation of bismuth on tungsten

    International Nuclear Information System (INIS)

    Radon, T.; Sidorski, Z.

    1979-01-01

    The bismuth-tungsten system was studied by means of field emission microscopy. The average work function changes induced by the bismuth adsorption were measured for different amounts of adsorbed bismuth. It was found that the adsorption of bismuth changes the work function of tungsten only slightly. The penetration of bismuth into the tungsten substrate was observed. The growth of bismuth single crystals was studied when bismuth was deposited with a rate of about 6 monolayers per minute onto the tungsten substrate and kept at 470 K. Bismuth single crystals with two-fold symmetry occurred most often on the (100) tungsten planes. On the (111) tungsten plane bismuth crystals with three-fold symmetry were observed. An explanation of the observed phenomena is proposed. (Auth.)

  19. First coil for the SC

    CERN Multimedia

    CERN PhotoLab

    1955-01-01

    The coils for the SC magnet were stored in the large hangar of the Cointrin Airport (to make sure that they would be available before snow and ice would block the roads and canals from Belgium, where they were built).

  20. Coil for LEAR extraction septum

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    Which way does the current flow ? This intriguing object is the coil for the LEAR extraction septum. There were two septa, first a thin one, then this one, not so thin, somewhat on the borderline between septum and bending magnet.

  1. Closed-cage tungsten oxide clusters in the gas phase.

    Science.gov (United States)

    Singh, D M David Jeba; Pradeep, T; Thirumoorthy, Krishnan; Balasubramanian, Krishnan

    2010-05-06

    During the course of a study on the clustering of W-Se and W-S mixtures in the gas phase using laser desorption ionization (LDI) mass spectrometry, we observed several anionic W-O clusters. Three distinct species, W(6)O(19)(-), W(13)O(29)(-), and W(14)O(32)(-), stand out as intense peaks in the regular mass spectral pattern of tungsten oxide clusters suggesting unusual stabilities for them. Moreover, these clusters do not fragment in the postsource decay analysis. While trying to understand the precursor material, which produced these clusters, we found the presence of nanoscale forms of tungsten oxide. The structure and thermodynamic parameters of tungsten clusters have been explored using relativistic quantum chemical methods. Our computed results of atomization energy are consistent with the observed LDI mass spectra. The computational results suggest that the clusters observed have closed-cage structure. These distinct W(13) and W(14) clusters were observed for the first time in the gas phase.

  2. Nylon screws make inexpensive coil forms

    Science.gov (United States)

    Aucoin, G.; Rosenthal, C.

    1978-01-01

    Standard nylon screws act as coil form copper wire laid down in spiral thread. Completed coil may be bonded to printed-circuit board. However, it is impossible to tune coil by adjusting spacing between windings, technique sometimes used with air-core coils.

  3. Molybdenum and tungsten enzymes: the xanthine oxidase family.

    Science.gov (United States)

    Brondino, Carlos D; Romão, Maria João; Moura, Isabel; Moura, José J G

    2006-04-01

    Mononuclear molybdenum and tungsten are found in the active site of a diverse group of enzymes that, in general, catalyze oxygen atom transfer reactions. Enzymes of the xanthine oxidase family are the best-characterized mononuclear Mo-containing enzymes. Several 3D structures of diverse members of this family are known. Recently, the structures of substrate-bound and arsenite-inhibited forms of two members of this family have also been reported. In addition, spectroscopic studies have been utilized to elucidate fine details that complement the structural information. Altogether, these studies have provided an important amount of information on the characteristics of the active site and the electron transfer pathways.

  4. Iso-nuclear tungsten dielectronic recombination rates for use in magnetically-confined fusion plasmas

    Science.gov (United States)

    Kwon, D.-H.; Lee, W.; Preval, S.; Ballance, C. P.; Behar, E.; Colgan, J.; Fontes, C. J.; Nakano, T.; Li, B.; Ding, X.; Dong, C. Z.; Fu, Y. B.; Badnell, N. R.; O'Mullane, M.; Chung, H.-K.; Braams, B. J.

    2018-01-01

    Under the auspices of the IAEA Atomic and Molecular Data Center and the Korean Atomic Energy Research Institute, our assembled group of authors has reviewed the current state of dielectronic recombination (DR) rate coefficients for various ion stages of tungsten (W). Subsequent recommendations were based upon available experimental data, first-principle calculations carried out in support of this paper and from available recombination data within existing atomic databases. If a recommendation was possible, data were compiled, evaluated and fitted to a functional form with associated uncertainty information retained, where available. This paper also considers the variation of the W fractional abundance due to the underlying atomic data when employing different data sets.

  5. Laser-Free Cold-Atom Gymnastics

    Science.gov (United States)

    Gould, Harvey; Feinberg, Benedict; Munger, Charles T., Jr.; Nishimura, Hiroshi

    2017-01-01

    We have performed beam transport simulations on ultra cold (2 μK) and cold (130 μK) neutral Cs atoms in the F = M = + 4 (magnetic weak-field seeking) ground state. We use inhomogeneous magnetic fields to focus and accelerate the atoms. Acceleration of neutral atoms by an inhomogeneous magnetic field was demonstrated by Stern and Gerlach in 1922. In the simulations, a two mm diameter cloud of atoms is released to fall under gravity. A magnetic coil focuses the falling atoms. After falling 41 cm, the atoms are reflected in the magnetic fringe field of a solenoid. They return to their starting height, about 0.7 s later, having passed a second time through the focusing coil. The simulations show that > 98 % of ultra cold Cs atoms and > 70 % of cold Cs atoms will survive at least 15 round trips (assuming perfect vacuum). More than 100 simulations were run to optimize coil currents and focusing coil diameter and height. Simulations also show that atoms can be launched into a fountain. An experimental apparatus to test the simulations, is being constructed. This technique may find application in atomic fountain clocks, interferometers, and gravitometers, and may be adaptable for use in microgravity. It may also work with Bose-Einstein condensates of paramagnetic atoms.

  6. Coil supporting device in nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Hoshi, Ryo; Imura, Yasuya.

    1974-01-01

    Object: To secure intermediate fittings with a coil fixed thereon by an insulating tape to a fixed body by means of fittings, thereby supporting the coil in a narrow space. Structure: A coil is secured to intermediate fittings by means of an insulating tape, after which the intermediate fittings is mounted on a fixed body through fittings to support the coil in a narrow clearance portion between a plasma sealed vessel and a main coil. (Kamimura, M.)

  7. High-energy, high-rate consolidation of tungsten and tungsten-based composite powders

    Energy Technology Data Exchange (ETDEWEB)

    Raghunathan, S.K.; Persad, C.; Bourell, D.L.; Marcus, H.L. (Center for Materials Science and Engineering, Univ. of Texas, Austin (USA))

    1991-01-20

    Tungsten and tungsten-based heavy alloys are well known for their superior mechanical properties at elevated temperatures. However, unalloyed tungsten is difficult to consolidate owing to its very high melting temperature (3683 K). The additions of small amounts of low-melting elements such as iron, nickel, cobalt and copper, facilitate the powder processing of dense heavy alloys at moderate temperatures. Energetic high-current pulses have been used recently for powder consolidation. In this paper, the use of a homopolar generator as a power source to consolidate selected tungsten and tungsten-based alloys is examined. Various materials were consolidated including unalloyed tungsten, W-Nb, W-Ni, and tungsten heavy alloy with boron carbide. The effect of process parameters such as pressure and specific energy input on the consolidation of different alloy systems is described in terms of microstructure and property relationships. (orig.).

  8. Single-molecule observation of helix staggering, sliding, and coiled coil misfolding

    Science.gov (United States)

    Xi, Zhiqun; Gao, Ying; Sirinakis, George; Guo, Honglian; Zhang, Yongli

    2012-01-01

    The biological functions of coiled coils generally depend on efficient folding and perfect pairing of their α-helices. Dynamic changes in the helical registry that lead to staggered helices have only been proposed for a few special systems and not found in generic coiled coils. Here, we report our observations of multiple staggered helical structures of two canonical coiled coils. The partially folded structures are formed predominantly by coiled coil misfolding and occasionally by helix sliding. Using high-resolution optical tweezers, we characterized their energies and transition kinetics at a single-molecule level. The staggered states occur less than 2% of the time and about 0.1% of the time at zero force. We conclude that dynamic changes in helical registry may be a general property of coiled coils. Our findings should have broad and unique implications in functions and dysfunctions of proteins containing coiled coils. PMID:22451899

  9. Tungsten: A Preliminary Environmental Risk Assessment

    Science.gov (United States)

    2011-05-01

    Effects on Flora & Fauna • Geochemistry • Soil microbial communities • Plants • Soil invertebrates • Higher order animals • Additional studies BUILDING...Bioaccumulation of Tungsten in Plants Natural Sources • Trees & shrubs in Rocky Mountain region, USA • Siberian pine, willows, mosses & lichen in tungsten

  10. Structures and transitions in tungsten grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhu, Q. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marian, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rudd, R. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-07

    The objective of this study is to develop a computational methodology to predict structure, energies of tungsten grain boundaries as a function of misorientation and inclination. The energies and the mobilities are the necessary input for thermomechanical model of recrystallization of tungsten for magnetic fusion applications being developed by the Marian Group at UCLA.

  11. International strategic mineral issues summary report: tungsten

    Science.gov (United States)

    Werner, Antony B.T.; Sinclair, W. David; Amey, Earle B.

    1998-01-01

    Scheelite and wolframite are the principal minerals currently mined for tungsten. Both occur in hard-rock deposits; wolframite is also recovered from placer deposits. Most current mine production of tungsten is from vein/stockwork, skarn, porphyry, and strata-bound deposits. Minor amounts are produced from disseminated, pegmatite, breccia, and placer deposits.

  12. Quenching and recovery experiments on tungsten

    International Nuclear Information System (INIS)

    Rasch, K.D.; Siegel, R.W.; Schultz, H.

    1976-01-01

    A short summary is given of new results concerning transmission electron microscopy and resistivity measurements on quenched tungsten. These results give evidence for the first time that the quenching and annealing of high purity tungsten leads to vacancy--defect clustering resulting in small voids observable in the electron microscope. 21 references

  13. Designed Coiled Coils Promote Folding of a Recombinant Bacterial Collagen*

    Science.gov (United States)

    Yoshizumi, Ayumi; Fletcher, Jordan M.; Yu, Zhuoxin; Persikov, Anton V.; Bartlett, Gail J.; Boyle, Aimee L.; Vincent, Thomas L.; Woolfson, Derek N.; Brodsky, Barbara

    2011-01-01

    Collagen triple helices fold slowly and inefficiently, often requiring adjacent globular domains to assist this process. In the Streptococcus pyogenes collagen-like protein Scl2, a V domain predicted to be largely α-helical, occurs N-terminal to the collagen triple helix (CL). Here, we replace this natural trimerization domain with a de novo designed, hyperstable, parallel, three-stranded, α-helical coiled coil (CC), either at the N terminus (CC-CL) or the C terminus (CL-CC) of the collagen domain. CD spectra of the constructs are consistent with additivity of independently and fully folded CC and CL domains, and the proteins retain their distinctive thermal stabilities, CL at ∼37 °C and CC at >90 °C. Heating the hybrid proteins to 50 °C unfolds CL, leaving CC intact, and upon cooling, the rate of CL refolding is somewhat faster for CL-CC than for CC-CL. A construct with coiled coils on both ends, CC-CL-CC, retains the ∼37 °C thermal stability for CL but shows less triple helix at low temperature and less denaturation at 50 °C. Most strikingly however, in CC-CL-CC, the CL refolds slower than in either CC-CL or CL-CC by almost two orders of magnitude. We propose that a single CC promotes folding of the CL domain via nucleation and in-register growth from one end, whereas initiation and growth from both ends in CC-CL-CC results in mismatched registers that frustrate folding. Bioinformatics analysis of natural collagens lends support to this because, where present, there is generally only one coiled-coil domain close to the triple helix, and it is nearly always N-terminal to the collagen repeat. PMID:21454493

  14. Computational analysis of residue contributions to coiled-coil topology

    Science.gov (United States)

    Ramos, Jorge; Lazaridis, Themis

    2011-01-01

    A variety of features are thought to contribute to the oligomeric and topological specificity of coiled coils. In previous work, we examined the determinants of oligomeric state. Here, we examine the energetic basis for the tendency of six coiled-coil peptides to align their α-helices in antiparallel orientation using molecular dynamics simulations with implicit solvation (EEF1.1). We also examine the effect of mutations known to disrupt the topology of these peptides. In agreement with experiment, ARG or LYS at a or d positions were found to stabilize the antiparallel configuration. The modeling suggests that this is not due to a–a′ or d–d′ repulsions but due to interactions with e′ and g′ residues. TRP at core positions also favors the antiparallel configuration. Residues that disfavor parallel dimers, such as ILE at d, are better tolerated in, and thus favor the antiparallel configuration. Salt bridge networks were found to be more stabilizing in the antiparallel configuration for geometric reasons: antiparallel helices point amino acid side chains in opposite directions. However, the structure with the largest number of salt bridges was not always the most stable, due to desolvation and configurational entropy contributions. In tetramers, the extent of stabilization of the antiparallel topology by core residues is influenced by the e′ residue on a neighboring helix. Residues at b and c positions in some cases also contribute to stabilization of antiparallel tetramers. This work provides useful rules toward the goal of designing coiled coils with a well-defined and predictable three-dimensional structure. PMID:21858887

  15. Development of Tungsten Based Composites

    Science.gov (United States)

    1992-02-01

    CONTENTS Section Title Page 1 INTRODUCTION & SUMMARY .............................. 1 2 MATERIAL SELECTION .................................. 3 3...Metallographic Examination .. 41 - iv - 1. INTRODUCTION & SUMMARY This is the. Final Report on a Phase I SBIR Program entitled "Development of Tungsten Based...m = - -𔃺 S (l- 1- =11 = (t) 011CU ’a . 4) woj .- :2 01w c L .0 u .-. 0C 0 goa - L 0d MCDM . 3 -X - z 1 m- L. S.1 MCDM -z3-2: S - m 1 o. 01 In 0,10Lnw

  16. Toroidal field coil torque structure

    International Nuclear Information System (INIS)

    Gaines, A.L.

    1983-01-01

    A torque structure is disclosed particularly suitable for utilization in a power reactor of the Tokamak-type, and operable therein for purposes of providing support for the toroidal field (TF) coils that comprise one of the major operating components of such a Tokamak power reactor. The subject torque structure takes the form of a frame structure that is operable to enable torque loads acting on the TF coils to be equilibrated as close to the area of force application as feasible. The aforesaid torque structure includes an intercoil structure composed of spacer wedges that are interposed between each adjacent pair of TF coils. The spacer wedges, in turn, consist of bearing plates positioned between the TF coils so as to be in contacting relation therewith and a number of cross plates that are cooperatively associated with the bearing plates so as to form therewith a rigid assembly. The intercoil structure is affixed to a segmented, membrane shell that surrounds, encloses and supports the TF coil frames. Access is had to the interior of the shell through an opening formed for this purpose in a reinforced portion of the shell. Eddy current losses are minimized by insulating the joints formed at the juncture of adjoining segments of the shell

  17. Helium segregation on surfaces of plasma-exposed tungsten

    Science.gov (United States)

    Maroudas, Dimitrios; Blondel, Sophie; Hu, Lin; Hammond, Karl D.; Wirth, Brian D.

    2016-02-01

    We report a hierarchical multi-scale modeling study of implanted helium segregation on surfaces of tungsten, considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations based on a reliable interatomic interaction potential, including molecular-statics simulations to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile He n (1  ⩽  n  ⩽  7) clusters in the near-surface region are attracted to the surface due to an elastic interaction force that provides the thermodynamic driving force for surface segregation. This elastic interaction force induces drift fluxes of these mobile He n clusters, which increase substantially as the migrating clusters approach the surface, facilitating helium segregation on the surface. Moreover, the clusters’ drift toward the surface enables cluster reactions, most importantly trap mutation, in the near-surface region at rates much higher than in the bulk material. These near-surface cluster dynamics have significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure. We integrate the findings of such atomic-scale simulations into a properly parameterized and validated spatially dependent, continuum-scale reaction-diffusion cluster dynamics model, capable of predicting implanted helium evolution, surface segregation, and its near-surface effects in tungsten. This cluster-dynamics model sets the stage for development of fully atomistically informed coarse-grained models for computationally efficient simulation predictions of helium surface segregation, as well as helium retention and surface morphological evolution, toward optimal design of plasma facing components.

  18. Multiphysics model of thermomechanical and helium-induced damage of tungsten during plasma heat transients

    International Nuclear Information System (INIS)

    Crosby, Tamer; Ghoniem, Nasr M.

    2013-01-01

    A combination of transient heating and bombardment by helium and hydrogen atoms has been experimentally proven to lead to severe surface and sub-surface damage. We developed a computational model to determine the relationship between the thermomechanical loading conditions and the onset of damage and failure of tungsten surfaces. The model is based on a thermoelasticity fracture damage approach that was developed using the phase field method. The model simulates the distribution of helium bubbles inside the grains and on grain boundaries using space-dependent rate theory. In addition, the model is coupled with a transient heat conduction analysis for temperature distributions inside the material. The results show the effects of helium bubbles on reducing tungsten surface energy. Further, a temperature gradient in the material equals to 10 K/μm, resulted in deep cracks propagating from the tungsten surface

  19. Magnetoresistance of tungsten thin wafer at the multichannel surface scattering of conduction electrons

    International Nuclear Information System (INIS)

    Lutsishin, P.P.; Nakhodkin, T.N.

    1982-01-01

    The magnetoresistance of tungsten thin wafer with the (110) surface was studied at the adsorption of tungsten dioxide. The method of low-energy electron diffraction was used to study the symmetry of ordered surface structures. Using the method of the magnetoresistance measurement the character of the scattering of conduction electrons was investigated. THe dependence of magnetoresistance on the surface concentration of tungsten dioxide correlated w1th the structure of the surface layer of atoms, what was explained with allowance for diffraction of conduction electrons at the metal boundary. The magnetoresistance maximum for the (2x2) structure, which characterised decrease in surface conduction under the conditions of static skin effect, was explained by multichannel mirror reflection with the recombinations of electron and ho.le sections of Fermi Surface

  20. Self-assembled artificial viral capsids bearing coiled-coils at the surface.

    Science.gov (United States)

    Fujita, Seiya; Matsuura, Kazunori

    2017-06-14

    In order to construct artificial viral capsids bearing complementary dimeric coiled-coils on the surface, a β-annulus peptide bearing a coiled-coil forming sequence at the C-terminus (β-annulus-coiled-coil-B) was synthesized by a native chemical ligation of a β-annulus-SBn peptide with a Cys-containing coiled-coil-B peptide. Dynamic light scattering (DLS) measurements and transmission electron microscopy (TEM) images revealed that the β-annulus-coiled-coil-B peptide self-assembled into spherical structures of about 50 nm in 10 mM Tris-HCl buffer. Circular dichroism (CD) spectra indicated the formation of the complementary coiled-coil structure on the spherical assemblies. Addition of 0.25 equivalent of the complementary coiled-coil-A peptide to the β-annulus-coiled-coil-B peptide showed the formation of spherical assemblies of 46 ± 14 nm with grains of 5 nm at the surface, whereas addition of 1 equivalent of the complementary coiled-coil-A peptide generated fibrous assemblies.

  1. Coiled-coil domains enhance the membrane association of Salmonella type III effectors.

    Science.gov (United States)

    Knodler, Leigh A; Ibarra, J Antonio; Pérez-Rueda, Ernesto; Yip, Calvin K; Steele-Mortimer, Olivia

    2011-10-01

    Coiled-coil domains in eukaryotic and prokaryotic proteins contribute to diverse structural and regulatory functions. Here we have used in silico analysis to predict which proteins in the proteome of the enteric pathogen, Salmonella enterica serovar Typhimurium, harbour coiled-coil domains. We found that coiled-coil domains are especially prevalent in virulence-associated proteins, including type III effectors. Using SopB as a model coiled-coil domain type III effector, we have investigated the role of this motif in various aspects of effector function including chaperone binding, secretion and translocation, protein stability, localization and biological activity. Compared with wild-type SopB, SopB coiled-coil mutants were unstable, both inside bacteria and after translocation into host cells. In addition, the putative coiled-coil domain was required for the efficient membrane association of SopB in host cells. Since many other Salmonella effectors were predicted to contain coiled-coil domains, we also investigated the role of this motif in their intracellular targeting in mammalian cells. Mutation of the predicted coiled-coil domains in PipB2, SseJ and SopD2 also eliminated their membrane localization in mammalian cells. These findings suggest that coiled-coil domains represent a common membrane-targeting determinant for Salmonella type III effectors. Published 2011. This article is a US Government work and is in the public domain in the USA.

  2. The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins

    Energy Technology Data Exchange (ETDEWEB)

    Caillat, Christophe; Fish, Alexander [The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands); Pefani, Dafni-Eleftheria; Taraviras, Stavros; Lygerou, Zoi [University of Patras, 26505 Rio, Patras (Greece); Perrakis, Anastassis, E-mail: a.perrakis@nki.nl [The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands)

    2015-10-31

    The GemC1 coiled-coil structure has subtle differences compared with its homologues Geminin and Idas. Co-expression experiments in cells and biophysical stability analysis of the Geminin-family coiled coils suggest that the GemC1 coiled coil alone is unstable. GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin–Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells.

  3. High data rate atom interferometric device

    Science.gov (United States)

    Biedermann, Grant; McGuinness, Hayden James Evans; Rakholia, Akash

    2015-07-21

    A light-pulse atomic interferometry (LPAI) apparatus is provided. The LPAI apparatus comprises a vessel, two sets of magnetic coils configured to magnetically confine an atomic vapor in two respective magneto-optical traps (MOTs) within the vessel when activated, and an optical system configured to irradiate the atomic vapor within the vessel with laser radiation that, when suitably tuned, can launch atoms previously confined in each of the MOTs toward the other MOT. In embodiments, the magnetic coils are configured to produce a magnetic field that is non-zero at the midpoint between the traps. In embodiments, the time-of-flight of the launched atoms from one MOT to the other is 12 ms or less. In embodiments, the MOTs are situated approximately 36 mm apart. In embodiments, the apparatus is configured to activate the magnetic coils according to a particular temporal magnetic field gradient profile.

  4. A reanalysis of resistive size effects in tungsten

    International Nuclear Information System (INIS)

    Sambles, J.R.; Mundy, J.N.

    1983-01-01

    A reanalysis of available data on the influence of surface scattering upon the resistivity of high-purity tungsten is presented. It is shown that some of the data appear to fit quite well to Soffer's model of surface scattering. From this new analysis values for the product rhosub(infinity)lambdasub(infinity) (bulk resistivity times bulk mean free path) may be obtained lying in the range 1.0-1.7 fΩ m 2 . Early data, which could not be interpreted using Fuchs' theory of surface scattering, may now be explained and yield surface roughness ratios (ratio of root mean square height of deviations from the mean surface to the Fermi wavelength) of the order of 0.2-2.5, typical of the value expected for atomically smooth to atomically rough surfaces. However, more recent data violate Soffer's theory in a convincing fashion. They illustrate fully the severe dangers of using a theory to interpret data for which it is not at all applicable. The Fermi surface of tungsten by no means approximates a simple sphere (one of the basic assumptions of the Soffer model). Hence such a naive treatment as Fuchs' leads to meaningless parameters such as quoted above. This paper is presented as a warning to all experimentalists who attempt to interpret data from metals with complex Fermi surfaces in a simple-minded fashion (e.g. using Fuchs' model). (author)

  5. The DAMPE silicon tungsten tracker

    CERN Document Server

    Gallo, Valentina; Asfandiyarov, R; Azzarello, P; Bernardini, P; Bertucci, B; Bolognini, A; Cadoux, F; Caprai, M; Domenjoz, M; Dong, Y; Duranti, M; Fan, R; Franco, M; Fusco, P; Gargano, F; Gong, K; Guo, D; Husi, C; Ionica, M; Lacalamita, N; Loparco, F; Marsella, G; Mazziotta, M N; Mongelli, M; Nardinocchi, A; Nicola, L; Pelleriti, G; Peng, W; Pohl, M; Postolache, V; Qiao, R; Surdo, A; Tykhonov, A; Vitillo, S; Wang, H; Weber, M; Wu, D; Wu, X; Zhang, F; De Mitri, I; La Marra, D

    2017-01-01

    The DArk Matter Particle Explorer (DAMPE) satellite has been successfully launched on the 17th December 2015. It is a powerful space detector designed for the identification of possible Dark Matter signatures thanks to its capability to detect electrons and photons with an unprecedented energy resolution in an energy range going from few GeV up to 10 TeV. Moreover, the DAMPE satellite will contribute to a better understanding of the propagation mechanisms of high energy cosmic rays measuring the nuclei flux up to 100 TeV. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is made of twelve layers of single-sided AC-coupled silicon micro-strip detectors for a total silicon area of about 7 $m^2$ . To promote the conversion of incident photons into electron-positron pairs, tungsten foils are inserted into the supporting structure. In this document, a detailed description of the STK constructi...

  6. Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO—potassium doped tungsten wire

    Science.gov (United States)

    Riesch, J.; Han, Y.; Almanstötter, J.; Coenen, J. W.; Höschen, T.; Jasper, B.; Zhao, P.; Linsmeier, Ch; Neu, R.

    2016-02-01

    For the next step fusion reactor the use of tungsten is inevitable to suppress erosion and allow operation at elevated temperature and high heat loads. Tungsten fibre-reinforced composites overcome the intrinsic brittleness of tungsten and its susceptibility to operation embrittlement and thus allow its use as a structural as well as an armour material. That this concept works in principle has been shown in recent years. In this contribution we present a development approach towards its use in a future fusion reactor. A multilayer approach is needed addressing all composite constituents and manufacturing steps. A huge potential lies in the optimization of the tungsten wire used as fibre. We discuss this aspect and present studies on potassium doped tungsten wire in detail. This wire, utilized in the illumination industry, could be a replacement for the so far used pure tungsten wire due to its superior high temperature properties. In tensile tests the wire showed high strength and ductility up to an annealing temperature of 2200 K. The results show that the use of doped tungsten wire could increase the allowed fabrication temperature and the overall working temperature of the composite itself.

  7. Large coil program support structure conceptual design

    International Nuclear Information System (INIS)

    Litherland, P.S.

    1977-01-01

    The purpose of the Large Coil Program (LCP) is to perform tests on both pool boiling and force cooled superconducting toroidal field coils. The tests will attempt to approximate conditions anticipated in an ignition tokamak. The test requirements resulted in a coil support design which accommodates up to six (6) test coils and is mounted to a structure capable of resisting coil interactions. The steps leading to the present LCP coil support structure design, details on selected structural components, and the basic assembly sequence are discussed

  8. JT-60SA Toroidal Field Coils test cryostat development

    Energy Technology Data Exchange (ETDEWEB)

    Jamotton, Pierre, E-mail: pjamotton@ulg.ac.be [Centre Spatial de Liège (CSL), Université de Liège Avenue du Pré-Aily, B-4031 Angleur (Belgium); Wanner, Manfred [F4E Broader Fusion Development Dept., Boltzmannstr. 2, D-85748 Garching (Germany); Massaut, Vincent [SCK/CEN, Boeretang 200 2400 Mol (Belgium); Génini, Laurent; Maksoud, Walid Abdel [CEA/DSM/IRFU CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Collin, Bill; Delrez, Christophe [Ateliers de la Meuse (ALM), Rue Ernest Solvay, 107, B-4000 Sclessin (Belgium)

    2013-10-15

    Highlights: ► Large vacuum vessels. ► FEM mechanical design. ► Cryogenic thermal design. ► Full development process: design, manufacturing, assembly, test. -- Abstract: Within the Broader Approach Agreement, Fusion for Energy will deliver to the Japanese Atomic Energy Association, amongst other components, the 18 Toroidal Field Coils (TFCs) for the superconducting Tokamak JT-60SA [1]. These coils will be individually tested at cryogenic temperatures and at the nominal current in a test cryostat. This cryostat is provided as an in-kind contribution by Belgium and is being developed jointly with CEA-Saclay/France. The vessel is large, oval shaped with an overall length of 11 m, a width of 7.2 m and a height of 6.5 m. To reduce the heat load to the coils the cryostat is covered by LN{sub 2} cooled thermal shields. In addition to the cryostat, three test frames for the coils, the valve box vessel and the insulation vacuum system are also provided by Belgium. The Belgian contribution is design, manufacturing, assembly and test of the vacuum chamber, thermal shield and test frames by the Belgian company Ateliers de la Meuse (ALM), with the support of Centre Spatial de Liège (CSL). The TF coil test facility is assembled and the coil tests are performed by CEA/Saclay. The Belgian contribution, namely the design, manufacturing, assembly and test of the vacuum vessel, the thermal shields, and the test frames as well as of the vacuum pumping system are described in the presentation.

  9. Cryogenic structures of superconducting coils for fusion experimental reactor 'ITER'

    International Nuclear Information System (INIS)

    Nakajima, Hideo; Iguchi, Masahide; Hamada, Kazuya; Okuno, Kiyoshi; Takahashi, Yoshikazu; Shimamoto, Susumu

    2013-01-01

    This paper describes both structural materials and structural design of the Toroidal Field (TF) coil and Central Solenoid (CS) for the International Thermonuclear Experimental Reactor (ITER). All the structural materials used in the superconducting coil system of the ITER are austenitic stainless steels. Although 316LN is used in the most parts of the superconducting coil system, the cryogenic stainless steels, JJ1 and JK2LB, which were newly developed by the Japan Atomic Energy Agency (JAEA) and Japanese steel companies, are used in the highest stress area of the TF coil case and the whole CS conductor jackets, respectively. These two materials became commercially available based on demonstration of productivity and weldability of materials, and evaluations of 4 K mechanical properties of trial products including welded parts. Structural materials are classified into five grades depending on stress distribution in the TF coil case. JAEA made an industrial specification for mass production based on the ITER requirements. In order to simplify quality control in mass production, JAEA has used materials specified in the material section of 'Codes for Fusion Facilities - Rules on Superconducting Magnet Structure (2008)' issued by the Japan Society of Mechanical Engineers (JSME) in October 2008, which was established using an extrapolation method of 4 K material strengths from room temperature strength and chemical compositions developed by JAEA. It enables steel suppliers to easily control the quality of products at room temperature. JAEA has already started actual production with several manufacturing companies. The first JJ1 product to be used in the TF coil case and the first JK2LB jackets for CS were completed in October and September 2013, respectively. (author)

  10. Structural and biochemical characterizations of an intramolecular tandem coiled coil protein.

    Science.gov (United States)

    Shin, Donghyuk; Kim, Gwanho; Kim, Gyuhee; Zheng, Xu; Kim, Yang-Gyun; Lee, Sangho

    2014-12-12

    Coiled coil has served as an excellent model system for studying protein folding and developing protein-based biomaterials. Most designed coiled coils function as oligomers, namely intermolecular coiled coils. However, less is known about structural and biochemical behavior of intramolecular coiled coils where coiled coil domains are covalently linked in one polypeptide. Here we prepare a protein which harbors three coiled coil domains with two short linkers, termed intramolecular tandem coiled coil (ITCC) and characterize its structural and biochemical behavior in solution. ITCC consists of three coiled coil domains whose sequences are derived from Coil-Ser and its domain swapped dimer. Modifications include positioning E (Glu) residue at "e" and K (Lys) at "g" positions throughout heptad repeats to enhance ionic interaction among its constituent coiled coil domains. Molecular modeling of ITCC suggests a compact triple helical bundle structure with the second and the third coiled coil domains forming a canonical coiled coil. ITCC exists as a mixture of monomeric and dimeric species in solution. Small-angle X-ray scattering reveals ellipsoidal molecular envelopes for both dimeric and monomeric ITCC in solution. The theoretically modeled structures of ITCC dock well into the envelopes of both species. Higher ionic strength shifts the equilibrium into monomer with apparently more compact structure while secondary structure remains unchanged. Taken together, our results suggest that our designed ITCC is predominantly monomeric structure through the enhanced ionic interactions, and its conformation is affected by the concentration of ionic species in the buffer. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Reflection properties of hydrogen ions at helium irradiated tungsten surfaces

    International Nuclear Information System (INIS)

    Doi, K; Tawada, Y; Kato, S; Sasao, M; Kenmotsu, T; Wada, M; Lee, H T; Ueda, Y; Tanaka, N; Kisaki, M; Nishiura, M; Matsumoto, Y; Yamaoka, H

    2016-01-01

    Nanostructured W surfaces prepared by He bombardment exhibit characteristic angular distributions of hydrogen ion reflection upon injection of 1 keV H + beam. A magnetic momentum analyzer that can move in the vacuum chamber has measured the angular dependence of the intensity and the energy of reflected ions. Broader angular distributions were observed for He-irradiated tungsten samples compared with that of the intrinsic polycrystalline W. Both intensity and energy of reflected ions decreased in the following order: the polycrystalline W, the He-bubble containing W, and the fuzz W. Classical trajectory Monte Carlo simulations based on Atomic Collision in Amorphous Target code suggests that lower atom density near the surface can make the reflection coefficients lower due to increasing number of collisions. (paper)

  12. Extreme Ultraviolet Spectra of Few-Times Ionized Tungsten for Divertor Plasma Diagnostics

    Directory of Open Access Journals (Sweden)

    Joel Clementson

    2015-09-01

    Full Text Available The extreme ultraviolet (EUV emission from few-times ionized tungsten atoms has been experimentally studied at the Livermore electron beam ion trap facility. The ions were produced and confined during low-energy operations of the EBIT-I electron beam ion trap. By varying the electron-beam energy from around 30–300 eV, tungsten ions in charge states expected to be abundant in tokamak divertor plasmas were excited, and the resulting EUV emission was studied using a survey spectrometer covering 120–320 Å. It is found that the emission strongly depends on the excitation energy; below 150 eV, it is relatively simple, consisting of strong isolated lines from a few charge states, whereas at higher energies, it becomes very complex. For divertor plasmas with tungsten impurity ions, this emission should prove useful for diagnostics of tungsten flux rates and charge balance, as well as for radiative cooling of the divertor volume. Several lines in the 194–223 Å interval belonging to the spectra of five- and seven-times ionized tungsten (Tm-like W VI and Ho-like W VIII were also measured using a high-resolution spectrometer.

  13. Large Coil Program magnetic system design study

    International Nuclear Information System (INIS)

    Moses, S.D.; Johnson, N.E.

    1977-01-01

    The primary objective of the Large Coil Program (LCP) is to demonstrate the reliable operation of large superconducting coils to provide a basis for the design principles, materials, and fabrication techniques proposed for the toroidal magnets for the THE NEXT STEP (TNS) and other future tokamak devices. This paper documents a design study of the Large Coil Test Facility (LCTF) in which the structural response of the Toroidal Field (TF) Coils and the supporting structure was evaluated under simulated reactor conditions. The LCP test facility structural system consists of six TF Coils, twelve coil-to-coil torsional restraining beams (torque rings), a central bucking post with base, and a Pulse Coil system. The NASTRAN Finite Element Structural Analysis computer Code was utilized to determine the distribution of deflections, forces, and stresses for each of the TF Coils, torque rings, and the central bucking post. Eleven load conditions were selected to represent probable test operations. Pulse Coils suspended in the bore of the test coil were energized to simulate the pulsed field environment characteristic of the TNS reactor system. The TORMAC Computer Code was utilized to develop the magnetic forces in the TF Coils for each of the eleven loading conditions examined, with or without the Pulse Coils energized. The TORMAC computer program output forces were used directly as input load conditions for the NASTRAN analyses. Results are presented which demonstrate the reliability of the LCTF under simulated reactor operating conditions

  14. Environmental fate of tungsten from military use

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Jay L. [Research and Development Center, Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, New Hampshire, 03755 (United States)], E-mail: Jay.L.Clausen@erdc.usace.army.mil; Korte, Nic [1946 Clover Ct., Grand Junction, Colorado, 81506 (United States)

    2009-04-01

    This manuscript describes the distribution, fate and transport of tungsten used in training rounds at three small arms ranges at Camp Edwards on the Massachusetts Military Reservation (MMR), USA. Practice with tungsten/nylon rounds began in 2000 subsequent to a 1997 US Environmental Protection Agency ban on training with lead. Training with the tungsten rounds was halted in 2005 because of concerns regarding tungsten's environmental mobility and potential toxicity. This study, therefore, examines how tungsten partitions in the environment when fired on a small arms training range. Soil sampling revealed surface soil concentrations, highest at the berm face, up to 2080 mg/kg. Concentrations decreased rapidly with depth-at least by an order of magnitude by 25 cm. Nonetheless, tungsten concentrations remained above background to at least 150 cm. Pore-water samples from lysimeters installed in berm areas revealed a range of concentrations (< 1-400 mg/L) elevated with respect to background although there was no discernable trend with depth. Groundwater monitoring well samples collected approximately 30 m below ground surface showed tungsten (0.001-0.56 mg/L) attributable to range use.

  15. Open-coil retraction spring.

    Science.gov (United States)

    Vibhute, Pavankumar Janardan

    2011-01-01

    Sliding mechanic has become a popular method for space closure with developments in preadjusted edgewise appliance. Furthermore, various space closing auxiliaries have been developed and evaluated extensively for their clinical efficiency. Their effectiveness enhanced with optimum force magnitude and low-load deflection rate (LDR)/force decay. With the advent of NiTi springs in orthodontics, LDRs have been markedly reduced. For use of NiTi, clinician has to depend upon prefabricated closed coil springs. "Open Coil Retraction Spring (OCRS)" is developed utilizing NiTi open-coil spring for orthodontic space closure. This paper describes fabrication and clinical application of OCRS which have number of advantages. It sustains low LDR with optimum force magnitude. Its design is adjustable for desired length and force level. It is fail-safe for both activation and deactivation (i.e., it cannot be over activated, and decompression limit of open coil is also controlled by the operator, resp.). A possibility to offset the OCRS away from mucosa helps to reduce its soft-tissue impingement.

  16. Open-Coil Retraction Spring

    Directory of Open Access Journals (Sweden)

    Pavankumar Janardan Vibhute

    2011-01-01

    Full Text Available Sliding mechanic has become a popular method for space closure with developments in preadjusted edgewise appliance. Furthermore, various space closing auxiliaries have been developed and evaluated extensively for their clinical efficiency. Their effectiveness enhanced with optimum force magnitude and low-load deflection rate (LDR/force decay. With the advent of NiTi springs in orthodontics, LDRs have been markedly reduced. For use of NiTi, clinician has to depend upon prefabricated closed coil springs. “Open Coil Retraction Spring (OCRS” is developed utilizing NiTi open-coil spring for orthodontic space closure. This paper describes fabrication and clinical application of OCRS which have number of advantages. It sustains low LDR with optimum force magnitude. Its design is adjustable for desired length and force level. It is fail-safe for both activation and deactivation (i.e., it cannot be over activated, and decompression limit of open coil is also controlled by the operator, resp.. A possibility to offset the OCRS away from mucosa helps to reduce its soft-tissue impingement.

  17. Finite element coiled cochlea model

    Science.gov (United States)

    Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad

    2015-12-01

    Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.

  18. Wedding ring shaped excitation coil

    Science.gov (United States)

    MacLennan, Donald A.; Tsai, Peter

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency.

  19. PDX toroidal field coils stress analysis

    International Nuclear Information System (INIS)

    Nikodem, Z.D.; Smith, R.A.

    1975-01-01

    A method used in the stress analysis of the PDX toroidal field coil is developed. A multilayer coil design of arbitrary dimensions in the shape of either a circle or an oval is considered. The analytical model of the coil and the supporting coil case with connections to the main support structure is analyzed using the finite element technique. The three dimensional magnetic fields and the non-uniform body forces which are a loading condition on a coil due to toroidal and poloidal fields are calculated. The method of analysis permits rapid and economic evaluations of design changes in coil geometry as well as in coil support structures. Some results pertinent to the design evolution and their comparison are discussed. The results of the detailed stress analysis of the final coil design due to toroidal field, poloidal field and temperature loads are presented

  20. Model calculation of positron states in tungsten containing hydrogen and helium

    International Nuclear Information System (INIS)

    Troev, T; Nankov, N; Yoshiie, T; Popov, E

    2010-01-01

    Tungsten is a candidate material for plasma-facing first wall of a fusion power plant. Understanding of defects, tritium and helium behaviour in plasma facing materials [PFM] is an important issue for fusion reactor from viewpoints of its mechanical properties under neutron irradiation. Experiments with high-Z materials show that erosion of these materials under normal operation condition is considerably lower than the plasma induced erosion of low-Z materials like carbon or beryllium. Quantitative understanding of the experimental results for defects in tungsten needs a comprehensive theory of electron-positron interaction. The properties of defects in tungsten containing hydrogen or helium atoms have been investigated by model positron lifetime quantum-mechanical calculations. The electron wave functions have been obtained in the local density approximation LDA to the density functional theory DFT. On the bases of calculated results, the behaviour of vacancies, empty nano-voids and nano-voids with hydrogen and helium were discussed. It was established that hydrogen and helium in larger three-dimensional vacancy clusters in W change the annihilation characteristics dramatically. The hydrogen and helium atoms are trapped by lattice vacancies. These results provide physical insight for positron interactions in tungsten defects and can be used for prediction of hydrogen-H or helium-He4 and (tritium-H3) generation for the design of fusion reactors.

  1. Design and modelling of a SMES coil

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Weijia; Campbell, A M; Coombs, T A, E-mail: wy215@cam.ac.u [EPEC Superconductivity group, Engineering Department, 9 JJ Thomson Avenue, Cambridge, CB3 0FA (United Kingdom)

    2010-06-01

    The design of a Superconducting Magnetic Energy Storage (SMES) coil wound by coated conductors has been presented. Based on an existing model for coated conductor pancake coils, this paper analysed the magnetic field and current density distribution of the coil at two different operation temperatures, 77K and 22K. A comparison table of the critical currents and AC losses at these two temperatures has been presented. Several steps to improve the transport current of the coil have been suggested as well.

  2. Bow-shaped toroidal field coils

    International Nuclear Information System (INIS)

    Bonanos, P.

    1981-05-01

    Design features of Bow-Shaped Toroidal Field Coils are described and compared with circular and D shaped coils. The results indicate that bow coils can produce higher field strengths, store more energy and be made demountable. The design offers the potential for the production of ultrahigh toroidal fields. Included are representative coil shapes and their engineering properties, a suggested structural design and an analysis of a specific case

  3. Nested Surface Coils for Multinuclear NMR

    OpenAIRE

    Magill, Arthur; Gruetter, Rolf

    2011-01-01

    This article introduces the design of surface coils for multinuclear applications. The relative sensitivities of several NMR-visible nuclei of biological interest are considered, and the motivations to operate an RF coil at multiple frequencies, both sequentially and simultaneously, are reviewed. The design of nested surface coils is then developed. Magnetic fields generated by planar loop and butterfly coils are first introduced. The benefits of quadrature design are briefly considered, and ...

  4. Evaluation of eye shields made of tungsten and aluminum in high-energy electron beams

    International Nuclear Information System (INIS)

    Weaver, Randi D.; Gerbi, Bruce J.; Dusenbery, Kathryn E.

    1998-01-01

    3 mm beyond the shield was .048 Gy for the 2-mm shield and .029 Gy for the 3-mm shield (40% decrease). Backscatter was not further decreased using thicker tungsten. With a 6-MeV beam, using the 2-mm or 3-mm custom tungsten eye shields plus 0.5 mm of aluminum, the backscattered doses were 1.03 and 1.02 Gy, respectively. The backscatter dose with 9 MeV was 1.06 Gy using the 2-mm custom shield plus 0.5 mm aluminum and 1.05 Gy with a 3-mm custom shield plus 0.5 mm aluminum. There was very little difference in backscatter dosage under the eyelid using 0.5 vs. 1.0 mm of aluminum. Therefore, for patient comfort, we recommend using 0.5 mm of aluminum. Conclusions: Tungsten is superior to lead as a material for eye shields due to its higher density and lower atomic number (Z). Using 6- and 9-MeV electrons, tungsten provides the necessary protection for the lens and cornea of the eye and decreases the amount of backscatter to the eyelid above the shield

  5. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif

    DEFF Research Database (Denmark)

    Céspedes, Nora; Habel, Catherine; Lopez-Perez, Mary

    2014-01-01

    Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Pla...

  6. Are coiled-coils of dimeric kinesins unwound during their walking on microtubule?

    Science.gov (United States)

    Duan, Zhao-Wen; Xie, Ping; Li, Wei; Wang, Peng-Ye

    2012-01-01

    Dimeric kinesin motor proteins such as homodimeric kinesin-1, homodimeric Ncd and heterodimeric Kar3/Vik1are composed of two head domains which are connected together by a rod-shaped, coiled-coil stalk. Despite the extensive and intensive studies on structures, kinetics, dynamics and walking mechanism of the dimers, whether their coiled-coils are unwound or not during their walking on the microtubule is still an unclear issue. Here, we try to clarify this issue by using molecular dynamics simulations. Our simulation results showed that, for Ncd, a large change in potential of mean force is required to unwind the coiled-coil by only several pairs of residues. For both Ncd and kinesin-1, the force required to initiate the coiled-coil unwinding is larger than that required for unfolding of the single [Formula: see text]-helix that forms the coiled-coil or is larger than that required to unwind the DNA duplex, which is higher than the unbinding force of the kinesin head from the microtubule in strong microtubule-binding states. Based on these results and the comparison of the sequence between the coiled-coil of Kar3/Vik1 and those of Ncd and kinesin-1, it was deduced that the coiled-coil of the Kar3/Vik1 should also be very stable. Thus, we concluded that the coiled-coils of kinesin-1, Ncd and Kar3/Vik1 are almost impossible to unwind during their walking on the microtubule.

  7. Split Coil Forms for Rotary Transformers

    Science.gov (United States)

    Mclyman, C. W. T.

    1982-01-01

    Split cores for rotor and stator windings of rotary transformer mounted around their respective coils (which are in bobbins) and cemented together. This arrangement simplifies winding of stator coil to go in a slot in inner diameter of stator coil. One practical application of rotary transformers fabricated according to this technique is for centrifuges, in which conventional sliprings are of uncertain reliability.

  8. The umbilical coiling index in normal pregnancy

    NARCIS (Netherlands)

    van Diik, C. C.; Franx, A.; de Laat, M. W. M.; Bruinse, H. W.; Visser, G. H. A.; Nikkels, P. G. J.

    2002-01-01

    To provide reference values for the umbilical coiling index in uncomplicated pregnancy. Umbilical cords were collected from livebom singleton infants born after uncomplicated pregnancies. The umbilical coiling index (UCI) was calculated as the number of coils divided by the cord length in

  9. The umbilical coiling index in complicated pregnancy

    NARCIS (Netherlands)

    de Laat, Monique W. M.; van Alderen, Elise D.; Franx, Arie; Visser, Gerard H. A.; Bots, Michiel L.; Nikkels, Peter G. J.

    2007-01-01

    To evaluate umbilical cord coiling in pregnancies with adverse outcome. Umbilical cords and hospital records of 565 consecutive cases with an indication for histological examination of the placenta were studied. The umbilical coiling index (UCI) was determined as the number of complete coils divided

  10. Development of SMART CRDM Coil Design

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Kim, Tae Wan; Choi, Suhn; Park, Hee June

    2011-01-01

    A control rod drive mechanism (CRDM) is an electromagnetic device which drives a control rod assembly linearly to regulate reactivity of a nuclear core. Driving force is electromagnetic force generated from coils installed outside of a motor housing. The magnetic parts of a motor assembly installed inside of a motor housing are magnetized when a coil is activated, and adhere to each other to produce latching or driving force as a result. A coil assembly consists of a lifting coil, a movable latch coil and a stationary latch coil as shown in Fig. 1. The latch coils make a drive shaft engaged with or released from latches, and the lift coil makes a drive shaft and a control rod assembly move up or drop. A CRDM control system supplies controlled electric current to a specified coil in order, and then a control rod assembly moves up or down. The coil assembly for SMART CRDM has been developed based on the design concept of a coil assembly for control element drive mechanism (CEDM) of the OPR1000, and modified to satisfy dedicated design requirements for SMART reactor. Some of representative design requirements are the lifting capacity of 3200N which is greater, the lifting step of 15.875mm which is longer than that for CEDM, and one step driving instead of two step driving. Design process through an electromagnetic analysis for a lift coil is described herein as a representative example, and representative results of the analysis are presented

  11. A problem to be solved for tungsten diagnostics through EUV spectroscopy in fusion devices

    International Nuclear Information System (INIS)

    Morita, S.; Murakami, I.; Sakaue, H.A.; Dong, C.F.; Goto, M.; Kato, D.; Oishi, T.; Huang, X.L.; Wang, E.H.

    2013-01-01

    Tungsten spectra have been observed from Large Helical Device (LHD) in extreme ultraviolet (EUV) wavelength ranges of 10-650Å. When the electron temperature is less than 2keV, the EUV spectra from plasma core are dominated by unresolved transition array (UTA) composing of a lot of spectral lines, e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W +24-+33 in 15-35Å. In order to understand the UTA spectrum, the EUV spectra measured from LHD plasmas are compared to those measured from Compact electron Beam Ion Trap (CoBIT), in which the electron beam is operated with monoenergetic energy of E e ≤ 2keV. The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The collisional-radiative (C-R) model has been developed to explain the UTA spectra from LHD in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database to examine the ionization balance determined by ionization and recombination rate coefficients. If the electron temperature is higher than 2keV, Zn-like WXLV (W 44+ ) and Cu-like WXLVI (W 45+ ) spectra can be observed in LHD. Such ions of W 44+ and W 45+ can exhibit much simpler atomic configuration compared to other ionization stages of tungsten. Quantitative analysis of the tungsten density is attempted for the first time on the radial profile of Zn-like WXLV (W 44+ ) 4p-4s transition measured at 60.9Å, based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5x10 10 cm -3 at the plasma center of LHD is reasonably obtained. Finally, the present problem for tungsten diagnostics in fusion plasmas is summarized. (author)

  12. Modular assembly of a protein nanotriangle using orthogonally interacting coiled coils.

    Science.gov (United States)

    Park, Won Min; Bedewy, Mostafa; Berggren, Karl K; Keating, Amy E

    2017-09-05

    Synthetic protein assemblies that adopt programmed shapes would support many applications in nanotechnology. We used a rational design approach that exploits the modularity of orthogonally interacting coiled coils to create a self-assembled protein nanotriangle. Coiled coils have frequently been used to construct nanoassemblies and materials, but rarely with successful prior specification of the resulting structure. We designed a heterotrimer from three pairs of heterodimeric coiled coils that mediate specific interactions while avoiding undesired crosstalk. Non-associating pairs of coiled-coil units were strategically fused to generate three chains that were predicted to preferentially form the heterotrimer, and a rational annealing process led to the desired oligomer. Extensive biophysical characterization and modeling support the formation of a molecular triangle, which is a shape distinct from naturally occurring supramolecular nanostructures. Our approach can be extended to design more complex nanostructures using additional coiled-coil modules, other protein parts, or templated surfaces.

  13. The clear and dark sides of water: influence on the coiled coil folding domain.

    Science.gov (United States)

    Vajda, Tamás; Perczel, András

    2016-06-01

    The essential role of water in extra- and intracellular coiled coil structures of proteins is critically evaluated, and the different protein types incorporating coiled coil units are overviewed. The following subjects are discussed: i) influence of water on the formation and degradation of the coiled coil domain together with the stability of this conformer type; ii) the water's paradox iii) design of coiled coil motifs and iv) expert opinion and outlook is presented. The clear and dark sides refer to the positive and negative aspects of the water molecule, as it may enhance or inhibit a given folding event. This duplicity can be symbolized by the Roman 'Janus-face' which means that water may facilitate and stimulate coiled coil structure formation, however, it may contribute to the fatal processes of oligomerization and amyloidosis of the very same polypeptide chain.

  14. Scaffolds, levers, rods and springs: diverse cellular functions of long coiled-coil proteins.

    Science.gov (United States)

    Rose, A; Meier, I

    2004-08-01

    Long alpha-helical coiled-coil proteins are involved in a variety of organizational and regulatory processes in eukaryotic cells. They provide cables and networks in the cyto- and nucleoskeleton, molecular scaffolds that organize membrane systems, motors, levers, rotating arms and possibly springs. A growing number of human diseases are found to be caused by mutations in long coiled-coil proteins. This review summarizes our current understanding of the multifaceted group of long coiled-coil proteins in the cytoskeleton, nucleus, Golgi and cell division apparatus. The biophysical features of coiled-coil domains provide first clues toward their contribution to the diverse protein functions and promise potential future applications in the area of nanotechnology. Combining the power of fully sequenced genomes and structure prediction algorithms, it is now possible to comprehensively summarize and compare the complete inventory of coiled-coil proteins of different organisms.

  15. Study of Tungsten effect on CFETR performance

    Science.gov (United States)

    Shi, Shengyu; Xiang Gao Collaboration; Guoqiang Li Collaboration; Nan Shi Collaboration; Vincent Chan Collaboration; Xiang Jian Collaboration

    2017-10-01

    An integrated modeling workflow using OMFIT/TGYRO is constructed to evaluate W impurity effects on China Fusion Engineering Test Reactor (CFETR) performance. Self-consistent modeling of tungsten(W) core density profile, accounting for turbulence and neoclassical transport, is performed based on the CFETR steady-state scenario developed by D.Zhao (ZhaoDeng, APS, 2016). It's found that the fusion performance degraded in a limited level with increasing W concentration. The main challenge arises in sustainment of H-mode with significant W radiation. Assuming the power threshold of H-L back transition is approximately the same as that of L-H transition, using the scaling law of Takizuka (Takizuka etc, Plasma Phys. Control. Fusion, 2004), it is found that the fractional W concentration should not exceed 3e-5 to stay in H-mode for CFETR phase I. A future step is to connect this requirement to W wall erosion modeling. We are grateful to Dr. Emiliano Fable and Dr. Thomas Pütterich and Ms. Emily Belli for very helpful discussions and comments. We also would like to express our thanks to all the members of the CFETR Physics Group, and we appreciate the General Atomic Theory Group for permission to use the OMFIT framework and GA code suite, and for their valuable technical support. Numerical computations were performed on the ShenMa High Performance Computing Cluster in the Institute of Plasma Physics, Chinese Academy of Sciences. This work was mainly supported by the National Magnetic Confinement Fusion Research Program of China (Grant Nos. 2014GB110001, 2014GB110002, 2014GB110003) and supported in part by the National ITER Plans Program of China (Grant Nos. 2013GB106001, 2013GB111002, 2015GB110001).

  16. Viscoelastic model of tungsten 'fuzz' growth

    International Nuclear Information System (INIS)

    Krasheninnikov, S I

    2011-01-01

    A viscoelastic model of fuzz growth is presented. The model describes the main features of tungsten fuzz observed in experiments. It gives estimates of fuzz growth rate and temperature range close to experimental ones.

  17. Coil Migration through a Neuroform 3 Stent during Endovascular Coiling. A Case Report.

    LENUS (Irish Health Repository)

    O'Hare, A

    2009-07-29

    Summary: A 43-year-old woman attended for stent assisted coiling. A Neuroform 30 x 4.5 mm stent had been successfully placed over the left periophthalmic aneurysm. During the coiling the first coil migrated through the crowns in the stent, lodging at the MCA bifurcation. We believe that the coil herniated through the overlying stent due to the carotid siphon curvature and the open cell design. Furthermore the distal markers of the stent impeded coil extraction with a MERCI device.

  18. Spectral irradiance model for tungsten halogen lamps in 340-850 nm wavelength range

    Energy Technology Data Exchange (ETDEWEB)

    Ojanen, Maija; Kaerhae, Petri; Ikonen, Erkki

    2010-02-10

    We have developed a physical model for the spectral irradiance of 1 kW tungsten halogen incandescent lamps for the wavelength range 340-850 nm. The model consists of the Planck's radiation law, published values for the emissivity of tungsten, and a residual spectral correction function taking into account unknown factors of the lamp. The correction function was determined by measuring the spectra of a 1000 W, quartz-halogen, tungsten coiled filament (FEL) lamp at different temperatures. The new model was tested with lamps of types FEL and 1000 W, 120 V quartz halogen (DXW). Comparisons with measurements of two national standards laboratories indicate that the model can account for the spectral irradiance values of lamps with an agreement better than 1% throughout the spectral region studied. We further demonstrate that the spectral irradiance of a lamp can be predicted with an expanded uncertainty of 2.6% if the color temperature and illuminance values for the lamp are known with expanded uncertainties of 20 K and 2%, respectively. In addition, it is suggested that the spectral irradiance may be derived from resistance measurements of the filament with lamp on and off.

  19. An inflatable surface coil for rectal imaging

    International Nuclear Information System (INIS)

    Martin, J.F.; Hajek, P.C.; Baker, L.L.; Gylys-Morin, V.; Mattrey, R.F.

    1986-01-01

    Surface coils have become ubiquitous in MR imaging of the body because of substantial gains in signal-to-noise ratio. Unfortunately, there are some anatomic regions, such as the prostate, for which surface coils have insufficient depth sensitivity. The authors have developed an inflatable, distributed capacitance, passively decoupled surface coil which is collapsed for insertion and reinflated for imaging. Images of the prostate are dramatically improved due to proximity of the coil. Lesions in cadaver specimens were observed which were not seen with body coil imaging. Clinical trials are expected to begin in September

  20. Pulse coil concepts for the LCP Facility

    International Nuclear Information System (INIS)

    Nelson, B.E.; Burn, P.B.

    1977-01-01

    The pulse coils described in this paper are resistive copper magnets driven by time-varying currents. They are included in the Large Coil Test Facility (LCTF) portion of the Large Coil Program (LCP) to simulate the pulsed field environment of the toroidal coils in a tokamak reactor. Since TNS (a 150 sec, 5MA, igniting tokamak) and the Oak Ridge EPR (Experimental Power Reactor) are representative of the first tokamaks to require the technology developed in LCP, the reference designs for these machines, especially TNS, are used to derive the magnetic criteria for the pulse coils. This criteria includes the magnitude, distribution, and rate of change of pulsed fields in the toroidal coil windings. Three pulse coil concepts are evaluated on the basis of magnetic criteria and factors such as versatility of design, ease of fabrication and cost of operation. The three concepts include (1) a pair of poloidal coils outside the LCTF torus, (2) a single poloidal coil threaded through the torus, and (3) a pair of vertical axis coil windings inside the bore of one or more of the toroidal test coils

  1. Multistage ionization of atoms in a very strong electromagnetic field

    International Nuclear Information System (INIS)

    Krajnov, V.P.; Manykin, Eh.A.

    1980-01-01

    Considered is a problem of multiple ionization of middle and heavy atoms as a function of the intensity of an electromagnetic field. The atom is considered in the Thomas -Fermi approximation. Presented are estimates of ionization degree for lead, tungsten and tantalum

  2. Coiled transmission line pulse generators

    Science.gov (United States)

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  3. Fabrication of tuning-fork based AFM and STM tungsten probe

    KAUST Repository

    Al-Falih, Hisham

    2011-12-01

    We compare the sharpness of tungsten probe tips produced by the single-step and two-step dynamic electrochemical etching processes. A small radius of curvature (RoC) of 25 nm or less was routinely obtained when the two-step electrochemical etching (TEE) process was adopted, while the smallest achievable RoC was ∼10 nm, rendering it suitable for atomic force microscopy (AFM) or scanning tunneling microscopy (STM) applications. © 2011 IEEE.

  4. Band gap engineering and optical properties of tungsten trioxide

    Science.gov (United States)

    Ping, Yuan; Li, Yan; Rocca, Dario; Gygi, Francois; Galli, Giulia

    2012-02-01

    Tungsten trioxide (WO3) is a good photoanode material for water oxidation but it is not an efficient absorber of sunlight because of its large band gap (2.6 eV). Recently, stable clathrates of WO3 with interstitial N2 molecules were synthesized [1], which are isostructural to monoclinic WO3 but have a substantially smaller bang gap, 1.8 eV. We have studied the structural, electronic, an vibrational properties of N2-WO3 clathrates using ab-initio calculations and analyzed the physical origin of their gap reduction. We also studied the effect of atomic dopants, in particular rare gases. Substantial band gap reduction has been observed, especially in the case of doping with Xe, due to both electronic and structural effects. Absorption spectra have been computed by solving the Bethe-Salpeter Equation [2] to gain a thourough insight into the optical properties of pure and doped tungsten trioxide. [1] Q. Mi, Y. Ping, Y. Li., B.S. Brunschwig, G. Galli, H B. Gray, N S. Lewis (preprint) [2]D. Rocca, D. Lu and G. Galli, J. Chem. Phys. 133, 164109 (2010)

  5. Extraction Factor Of Tungsten Sources From Tungsten Scraps By Zinc Decomposition Process

    Directory of Open Access Journals (Sweden)

    Pee J.-H.

    2015-06-01

    Full Text Available Decomposition promoting factors and extraction process of tungsten carbide and tungstic acid powders in the zinc decomposition process of tungsten scraps which are composed mostly of tungsten carbide and cobalt were evaluated. Zinc volatility was suppressed by the enclosed graphite crucible and zinc volatilization pressure was produced in the reaction graphite crucible inside an electric furnace for ZDP (Zinc Decomposition Process. Decomposition reaction was done for 2hours at 650°, which 100% decomposed the tungsten scraps that were over 30 mm thick. Decomposed scraps were pulverized under 75μm and were composed of tungsten carbide and cobalt identified by the XRD (X-ray Diffraction. To produce the WC(Tungsten Carbide powder directly from decomposed scraps, pulverized powders were reacted with hydrochloric acid to remove the cobalt binder. Also to produce the tungstic acid, pulverized powders were reacted with aqua regia to remove the cobalt binder and oxidize the tungsten carbide. Tungsten carbide and tungstic acid powders were identified by XRD and chemical composition analysis.

  6. Deuterium retention in tungsten and tungsten-tantalum alloys exposed to high-flux deuterium plasmas

    NARCIS (Netherlands)

    Zayachuk, Y.; Hoen, M. H. J. 't; van Emmichoven, P. A. Zeijlma; Uytdenhouwen, I.; Van Oost, G.

    2012-01-01

    A direct comparison of deuterium retention in samples of tungsten and two grades of tungsten-tantalum alloys-W-1% Ta and W-5% Ta, exposed to deuterium plasmas (ion flux similar to 10(24) m(-2) s(-1), ion energy at the biased target similar to 50 eV) at the plasma generator Pilot-PSI was performed

  7. Containerless high temperature property measurements by atomic fluorescence

    Science.gov (United States)

    Nordine, P. C.; Schiffman, R. A.

    1982-01-01

    Laser induced fluorescence techniques were developed for the containerless study of high temperature processes, material properties, levitation, and heating techniques for containerless earth-based experimentation. Experiments were performed in which fluorescence of atomic aluminum, mercury, or tungsten were studied. These experiments include measurements of: (1) Al atom evaporation from CW CO2 laser heated and aerodynamically levitated sapphire and alumina spheres, and self-supported sapphire filaments, (2) Al atom reaction with ambient oxygen in the wake of a levitated specimen, (3) Hg atom concentrations in the wake of levitated alumina and sapphire spheres, relative to the ambient Hg atom concentration, (4) Hg atom concentrations in supersonic levitation jets, and (5) metastable, electronically excited W atom concentrations produced by evaporation of an electrically heated tungsten filament.

  8. Convergently-evolved structural anomalies in the coiled coil domains of insect silk proteins.

    Science.gov (United States)

    Sutherland, Tara D; Trueman, Holly E; Walker, Andrew A; Weisman, Sarah; Campbell, Peter M; Dong, Zhaoming; Huson, Mickey G; Woodhead, Andrea L; Church, Jeffrey S

    2014-06-01

    The use of coiled coil proteins as the basis of silk materials is an engineering solution that has evolved convergently in at least five insect lineages-the stinging hymenopterans (ants, bees, hornets), argid sawflies, fleas, lacewings, and praying mantises-and persisted throughout large radiations of these insect families. These coiled coil silk proteins share a characteristic distinct from other coiled coil proteins, in that they are fabricated into solid materials after accumulating as highly concentrated solutions within dedicated glands. Here, we relate the amino acid sequences of these proteins to the secondary and tertiary structural information available from biophysical methods such as X-ray scattering, nuclear magnetic resonance and Raman spectroscopy. We investigate conserved and convergently evolved features within these proteins and compare these to the features of classic coiled coil proteins including tropomyosin and leucine zippers. Our analysis finds that the coiled coil domains of insect silk proteins have several common structural anomalies including a high prevalence of alanine residues in core positions. These atypical features of the coiled coil fibrous proteins - which likely produce deviations from canonical coiled-coil structure - likely exist due to selection pressures related to the process of silk fabrication and the final function of the proteins. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  9. Structural implications of conserved aspartate residues located in tropomyosin's coiled-coil core.

    Science.gov (United States)

    Moore, Jeffrey R; Li, Xiaochuan; Nirody, Jasmine; Fischer, Stefan; Lehman, William

    2011-09-01

    Polar residues lying between adjacent α-helical chains of coiled-coils often contribute to coiled-coil curvature and flexibility, while more typical core hydrophobic residues anneal the chains together. In tropomyosins, ranging from smooth and skeletal muscle to cytoplasmic isoforms, a highly conserved Asp at residue 137 places negative charges within the tropomyosin coiled-coil core in a position which may affect the conformation needed for tropomyosin binding and regulatory movements on actin. Proteolytic susceptibility suggested that substituting a canonical Leu for the naturally occurring Asp at residue 137 increases inter-chain rigidity by stabilizing the tropomyosin coiled-coil. Using molecular dynamics, we now directly assess changes in coiled-coil curvature and flexibility caused by such mutants. Although the coiled-coil flexibility is modestly diminished near the residue 137 mutation site, as expected, a delocalized increase in flexibility along the overall coiled-coil is observed. Even though the average shape of the D137L tropomyosin is straighter than that of wild-type tropomyosin, it is still capable of binding actin due to this increase in flexibility. We conclude that the conserved, non-canonical Asp-137 destabilizes the local structure resulting in a local flexible region in the middle of tropomyosin that normally is important for tropomyosin steady-state equilibrium position on actin.

  10. Exploring alternate states and oligomerization preferences of coiled-coils by de novo structure modeling.

    Science.gov (United States)

    Rämisch, Sebastian; Lizatović, Robert; André, Ingemar

    2015-02-01

    Homomeric coiled-coils can self-assemble into a wide range of structural states with different helix topologies and oligomeric states. In this study, we have combined de novo structure modeling with stability calculations to simultaneously predict structure and oligomeric states of homomeric coiled-coils. For dimers an asymmetric modeling protocol was developed. Modeling without symmetry constraints showed that backbone asymmetry is important for the formation of parallel dimeric coiled-coils. Collectively, our results demonstrate that high-resolution structure of coiled-coils, as well as parallel and antiparallel orientations of dimers and tetramers, can be accurately predicted from sequence. De novo modeling was also used to generate models of competing oligomeric states, which were used to compare stabilities and thus predict the native stoichiometry from sequence. In a benchmark set of 33 coiled-coil sequences, forming dimers to pentamers, up to 70% of the oligomeric states could be correctly predicted. The calculations demonstrated that the free energy of helix folding could be an important factor for determining stability and oligomeric state of homomeric coiled-coils. The computational methods developed here should be broadly applicable to studies of sequence-structure relationships in coiled-coils and the design of higher order assemblies with improved oligomerization specificity. © 2014 Wiley Periodicals, Inc.

  11. Growth Factor Identity Is Encoded by Discrete Coiled-Coil Rotamers in the EGFR Juxtamembrane Region.

    Science.gov (United States)

    Doerner, Amy; Scheck, Rebecca; Schepartz, Alanna

    2015-06-18

    Binding of transforming growth factor α (TGF-α) to the epidermal growth factor receptor (EGFR) extracellular domain is encoded through the formation of a unique antiparallel coiled coil within the juxtamembrane segment. This new coiled coil is an "inside-out" version of the coiled coil formed in the presence of epidermal growth factor (EGF). A third, intermediary coiled-coil interface is formed in the juxtamembrane region when EGFR is stimulated with betacellulin. The seven growth factors that activate EGFR in mammalian systems (EGF, TGF-α, epigen, epiregulin, betacellulin, heparin-binding EGF, and amphiregulin) fall into distinct categories in which the structure of the coiled coil induced within the juxtamembrane region correlates with cell state. The observation that coiled-coil state tracks with the downstream signaling profiles for each ligand provides evidence for growth factor functional selectivity by EGFR. Encoding growth factor identity in alternative coiled-coil rotamers provides a simple and elegant method for communicating chemical information across the plasma membrane. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A repeated coiled-coil interruption in the Escherichia coli condensin MukB.

    Science.gov (United States)

    Weitzel, Christopher S; Waldman, Vincent M; Graham, Travis A; Oakley, Martha G

    2011-12-09

    MukB, a divergent structural maintenance of chromosomes (SMC) protein, is important for chromosome segregation and condensation in Escherichia coli and other γ-proteobacteria. MukB and canonical SMC proteins share a common five-domain structure in which globular N- and C-terminal regions combine to form an ATP-binding-cassette-like ATPase domain. This ATPase domain is connected to a central, globular dimerization domain by a long antiparallel coiled coil. The structures of both globular domains have been solved recently. In contrast, little is known about the coiled coil, in spite of its clear importance for SMC function. Recently, we identified interacting regions on the N- and C-terminal halves of the MukB coiled coil through photoaffinity cross-linking experiments. On the basis of these low-resolution experimental constraints, phylogenetic data, and coiled-coil prediction analysis, we proposed a preliminary model in which the MukB coiled coil is divided into multiple segments. Here, we use a disulfide cross-linking assay to detect paired residues on opposite strands of MukB's coiled coil. This method provides accurate register data and demonstrates the presence of at least five coiled-coil segments in this domain. Moreover, these studies show that the segments are interrupted by a repeated, unprecedented deviation from canonical coiled-coil structure. These experiments provide a sufficiently detailed view of the MukB coiled coil to allow rational manipulation of this region for the first time, opening the door for structure-function studies of this domain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Remote maintenance of tandem mirror hybrid coils

    International Nuclear Information System (INIS)

    Dietz, L.P.

    1983-01-01

    Hybrid Coils (superconducting coils with normal conducting inserts) are being employed with increasing frequency on Tandem Mirror Devices to obtain high field strengths. The normal conducting copper inserts are short lived in comparison to their encircling superconductors. It becomes desirable, therefore, to devise design features and maintenance procedures to replace the inner normal conducting coils without simultaneously replacing the longer lived (and significantly more costly) superconducting coils. The high neutron wall loadings require that the task be accomplished by remote control. The approach is to permanently mount the coil assemblies on track mounted carriages which serve, during machine operation merely as structural supports, but during maintenance procedures as moveable transport devices. The carriages incorporate all necessary provisions to facilitate remote maintenance operations and to adjust and align the coil assemblies with respect to adjacent machine components. The vacuum vessel is severed on both sides of the hybrid coil by means of a remote cutting machine. The entire coil is transported horizontally, normal to the machine axis to a nearby repair station. Prepositioned carriage mounted repair equipment at the repair station withdraws the damaged normal coil as a single entity and inserts a preassembled spare unit. The repaired hybrid coil is reassembled to the reactor. A cost and risk effective procedure has been evolved to maintain one of the more critical components of a Tandem Mirror Machine

  14. Large coil test facility conceptual design report

    International Nuclear Information System (INIS)

    Nelms, L.W.; Thompson, P.B.; Mann, T.L.

    1978-02-01

    In the development of a superconducting toroidal field (TF) magnet for The Next Step (TNS) tokamak reactor, several different TF coils, about half TNS size, will be built and tested to permit selection of a design and fabrication procedure for full-scale TNS coils. A conceptual design has been completed for a facility to test D-shaped TF coils, 2.5 x 3.5-m bore, operating at 4-6 K, cooled either by boiling helium or by forced-flow supercritical helium. Up to six coils can be accommodated in a toroidal array housed in a single vacuum tank. The principal components and systems in the facility are an 11-m vacuum tank, a test stand providing structural support and service connections for the coils, a liquid nitrogen system, a system providing helium both as saturated liquid and at supercritical pressure, coils to produce a pulsed vertical field at any selected test coil position, coil power supplies, process instrumentation and control, coil diagnostics, and a data acquisition and handling system. The test stand structure is composed of a central bucking post, a base structure, and two horizontal torque rings. The coils are bolted to the bucking post, which transmits all gravity loads to the base structure. The torque ring structure, consisting of beams between adjacent coils, acts with the bucking structure to react all the magnetic loads that occur when the coils are energized. Liquid helium is used to cool the test stand structure to 5 K to minimize heat conduction to the coils. Liquid nitrogen is used to precool gaseous helium during system cooldown and to provide thermal radiation shielding

  15. A method for calibrating coil constants by using the free induction decay of noble gases

    Directory of Open Access Journals (Sweden)

    Linlin Chen

    2017-07-01

    Full Text Available We propose a precise method to calibrate the coil constants of spin-precession gyroscopes and optical atomic magnetometers. This method is based on measuring the initial amplitude of Free Induction Decay (FID of noble gases, from which the π/2 pulse duration can be calculated, since it is inversely proportional to the amplitude of the π/2 pulse. Therefore, the coil constants can be calibrated by measuring the π/2 pulse duration. Compared with the method based on the Larmor precession frequency of atoms, our method can avoid the effect of the pump and probe powers. We experimentally validated the method in a Nuclear Magnetic Resonance Gyroscope (NMRG, and the experimental results show that the coil constants are 436.63±0.04 nT/mA and 428.94±0.02 nT/mA in the x and y directions, respectively.

  16. Photochemical reactions of chromium, molybdenum and tungsten hexacarbonyls with dimethylglyoxime

    Science.gov (United States)

    Mohamed, Hassan A.

    2006-02-01

    Sunlight irradiation of the reactions of [M(CO) 6], M=Cr, Mo and W with dimethylglyoxime (H 2dmg) in THF were investigated. The reaction of [Cr(CO) 6] with H 2dmg resulted in the formation of the square pyramidal complex [CrO(H 2dmg) 2] (1). The H 2dmg coordinated the metal from the two nitrogen atoms. The corresponding reactions of molybdenum and tungsten carbonyls yielded the binuclear oxo complex [(H 2dmg)O 2M(μ-O) 2MO 2(H 2dmg)] (2, 3). Unusual bonding of H 2dmg was observed with the formation of six membered chelates. All complexes were characterized by elemental analysis, infrared, mass and 1H NMR spectroscopy. The UV-vis spectra of the complexes showed visible bands due to ligand-to-metal charge transfer. Thermal properties of the complexes were investigated by thermogravimetry (TG) technique.

  17. Dataset on electro-optically tunable smart-supercapacitors based on oxygen-excess nanograin tungsten oxide thin film

    Directory of Open Access Journals (Sweden)

    Akbar I. Inamdar

    2017-10-01

    Full Text Available The dataset presented here is related to the research article entitled “Highly Efficient Electro-optically Tunable Smart-supercapacitors Using an Oxygen-excess Nanograin Tungsten Oxide Thin Film” (Akbar et al., 2017 [9] where we have presented a nanograin WO3 film as a bifunctional electrode for smart supercapacitor devices. In this article we provide additional information concerning nanograin tungsten oxide thin films such as atomic force microscopy, Raman spectroscopy, and X-ray diffraction spectroscopy. Moreover, their electrochemical properties such as cyclic voltammetry, electrochemical supercapacitor properties, and electrochromic properties including coloration efficiency, optical modulation and electrochemical impedance spectroscopy are presented.

  18. The coiled coils of cohesin are conserved in animals, but not in yeast.

    Directory of Open Access Journals (Sweden)

    Glenn E White

    Full Text Available The SMC proteins are involved in DNA repair, chromosome condensation, and sister chromatid cohesion throughout Eukaryota. Long, anti-parallel coiled coils are a prominent feature of SMC proteins, and are thought to serve as spacer rods to provide an elongated structure and to separate domains. We reported recently that the coiled coils of mammalian condensin (SMC2/4 showed moderate sequence divergence (approximately 10-15% consistent with their functioning as spacer rods. The coiled coils of mammalian cohesins (SMC1/3, however, were very highly constrained, with amino acid sequence divergence typically <0.5%. These coiled coils are among the most highly conserved mammalian proteins, suggesting that they make extensive contacts over their entire surface.Here, we broaden our initial analysis of condensin and cohesin to include additional vertebrate and invertebrate organisms and multiple species of yeast. We found that the coiled coils of SMC1/3 are highly constrained in Drosophila and other insects, and more generally across all animal species. However, in yeast they are no more constrained than the coils of SMC2/4 and Ndc80/Nuf2p, suggesting that they are serving primarily as spacer rods.SMC1/3 functions for sister chromatid cohesion in all species. Since its coiled coils apparently serve only as spacer rods in yeast, it is likely that this is sufficient for sister chromatid cohesion in all species. This suggests an additional function in animals that constrains the sequence of the coiled coils. Several recent studies have demonstrated that cohesin has a role in gene expression in post-mitotic neurons of Drosophila, and other animal cells. Some variants of human Cornelia de Lange Syndrome involve mutations in human SMC1/3. We suggest that the role of cohesin in gene expression may involve intimate contact of the coiled coils of SMC1/3, and impose the constraint on sequence divergence.

  19. Development of a new error field correction coil (C-coil) for DIII-D

    International Nuclear Information System (INIS)

    Robinson, J.I.; Scoville, J.T.

    1995-12-01

    The C-coil recently installed on the DIII-D tokamak was developed to reduce the error fields created by imperfections in the location and geometry of the existing coils used to confine, heat, and shape the plasma. First results from C-coil experiments include stable operation in a 1.6 MA plasma with a density less than 1.0 x 10 13 cm -3 , nearly a factor of three lower density than that achievable without the C-coil. The C-coil has also been used in magnetic braking of the plasma rotation and high energy particle confinement experiments. The C-coil system consists of six individual saddle coils, each 60 degree wide toroidally, spanning the midplane of the vessel with a vertical height of 1.6 m. The coils are located at a major radius of 3.2 m, just outside of the toroidal field coils. The actual shape and geometry of each coil section varied somewhat from the nominal dimensions due to the large number of obstructions to the desired coil path around the already crowded tokamak. Each coil section consists of four turns of 750 MCM insulated copper cable banded with stainless steel straps within the web of a 3 in. x 3 in. stainless steel angle frame. The C-coil structure was designed to resist peak transient radial forces (up to 1,800 Nm) exerted on the coil by the toroidal and ploidal fields. The coil frames were supported from existing poloidal field coil case brackets, coil studs, and various other structures on the tokamak

  20. Critical evaluation of in silico methods for prediction of coiled-coil domains in proteins.

    Science.gov (United States)

    Li, Chen; Ching Han Chang, Catherine; Nagel, Jeremy; Porebski, Benjamin T; Hayashida, Morihiro; Akutsu, Tatsuya; Song, Jiangning; Buckle, Ashley M

    2016-03-01

    Coiled-coils refer to a bundle of helices coiled together like strands of a rope. It has been estimated that nearly 3% of protein-encoding regions of genes harbour coiled-coil domains (CCDs). Experimental studies have confirmed that CCDs play a fundamental role in subcellular infrastructure and controlling trafficking of eukaryotic cells. Given the importance of coiled-coils, multiple bioinformatics tools have been developed to facilitate the systematic and high-throughput prediction of CCDs in proteins. In this article, we review and compare 12 sequence-based bioinformatics approaches and tools for coiled-coil prediction. These approaches can be categorized into two classes: coiled-coil detection and coiled-coil oligomeric state prediction. We evaluated and compared these methods in terms of their input/output, algorithm, prediction performance, validation methods and software utility. All the independent testing data sets are available at http://lightning.med.monash.edu/coiledcoil/. In addition, we conducted a case study of nine human polyglutamine (PolyQ) disease-related proteins and predicted CCDs and oligomeric states using various predictors. Prediction results for CCDs were highly variable among different predictors. Only two peptides from two proteins were confirmed to be CCDs by majority voting. Both domains were predicted to form dimeric coiled-coils using oligomeric state prediction. We anticipate that this comprehensive analysis will be an insightful resource for structural biologists with limited prior experience in bioinformatics tools, and for bioinformaticians who are interested in designing novel approaches for coiled-coil and its oligomeric state prediction. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. Manufacturing monitoring and mock-ups validation of the WEST divertor structure and coils

    Energy Technology Data Exchange (ETDEWEB)

    Doceul, Louis, E-mail: louis.doceul@cea.fr [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Bucalossi, Jérôme; Decool, Patrick; Dougnac, Hubert; Ferlay, Fabien; Gargiulo, Laurent; Keller, Delphine; Larroque, Sébastien; Lipa, Manfred; Martino, Patrick; Pilia, Arnaud; Poli, Serge [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Portafaix, Christophe [ITER Organization, Route de Vinon-sur-Verdon, 13115 Saint-Paul-lez-Durance (France); Saille, Alain [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Salami, Michael [AVANTIS Engineering Groupe, ZI de l’Aiguille, 46100 Figeac (France); Samaille, Frank; Soler, Bernard; Thouvenin, Didier; Verger, Jean-Marc [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Voyard, Olivier [CNIM, ZI de Brégaillon, 83500 La Seyne-sur-Mer (France); and others

    2015-10-15

    Highlights: • The mechanical design and integration of the divertor structure have been performed. • The design of the casing and the winding-pack has been optimized. • The coil assembly process has been assessed. • The realization of a coil mock-up scale one is scheduled. - Abstract: In order to fully validate “ITER-like” actively water cooled tungsten plasma facing units, the implementation of an axisymmetric divertor structure in the Tokamak Tore-Supra has been studied. With this major upgrade, the so-called WEST (Tungsten Environment in Steady state Tokamak), Tore-Supra will be able to address the issues of long plasma discharges using a tungsten divertor based on monoblock targets. The divertor structure and coils assembly are made up of two stainless steel casings containing a copper winding pack cooled by a pressurized hot water circuit (up to 180 °C, 4 MPa) in which a total divertor current of up to 16 × 13 kA is circulating in steady state. The conductor is electrically insulated and wedged inside the casing in order to be mechanically protected. The divertor which is designed to perform steady state plasma operation (up to 1000 s), must sustain harsh environmental conditions in terms of ultra light vacuum conditions, electromagnetical loads and electrical insulation (5 kV ground voltage) under high temperature (180 °C). Therefore, a feasibility study of such a complex structure has been performed. It implied activities on a scale one dummy coil, such as installation, assembly issues and representative tests (electric, thermal and hydraulic). The manufacturing of the divertor structure, which is a large assembly of 4-m diameter representing a total weight of around 20 tonnes, started in the second half of 2013 and is expected to be delivered by the end of 2014. The paper will illustrate the technical developments and tests performed during 2013 and beginning of 2014 in order to fully validate the design concept before the industrial phase

  2. High heat flux testing of TiC coated molybdenum with a tungsten intermediate layer

    International Nuclear Information System (INIS)

    Fujitsuka, Masakazu; Fukutomi, Masao; Okada, Masatoshi

    1988-01-01

    The use of low atomic number (Z) material coatings for fusion reactor first-wall components has proved to be a valuable technique to reduce the plasma radiation losses. Molybdenum coated with titanium carbide is considered very promising since it has a good capability of receiving heat from the plasma. An interfacial reaction between the TiC film and the molybdenum substrate, however, causes a severe deterioration of the film at elevated temperatures. In order to solve this problem a TiC coated molybdenum with an intermediate tungsten layer was developed. High temperature properties of this material was evaluated by a newly devised electron beam heating apparatus. TiC coatings prepared on a vacuum-heat-treated molybdenum with a tungsten intermediate layer showed good high temperature stability and survived 2.0 s pulses of heating at a power density as high as 53 MW/m 2 . The melt area of the TiC coatings in high heat flux testings also markedly decreased when a tungsten intermediate layer was applied. The melting mechanism of the TiC coatings with and without a tungsten intermediate layer was discussed by EPMA measurements. (author)

  3. Argonne National Laboratory superconducting pulsed coil program

    International Nuclear Information System (INIS)

    Wang, S.T.; Kim, S.H.

    1979-01-01

    The main objectives are to develop high current (approx. 100 kA) cryostable cable configurations with reasonably low ac losses, to build a demonstration pulsed coil, and to develop a rather inexpensive large fiberglass reinforced helium cryostat. A 1.5-MJ cryostable pulsed superconducting coil has been developed and constructed at ANL. The coil has a peak field of 4.5 T at an operating current of 11.0 kA. A large inexpensive plastic cryostat has been developed for testing the pulsed coil. The coil has been pulsed with a maximum dB/dt of 11 T/s. The coil was pulsed more than 4000 cycles. Detailed results of the ac loss measurements and the current sharing of the cryostability will be described

  4. Power loss problems in EXTRAP coil systems

    International Nuclear Information System (INIS)

    Lehnert, B.

    1977-02-01

    The Ohmic power loss in the coils of external ring traps is minimized with respect to the thermonuclear power production. In the case of the DT-reaction this leads to dimensions and power densities being relevant to full-scale reactors. Not only superconducting or refrigerated coil windings can thus be used, but also hot-coil systems which are operated at several hundred degrees centrigrade and form part of a steam cycle and power extraction system. For hot coils the problems of void formation and tritium regeneration have to be further examined. The high beta value leads to moderately large coil stresses. Finally, replacement and repair become simplified by the present coil geometry. (Auth.)

  5. Split-coil-system SULTAN

    International Nuclear Information System (INIS)

    Vecsey, G.

    1992-08-01

    The high field superconductor test facility SULTAN started operation successfully in May 1992. Originally designed for testing full scale conductors for the large magnets of the next generation fusion reactors, the SULTAN facility installed at PSI (Switzerland) was designed as a common venture of three European Laboratories: ENEA (Italy), ECN (Netherlands) and PSI, and built by ENEA and PSI in the framework of the Euratom Fusion Technology Program. Presently the largest facility in the world, with its superconducting split coil system generating 11 Tesla in a 0.6 m bore, it is ready now for testing superconductor samples with currents up to 50 kA at variable cooling conditions. Similar tests can be arranged also for other applications. SULTAN is offered by the European Community as a contribution to the worldwide cooperation for the next step of fusion reactor development ITER. First measurements on conductor developed by CEA (Cadarache) are now in progress. Others like those of ENEA and CERN will follow. For 1993, a test of an Italian 12 TZ model coil for fusion application is planned. SULTAN is a worldwide unique facility marking the competitive presence of Swiss technology in the field of applied superconductivity research. Based on development and design of PSI, the high field Nb 3 Sn superconductors and coils were fabricated at the works of Kabelwerke Brugg and ABB, numerous Swiss companies contributed to the success of this international effort. Financing of the Swiss contribution of SULTAN was made available by NEFF, BEW, BBW, PSI and EURATOM. (author) figs., tabs., 20 refs

  6. Diffusion, trapping, and isotope exchange of plasma implanted deuterium in ion beam damaged tungsten

    Science.gov (United States)

    Barton, Joseph Lincoln

    Tritium accumulation in nuclear fusion reactor materials is a major concern for practical and safe fusion energy. This work examines hydrogen isotope exchange as a tritium removal technique, analyzes the effects of neutron damage using high energy copper ion beams, and introduces a diffusion coefficient that is a function of the concentration of trapped atoms. Tungsten samples were irradiated with high energy (0.5 - 5 MeV) copper ions for controlled levels of damage - 10-3 to 10-1 displacements per atom (dpa) - at room temperature. Samples were then exposed to deuterium plasma at constant temperature (˜ 380 K) to a high fluence of 1024 ions/m2, where retention is at is maximized (i.e. saturated). By then subsequently exposing these samples to fractions of this fluence with hydrogen plasma, isotope exchange rates were observed. The resulting deuterium still trapped in the tungsten is then measured post mortem. Nuclear reaction analysis (NRA) gives the depth resolved deuterium retention profile with the 3He(D,p) 4He reaction, and thermal desorption spectroscopy (TDS) gives the total amount of deuterium trapped in the tungsten by heating a sample in vacuum up to 1200 K and measuring the evaporated gas molecules with a residual gas analyzer. Isotope exchange data show that hydrogen atoms can displace trapped deuterium atoms efficiently only up to the first few microns, but does not affect the atoms trapped at greater depths. In ion damaged tungsten, measurements showed a significant increase in retention in the damage region proportional to dpa 0.66, which results in a significant spike in total retention, and isotope exchange in damaged samples is still ineffective at depths greater than a few microns. Thus, isotope exchange is not an affective tritium removal technique; however, these experiments have shown that trapping in material defects greatly affects diffusion. These experiments lead to a simplified diffusion model with defect densities as the only free

  7. From the Chloride of Tungsten to the Upper Limit of the Periodic Table of Elements

    Directory of Open Access Journals (Sweden)

    Khazan A.

    2012-01-01

    Full Text Available Experimental study of the physical chemical properties and the technology of manufac- turing chemically clean hexachloride of tungsten has led to unexpected results. It was found that each element of the Periodic Table of Elements has its own hyperbola in the graph “molecular mass — content of the element”. The hyperbolas differ according to the atomic mass of the elements. Lagrange’s theorem shows that the tops of the hyper- bolas approach to an upper limit. This upper limit means the heaviest element, which is possible in the Table. According to the calculation, its atomic mass is 411.66, while its number is 155.

  8. Radiative MRI Coil Design Using Parasitic Scatterers

    DEFF Research Database (Denmark)

    Sanchez-Heredia, Juan D.; Avendal, Johan; Bibic, Adnan

    2018-01-01

    allows for antenna design techniques to be adapted to RF coil designs. This study proposes the use of parasitic scatterers to improve the performance of an existing 7T MRI coil called the single-sided adapted dipole (SSAD) antenna. The results reveal that scatterers arranged in a Yagi fashion can...... suitable for use in high density arrays. These findings show the potential of parasitic scatterers as an effective method to improve the performance of existing radiative MRI coils....

  9. The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins.

    Science.gov (United States)

    Caillat, Christophe; Fish, Alexander; Pefani, Dafni Eleftheria; Taraviras, Stavros; Lygerou, Zoi; Perrakis, Anastassis

    2015-11-01

    GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin-Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells.

  10. Fabrication and evaluation of chemically vapor deposited tungsten heat pipe.

    Science.gov (United States)

    Bacigalupi, R. J.

    1972-01-01

    A network of lithium-filled tungsten heat pipes is being considered as a method of heat extraction from high temperature nuclear reactors. The need for material purity and shape versatility in these applications dictates the use of chemically vapor deposited (CVD) tungsten. Adaptability of CVD tungsten to complex heat pipe designs is shown. Deposition and welding techniques are described. Operation of two lithium-filled CVD tungsten heat pipes above 1800 K is discussed.

  11. Manufacturing development of the Westinghouse Nb3Sn coil for the Large Coil Test Program

    International Nuclear Information System (INIS)

    Young, J.L.; Vota, T.L.; Singh, S.K.

    1983-01-01

    The Westinghouse Nb 3 Sn Magnet for the Oak Ridge National Laboratory Large Coil Program (LCP) is currently well into the manufacturing phase. This paper identifies the manufacturing processes and development tasks for his unique, advanced coil

  12. Effects of five-membered ring amino acid incorporation into peptides for coiled coil formation.

    Science.gov (United States)

    Oba, Makoto; Ito, Chika; Tanaka, Masakazu

    2018-03-01

    A five-membered ring amino acid (Ac 5 c), the peptides of which exhibit a preference for helical secondary structures, was introduced into peptides for the purpose of designing coiled coil peptides with high binding affinities. We prepared five types of peptides containing Ac 5 c with different numbers or at different positions. The incorporation of Ac 5 c into peptides enhanced their α-helicities; however, in contrast to our expectations, it did not result in stable coiled coil formation. The structures of side chains in hydrophobic amino acids, not α-helicities appeared to be important for stable hydrophobic interactions between peptides. Although we were unable to develop coiled coil peptides with high binding affinities, the present results will be useful for designing novel coiled coil peptides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Transport Vesicle Tethering at the Trans Golgi Network: Coiled Coil Proteins in Action.

    Science.gov (United States)

    Cheung, Pak-Yan P; Pfeffer, Suzanne R

    2016-01-01

    The Golgi complex is decorated with so-called Golgin proteins that share a common feature: a large proportion of their amino acid sequences are predicted to form coiled-coil structures. The possible presence of extensive coiled coils implies that these proteins are highly elongated molecules that can extend a significant distance from the Golgi surface. This property would help them to capture or trap inbound transport vesicles and to tether Golgi mini-stacks together. This review will summarize our current understanding of coiled coil tethers that are needed for the receipt of transport vesicles at the trans Golgi network (TGN). How do long tethering proteins actually catch vesicles? Golgi-associated, coiled coil tethers contain numerous binding sites for small GTPases, SNARE proteins, and vesicle coat proteins. How are these interactions coordinated and are any or all of them important for the tethering process? Progress toward understanding these questions and remaining, unresolved mysteries will be discussed.

  14. A precise technique for manufacturing correction coil

    International Nuclear Information System (INIS)

    Schieber, L.

    1992-01-01

    An automated method of manufacturing correction coils has been developed which provides a precise embodiment of the coil design. Numerically controlled machines have been developed to accurately position coil windings on the beam tube. Two types of machines have been built. One machine bonds the wire to a substrate which is wrapped around the beam tube after it is completed while the second machine bonds the wire directly to the beam tube. Both machines use the Multiwire reg-sign technique of bonding the wire to the substrate utilizing an ultrasonic stylus. These machines are being used to manufacture coils for both the SSC and RHIC

  15. A Comparative Study of Orthodontic Coil Springs

    OpenAIRE

    Deepak Kumar Agarwal; Anup Razdan; Abhishek Agarwal; Preeti Bhattacharya; Ankur Gupta; D N Kapoor

    2011-01-01

    Several types of force delivering system are used to carry out tooth movement in orthodontics. Coil springs being one of them are used for the same thus requiring minimal operator manipulation. Aims and objectives : The purpose of this study was to determine the effect of wire diameter, lumen size and length of coil spring on the load produced as a function of displacement of SS and NiTi coil spring. Materials and methods : The study consisted of 60 samples of open and closed coil sprin...

  16. Thomson's Jumping Ring Over a Long Coil

    Science.gov (United States)

    Jeffery, Rondo N.; Amiri, Farhang

    2018-03-01

    The classic jumping ring apparatus consists of a coil with an iron core that extends out of the coil. A copper or aluminum ring placed over the iron core jumps upward when AC power is applied to the coil. In this paper we will examine a modified design of the jumping ring apparatus, called the "long-coil design." It allows the ring to jump upward or downward, depending on the starting position of the ring. These features shed significant light on the study of the force that causes the ring to jump.

  17. Element 74, the Wolfram Versus Tungsten Controversy

    Energy Technology Data Exchange (ETDEWEB)

    Holden,N.E.

    2008-08-11

    Two and a quarter centuries ago, a heavy mineral ore was found which was thought to contain a new chemical element called heavy stone (or tungsten in Swedish). A few years later, the metal was separated from its oxide and the new element (Z=74) was called wolfram. Over the years since that time, both the names wolfram and tungsten were attached to this element in various countries. Sixty years ago, IUPAC chose wolfram as the official name for the element. A few years later, under pressure from the press in the USA, the alternative name tungsten was also allowed by IUPAC. Now the original, official name 'wolfram' has been deleted by IUPAC as one of the two alternate names for the element. The history of this controversy is described here.

  18. Electron work function of stepped tungsten surfaces

    International Nuclear Information System (INIS)

    Krahl-Urban, B.

    1976-03-01

    The electron work function of tungsten (110) vicinal faces was measured with the aid of thermionic emission, and its dependence on the crystallographic orientation and the surface structure was investigated. The thermionic measurements were evaluated with the aid of the Richardson plot. The real temperature of the emitting tungsten faces was determined with an accuracy of +- 0.5% in the range between 2,200 and 2,800 K. The vicinal faces under investigation have been prepared with an orientation exactness of +- 15'. In the tungsten (110) vicinal faces under investigation, a strong dependence of the temperature coefficient d PHI/dT of the work function on the crystallographic orientation was found. A strong influence of the edge structure as well as of the step density on the temperature coefficient was observed. (orig./HPOE) [de

  19. Coiled-coil driven membrane fusion: zipper-like vs. non-zipper-like peptide orientation.

    Science.gov (United States)

    Versluis, Frank; Dominguez, Juan; Voskuhl, Jens; Kros, Alexander

    2013-01-01

    Membrane fusion plays a central role in biological processes such as neurotransmission and exocytosis. An important class of proteins that induce membrane fusion are called SNARE (soluble N-ethyl malemeide sensitive factor attachment protein receptors) proteins. To induce membrane fusion, two SNARE proteins embedded in opposing membranes form a four-helix coiled-coil motif together with a third, cytoplasmic, SNARE protein. Coiled-coil formation brings the two membranes into close proximity allowing fusion to occur. Importantly, structural investigations have demonstrated that native membrane fusion only occurs when the orientation of the coiled-coil motif resembles that of a zipper. The zipper orientation arises when parallel coiled-coil formation takes place between peptides that are anchored into apposing membranes at identical termini, thereby forcing the membranes into close contact. Recently, we have designed a synthetic model for membrane fusion, which is based on a set of lipidated coiled-coil forming peptide pairs which are denoted E-K. When incorporated into liposomal membranes, coiled-coil formation between these lipidated peptides induces targeted and efficient membrane fusion of liposomes. Our model system mimics SNARE-driven membrane fusion, as it contains a coiled-coil motif which has a zipper-like orientation, similar to that of the SNARE proteins. Here we investigate whether the zipper-like orientation of the coiled-coil motifs is a prerequisite for membrane fusion in our model system. Our strategy is based on conjugation of the transmembrane anchor to either the N- or the C-terminus of peptides E and K. Whereas the use of a set of complementary peptides with the membrane anchor on identical peptide termini yields the zipper-like orientation of the coiled-coil complex, membrane anchors on opposite peptide termini results in a non-zipper-like coiled-coil orientation. Surprisingly, it was observed that efficient and targeted membrane fusion was

  20. A Non-perturbing Probe of Coiled Coil Formation Based on Electron Transfer Mediated Fluorescence Quenching.

    Science.gov (United States)

    Watson, Matthew D; Peran, Ivan; Raleigh, Daniel P

    2016-07-05

    Coiled coils are abundant in nature, occurring in ∼3% of proteins across sequenced genomes, and are found in proteins ranging from transcription factors to structural proteins. The motif continues to be an important model system for understanding protein-protein interactions and is finding increased use in bioinspired materials and synthetic biology. Knowledge of the thermodynamics of self-assembly, particularly the dissociation constant KD, is essential for the application of designed coiled coils and for understanding the in vivo specificity of natural coiled coils. Standard methods for measuring KD typically rely on concentration dependent circular dichroism (CD). Fluorescence methods are an attractive alternative; however Trp is rarely found in an interior position of a coiled coil, and appending unnatural fluorophores can perturb the system. We demonstrate a simple, non-perturbing method to monitor coiled coil formation using p-cyanophenylalanine (FCN) and selenomethionine (MSe), the Se analogue of Met. FCN fluorescence can be selectively excited and is effectively quenched by electron transfer with MSe. Both FCN and MSe represent minimally perturbing substitutions in coiled coils. MSe quenching of FCN fluorescence is shown to offer a non-perturbing method for following coiled coil formation and for accurately determining dissociation constants. The method is validated using a designed heterodimeric coiled coil. The KD deduced by fluorescence monitored titration is in excellent agreement with the value deduced from concentration dependent CD measurements to within the uncertainty of the measurement. However, the fluorescence approach requires less protein, is less time-consuming, can be applied to lower concentrations and could be applied to high throughput screens.

  1. Moving coil-based actuators

    Science.gov (United States)

    Neff, Edward A.

    2002-09-01

    SMAC Corporation manufactures a wide variety of moving coil based electric servo actuators. These actuators were developed with a specific purpose in mind: To produce tools that would make the automation of assembly easier to accomplish, tools that could perform work in much the same manner as fingers but with more precision. The design targets were: A. Variable programmable accurate positioning down to sub-micron level. B. Variable programmable accurately controlled speeds. C. Variable programmable forces from grams to kilograms. D. Multiple axis configurations to increase degrees of freedom hence flexibility. E. The ability to perform work and verify its success at the same time. F. A low cost design that could eventually compete with pneumatic devices. (SMAC is related to two large pneumatic manufacturers: SMC Corp. and Mac Valve, Inc.) It should be noted that in the past a number of designers have developed voice coil based actuators, the Stout design and patent, with its discussion of programmable force was an early inspiration. SMAC's basic electro/mechanical and software design patents number 20.

  2. Superconducting Coil of Po Dipole

    CERN Multimedia

    1983-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.

  3. Accommodation of structural rearrangements in the huntingtin-interacting protein 1 coiled-coil domain

    Energy Technology Data Exchange (ETDEWEB)

    Wilbur, Jeremy D., E-mail: jwilbur@msg.ucsf.edu [Graduate Program in Biophysics, University of California, San Francisco, California 94143 (United States); Hwang, Peter K. [Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143 (United States); Brodsky, Frances M. [The G. W. Hooper Foundation, Departments of Microbiology and Immunology and of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143 (United States); Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143 (United States); Fletterick, Robert J. [Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143 (United States); Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143 (United States); Graduate Program in Biophysics, University of California, San Francisco, California 94143 (United States)

    2010-03-01

    Variable packing interaction related to the conformational flexibility within the huntingtin-interacting protein 1 coiled coil domain. Huntingtin-interacting protein 1 (HIP1) is an important link between the actin cytoskeleton and clathrin-mediated endocytosis machinery. HIP1 has also been implicated in the pathogenesis of Huntington’s disease. The binding of HIP1 to actin is regulated through an interaction with clathrin light chain. Clathrin light chain binds to a flexible coiled-coil domain in HIP1 and induces a compact state that is refractory to actin binding. To understand the mechanism of this conformational regulation, a high-resolution crystal structure of a stable fragment from the HIP1 coiled-coil domain was determined. The flexibility of the HIP1 coiled-coil region was evident from its variation from a previously determined structure of a similar region. A hydrogen-bond network and changes in coiled-coil monomer interaction suggest that the HIP1 coiled-coil domain is uniquely suited to allow conformational flexibility.

  4. Multicoil2: Predicting Coiled Coils and Their Oligomerization States from Sequence in the Twilight Zone

    Science.gov (United States)

    Trigg, Jason; Gutwin, Karl; Keating, Amy E.; Berger, Bonnie

    2011-01-01

    The alpha-helical coiled coil can adopt a variety of topologies, among the most common of which are parallel and antiparallel dimers and trimers. We present Multicoil2, an algorithm that predicts both the location and oligomerization state (two versus three helices) of coiled coils in protein sequences. Multicoil2 combines the pairwise correlations of the previous Multicoil method with the flexibility of Hidden Markov Models (HMMs) in a Markov Random Field (MRF). The resulting algorithm integrates sequence features, including pairwise interactions, through multinomial logistic regression to devise an optimized scoring function for distinguishing dimer, trimer and non-coiled-coil oligomerization states; this scoring function is used to produce Markov Random Field potentials that incorporate pairwise correlations localized in sequence. Multicoil2 significantly improves both coiled-coil detection and dimer versus trimer state prediction over the original Multicoil algorithm retrained on a newly-constructed database of coiled-coil sequences. The new database, comprised of 2,105 sequences containing 124,088 residues, includes reliable structural annotations based on experimental data in the literature. Notably, the enhanced performance of Multicoil2 is evident when tested in stringent leave-family-out cross-validation on the new database, reflecting expected performance on challenging new prediction targets that have minimal sequence similarity to known coiled-coil families. The Multicoil2 program and training database are available for download from http://multicoil2.csail.mit.edu. PMID:21901122

  5. Natural templates for coiled-coil biomaterials from praying mantis egg cases.

    Science.gov (United States)

    Walker, Andrew A; Weisman, Sarah; Kameda, Tsunenori; Sutherland, Tara D

    2012-12-10

    Whereas there is growing interest in producing biomaterials containing coiled-coils, relatively few studies have made use of naturally occurring fibrous proteins. In this study, we have characterized fibrous proteins used by mother praying mantises to produce an extensive covering for their eggs called an ootheca and demonstrate the production of artificial ootheca using recombinantly produced proteins. Examination of natural oothecae by infrared spectroscopy and solid-state nuclear magnetic resonance revealed the material to consist of proteins organized predominately as coiled-coils. Two structural proteins, Mantis Fibroin 1 and Mantis Fibroin 2, were identified in ootheca from each of three species. Between species, the primary sequences of both proteins had diverged considerably, but other features were tightly conserved, including low molecular weight, high abundance of Ala, Glu, Lys, and Ser, and a triblock-like architecture with extensive central coiled-coil domain. Mantis fibroin hydrophobic cores had an unusual composition containing high levels of alanine and aromatic residues. Recombinantly produced mantis fibroins folded into coiled-coils in solution and could be fabricated into solid materials with high coiled-coil content. The structural features of mantis fibroins and their straightforward recombinant production make them promising templates for the production of coiled-coil biomimetics materials.

  6. Modulation of Coiled-Coil Dimer Stability through Surface Residues while Preserving Pairing Specificity.

    Science.gov (United States)

    Drobnak, Igor; Gradišar, Helena; Ljubetič, Ajasja; Merljak, Estera; Jerala, Roman

    2017-06-21

    The coiled-coil dimer is a widespread protein structural motif and, due to its designability, represents an attractive building block for assembling modular nanostructures. The specificity of coiled-coil dimer pairing is mainly based on hydrophobic and electrostatic interactions between residues at positions a, d, e, and g of the heptad repeat. Binding affinity, on the other hand, can also be affected by surface residues that face away from the dimerization interface. Here we show how design of the local helical propensity of interacting peptides can be used to tune the stabilities of coiled-coil dimers over a wide range. By designing intramolecular charge pairs, regions of high local helical propensity can be engineered to form trigger sequences, and dimer stability is adjusted without changing the peptide length or any of the directly interacting residues. This general principle is demonstrated by a change in thermal stability by more than 30 °C as a result of only two mutations outside the binding interface. The same approach was successfully used to modulate the stabilities in an orthogonal set of coiled-coils without affecting their binding preferences. The stability effects of local helical propensity and peptide charge are well described by a simple linear model, which should help improve current coiled-coil stability prediction algorithms. Our findings enable tuning the stabilities of coiled-coil-based building modules match a diverse range of applications in synthetic biology and nanomaterials.

  7. LOGICOIL--multi-state prediction of coiled-coil oligomeric state.

    Science.gov (United States)

    Vincent, Thomas L; Green, Peter J; Woolfson, Derek N

    2013-01-01

    The coiled coil is a ubiquitous α-helical protein-structure domain that directs and facilitates protein-protein interactions in a wide variety of biological processes. At the protein-sequence level, the coiled coil is readily recognized via a conspicuous heptad repeat of hydrophobic and polar residues. However, structurally coiled coils are more complicated, existing in a wide range of oligomer states and topologies. As a consequence, predicting these various states from sequence remains an unmet challenge. This work introduces LOGICOIL, the first algorithm to address the problem of predicting multiple coiled-coil oligomeric states from protein-sequence information alone. By covering >90% of the known coiled-coil structures, LOGICOIL is a net improvement compared with other existing methods, which achieve a predictive coverage of ∼31% of this population. This leap in predictive power offers better opportunities for genome-scale analysis, and analyses of coiled-coil containing protein assemblies. LOGICOIL is available via a web-interface at http://coiledcoils.chm.bris.ac.uk/LOGICOIL. Source code, training sets and supporting information can be downloaded from the same site.

  8. Coiled-coil formation on lipid bilayers--implications for docking and fusion efficiency.

    Science.gov (United States)

    Pähler, Gesa; Panse, Cornelia; Diederichsen, Ulf; Janshoff, Andreas

    2012-12-05

    Coiled-coil formation of four different oligopeptides was characterized in solution, on hydrogels, and on membranes by employing circular dichroism spectroscopy, surface plasmon resonance spectroscopy, attenuated total reflection infrared spectroscopy, and ellipsometry. Peptide sequences rich in either glutamic acid (E: E3Cys, i-E3Cys) or lysine (K: K3Cys, i-K3Cys) were used to represent minimal mimics of eukaryotic SNARE motifs. Half of the peptides were synthesized in reverse sequence, so that parallel and antiparallel heptad coiled-coil structures were formed. Either E-peptides or K-peptides were attached covalently to phospholipid anchors via maleimide chemistry, and served as receptors for the recognition of the corresponding binding partners added to solution. Attenuated total reflection infrared spectroscopy of single bilayers confirmed the formation of coiled-coil complexes at the membrane interface. Coiled-coil formation in solution, as compared with association at the membrane surface, displays considerably larger binding constants that are largely attributed to loss of translational entropy at the interface. Finally, the fusogenicity of the various coiled-coil motifs was explored, and the results provide clear evidence that hemifusion followed by full fusion requires a parallel orientation of α-helices, whereas antiparallel oriented coiled-coil motifs display only docking. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Coiled-Coil Formation on Lipid Bilayers—Implications for Docking and Fusion Efficiency

    Science.gov (United States)

    Pähler, Gesa; Panse, Cornelia; Diederichsen, Ulf; Janshoff, Andreas

    2012-01-01

    Coiled-coil formation of four different oligopeptides was characterized in solution, on hydrogels, and on membranes by employing circular dichroism spectroscopy, surface plasmon resonance spectroscopy, attenuated total reflection infrared spectroscopy, and ellipsometry. Peptide sequences rich in either glutamic acid (E: E3Cys, i-E3Cys) or lysine (K: K3Cys, i-K3Cys) were used to represent minimal mimics of eukaryotic SNARE motifs. Half of the peptides were synthesized in reverse sequence, so that parallel and antiparallel heptad coiled-coil structures were formed. Either E-peptides or K-peptides were attached covalently to phospholipid anchors via maleimide chemistry, and served as receptors for the recognition of the corresponding binding partners added to solution. Attenuated total reflection infrared spectroscopy of single bilayers confirmed the formation of coiled-coil complexes at the membrane interface. Coiled-coil formation in solution, as compared with association at the membrane surface, displays considerably larger binding constants that are largely attributed to loss of translational entropy at the interface. Finally, the fusogenicity of the various coiled-coil motifs was explored, and the results provide clear evidence that hemifusion followed by full fusion requires a parallel orientation of α-helices, whereas antiparallel oriented coiled-coil motifs display only docking. PMID:23283228

  10. Structural characteristics of the redox-sensing coiled coil in the voltage-gated H+ channel.

    Science.gov (United States)

    Fujiwara, Yuichiro; Takeshita, Kohei; Nakagawa, Atsushi; Okamura, Yasushi

    2013-06-21

    Oxidation is an important biochemical defense mechanism, but it also elicits toxicity; therefore, oxidation must be under strict control. In phagocytotic events in neutrophils, the voltage-gated H(+) (Hv) channel is a key regulator of the production of reactive oxygen species against invading bacteria. The cytoplasmic domain of the Hv channel forms a dimeric coiled coil underpinning a dimerized functional unit. Importantly, in the alignment of the coiled-coil core, a conserved cysteine residue forms a potential intersubunit disulfide bond. In this study, we solved the crystal structures of the coiled-coil domain in reduced, oxidized, and mutated (Cys → Ser) states. The crystal structures indicate that a pair of Cys residues forms an intersubunit disulfide bond dependent on the redox conditions. CD spectroscopy revealed that the disulfide bond increases the thermal stability of the coiled-coil protein. We also reveal that two thiol modifier molecules are able to bind to Cys in a redox-dependent manner without disruption of the dimeric coiled-coil assembly. Thus, the biochemical properties of the cytoplasmic coiled-coil domain in the Hv channel depend on the redox condition, which may play a role in redox sensing in the phagosome.

  11. Multicoil2: predicting coiled coils and their oligomerization states from sequence in the twilight zone.

    Directory of Open Access Journals (Sweden)

    Jason Trigg

    Full Text Available The alpha-helical coiled coil can adopt a variety of topologies, among the most common of which are parallel and antiparallel dimers and trimers. We present Multicoil2, an algorithm that predicts both the location and oligomerization state (two versus three helices of coiled coils in protein sequences. Multicoil2 combines the pairwise correlations of the previous Multicoil method with the flexibility of Hidden Markov Models (HMMs in a Markov Random Field (MRF. The resulting algorithm integrates sequence features, including pairwise interactions, through multinomial logistic regression to devise an optimized scoring function for distinguishing dimer, trimer and non-coiled-coil oligomerization states; this scoring function is used to produce Markov Random Field potentials that incorporate pairwise correlations localized in sequence. Multicoil2 significantly improves both coiled-coil detection and dimer versus trimer state prediction over the original Multicoil algorithm retrained on a newly-constructed database of coiled-coil sequences. The new database, comprised of 2,105 sequences containing 124,088 residues, includes reliable structural annotations based on experimental data in the literature. Notably, the enhanced performance of Multicoil2 is evident when tested in stringent leave-family-out cross-validation on the new database, reflecting expected performance on challenging new prediction targets that have minimal sequence similarity to known coiled-coil families. The Multicoil2 program and training database are available for download from http://multicoil2.csail.mit.edu.

  12. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    Energy Technology Data Exchange (ETDEWEB)

    Morita, S.; Goto, M.; Murakami, I. [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Dong, C. F.; Kato, D.; Sakaue, H. A.; Oishi, T. [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Hasuo, M. [Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 606-8501 (Japan); Koike, F. [Physics Laboratory, School of Medicine, Kitasato University, Sagamihara 252-0374 (Japan); Nakamura, N. [Institute of Laser Science, University of Electro-Communications, Tokyo 182-8585 (Japan); Sasaki, A. [Quantum Beam Science Directorate, Japan Atomic Energy Research Agency, Kizugawa 619-0215, Kyoto (Japan); Wang, E. H. [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan)

    2013-07-11

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W{sup +24-+33}, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam ({<=}2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W{sup 44+}) 4p-4s transition at 60.9A based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5 Multiplication-Sign 10{sup 10}cm{sup -3} at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W{sup 26+}) at 3893.7A is identified as the ground-term fine-structure transition of 4f{sup 23}H{sub 5}-{sup 3}H{sub 4}. The possibility of {alpha} particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.

  13. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    International Nuclear Information System (INIS)

    Morita, S.; Goto, M.; Murakami, I.; Dong, C. F.; Kato, D.; Sakaue, H. A.; Oishi, T.; Hasuo, M.; Koike, F.; Nakamura, N.; Sasaki, A.; Wang, E. H.

    2013-01-01

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W +24-+33 , measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam (≤2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W 44+ ) 4p-4s transition at 60.9Å based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5×10 10 cm −3 at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W 26+ ) at 3893.7Å is identified as the ground-term fine-structure transition of 4f 23 H 5 - 3 H 4 . The possibility of α particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed

  14. Progress on large superconducting toroidal field coils

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Luton, J.N.; Thompson, P.B.; Beard, D.S.

    1979-01-01

    Large superconducting toroidal field coils of competing designs are being produced by six major industrial teams. In the US, teams headed by General Dynamics Convair, General Electric, and Westinghouse are under contract to design and fabricate one coil each to specifications established by the Large Coil Program. A facility for testing 6 coils in a toroidal array at fields to 8 to 12 tesla is under construction at Oak Ridge. Through an international agreement, EURATOM, Japan, and Switzerland will produce one coil each for testing with the US coils. Each test coil will have a 2.5 x 3.5 m D-shape winding bore and is designed to operate at a current of 10 to 18 kA at a peak field of 8T while subjected to pulsed fields of 0.14 T applied in 1.0 s. There are significant differences among the six coil designs: five use NbTi, one Nb 3 Sn; three are cooled by pool boiling helium, three by forced flow; five have welded or bolted stainless steel coil cases, one has aluminum plate structure. All are designed to be cryostable at 8T, with structural margin for extended operation. The three US coil teams are almost or completely finished with detailed design and are now procuring materials and setting up manufacturing equipment. The non-US teams are at various stages of verification testing and design. The GDC and GE coils are scheduled for delivery in the spring of 1981 and the others will be completed a year later. The 11-m diameter vessel at the test facility has been completed and major components of the test stand are being procured. Engineering and procurement to upgrade the helium liquifier-refrigerator system are under way

  15. Tritium Decay Helium-3 Effects in Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Merrill, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructural evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible tritium

  16. Outcomes with single-coil versus dual-coil implantable cardioverter defibrillators: a meta-analysis.

    Science.gov (United States)

    Sunderland, Nicholas; Kaura, Amit; Murgatroyd, Francis; Dhillon, Para; Scott, Paul A

    2018-03-01

    Dual-coil implantable cardioverter defibrillator (ICD) leads have traditionally been used over single-coil leads due to concerns regarding high defibrillation thresholds (DFT) and consequent poor shock efficacy. However, accumulating evidence suggests that this position may be unfounded and that dual-coil leads may also be associated with higher complication rates during lead extraction. This meta-analysis collates data comparing dual- and single-coil ICD leads. Electronic databases were systematically searched for randomized controlled trials (RCT) and non-randomized studies comparing single-coil and dual-coil leads. The mean differences in DFT and summary estimates of the odds-ratio (OR) for first-shock efficacy and the hazard-ratio (HR) for all-cause mortality were calculated using random effects models. Eighteen studies including a total of 138,124 patients were identified. Dual-coil leads were associated with a lower DFT compared to single coil leads (mean difference -0.83J; 95% confidence interval [CI] -1.39--0.27; P = 0.004). There was no difference in the first-shock success rate with dual-coil compared to single-coil leads (OR 0.74; 95%CI 0.45-1.21; P=0.22). There was a significantly lower risk of all-cause mortality associated with single-coil leads (HR 0.91; 95%CI 0.86-0.95; P dual-coil leads. The mortality benefit with single-coil leads most likely represents patient selection bias. Given the increased risk and complexity of extracting dual-coil leads, centres should strongly consider single-coil ICD leads as the lead of choice for routine new left-sided ICD implants. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  17. HydroCoil as an adjuvant to bare platinum coil treatment of 100 cerebral aneurysms

    International Nuclear Information System (INIS)

    Fanning, Noel F.; Berentei, Zsolt; Brennan, Paul R.; Thornton, John

    2007-01-01

    Introduction The overall safety of the HydroCoil, an expansile hybrid hydrogel-platinum coil, is unknown. We report a prospective observational study of our first 100 cerebral aneurysms treated with HydroCoils, focusing on safety and initial efficacy.Methods Indications, procedural complications, clinical and angiographic outcomes were recorded. Packing density, number of coils deployed and angiographic results were compared with those in a matched control group of 100 aneurysms treated solely with bare platinum coils. HydroCoil complication rates were compared to bare platinum coil rates at our institution and in published series. Results Adjuvant HydroCoil treatment led to increased mean percentage aneurysm filling compared to controls (50 ± 21% versus 27 ± 13%, P < 0.001). Immediate posttreatment angiographic results showed significantly (P < 0.001) more complete occlusions and fewer incomplete (<95%) occlusions compared to controls. Intermediate follow-up angiograms (median 7.5 months) in 63 aneurysms showed a trend towards fewer incomplete occlusions with HydroCoil treatment. There were significantly fewer major recurrences with HydroCoil treatment compared to the control treatment (9.5% versus 22.6%, P 0.046). In the adjuvant HydroCoil group, major recurrent aneurysms had significantly less percentage volume packing with HydroCoils than non-recurrent aneurysms (50.3 ± 5.0% versus 65.3 ± 18.0%, P = 0.04). There was a 12% procedural complication rate, 6% procedural morbidity and 1% mortality rate, similar to institutional and reported bare platinum coil complication rates.Conclusion HydroCoils can be safely deployed with a similar complication rate to bare platinum coils. They result in improved aneurysm filling. Intermediate follow-up angiography showed significantly fewer major recurrences. Long-term follow-up is required to confirm initial improved stability. (orig.)

  18. Designed Coiled-Coil Peptides Inhibit the Type Three Secretion System of Enteropathogenic Escherichia coli

    Science.gov (United States)

    Larzábal, Mariano; Mercado, Elsa C.; Vilte, Daniel A.; Salazar-González, Hector; Cataldi, Angel; Navarro-Garcia, Fernando

    2010-01-01

    Background Enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) are two categories of E. coli strains associated with human disease. A major virulence factor of both pathotypes is the expression of a type three secretion system (TTSS), responsible for their ability to adhere to gut mucosa causing a characteristic attaching and effacing lesion (A/E). The TTSS translocates effector proteins directly into the host cell that subvert mammalian cell biochemistry. Methods/Principal Findings We examined synthetic peptides designed to inhibit the TTSS. CoilA and CoilB peptides, both representing coiled-coil regions of the translocator protein EspA, and CoilD peptide, corresponding to a coiled–coil region of the needle protein EscF, were effective in inhibiting the TTSS dependent hemolysis of red blood cells by the EPEC E2348/69 strain. CoilA and CoilB peptides also reduced the formation of actin pedestals by the same strain in HEp-2 cells and impaired the TTSS-mediated protein translocation into the epithelial cell. Interestingly, CoilA and CoilB were able to block EspA assembly, destabilizing the TTSS and thereby Tir translocation. This blockage of EspA polymerization by CoilA or CoilB peptides, also inhibited the correct delivery of EspB and EspD as detected by immunoblotting. Interestingly, electron microscopy of bacteria incubated with the CoilA peptide showed a reduction of the length of EspA filaments. Conclusions Our data indicate that coiled-coil peptides can prevent the assembly and thus the functionality of the TTSS apparatus and suggest that these peptides could provide an attractive tool to block EPEC and EHEC pathogenesis. PMID:20140230

  19. Electron Impact Excitation and Dielectronic Recombination of Highly Charged Tungsten Ions

    Directory of Open Access Journals (Sweden)

    Zhongwen Wu

    2015-11-01

    Full Text Available Electron impact excitation (EIE and dielectronic recombination (DR of tungsten ions are basic atomic processes in nuclear fusion plasmas of the International Thermonuclear Experimental Reactor (ITER tokamak. Detailed investigation of such processes is essential for modeling and diagnosing future fusion experiments performed on the ITER. In the present work, we studied total and partial electron-impact excitation (EIE and DR cross-sections of highly charged tungsten ions by using the multiconfiguration Dirac–Fock method. The degrees of linear polarization of the subsequent X-ray emissions from unequally-populated magnetic sub-levels of these ions were estimated. It is found that the degrees of linear polarization of the same transition lines, but populated respectively by the EIE and DR processes, are very different, which makes diagnosis of the formation mechanism of X-ray emissions possible. In addition, with the help of the flexible atomic code on the basis of the relativistic configuration interaction method, DR rate coefficients of highly charged W37+ to W46+ ions are also studied, because of the importance in the ionization equilibrium of tungsten plasmas under running conditions of the ITER.

  20. Collisional-Radiative Modeling of Tungsten at Temperatures of 1200–2400 eV

    Directory of Open Access Journals (Sweden)

    James Colgan

    2015-04-01

    Full Text Available We discuss new collisional-radiative modeling calculations of tungsten at moderate temperatures of 1200 to 2400 eV. Such plasma conditions are relevant to ongoing experimental work at ASDEX Upgrade and are expected to be relevant for ITER. Our calculations are made using the Los Alamos National Laboratory (LANL collisional-radiative modeling ATOMIC code. These calculations formed part of a submission to the recent NLTE-8 workshop that was held in November 2013. This series of workshops provides a forum for detailed comparison of plasma and spectral quantities from NLTE collisional-radiative modeling codes. We focus on the LANL ATOMIC calculations for tungsten that were submitted to the NLTE-8 workshop and discuss different models that were constructed to predict the tungsten emission. In particular, we discuss comparisons between semi-relativistic configuration-average and fully relativistic configuration-average calculations. We also present semi-relativistic calculations that include fine-structure detail, and discuss the difficult problem of ensuring completeness with respect to the number of configurations included in a CR calculation.

  1. Ab initio and DFT benchmarking of tungsten nanoclusters and tungsten hydrides

    International Nuclear Information System (INIS)

    Skoviera, J.; Novotny, M.; Cernusak, I.; Oda, T.; Louis, F.

    2015-01-01

    We present several benchmark calculations comparing wave-function based methods and density functional theory for model systems containing tungsten. They include W 4 cluster as well as W 2 , WH and WH 2 molecules. (authors)

  2. Effects of oxygen addition in reactive cluster beam deposition of tungsten by magnetron sputtering with gas aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Polášek, J., E-mail: xpolasekj@seznam.cz [Department of Surface and Plasma Science, Faculty of Mathematics and Physic, Charles University, V Holešovičkách 2, Prague 8, CZ-18000 (Czech Republic); Mašek, K. [Department of Surface and Plasma Science, Faculty of Mathematics and Physic, Charles University, V Holešovičkách 2, Prague 8, CZ-18000 (Czech Republic); Marek, A.; Vyskočil, J. [HVM Plasma Ltd., Na Hutmance 2, Prague 5, CZ-158 00 (Czech Republic)

    2015-09-30

    In this work, we investigated the possibilities of tungsten and tungsten oxide nanoclusters generation by means of non-reactive and reactive magnetron sputtering with gas aggregation. It was found that in pure argon atmosphere, cluster aggregation proceeded in two regimes depending on argon pressure in the aggregation chamber. At the lower pressure, cluster generation was dominated by two-body collisions yielding larger clusters (about 5.5 nm in diameter) at lower rate. At higher pressures, cluster generation was dominated by three-body collisions yielding smaller clusters (3–4 nm in diameter) at higher rate. The small amount of oxygen admixture in the aggregation chamber had considerable influence on cluster aggregation process. At certain critical pressure, the presence of oxygen led to the raise of deposition rate and cluster size. Resulting clusters were composed mostly of tungsten trioxide. The oxygen pressure higher than critical led to the target poisoning and the decrease in the sputtering rate. Critical oxygen pressure decreased with increasing argon pressure, suggesting that cluster aggregation process was influenced by atomic oxygen species (namely, O{sup −} ion) generated by oxygen–argon collisions in the magnetron plasma. - Highlights: • Formation of tungsten and tungsten oxide clusters was observed. • Two modes of cluster aggregation in pure argon atmosphere were found. • Dependence of cluster deposition speed and size on oxygen admixture was observed. • Changes of dependence on oxygen with changing argon pressure were described.

  3. Radiative Recombination and Photoionization Data for Tungsten Ions. Electron Structure of Ions in Plasmas

    Directory of Open Access Journals (Sweden)

    Malvina B. Trzhaskovskaya

    2015-05-01

    Full Text Available Theoretical studies of tungsten ions in plasmas are presented. New calculations of the radiative recombination and photoionization cross-sections, as well as radiative recombination and radiated power loss rate coefficients have been performed for 54 tungsten ions for the range W6+–W71+. The data are of importance for fusion investigations at the reactor ITER, as well as devices ASDEX Upgrade and EBIT. Calculations are fully relativistic. Electron wave functions are found by the Dirac–Fock method with proper consideration of the electron exchange. All significant multipoles of the radiative field are taken into account. The radiative recombination rates and the radiated power loss rates are determined provided the continuum electron velocity is described by the relativistic Maxwell–Jüttner distribution. The impact of the core electron polarization on the radiative recombination cross-section is estimated for the Ne-like iron ion and for highly-charged tungsten ions within an analytical approximation using the Dirac–Fock electron wave functions. The effect is shown to enhance the radiative recombination cross-sections by ≲20%. The enhancement depends on the photon energy, the principal quantum number of polarized shells and the ion charge. The influence of plasma temperature and density on the electron structure of ions in local thermodynamic equilibrium plasmas is investigated. Results for the iron and uranium ions in dense plasmas are in good agreement with previous calculations. New calculations were performed for the tungsten ion in dense plasmas on the basis of the average-atom model, as well as for the impurity tungsten ion in fusion plasmas using the non-linear self-consistent field screening model. The temperature and density dependence of the ion charge, level energies and populations are considered.

  4. Coil Optimization for High Temperature Superconductor Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    2011-01-01

    This paper presents topology optimization of HTS racetrack coils for large HTS synchronous machines. The topology optimization is used to acquire optimal coil designs for the excitation system of 3 T HTS machines. Several tapes are evaluated and the optimization results are discussed...

  5. Evidence-based pathology: umbilical cord coiling.

    Science.gov (United States)

    Khong, T Y

    2010-12-01

    The generation of a pathology test result must be based on criteria that are proven to be acceptably reproducible and clinically relevant to be evidence-based. This review de-constructs the umbilical cord coiling index to illustrate how it can stray from being evidence-based. Publications related to umbilical cord coiling were retrieved and analysed with regard to how the umbilical coiling index was calculated, abnormal coiling was defined and reference ranges were constructed. Errors and other influences that can occur with the measurement of the length of the umbilical cord or of the number of coils can compromise the generation of the coiling index. Definitions of abnormal coiling are not consistent in the literature. Reference ranges defining hypocoiling or hypercoiling have not taken those potential errors or the possible effect of gestational age into account. Even the way numerical test results in anatomical pathology are generated, as illustrated by the umbilical coiling index, warrants a critical analysis into its evidence base to ensure that they are reproducible or free from errors.

  6. Operator coil monitoring Acceptance Test Procedure

    International Nuclear Information System (INIS)

    Erhart, M.F.

    1995-01-01

    The readiness of the Data Acquisition and Control System (DACS) to provide monitoring and control of the Programmable Logic Controller (PLC) abort coils from the Master and RSS stations will be systematically tested during performance of this procedure. It should be noted that these are not physical abort coils but software coils controlled by the software's ladder logic. The readiness of the DACS to properly interface with the ENRAF wire level gauge installed in the SY-101 storage tank will also be tested. During this test, a verification of all abort coil indications will be conducted at the DACS Development Facility in the 306E Building by injecting an input signal for each DACS sensor that has an associated abort coil until the abort coil actuates, and then ensuring that the status of the abort coil indicated at the Master and RSS stations is correct. Each abort coil will also be tested to ensure that the ''ENABLE'' and ''DISABLE'' controls from the Master and RSS stations function correctly, and only with the use of proper passwords

  7. Magnetic Fields at the Center of Coils

    Science.gov (United States)

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  8. Toroidal field coils for the PDX machine

    International Nuclear Information System (INIS)

    Bushnell, C.W.

    1975-01-01

    This paper describes the engineering design features of the TF coils for the PDX machine. Included are design details of the electrical insulation, water cooling, and coil segment joint which allows access to the central machine area. A discussion of the problems anticipated in the manufacture and the planned solutions are presented

  9. Optimization of modular coils for stellarator fields

    International Nuclear Information System (INIS)

    Chu, T.K.; Furth, H.P.; Johnson, J.L.; Ludescher, C.; Weimer, K.E.

    1982-02-01

    Introduction of a non-sinusoidal deformation can enhance the efficacy of modular coils for generating magnetic fields with a built-in rotational transform. Techniques are developed that provide an understanding of how specific deformations affect the harmonic content of the magnetic field and thus the properties of the vacuum configuration. This provides an optimization procedure for coil design

  10. The bar coil for NMR tomograph

    International Nuclear Information System (INIS)

    Bogorodzki, P.; Piatkowski, A.; Wasielewski, J.

    1995-01-01

    The bar coil (bi-planar) for the NMR tomograph, designed for medical diagnostics, has been described. The tests of coil shown that it generates good homogenous magnetic field in a big volume what results in improving of the signal-to-noise ratio

  11. Functional investigation of the plant-specific long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC and PICC-LIKE (PICL in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Sowmya Venkatakrishnan

    Full Text Available We have identified and characterized two Arabidopsis long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC and PICC-LIKE (PICL. PICC (147 kDa and PICL (87 kDa are paralogs that consist predominantly of a long coiled-coil domain (expanded in PICC, with a predicted transmembrane domain at the immediate C-terminus. Orthologs of PICC and PICL were found exclusively in vascular plants. PICC and PICL GFP fusion proteins are anchored to the cytoplasmic surface of the endoplasmic reticulum (ER membrane by a C-terminal transmembrane domain and a short tail domain, via a tail-anchoring mechanism. T-DNA-insertion mutants of PICC and PICL as well as the double mutant show an increased sensitivity to the plant abiotic stress hormone abscisic acid (ABA in a post-germination growth response. PICC, but not PICL gene expression is induced by the bacterial pathogen-associated molecular pattern (PAMP flg22. T-DNA insertion alleles of PICC, but not PICL, show increased susceptibility to the non-virulent strain P. syringae pv. tomato DC3000 hrcC, but not to the virulent strain P. syringae pv. tomato DC3000. This suggests that PICC mutants are compromised in PAMP-triggered immunity (PTI. The data presented here provide first evidence for the involvement of a plant long coiled-coil protein in a plant defense response.

  12. Functional investigation of the plant-specific long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL) in Arabidopsis thaliana.

    Science.gov (United States)

    Venkatakrishnan, Sowmya; Mackey, David; Meier, Iris

    2013-01-01

    We have identified and characterized two Arabidopsis long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL). PICC (147 kDa) and PICL (87 kDa) are paralogs that consist predominantly of a long coiled-coil domain (expanded in PICC), with a predicted transmembrane domain at the immediate C-terminus. Orthologs of PICC and PICL were found exclusively in vascular plants. PICC and PICL GFP fusion proteins are anchored to the cytoplasmic surface of the endoplasmic reticulum (ER) membrane by a C-terminal transmembrane domain and a short tail domain, via a tail-anchoring mechanism. T-DNA-insertion mutants of PICC and PICL as well as the double mutant show an increased sensitivity to the plant abiotic stress hormone abscisic acid (ABA) in a post-germination growth response. PICC, but not PICL gene expression is induced by the bacterial pathogen-associated molecular pattern (PAMP) flg22. T-DNA insertion alleles of PICC, but not PICL, show increased susceptibility to the non-virulent strain P. syringae pv. tomato DC3000 hrcC, but not to the virulent strain P. syringae pv. tomato DC3000. This suggests that PICC mutants are compromised in PAMP-triggered immunity (PTI). The data presented here provide first evidence for the involvement of a plant long coiled-coil protein in a plant defense response.

  13. Functional Investigation of the Plant-Specific Long Coiled-Coil Proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL) in Arabidopsis thaliana

    Science.gov (United States)

    Venkatakrishnan, Sowmya; Mackey, David; Meier, Iris

    2013-01-01

    We have identified and characterized two Arabidopsis long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL). PICC (147 kDa) and PICL (87 kDa) are paralogs that consist predominantly of a long coiled-coil domain (expanded in PICC), with a predicted transmembrane domain at the immediate C-terminus. Orthologs of PICC and PICL were found exclusively in vascular plants. PICC and PICL GFP fusion proteins are anchored to the cytoplasmic surface of the endoplasmic reticulum (ER) membrane by a C-terminal transmembrane domain and a short tail domain, via a tail-anchoring mechanism. T-DNA-insertion mutants of PICC and PICL as well as the double mutant show an increased sensitivity to the plant abiotic stress hormone abscisic acid (ABA) in a post-germination growth response. PICC, but not PICL gene expression is induced by the bacterial pathogen-associated molecular pattern (PAMP) flg22. T-DNA insertion alleles of PICC, but not PICL, show increased susceptibility to the non-virulent strain P. syringae pv. tomato DC3000 hrcC, but not to the virulent strain P. syringae pv. tomato DC3000. This suggests that PICC mutants are compromised in PAMP-triggered immunity (PTI). The data presented here provide first evidence for the involvement of a plant long coiled-coil protein in a plant defense response. PMID:23451199

  14. Composite coils for toroidal field coils and method of using same

    International Nuclear Information System (INIS)

    Perkins, R. G.; Trujillo, S. M.

    1985-01-01

    A composite toroidal field (TF) generating means consisting of segmented magnetic coil windings is disclosed. Each coil winding of the TF generating means consists of a copper or copper alloy conductor segment and an aluminum or aluminum alloy conductor segment. The conductor segments are joined at a high strength, low electrical resistance joint and the joint may either be a mechanical or metallurgical one. The use of the aluminum or aluminum alloy conductor segments improves the neutron economy of the reactor with which the TF coil is associated and reduces TF coil nuclear heating and heating gradients, and activation in the TF coils

  15. The Structures of Coiled-Coil Domains from Type III Secretion System Translocators Reveal Homology to Pore-Forming Toxins

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; Dickenson, Nicholas E.; Patil, Mrinalini; Keightley, Andrew; Wyckoff, Gerald J.; Picking, William D.; Picking, Wendy L.; Geisbrecht, Brian V. (UMKC); (OKLU)

    2012-03-26

    Many pathogenic Gram-negative bacteria utilize type III secretion systems (T3SSs) to alter the normal functions of target cells. Shigella flexneri uses its T3SS to invade human intestinal cells to cause bacillary dysentery (shigellosis) that is responsible for over one million deaths per year. The Shigella type III secretion apparatus is composed of a basal body spanning both bacterial membranes and an exposed oligomeric needle. Host altering effectors are secreted through this energized unidirectional conduit to promote bacterial invasion. The active needle tip complex of S. flexneri is composed of a tip protein, IpaD, and two pore-forming translocators, IpaB and IpaC. While the atomic structure of IpaD has been elucidated and studied, structural data on the hydrophobic translocators from the T3SS family remain elusive. We present here the crystal structures of a protease-stable fragment identified within the N-terminal regions of IpaB from S. flexneri and SipB from Salmonella enterica serovar Typhimurium determined at 2.1 {angstrom} and 2.8 {angstrom} limiting resolution, respectively. These newly identified domains are composed of extended-length (114 {angstrom} in IpaB and 71 {angstrom} in SipB) coiled-coil motifs that display a high degree of structural homology to one another despite the fact that they share only 21% sequence identity. Further structural comparisons also reveal substantial similarity to the coiled-coil regions of pore-forming proteins from other Gram-negative pathogens, notably, colicin Ia. This suggests that these mechanistically separate and functionally distinct membrane-targeting proteins may have diverged from a common ancestor during the course of pathogen-specific evolutionary events.

  16. Startup of Large Coil Test Facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1984-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Eventually, six different coils from four countries will be tested. Operations began in 1983 with acceptance testing of the helium refrigerator/liquefier system. Comprehensive shakedown of the facility and tests with the first three coils (from Japan, the United States, and Switzerland) were successfully accomplished in the summer of 1984. Currents up to 10,200 A and fields up to 6.4 T were reached. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils

  17. Growth of silicon on tungsten diselenide

    NARCIS (Netherlands)

    Yao, Qirong; van Bremen, Rik; Zandvliet, Henricus J.W.

    2016-01-01

    Here, we report a scanning tunneling microscopy and spectroscopy study of the growth of silicon on a tungsten diselenide (WSe2) substrate. We have found convincing experimental evidence that silicon does not remain on the WSe2 substrate but rather intercalates between the top layers of WSe2. Upon

  18. Copper-Tungsten Composites Sprayed by HVOF

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Zahálka, F.; Bensch, Jan; Chi, W.; Sedláček, J.

    2008-01-01

    Roč. 17, č. 2 (2008), s. 177-180 ISSN 1059-9630 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermally sprayed coatings * tungsten * copper * HVOF Subject RIV: JG - Metallurgy Impact factor: 1.200, year: 2008 http://www.springerlink.com/content/120439/

  19. Tungsten and refractory metals 3, proceedings

    International Nuclear Information System (INIS)

    Bose, A.; Dowding, R.J.

    1996-01-01

    The Third International Conference on Tungsten and Refractory Metals was held in Greater Washington DC at the McLean Hilton, McLean Virginia, on November 15--16, 1995. This meeting was the third in a series of conferences held in the Washington DC area. The first meeting was in 1992 and was entitled ''International Conference on Tungsten and Tungsten Alloys.'' In 1994, the scope of the meeting was expanded to include other refractory metals such as molybdenum, iridium, rhenium, tantalum and niobium. The tremendous success of that meeting was the primary motivation for this Conference. The broader scope (the inclusion of other refractory metals and alloys) of the Conference was kept intact for this meeting. In fact, it was felt that the developments in the technology of these materials required a common forum for the interchange of current research information. The papers presented in this meeting examined the rapid advancements in the technology of refractory metals, with special emphasis on the processing, structure, and properties. Among the properties there was emphasis on both quasi-static and dynamic rates. Another topic that received considerable interest was the area of refractory carbides and tungsten-copper composites. One day of concurrent session was necessary to accommodate all of the presentations

  20. Joining of Tungsten Armor Using Functional Gradients

    International Nuclear Information System (INIS)

    John Scott O'Dell

    2006-01-01

    The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.

  1. Joining of Tungsten Armor Using Functional Gradients

    Energy Technology Data Exchange (ETDEWEB)

    John Scott O' Dell

    2006-12-31

    The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.

  2. CALICE silicon-tungsten electromagnetic calorimeter

    Indian Academy of Sciences (India)

    A highly granular electromagnetic calorimeter prototype based on tungsten absorber and sampling units equipped with silicon pads as sensitive devices for signal collection is under construction. The full prototype will have in total 30 layers and be read out by about 10000 Si cells of 1 × 1 cm2. A first module consisting of 14 ...

  3. Titanium tungsten coatings for bioelectrochemical applications

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Amato, Letizia; Łopacińska, J.

    2011-01-01

    This paper presents an assessment of titanium tungsten (TiW) coatings and their applicability as components of biosensing systems. The focus is put on using TiW as an electromechanical interface layer between carbon nanotube (CNT) forests and silicon nanograss (SiNG) cell scaffolds. Cytotoxicity...

  4. Distribution of induced activity in tungsten targets

    International Nuclear Information System (INIS)

    Donahue, R.J.; Nelson, W.R.

    1988-09-01

    Estimates are made of the induced activity created during high-energy electron showers in tungsten, using the EGS4 code. Photon track lengths, neutron yields and spatial profiles of the induced activity are presented. 8 refs., 9 figs., 1 tab

  5. Electrospark doping of steel with tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Denisova, Yulia, E-mail: yukolubaeva@mail.ru; Shugurov, Vladimir, E-mail: shugurov@opee.hcei.tsc.ru [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); Petrikova, Elizaveta, E-mail: elizmarkova@yahoo.com [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 36 Lenin Str. Tomsk, 634050 (Russian Federation); Seksenalina, Malika, E-mail: sportmiss@bk.ru [National Research Tomsk Polytechnic University, 30 Lenin Str. Tomsk, 634050 (Russian Federation); Ivanova, Olga, E-mail: ivaov@mail.ru; Ikonnikova, Irina, E-mail: irinaikonnikova@yandex.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq. Tomsk, 634003 (Russian Federation); Kunitsyna, Tatyana, E-mail: kma11061990@mail.ru; Vlasov, Victor, E-mail: rector@tsuab.ru [National Research Tomsk Polytechnic University, 30 Lenin Str. Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, 2 Solyanaya Sq. Tomsk, 634003 (Russian Federation); Klopotov, Anatoliy, E-mail: klopotovaa@tsuab.ru [National Research Tomsk State University, 36 Lenin Str. Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, 2 Solyanaya Sq. Tomsk, 634003 (Russian Federation); Ivanov, Yuriy, E-mail: yufi55@mail.ru [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 36 Lenin Str. Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Str. Tomsk, 634050 (Russian Federation)

    2016-01-15

    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensional approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties.

  6. Consolidation of tungsten disilicide by plasma spraying

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Matějíček, Jiří; Rohan, Pavel; Janča, J.

    2007-01-01

    Roč. 52, č. 3 (2007), s. 311-320 ISSN 0001-7043 R&D Projects: GA ČR(CZ) GA104/05/0540 Institutional research plan: CEZ:AV0Z20430508 Keywords : Water stabilized plasma * tungsten disilicide * plasma deposition * thermal spray coatings Subject RIV: JJ - Other Materials

  7. CALICE silicon–tungsten electromagnetic calorimeter

    Indian Academy of Sciences (India)

    A highly granular electromagnetic calorimeter prototype based on tungsten absorber and sampling units equipped with silicon pads as sensitive devices for signal collection is under construction. The full prototype will have in total 30 layers and be read out by about 10000 Si cells of 1 × 1 cm2. A first module consisting of 14 ...

  8. Electrospark doping of steel with tungsten

    International Nuclear Information System (INIS)

    Denisova, Yulia; Shugurov, Vladimir; Petrikova, Elizaveta; Seksenalina, Malika; Ivanova, Olga; Ikonnikova, Irina; Kunitsyna, Tatyana; Vlasov, Victor; Klopotov, Anatoliy; Ivanov, Yuriy

    2016-01-01

    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensional approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties

  9. Design description of the Large Coil Test Facility pulse-coil support and transport system

    International Nuclear Information System (INIS)

    Queen, C.C.

    1981-01-01

    In order to simulate the transient fields which would be imposed on superconducting toroidal field coils in an operating tokamak reactor, the Large Coil Test Facility (LCTF) test stand includes a set of pulse coils. This set of pulse coils is designed to be moved from one test location to another within the LCTF vacuum vessel while the vessel is operating under vacuum and the test stand and test coils are at an operating temperature of 4.2K. This operating environment and the extremely high magnetic loads have necessitated some unique design features for the pulse coil support and transport system. The support structure for the pulse coil must react high overturning moments and axial loads induced on the pulse coil by the interaction of the pulse field with the field generated by the large test coils. These loads are reacted into the test stand support structure or spider frame by an arrangement of six pedestals and a support beam. In order to move the pulse coil set from one test location to another, the support beam containing the pulse coils must be driven across rollers mounted on the pedestals, then clamped securely to react the loads. Because these operations must be performed in a vacuum environment at cryogenic tmperature, special consideration was given to component design

  10. ITER tungsten divertor design development and qualification program

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, T., E-mail: takeshi.hirai@iter.org [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint Paul lez Durance (France); Escourbiac, F.; Carpentier-Chouchana, S.; Fedosov, A.; Ferrand, L.; Jokinen, T.; Komarov, V.; Kukushkin, A.; Merola, M.; Mitteau, R.; Pitts, R.A.; Shu, W.; Sugihara, M. [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint Paul lez Durance (France); Riccardi, B. [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Suzuki, S. [JAEA, Fusion Research and Development Directorate JAEA, 801-1 Mukouyama, Naka, Ibaragi 311-0193 (Japan); Villari, R. [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, I-00044 Frascati, Rome (Italy)

    2013-10-15

    Highlights: • Detailed design development plan for the ITER tungsten divertor. • Latest status of the ITER tungsten divertor design. • Brief overview of qualification program for the ITER tungsten divertor and status of R and D activity. -- Abstract: In November 2011, the ITER Council has endorsed the recommendation that a period of up to 2 years be set to develop a full-tungsten divertor design and accelerate technology qualification in view of a possible decision to start operation with a divertor having a full-tungsten plasma-facing surface. To ensure a solid foundation for such a decision, a full tungsten divertor design, together with a demonstration of the necessary high performance tungsten monoblock technology should be completed within the required timescale. The status of both the design and technology R and D activity is summarized in this paper.

  11. Electrokinetic treatment of firing ranges containing tungsten-contaminated soils

    International Nuclear Information System (INIS)

    Braida, Washington; Christodoulatos, Christos; Ogundipe, Adebayo; Dermatas, Dimitris; O'Connor, Gregory

    2007-01-01

    Tungsten-based alloys and composites are being used and new formulations are being considered for use in the manufacturing of different types of ammunition. The use of tungsten heavy alloys (WHA) in new munitions systems and tungsten composites in small caliber ammunition could potentially release substantial amounts of this element into the environment. Although tungsten is widely used in industrial and military applications, tungsten's potential environmental and health impacts have not been thoroughly addressed. This necessitates the research and development of remedial technologies to contain and/or remove tungsten from soils that may serve as a source for water contamination. The current work investigates the feasibility of using electrokinetics for the remediation of tungsten-contaminated soils in the presence of other heavy metals of concern such as Cu and Pb with aim to removing W from the soil while stabilizing in situ, Pb and Cu

  12. Anisotropic growth mechanism of tungsten diselenide domains using chemical vapor deposition method

    Science.gov (United States)

    Lee, Yoobeen; Jeong, Heekyung; Park, Yi-Seul; Han, Seulki; Noh, Jaegeun; Lee, Jin Seok

    2018-02-01

    Anisotropic transition metal dichalcogenide (TMDC) domains have stimulated a growing interest mainly due to their electronic properties that depend on the size, shape, and edge structures of the domains. In this work, we investigated the anisotropic morphogenesis and edge terminations of tungsten diselenide (WSe2) domains grown on sapphire substrates by chemical vapor deposition (CVD) using tungsten oxide (WO3) and selenium (Se) powders as precursors. We varied the amount of Se powder and growth temperature during the CVD process, which in turn caused variations in the growth mechanism and kinetic energies of precursors. We succeeded in synthesizing hexagonal, square, circular, and triangular anisotropic WSe2 domains. They were characterized using scanning electron microscopy (SEM), Raman spectroscopy, photoluminescence (PL) analyses, and atomic force microscopy (AFM). Furthermore, we proposed the growth mechanism of anisotropic WSe2 domains with different edge terminations based on experimental observations through scanning tunneling microscope (STM).

  13. Processing and alloying of tungsten heavy alloys

    International Nuclear Information System (INIS)

    Bose, A.

    1993-01-01

    Tungsten heavy alloys are two-phase metal matrix composites with a unique combination of density, strength, and ductility. They are processed by liquid-phase sintering of mixed elemental powders. The final microstructure consists of a contiguous network of nearly pure tungsten grains embedded in a matrix of a ductile W-Ni-Fe alloy. Due to the unique property combination of the material, they are used extensively as kinetic energy penetrators, radiation shields. counterbalances, and a number of other applications in the defense industry. The properties of these alloys are extremely sensitive to the processing conditions. Porosity levels as low as 1% can drastically degrade the properties of these alloys. During processing, care must be taken to reduce or prevent incomplete densification, hydrogen embrittlement, impurity segregation to the grain boundaries, solidification shrinkage induced porosity, and in situ formation of pores due to the sintering atmosphere. This paper will discuss some of the key processing issues for obtaining tungsten heavy alloys with good properties. High strength tungsten heavy alloys are usually fabricated by swaging and aging the conventional as-sintered material. The influence of this on the shear localization tendency of a W-Ni-Co alloy will also be demonstrated. Recent developments have shown that the addition of certain refractory metals partially replacing tungsten can significantly improve the strength of the conventional heavy alloys. This development becomes significant due to the recent interest in near net shaping techniques such as powder injection moldings. The role of suitable alloying additions to the classic W-Ni-Fe based heavy alloys and their processing techniques will also be discussed in this paper

  14. Comparison of the Performance of Tungsten and Steel Hadronic Sampling Calorimeters

    CERN Document Server

    Speckmayer, P

    2012-01-01

    In this note the performance of tungsten and steel hadronic sampling calorimeters is studied using GEANT4 simulations. Various configurations with different sampling ratios and total calorimeter lengths for both materials have been investigated. Pions of up to 300 GeV have been simulated in all configurations and the energy has been reconstructed using a neural network. Taking into account leakage and intrinsic resolution for the different calorimeter configurations, an optimal configuration depending on the HCAL size has been found. The impact of a tail-catcher providing information on leakage into the coil, which will be outside of the calorimeters and constraining their size in future high energy collider experiments, has also been studied.

  15. Simultaneous formation of right- and left-handed anti-parallel coiled-coil interfaces by a coil2 fragment of human lamin A.

    Science.gov (United States)

    Kapinos, Larisa E; Burkhard, Peter; Herrmann, Harald; Aebi, Ueli; Strelkov, Sergei V

    2011-04-22

    The elementary building block of all intermediate filaments (IFs) is a dimer featuring a central α-helical rod domain flanked by the N- and C-terminal end domains. In nuclear IF proteins (lamins), the rod domain consists of two coiled-coil segments, coil1 and coil2, that are connected by a short non-helical linker. Coil1 and the C-terminal part of coil2 contain the two highly conserved IF consensus motifs involved in the longitudinal assembly of dimers. The previously solved crystal structure of a lamin A fragment (residues 305-387) corresponding to the second half of coil2 has yielded a parallel left-handed coiled coil. Here, we present the crystal structure and solution properties of another human lamin A fragment (residues 328-398), which is largely overlapping with fragment 305-387 but harbors a short segment of the tail domain. Unexpectedly, no parallel coiled coil forms within the crystal. Instead, the α-helices are arranged such that two anti-parallel coiled-coil interfaces are formed. The most significant interface has a right-handed geometry, which is accounted for by a characteristic 15-residue repeat pattern that overlays with the canonical heptad repeat pattern. The second interface is a left-handed anti-parallel coiled coil based on the predicted heptad repeat pattern. In solution, the fragment reveals only a weak dimerization propensity. We speculate that the C-terminus of coil2 might unzip, thereby allowing for a right-handed coiled-coil interface to form between two laterally aligned dimers. Such an interface might co-exist with a heterotetrameric left-handed coiled-coil assembly, which is expected to be responsible for the longitudinal A(CN) contact. Copyright © 2011. Published by Elsevier Ltd.

  16. N@a and N@d: Oligomer and Partner Specification by Asparagine in Coiled-Coil Interfaces.

    Science.gov (United States)

    Fletcher, Jordan M; Bartlett, Gail J; Boyle, Aimee L; Danon, Jonathan J; Rush, Laura E; Lupas, Andrei N; Woolfson, Derek N

    2017-02-17

    The α-helical coiled coil is one of the best-studied protein-protein interaction motifs. As a result, sequence-to-structure relationships are available for the prediction of natural coiled-coil sequences and the de novo design of new ones. However, coiled coils adopt a wide range of oligomeric states and topologies, and our understanding of the specification of these and the discrimination between them remains incomplete. Gaps in our knowledge assume more importance as coiled coils are used increasingly to construct biomimetic systems of higher complexity; for this, coiled-coil components need to be robust, orthogonal, and transferable between contexts. Here, we explore how the polar side chain asparagine (Asn, N) is tolerated within otherwise hydrophobic helix-helix interfaces of coiled coils. The long-held view is that Asn placed at certain sites of the coiled-coil sequence repeat selects one oligomer state over others, which is rationalized by the ability of the side chain to make hydrogen bonds, or interactions with chelated ions within the coiled-coil interior of the favored state. We test this with experiments on de novo peptide sequences traditionally considered as directing parallel dimers and trimers, and more widely through bioinformatics analysis of natural coiled-coil sequences and structures. We find that when located centrally, rather than near the termini of such coiled-coil sequences, Asn does exert the anticipated oligomer-specifying influence. However, outside of these bounds, Asn is observed less frequently in the natural sequences, and the synthetic peptides are hyperthermostable and lose oligomer-state specificity. These findings highlight that not all regions of coiled-coil repeat sequences are equivalent, and that care is needed when designing coiled-coil interfaces.

  17. Force generation by orthodontic coil springs.

    Science.gov (United States)

    von Fraunhofer, J A; Bonds, P W; Johnson, B E

    1993-01-01

    Nickel titanium (NiTi) coil springs are a new development in orthodontics, designed to produce light continuous forces. This study compares the force delivery by NiTi open and closed coil springs during unloading (de-activation) to that provided by comparable stainless steel (SS) springs. Open-coil springs (0.010 x 0.035 inch) were compressed from their initial length of 15 mm to 6 mm and the forces generated with spring recovery recorded. Closed-coil springs (0.009 x 0.035 inch) were distracted from their initial length of 3 mm to 9 mm and the force recorded as the spring recovered. The closed-coil NiTi springs produced light continuous forces of 75-90 g over the distraction range of 6 mm while the open-coil springs produced forces of 55-70 g within the 9 mm compression range. SS springs produced heavier forces, ca. 200 g, for an activation of 1 mm and the generated force increased rapidly as the activation was increased. The findings indicate that NiTi coil springs deliver optimal forces for orthodontic tooth movement over a longer activation range than comparable SS springs.

  18. Correcting coils in end magnets of accelerators

    Directory of Open Access Journals (Sweden)

    L. R. P. Kassab

    1998-05-01

    Full Text Available We present an empirical investigation of the correcting coils behavior used to homogenize the field distribution of the race-track microtron accelerator end magnets. These end magnets belong to the second stage of the 30.0 MeV cw electron accelerator under construction at IFUSP, the race-track microtron booster, in which the beam energy is raised from 1.97 to 5.1 MeV. The correcting coils are attached to the pole faces and are based on the inhomogeneities of the magnetic field measured. The performance of these coils, when operating the end magnets with currents that differ by ±10% from the one used in the mappings that originated the coils copper leads, is presented. For one of the magnets, adjusting conveniently the current of the correcting coils makes it possible to homogenize field distributions of different intensities, once their shapes are practically identical to those that originated the coils. For the other one, the shapes are changed and the coils are less efficient. This is related to intrinsic factors that determine the inhomogeneities. However, we obtained uniformity of 0.001% in both cases.

  19. Crystal structure of a coiled-coil domain from human ROCK I.

    Directory of Open Access Journals (Sweden)

    Daqi Tu

    2011-03-01

    Full Text Available The small GTPase Rho and one of its targets, Rho-associated kinase (ROCK, participate in a variety of actin-based cellular processes including smooth muscle contraction, cell migration, and stress fiber formation. The ROCK protein consists of an N-terminal kinase domain, a central coiled-coil domain containing a Rho binding site, and a C-terminal pleckstrin homology domain. Here we present the crystal structure of a large section of the central coiled-coil domain of human ROCK I (amino acids 535-700. The structure forms a parallel α-helical coiled-coil dimer that is structurally similar to tropomyosin, an actin filament binding protein. There is an unusual discontinuity in the coiled-coil; three charged residues (E613, R617 and D620 are positioned at what is normally the hydrophobic core of coiled-coil packing. We speculate that this conserved irregularity could function as a hinge that allows ROCK to adopt its autoinhibited conformation.

  20. A set of computationally designed orthogonal antiparallel homodimers that expands the synthetic coiled-coil toolkit.

    Science.gov (United States)

    Negron, Christopher; Keating, Amy E

    2014-11-26

    Molecular engineering of protein assemblies, including the fabrication of nanostructures and synthetic signaling pathways, relies on the availability of modular parts that can be combined to give different structures and functions. Currently, a limited number of well-characterized protein interaction components are available. Coiled-coil interaction modules have been demonstrated to be useful for biomolecular design, and many parallel homodimers and heterodimers are available in the coiled-coil toolkit. In this work, we sought to design a set of orthogonal antiparallel homodimeric coiled coils using a computational approach. There are very few antiparallel homodimers described in the literature, and none have been measured for cross-reactivity. We tested the ability of the distance-dependent statistical potential DFIRE to predict orientation preferences for coiled-coil dimers of known structure. The DFIRE model was then combined with the CLASSY multistate protein design framework to engineer sets of three orthogonal antiparallel homodimeric coiled coils. Experimental measurements confirmed the successful design of three peptides that preferentially formed antiparallel homodimers that, furthermore, did not interact with one additional previously reported antiparallel homodimer. Two designed peptides that formed higher-order structures suggest how future design protocols could be improved. The successful designs represent a significant expansion of the existing protein-interaction toolbox for molecular engineers.

  1. Exploiting Oligo(amido amine) Backbones for the Multivalent Presentation of Coiled-Coil Peptides.

    Science.gov (United States)

    Gerling-Driessen, Ulla I M; Mujkic-Ninnemann, Nina; Ponader, Daniela; Schöne, Daniel; Hartmann, Laura; Koksch, Beate; Gerling-Driessen, U I M; Schöne, D; Koksch, B; Ponader, D; Mujkic-Ninnemann, N; Hartmann, L

    2015-08-10

    The investigation of coiled coil formation for one mono- and two divalent peptide-polymer conjugates is presented. Through the assembly of the full conjugates on solid support, monodisperse sequence-defined conjugates are obtained with defined positions and distances between the peptide side chains along the polymeric backbone. A heteromeric peptide design was chosen, where peptide K is attached to the polymer backbone, and coiled-coil formation is only expected through complexation with the complementary peptide E. Indeed, the monovalent peptide K-polymer conjugate displays rapid coiled-coil formation when mixed with the complementary peptide E sequence. The divalent systems show intramolecular homomeric coiled-coil formation on the polymer backbone despite the peptide design. Interestingly, this intramolecular assembly undergoes a conformational rearrangement by the addition of the complementary peptide E leading to the formation of heteromeric coiled coil-polymer aggregates. The polymer backbone acts as a template bringing the covalently bound peptide strands in close proximity to each other, increasing the local concentration and inducing the otherwise nonfavorable formation of intramolecular helical assemblies.

  2. Routine phasing of coiled-coil protein crystal structures with AMPLE.

    Science.gov (United States)

    Thomas, Jens M H; Keegan, Ronan M; Bibby, Jaclyn; Winn, Martyn D; Mayans, Olga; Rigden, Daniel J

    2015-03-01

    Coiled-coil protein folds are among the most abundant in nature. These folds consist of long wound α-helices and are architecturally simple, but paradoxically their crystallographic structures are notoriously difficult to solve with molecular-replacement techniques. The program AMPLE can solve crystal structures by molecular replacement using ab initio search models in the absence of an existent homologous protein structure. AMPLE has been benchmarked on a large and diverse test set of coiled-coil crystal structures and has been found to solve 80% of all cases. Successes included structures with chain lengths of up to 253 residues and resolutions down to 2.9 Å, considerably extending the limits on size and resolution that are typically tractable by ab initio methodologies. The structures of two macromolecular complexes, one including DNA, were also successfully solved using their coiled-coil components. It is demonstrated that both the ab initio modelling and the use of ensemble search models contribute to the success of AMPLE by comparison with phasing attempts using single structures or ideal polyalanine helices. These successes suggest that molecular replacement with AMPLE should be the method of choice for the crystallo-graphic elucidation of a coiled-coil structure. Furthermore, AMPLE may be able to exploit the presence of a coiled coil in a complex to provide a convenient route for phasing.

  3. Cloning, overexpression, purification and crystallization of the CRN12 coiled-coil domain from Leishmania donovani.

    Science.gov (United States)

    Srivastava, Vijay Kumar; Rana, Ajay Kumar; Sahasrabuddhe, Amogh A; Gupta, C M; Pratap, J V

    2013-05-01

    Leishmania donovani coronin CRN12 is an actin-binding protein which consists of two domains: an N-terminal WD repeat domain and a C-terminal coiled-coil domain. The coiled-coil domain is 53 residues in length. Helix-helix interactions in general and coiled coils in particular are ubiquitous in the structure of proteins and play a significant role in the association among proteins, including supramolecular assemblies and transmembrane receptors that mediate cellular signalling, transport and actin dynamics. The L. donovani coronin CRN12 coiled-coil domain (5.8 kDa) was cloned, overexpressed, purified to homogeneity and the N-terminal 6×His tag was successfully removed by thrombin cleavage. Crystals of recombinant L. donovani coronin CRN12 coiled-coil domain were grown by vapour diffusion using a hanging-drop setup. Diffraction-quality crystals were obtained and data extending to 2.46 Å resolution were collected at 100 K on BM14, ESRF, Grenoble, France. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 118.0, b = 50.6, c = 46.0 Å, β = 111.0°. Matthews coefficient (VM) calculations suggested the presence of 4-6 molecules in the asymmetric unit, corresponding to a solvent content of ∼33-55%, and are consistent with self-rotation function calculations.

  4. Inhibition of the 26S proteasome by peptide mimics of the coiled-coil region of its ATPase subunits.

    Science.gov (United States)

    Inobe, Tomonao; Genmei, Reiko

    Regulation of proteasomal degradation is an indispensable tool for biomedical studies. Thus, there is demand for novel proteasome inhibitors. Proteasomal degradation requires formation of coiled-coil structure by the N-terminal region of ATPase subunits of the proteasome cap. Here we show that peptides that mimic the N-terminal coiled-coil region of ATPase subunits interfere with proteasome function. These results suggest that coiled-coil peptides represent promising new proteasome inhibitors and that N-terminal coiled-coil regions of ATPase subunits are targets for proteasome inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Magnetic field mapper based on rotating coils

    CERN Document Server

    AUTHOR|(CDS)2087244; Arpaia, Pasquale

    This thesis presents a magnetic field mapper based on rotating coils. The requirements, the architecture, the conceptual design, and the prototype for straight magnets were shown. The proposed system is made up of a rotating coil transducer and a train-like system for longitudinal motion and positioning inside magnet bore. The mapper allows a localized measurement of magnetic fields and the variation of the harmonic multipole content in the magnet ends. The proof-of-principle demonstration and the experimental characterization of the rotating-coil transducer specifically conceived for mapping validated the main objective of satisfying the magnetic measurement needs of the next generation of compact accelerators.

  6. CS model coil experimental log book

    International Nuclear Information System (INIS)

    Nishijima, Gen; Sugimoto, Makoto; Nunoya, Yoshihiko; Wakabayashi, Hiroshi; Tsuji, Hiroshi

    2001-02-01

    Charging test of the ITER CS Model Coil which is the world's largest superconducting pulse coil and the CS Insert Coil had started at April 11, 2000 and had completed at August 18, 2000. In the campaign, total shot numbers were 356 and the size of the data file in the DAS (Data Acquisition System) was over 20 GB. This report is a database that consists of the log list and the log sheets of every shot. One can access the database, make a search, and browse results via Internet (http://1ogwww.naka.jaeri.go.jp). The database will be useful to quick search to choose necessary shots. (author)

  7. Large magnetic coils for fusion technology

    International Nuclear Information System (INIS)

    Komarek, P.; Ulbricht, A.

    1989-01-01

    This paper reviews the current status of research in this field and outlines future tasks and experiments for the Next European Torus (NET). Research and development work accomplished so far permits generation and safe operation of magnetic fields up to 9 T by means of NbTi coils. Fields up to 11 T are feasible if the coils are cooled with superfluid helium at 1.8 K. The potential of the Nb 3 Sn coils promise achievement of magnetic fields between 12 and 13 T. (MM) [de

  8. Detection and reduction of tungsten contamination in ion implantation processes

    International Nuclear Information System (INIS)

    Polignano, M.L.; Galbiati, A.; Grasso, S.; Mica, I.; Barbarossa, F.; Magni, D.

    2016-01-01

    In this paper, we review the results of some studies addressing the problem of tungsten contamination in implantation processes. For some tests, the implanter was contaminated by implantation of wafers with an exposed tungsten layer, resulting in critical contamination conditions. First, DLTS (deep level transient spectroscopy) measurements were calibrated to measure tungsten contamination in ion-implanted samples. DLTS measurements of tungsten-implanted samples showed that the tungsten concentration increases linearly with the dose up to a rather low dose (5 x 10 10 cm -2 ). Tungsten deactivation was observed when the dose was further increased. Under these conditions, ToF-SIMS revealed tungsten at the wafer surface, showing that deactivation was due to surface segregation. DLTS calibration could therefore be obtained in the linear dose regime only. This calibration was used to evaluate the tungsten contamination in arsenic implantations. Ordinary operating conditions and critical contamination conditions of the equipment were compared. A moderate tungsten contamination was observed in samples implanted under ordinary operating conditions. This contamination was easily suppressed by a thin screen oxide. On the contrary, implantations in critical conditions of the equipment resulted in a relevant tungsten contamination, which could be reduced but not suppressed even by a relatively thick screen oxide (up to 150 Aa). A decontamination process consisting of high dose implantations of dummy wafers was tested for its efficiency to remove tungsten and titanium contamination. This process was found to be much more effective for titanium than for tungsten. Finally, DLTS proved to be much more sensitive that TXRF (total reflection X-ray fluorescence) in detecting tungsten contamination. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Detection and reduction of tungsten contamination in ion implantation processes

    Energy Technology Data Exchange (ETDEWEB)

    Polignano, M.L.; Galbiati, A.; Grasso, S.; Mica, I.; Barbarossa, F.; Magni, D. [STMicroelectronics, Agrate Brianza (Italy)

    2016-12-15

    In this paper, we review the results of some studies addressing the problem of tungsten contamination in implantation processes. For some tests, the implanter was contaminated by implantation of wafers with an exposed tungsten layer, resulting in critical contamination conditions. First, DLTS (deep level transient spectroscopy) measurements were calibrated to measure tungsten contamination in ion-implanted samples. DLTS measurements of tungsten-implanted samples showed that the tungsten concentration increases linearly with the dose up to a rather low dose (5 x 10{sup 10} cm{sup -2}). Tungsten deactivation was observed when the dose was further increased. Under these conditions, ToF-SIMS revealed tungsten at the wafer surface, showing that deactivation was due to surface segregation. DLTS calibration could therefore be obtained in the linear dose regime only. This calibration was used to evaluate the tungsten contamination in arsenic implantations. Ordinary operating conditions and critical contamination conditions of the equipment were compared. A moderate tungsten contamination was observed in samples implanted under ordinary operating conditions. This contamination was easily suppressed by a thin screen oxide. On the contrary, implantations in critical conditions of the equipment resulted in a relevant tungsten contamination, which could be reduced but not suppressed even by a relatively thick screen oxide (up to 150 Aa). A decontamination process consisting of high dose implantations of dummy wafers was tested for its efficiency to remove tungsten and titanium contamination. This process was found to be much more effective for titanium than for tungsten. Finally, DLTS proved to be much more sensitive that TXRF (total reflection X-ray fluorescence) in detecting tungsten contamination. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High Power Laser

    Science.gov (United States)

    Fujioka, Shinsuke; Zhang, Zhe; Ishihara, Kazuhiro; Shigemori, Keisuke; Hironaka, Youichiro; Johzaki, Tomoyuki; Sunahara, Atsushi; Yamamoto, Naoji; Nakashima, Hideki; Watanabe, Tsuguhiro; Shiraga, Hiroyuki; Nishimura, Hiroaki; Azechi, Hiroshi

    2013-01-01

    Laboratory generation of strong magnetic fields opens new frontiers in plasma and beam physics, astro- and solar-physics, materials science, and atomic and molecular physics. Although kilotesla magnetic fields have already been produced by magnetic flux compression using an imploding metal tube or plasma shell, accessibility at multiple points and better controlled shapes of the field are desirable. Here we have generated kilotesla magnetic fields using a capacitor-coil target, in which two nickel disks are connected by a U-turn coil. A magnetic flux density of 1.5 kT was measured using the Faraday effect 650 μm away from the coil, when the capacitor was driven by two beams from the GEKKO-XII laser (at 1 kJ (total), 1.3 ns, 0.53 or 1 μm, and 5 × 1016 W/cm2). PMID:23378905

  11. Flexible eddy current coil arrays

    International Nuclear Information System (INIS)

    Krampfner, Y.; Johnson, D.P.

    1987-01-01

    A novel approach was devised to overcome certain limitations of conventional eddy current testing. The typical single-element hand-wound probe was replaced with a two dimensional array of spirally wound probe elements deposited on a thin, flexible polyimide substrate. This provides full and reliable coverage of the test area and eliminates the need for scanning. The flexible substrate construction of the array allows the probes to conform to irregular part geometries, such as turbine blades and tubing, thereby eliminating the need for specialized probes for each geometry. Additionally, the batch manufacturing process of the array can yield highly uniform and reproducible coil geometries. The array is driven by a portable computer-based eddy current instrument, smartEDDY/sup TM/, capable of two-frequency operation, and offers a great deal of versatility and flexibility due to its software-based architecture. The array is coupled to the instrument via an 80-switch multiplexer that can be configured to address up to 1600 probes. The individual array elements may be addressed in any desired sequence, as defined by the software

  12. Coil geometry effects on scanning single-coil magnetic induction tomography

    Science.gov (United States)

    Feldkamp, Joe R.; Quirk, Stephen

    2017-09-01

    Alternative coil designs for single coil magnetic induction tomography are considered in this work, with the intention of improving upon the standard design used previously. In particular, we note that the blind spot associated with this coil type, a portion of space along its axis where eddy current generation can be very weak, has an important effect on performance. The seven designs tested here vary considerably in the size of their blind spot. To provide the most discerning test possible, we use laboratory phantoms containing feature dimensions similar to blind spot size. Furthermore, conductivity contrasts are set higher than what would occur naturally in biological systems, which has the effect of weakening eddy current generation at coil locations that straddle the border between high and low conductivity features. Image reconstruction results for the various coils show that coils with smaller blind spots give markedly better performance, though improvements in signal-to-noise ratio could alter that conclusion.

  13. A coil test facility for the cryogenic tests of the JT-60SA TF coils

    International Nuclear Information System (INIS)

    Chantant, M.; Genini, L.; Bayetti, P.; Millet, F.; Wanner, M.; Massaut, V.; Corte, A. Della; Ardelier-Desage, F.; Catherine-Dumont, V.; Dael, A.; Decool, P.; Donati, A.; Duchateau, J.L.; Garibaldi, P.; Girard, S.; Hatchressian, J.C.; Fejoz, P.; Jamotton, P.; Jourdheuil, L.; Juster, F.P.

    2011-01-01

    In the framework of the Broader Approach Activities, the EU will deliver to Japan the 18 superconducting coils, which constitute the JT-60SA Toroidal field magnet. These 18 coils, manufactured by France and Italy, will be cold tested before shipping to Japan. For this purpose, the European Joint Undertaking for ITER, the Development of Fusion Energy ('Fusion for Energy', F4E) and the European Voluntary Contributors are collaborating to design and set-up a coil test facility (CTF) and to perform the acceptance test of the 18 JT-60SA Toroidal Field (TF) coils. The test facility is designed to test one coil at a time at nominal current and cryogenic temperature. The test of the first coil of each manufacturer includes a quench triggered by increasing the temperature. The project is presently in the detailed design phase.

  14. Enhancing the adhesion of diamond films on cobalt-cemented tungsten carbide substrate using tungsten particles via MPCVD system

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Wen Chi [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Wu, Yu-Shiang, E-mail: yswu@cc.cust.edu.tw [Department of Mechanical Engineering, China University of Science and Technology, 245, Sec. 3, Yen-Chiu-Yuan Road, Nankang, Taipei 11581, Taiwan (China); Chang, Hou-Cheng [Department of Electronic Engineering, China University of Science and Technology, Taipei 11581, Taiwan (China); Lee, Yuan-Haun [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2011-03-24

    Graphical abstract: Display Omitted Research highlights: > Larger particles of tungsten led to larger diamond particles with improved crystallinity, covering the specimen with increased speed. > Adhesion was indicated to be a function of the gaps between the tungsten particles. > Diamond films pretreated with tungsten particles of 2.0 {mu}m showed the highest hardness of 27.78 GPa with good crystalline. - Abstract: To increase the adhesion of diamond films and avoid the negative effects of using cobalt, previous treatments have employed tungsten particles to cover the surface of the 6 wt.% cobalt-cemented tungsten carbide (WC-Co) substrate. The surface of the tungsten particles is transformed into W{sub 2}C and WC, which attracts and traps carbon. Through the process of nucleation, the carbon forms around the tungsten particles, thereby satisfying the conditions necessary for the formation of diamond film. Using Raman spectroscopy, we determined that diamond films of good quality with excellent adhesive properties and a hardness level as high as 27.78 GPa could be produced following pretreatment with 2.0 {mu}m tungsten particles. Rockwell indentation tests indicate that addition of tungsten particles promotes the interfacial adhesion of diamond films with WC-Co substrates. We determined that using smaller tungsten particles decreased the number of gaps and cavities on the surface of the substrate, thereby enhancing the adhesion of the diamond film.

  15. Ultrasonic ranking of toughness of tungsten carbide

    Science.gov (United States)

    Vary, A.; Hull, D. R.

    1983-01-01

    The feasibility of using ultrasonic attenuation measurements to rank tungsten carbide alloys according to their fracture toughness was demonstrated. Six samples of cobalt-cemented tungsten carbide (WC-Co) were examined. These varied in cobalt content from approximately 2 to 16 weight percent. The toughness generally increased with increasing cobalt content. Toughness was first determined by the Palmqvist and short rod fracture toughness tests. Subsequently, ultrasonic attenuation measurements were correlated with both these mechanical test methods. It is shown that there is a strong increase in ultrasonic attenuation corresponding to increased toughness of the WC-Co alloys. A correlation between attenuation and toughness exists for a wide range of ultrasonic frequencies. However, the best correlation for the WC-Co alloys occurs when the attenuation coefficient measured in the vicinity of 100 megahertz is compared with toughness as determined by the Palmqvist technique.

  16. Functional Analysis of the Bacteriophage T4 Rad50 Homolog (gp46) Coiled-coil Domain.

    Science.gov (United States)

    Barfoot, Tasida; Herdendorf, Timothy J; Behning, Bryanna R; Stohr, Bradley A; Gao, Yang; Kreuzer, Kenneth N; Nelson, Scott W

    2015-09-25

    Rad50 and Mre11 form a complex involved in the detection and processing of DNA double strand breaks. Rad50 contains an anti-parallel coiled-coil with two absolutely conserved cysteine residues at its apex. These cysteine residues serve as a dimerization domain and bind a Zn(2+) cation in a tetrathiolate coordination complex known as the zinc-hook. Mutation of the zinc-hook in bacteriophage T4 is lethal, indicating the ability to bind Zn(2+) is critical for the functioning of the MR complex. In vitro, we found that complex formation between Rad50 and a peptide corresponding to the C-terminal domain of Mre11 enhances the ATPase activity of Rad50, supporting the hypothesis that the coiled-coil is a major conduit for communication between Mre11 and Rad50. We constructed mutations to perturb this domain in the bacteriophage T4 Rad50 homolog. Deletion of the Rad50 coiled-coil and zinc-hook eliminates Mre11 binding and ATPase activation but does not affect its basal activity. Mutation of the zinc-hook or disruption of the coiled-coil does not affect Mre11 or DNA binding, but their activation of Rad50 ATPase activity is abolished. Although these mutants excise a single nucleotide at a normal rate, they lack processivity and have reduced repetitive exonuclease rates. Restricting the mobility of the coiled-coil eliminates ATPase activation and repetitive exonuclease activity, but the ability to support single nucleotide excision is retained. These results suggest that the coiled-coiled domain adopts at least two conformations throughout the ATPase/nuclease cycle, with one conformation supporting enhanced ATPase activity and processivity and the other supporting nucleotide excision. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Computational characterization of parallel dimeric and trimeric coiled-coils using effective amino acid indices.

    Science.gov (United States)

    Li, Chen; Wang, Xiao-Feng; Chen, Zhen; Zhang, Ziding; Song, Jiangning

    2015-02-01

    The coiled-coil, which consists of two or more α-helices winding around each other, is a ubiquitous and the most frequently observed protein-protein interaction motif in nature. The coiled-coil is known for its straightforward heptad repeat pattern and can be readily recognized based on protein primary sequences, exhibiting a variety of oligomer states and topologies. Due to the stable interaction formed between their α-helices, coiled-coils have been under close scrutiny to design novel protein structures for potential applications in the fields of material science, synthetic biology and medicine. However, their broader application requires an in-depth and systematic analysis of the sequence-to-structure relationship of coiled-coil folding and oligomeric formation. In this article, we propose a new oligomerization state predictor, termed as RFCoil, which exploits the most useful and non-redundant amino acid indices combined with the machine learning algorithm - random forest (RF) - to predict the oligomeric states of coiled-coil regions. Benchmarking experiments show that RFCoil achieves an AUC (area under the ROC curve) of 0.849 on the 10-fold cross-validation test using the training dataset and 0.855 on the independent test using the validation dataset, respectively. Performance comparison results indicate that RFCoil outperforms the four existing predictors LOGICOIL, PrOCoil, SCORER 2.0 and Multicoil2. Furthermore, we extract a number of predominant rules from the trained RF model that underlie the oligomeric formation. We also present two case studies to illustrate the applicability of the extracted rules to the prediction of coiled-coil oligomerization state. The RFCoil web server, source codes and datasets are freely available for academic users at http://protein.cau.edu.cn/RFCoil/.

  18. MR angiography after coiling of intracranial aneurysms

    NARCIS (Netherlands)

    Schaafsma, J.D.

    2012-01-01

    Introduction Endovascular occlusion with detachable coils has become an alternative treatment to neurosurgical clipping of intracranial aneurysms over the last two decades. Its minimal invasiveness is the most important advantage of this treatment compared to clipping. The disadvantage of occlusion

  19. 12 tesla test coil. Annual progress report

    International Nuclear Information System (INIS)

    1979-01-01

    The Plasma Fusion Center at MIT has been charged with responsibility for the design, development, fabrication and test operation of a Niobium-3-Tin Superconducting Test Coil. Research is described on DOE's 12 tesla coil demonstration program in which several one-meter diameter superconducting test coils will be inserted and tested in DOE's High Field Test Facility at the Lawrence Livermore Laboratories. The work was initiated at the start of FY 79. FY 79 saw the completion of our Preliminary Design and the initiation of three (3) subcontracts: (1) Westinghouse review of the Preliminary Design, (II) Supercon, Inc. development of a tubular copper matrix, Nb 3 Sn Superconductor and (III) Airco optimization of the LCP-W Nb 3 Sn superconductor for 12T service. In addition, Airco was charged with the production of a 1000 foot length of model 15,000A conductor. Coil winding exercises were initiated at the Everson Electric Company

  20. Superconducting magnet coils protection schemes and apparatus

    International Nuclear Information System (INIS)

    Kuchinski, V.; Bulgakov, S.; Larionov, B.; Mikhailov, N.; Silin, V.

    1995-01-01

    The circuitry of the superconducting coils protection system of the large fusion installations is analyzed. The requirements to the switches and several options of the circuit breakers and making switches with the data of their experimental study are discussed. (orig.)

  1. Design considerations for ITER toroidal field coils

    International Nuclear Information System (INIS)

    Kalsi, S.S.; Lousteau, D.C.; Miller, J.R.

    1987-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Europe, Japan, the Union of Soviet Socialist Republics (U.S.S.R.), and the United States. This paper describes a magnetic and mechanical design methodology for toroidal field (TF) coils that employs Nb 3 Sn superconductor technology. Coil winding is sized by using conductor concepts developed for the U.S. TIBER concept. Manifold concepts are presented for the complete cooling system. Also included are concepts for the coil structural arrangement. The effects of in-plane and out-of-plane loads are included in the design considerations for the windings and case. Concepts are presented for reacting these loads with a minimum amount of additional structural material. Concepts discussed in this paper could be considered for the ITER TF coils

  2. Fields analysis of TFR 604 copper coils

    International Nuclear Information System (INIS)

    Bourrier, P.; Dubois, C.; Deschamps, P.; Millard, A.

    1979-01-01

    This paper describes the analysis of the toroidal Bitter type coils of TFR-604 fusion device. Electric, magnetic and mechanical fields have been investigated. The major difficulty arises from the quite complicated shape of the structure

  3. Laser induced white lighting of tungsten filament

    Science.gov (United States)

    Strek, W.; Tomala, R.; Lukaszewicz, M.

    2018-04-01

    The sustained bright white light emission of thin tungsten filament was induced under irradiation with focused beam of CW infrared laser diode. The broadband emission centered at 600 nm has demonstrated the threshold behavior on excitation power. Its intensity increased non-linearly with excitation power. The emission occurred only from the spot of focused beam of excitation laser diode. The white lighting was accompanied by efficient photocurrent flow and photoelectron emission which both increased non-linearly with laser irradiation power.

  4. Umbilical coiling index & the perinatal outcome.

    Science.gov (United States)

    Devaru, Dakshayini; Thusoo, Meghna

    2012-02-01

    To correlate the perinatal outcome by noting the umbilical coiling index. The umbilical cords of the babies born to 100 women, who delivered either vaginally or by lower segment cesarean section, were examined and umbilical coiling index was calculated. There was significant correlation (p value 0.003) between the hypercoiled cords (UCI >90th percentile) and intrauterine growth restriction of the babies. Apgar score at 1 min UCI UCI UCI >10th percentile is associated with intra uterine growth restriction.

  5. Heterogeneous Superconducting Low-Noise Sensing Coils

    Science.gov (United States)

    Hahn, Inseob; Penanen, Konstantin I.; Ho Eom, Byeong

    2008-01-01

    A heterogeneous material construction has been devised for sensing coils of superconducting quantum interference device (SQUID) magnetometers that are subject to a combination of requirements peculiar to some advanced applications, notably including low-field magnetic resonance imaging for medical diagnosis. The requirements in question are the following: The sensing coils must be large enough (in some cases having dimensions of as much as tens of centimeters) to afford adequate sensitivity; The sensing coils must be made electrically superconductive to eliminate Johnson noise (thermally induced noise proportional to electrical resistance); and Although the sensing coils must be cooled to below their superconducting- transition temperatures with sufficient cooling power to overcome moderate ambient radiative heat leakage, they must not be immersed in cryogenic liquid baths. For a given superconducting sensing coil, this combination of requirements can be satisfied by providing a sufficiently thermally conductive link between the coil and a cold source. However, the superconducting coil material is not suitable as such a link because electrically superconductive materials are typically poor thermal conductors. The heterogeneous material construction makes it possible to solve both the electrical- and thermal-conductivity problems. The basic idea is to construct the coil as a skeleton made of a highly thermally conductive material (typically, annealed copper), then coat the skeleton with an electrically superconductive alloy (typically, a lead-tin solder) [see figure]. In operation, the copper skeleton provides the required thermally conductive connection to the cold source, while the electrically superconductive coating material shields against Johnson noise that originates in the copper skeleton.

  6. Coil tests and superconductor code calculations for the stellarator W7-X coils

    Science.gov (United States)

    Baldzuhn, J.; Ehmler, H.; Hoelting, A.; Hertel, K.; Sborchia, C.; Genini, L.; Schild, T.

    2006-07-01

    For the stellarator Wendelstein 7-X, a plasma fusion experiment, the performance of the superconducting coils is tested in a cryogenic test facility. Focus is on the quench behaviour of these coils. Some key data of the coils are given here. The coil quench data, obtained during the tests, are compared to GANDALF code calculations. GANDALF is a one-dimensional finite elements code for the simulation of the quench properties of superconducting CICC cables. Good consistency between measurement and calculation is found for the development of the resistive voltage and temperature increase during the quench.

  7. Magnetic resonance dacryocystography: comparison between conventional surface coils and microscopic coils

    International Nuclear Information System (INIS)

    Abreu Junior, Luiz de; Wolosker, Angela Maria Borri; Borri, Maria Lucia; Galvao Filho, Mario de Melo; Hartmann, Luiz Guilherme de Carvalho; D'Ippolito, Giuseppe; Castro, Claudio Campi de

    2008-01-01

    Objective: Magnetic resonance imaging has been utilized in the evaluation of the lacrimal apparatus with some advantages over conventional dacryocystography. The present study was aimed at acquiring high resolution images utilizing microscopic coils for evaluating typical structures of the lacrimal apparatus as compared with the findings observed with conventional surface coils. Materials and methods: Five asymptomatic volunteers with no history of epiphora were submitted to high-field magnetic resonance imaging with microscopic and conventional surface coils, and STIR sequence after instillation of saline solution. The definition of normal anatomic structures of lacrimal apparatuses was compared utilizing conventional and microscopic surface coils. Based on a consensual scoring system, the mean values for each structure were calculated by two observers. Results: In 90% of cases, higher scores were attributed to images acquired with the microscopic coil. On average, a 1.17 point increase was observed in the scoring of anatomic structures imaged with the microscopic coil. Additionally, a subjective improvement was observed in the signal-to-noise ratio with the microscopic coil. Conclusion: Magnetic resonance dacryocystography with microscopic coils is the appropriate method for evaluating the lacrimal apparatus, providing images with better quality as compared with those acquired with conventional surface coils. (author)

  8. Coiled coil interactions for the targeting of liposomes for nucleic acid delivery.

    Science.gov (United States)

    Oude Blenke, Erik E; van den Dikkenberg, Joep; van Kolck, Bartjan; Kros, Alexander; Mastrobattista, Enrico

    2016-04-28

    Coiled coil interactions are strong protein-protein interactions that are involved in many biological processes, including intracellular trafficking and membrane fusion. A synthetic heterodimeric coiled-coil forming peptide pair, known as E3 (EIAALEK)3 and K3 (KIAALKE)3 was used to functionalize liposomes encapsulating a splice correcting oligonucleotide or siRNA. These peptide-functionalized vesicles are highly stable in solution but start to cluster when vesicles modified with complementary peptides are mixed together, demonstrating that the peptides quickly coil and crosslink the vesicles. When one of the peptides was anchored to the cell membrane using a hydrophobic cholesterol anchor, vesicles functionalized with the complementary peptide could be docked to these cells, whereas non-functionalized cells did not show any vesicle tethering. Although the anchored peptides do not have a downstream signaling pathway, microscopy pictures revealed that after four hours, the majority of the docked vesicles were internalized by endocytosis. Finally, for the first time, it was shown that the coiled coil assembly at the interface between the vesicles and the cell membrane induces active uptake and leads to cytosolic delivery of the nucleic acid cargo. Both the siRNA and the splice correcting oligonucleotide were functionally delivered, resulting respectively in the silencing or recovery of luciferase expression in the appropriate cell lines. These results demonstrate that the docking to the cell by coiled coil interaction can induce active uptake and achieve the successful intracellular delivery of otherwise membrane impermeable nucleic acids in a highly specific manner.

  9. COMPASS magnetic field coils and structure systems

    International Nuclear Information System (INIS)

    Crossland, R.T.; Booth, J.A.; Hayward, R.J.; Keogh, P.; Pratt, A.P.

    1987-01-01

    COMPASS is a new experimental toroidal assembly of compact design and with a wide range of physics objectives. It is required to operate either as a Tokamak or as a Reversed Field Pinch with interchangeable circular and dee-section vacuum vessels. The Toroidal field is produced by 16 rectangular coils of 4 turns with tapered conductors on the inside which nest together to form a vault to resist the centering forces. The coils are designed to produce a maximum field on axis of 2.1T which requires a current of 91 kA per turn. Two central solenoids and five pairs of coils symmetrically positioned above and below the machine equator provide the poloidal field. Both coil systems are supported form a mechanical support structure which surrounds the machine. This is primarily designed to resist out-of-plane forces on the TF coils but also acts as the base support for the PF coils and vacuum vessels. An illustration of the COMPASS Load Assembly is given and shows the D-shaped vacuum vessel, the major components and the various field windings

  10. ISX toroidal field coil design and analysis

    International Nuclear Information System (INIS)

    Hussung, R.O.; Lousteau, D.C.; Johnson, N.E.; Weed, R.A.

    1975-01-01

    Structural design and analysis aspects of the toroidal field coils for the Impurity Study Experiment (ISX) tokamak are discussed. The overall mechanical design of ISX is predicated on the ability to remove the upper segment of the toroidal field coils to allow access to the toroidal vacuum vessel. The high current, 120 kA, capability of the new 74 MW power supply, coupled with the modest field requirement of ISX, allows the use of room temperature copper coils. Seventy-two turns, grouped into 18 coils, generate a magnet field of 18 kG at the major radius of 90 cm. Finite element structural analysis codes were utilized to determine the distribution of stresses and deflections around a typical turn. Initial material distribution on a coil was sized using the two-dimensional program FEATS. The resulting coil design was then coupled to the center bucking and out-of-plane restraint systems utilizing the NASTRAN code. The boundary conditions for the analytical models used in the two programs were then iterated, reaching satisfactory agreement as to stress contours and location for the joints

  11. Poloidal coils for the Large Helical Device (LHD)

    International Nuclear Information System (INIS)

    Takahata, K.; Satow, T.; Iwamoto, A.

    1996-01-01

    Poloidal coil system of the Large Helical Device (LHD) consists of three pairs of circular solenoids; Inner Vertical (IV), Inner shaping (IS) and Outer Vertical (OV) coils. Forced flow cooling is adopted as a cooling method of the poloidal coils. The conductors of the poloidal coils are Nb-Ti cable-in-conduit types. Each coil consists of eight double-pancake coils, and coolant flows in parallel from the inner turns to the outer turns. A superconducting joint technique is adopted in the joints among the double-pancake coils. Miniaturized joints and severe quality control bring the reduction of error field. (author)

  12. Ab initio study of interaction of helium with edge and screw dislocations in tungsten

    International Nuclear Information System (INIS)

    Bakaev, Alexander; Terentyev, Dmitry; Grigorev, Petr; Posselt, Matthias; Zhurkin, Evgeny E.

    2017-01-01

    Highlights: • Both screw (SD) and edge dislocations (ED) offer trapping sites for He in tungsten. • He atom is attracted to SD and ED with the interaction energy of ~1.3 and ~3.0 eV, respectively. • The attraction of He to dislocations can contribute to the nucleation of He clusters at high T. - Abstract: The interaction of a single He atom with edge and screw dislocations in tungsten has been studied using ab initio calculations. It was revealed that He is strongly attracted to the core of both dislocations with the interaction energy of −1.3 and −3.0 eV for screw and edge dislocations, respectively, which corresponds to the detrapping temperature in thermal desorption spectroscopy experiments of about 500 K and 1050 K, respectively. The lowest energy positions for He around the dislocation cores are identified and the atomic structures are rationalized on the basis of elasticity theory considerations. Both types of dislocations exhibit a higher binding energy for He as compared to the He-He binding (known as self-trapping) and are weaker traps as compared to a single vacancy. It is, thus, concluded that the strong attraction to dislocation lines can contribute to the nucleation of He clusters in the temperature range which already excludes He self-trapping.

  13. Ab initio study of interaction of helium with edge and screw dislocations in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Bakaev, Alexander, E-mail: bakaev_vic@mail.ru [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol 2400 (Belgium); Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation); Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden (Germany); Terentyev, Dmitry [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol 2400 (Belgium); Grigorev, Petr [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol 2400 (Belgium); Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation); Ghent University, Applied Physics EA17 FUSION-DC, St. Pietersnieuwstraat, 41 B4, B-9000 Gent (Belgium); Posselt, Matthias [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden (Germany); Zhurkin, Evgeny E. [Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation)

    2017-02-15

    Highlights: • Both screw (SD) and edge dislocations (ED) offer trapping sites for He in tungsten. • He atom is attracted to SD and ED with the interaction energy of ~1.3 and ~3.0 eV, respectively. • The attraction of He to dislocations can contribute to the nucleation of He clusters at high T. - Abstract: The interaction of a single He atom with edge and screw dislocations in tungsten has been studied using ab initio calculations. It was revealed that He is strongly attracted to the core of both dislocations with the interaction energy of −1.3 and −3.0 eV for screw and edge dislocations, respectively, which corresponds to the detrapping temperature in thermal desorption spectroscopy experiments of about 500 K and 1050 K, respectively. The lowest energy positions for He around the dislocation cores are identified and the atomic structures are rationalized on the basis of elasticity theory considerations. Both types of dislocations exhibit a higher binding energy for He as compared to the He-He binding (known as self-trapping) and are weaker traps as compared to a single vacancy. It is, thus, concluded that the strong attraction to dislocation lines can contribute to the nucleation of He clusters in the temperature range which already excludes He self-trapping.

  14. Tungsten-doped vanadium oxides prepared by direct liquid injection MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Vernardou, D.; Pemble, M.E.; Sheel, D.W. [Institute for Materials Research, University of Salford, Cockroft Building, Salford, Manchester (United Kingdom)

    2007-04-15

    This paper examines the effect of doping on vanadium(IV) oxide (VO{sub 2} (M)) coatings on glass, using atmospheric-pressure, direct liquid injection metal-organic (DLI-MO)CVD, which potentially may find application as part of smart glazing units. It is found that tungsten-doped VO{sub 2} (M) deposited on commercial SiO{sub 2}-precoated glass using a 0.1 M solution of vanadyl(IV) acetylacetonate (VO(acac){sub 2}) and tungsten (VI) ethoxide (W(OC{sub 2}H{sub 5}){sub 5}) in methanol shows a reduction in thermochromic transition temperature (T{sub c}) from 60 C in VO{sub 2} (M) to 35 C in V{sub 0.98}W{sub 0.02}O{sub 2}. This finding is discussed in terms of various atomic percentages of tungsten and oxygen flow rates. The crystallinity, composition, morphology, optical properties, uniformity, and oxidation phase of the films are evaluated by X-ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS), scanning electron microscopy (SEM), IR reflectance-transmittance, and Raman spectroscopy, respectively. The relationship between dopant concentration and T{sub c} in the most applicable range for solar window coatings is refined by formation of a single-phase film and precise determination of these parameters. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  15. Suspended tungsten-based nanowires with enhanced mechanical properties grown by focused ion beam induced deposition

    Science.gov (United States)

    Córdoba, Rosa; Lorenzoni, Matteo; Pablo-Navarro, Javier; Magén, César; Pérez-Murano, Francesc; María De Teresa, José

    2017-11-01

    The implementation of three-dimensional (3D) nano-objects as building blocks for the next generation of electro-mechanical, memory and sensing nano-devices is at the forefront of technology. The direct writing of functional 3D nanostructures is made feasible by using a method based on focused ion beam induced deposition (FIBID). We use this technique to grow horizontally suspended tungsten nanowires and then study their nano-mechanical properties by three-point bending method with atomic force microscopy. These measurements reveal that these nanowires exhibit a yield strength up to 12 times higher than that of the bulk tungsten, and near the theoretical value of 0.1 times the Young’s modulus (E). We find a size dependence of E that is adequately described by a core-shell model, which has been confirmed by transmission electron microscopy and compositional analysis at the nanoscale. Additionally, we show that experimental resonance frequencies of suspended nanowires (in the MHz range) are in good agreement with theoretical values. These extraordinary mechanical properties are key to designing electro-mechanically robust nanodevices based on FIBID tungsten nanowires.

  16. Surface composition of carburized tungsten trioxide and its catalytic activity

    International Nuclear Information System (INIS)

    Nakazawa, M.; Okamoto, H.

    1985-01-01

    The surface composition and electronic structure of carburized tungsten trioxide are investigated using x-ray photoelectron spectroscopy (XPS). The relationship between the surface composition and the catalytic activity for methanol electro-oxidation is clarified. The tungsten carbide concentration in the surface layer increases with the carburization time. The formation of tungsten carbide enhances the catalytic activity. On the other hand, the presence of free carbon or tungsten trioxide in the surface layer reduces the activity remarkably. It is also shown that, the higher the electronic density of states near the Fermi level, the higher the catalytic activity

  17. Radiative capture of slow electrons by tungsten surface

    International Nuclear Information System (INIS)

    Artamonov, O.M.; Belkina, G.M.; Samarin, S.N.; Yakovlev, I.I.

    1987-01-01

    Isochromatic spectra of radiation capture of slow electrons by the surface of mono- and polycrystal tungsten recorded on 322 and 405 nm wave lengths are presented. The effect of oxygen adsorption on isochromates of the (110) face of tungsten monocrystal is investigated. The obtained isochromatic spectra are compared with energy band structure of tungsten. Based on the analysis of the obtained experimental results it is assumed that optical transition to the final state at the energy of 7.3 eV relatively to Fermi level is conditioned by surface states of the tungsten face (110)

  18. On tungsten technologies and qualification for DEMO

    International Nuclear Information System (INIS)

    Laan, J. van der; Hegeman, H.; Wouters, O.; Luzginova, N.; Jonker, B.; Van der Marck, S.; Opschoor, J.; Wang, J.; Dowling, G.; Stuivenga, M.; Carton, E.

    2009-01-01

    Tungsten alloys are considered prime candidates for the in-vessel components directly facing the plasma. For example, in the HEMJ helium cooled divertor design tiles may be operated at temperatures up to 1700 deg. C, supported by a structure partially consisting of tungsten at temperatures from 600 to 1000 deg. C, and connected to a HT steel structure. The tungsten armoured primary wall is operated at 500-900 deg. C. Irradiation doses will be few tens dpa at minimum, but FPR requirements for plants availability will stretch these targets. Recently injection moulding technology was developed for pure tungsten and representative parts were manufactured for ITER monobloc divertors and DEMO HEMJ thimbles. The major advantages for this technology are the efficient use of material feedstock/resources and the intrinsic possibility to produce near-finished product, avoiding machining processes that are costly and may introduce surface defects deteriorating the component in service performance. It is well suited for mass-manufacturing of components as well known in e.g. lighting industries. To further qualify this material technology various specimen types were produced with processing parameters identical to the components, and tested successfully, showing the high potential for implementation in (fusion) devices. Furthermore, the engineering approach can clearly be tailored away from conventional design and manufacturing technologies based on bulk materials. The technology is suitable for shaping of new W-alloys and W-ODS variants as well. Basically this technology allows a particular qualification trajectory. There is no need to produce large batches of material during the material development and optimization stage. For the verification of irradiation behaviour in the specific neutron spectra, there is a further attractive feature to use e.g. isotope tailored powders to adjust to available irradiation facilities like MTR's. In addition the ingrowth of transmutation

  19. HydroSoft coil versus HydroCoil for endovascular aneurysm occlusion study: A single center experience

    International Nuclear Information System (INIS)

    Guo Xinbin; Fan Yimu; Zhang Jianning

    2011-01-01

    Background and purpose: The HydroCoil Embolic System (HES) was developed to reduce recurrences of aneurysms relative to platinum coils. But the HydroCoil Embolic System was characterized with many limitations. The manufacturer had recognized the challenge and recently a new design of hydrogel-coated coil-HydroSoft has become available in the market as the new generation HydroCoil. We reported our initial experience using HydroSoft coil versus HydroCoil in our center. Methods: 75 aneurysms embolized primarily using HydroSoft Coils from July 2008 to May 2009 were compared with 66 volume- and shape-matched aneurysms treated with HydroCoils from March 2006 to August 2008. Outcome measures included length and number of coils used, contrast volume, and length of hospital stay. During embolization, a stable framework was first established with bare coils, and hydrogel-coated coils were used subsequently to increase the packing density. Follow-up angiographic results 6 months after treatment were evaluated among some of the patients. Results: Successful coil embolization was achieved in all patients. There were no differences in average total coil length used per aneurysm. There were no differences in length of hospital stay and packing density. HydroSoft coils were more suitable using as the finishing or final coil. HydroSoft coil decreased the procedure-related retreated rates, and aneurysm packing was finished with soft, flexible HydroSoft coil and decreased the neck remnant rates. Follow-up angiography in HydroSoft-treated patients at 6 months revealed aneurysm stability without significant residual neck. Conclusions: HydroSoft coil allowed us to deploy coated coils with good packing density. A slight expansion of these coils at the neck can be expected to reduce neck remnant and potentially inhibit recurrence.

  20. Tungsten Data for Current and Future Uses in Fusion and Plasma Science

    Directory of Open Access Journals (Sweden)

    Peter Beiersdorfer

    2015-06-01

    Full Text Available We give a brief overview of our recent experimental and theoretical work involving highly charged tungsten ions in high-temperature magnetically confined plasmas. Our work includes X-ray and extreme ultraviolet spectroscopy, state-of-the-art structure calculations, the generation of dielectronic recombination rate coefficients, collisional-radiative spectral modeling and assessments of the atomic data need for X-ray diagnostics monitoring of the parameters of the core plasma of future tokamaks, such as ITER. We give examples of our recent results in these areas.

  1. Orientational acoustic emission induced by electrons moving near a crystallographic axis in tungsten

    International Nuclear Information System (INIS)

    Alejnik, A.N.; Vorob'ev, S.A.; Zabaev, V.N.; Il'in, S.I.; Kalinin, B.N.; Potylitsyn, A.P.

    1988-01-01

    The measurement results of oriented acoustic irradiation of electrons with E 0 =900 MeV energies during their axial (along the direction) motion in tungsten monocrystal of 0.29 mm thickness are presented. The model describing the excitation of elastic waves in crystals as the consequence of the momentum transferred to the crystal by electrons during their motion near the axis is suggested. The model describes quite fully main laws of oriented acoustic irradiation. It permits to receive the information about the potential of the atom chain

  2. Versatile fill coils: initial experience as framing coils for oblong aneurysms. A technical case report.

    Science.gov (United States)

    Osanai, Toshiya; Bain, Mark; Hui, Ferdinand K

    2014-01-01

    Coil embolization of oblong aneurysms is difficult because the majority of commercially available coils are manufactured with a helical or spherical tertiary structure. While adopting framing strategies for oblong aneurysms (aspect ratio ≥ 2: 1), traditional coils may be undersized in the long axis but oversized in the short axis, resulting in increased aneurysmal wall stress, risk of re-rupture, and difficulty creating a basket that respects the aneurysmal neck. We review three cases in which versatile filling coils (VFCs) were used as the initial coils for embolization of oblong aneurysms and report coil distribution characteristics and clinical outcomes. Packing density after VFC implantation was assessed using the software AngioSuite-Neuro edition and AngioCalc. a 58-year-old woman experienced a subarachnoid hemorrhage from a ruptured anterior communicating artery aneurysm (7.5 mm × 3.5 mm). A 3-6 mm × 15 cm VFC was selected as the first coil because the flexibility of its wave-loop structure facilitates framing of an irregularly shaped aneurysm. The loop portions of the structures tend to be pressed to the extremes of the aneurysmal sac by the wave component. The VFC was introduced smoothly into the aneurysmal sac without catheter kickback. We were then able to insert detachable filling coils without any adjunctive technique and achieved complete occlusion. Complete occlusion without severe complications was achieved in all three cases in our study. Average packing density after the first coil was 15.63%. VFC coils may have a specific role in framing oblong aneurysms given their complex loop-wave design, allowing spacing of the coils at the dome and neck while keeping sac stress to a minimum.

  3. Structural Correlation of the Neck Coil with the Coiled-coil (CC1)-Forkhead-associated (FHA) Tandem for Active Kinesin-3 KIF13A.

    Science.gov (United States)

    Ren, Jinqi; Huo, Lin; Wang, Wenjuan; Zhang, Yong; Li, Wei; Lou, Jizhong; Xu, Tao; Feng, Wei

    2016-02-12

    Processive kinesin motors often contain a coiled-coil neck that controls the directionality and processivity. However, the neck coil (NC) of kinesin-3 is too short to form a stable coiled-coil dimer. Here, we found that the coiled-coil (CC1)-forkhead-associated (FHA) tandem (that is connected to NC by Pro-390) of kinesin-3 KIF13A assembles as an extended dimer. With the removal of Pro-390, the NC-CC1 tandem of KIF13A unexpectedly forms a continuous coiled-coil dimer that can be well aligned into the CC1-FHA dimer. The reverse introduction of Pro-390 breaks the NC-CC1 coiled-coil dimer but provides the intrinsic flexibility to couple NC with the CC1-FHA tandem. Mutations of either NC, CC1, or the FHA domain all significantly impaired the motor activity. Thus, the three elements within the NC-CC1-FHA tandem of KIF13A are structurally interrelated to form a stable dimer for activating the motor. This work also provides the first direct structural evidence to support the formation of a coiled-coil neck by the short characteristic neck domain of kinesin-3. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Structural Correlation of the Neck Coil with the Coiled-coil (CC1)-Forkhead-associated (FHA) Tandem for Active Kinesin-3 KIF13A*

    Science.gov (United States)

    Ren, Jinqi; Huo, Lin; Wang, Wenjuan; Zhang, Yong; Li, Wei; Lou, Jizhong; Xu, Tao; Feng, Wei

    2016-01-01

    Processive kinesin motors often contain a coiled-coil neck that controls the directionality and processivity. However, the neck coil (NC) of kinesin-3 is too short to form a stable coiled-coil dimer. Here, we found that the coiled-coil (CC1)-forkhead-associated (FHA) tandem (that is connected to NC by Pro-390) of kinesin-3 KIF13A assembles as an extended dimer. With the removal of Pro-390, the NC-CC1 tandem of KIF13A unexpectedly forms a continuous coiled-coil dimer that can be well aligned into the CC1-FHA dimer. The reverse introduction of Pro-390 breaks the NC-CC1 coiled-coil dimer but provides the intrinsic flexibility to couple NC with the CC1-FHA tandem. Mutations of either NC, CC1, or the FHA domain all significantly impaired the motor activity. Thus, the three elements within the NC-CC1-FHA tandem of KIF13A are structurally interrelated to form a stable dimer for activating the motor. This work also provides the first direct structural evidence to support the formation of a coiled-coil neck by the short characteristic neck domain of kinesin-3. PMID:26680000

  5. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    Science.gov (United States)

    Airapetov, A. A.; Begrambekov, L. B.; Buzhinskiy, O. I.; Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A.

    2015-12-01

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400-1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  6. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    Energy Technology Data Exchange (ETDEWEB)

    Airapetov, A. A.; Begrambekov, L. B., E-mail: lbb@plasma.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Buzhinskiy, O. I. [State Research Center Troitsk Institute for Innovation and Fusion Research (TRINITI) (Russian Federation); Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400–1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  7. Time-of-flight atom probe measurements on Ni3Al and Co3W

    NARCIS (Netherlands)

    Soer, W.A.; Bronsveld, P.M.; Hosson, J.Th.M. De

    2003-01-01

    In this study, a VG FIM100 was taken into operation, consisting of a field-ion microscope (FIM), a time-of-flight atom probe (TOFAP) and an imaging atom probe. A tungsten specimen was used to calibrate the conversion of flight times to m/n values. The resulting relative mass resolution of the TOFAP

  8. Comparison of surface coil and knee coil for evaluation of the patellar cartilage by MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Steen, M. van den; Maeseneer, M. de E-mail: midema@belgacom.net; Hoste, M.; Vanderdood, K.; Ridder, F. de; Osteaux, M

    2003-07-01

    Purpose: The aim of this work was to compare the knee coil and the surface coil for the visualisation of the patellar cartilage. Materials and methods: In 28 patients (17 women, 11 men) with an average age of 40 years (range 14-76) with knee pain MR was performed. Transverse images were obtained using a fast spin echo proton density weighted sequence on a Philips Gyroscan Intera 1.5 T clinical system. Transverse images were obtained at the level of the patellar cartilage using both the surface and the knee coil. All images were evaluated by consensus of two radiologists. They evaluated a number of quality criteria on a 4-point scale. Criteria for artefacts were also graded on a 4-point scale. Results: For the visualisation of fluid there was no significant difference between the knee coil and the surface coil (P=0.021). For all other criteria regarding image quality and presence of imaging artefacts there was a significant difference between both coils (P<0.001) with the surface coil obtaining the better result. Conclusion: The use of the surface coil in the visualisation of the patellar cartilage can be recommended at knee MR.

  9. Immunogenicity of coiled-coil based drug-free macromolecular therapeutics

    Czech Academy of Sciences Publication Activity Database

    Kverka, Miloslav; Hartley, J.M.; Chu, T.W.; Yang, J.; Heidchen, R.; Kopeček, J.

    2014-01-01

    Roč. 35, č. 2 (2014), s. 5886-5896 ISSN 1616-0177 R&D Projects: GA MŠk(CZ) EE2.3.30.0003 Grant - others:NIH(US) GM095606 Institutional support: RVO:61388971 Keywords : coiled-coil * enantiomers * HPMA copolymer Subject RIV: EC - Immunology

  10. The influence of fusion sequences on the thermal stabilities of coiled-coil proteins

    Czech Academy of Sciences Publication Activity Database

    Xu, C.; Joss, L.; Wang, C.; Pechar, Michal; Kopeček, J.

    2002-01-01

    Roč. 2, č. 8 (2002), s. 395-401 ISSN 1616-5187 R&D Projects: GA AV ČR KSK4055109 Grant - others:GA-(US) CA88047 Keywords : coiled -coil * fusion sequence * oligomers Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.792, year: 2002

  11. Additional coiling of previously coiled cerebral aneurysms : Clinical and angiographic results

    NARCIS (Netherlands)

    Slob, MJ; Sluzewski, M; van Rooij, WJ; Roks, G; Rinkel, GJE

    BACKGROUND AND PURPOSE: Some cerebral aneurysms that have been coiled reopen over time and additional treatment should be considered to reduce the risk of recurrent hemorrhage. Our purpose was to assess procedural complications and angiographic results of additional coiling in patients with

  12. Advanced approaches for the characterization of a de novo designed antiparallel coiled coil peptide

    NARCIS (Netherlands)

    Pagel, K; Seeger, K; Seiwert, B; Villa, Alessandra; Mark, AE; Berger, S; Koksch, B

    2005-01-01

    We report here an advanced approach for the characterization of the folding pattern of a de novo designed antiparallel coiled coil peptide by high-resolution methods. Incorporation of two fluorescence labels at the C- and N-terminus of the peptide chain as well as modi. cation of two hydrophobic

  13. Associative diblock copolymers of poly(ethylene glycol) and coiled-coil peptides

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Kopečková, P.; Joss, L.; Kopeček, J.

    2002-01-01

    Roč. 2, č. 5 (2002), s. 199-206 ISSN 1616-5187 R&D Projects: GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : coiled -coil peptides * diblock copolymers * poly(ethylene glycol) Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.792, year: 2002

  14. Structural Stability of the Coiled-Coil Domain of Tumor Susceptibility Gene (TSG)-101.

    Science.gov (United States)

    White, Jordan T; Toptygin, Dmitri; Cohen, Randy; Murphy, Natalie; Hilser, Vincent J

    2017-09-05

    The tumor susceptibility gene-101 coiled coil domain (TSG101cc) is an integral component of the endosomal maturation machinery and cytokinesis, and also interacts with several transcription factors. The TSG101cc has been crystallized as a homotetramer but is known to interact with two of its binding partners as a heterotrimer. To investigate this apparent discrepancy, we examined the solution thermodynamics of the TSG101cc. Here, we use circular dichroism, differential scanning calorimetry, analytical ultracentrifugation, fluorescence, and structural thermodynamic analysis to investigate the structural stability and the unfolding of the TSG101cc. We demonstrate that TSG101cc exists in solution primarily as a tetramer, which unfolds in a two-state manner. Surprisingly, no homodimeric or homotrimeric species were detected. Structural thermodynamic analysis of the homotetrameric structure and comparison with known oligomeric coiled-coils suggests that the TSG101cc homotetramer is comparatively unstable on a per residue basis. Furthermore, the homotrimeric coiled-coil is predicted to be much less stable than the functional heterotrimeric coiled-coil in the endosomal sorting complex required for transport 1 (ESCRT1). These results support a model whereby the tetramer-monomer equilibrium of TSG101 serves as the cellular reservoir of TSG101, which is effectively outcompeted when its binding partners are present and the heteroternary complex can form.

  15. Coiled-Coil Domains of SUN Proteins as Intrinsic Dynamic Regulators.

    Science.gov (United States)

    Nie, Si; Ke, Huimin; Gao, Feng; Ren, Jinqi; Wang, Mingzhu; Huo, Lin; Gong, Weimin; Feng, Wei

    2016-01-05

    SUN proteins are the core components of LINC complexes that span across the nuclear envelope for nuclear positioning and migration. SUN proteins contain at least one predicted coiled-coil domain preceding the SUN domain. Here, we found that the two coiled-coil domains (CC1 and CC2) of SUN2 exhibit distinct oligomeric states. CC2 is a monomer in solution. The structure of the CC2-SUN monomer revealed that CC2 unexpectedly folds as a three-helix bundle that interacts with the SUN domain and locks it in an inactive conformation. In contrast, CC1 is a trimer. The structure of the CC1 trimer demonstrated that CC1 is an imperfect coiled coil for the trimerization and activation of the SUN domain. Modulations of CC1 and CC2 dictate different oligomeric states of CC1-CC2-SUN, which is essential for LINC complex formation. Thus, the two coiled-coil domains of SUN2 act as the intrinsic dynamic regulators for controlling the SUN domain activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins

    NARCIS (Netherlands)

    Sinka, Rita; Gillingham, Alison K.; Kondylis, Vangelis; Munro, Sean

    2008-01-01

    Vesicles and other carriers destined for the Golgi apparatus must be guided to the correct cisternae. Golgins, long coiled-coil proteins that localize to particular Golgi subdomains via their C termini, are candidate regulators of vesicle sorting. In this study, we report that the GRIP domain

  17. Atom probe tomography analysis of WC powder.

    Science.gov (United States)

    Weidow, Jonathan

    2013-09-01

    A tantalum doped tungsten carbide powder, (W,Ta)C, was prepared with the purpose to maximise the amount of Ta in the hexagonal mixed crystal carbide. Atom probe tomography (APT) was considered to be the best technique to quantitatively measure the amount of Ta within this carbide. As the carbide powder consisted in the form of very small particles (WC-Co based cemented carbide specimen. With the use of a laser assisted atom probe, it was shown that the method is working and the Ta content of the (W,Ta)C could be measured quantitatively. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Atom optics

    International Nuclear Information System (INIS)

    Balykin, V. I.; Jhe, W.

    1999-01-01

    Atom optics, in analogy to neutron and electron optics, deals with the realization of as a traditional elements, such as lenes, mirrors, beam splitters and atom interferometers, as well as a new 'dissipative' elements such as a slower and a cooler, which have no analogy in an another types of optics. Atom optics made the development of atom interferometer with high sensitivity for measurement of acceleration and rotational possible. The practical interest in atom optics lies in the opportunities to create atom microprobe with atom-size resolution and minimum damage of investigated objects. (Cho, G. S.)

  19. The Nup62 Coiled-Coil Motif Provides Plasticity for Triple-Helix Bundle Formation.

    Science.gov (United States)

    Dewangan, Pravin S; Sonawane, Parshuram J; Chouksey, Ankita R; Chauhan, Radha

    2017-06-06

    The central transport channel of the vertebrate nuclear pore complex (NPC) consists of nucleoporins: Nup62, Nup54, and Nup58. The coiled-coil domains in α-helical regions of these nucleoporins are thought to be crucial for several protein-protein interactions in the NPC subcomplexes. In this study, we determined the crystal structure of the coiled-coil domain of rat Nup62 fragment (residues 362-425) to 2.4 Å resolution. The crystal structure shows the conserved coiled-coil domain as a parallel three-helix bundle for the Nup62(362-425) fragment. On the basis of our size exclusion chromatography coupled to multiangle light scattering analysis and glutaraldehyde cross-linking experiments, we conclude that the Nup62(362-425) fragment displays dynamic behavior in solution and can also exist in either homodimeric or homotrimeric states. Our comparative analysis of the rat Nup62(362-425) homotrimeric structure with previously reported heterotrimeric structures [rat Nup62(362-425)·Nup54(346-407) and Xenopus Nup62(358-485)·Nup54(315-450)·Nup58(283-406) complexes] demonstrates the structural basis for parallel triple-helix bundle formation for Nup62 with different partners. Moreover, we show that the coiled-coil domain of Nup62 is sufficient for interaction with the coiled-coil domain of rat Exo70, a protein in an exocyst complex. On the basis of these observations, we suggest the plausible chain replacement mechanism that yields to diverse protein assemblies with Nup62. In summary, the coiled-coil motif present in Nup62 imparts the ability to form a homotrimer and heterotrimers either with Nup54 or with Nup54-Nup58 within the NPCs as well as with Exo70 beyond the NPCs. These complexes of Nup62 suggest the crucial role of the coiled-coil motifs in providing plasticity to various modular assemblies.

  20. Structural analysis (Siemens) of the Euratom coil for the large coil task

    International Nuclear Information System (INIS)

    Maurer, A.

    1981-01-01

    The structural analysis of coil and casing of large superconducting magnets is essential to ensure the safety in the design and is important for the concept of even larger magnet units in future projects. For the Large Coil Task calculations are performed by the finite element computer code NASTRAN to obtain the stress on the various structural parts under thermal and magnetic loads. The mechanical behavior of the coil and casing under normal as well as alternative load conditions is discussed. Plots demonstrate the state of deformation belonging to the single structure parts. The results for the components of normal and shear stresses in the coil as well as for the equivalent stresses in the casing are summarized. The finite element model used is presented. The assumptions relating to the material properties, the force transmitted between coil and casing, the loading conditions, and the boundary conditions are discussed. 2 refs

  1. Coil in coil - components for the high voltage superconducting resistive current limiter CULT 110

    Science.gov (United States)

    Elschner, S.; Stemmle, M.; Breuer, F.; Walter, H.; Frohne, C.; Noe, M.; Bock, J.

    2008-02-01

    The German government (BMBF/VDI) funded project CULT 110 is presently the largest European current limiter project and aims at the development of a one-phase resistive limiter for the voltage level of 110 kV. The contribution presents the actual state of development of the superconducting components. As in the successful predecessor project CURL 10 these are made of melt cast processed BSCCO 2212 bulk material, however monofilar instead of bifilar coils are used. The electrical protection concept is based on a normal conducting coil arranged around a superconducting coil and connected in parallel. Simultaneously this coil serves as an electrical bypass and, under fault conditions, generates a magnetic field for quench homogenisation. Since no continuously connected shunt is needed, a much higher voltage during faults can be applied. The rules for an optimum superconductor and coil design are given and the viability of the whole concept is demonstrated by both, experiment and numerical simulation.

  2. Bright monolayer tungsten disulfide via exciton and trion chemical modulations.

    Science.gov (United States)

    Tao, Ye; Yu, Xuechao; Li, Jiewei; Liang, Houkun; Zhang, Ying; Huang, Wei; Wang, Qi Jie

    2018-04-05

    Atomically thin transition metal dichalcogenides (TMDCs) with exceptional electrical and optical properties have drawn tremendous attention for use in novel optoelectronic applications as photodetectors, transistors, light emitters, etc. However, electron bound trions formed through the combination of neutral excitons and electrons significantly decrease the photoluminescence (PL) efficiency of TMDCs. In this study, we report a simple yet efficient chemical doping strategy to modulate the optical properties of monolayer tungsten disulfide (WS2). As a demonstrative example, a chemically doped monolayer of WS2 exhibits remarkable PL enhancement of about one order of magnitude higher than that of pristine WS2. This outstanding PL enhancement is attributed to the fact that excess electrons, which promote the formation of electron-bound trions, are reduced in number through charge transfer from WS2 to the chemical dopant. Furthermore, an improved degree of circular polarization from ∼9.0% to ∼41.5% was also observed in the chemically doped WS2 monolayer. This work describes a feasible strategy to manipulate the optical properties of TMDCs via exciton modulation, making TMDCs promising candidates for versatile semiconductor-based photonic devices.

  3. Gasochromic property of dehydrogenation-catalyst loaded tungsten trioxide

    Science.gov (United States)

    Hakoda, Teruyuki; Igarashi, Hidetoshi; Isozumi, Yukihiro; Yamamoto, Shunya; Aritani, Hirofumi; Yoshikawa, Masahito

    2013-02-01

    The gasochromic property of dehydrogenation-catalyst loaded tungsten trioxide (M/WO3) powders was examined in exposure to gaseous cyclohexane under different kinds and contents of catalysts, catalyst temperatures, and cyclohexane concentrations. The change in the intensity of visible lights reflected from the M/WO3 powders was in situ obtained using a portable visible-light spectrometer associating with the analysis of dehydrogenation products when M/WO3 powders were exposed to cyclohexane gas. The catalyst of Pt was a catalyst initiating dehydrogenation and change of reflected light intensity at lower temperatures in comparison with the catalysts of Pd and Rh. Among 0.1, 0.5, and 1 wt% Pt/WO3 powders, 0.5 wt% Pt/WO3 powders demonstrated large change of reflected 640-nm lights, 5.4%, to visually detect their coloration at lower temperatures. The heating of 0.5 wt% Pt/WO3 powders at temperatures higher than 130 °C was required to visually detect cyclohexane at a concentration of 1 vol%, lower than the combustion lower limit (1.3 vol%). The quantitative analysis of hydrogen species such as hydrogen atoms and ions absorbed in 0.1-1 wt% Pt/WO3 powders demonstrated that Pt/WO3 powders would absorb the same amount of hydrogen species independent of loaded-Pt contents.

  4. DISPLACEMENT CASCADE SIMULATION IN TUNGSTEN AT 1025 K

    Energy Technology Data Exchange (ETDEWEB)

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.; Heinisch, Howard L.; Kurtz, Richard J.; Wirth, Brian D.

    2013-09-30

    Molecular dynamics simulation was employed to investigate the irradiation damage properties of bulk tungsten at 1025 K (0.25 melting temperature). A comprehensive data set of primary cascade damage was generated up to primary knock-on atom (PKA) energies 100 keV. The dependence of the number of surviving Frenkel pairs (NFP) on the PKA energy (E) exhibits three different characteristic domains presumably related to the different cascade morphologies that form. The low-energy regime < 0.2 keV is characterized by a hit-or-miss type of Frenkel pair (FP) production near the displacement threshold energy of 128 eV. The middle regime 0.3 – 30 keV exhibits a sublinear dependence of log(NFP) vs log(E) associated with compact cascade morphology with a slope of 0.73. Above 30 keV, the cascade morphology consists of complex branches or interconnected damage regions. In this extended morphology, large interstitial clusters form from superposition of interstitials from nearby damage regions. Strong clustering above 30 keV results in a superlinear dependence of log(NFP) vs log(E) with a slope of 1.365. At 100 keV, an interstitial cluster of size 92 and a vacancy cluster of size 114 were observed.

  5. Development and characterization of powder metallurgically produced discontinuous tungsten fiber reinforced tungsten composites

    Science.gov (United States)

    Mao, Y.; Coenen, J. W.; Riesch, J.; Sistla, S.; Almanstötter, J.; Jasper, B.; Terra, A.; Höschen, T.; Gietl, H.; Bram, M.; Gonzalez-Julian, J.; Linsmeier, Ch; Broeckmann, C.

    2017-12-01

    In future fusion reactors, tungsten is the prime candidate material for the plasma facing components. Nevertheless, tungsten is prone to develop cracks due to its intrinsic brittleness—a major concern under the extreme conditions of fusion environment. To overcome this drawback, tungsten fiber reinforced tungsten (Wf/W) composites are being developed. These composite materials rely on an extrinsic toughing principle, similar to those in ceramic matrix composite, using internal energy dissipation mechanisms, such as crack bridging and fiber pull-out, during crack propagation. This can help Wf/W to facilitate a pseudo-ductile behavior and allows an elevated damage resilience compared to pure W. For pseudo-ductility mechanisms to occur, the interface between the fiber and matrix is crucial. Recent developments in the area of powder-metallurgical Wf/W are presented. Two consolidation methods are compared. Field assisted sintering technology and hot isostatic pressing are chosen to manufacture the Wf/W composites. Initial mechanical tests and microstructural analyses are performed on the Wf/W composites with a 30% fiber volume fraction. The samples produced by both processes can give pseudo-ductile behavior at room temperature.

  6. Comparative Investigation of Tungsten Fibre Nets Reinforced Tungsten Composite Fabricated by Three Different Methods

    Directory of Open Access Journals (Sweden)

    Linhui Zhang

    2017-07-01

    Full Text Available Tungsten fibre nets reinforced tungsten composites (Wf/W containing four net layers were fabricated by spark plasma sintering (SPS, hot pressing (HP and cold rolling after HP (HPCR, with the weight fraction of fibres being 17.4%, 10.5% and 10.5%, respectively. The relative density of the HPCRed samples is the highest (99.8% while that of the HPed composites is the lowest (95.1%. Optical and scanning electron microscopy and electron back scattering diffraction were exploited to characterize the microstructure, while tensile and hardness tests were used to evaluate the mechanical properties of the samples. It was found that partial recrystallization of fibres occurred after the sintering at 1800 °C. The SPSed and HPed Wf/W composites begin to exhibit plastic deformation at 600 °C with tensile strength (TS of 536 and 425 MPa and total elongation at break (TE of 11.6% and 23.0%, respectively, while the HPCRed Wf/W composites exhibit plastic deformation at around 400 °C. The TS and TE of the HPCRed Wf/W composites at 400 °C are 784 MPa and 8.4%, respectively. The enhanced mechanical performance of the Wf/W composites over the pure tungsten can be attributed to the necking, cracking, and debonding of the tungsten fibres.

  7. Automated de novo phasing and model building of coiled-coil proteins.

    Science.gov (United States)

    Rämisch, Sebastian; Lizatović, Robert; André, Ingemar

    2015-03-01

    Models generated by de novo structure prediction can be very useful starting points for molecular replacement for systems where suitable structural homologues cannot be readily identified. Protein-protein complexes and de novo-designed proteins are examples of systems that can be challenging to phase. In this study, the potential of de novo models of protein complexes for use as starting points for molecular replacement is investigated. The approach is demonstrated using homomeric coiled-coil proteins, which are excellent model systems for oligomeric systems. Despite the stereotypical fold of coiled coils, initial phase estimation can be difficult and many structures have to be solved with experimental phasing. A method was developed for automatic structure determination of homomeric coiled coils from X-ray diffraction data. In a benchmark set of 24 coiled coils, ranging from dimers to pentamers with resolutions down to 2.5 Å, 22 systems were automatically solved, 11 of which had previously been solved by experimental phasing. The generated models contained 71-103% of the residues present in the deposited structures, had the correct sequence and had free R values that deviated on average by 0.01 from those of the respective reference structures. The electron-density maps were of sufficient quality that only minor manual editing was necessary to produce final structures. The method, named CCsolve, combines methods for de novo structure prediction, initial phase estimation and automated model building into one pipeline. CCsolve is robust against errors in the initial models and can readily be modified to make use of alternative crystallographic software. The results demonstrate the feasibility of de novo phasing of protein-protein complexes, an approach that could also be employed for other small systems beyond coiled coils.

  8. Modulation of elasticity in functionally distinct domains of the tropomyosin coiled-coil.

    Science.gov (United States)

    Lakkaraju, Sirish Kaushik; Hwang, Wonmuk

    2009-03-01

    Alpha-helical coiled-coils are common protein structural motifs. Whereas vast information is available regarding their structure, folding, and stability, far less is known about their elastic properties, even though they play mechanical roles in many cases such as tropomyosin in muscle contraction or neck stalks of kinesin or myosin motor proteins. Using computer simulations, we characterized elastic properties of coiled-coils, either globally or locally. Global bending stiffness of standard leucine zipper coiled-coils was calculated using normal mode analysis. Mutations in hydrophobic residues involved in the knob-into-hole interface between the two alpha-helices affect elasticity significantly, whereas charged side chains forming inter-helical salt bridges do not. This suggests that coiled-coils with less regular heptad periodicity may have regional variations in flexibility. We show this by the flexibility map of tropomyosin, which was constructed by a local fluctuation analysis. Overall, flexibility varies by more than twofold and increases towards the C-terminal region of the molecule. Describing the coiled-coil as a twisted tape, it is generally more flexible in the splay bending than in the bending of the broad face. Actin binding sites in alpha zones show local rigidity minima. Broken core regions due to acidic residues at the hydrophobic face such as the Asp137 and the Glu218 are found to be the most labile with moduli for splay and broad face bending as 70 nm and 116 nm respectively. Such variation in flexibility could be relevant to the tropomyosin function, especially for moving across the non-uniform surface of F-actin to regulate myosin binding.

  9. Coil development for W VII-X

    International Nuclear Information System (INIS)

    Kisslinger, J.

    1988-01-01

    Starting from a closed vacuum flux surface near the edge and using the NESCOIL code, current distributions on various toroidal surfaces are obtained. The toroidal surfaces are optimized by varying the coefficients which describe the torus topology, and by restricting the number of coefficients for the potential distribution. Configuration HS4-12 with 4 field periods has 12 coils per field period, and that with 5 periods has 10 or 12 coils per period at an average coil aspect ratio of 5. Aspect ratio of the largest flux surfaces is 10. For Helias configurations with 5 field periods compared to those with 4 field periods, higher beta values are predicted. Keeping the coil aspect ratio constant the configuration with 5 field periods has coils with lower minimum curvature radius and a larger lateral excursion. They also have reduced distance between wall and plasma. To improve the geometrical tightness with 5 field periods an increase of the major radius from 5 to 6.5m and a reduction of Bo from 4 to 3T (which allows an increase of current density from 40 to 50 MA/m 2 ) is proposed

  10. Distal biceps rupture: the coil sign.

    Science.gov (United States)

    Austin, Luke; Pepe, Matt; VanBeek, Corinne; Tjoumakaris, Fotios

    2014-06-01

    Delayed repair of the distal biceps brachii tendon can lead to the formation of scar tissue and coiling of the tendon. Dissection of the scar tissue and unraveling of the tendon may allow for anatomic repair to the radial tuberosity. A 50-year-old man had a distal biceps brachii tendon tear with an intact lacertus fibrosis. Surgery was performed 22 days after injury. On inspection, the distal biceps tendon was coiled, encased in scar tissue, and unable to be reduced to the radial tuberosity. Dissection of the scar tissue and unraveling of the tendon provided additional length, allowing anatomic repair. Postoperatively, the patient regained full range of motion and strength and returned to work without restrictions. After a distal biceps brachii tear in which the lacertus fibrosis remains intact, the coiled tendon may become enveloped in a sheath of scar tissue. Dissection of the "pseudosheath" unveils the native tendon and allows reduction to the radial tuberosity. Cadaveric analysis shows that the pseudosheath may conceal 6 cm of coiled tendon. When the lacertus fibrosis remains intact after distal biceps tendon rupture, the tethered tendon stump may coil, become encased in scar tissue, and resemble the native tendon. Failure to identify the native tendon could result in the loss of 6 cm of tendon. Copyright 2014, SLACK Incorporated.

  11. Extrap with iron-cored coils

    International Nuclear Information System (INIS)

    Lehnert, B.

    1985-05-01

    In Extrap configurations there is a high average beta value with respect to the plasma confinement volume. The externally imposed magnetic field which is required for stabilization therefore comes out to have a rather moderate strength, even under expected reactor conditions. As a consequence, this field can be generated not only by conventional external conductor arrangements, but also by iron-cored coils being operated below the saturation limit. A proposal for such iron-cored coil systems is presented in this paper. As compared to conventional conductors, this has the advantage of localizing the magnetic energy of the externally imposed magnetic field mainly to the discharge vessel and the plasma volume, thereby increasing the engineering beta value substantially. Also the problems of the coil stresses and of irradiation of the coils appear to become simplified, as well as replacement of the coil system. A main limitation of this proposal is due to combination of iron core saturation with the required stabilization effect from an ion Larmor radius of sufficient relative magnitude. This limitaion requires further investigation, especially in the full-scale reactor case. Also the modifications of the field geometry by iron core shaping needs further analysis. (Author)

  12. Fabrication of the KSTAR toroidal field coil structure

    International Nuclear Information System (INIS)

    Choi, C.H.; Sa, J.W.; Park, H.K.; Hong, K.H.; Shin, H.; Kim, H.T.; Bak, J.S.; Lee, G.S.; Kwak, J.H.; Moon, H.G.; Yoon, H.H.; Lee, J.W.; Lee, S.K.; Song, J.Y.; Nam, K.M.; Byun, S.E.; Kim, H.C.; Ha, E.T.; Ahn, H.J.; Kim, D.S.; Lee, J.S.; Park, K.H.; Hong, C.D.

    2005-01-01

    The KSTAR toroidal field (TF) coil structure is under fabrication upon completion of engineering design and prototype construction. The prototype TF coil structure has been fabricated within allowable tolerances. Encasing of the prototype TF coil (TF00) in the prototype structure has been carried out through major processes involving a coil encasing, an enclosing weld, a vacuum pressure impregnation, and an outer surface machining. During the enclosing weld of the TF00 coil structure, we have measured temperatures and stresses on the coil surface. Assembly test had been performed with the TF00 coil structure. We have chosen Type 316LN as material of the TF coil structure. We used the narrow-gap TIG welding method. Doosan Heavy Industries and Construction Company (DHI) will complete the fabrication of the TF coil structure in Feb. 2006. (author)

  13. Improving Coil Designs for the HSX Stellarator with FOCUS

    Science.gov (United States)

    Kruger, Thomas; Zhu, Caoxiang; Bader, Aaron; Singh, Luquant; Anderson, David

    2017-10-01

    We use the FOCUS code to generate improved coil sets for the HSX stellarator. FOCUS produces curves in 3D space to best reproduce a target plasma equilibrium. Unlike similar codes, the curves in FOCUS are not constrained to lie on a user-defined 2D surface. Therefore FOCUS can inherently solve problems such as determining the optimum coil-plasma distance for a given equilibrium. By adjusting the relative weights between a) the match to the plasma boundary, and b) the average coil length. We present the results from FOCUS where we attempt to improve the coil set by moving coils further away to reduce coil ripple, decreasing the number of coils to improve accessibility, and better matching the target plasma surface. We also present results of alternative coil designs with helical and saddle coils. Work supported by the US DOE under Grant DE-FG02-93ER54222 and UW Sorden account 233PRJ65ZM.

  14. Chemical oxygen-iodine laser with atomic iodine generated via fluorine atoms

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Čenský, Miroslav; Špalek, Otomar; Kodymová, Jarmila; Picková, Irena; Jakubec, Ivo

    2008-01-01

    Roč. 345, č. 1 (2008), 14-22 ISSN 0301-0104 R&D Projects: GA ČR GA202/05/0359 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z40320502 Keywords : atomic iodine * atomic fluorine * chemical oxygen–iodine laser * COIL Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.961, year: 2008

  15. Effect of tempering after cryogenic treatment of tungsten carbide ...

    Indian Academy of Sciences (India)

    Keywords. Cryogenic treatment; tungsten carbide–cobalt; SEM; XRD; microhardness. 1. Introduction. Tungsten carbide tools can machine metals at speeds that cause the cutting edge to become red hot, without losing its hardness or sharpness. It exhibits about 2–3 times the produc- tivity and 10 times the life of high-speed ...

  16. Calibration and Temperature Profile of a Tungsten Filament Lamp

    Science.gov (United States)

    de Izarra, Charles; Gitton, Jean-Michel

    2010-01-01

    The goal of this work proposed for undergraduate students and teachers is the calibration of a tungsten filament lamp from electric measurements that are both simple and precise, allowing to determine the temperature of tungsten filament as a function of the current intensity. This calibration procedure was first applied to a conventional filament…

  17. Gas Tungsten Arc Welding. Welding Module 6. Instructor's Guide.

    Science.gov (United States)

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching a three-unit module in gas tungsten arc welding. The module has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The basic principles involved in gas tungsten arc welding, supplies, and applications are covered. The materials included…

  18. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition

    International Nuclear Information System (INIS)

    Sharma, Uttam; Chauhan, Sachin S; Sharma, Jayshree; Sanyasi, A K; Ghosh, J; Choudhary, K K; Ghosh, S K

    2016-01-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m 2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS. (paper)

  19. Spectrophotometric determination of tungsten with salicylic acid

    International Nuclear Information System (INIS)

    Goncalves, Z.C.

    1976-10-01

    The method comprises the complexation of tungsten with salicylic acid in concentrated sulphuric acid yielding a reddish color. The maximum absorbance of the complex lies within 410-420 nm, 420 nm being the chosen wavelenght. The final concentration of salicylic acid is 0,080 g/ml. The sensitivity is 0,13 μg W(%T) -1 ml -1 . Titanium, vanadium, rhenium, niobium and molybdenum interferes and must be separated, titanium being the strongest interferent. The separation procedures, advantages of the process, stoichiometric relations and equilibrium constant are discussed. (Author) [pt

  20. Titanium tungsten coatings for bioelectrochemical applications

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Amato, Letizia; Łopacińska, J.

    2011-01-01

    This paper presents an assessment of titanium tungsten (TiW) coatings and their applicability as components of biosensing systems. The focus is put on using TiW as an electromechanical interface layer between carbon nanotube (CNT) forests and silicon nanograss (SiNG) cell scaffolds. Cytotoxicity......, applicability to plasma-enhanced chemical vapor deposition (PECVD) of aligned CNT forests, and electrochemical performance are investigated. Experiments include culturing of NIH3T3 mouse embryonic fibroblast cells on TiW coated silicon scaffolds, CNT growth on TiW substrates with nickel catalyst, and cyclic...

  1. Characterization of a Cobalt-Tungsten Interconnect

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Caspersen, Michael

    2012-01-01

    A ferritic steel interconnect for a solid oxide fuel cell must be coated in order to prevent chromium evaporation from the steel substrate. The Technical University of Denmark and Topsoe Fuel Cell have developed an interconnect coating based on a cobalt-tungsten alloy. The purpose of the coating...... for 300 h at 800 °C. The coating was characterized with Glow Discharge Optical Spectroscopy (GDOES), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The oxidation properties were evaluated by measuring weight change of coated samples of Crofer 22 H and Crofer 22 APU as a function...

  2. Atom-by-atom assembly

    International Nuclear Information System (INIS)

    Hla, Saw Wai

    2014-01-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed. (review article)

  3. High Heat Load Properties of Ultra Fine Grain Tungsten

    International Nuclear Information System (INIS)

    Zhou, Z.; Du, J.; Ge, C.; Linke, J.; Pintsuk, G.; Song, S.X.

    2007-01-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 μm, 1 μm and 3 μm were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m 2 respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m 2 . Particle erosions occurred for tungsten with 3 μm size at 0.33 GW/m 2 and for tungsten with 0.2 and 1 μm size at 0.55 GW/m 2 . The weight loss of tungsten with 0.2, 1 and 3 μm size are 2,0.1,0.6 mg respectively at 0.88 GW/m 2 . The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 μm size has the best performance. (authors)

  4. CS model coil experimental log book

    Energy Technology Data Exchange (ETDEWEB)

    Nishijima, Gen; Sugimoto, Makoto; Nunoya, Yoshihiko; Wakabayashi, Hiroshi; Tsuji, Hiroshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-02-01

    Charging test of the ITER CS Model Coil which is the world's largest superconducting pulse coil and the CS Insert Coil had started at April 11, 2000 and had completed at August 18, 2000. In the campaign, total shot numbers were 356 and the size of the data file in the DAS (Data Acquisition System) was over 20 GB. This report is a database that consists of the log list and the log sheets of every shot. One can access the database, make a search, and browse results via Internet (http://1ogwww.naka.jaeri.go.jp). The database will be useful to quick search to choose necessary shots. (author)

  5. Acoustic rainbow trapping by coiling up space

    KAUST Repository

    Ni, Xu

    2014-11-13

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.

  6. Considerations against a force compensated coil

    International Nuclear Information System (INIS)

    Hassenzahl, W.

    1988-08-01

    The cost of structural components in a large superconducting coil may well exceed the coil and cryostat cost. As a result, the idea of constructing a system composed of two different coil types assembled in such a way that the sources balance and reduce the total structural requirement is oft proposed. A suitable geometry has never been found for the fundamental reason that there can be no force compensated solution. In this paper, the general problem is presented and an analysis of the energy stored and stresses produced in the structure are described in a fundamental way. Finally, the relation between structural mass M and stored energy E, M ≥/rho/E/σ/sub w/, that is valid for all magnetic systems is developed, where /rho/ is the density of the structure and σ/sub w/ is the working stress in the structure. 12 refs., 2 figs

  7. Determination of Coil Inductances Cylindrical Iron Nucleus

    Directory of Open Access Journals (Sweden)

    Azeddine Mazouz

    2014-03-01

    Full Text Available The paper describes the investigation and development of a structure and performance characteristics of a coil iron nucleus cylindrical (C.I.N.C. The coil iron nucleus cylindrical is a nonlinear electro radio in which the moving of the nucleus in a sense or in other causes change in inductance and can reach extreme values at the superposition of nucleus and coil centers. The variation of the inductance and the degree of freedom of movement of the nucleus can lead to a device with electromechanical conversion The aim of this paper is the determination and visualization of self inductance and mutual of the (C.I.N.C based on geometric dimensions and the displacement of the nucleus.  

  8. Corrosion of high-density sintered tungsten alloys. Part 2

    International Nuclear Information System (INIS)

    Batten, J.J.; Moore, B.T.

    1988-12-01

    The behaviour of four high-density sintered tungsten alloys has been evluated and compared with that of pure tungsten. Rates of corrosion during the cyclic humidity and the salt mist tests were ascertained from weight loss measurements. Insight into the corrosion mechanism was gained from the nature of the corrosion products and an examination of the corroded surfaces. In the tests, the alloy 95% W, 2.5% Ni, 1.5% Fe was the most corrosion resistant. The data showed that copper as an alloying element accelerates corrosion of tungsten alloys. Both attack on the tungsten particles and the binder phase were observed together with tungsten grain loss. 6 refs., 3 tabs.,

  9. New doped tungsten cathodes. Applications to power grid tubes

    International Nuclear Information System (INIS)

    Cachard, J. de; Cadoret, K; Martinez, L.; Veillet, D.; Millot, F.

    2001-01-01

    Thermionic emission behavior of tungsten/tungsten carbide modified with rare earth (La, Ce, Y) oxides is examined on account of suitability to deliver important current densities in a thermo-emissive set up and for long lifetime. Work functions of potential cathodes have been determined from Richardson plots for La 2 O 3 doped tungsten and for tungsten covered with variable compositions rare earth tungstates. The role of platinum layers covering the cathode was also examined. Given all cathodes containing mainly lanthanum oxides were good emitters, emphasis was put on service lifetime. Comparisons of lifetime in tungsten doped with rare earth oxides and with rare earth tungstates show that microstructure of the operating cathodes may play the major role in the research of very long lifetime cathodes. Based on these results, tests still running show lifetime compatible with power grid tubes applications. (author)

  10. Observation of the Structure of Tungsten Films Prepared by MOCVD

    Science.gov (United States)

    Zhang, Xiaofeng; Liu, Weiliang; Yu, Lei; Li, Yujie; Guo, Shuangquan

    2013-09-01

    The tungsten films with ultra microstructure on CuCrZr alloy and China Low Activation Martensitic (CLAM) steel have been prepared by metal organic chemical vapor deposition (MOCVD). The films were produced by pyrolysing the tungsten hexacarbonyl at air or argon atmosphere. When formed at or below 400 °C, they were poorly crystalized and the films showed low quality in thickness, density, bonding performance etc. While above this temperature, the properties of tungsten films have been improved, all the films consist of tungsten in the β-W. And β-W can change into α-W after heat treatment. As in other variations of pyrolysis, oxygen and carbon were observed. When filled with argon, the oxygen and carbon content would reduce apparently. Tungsten films prepared by MOCVD have stable chemical composition and microstructure. Besides, the properties of films on CuCrZr alloy are better than that on CLAM steel.

  11. A new type of coil structure called pan-shaped coil of wireless charging system based on magnetic resonance

    Science.gov (United States)

    Yue, Z. K.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Liang, L. H.; Cui, S.

    2017-11-01

    The problem that misalignment between the transmitting coil and the receiving coil significantly impairs the transmission power and efficiency of the system has been attached more and more attention. In order to improve the uniformity of the magnetic field between the two coils to solve this problem, a new type of coil called pan-shaped coil is proposed. Three-dimension simulation models of the planar-core coil and the pan-shaped coil are established using Ansoft Maxwell software. The coupling coefficient between the transmitting coil and the receiving coil is obtained by simulating the magnetic field with the receiving coil misalignment or not. And the maximum percentage difference strength along the radial direction which is defined as the magnetic field uniformity factor is calculated. According to the simulation results of the two kinds of coil structures, it is found that the new type of coil structure can obviously improve the uniformity of the magnetic field, coupling coefficient and power transmission properties between the transmitting coil and the receiving coil.

  12. Superconducting Coil Winding Machine Control System

    Energy Technology Data Exchange (ETDEWEB)

    Nogiec, J. M. [Fermilab; Kotelnikov, S. [Fermilab; Makulski, A. [Fermilab; Walbridge, D. [Fermilab; Trombly-Freytag, K. [Fermilab

    2016-10-05

    The Spirex coil winding machine is used at Fermilab to build coils for superconducting magnets. Recently this ma-chine was equipped with a new control system, which al-lows operation from both a computer and a portable remote control unit. This control system is distributed between three layers, implemented on a PC, real-time target, and FPGA, providing respectively HMI, operational logic and direct controls. The system controls motion of all mechan-ical components and regulates the cable tension. Safety is ensured by a failsafe, redundant system.

  13. Multiple coil closure of isolated aortopulmonary collateral

    Directory of Open Access Journals (Sweden)

    Padhi Sumanta

    2010-01-01

    Full Text Available A 7-month-old girl was diagnosed to have large aortopulmonary collateral during evaluation for congestive heart failure. There was no other evidence of cardiopulmonary disease. The collateral was successfully closed with multiple coils delivered sequentially. We describe the issues associated during closure of the aortopulmonary collateral in this case. To the best of our knowledge, this is the first reported case of large aortopulmonary collateral presenting with heart failure in an otherwise structurally normal heart that was closed successfully with multiple coils delivered sequentially.

  14. Self-assembling segmented coiled tubing

    Science.gov (United States)

    Raymond, David W.

    2016-09-27

    Self-assembling segmented coiled tubing is a concept that allows the strength of thick-wall rigid pipe, and the flexibility of thin-wall tubing, to be realized in a single design. The primary use is for a drillstring tubular, but it has potential for other applications requiring transmission of mechanical loads (forces and torques) through an initially coiled tubular. The concept uses a spring-loaded spherical `ball-and-socket` type joint to interconnect two or more short, rigid segments of pipe. Use of an optional snap ring allows the joint to be permanently made, in a `self-assembling` manner.

  15. Advanced approach to the local structure reconstruction and theory validation on the example of the W L3-edge extended x-ray absorption fine structure of tungsten

    Science.gov (United States)

    Jonane, Inga; Anspoks, Andris; Kuzmin, Alexei

    2018-02-01

    Atomistic simulations of the experimental W L3-edge extended x-ray absorption fine structure (EXAFS) of bcc tungsten at T = 300 K were performed using classical molecular dynamics (MD) and reverse Monte Carlo (RMC) methods. The MD-EXAFS method based on the results of MD simulations allowed us to access the structural information, encoded in EXAFS, beyond the first coordination shell and to validate the accuracy of two interaction potential models—the embedded atom model potential and the second nearest-neighbor modified embedded atom method potential. The RMC-EXAFS method was used for more elaborate analysis of the EXAFS data giving access to thermal disorder effects. The results of both methods suggest that the correlation in atomic motion in bcc tungsten becomes negligible above 8 Å. This fact allowed us to use the EXAFS data to determine not only mean-square relative displacements of atomic W–W pair motion but also mean-square displacements of individual tungsten atoms, which are usually accessible from diffraction data only.

  16. Fine-tuning of protein domain boundary by minimizing potential coiled coil regions

    International Nuclear Information System (INIS)

    Iwaya, Naoko; Goda, Natsuko; Unzai, Satoru; Fujiwara, Kenichiro; Tanaka, Toshiki; Tomii, Kentaro; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2007-01-01

    Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in 1 H- 15 N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by 1 H- 15 N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies

  17. Fine-tuning of protein domain boundary by minimizing potential coiled coil regions.

    Science.gov (United States)

    Iwaya, Naoko; Goda, Natsuko; Unzai, Satoru; Fujiwara, Kenichiro; Tanaka, Toshiki; Tomii, Kentaro; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2007-01-01

    Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in (1)H-(15)N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by (1)H-(15)N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies.

  18. Strand Displacement in Coiled-Coil Structures: Controlled Induction and Reversal of Proximity.

    Science.gov (United States)

    Gröger, Katharina; Gavins, Georgina; Seitz, Oliver

    2017-11-06

    Coiled-coil peptides are frequently used to create new function upon the self-assembly of supramolecular complexes. A multitude of coil peptide sequences provides control over the specificity and stability of coiled-coil complexes. However, comparably little attention has been paid to the development of methods that allow the reversal of complex formation under non-denaturing conditions. Herein, we present a reversible two-state switching system. The process involves two peptide molecules for the formation of a size-mismatched coiled-coil duplex and a third, disruptor peptide that targets an overhanging end. A real-time fluorescence assay revealed that the proximity between two chromophores can be switched on and off, repetitively if desired. Showcasing the advantages provided by non-denaturing conditions, the method permitted control over the bivalent interactions of the tSH2 domain of Syk kinase with a phosphopeptide ligand. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Molecular dynamics simulations of the diffusion and coalescence of helium in tungsten

    International Nuclear Information System (INIS)

    Zhou, Y.L.; Wang, J.; Hou, Q.; Deng, A.H.

    2014-01-01

    Molecular dynamics (MD) simulations are performed on the diffusion and coalescence of helium in tungsten. A new method for determining the effective capture radii (ECRs) and the dissociation energies of helium-related defects is proposed in this work. It is observed that the ECR of an interstitial helium atom trapping helium interstitials (denoted as He–He n , n = 1–3) decreases with increasing temperature, except for He–He 2 at T n for helium clusters are also investigated. He 2 migrates more quickly than a single He atom does at T 2 changes at higher temperatures. Another counterintuitive observation is that D 5 > D 3 > D 4 at T 5 . The Arrhenius relation describes the diffusion of He n well in the temperature range from 300 K to 550 K, whereas the diffusion is not a standard thermally activated process at higher temperatures. Taken together, these results help elucidate the initial stage of helium bubble formation in tungsten as well as the requirements of long-term evolution methods such as KMC or RT models

  20. Explosion symmetry improvement of polyimide-coated tungsten wire in vacuum on negative discharge facility

    Science.gov (United States)

    Li, Mo; Wu, Jian; Lu, Yihan; Li, Xingwen; Li, Yang; Qiu, Mengtong

    2018-01-01

    Tungsten wire explosion is very asymmetric when fast current rate and insulated coatings are both applied on negative discharge facility using a 24-mm-diameter cathode geometry, which is commonly used on mega-ampere facilities. It is inferred, based on an analytical treatment of the guiding center drift and COMSOL simulations, that the large negative radial electric field causes early voltage breakdown and terminates energy deposition into the wire core on the anode side of the wire. After the anode side is short circuited, the radial electric field along the wire surface on the cathode side will change its polarity and thus leading to additional energy deposition into the wire core. This change causes ˜10 times larger energy deposition and ˜14 times faster explosion velocity in the cathode side than the anode side. In order to reduce this asymmetry, a hollow cylindrical cathode geometry was used to reverse the polarity of radial electric field and was optimized to use on multi-MA facilities. In this case, fully vaporized polyimide-coated tungsten wire with great symmetry improvement was achieved with energy deposition of ˜8.8 eV/atom. The atomic and electronic density distributions for the two different load geometries were obtained by the double-wavelength measurement.

  1. Tensile properties of irradiated TZM and tungsten

    International Nuclear Information System (INIS)

    Steichen, J.M.

    1975-04-01

    The effect of neutron irradiation on the elevated temperature tensile properties of TZM and tungsten has been experimentally determined. Specimens were irradiated at a temperature of approximately 720 0 F to fluences of 0.4 and 0.9 x 10 22 n/cm 2 (E greater than 0.1 MeV). Test parameters for both control and irradiated specimens included strain rates from 3 x 10 -4 to 1 s -1 and temperatures from 72 to 1700 0 F. The results of these tests were correlated with a rate-temperature parameter (T ln A/epsilon) to provide a concise description of material behavior over the range of deformation conditions of this study. The yield strength of the subject materials was significantly increased by decreasing temperature, increasing strain rate, and increasing fluence. Ductility was significantly reduced at any temperature or strain rate by increasing fluence. Cleavage fractures occurred in both unirradiated and irradiated specimens when the yield strength was elevated to the effective cleavage stress by temperature and/or strain rate. Neutron irradiation for the conditions of this study increased the ductile-to-brittle transition temperature of tungsten by approximately 300 0 F and TZM by approximately 420 0 F. (U.S.)

  2. Tungsten tetraboride, an inexpensive superhard material

    Science.gov (United States)

    Mohammadi, Reza; Lech, Andrew T.; Xie, Miao; Weaver, Beth E.; Yeung, Michael T.; Tolbert, Sarah H.; Kaner, Richard B.

    2011-01-01

    Tungsten tetraboride (WB4) is an interesting candidate as a less expensive member of the growing group of superhard transition metal borides. WB4 was successfully synthesized by arc melting from the elements. Characterization using powder X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) indicates that the as-synthesized material is phase pure. The zero-pressure bulk modulus, as measured by high-pressure X-ray diffraction for WB4, is 339 GPa. Mechanical testing using microindentation gives a Vickers hardness of 43.3 ± 2.9 GPa under an applied load of 0.49 N. Various ratios of rhenium were added to WB4 in an attempt to increase hardness. With the addition of 1 at.% Re, the Vickers hardness increased to approximately 50 GPa at 0.49 N. Powders of tungsten tetraboride with and without 1 at.% Re addition are thermally stable up to approximately 400 °C in air as measured by thermal gravimetric analysis. PMID:21690363

  3. Vaccum Gas Tungsten Arc Welding, phase 1

    Science.gov (United States)

    Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.

    1995-01-01

    This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.

  4. Tungsten - Yttrium Based Nuclear Structural Materials

    Science.gov (United States)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  5. Proton beam induced dynamics of tungsten granules

    Science.gov (United States)

    Caretta, O.; Loveridge, P.; O'Dell, J.; Davenne, T.; Fitton, M.; Atherton, A.; Densham, C.; Charitonidis, N.; Efthymiopoulos, I.; Fabich, A.; Guinchard, M.; Lacny, L. J.; Lindstrom, B.

    2018-03-01

    This paper reports the results from single-pulse experiments of a 440 GeV /c proton beam interacting with granular tungsten samples in both vacuum and helium environments. Remote high-speed photography and laser Doppler vibrometry were used to observe the effect of the beam on the sample grains. The majority of the results were derived from a trough containing ˜45 μ m diameter spheres (not compacted) reset between experiments to maintain the same initial conditions. Experiments were also carried out on other open and contained samples for the purposes of comparison both with the 45 μ m grain results and with a previous experiment carried out with sub-250 μ m mixed crystalline tungsten powder in helium [Phys. Rev. ST Accel. Beams 17, 101005 (2014), 10.1103/PhysRevSTAB.17.101005]. The experiments demonstrate that a greater dynamic response is produced in a vacuum than in a helium environment and in smaller grains compared with larger grains. The examination of the dynamics of the grains after a beam impact leads to the hypothesis that the grain response is primarily the result of a charge interaction of the proton beam with the granular medium.

  6. Deuterium desorption from tungsten using laser heating

    Directory of Open Access Journals (Sweden)

    J.H. Yu

    2017-08-01

    Full Text Available Retention and desorption of hydrogenic species need to be accurately modeled to predict the tritium inventory of next generation fusion devices, which is needed both for tritium fuel recovery and for tritium safety concerns. In this paper, experiments on thermal desorption of deuterium from intrinsic polycrystalline tungsten defects using laser heating are compared to TMAP-7 modeling. The samples during deuterium plasma exposure were at a temperature of 373K for this benchmark study with ion fluence of 0.7–1.0 ×1024Dm−2. Following plasma exposure, a fiber laser (λ= 1100nm heated the samples to peak surface temperatures ranging from ∼500 to 1400K with pulse widths from 10ms to 1s, and 1 to 10 pulses applied to each sample. The remaining deuterium retention was measured using temperature programmed desorption (TPD. Results show that > 95% of deuterium is desorbed when the peak surface temperature reached ∼950K for > 1s. TMAP-7 is used to predict deuterium desorption from tungsten for a range of surface temperatures and heating durations, and is compared to previous work on desorption from beryllium codeposits.

  7. Treatment of unruptured intracranial aneurysms using internally expanding coils

    Science.gov (United States)

    Suri, M. Fareed K.; Memon, Muhammad Zeeshan; Qureshi, Adnan I.

    2008-01-01

    Background and Purpose The International Subarachnoid Aneurysm Trial (ISAT) showed that patients with intracranial aneurysms treated with coil embolization have better clinical outcomes than those undergoing neurosurgical clipping. However some patients treated endovascularly have recurrence of aneurysms. Low packing density is often cited as a reason for recurrence. Coiling with hydrogel covered coils significantly improves the packing density. We report our initial experience in using a newly introduced design of hydrogel coils. Methods: Three consecutive patients with unruptured aneurysms were treated with hydrogel coated coils. During embolization, a stable framework was first established with bare metal coils, and gel coated coils were used subsequently to increase the packing density. After the procedure, packing density was estimated by calculating the compaction ratio using an online calculator. Results: Successful coil embolization was achieved in all 3 patients. Hydrogel coated coils comprised 11, 63 and 72% of the total coils deployed. One patient had coil herniation that required stent deployment. All patients remained neurologically intact during and after the procedure. Follow-up angiography in 2 patients at 6 months revealed aneurysm stability without any residual neck remnant. Conclusions: The softness of the hydrogel allowed us to deploy coated coils with good packing density. A slight expansion of these coils at the neck can be expected to reduce any neck remnant and potentially inhibit recurrence. PMID:22518218

  8. Determination of phosphorus and silicon in tungsten trioxide as reduced molybdotungsten complexes without matrix separation

    International Nuclear Information System (INIS)

    Chkanikova, O.K.; Dorokhova, E.N.

    1979-01-01

    Studied are conditions of formation and reduction of molybdotungsten phosphorus (MTPC) and molybdotungsten silicon (MTSC) complexes at high excess of the ligand. It is established that MTPC are formed in a wide pH range, limited by aggregate stability of the solution (pH 4.5). Using the method of isomolar series it is shown that at pH 1.2 a complex with one Mo atom in coordination sphere is formed, at pH 3.2 - with two Mo atoms. Spectrophotometric method of phosphorus and silicon determination of tungsten trioxide without the base separation is developed. The method is based on silicon determination after MTPC decomposition in the presence of citric acid and determination of silicon and phosphorus sum under conditions of MTPC formation in the presence of oxalic acid. Phosphorus amount is determined according to the difference

  9. KLL dielectronic recombination resonant strengths of He-like up to O-like tungsten ions

    Energy Technology Data Exchange (ETDEWEB)

    Tu, B.; Xiao, J.; Shen, Y.; Yang, Y.; Lu, D.; Xu, T. H.; Li, W. X.; Chen, C. Y.; Fu, Y.; Wei, B.; Zheng, C.; Huang, L. Y.; Hutton, R.; Wang, X.; Yao, K., E-mail: keyao@fudan.edu.cn; Zou, Y., E-mail: zouym@fudan.edu.cn [Shanghai EBIT Laboratory, Institute of Modern Physics, Fudan University, and the Key Laboratory of Applied Ion Beam Physics, Chinese Ministry of Education, Shanghai 200433 (China); Zhang, B. H.; Tang, Y. J. [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900 (China)

    2016-05-15

    Dielectronic recombination (DR) is an important process in hot plasma physics as well as in atomic structure and collision theory. This work reports the studies of the KLL DR resonance strengths of He-, Li-, Be-, B-, C-, N-, and O-like tungsten ions, through both experiment and calculation. The experimental resonance strengths were determined within uncertainty below 11% at the Shanghai electron beam ion trap by employing a fast electron beam-energy scanning technique. A fully relativistic configuration interaction method implemented in the flexible atomic code was employed to calculate DR process and also radiative recombination (RR). The consideration of the interference effect between DR and RR was revealed to be necessary to determine the resonance strength.

  10. Rogowski coils for studies of detonator initiation

    Science.gov (United States)

    Tasker, Douglas

    2017-06-01

    The Rogowski coil dates back to 1887 and it has commonly been employed to measure rapid changes of electrical currents without direct contact with the circuits, especially in high energy density applications. Recently, it has been used to measure currents in relatively low energy devices such as semiconductor circuits; here we report its utility in the analysis of detonator initiation. From an electrical perspective, the coil is essentially an air-cored transformer and measures the temporal rate of change of current dI/dt. Following a careful characterization of the circuit, an accurate measurement of this derivative is shown to provide a complete solution of the detonator circuit, including current, voltage, power and energy delivered to the detonator. The dependence of the electrical sensitivity, accuracy and bandwidth on coil design will be discussed and a new printed circuit design will be presented. Interesting features in the initiation of exploding bridgewire detonators have been observed with this coil and the results of various experiments will be discussed.

  11. Large coil test facility instrumentation system design

    International Nuclear Information System (INIS)

    Walstrom, P.L.; Fletcher, W.M.; Goddard, J.S.; Murphy, J.L.

    1979-01-01

    The design of the instrumentation system for the Large Coil Test Facility (LCTF) is described. Sensors are divided into two categories: coil diagnostic sensors, installed in the test coils; and facility sensors, installed in the various systems of the test facility in order to monitor their performance. After signal conditioning, data from the ''fast'' channels are multiplexed, digitized, and stored in four microcomputer systems programmed to be used in a ring buffer mode to record data before and after receipt of a random trigger from the normal zone detection circuitry. ''Slow'' channels are digitized by a scanner and buffered by a microcomputer. Selected data channels are continuously displayed on digital or recorded on strip chart recorders. The microcomputer systems are interfaced to a central minicomputer system for display and archival storage. Facility variables are digitized by a separate scanner system. Certain critical fault variables are compared with set point values, and if they are out of range, cause a programmable logic controller to initiate an emergency coil energy dump. 2 refs

  12. Coiling of ruptured pericallosal artery aneurysms.

    NARCIS (Netherlands)

    Menovsky, T.; Rooij, W.J.J. van; Sluzewski, M.; Wijnalda, D.

    2002-01-01

    OBJECTIVE: To assess the technical feasibility of treating ruptured pericallosal artery aneurysms with detachable coils and to evaluate the anatomic and clinical results. METHODS: Over a period of 27 months, 12 patients with a ruptured pericallosal artery aneurysm were treated with detachable

  13. Voltage distribution within superconducting coils during quench

    International Nuclear Information System (INIS)

    Tominaka, T.; Hara, N.; Kuroda, K.

    1988-01-01

    A computer program which can be applied to the calculation of voltage distribution within superconducting coils during quench has been developed. The calculation is compared with an experiment for a small superconducting solenoid, and the propriety of the calculation is discussed

  14. Ureteral stents: coil strength and durometer.

    Science.gov (United States)

    Hendlin, Kari; Dockendorf, Kelly; Horn, Christina; Pshon, Nicole; Lund, Brynn; Monga, Manoj

    2006-07-01

    To evaluate the coil strength before and after urine exposure and the stiffness of commercially available double-J ureteral stents because both properties may affect stent performance and patient comfort. Twelve commercially available 6F ureteral stents were tested for coil strength before and after 30 days of urine exposure. The proximal end of each stent was inserted through a 2-mm hole in bologna, allowed to recoil, and then pulled using a handheld force gauge. Ten different commercially available ureteral stent models were tested for tensile strength using an MTS MicroBionix Testing System and Testworks II software and a 5 N load cell. The Cook Black Silicone and Cook C-Flex stents had the strongest coil strengths before urine exposure at 0.480 +/- 0.0 lb (P Circon Double J stent and Bard InLay. Ureteral stents can be differentiated according to their coil strength and stiffness. The impact of these properties on stent performance and patient comfort deserve additional evaluation. The significant variability found in stent stiffness among stents from different lot numbers suggests poor quality assurance in biomaterials or stent processing and increases the complexity of cross-stent comparisons.

  15. Moving coil linear variable differential transformer.

    Science.gov (United States)

    Ellis, J F; Walstrom, P L

    1978-03-01

    A moving-coil linear variable differential transformer with no ferromagnetic components is described. The device is essentially interchangeable with a conventional moving-core linear variable differential transformer, but is virtually unaffected by ambient magnetic fields up to 8 T. The transducer is connected to a standard commercially available carrier amplifier for signal conditioning.

  16. Testing electrical insulation of LCT coils and instrumentation

    International Nuclear Information System (INIS)

    Luton, J.N.; Ulbricht, A.R.; Ellis, J.F.; Shen, S.S.; Wilson, C.T.; Okuno, K.; Siewerdt, L.O.; Zahn, G.R.; Zichy, J.A.

    1986-09-01

    Three of the superconducting test coils in the Large Coil Task (LCT) use conductors cooled internally by forced flow of helium. In the other three coils, the conductors are cooled externally by a bath of helium. The coils and facility are designed for rapid discharges (dumps) at voltages up to 2.5 kV, depending on coil design. Many coil sensors are connected electrically to the conductors. These sensor leads and signal conditioning equipment also experience high voltage. High-potential tests of ground insulation were performed on all components of the International Fusion Superconducting Magnet Test Facility (IFSMTF). Coil insulation was also tested by ring-down tests that produced voltage distributions within the coils like those occurring during rapid discharge. Methods were developed to localize problem areas and to eliminate them. The effect on breakdown voltage near the Paschen minimum of magnetic fields up to 2 T was investigated

  17. Superconducting coil design for a tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Turner, L.R.; Wang, S.T.; Smelser, P.

    1977-01-01

    Superconducting toroidal field (TF) and polodial-field (PF) coils have been designed for the proposed Argonne National Laboratory experimental power reactor (EPR). Features of the design include: (1) Peak field of 8 T at 4.2 K or 10 T at 3.0 K. (2) Constant-tension shape for the TF coils, corrected for the finite number (16) of coils. (3) Analysis of errors in coil alignment. (4) Comparison of safety aspects of series-connected and parallel-connected coils. (5) A 60 kA sheet conductor of NbTi with copper stabilizer and stainless steel for support. (6) Superconducting PF coils outside the TF coils. (7) The TF coils shielded from pulsed fields by high-purity aluminum

  18. Structural design of the superconducting toroidal field coils for ITER

    International Nuclear Information System (INIS)

    Wong, F.M.G.; Sborchia, C.; Thome, R.J.; Malkov, A.; Titus, P.H.

    1995-01-01

    Structural design issues and features of the superconducting toroidal field (TF) coils for the International Thermonuclear Experimental Reactor (ITER) will be discussed. Selected analyses of the structural and mechanical behavior of the ITER TF coils will also be presented. (orig.)

  19. Tungsten transport in the plasma edge at ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Janzer, Michael Arthur

    2015-04-30

    The Plasma Facing Components (PFC) will play a crucial role in future deuterium-tritium magnetically confined fusion power plants, since they will be subject to high energy and particle loads, but at the same time have to ensure long lifetimes and a low tritium retention. These requirements will most probably necessitate the use of high-Z materials such as tungsten for the wall materials, since their erosion properties are very benign and, unlike carbon, capture only little tritium. The drawback with high-Z materials is, that they emit strong line radiation in the core plasma, which acts as a powerful energy loss mechanism. Thus, the concentration of these high-Z materials has to be controlled and kept at low levels in order to achieve a burning plasma. Understanding the transport processes in the plasma edge is essential for applying the proper impurity control mechanisms. This control can be exerted either by enhancing the outflux, e.g. by Edge Localized Modes (ELM), since they are known to expel impurities from the main plasma, or by reducing the influx, e.g. minimizing the tungsten erosion or increasing the shielding effect of the Scrape Off Layer (SOL). ASDEX Upgrade (AUG) has been successfully operating with a full tungsten wall for several years now and offers the possibility to investigate these edge transport processes for tungsten. This study focused on the disentanglement of the frequency of type-I ELMs and the main chamber gas injection rate, two parameters which are usually linked in H-mode discharges. Such a separation allowed for the first time the direct assessment of the impact of each parameter on the tungsten concentration. The control of the ELM frequency was performed by adjusting the shape of the plasma, i.e. the upper triangularity. The radial tungsten transport was investigated by implementing a modulated tungsten source. To create this modulated source, the linear dependence of the tungsten erosion rate at the Ion Cyclotron Resonance

  20. Nanostructure of self-assembled rod-coil block copolymer films for photovoltaic applications

    International Nuclear Information System (INIS)

    Heiser, T.; Adamopoulos, G.; Brinkmann, M.; Giovanella, U.; Ould-Saad, S.; Brochon, C.; Wetering, K. van de; Hadziioannou, G.

    2006-01-01

    The nanostructures of a series of rod-coil block copolymers, designed for photovoltaic applications, are studied by atomic force microscopy and transmission electron microscopy. The copolymers are composed of a semiconducting poly-p-phenylenevinylene rod with (2'-ethyl)-hexyloxy side chains and a functionalized coil block of various length and flexibility. Both, as deposited and annealed block copolymer films were investigated. The results show that highly ordered structures are only obtained if the coil block is characterized by a glass transition temperature which is significantly lower than the melting temperature of the alkyl side chains. For this material a high molecular mobility and strong driving force for crystallization of the rigid block can be achieved simultaneously. For the smallest coil to rod length ratio, we found a lamellar morphology with perpendicularly oriented lamellae with respect to the substrate. Electron diffraction data show the presence of a periodical molecular arrangement with a characteristic distance of 0.94 nm that is attributed to the distance between conjugated chains separated by the layers of alkyl sidechains

  1. Advanced smart tungsten alloys for a future fusion power plant

    Science.gov (United States)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Mao, Y.; Coenen, J. W.; Bram, M.; Gonzalez-Julian, J.

    2017-06-01

    The severe particle, radiation and neutron environment in a future fusion power plant requires the development of advanced plasma-facing materials. At the same time, the highest level of safety needs to be ensured. The so-called loss-of-coolant accident combined with air ingress in the vacuum vessel represents a severe safety challenge. In the absence of a coolant the temperature of the tungsten first wall may reach 1200 °C. At such a temperature, the neutron-activated radioactive tungsten forms volatile oxide which can be mobilized into atmosphere. Smart tungsten alloys are being developed to address this safety issue. Smart alloys should combine an acceptable plasma performance with the suppressed oxidation during an accident. New thin film tungsten-chromium-yttrium smart alloys feature an impressive 105 fold suppression of oxidation compared to that of pure tungsten at temperatures of up to 1000 °C. Oxidation behavior at temperatures up to 1200 °C, and reactivity of alloys in humid atmosphere along with a manufacturing of reactor-relevant bulk samples, impose an additional challenge in smart alloy development. First exposures of smart alloys in steady-state deuterium plasma were made. Smart tungsten-chroimium-titanium alloys demonstrated a sputtering resistance which is similar to that of pure tungsten. Expected preferential sputtering of alloying elements by plasma ions was confirmed experimentally. The subsequent isothermal oxidation of exposed samples did not reveal any influence of plasma exposure on the passivation of alloys.

  2. Coiled-Coil Irregularities and Instabilities in Group A Streptococcus M1 Are Required for Virulence

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, Case; Zinkernagel, Annelies S.; Macheboeuf, Pauline; Cunningham, Madeleine W.; Nizet, Victor; Ghosh, Partho (UO-HSC); (UCSD)

    2008-07-21

    Antigenically variable M proteins are major virulence factors and immunogens of the human pathogen group A Streptococcus (GAS). Here, we report the -3 angstrom resolution structure of a GAS M1 fragment containing the regions responsible for eliciting type-specific, protective immunity and for binding fibrinogen, which promotes M1 proinflammatory and antiphagocytic functions. The structure revealed substantial irregularities and instabilities throughout the coiled coil of the M1 fragment. Similar structural irregularities occur in myosin and tropomyosin, explaining the patterns of cross-reactivity seen in autoimmune sequelae of GAS infection. Sequence idealization of a large segment of the M1 coiled coil enhanced stability but diminished fibrinogen binding, proinflammatory effects, and antibody cross-reactivity, whereas it left protective immunogenicity undiminished. Idealized M proteins appear to have promise as vaccine immunogens.

  3. High-yield exfoliation of tungsten disulphide nanosheets by rational mixing of low-boiling-point solvents

    Science.gov (United States)

    Sajedi-Moghaddam, Ali; Saievar-Iranizad, Esmaiel

    2018-01-01

    Developing high-throughput, reliable, and facile approaches for producing atomically thin sheets of transition metal dichalcogenides is of great importance to pave the way for their use in real applications. Here, we report a highly promising route for exfoliating two-dimensional tungsten disulphide sheets by using binary combination of low-boiling-point solvents. Experimental results show significant dependence of exfoliation yield on the type of solvents as well as relative volume fraction of each solvent. The highest yield was found for appropriate combination of isopropanol/water (20 vol% isopropanol and 80 vol% water) which is approximately 7 times higher than that in pure isopropanol and 4 times higher than that in pure water. The dramatic increase in exfoliation yield can be attributed to perfect match between the surface tension of tungsten disulphide and binary solvent system. Furthermore, solvent molecular size also has a profound impact on the exfoliation efficiency, due to the steric repulsion.

  4. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pratibha; Savithri, H.S., E-mail: bchss@biochem.iisc.ernet.in

    2015-08-15

    Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm

  5. High Purity Tungsten Spherical Particle Preparation From WC-Co Spent Hard Scrap

    Directory of Open Access Journals (Sweden)

    Han Chulwoong

    2015-06-01

    Full Text Available Tungsten carbide-cobalt hard metal scrap was recycled to obtain high purity spherical tungsten powder by a combined hydrometallurgy and physical metallurgy pathway. Selective leaching of tungsten element from hard metal scrap occurs at solid / liquid interface and therefore enlargement of effective surface area is advantageous. Linear oxidation behavior of Tungsten carbide-cobalt and the oxidized scrap is friable to be pulverized by milling process. In this regard, isothermally oxidized Tungsten carbide-cobalt hard metal scrap was mechanically broken into particles and then tungsten trioxide particle was recovered by hydrometallurgical method. Recovered tungsten trioxide was reduced to tungsten particle in a hydrogen environment. After that, tungsten particle was melted and solidified to make a spherical one by RF (Ratio Frequency thermal plasma process. Well spherical tungsten micro-particle was successfully obtained from spent scrap. In addition to the morphological change, thermal plasma process showed an advantage for the purification of feedstock particle.

  6. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  7. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  8. Compressing DNA sequence databases with coil

    Directory of Open Access Journals (Sweden)

    Hendy Michael D

    2008-05-01

    Full Text Available Abstract Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.

  9. A miniature magnetic waveguide for cold atoms

    International Nuclear Information System (INIS)

    Key, M.G.

    2000-09-01

    This thesis presents the first demonstration of a guide for cold atoms based on a miniature structure of four current-carrying wires. The four wires are embedded within a hollow silica fibre. Atoms are guided along the centre of a fifth hole on the axis of the fibre by the Stern-Gerlach force. A vapour cell Magneto Optical Trap (MOT), formed 1 cm above the mouth of the waveguide is the source of cold 85 Rb atoms. After cooling the atoms to 25 μK in optical molasses they fall under the influence of gravity through a magnetic funnel into the waveguide. After propagating for 2 cm, the atoms are reflected by the field of a small pinch coil wound around the base of the guide. The atoms then travel back up the fibre and out into the funnel, where they can be imaged either in fluorescence or by recapturing in the MOT. A video sequence of atoms falling into the guide and re-emerging after reflection from the pinch coil graphically illustrates the operation of the guide. The coupling efficiency and transverse temperature of the atoms is measured experimentally and in a Monte-Carlo simulation. We find an optimum coupling efficiency of 12% and we measure the spatial extent of the cloud within the fibre to be of order 100 μm. We find good agreement between experimental data and results from the numerical simulation. We have also been able to observe different thresholds for the reflection of different positive m F levels. In another experiment we are able to trap the atoms in an elongated Ioffe trap for up to two seconds, increasing the distance over which the atoms are guided. We are able to guide the atoms over distances of 40 cm with a loss rate indistinguishable from the free space loss rate. (author)

  10. Coiled-coil forming peptides for the induction of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Božič Abram, Sabina [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Graduate School of Biomedicine, University of Ljubljana, Ljubljana 1000 (Slovenia); Aupič, Jana [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Doctoral Programme in Chemical Sciences, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000 (Slovenia); Dražić, Goran [Laboratory for Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Gradišar, Helena [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia); Jerala, Roman, E-mail: roman.jerala@ki.si [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia)

    2016-04-08

    Biopolymers with defined sequence patterns offer an attractive alternative for the formation of silver nanoparticle (AgNP). A set of coiled-coil dimer forming peptides was tested for their AgNP formation ability. Seventeen of those peptides mediated the formation of AgNPs in aqueous solution at neutral pH, while the formation of a coiled-coil dimer inhibited the nanoparticle generation. A QSAR regression model on the relationship between sequence and function suggests that in this peptide type the patterns KXQQ and KXEE are favorable, whereas Ala residues appear to have an inhibitory effect. UV–VIS spectra of the obtained nanoparticles gave a peak at around 420 nm, typical for AgNPs in the size range around 40 nm, which was confirmed by dynamic light scattering and transmission electron microscopy. Peptide-induced AgNPs exhibited good antibacterial activity, even after a 15 min contact time, while they had low toxicity to human cells at the same concentrations. These results show that our designed peptides generate AgNPs with antibacterial activity at mild conditions and might be used for antibacterial coatings. - Highlights: • 17 of the 30 tested coiled-coil forming peptides induce AgNP formation. • Coiled-coil dimer formation suppresses AgNP generation of individual peptides. • Size of the peptide-induced silver nanoparticles is around 40 nm. • QSAR analysis points to the importance of KXQQ and KXEE motifs for AgNP generation. • Peptide-induced silver nanoparticles exhibit antibacterial activity.

  11. CCBuilder 2.0: Powerful and accessible coiled-coil modeling.

    Science.gov (United States)

    Wood, Christopher W; Woolfson, Derek N

    2018-01-01

    The increased availability of user-friendly and accessible computational tools for biomolecular modeling would expand the reach and application of biomolecular engineering and design. For protein modeling, one key challenge is to reduce the complexities of 3D protein folds to sets of parametric equations that nonetheless capture the salient features of these structures accurately. At present, this is possible for a subset of proteins, namely, repeat proteins. The α-helical coiled coil provides one such example, which represents ≈ 3-5% of all known protein-encoding regions of DNA. Coiled coils are bundles of α helices that can be described by a small set of structural parameters. Here we describe how this parametric description can be implemented in an easy-to-use web application, called CCBuilder 2.0, for modeling and optimizing both α-helical coiled coils and polyproline-based collagen triple helices. This has many applications from providing models to aid molecular replacement for X-ray crystallography, in silico model building and engineering of natural and designed protein assemblies, and through to the creation of completely de novo "dark matter" protein structures. CCBuilder 2.0 is available as a web-based application, the code for which is open-source and can be downloaded freely. http://coiledcoils.chm.bris.ac.uk/ccbuilder2. We have created CCBuilder 2.0, an easy to use web-based application that can model structures for a whole class of proteins, the α-helical coiled coil, which is estimated to account for 3-5% of all proteins in nature. CCBuilder 2.0 will be of use to a large number of protein scientists engaged in fundamental studies, such as protein structure determination, through to more-applied research including designing and engineering novel proteins that have potential applications in biotechnology. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  12. Coiled coil peptides as universal linkers for the attachment of recombinant proteins to polymer therapeutics

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Pola, Robert; Laga, Richard; Ulbrich, Karel; Bednárová, Lucie; Maloň, Petr; Sieglová, Irena; Král, Vlastimil; Fábry, Milan; Vaněk, O.

    2011-01-01

    Roč. 12, č. 10 (2011), s. 3645-3655 ISSN 1525-7797 R&D Projects: GA ČR GA203/08/0543; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z40550506; CEZ:AV0Z50520514 Keywords : coiled coil * polymer therapeutics * drug targeting Subject RIV: CC - Organic Chemistry Impact factor: 5.479, year: 2011

  13. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif.

    Directory of Open Access Journals (Sweden)

    Nora Céspedes

    Full Text Available Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

  14. Data-Driven Prediction and Design of bZIP Coiled-Coil Interactions

    Science.gov (United States)

    Potapov, Vladimir; Kaplan, Jenifer B.; Keating, Amy E.

    2015-01-01

    Selective dimerization of the basic-region leucine-zipper (bZIP) transcription factors presents a vivid example of how a high degree of interaction specificity can be achieved within a family of structurally similar proteins. The coiled-coil motif that mediates homo- or hetero-dimerization of the bZIP proteins has been intensively studied, and a variety of methods have been proposed to predict these interactions from sequence data. In this work, we used a large quantitative set of 4,549 bZIP coiled-coil interactions to develop a predictive model that exploits knowledge of structurally conserved residue-residue interactions in the coiled-coil motif. Our model, which expresses interaction energies as a sum of interpretable residue-pair and triplet terms, achieves a correlation with experimental binding free energies of R = 0.68 and significantly out-performs other scoring functions. To use our model in protein design applications, we devised a strategy in which synthetic peptides are built by assembling 7-residue native-protein heptad modules into new combinations. An integer linear program was used to find the optimal combination of heptads to bind selectively to a target human bZIP coiled coil, but not to target paralogs. Using this approach, we designed peptides to interact with the bZIP domains from human JUN, XBP1, ATF4 and ATF5. Testing more than 132 candidate protein complexes using a fluorescence resonance energy transfer assay confirmed the formation of tight and selective heterodimers between the designed peptides and their targets. This approach can be used to make inhibitors of native proteins, or to develop novel peptides for applications in synthetic biology or nanotechnology. PMID:25695764

  15. Application of Coiled Coil Peptides in Liposomal Anticancer Drug Delivery Using a Zebrafish Xenograft Model.

    Science.gov (United States)

    Yang, Jian; Shimada, Yasuhito; Olsthoorn, René C L; Snaar-Jagalska, B Ewa; Spaink, Herman P; Kros, Alexander

    2016-08-23

    The complementary coiled coil forming peptides E4 [(EIAALEK)4] and K4 [(KIAALKE)4] are known to trigger liposomal membrane fusion when tethered to lipid vesicles in the form of lipopeptides. In this study, we examined whether these coiled coil forming peptides can be used for drug delivery applications. First, we prepared E4 peptide modified liposomes containing the far-red fluorescent dye TO-PRO-3 iodide (E4-Lipo-TP3) and confirmed that E4-liposomes could deliver TP3 into HeLa cells expressing K4 peptide on the membrane (HeLa-K) under cell culture conditions in a selective manner. Next, we prepared doxorubicin-containing E4-liposomes (E4-Lipo-DOX) and confirmed that E4-liposomes could also deliver DOX into HeLa-K cells. Moreover, E4-Lipo-DOX showed enhanced cytotoxicity toward HeLa-K cells compared to free doxorubicin. To prove the suitability of E4/K4 coiled coil formation for in vivo drug delivery, we injected E4-Lipo-TP3 or E4-Lipo-DOX into zebrafish xenografts of HeLa-K. As a result, E4-liposomes delivered TP3 to the implanted HeLa-K cells, and E4-Lipo-DOX could suppress cancer proliferation in the xenograft when compared to nontargeted conditions (i.e., zebrafish xenograft with free DOX injection). These data demonstrate that coiled coil formation enables drug selectivity and efficacy in vivo. It is envisaged that these findings are a step forward toward biorthogonal targeting systems as a tool for clinical drug delivery.

  16. Coiled-coil coactivators play a structural role mediating interactions in hypoxia-inducible factor heterodimerization.

    Science.gov (United States)

    Guo, Yirui; Scheuermann, Thomas H; Partch, Carrie L; Tomchick, Diana R; Gardner, Kevin H

    2015-03-20

    The hypoxia-inducible factor complex (HIF-α·aryl hydrocarbon receptor nuclear translocator (ARNT)) requires association with several transcription coactivators for a successful cellular response to hypoxic stress. In addition to the conventional global transcription coactivator CREB-binding protein/p300 (CBP/p300) that binds to the HIF-α transactivation domain, a new group of transcription coactivators called the coiled-coil coactivators (CCCs) interact directly with the second PER-ARNT-SIM (PAS) domain of ARNT (ARNT PAS-B). These less studied transcription coactivators play essential roles in the HIF-dependent hypoxia response, and CCC misregulation is associated with several forms of cancer. To better understand CCC protein recruitment by the heterodimeric HIF transcription factor, we used x-ray crystallography, NMR spectroscopy, and biochemical methods to investigate the structure of the ARNT PAS-B domain in complex with the C-terminal fragment of a coiled-coil coactivator protein, transforming acidic coiled-coil coactivator 3 (TACC3). We found that the HIF-2α PAS-B domain also directly interacts with TACC3, motivating an NMR data-derived model suggesting a means by which TACC3 could form a ternary complex with HIF-2α PAS-B and ARNT PAS-B via β-sheet/coiled-coil interactions. These findings suggest that TACC3 could be recruited as a bridge to cooperatively mediate between the HIF-2α PAS-B·ARNT PAS-B complex, thereby participating more directly in HIF-dependent gene transcription than previously anticipated. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Tungsten Stable Isotope Compositions of Ferromanganese Crusts

    Science.gov (United States)

    Abraham, K.; Barling, J.; Hein, J. R.; Schauble, E. A.; Halliday, A. N.

    2014-12-01

    We report the first accurate and precise data for mass-dependent fractionation of tungsten (W) stable isotopes, using a double spike technique and MC-ICPMS. Results are expressed relative to the NIST 3136 W isotope standard as per mil deviations in 186W/184W (δ186W). Although heavy element mass-dependent fractionations are expected to be small, Tl and U both display significant low temperature isotopic fractionations. Theoretical calculations indicate that W nuclear volume isotopic effects should be smaller than mass-dependent fractionations at low temperatures. Hydrogenetic ferromanganese (Fe-Mn) crusts precipitate directly from seawater and have been used as paleoceanographic recorders of temporal changes in seawater chemistry. Crusts are strongly enriched in W and other metals, and are a promising medium for exploring W isotopic variability. Tungsten has a relatively long residence time in seawater of ~61,000 years, mainly as the tungstate ion (WO42-). Water depth profiles show conservative behaviour. During adsorption on Fe-Mn crusts, W species form inner-sphere complexes in the hexavalent (W6+) state. The major host phase is thought to be Mn oxides and the lighter W isotope is expected to be absorbed preferentially. Surface scrapings of 13 globally distributed hydrogenetic Fe-Mn crusts display δ186W from -0.08 to -0.22‰ (±0.03‰, 2sd). A trend toward lighter W isotope composition exists with increasing water depth (~1500 to ~5200m) and W concentration. One hydrothermal Mn-oxide sample is anomalously light and Mn nodules are both heavy and light relative to Fe-Mn crusts. Tungsten speciation depends on concentration, pH, and time in solution and is not well understood because of the extremely slow kinetics of the reactions. In addition, speciation of aqueous and/or adsorbed species might be sensitive to pressure, showing similar thermodynamic stability but different effective volumes. Thus, W stable isotopes might be used as a water-depth barometer in

  18. Atomic physics

    International Nuclear Information System (INIS)

    Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.

    1984-01-01

    The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)

  19. Transport of one SC coil through the village of Meyrin

    CERN Multimedia

    1956-01-01

    The energizing coils of the Synchro-cyclotron magnet were manufactured in Belgium before travelling to Basel in Switzerland by boat and continuing by road to Geneva. The first coil reached Geneva in December 1955, with the second following in early 1956. The coils were stored in a hangar at the Geneva airport before they were brought to CERN in May 1956.

  20. The umbilical coiling index, a review of the literature

    NARCIS (Netherlands)

    de Laat, Monique W. M.; Franx, Arie; van Alderen, Elise D.; Nikkels, Peter G. J.; Visser, Gerard H. A.

    2005-01-01

    Our aim was to review the literature on umbilical cord coiling. Relevant articles in English published between 1966 and 2003 were retrieved by a Medline search and cross-referencing. The normal umbilical cord coiling index (UCI) is 0.17 (+/- 0.009) spirals completed per cm. Abnormal cord coiling,

  1. The Roach muscle bundle and umbilical cord coiling

    NARCIS (Netherlands)

    de Laat, Monique W. M.; Nikkels, Peter G. J.; Franx, Arie; Visser, Gerard H. A.

    2007-01-01

    To determine if presence of the Roach muscle, a small muscle bundle lying just beside the umbilical artery, contributes to umbilical cord coiling. 251 umbilical cords were examined. The umbilical coiling index (UCI) was calculated as the number of coils divided by the cord length in cm. Cords were

  2. The coil array method for creating a dynamic imaging volume.

    Science.gov (United States)

    Smith, Elliot; Freschi, Fabio; Repetto, Maurizio; Crozier, Stuart

    2017-08-01

    Gradient strength and speed are limited by peripheral nerve stimulation (PNS) thresholds. The coil array method allows the gradient field to be moved across the imaging area. This can help reduce PNS and provide faster imaging for image-guided therapy systems such as the magnetic resonance imaging-guided linear accelerator (MRI-linac). The coil array is designed such that many coils produce magnetic fields, which combine to give the desired gradient profile. The design of the coil array uses two methods: either the singular value decomposition (SVD) of a set of field profiles or the electromagnetic modes of the coil surface. Two whole-body coils and one experimental coil were designed to investigate the method. The field produced by the experimental coil was compared to simulated results. The experimental coil region of uniformity (ROU) was moved along the z axis as shown in simulation. The highest observed field deviation was 16.9% at the edge of the ROU with a shift of 35 mm. The whole-body coils showed a median field deviation across all offsets below 5% with an eight-coil basis when using the SVD design method. Experimental results show the feasibility of a moving imaging region within an MRI with a low number of coils in the array. Magn Reson Med 78:784-793, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. Strain and stress of the ASDEX multipole magnetic coils

    International Nuclear Information System (INIS)

    Jandl, O.; Pillsticker, M.

    1978-01-01

    A brief description of the technical concept of the multipole magnetic field coils for the ASDEX tokamak is given. The various loads of the coils are explained in quality. To compute displacement and stress of the coils FEM computer programs are used. The computing models applied to this problem are founded and the results and the conclusions are reported. (orig.) [de

  4. Preferred side-chain constellations at antiparallel coiled-coil interfaces.

    Science.gov (United States)

    Hadley, Erik B; Testa, Oliver D; Woolfson, Derek N; Gellman, Samuel H

    2008-01-15

    Reliable predictive rules that relate protein sequence to structure would facilitate postgenome predictive biology and the engineering and de novo design of peptides and proteins. Through a combination of experiment and analysis of the protein data bank (PDB), we have deciphered and rationalized new rules for helix-helix interfaces of a common protein-folding and association motif, the antiparallel dimeric coiled coil. These interfaces are defined by a specific pattern of interactions among largely hydrophobic side chains often referred to as knobs-into-holes (KIH) packing: a knob from one helix inserts into a hole formed by four residues on the partner. Previous work has focused on lateral interactions within the KIH motif, for example, between an a position on one helix and a d' position on the other in an antiparallel coiled coil. We show that vertical interactions within the KIH motif, such as a'-a-a', are energetically important as well. The experimental and database analyses concur regarding preferred vertical combinations, which can be rationalized as leading to favorable side-chain interactions that we call constellations. The findings presented here highlight an unanticipated level of complexity in coiled-coil interactions, and our analysis of a few specific constellations illustrates a general, multipronged approach to addressing this complexity.

  5. Historical review: another 50th anniversary--new periodicities in coiled coils.

    Science.gov (United States)

    Gruber, Markus; Lupas, Andrei N

    2003-12-01

    In 1953, Francis Crick and Linus Pauling both proposed models of supercoiled alpha helices ('coiled coils') for the structure of keratin. These were the first attempts at modelling the tertiary structure of a protein. Crick emphasized the packing mode of the side-chains ('knobs-into-holes'), which required a periodicity of seven residues over two helical turns (7/2) and a supercoil in the opposite sense of the constituent helices. By contrast, Pauling envisaged a broader set of periodicities (4/1, 7/2, 18/5, 15/4, 11/3) and supercoils of both senses. Crick's model became canonical and the 'heptad repeat' essentially synonymous with coiled coils, but 50 years later new crystal structures and protein sequences show that the less common periodicities envisaged by Pauling also occur in coiled coils, adding a variant packing mode ('knobs-to-knobs') to the standard model. Pauling's laboratory notebooks suggest that he searched unsuccessfully for this packing mode in 1953.

  6. Role of the coiled-coil tip of Escherichia coli DksA in promoter control

    Science.gov (United States)

    Lee, Jeong-Hyun; Lennon, Christopher W.; Ross, Wilma; Gourse, Richard L.

    2012-01-01

    E. coli DksA works in conjunction with the small molecule ppGpp to regulate transcription initiation negatively or positively, depending on the identity of the promoter. DksA is in a class of transcription factors that do not bind directly to DNA like classical repressors or activators but rather bind in the RNA polymerase (RNAP) secondary channel like the transcription elongation factors GreA and GreB in E. coli and TFIIS in eukaryotes. We found that substitution for either of two residues in its coiled-coil tip, D74 or A76, eliminates DksA function without affecting its apparent affinity for RNAP. The properties of DksA-Gre factor chimeras indicated that the coiled-coil tip is responsible for the DksA-specific effects on open complex formation. A conservative substitution at position 74, D74E, resulted in a loss of DksA function in both negative and positive control, and an E44D substitution at the analogous position in GreA resulted in a gain of function in both negative and positive control. That a single methylene group has such an extraordinary effect on these transcription factors highlights the critical nature of the identity of coiled-coil tip interactions with RNAP for open complex formation. PMID:22200485

  7. Coiled-Coil Proteins Facilitated the Functional Expansion of the Centrosome

    Science.gov (United States)

    Kuhn, Michael; Hyman, Anthony A.; Beyer, Andreas

    2014-01-01

    Repurposing existing proteins for new cellular functions is recognized as a main mechanism of evolutionary innovation, but its role in organelle evolution is unclear. Here, we explore the mechanisms that led to the evolution of the centrosome, an ancestral eukaryotic organelle that expanded its functional repertoire through the course of evolution. We developed a refined sequence alignment technique that is more sensitive to coiled coil proteins, which are abundant in the centrosome. For proteins with high coiled-coil content, our algorithm identified 17% more reciprocal best hits than BLAST. Analyzing 108 eukaryotic genomes, we traced the evolutionary history of centrosome proteins. In order to assess how these proteins formed the centrosome and adopted new functions, we computationally emulated evolution by iteratively removing the most recently evolved proteins from the centrosomal protein interaction network. Coiled-coil proteins that first appeared in the animal–fungi ancestor act as scaffolds and recruit ancestral eukaryotic proteins such as kinases and phosphatases to the centrosome. This process created a signaling hub that is crucial for multicellular development. Our results demonstrate how ancient proteins can be co-opted to different cellular localizations, thereby becoming involved in novel functions. PMID:24901223

  8. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  9. Investigation of Tungsten and Beryllium Behaviour under Short Transient Events

    International Nuclear Information System (INIS)

    Pintsuk, G.; Kuehnlein, W.; Linke, J.; Roedig, M.

    2006-01-01

    The electron beam facility JUDITH is a rather versatile test facility for the simulation of high heat fluxes. One key issue is the simulation of the material performance under short transient events. The study of melting behaviour and crack formation, which occurs even for heat pulses below the melting threshold of the metals, is of huge importance for the qualification of materials for future nuclear devices. Heat load simulations at RT with a pulse length of 5 ms have been performed on beryllium (S65C), the ITER candidate material for the first wall, at power loads of 0.5 - 2 GW/m 2 . Crack formation, surface roughening and melt layer motion has been studied. Similar conditions during single and multiple shots below and above the melting threshold (∼50 MW·m-2·s 1 /2) have been applied to tungsten. Since its material properties are dependent on grain size and shape, 3 different grades have been tested in an as-delivered state: 1) deformed tungsten aligned in deformation direction, which corresponds to the actual ITER specification for tungsten used in the divertor; 2) deformed tungsten aligned perpendicular to the deformation direction; 3) sintered tungsten. Significant differences in the crack resistance and the crack pattern of the various tungsten grades below the melting threshold have been determined and further material degradation has been found after multiple shots. This is of importance also in regard to expected ELM loads in ITER, in which power densities below the melting threshold are applied at a high repetition rate (∼ 1 Hz). Crack formation for sintered tungsten starts at ∼20 MW·m -2 ·s -1 /2. The cracks are located across the loaded area and increase in number, length and width with increasing power load. In comparison to that for deformed tungsten cracking was first detected at ∼35 MW·m -2 ·s -1 /2. Whereas for tungsten aligned in deformation direction a crack pattern comparable to those of sintered tungsten was formed, tungsten

  10. Classification of tungsten powder by fluidization method and its application

    International Nuclear Information System (INIS)

    Li Khan-Guan'.

    1989-01-01

    Search for accessible in practice, the technological method to increase the level of control of the granulometric composition of tungsten powder and to increase quality of products and to prepare new materials is carried out. It is shown that the method of fluidization is effective and accessible in practice for tungsten powder (and other refractory metals and compounds) classification, that increases the level of control of the granulometric composition of the powder and thus - its quality, and that improves control of properties of tungsten and other refractory metal products

  11. Dense Pure Tungsten Fabricated by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Dianzheng Wang

    2017-04-01

    Full Text Available Additive manufacturing using tungsten, a brittle material, is difficult because of its high melting point, thermal conductivity, and oxidation tendency. In this study, pure tungsten parts with densities of up to 18.53 g/cm3 (i.e., 96.0% of the theoretical density were fabricated by selective laser melting. In order to minimize balling effects, the raw polyhedral tungsten powders underwent a spheroidization process before laser consolidation. Compared with polyhedral powders, the spherical powders showed increased laser absorptivity and packing density, which helped in the formation of a continuous molten track and promoted densification.

  12. Study of defects and radiation damage in solids by field-ion and atom-probe microscopy

    International Nuclear Information System (INIS)

    Seidman, D.N.

    1979-06-01

    A brief review is presented of: the basic physical principles of the field-ion and atom-probe microscopes; the many applications of these instruments to the study of defects and radiation damage in solids; and the application of the atom-probe field-ion microscope to the study of the behavior of implanted 3 He and 4 He in tungsten

  13. High precision tungsten cutting for optics

    International Nuclear Information System (INIS)

    Reglero, V.; Velasco, T.; Rodrigo, J.; Gasent, L.J.; Alamo, J.; Chato, R.; Ruiz Urien, I.; Santos, I.; Zarauz, J.; Clemente, G.; Sanz-Tudanca, C.; Lopez, J.L.

    2001-01-01

    The results obtained during the INTEGRAL masks development program an implementing the HURA and MURA codes on tungsten plates of different thickness are presented. Hard scientific requirements on pixels size and location tolerances (tenths of microns over large areas -1 m 2 - and thickness from 0.5 mm to 60 mm) required the set up of a dedicated program for testing cutting technologies: laser, photochemical milling, spark machining and electro discharge wire cutting. After a very intensive test campaign the wire cutting process was selected as the optimum technology for code manufacturing . Accuracies achieved an the code cutting fulfill scientific requirements. In fact, they are 5 times better than required. Pixel size and centroids location accuracies of 0.01 mm over a 1 m 2 area have been obtained for the 10,000 pixels on IBIS, 100 pixels on SPI and 24000 pixels on JEM-X masks. Comparative results among different cutting technologies are also discussed. (author)

  14. Modification of tungsten layers by arcing

    International Nuclear Information System (INIS)

    Laux, M.; Schneider, W.; Juettner, B.; Lindig, S.; Mayer, M.; Balden, M.; Beilis, I.; Djakov, B.

    2005-01-01

    Numerous traces of arcs have been found on W-covered graphite tiles of ASDEX Upgrade after exposure. The distributions of number density, lengths and orientation are calculated and compared to pure graphite tiles at comparable locations. It was established that arcs perforate a 1 μm tungsten layer down to the carbon substrate. The amount of removal should rise with arc current, but a surface fraction of about 8% is eroded at 10 A already. At tiles of the divertor baffle the layer is continuously removed along the entire track pointing to higher currents. The carbon of the stripped parts is subject to subsequent erosion processes. The distribution of materials in and around arc tracks was investigated by sputter depth profiling (SIMS and AES) and the characteristic geometry was studied using an electron microscope. Observations are interpreted using results from laboratory vacuum arcs on the same material

  15. The movement of screw dislocations in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Tian Xiaogeng; Woo Chungho

    2004-03-25

    Using Acland potential for tungsten, the movement of 1/2a<1 1 1> screw dislocation under shear stress was investigated by molecular dynamics simulation. Equilibrated core structure was obtained by relaxation of screw dislocation with proper boundary conditions. We found that the equilibrium dislocation core has three-fold symmetry and spread out in three <1 1 2> direction on {l_brace}1 1 0{r_brace} planes. The screw dislocation core could not keep the original shape when the shear stress applied. The dislocation could not move until the shear stress became large enough. The dislocation moved in zigzag when the shear stress neared the Peierls stress. When the shear stress became larger, the dislocation moved in zigzag at the beginning and than moved almost in straight line in [2-bar11] direction. The large shear stress applied, the long distance moved before the dislocation stilled in z-direction and the large velocity in y-direction.

  16. Hydrogen generation from steam reaction with tungsten

    Science.gov (United States)

    Smolik, G. R.; McCarthy, K. A.; Petti, D. A.; Coates, K.

    1998-10-01

    A LOCA in a fusion reactor involving an ingress of steam presents a safety concern due to hydrogen generated from steam reactions with plasma facing components. Hydrogen concentrations must be maintained below explosive levels. To support safety evaluations we have experimentally determined hydrogen generation rates when a tungsten alloy is exposed to steam from 400°C to 1200°C. We studied effects of steam pressure between 2.8 × 10 4 and 8.5 × 10 4 Pa, i.e., (0.28-0.84 atm) and gas velocity between 0.011 and 0.063 m/s. We present relationships for the reaction rates, oxidation phases, and mechanisms associated with the hydrogen generation.

  17. Laser irradiation of carbon–tungsten materials

    International Nuclear Information System (INIS)

    Marcu, A; Lungu, C P; Ursescu, D; Porosnicu, C; Grigoriu, C; Avotina, L; Kizane, G; Marin, A; Osiceanu, P; Grigorescu, C E A; Demitri, N

    2014-01-01

    Carbon–tungsten layers deposited on graphite by thermionic vacuum arc (TVA) were directly irradiated with a femtosecond terawatt laser. The morphological and structural changes produced in the irradiated area by different numbers of pulses were systematically explored, both along the spots and in their depths. Although micro-Raman and Synchrotron-x-ray diffraction investigations have shown no carbide formation, they have shown the unexpected presence of embedded nano-diamonds in the areas irradiated with high fluencies. Scanning electron microscopy images show a cumulative effect of the laser pulses on the morphology through the ablation process. The micro-Raman spatial mapping signalled an increased percentage of sp 3 carbon bonding in the areas irradiated with laser fluencies around the ablation threshold. In-depth x-ray photoelectron spectroscopy investigations suggested a weak cumulative effect on the percentage increase of the sp 2 -sp 3 transitions with the number of laser pulses just for nanometric layer thicknesses. (paper)

  18. Imaging of radiation damage using complementary field ion microscopy and atom probe tomography

    International Nuclear Information System (INIS)

    Dagan, Michal; Hanna, Luke R.; Xu, Alan; Roberts, Steve G.; Smith, George D.W.; Gault, Baptiste; Edmondson, Philip D.; Bagot, Paul A.J.; Moody, Michael P.

    2015-01-01

    Radiation damage in tungsten and a tungsten–tantalum alloy, both of relevance to nuclear fusion research, has been characterized using a combination of field ion microscopy (FIM) imaging and atom probe tomography (APT). While APT provides 3D analytical imaging with sub-nanometer resolution, FIM is capable of imaging the arrangements of single atoms on a crystal lattice and has the potential to provide insights into radiation induced crystal damage, all the way down to its smallest manifestation – a single vacancy. This paper demonstrates the strength of combining these characterization techniques. In ion implanted tungsten, it was found that atomic scale lattice damage is best imaged using FIM. In certain cases, APT reveals an identifiable imprint in the data via the segregation of solute and impurities and trajectory aberrations. In a W–5 at%Ta alloy, a combined APT–FIM study was able to determine the atomic distribution of tantalum inside the tungsten matrix. An indirect method was implemented to identify tantalum atoms inside the tungsten matrix in FIM images. By tracing irregularities in the evaporation sequence of atoms imaged with FIM, this method enables the benefit of FIM's atomic resolution in chemical distinction between the two species. - Highlights: • Complementary FIM and APT was used to study nanoscale radiation damage in tungsten. • Trajectory aberrations in APT revealed extended lattice damage which FIM confirmed. • Nano scale features were detected indirectly with APT via segregation of impurities. • Induced damage at the scale of a single vacancy could only be detected via FIM. • 3DFIM characterized W–5Ta atomic distribution with improved detection efficiency.

  19. Fuzzy tungsten in a magnetron sputtering device

    Energy Technology Data Exchange (ETDEWEB)

    Petty, T.J., E-mail: tjpetty@liv.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ (United Kingdom); Khan, A. [Pariser Building-G11, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, M13 9PL (United Kingdom); Heil, T. [NiCaL, Block C Waterhouse Building, 1-3 Brownlow Street, Liverpool, L69 3GL (United Kingdom); Bradley, J.W., E-mail: j.w.bradley@liverpool.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ (United Kingdom)

    2016-11-15

    Helium ion induced tungsten nanostructure (tungsten fuzz) has been studied in a magnetron sputtering device. Three parameters were varied, the fluence from 3.4 × 10{sup 23}–3.0 × 10{sup 24} m{sup −2}, the He ion energy from 25 to 70 eV, and the surface temperature from 900 to 1200 K. For each sample, SEM images were captured, and measurements of the fuzz layer thickness, surface roughness, reflectivity, and average structure widths are provided. A cross-over point from pre-fuzz to fully formed fuzz is found at 2.4 ± 0.4 × 10{sup 24} m{sup −2}, and a temperature of 1080 ± 60 K. No significant change was observed in the energy sweep. The fuzz is compared to low fluence fuzz created in the PISCES-A linear plasma device. Magnetron fuzz is less uniform than fuzz created by PISCES-A and with generally larger structure widths. The thicknesses of the magnetron samples follow the original Φ{sup 1/2} relation as opposed to the incubation fluence fit. - Highlights: • Fuzz has been created in a magnetron sputtering device. • Three parameters for fuzz formation have been swept. • A cross-over from pre-fuzz to fully formed fuzz is seen. • Evidence for annealing out at lower temperatures than has been seen before. • Evidence to suggest that fuzz grown in discrete exposures is not consistent with fuzz grown in one long exposure.

  20. Fuzzy tungsten in a magnetron sputtering device

    International Nuclear Information System (INIS)

    Petty, T.J.; Khan, A.; Heil, T.; Bradley, J.W.

    2016-01-01

    Helium ion induced tungsten nanostructure (tungsten fuzz) has been studied in a magnetron sputtering device. Three parameters were varied, the fluence from 3.4 × 10 23 –3.0 × 10 24  m −2 , the He ion energy from 25 to 70 eV, and the surface temperature from 900 to 1200 K. For each sample, SEM images were captured, and measurements of the fuzz layer thickness, surface roughness, reflectivity, and average structure widths are provided. A cross-over point from pre-fuzz to fully formed fuzz is found at 2.4 ± 0.4 × 10 24  m −2 , and a temperature of 1080 ± 60 K. No significant change was observed in the energy sweep. The fuzz is compared to low fluence fuzz created in the PISCES-A linear plasma device. Magnetron fuzz is less uniform than fuzz created by PISCES-A and with generally larger structure widths. The thicknesses of the magnetron samples follow the original Φ 1/2 relation as opposed to the incubation fluence fit. - Highlights: • Fuzz has been created in a magnetron sputtering device. • Three parameters for fuzz formation have been swept. • A cross-over from pre-fuzz to fully formed fuzz is seen. • Evidence for annealing out at lower temperatures than has been seen before. • Evidence to suggest that fuzz grown in discrete exposures is not consistent with fuzz grown in one long exposure.