WorldWideScience

Sample records for tuned laser photolysis

  1. Optical inhomogeneity developing in flashlamp photolysis lasers

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, B V; Borovkov, V V; Brodskii, A Ya; Lazhintsev, B V; Nor-Arevian, V A; Sukhanov, L V

    1980-07-01

    The paper discusses the dynamics of optical inhomogenity developing in the active medium of a high-power flashlamp-pumped photolysis laser in inverse population storage, fast inversion suppression, and free-running lasing regimes. A chemical component of the refractive index was found in a C3F7I photolysis experiment, along with the anomalous growth of a gas refractive index.

  2. Selective laser photolysis of simple molecules

    International Nuclear Information System (INIS)

    Golnabi, Hossein.

    1984-01-01

    A two-photon technique is reported for the measurement of relative cross section for the photolysis of simple molecules into particular product channels. In this method two independently tunable dye lasers were used to sequentially dissociate molecules of Cs 2 and Cs-Kr for the wavelengths in the range 420 to 660 nm, and then to excite the resulting products to determine the relative cross sections for the photolysis of Cs 2 and Cs-kr into each of the lowest four of the energetically possible product states

  3. CO2 laser photolysis of clustered ions, (1)

    International Nuclear Information System (INIS)

    Ikezoe, Yasumasa; Soga, Takeshi; Suzuki, Kazuya; Ohno, Shin-ichi.

    1990-09-01

    Vibrational excitation and the following decomposition of cluster ions by CO 2 laser photons are studied. Characteristics of the cluster ion and the CO 2 laser photon are summarized in their relation to the photolysis of cluster ions. An apparatus was installed, which is composed of (1) corona discharge-jet expansion section (formation of cluster ions), (2) CO 2 laser section (photolysis of cluster ions), and (3) mass spectrometer section. Experimental results of ammonia cluster ions were described. Effects of repeller voltage, shape of repellers, and adiabatic cooling are examined on the formation of ammonia cluster ions by corona discharge-jet expansion method. Collisional dissociation of cluster ions was observed at high repeller voltages. Size distribution of the ammonia cluster ion is discussed in connection with the temperature of cluster ions. Intensity of CO 2 laser was related to decomposition yield of cluster ions. (author)

  4. Ozone Formation in Laser Flash Photolysis of Oxoacids and Oxoanions of Chlorine and Bromine

    DEFF Research Database (Denmark)

    Kläning, Ulrik; Sehested, Knud; Wolff, Thomas

    1984-01-01

    The kinetics of ozone formation in the photolysis of oxygen-containing solutions of HClO, ClO–, ClO–2, ClO–3, HBrO, BrO– and BrO–3 has been studied by laser flash photolysis and conventional flash photolysis. The usual assumption, that ozone only forms in the reaction of oxygen atoms in the spin-...

  5. Non-invasive bleaching of the human lens by femtosecond laser photolysis

    DEFF Research Database (Denmark)

    Kessel, L.; Eskildsen, Lars; Poel, Mike van der

    2010-01-01

    . Reducing blindness from cataract requires solutions that can be applied outside operating theatres. Cataract is a protein conformational disease characterized by accumulation of light absorbing, fluorescent and scattering protein aggregates. The aim of the study was to investigate whether these compounds...... by a non-invasive procedure based on femtosecond laser photolysis. Cataract is a disease associated with old age. At the current technological stage, lens aging is delayed but with a treatment covering the entire lens volume complete optical rejuvenation is expected. Thus, femtosecond photolysis has...

  6. Laser Photolysis and Thermolysis of Organic Selenides and Tellurides for Chemical Gas-phase Deposition of Nanostructured Materials

    Directory of Open Access Journals (Sweden)

    Josef Pola

    2009-03-01

    Full Text Available Laser radiation-induced decomposition of gaseous organic selenides and tellurides resulting in chemical deposition of nanostructured materials on cold surfaces is reviewed with regard to the mechanism of the gas-phase decomposition and properties of the deposited materials. The laser photolysis and laser thermolysis of the Se and Te precursors leading to chalcogen deposition can also serve as a useful approach to nanostructured chalcogen composites and IVA group (Si, Ge, Sn element chalcogenides provided that it is carried out simultaneously with laser photolysis or thermolysis of polymer and IVA group element precursor.

  7. Investigation of local optical inhomogeneities in flashlamp photolysis lasers

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, B V; Borovkov, V V; Lazhintsev, B V; Nor-Arenian, V A; Sukhanov, L V; Ustinenko, V A

    1979-09-01

    Local changes in the refractive index which occur in the active medium under flashlamp-excited photolysis laser action are examined experimentally. Under conditions of the inverse population storage and suppression of the laser action by a strong quencher, local inhomogeneities have been absent. It is shown that the stimulated emission is inhomogeneous over the active medium and features regular character with the radiation density modulation within 20-30 percent and with typical size of inhomogeneities of not greater than 0.5 mm. On the basis of experimental results and estimation, a conclusion is drawn that the local optical inhomogeneities are caused by gasdynamic displacements of the gas due to different heat evolutions in the regions of the radiation density maximum and minimum.

  8. IR Laser-Induced Thermolysis and UV Laser-Induced Photolysis of 1,3-Diethyldisiloxane: Chemical Vapour Deposition of Nanotextured Hydridoalkylsilicones

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Markéta; Bastl, Zdeněk; Šubrt, Jan; Pola, Josef

    2001-01-01

    Roč. 11, č. 6 (2001), s. 1557-1562 ISSN 0959-9428 R&D Projects: GA AV ČR IAA4072806 Keywords : thermolysis * UV laser photolysis * composition Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 2.736, year: 2001

  9. Laser Flash Photolysis and Pulse Radiolysis of Iodate and Periodate in Aqueous Solution

    DEFF Research Database (Denmark)

    Kläning, U K; Sehested, Knud; Wolff, Thomas

    1981-01-01

    photolysis study of IeVI and I0VI suggests that the predominant IeVI and I0VI species formed are IO42– and IO3 at 3 12. Redox reactions of the iodine(VI) species are fast compared with interconversion among the various iodine(VI) species......Species containing iodine in oxidation state six are formed by photolysis and radiolysis of aqueous iodate and periodate solutions in the following reactions: IO3–+ O–→ IO42–; IO3–+ OH → IO3; IVII+ eaq–→ IeVI and IVII [graphic omitted] I0VI+ O–(or OH). The present pulse radiolysis and laser flash...

  10. The in vitro photolysis of whole rat lenses using focused 290nm laser radiation

    International Nuclear Information System (INIS)

    Hibbard, L.B.; Kirk, N.J.; Borkman, R.F.

    1985-01-01

    Whole rat lenses have been irradiated with a UV laser at 290 or 298 nm focused to a 0.08 mm diameter spot. The irradiated spot was analyzed using fluorescence spectroscopy and it was observed that the intensity of fluorescence fell as the irradiation proceeded. These observations were interpreted in terms of a model which postulates photolysis of tryptophan, primarily present as residues in lens proteins, and formation of photoproducts which absorb the UV laser radiation to an ever-increasing extent as the irradiation proceeds. Evidence is also presented which indicates that an observed fast component of the tryptophan fluorescence decay results from local heating of the lens tissues due to energy dissipation by the laser. Tryptophan residues can be photolyzed by UV light in the whole lens, in vitro, in a fashion entirely analogous to that reported previously only for lens protein solutions. The photochemical behavior of lens protein solutions is relevant to whole lens photolysis and no special protective mechanism appears to be operative in the intact organ. (author)

  11. Reactions of uranium hexafluoride photolysis products

    Science.gov (United States)

    Lyman, John L.; Laguna, Glenn; Greiner, N. R.

    1985-01-01

    This paper confirms that the ultraviolet photolysis reactions of UF6 in the B band spectral region is simple bond cleavage to UF5 and F. The photolysis products may either recombine to UF6 or the UF5 may dimerize, and ultimately polymerize, to solid UF5 particles. We use four methods to set an upper limit for the rate constant for recombination of krUF6 and UF5 after laser photolysis of the UF6 gas sample.

  12. Comparison of Vanillin and Isovanillin Photolysis in Aqueous Solutions

    Science.gov (United States)

    Vusovich, O. V.; Lapin, I. N.; Svetlichnyi, V. A.; Sul'timova, N. B.; Tchaikovskaya, O. N.

    2014-03-01

    General kinetic regularities of reactions of stationary and laser photolysis of 3-methoxy-4-hydroxybenzaldehyde (vanillin) and 3-hydroxy-4-methoxybenzaldehyde (isovanillin) are investigated by the method of nanosecond laser flash-photolysis. The 4th harmonic of a Nd:YAG laser (λexc = 266 nm) with pulse duration of 7 ns, output power of 100 MW/cm2, and delay time of 30 ns was used as an excitation source. As a result of photolysis, the same photoproducts are formed in the region of absorption at 715 nm. The rate constants of vanillin and isovanillin decomposition obey the first order law and are 2.3ṡ106 and 2.5ṡ106 s-1, respectively.

  13. Thermal tuning On narrow linewidth fiber laser

    Science.gov (United States)

    Han, Peiqi; Liu, Tianshan; Gao, Xincun; Ren, Shiwei

    2010-10-01

    At present, people have been dedicated to high-speed and large-capacity optical fiber communication system. Studies have been shown that optical wavelength division multiplexing (WDM) technology is an effective means of communication to increase the channel capacity. Tunable lasers have very important applications in high-speed, largecapacity optical communications, and distributed sensing, it can provide narrow linewidth and tunable laser for highspeed optical communication. As the erbium-doped fiber amplifier has a large gain bandwidth, the erbium-doped fiber laser can be achieved lasing wavelength tunable by adding a tunable filter components, so tunable filter device is the key components in tunable fiber laser.At present, fiber laser wavelength is tuned by PZT, if thermal wavelength tuning is combined with PZT, a broader range of wavelength tuning is appearance . Erbium-doped fiber laser is used in the experiments,the main research is the physical characteristics of fiber grating temperature-dependent relationship and the fiber grating laser wavelength effects. It is found that the fiber laser wavelength changes continuously with temperature, tracking several temperature points observed the self-heterodyne spectrum and found that the changes in spectra of the 3dB bandwidth of less than 1kHz, and therefore the fiber laser with election-mode fiber Bragg grating shows excellent spectral properties and wavelength stability.

  14. Modeling Studies of Inhomogeneity Effects during Laser Flash Photolysis Experiments: A Reaction-Diffusion Approach.

    Science.gov (United States)

    Dóka, Éva; Lente, Gábor

    2017-04-13

    This work presents a rigorous mathematical study of the effect of unavoidable inhomogeneities in laser flash photolysis experiments. There are two different kinds of inhomegenities: the first arises from diffusion, whereas the second one has geometric origins (the shapes of the excitation and detection light beams). Both of these are taken into account in our reported model, which gives rise to a set of reaction-diffusion type partial differential equations. These equations are solved by a specially developed finite volume method. As an example, the aqueous reaction between the sulfate ion radical and iodide ion is used, for which sufficiently detailed experimental data are available from an earlier publication. The results showed that diffusion itself is in general too slow to influence the kinetic curves on the usual time scales of laser flash photolysis experiments. However, the use of the absorbances measured (e.g., to calculate the molar absorption coefficients of transient species) requires very detailed mathematical consideration and full knowledge of the geometrical shapes of the excitation laser beam and the separate detection light beam. It is also noted that the usual pseudo-first-order approach to evaluating the kinetic traces can be used successfully even if the usual large excess condition is not rigorously met in the reaction cell locally.

  15. Electro-optic diffraction grating tuned laser

    International Nuclear Information System (INIS)

    Hughes, R.S.

    1975-01-01

    An electro-optic diffraction grating tuned laser comprising a laser medium, output mirror, retro-reflective grating and an electro-optic diffraction grating beam deflector positioned between the laser medium and the reflective diffraction grating is described. An optional angle multiplier may be used between the electro-optic diffraction grating and the reflective grating. (auth)

  16. Laser flash-photolysis and gas discharge in N2O-containing mixture: kinetic mechanism

    Science.gov (United States)

    Kosarev, Ilya; Popov, Nikolay; Starikovskaia, Svetlana; Starikovskiy, Andrey; mipt Team

    2011-10-01

    The paper is devoted to further experimental and theoretical analysis of ignition by ArF laser flash-photolysis and nanosecond discharge in N2O-containing mixture has been done. Additional experiments have been made to assure that laser emission is distributed uniformly throughout the cross-section. The series of experiments was proposed and carried out to check validity of O(1D) determination in experiments on plasma assisted ignition initiated by flash-photolysis. In these experiments, ozone density in the given mixture (mixture composition and kinetics has been preliminary analyzed) was measured using UV light absorption in Hartley band. Good coincidence between experimental data and results of calculations have been obtained Temporal behavior of energy input, electric field and electric current has been measured and analyzed. These data are considered as initial conditions for numerical modeling of the discharge in O2:N2O:H2:Ar = 0.3:1:3:5 mixture. Ion-molecular reactions and reactions of active species production in Ar:H2:O2:N2O mixture were analyzed. The set of reactions to describe chemical transformation in the system due to the discharge action has been selected.

  17. [Laser Tuning Performance Testing and Optimization in TDLAS Oxygen Measuring Systems].

    Science.gov (United States)

    He, Jun-feng; Hu, Jun; Kan, Rui-feng; Xu, Zhen-yu; Wang, Tao

    2015-03-01

    TDLAS (tunable diode laser absorption spectroscopy) technology, with its unmatched advantages such as high selectivity molecular spectra, fast response, high sensitivity, non-contact measuring, become the preferred scheme for combustion process diagnosis, and can be effectively used for oxygen measuring. DFB (distributed feedback) laser diode with its small size, low power consumption, long service life, narrow linewidth, tunable wavelength has become the main choice of the TDLAS system. Performance of laser tuning characteristics is a key factor restricting TDLAS's measuring performance. According to TDLAS oxygen measuring system's working requirements, a simple experimental method was used to test and analyze tuning characteristics such as wavelength current, power current and wavelength temperature of a 764 nm DFB laser diode in the system. Nonlinear distortion of tuning curves was obvious, which affects oxygen measuring accuracy. The laser spectra's characteristics such as narrow linewidth, high side mode suppression ratio and wide wavelength tuning range are obvious, while its wavelength-current tuning curve with a tuning rate of about 0.023 nm x mA(-1) is not strictly linear. The higher the temperature the greater the threshold current, the PI curve is not strictly linear either. Temperature tuning curve is of good linearity, temperature-wave-length tuning rate keeps constant of about 0.056 nm/DEG C. Temperature tuning nonlinearity can be improved by high temperature control accuracy, and current power nonlinearity can be improved by setting the reference light path. In order to solve the wavelength current tuning nonlinear problems, the method of DA controlling injection current was considered to compensate for non-linear wavelength current tuning according to DFB laser diode tuning mechanism and polynomial fitting of test results. In view of different type of lasers, this method needs only one polynomial fitting process before the system's initial work. The

  18. Tilt-tuned etalon locking for tunable laser stabilization.

    Science.gov (United States)

    Gibson, Bradley M; McCall, Benjamin J

    2015-06-15

    Locking to a fringe of a tilt-tuned etalon provides a simple, inexpensive method for stabilizing tunable lasers. Here, we describe the use of such a system to stabilize an external-cavity quantum cascade laser; the locked laser has an Allan deviation of approximately 1 MHz over a one-second integration period, and has a single-scan tuning range of approximately 0.4  cm(-1). The system is robust, with minimal alignment requirements and automated lock acquisition, and can be easily adapted to different wavelength regions or more stringent stability requirements with minor alterations.

  19. Interaction of quinones with three pyrimidine bases: A laser flash photolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Adity [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Basu, Samita, E-mail: samita.basu@saha.ac.i [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India)

    2009-11-15

    The interaction between three different pyrimidine bases, uracil (U), cytosine (C) and thymine (T) and two quinones, 2-methyl-1,4-naphthoquinone or menadione (MQ) and 9,10-anthraquinone (AQ) have been studied using laser flash photolysis technique in organic homogeneous medium. The three pyrimidines have revealed a difference in their extent of reactivity towards the quinones, which has been attributed to their structural difference. Our works have revealed that the difference in structural dimension of the quinones is also responsible for affecting the reactivity of these pyrimidines in homogeneous medium.

  20. Interaction of quinones with three pyrimidine bases: A laser flash photolysis study

    International Nuclear Information System (INIS)

    Bose, Adity; Basu, Samita

    2009-01-01

    The interaction between three different pyrimidine bases, uracil (U), cytosine (C) and thymine (T) and two quinones, 2-methyl-1,4-naphthoquinone or menadione (MQ) and 9,10-anthraquinone (AQ) have been studied using laser flash photolysis technique in organic homogeneous medium. The three pyrimidines have revealed a difference in their extent of reactivity towards the quinones, which has been attributed to their structural difference. Our works have revealed that the difference in structural dimension of the quinones is also responsible for affecting the reactivity of these pyrimidines in homogeneous medium.

  1. Frequency doubled dye laser with a servo-tuned crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, J; Spitschan, H

    1975-01-01

    Spectral tuning of the uv output of a frequency doubled dye laser was successfully controlled by a servo motor system which tilts the nonlinear crystal appropriate for phase-matched second harmonic generation while the dye laser emission wavelength is tuned. The spatial direction of the generated uv beam was used as the regulating signal. The feasibility of this technique for spectroscopic applications was successfully tested.

  2. Photochemistry of CS2/Cl complexes-combined pulse radiolysis-laser flash photolysis studies

    International Nuclear Information System (INIS)

    Sumiyoshi, Takashi; Nakayama, Masayoshi; Fujiyoshi, Ryoko; Sawamura, Sadashi

    2006-01-01

    Complexes of chlorine atoms and carbon disulfide (CS 2 ) were produced by pulse radiolysis of CS 2 in halocarbons and photochemical reactions were studied by laser flash photolysis. Excitation of CS 2 /Cl complexes resulted in rapid and permanent photobleaching. The photobleaching of CS 2 /Cl complexes is due to intermolecular chlorine atom abstraction in CCl 4 with a quantum yield of 0.04, while that ascribed to hydrogen atom abstraction in 1,2-dichloroethane has a quantum yield of 0.21. The effects of additives are discussed based on the bond dissociation energy

  3. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    Science.gov (United States)

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.

  4. Interactions between 9,10-anthraquinone and aromatic amines in homogeneous and micellar media: A laser flash photolysis and magnetic field effect study

    International Nuclear Information System (INIS)

    Chowdhury, Adity; Basu, Samita

    2006-01-01

    The interactions between 9,10-anthraquinone (AQ) and different aromatic amines, N,N-dimethylaniline and 4,4'-bis (dimethylamino) diphenylmethane (DMDPM), have been studied using absorption, steady-state fluorescence, and laser flash photolysis techniques in organic homogeneous and heterogeneous micellar media. In polar organic homogeneous medium, electron transfer (ET) occurs from amines to excited AQ. In micellar medium, similar intermolecular ET is observed. However, in latter medium, ET predominates over hydrogen abstraction from micelles by excited AQ itself. The occurrence of ET has been further supported by the application of an external magnetic field during laser flash photolysis experiments, which modulates the yield of radical ion pairs formed through ET. Another novel feature, which has also been discussed here, is the abnormal behavior of DMDPM in micellar medium pertaining to energy transfer

  5. Photoluminescence excitation measurements using pressure-tuned laser diodes

    Science.gov (United States)

    Bercha, Artem; Ivonyak, Yurii; Medryk, Radosław; Trzeciakowski, Witold A.; Dybała, Filip; Piechal, Bernard

    2015-06-01

    Pressure-tuned laser diodes in external cavity were used as tunable sources for photoluminescence excitation (PLE) spectroscopy. The method was demonstrated in the 720 nm-1070 nm spectral range using a few commercial laser diodes. The samples for PLE measurements were quantum-well structures grown on GaAs and on InP. The method is superior to standard PLE measurements using titanium sapphire laser because it can be extended to any spectral range where anti-reflection coated laser diodes are available.

  6. Photoluminescence excitation measurements using pressure-tuned laser diodes

    International Nuclear Information System (INIS)

    Bercha, Artem; Ivonyak, Yurii; Mędryk, Radosław; Trzeciakowski, Witold A.; Dybała, Filip; Piechal, Bernard

    2015-01-01

    Pressure-tuned laser diodes in external cavity were used as tunable sources for photoluminescence excitation (PLE) spectroscopy. The method was demonstrated in the 720 nm-1070 nm spectral range using a few commercial laser diodes. The samples for PLE measurements were quantum-well structures grown on GaAs and on InP. The method is superior to standard PLE measurements using titanium sapphire laser because it can be extended to any spectral range where anti-reflection coated laser diodes are available

  7. Large static tuning of narrow-beam terahertz plasmonic lasers operating at 78K

    Directory of Open Access Journals (Sweden)

    Chongzhao Wu

    2017-02-01

    Full Text Available A new tuning mechanism is demonstrated for single-mode metal-clad plasmonic lasers, in which the refractive-index of the laser’s surrounding medium affects the resonant-cavity mode in the same vein as the refractive-index of gain medium inside the cavity. Reversible, continuous, and mode-hop-free tuning of ∼57 GHz is realized for single-mode narrow-beam terahertz plasmonic quantum-cascade lasers (QCLs, which is demonstrated at a much more practical temperature of 78 K. The tuning is based on post-process deposition/etching of a dielectric (silicon-dioxide on a QCL chip that has already been soldered and wire-bonded onto a copper mount. This is a considerably larger tuning range compared to previously reported results for terahertz QCLs with directional far-field radiation patterns. The key enabling mechanism for tuning is a recently developed antenna-feedback scheme for plasmonic lasers, which leads to the generation of hybrid surface-plasmon-polaritons propagating outside the cavity of the laser with a large spatial extent. The effect of dielectric deposition on QCL’s characteristics is investigated in detail including that on maximum operating temperature, peak output power, and far-field radiation patterns. Single-lobed beam with low divergence (<7° is maintained through the tuning range. The antenna-feedback scheme is ideally suited for modulation of plasmonic lasers and their sensing applications due to the sensitive dependence of spectral and radiative properties of the laser on its surrounding medium.

  8. Extended electrical tuning of quantum cascade lasers with digital concatenated gratings

    Energy Technology Data Exchange (ETDEWEB)

    Slivken, S.; Bandyopadhyay, N.; Bai, Y.; Lu, Q. Y.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu [Center for Quantum Devices, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208 (United States)

    2013-12-02

    In this report, the sampled grating distributed feedback laser architecture is modified with digital concatenated gratings to partially compensate for the wavelength dependence of optical gain in a standard high efficiency quantum cascade laser core. This allows equalization of laser threshold over a wide wavelength range and demonstration of wide electrical tuning. With only two control currents, a full tuning range of 500 nm (236 cm{sup −1}) has been demonstrated. Emission is single mode, with a side mode suppression of >20 dB.

  9. Laser induced transient absorptions of the excited triplet state of 9,10-anthraquinone-2-sulfonate. A further study by 248 nm laser photolysis

    International Nuclear Information System (INIS)

    Ma Jianhua; Lin Weizheng; Wang Wenfen; Yao Side; Lin Nianyun

    1999-01-01

    Transient absorption spectrum of triplet state of 9,10-anthraquinone-2-sulfonate (AQS) in aqueous solution has been investigated using 248 nm (KrF) laser photolysis. A whole transient absorption spectrum with absorption maxim at 380 nm and 580 nm has been assigned to triple AQS from detailed kinetic analysis of decay of 380 nm and 580 nm signals, which is the neat characteristic absorption of triplet AQS reported for the first time. In addition, the difference in feature of the spectrum of triplet AQS in H 2 O and that in CH 3 CN was eliminated by further study using 248 nm laser pulses

  10. Linewidth and tuning characteristics of terahertz quantum cascade lasers.

    Science.gov (United States)

    Barkan, A; Tittel, F K; Mittleman, D M; Dengler, R; Siegel, P H; Scalari, G; Ajili, L; Faist, J; Beere, H E; Linfield, E H; Davies, A G; Ritchie, D A

    2004-03-15

    We have measured the spectral linewidths of three continuous-wave quantum cascade lasers operating at terahertz frequencies by heterodyning the free-running quantum cascade laser with two far-infrared gas lasers. Beat notes are detected with a GaAs diode mixer and a microwave spectrum analyzer, permitting very precise frequency measurements and giving instantaneous linewidths of less than -30 kHz. Characteristics are also reported for frequency tuning as the injection current is varied.

  11. Deep learning and model predictive control for self-tuning mode-locked lasers

    Science.gov (United States)

    Baumeister, Thomas; Brunton, Steven L.; Nathan Kutz, J.

    2018-03-01

    Self-tuning optical systems are of growing importance in technological applications such as mode-locked fiber lasers. Such self-tuning paradigms require {\\em intelligent} algorithms capable of inferring approximate models of the underlying physics and discovering appropriate control laws in order to maintain robust performance for a given objective. In this work, we demonstrate the first integration of a {\\em deep learning} (DL) architecture with {\\em model predictive control} (MPC) in order to self-tune a mode-locked fiber laser. Not only can our DL-MPC algorithmic architecture approximate the unknown fiber birefringence, it also builds a dynamical model of the laser and appropriate control law for maintaining robust, high-energy pulses despite a stochastically drifting birefringence. We demonstrate the effectiveness of this method on a fiber laser which is mode-locked by nonlinear polarization rotation. The method advocated can be broadly applied to a variety of optical systems that require robust controllers.

  12. Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation.

    Science.gov (United States)

    Chen, Charlton J; Zheng, Jiangjun; Gu, Tingyi; McMillan, James F; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee; Wong, Chee Wei

    2011-06-20

    We examine the cavity resonance tuning of high-Q silicon photonic crystal heterostructures by localized laser-assisted thermal oxidation using a 532 nm continuous wave laser focused to a 2.5 μm radius spot-size. The total shift is consistent with the parabolic rate law. A tuning range of up to 8.7 nm is achieved with ∼ 30 mW laser powers. Over this tuning range, the cavity Qs decreases from 3.2×10(5) to 1.2×10(5). Numerical simulations model the temperature distributions in the silicon photonic crystal membrane and the cavity resonance shift from oxidation.

  13. Continuous flow photolysis of aryl azides: Preparation of 3H-azepinones

    Directory of Open Access Journals (Sweden)

    Farhan R. Bou-Hamdan

    2011-08-01

    Full Text Available Photolysis of aryl azides to give nitrenes, and their subsequent rearrangement in the presence of water to give 3H-azepinones, is performed in continuous flow in a photoreactor constructed of fluorinated ethylene polymer (FEP tubing. Fine tuning of the reaction conditions using the flow reactor allowed minimization of secondary photochemical reactions.

  14. Characterization of reactive intermediates in laser photolysis of nucleoside using of sodium salt anthraquinone-2-sulfonic acid as photosensitizer

    International Nuclear Information System (INIS)

    Ma Jianhua; Lin Weizhen; Wang Wenfeng; Han Zhenhui; Yao Side; Lin Nianyun

    1999-01-01

    The interaction of triplet state of sodium salt of anthraquinone-2-sulfonic acid (AQS) with nucleosides has been investigated in CH 3 CN using KrF(248 nm) laser flash photolysis. The transient absorption spectra and kinetics obtained from the interaction of triplet AQS and nucleoside demonstrated that the primary ionic radical pair, radical cation of nucleosides and radical anion of AQS has been detected simultaneously for the first time

  15. Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Martin, E-mail: hempel@pdi-berlin.de; Röben, Benjamin; Schrottke, Lutz; Grahn, Holger T. [Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e. V., Hausvogteiplatz 5–7, 10117 Berlin (Germany); Hübers, Heinz-Wilhelm [Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstr. 2, 12489 Berlin (Germany); Department of Physics, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin (Germany)

    2016-05-09

    GaAs-based terahertz quantum-cascade lasers (QCLs) are continuously tuned in their emission frequency by illuminating the rear facet with a near-infrared, high-power diode laser. For QCLs emitting around 3.1 THz, the maximum tuning range amounts to 2.8 GHz for continuous-wave operation at a heat sink temperature of 55 K, while in pulsed mode 9.1 and 8.0 GHz are achieved at 35 and 55 K, respectively.

  16. Optimum phase noise reduction and repetition rate tuning in quantum-dot mode-locked lasers

    Energy Technology Data Exchange (ETDEWEB)

    Habruseva, T. [CAPPA, Cork Institute of Technology, Cork (Ireland); Tyndall National Institute, Lee Maltings, Cork (Ireland); Aston University, Aston Triangle, B4 7ET Birmingham (United Kingdom); Arsenijević, D.; Kleinert, M.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin (Germany); Huyet, G.; Hegarty, S. P. [CAPPA, Cork Institute of Technology, Cork (Ireland); Tyndall National Institute, Lee Maltings, Cork (Ireland)

    2014-01-13

    Competing approaches exist, which allow control of phase noise and frequency tuning in mode-locked lasers, but no judgement of pros and cons based on a comparative analysis was presented yet. Here, we compare results of hybrid mode-locking, hybrid mode-locking with optical injection seeding, and sideband optical injection seeding performed on the same quantum dot laser under identical bias conditions. We achieved the lowest integrated jitter of 121 fs and a record large radio-frequency (RF) tuning range of 342 MHz with sideband injection seeding of the passively mode-locked laser. The combination of hybrid mode-locking together with optical injection-locking resulted in 240 fs integrated jitter and a RF tuning range of 167 MHz. Using conventional hybrid mode-locking, the integrated jitter and the RF tuning range were 620 fs and 10 MHz, respectively.

  17. Optimum phase noise reduction and repetition rate tuning in quantum-dot mode-locked lasers

    International Nuclear Information System (INIS)

    Habruseva, T.; Arsenijević, D.; Kleinert, M.; Bimberg, D.; Huyet, G.; Hegarty, S. P.

    2014-01-01

    Competing approaches exist, which allow control of phase noise and frequency tuning in mode-locked lasers, but no judgement of pros and cons based on a comparative analysis was presented yet. Here, we compare results of hybrid mode-locking, hybrid mode-locking with optical injection seeding, and sideband optical injection seeding performed on the same quantum dot laser under identical bias conditions. We achieved the lowest integrated jitter of 121 fs and a record large radio-frequency (RF) tuning range of 342 MHz with sideband injection seeding of the passively mode-locked laser. The combination of hybrid mode-locking together with optical injection-locking resulted in 240 fs integrated jitter and a RF tuning range of 167 MHz. Using conventional hybrid mode-locking, the integrated jitter and the RF tuning range were 620 fs and 10 MHz, respectively

  18. Reflectors and tuning elements for widely-tunable GaAs-based sampled grating DBR lasers

    Science.gov (United States)

    Brox, O.; Wenzel, H.; Della Case, P.; Tawfieq, M.; Sumpf, B.; Weyers, M.; Knigge, A.

    2018-02-01

    Widely-tunable lasers without moving parts are attractive light sources for sensors in industry and biomedicine. In contrast to InP based sampled grating (SG) distributed Bragg reflector (DBR) diode lasers which are commercially available, shorter wavelength GaAs SG-DBR lasers are still under development. One reason is the difficulty to integrate gratings with coupling coefficients that are high enough for functional grating bursts with lengths below 10 μm. Recently we have demonstrated > 20 nm wide quasi-continuous tuning with a GaAs based SG-DBR laser emitting around 975 nm. Wavelength selective reflectors are realized with SGs having different burst periods for the front and back mirrors. Thermal tuning elements (resistors) which are placed on top of the SG allow the control of the spectral positions of the SG reflector combs and hence to adjust the Vernier mode. In this work we characterize subsections of the developed SG-DBR laser to further improve its performance. We study the impact of two different vertical structures (with vertical far field FWHMs of 41° and 24°) and two grating orders on the coupling coefficient. Gratings with coupling coefficients above 350 cm-1 have been integrated into SG-DBR lasers. We also examine electronic tuning elements (a technique which is typically applied in InP based SG-DBR lasers and allows tuning within nanoseconds) and discuss the limitations in the GaAs material system

  19. 248-NM Laser Photolysis of CHBr3/O-Atom Mixtures: Kinetic Evidence for UV CO(A)-Chemiluminescence in the Reaction of Methylidyne Radicals With Atomic Oxygen

    National Research Council Canada - National Science Library

    Vaghjiani, Ghanshyam L

    2005-01-01

    4TH Positive and Cameron band emissions from electronically excited CO have been observed for the first time in 248-nm pulsed laser photolysis of a trace amount of CHBr3 vapor in an excess of O-atoms...

  20. Unit for the nanosecond, laser, pulse photolysis in the ultraviolet region for a combination of photochemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Pikel' ni, V F; Kolosov, V A; Kiryukhin, Yu I; Kondrat' ev, V A; Borovkova, V A; Tarasov, E N

    1976-06-01

    A description is given of a nanosecond laser unit for pulse photolysis in the ultraviolet region, by means of which it is possible to investigate the kinetics of the death of interstitial particles, their optical absorption and luminescence spectra, and also the photoconductivity induced by the laser radiation, at a time resolution of about 15 ns. As a source of powerful, stable uv-radiation, use is made of the fourth harmonic (266 nm) of radiation from an aluminum-yttrium garnet containing neodymium. The radiation power of the fourth harmonic attained 2 MW. The time of bringing the unit into the operating mode is considerably shortened because of the possibility of operating in a frequency mode. Absorption spectra of carbazole in hexane were obtained at 20/sup 0/C. (SJR)

  1. Magnetic Field Effect: An Efficient Tool To Investigate The Mechanism Of Reactions Using Laser Flash Photolysis Technique

    International Nuclear Information System (INIS)

    Basu, Samita; Bose, Adity; Dey, Debarati

    2008-01-01

    Magnetic field effect combined with laser flash photolysis technique have been used to study the mechanism of interactions between two drug-like quinone molecules, Menadione (1,4-naphthoquinone, MQ) and 9, 10 Anthraquinone (AQ) with one of the DNA bases, Adenine in homogeneous acetonitrile/water and heterogeneous micellar media. A switchover in reaction mode from electron transfer to hydrogen abstraction is observed with MQ on changing the solvent from acetonitrile/water to micelle; whereas, AQ retains its mode of interaction towards Adenine as electron transfer in both the media due to its bulky structure compared to MQ

  2. Semiconductor lasers with a continuous tuning range above 100 nm in the nearest IR spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, Yu O; Lobintsov, A A; Shramenko, M V [OOO ' Opton' , Moscow (Russian Federation); Ladugin, M A; Marmalyuk, A A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation); Chamorovsky, A Yu [Superlum Ltd., Unit B3, Fota Point Enterprise Park, Carrigtwohill, Co Cork (Ireland); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2015-08-31

    We have developed two new types of lasers based on quantum-confined semiconductor optical amplifiers with an acousto-optic tunable filter in an external fibre ring cavity. The lasers offer continuous wavelength tuning ranges from 780 to 885 and from 880 to 1010 nm, 20 mW of cw output power, and a tuning rate up to 10{sup 4} nm s{sup -1} at an instantaneous spectral linewidth less than 0.1 nm. (lasers)

  3. Tuning range and output power optimization of an external-cavity GaN diode laser at 455 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    In this paper we discuss how different feedback gratings affect the tuning range and the output power of external feedback diode laser systems. A tunable high-power narrow-spectrum external-cavity diode laser system around 455 nm is investigated. The laser system is based on a high-power GaN diode...... laser in a Littrow external-cavity. Both a holographic diffraction grating and a ruled diffraction grating are used as feedback elements in the external cavity. The output power, spectral bandwidth, and tunable range of the external cavity diode laser system are measured and compared with the two...... gratings at different injected currents. When the holographic grating is used, the laser system can be tuned over a range of 1.4 nm with an output power around 530 mW. When the ruled grating is used, the laser system can be tuned over a range of 6.0 nm with an output power around 80 mW. The results can...

  4. Discrete tuning concept for fiber-integrated lasers based on tailored FBG arrays and a theta cavity layout.

    Science.gov (United States)

    Tiess, Tobias; Becker, Martin; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, Matthias

    2017-03-15

    We demonstrate a novel tuning concept for pulsed fiber-integrated lasers with a fiber Bragg grating (FBG) array as a discrete and tailored spectral filter, as well as a modified laser design. Based on a theta cavity layout, the structural delay lines originating from the FBG array are balanced, enabling a constant repetition rate and stable pulse properties over the full tuning range. The emission wavelength is electrically tuned with respect to the filter properties based on an adapted temporal gating scheme using an acousto-optic modulator. This concept has been investigated with an Yb-doped fiber laser, demonstrating excellent emission properties with high signal contrast (>35  dB) and narrow linewidth (<150  pm) over a tuning range of 25 nm.

  5. 1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range

    Energy Technology Data Exchange (ETDEWEB)

    Sadeev, T., E-mail: tagir@mailbox.tu-berlin.de; Arsenijević, D.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, 10623 Berlin (Germany); Franke, D.; Kreissl, J.; Künzel, H. [Heinrich-Hertz-Institut, Einsteinufer 37, 10587 Berlin (Germany)

    2015-01-19

    Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 to 300 mA leads to 30 MHz frequency tuning.

  6. 1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range

    International Nuclear Information System (INIS)

    Sadeev, T.; Arsenijević, D.; Bimberg, D.; Franke, D.; Kreissl, J.; Künzel, H.

    2015-01-01

    Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 to 300 mA leads to 30 MHz frequency tuning

  7. Wide and Fast Wavelength-Swept Fiber Laser Based on Dispersion Tuning for Dynamic Sensing

    Directory of Open Access Journals (Sweden)

    Shinji Yamashita

    2009-01-01

    Full Text Available We have developed a unique wide and fast wavelength-swept fiber laser for dynamic and accurate fiber sensing. The wavelength tuning is based on the dispersion tuning technique, which simply modulates the loss/gain in the dispersive laser cavity. By using wideband semiconductor optical amplifiers (SOAs, the sweep range could be as wide as ∼180 nm. Since the cavity contains no mechanical components, such as tunable filters, we could achieve very high sweep rate, as high as ∼200 kHz. We have realized the swept lasers at three wavelength bands, 1550 nm, 1300 nm, and 800 nm, using SOAs along with erbium-doped fiber amplifiers (EDFAs, and in two laser configurations, ring and linear ones. We also succeeded in applying the swept laser for a dynamic fiber-Bragg grating (FBG sensor system. In this paper, we review our researches on the wide and fast wavelength-swept fiber lasers.

  8. Simple, low-noise piezo driver with feed-forward for broad tuning of external cavity diode lasers.

    Science.gov (United States)

    Doret, S Charles

    2018-02-01

    We present an inexpensive, low-noise (piezo driver suitable for frequency tuning of external-cavity diode lasers. This simple driver improves upon many commercially available drivers by incorporating circuitry to produce a "feed-forward" signal appropriate for making simultaneous adjustments to the piezo voltage and laser current, enabling dramatic improvements in a mode-hop-free laser frequency tuning range. We present the theory behind our driver's operation, characterize its output noise, and demonstrate its use in absorption spectroscopy on the rubidium D 1 line.

  9. High Power Tm3+-Doped Fiber Lasers Tuned by a Variable Reflective Output Coupler

    Directory of Open Access Journals (Sweden)

    Yulong Tang

    2008-01-01

    Full Text Available Wide wavelength tuning by a variable reflective output coupler is demonstrated in high-power double-clad Tm3+-doped silica fiber lasers diode-pumped at ∼790  nm. Varying the output coupling from 96% to 5%, the laser wavelength is tuned over a range of 106  nm from 1949 to 2055  nm. The output power exceeds 20  W over 90-nm range and the maximum output power is 32  W at 1949  nm for 51-W launched pump power, corresponding to a slope efficiency of ∼70%. Assisted with different fiber lengths, the tuning range is expanded to 240  nm from 1866 to 2107  nm with the output power larger than 10  W.

  10. Room temperature FePt nanoparticles formation kinetics by laser solution photolysis

    CSIR Research Space (South Africa)

    Nkosi, S

    2012-04-01

    Full Text Available An experiment has been designed to measure the radiation emission during photolysis, as well as the production of either positive or negative metallic ions in liquid from of FePt nanoparticles....

  11. A Stark-tuned, far-infrared laser for high frequency plasma diagnostics

    International Nuclear Information System (INIS)

    Mansfield, D.K.; Vocaturo, M.; Guttadora, L.; Rockmore, M.; Micai, K.; Krug, P.A.

    1992-03-01

    A Stark-tuned optically pumped far-infrared methanol laser operating at 119 micrometers has been built. The laser is designed to operate at high power while exhibiting a well-separated Stark doublet. At a pump power of 65 Watts and electric field of 1 kV/cm the laser has delivered over 100 mW c.w. while exhibiting a frequency splitting of 34 MHz. These parameters indicate that this laser would be suitable for use in the present generation of modulated interferometers on large thermonuclear plasma devices. The achieved modulation frequency is more than an order of magnitude higher than could be achieved using standard techniques

  12. Photolysis of butenedial at 193, 248, 280, 308, 351, 400, and 450 nm

    Science.gov (United States)

    Tang, Yongxin; Zhu, Lei

    2005-06-01

    We have studied the photolysis of butenedial at 193, 248, 280, 308, 351, 400, and 450 nm by using laser photolysis combined with cavity ring-down spectroscopy. The HCO radical is a photodissociation product at 193 and 248 nm. The corresponding HCO quantum yields are 0.55 ± 0.07 and 0.12 ± 0.01, independent of butenedial pressure and nitrogen buffer gas pressure. Absorption cross-sections of butenedial are (6.88 ± 0.39) × 10 -18 and (3.62 ± 0.69) × 10 -19 cm 2 at 193 and 248 nm. The end-products from the photolysis of butenedial at 193, 248, 308, and 351 nm were measured by FTIR. Acrolein and 3H-furan-2-one were observed and their yields have been estimated.

  13. Micro-Fluidic Dye Ring Laser - Experimental Tuning of the Wavelength and Numerical Simulation of the Cavity Modes

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger

    2006-01-01

    We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view.......We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view....

  14. Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters

    Energy Technology Data Exchange (ETDEWEB)

    Bidaux, Yves, E-mail: yves.bidaux@alpeslasers.ch [Alpes Lasers SA, 1-3 Passsage Max Meuron, CH-2001 Neuchâtel (Switzerland); Institute for Quantum Electronics, ETH-Zurich, CH-8093 Zurich (Switzerland); Bismuto, Alfredo, E-mail: alfredo.bismuto@alpeslasers.ch; Tardy, Camille; Terazzi, Romain; Gresch, Tobias; Blaser, Stéphane; Muller, Antoine [Alpes Lasers SA, 1-3 Passsage Max Meuron, CH-2001 Neuchâtel (Switzerland); Faist, Jerome [Institute for Quantum Electronics, ETH-Zurich, CH-8093 Zurich (Switzerland)

    2015-11-30

    In this work, we demonstrate broad electrical tuning of quantum cascade lasers at 9.25 μm, 8.5 μm, and 4.4 μm in continuous wave operation using Vernier-effect distributed Bragg reflectors based on superstructure gratings. Integrated micro-heaters allow to switch from one Vernier channel to the other, while predictable and mode-hop free tuning can be obtained in each channel modulating the laser current with a side mode suppression ratio as high as 30 dB. The resulting device behaves effectively as a switchable multicolour tunable source. Tuning up to 6.5% of the central wavelength is observed. To prove the importance of the developed devices for high resolution molecular spectroscopy, a N{sub 2}O absorption spectrum has been measured.

  15. Analytical transient analysis of Peltier device for laser thermal tuning

    Science.gov (United States)

    Sheikhnejad, Yahya; Vujicic, Zoran; Almeida, Álvaro J.; Bastos, Ricardo; Shahpari, Ali; Teixeira, António L.

    2017-08-01

    Recently, industrial trends strongly favor the concepts of high density, low power consumption and low cost applications of Datacom and Telecom pluggable transceiver modules. Hence, thermal management plays an important role, especially in the design of high-performance compact optical transceivers. Extensive care should be taken on wavelength drift for thermal tuning lasers using thermoelectric cooler and indeed, accurate expression is needed to describe transient characteristics of the Peltier device to achieve maximum controllability. In this study, the exact solution of governing equation is presented, considering Joule heating, heat conduction, heat flux of laser diode and thermoelectric effect in one dimension.

  16. Bactericidal Effect of Photolysis of H2O2 in Combination with Sonolysis of Water via Hydroxyl Radical Generation.

    Science.gov (United States)

    Sheng, Hong; Nakamura, Keisuke; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi

    2015-01-01

    The bactericidal effect of hydroxyl radical (·OH) generated by combination of photolysis of hydrogen peroxide (H2O2) and sonolysis of water was examined under the condition in which the yield of ·OH increased additively when H2O2 aqueous solution was concomitantly irradiated with laser and ultrasound. The suspension of Staphylococcus aureus mixed with the different concentrations of H2O2 was irradiated simultaneously with a laser light (wavelength: 405 nm, irradiance: 46 and 91 mW/cm2) and ultrasound (power: 30 w, frequency: 1.65 MHz) at 20 ± 1°C of the water bulk temperature for 2 min. The combination of laser and ultrasound irradiation significantly reduced the viable bacterial count in comparison with the laser irradiation of H2O2 alone. By contrast, the ultrasound irradiation alone exerted almost no bactericidal effect. These results suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity was synergistic. A multi-way analysis of variance also revealed that the interaction of H2O2 concentration, laser power and ultrasound irradiation significantly affected the bactericidal activity. Since the result of oxidative DNA damage evaluation demonstrated that the combination of laser and ultrasound irradiation significantly induced oxidative damage of bacterial DNA in comparison with the laser irradiation of H2O2 alone, it was suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity would be exerted via oxidative damage of cellular components such as DNA.

  17. Photolysis of petroleum

    International Nuclear Information System (INIS)

    Bobra, M.

    1992-05-01

    A study was conducted to examine the chemical and physical changes that occur in oils as a result of photooxidation. A literature review of recent studies in petroleum photochemistry revealed reported effects of photo-induced reactions in petroleum, including changes in color, polymerization, solidification, increases in solubility and toxicity, and changes in interfacial properties. A list of products reported as a result of photolysis of petroleum is presented, including such compounds as aldehydes, ketones, esters, and lactones. The photoreactivity of various petroleum components is discussed and mechanisms of photooxidation of petroleum are suggested. In the experimental portion of the study, a variety of crude oils and petroleum products were used to determine how different oils are affected by photolysis, and to examine the importance of photolysis as a weathering process. Photooxidation products from several oils were isolated and identified, including aliphatic and aromatic acids, alcohols, and phenols. Some physical manifestations attributed to photolysis included yellowing, formation of precipitates or crusts, increases in density and viscosity with time, increases of asphaltene content in some oils, changes in pH of the surrounding water, and emulsification. 51 refs., 38 figs., 18 tabs

  18. Optofluidic tuning of photonic crystal band edge lasers

    DEFF Research Database (Denmark)

    Bernal, Felipe; Christiansen, Mads Brøkner; Gersborg-Hansen, Morten

    2007-01-01

    We demonstrate optofluidic tuning of polymer photonic crystal band edge lasers with an imposed rectangular symmetry. The emission wavelength depends on both lattice constant and cladding refractive index. The emission wavelength is shown to change 1 nm with a cladding refractive index change of 10......−2. The rectangular symmetry modification alters the emission characteristics of the devices and the relative emission intensities along the symmetry axes depend on cladding refractive index, suggesting a sensor concept based on detection of intensity rather than wavelength....

  19. Electron Raman scattering in a double quantum well tuned by an external nonresonant intense laser field

    Science.gov (United States)

    Tiutiunnyk, A.; Mora-Ramos, M. E.; Morales, A. L.; Duque, C. M.; Restrepo, R. L.; Ungan, F.; Martínez-Orozco, J. C.; Kasapoglu, E.; Duque, C. A.

    2017-02-01

    In this work we shall present a study of inelastic light scattering involving inter-subband electron transitions in coupled GaAs-(Ga,Al)As quantum wells. Calculations include the electron related Raman differential cross section and Raman gain. The effects of an external nonresonant intense laser field are used in order to tune these output properties. The confined electron states will be described by means of a diagonalization procedure within the effective mass and parabolic band approximations. It is shown that the application of the intense laser field can produce values of the intersubband electron Raman gain above 400 cm-1. The system proposed here is an alternative choice for the development of AlxGa1-xAs semiconductor laser diodes that can be tuned via an external nonresonant intense laser field.

  20. Laser beam pointing and stabilization by fractional-order PID control: Tuning rule and experiments

    KAUST Repository

    Al-Alwan, Asem Ibrahim Alwan; Guo, Xingang; Ndoye, Ibrahima; Laleg-Kirati, Taous-Meriem

    2017-01-01

    This paper studies the problem of high-precision positioning of laser beams by using a robust Fractional-Order Proportional-Integral-Derivative (FOPID) controller. The control problem addressed in laser beams aims to maintain the position of the laser beam on a Position Sensing Device (PSD) despite the effects of noise and active disturbances. The FOPID controller is well known for its simplicity with better tuning flexibility along with robustness to noise and output disturbance rejections. Thus, a control strategy based on FOPID to achieve the control objectives has been proposed. The FOPID gains and differentiation orders are optimally tuned in order to fulfill the robustness design specifications by solving a nonlinear optimization problem. A comparison to the conventional Proportional-Integral-Derivative (PID) and robust PID is also provided from simulation and experiment set-up. Due to sensor noise, practical PID controllers that filter the position signal before taking the derivative have been also proposed. Experimental results show that the requirements are totally met for the laser beam platform to be stabilized.

  1. Laser beam pointing and stabilization by fractional-order PID control: Tuning rule and experiments

    KAUST Repository

    Al-Alwan, Asem Ibrahim Alwan

    2017-10-24

    This paper studies the problem of high-precision positioning of laser beams by using a robust Fractional-Order Proportional-Integral-Derivative (FOPID) controller. The control problem addressed in laser beams aims to maintain the position of the laser beam on a Position Sensing Device (PSD) despite the effects of noise and active disturbances. The FOPID controller is well known for its simplicity with better tuning flexibility along with robustness to noise and output disturbance rejections. Thus, a control strategy based on FOPID to achieve the control objectives has been proposed. The FOPID gains and differentiation orders are optimally tuned in order to fulfill the robustness design specifications by solving a nonlinear optimization problem. A comparison to the conventional Proportional-Integral-Derivative (PID) and robust PID is also provided from simulation and experiment set-up. Due to sensor noise, practical PID controllers that filter the position signal before taking the derivative have been also proposed. Experimental results show that the requirements are totally met for the laser beam platform to be stabilized.

  2. Early photolysis intermediates of gecko and bovine artificial visual pigments.

    Science.gov (United States)

    Lewis, J W; Liang, J; Ebrey, T G; Sheves, M; Livnah, N; Kuwata, O; Jäger, S; Kliger, D S

    1997-11-25

    Nanosecond laser photolysis measurements were conducted on digitonin extracts of artificial pigments prepared from the cone-type visual pigment, P521, of the Tokay gecko (Gekko gekko) retina. Artificial pigments were prepared by regeneration of bleached gecko photoreceptor membranes with 9-cis-retinal, 9-cis-14-methylretinal, or 9-cis-alpha-retinal. Absorbance difference spectra were recorded at a sequence of time delays from 30 ns to 60 microseconds following excitation with a pulse of 477-nm actinic light. Global analysis showed the kinetic data for all three artificial gecko pigments to be best fit by two-exponential processes. These two-exponential decays correspond to similar decays observed after photolysis of P521 itself, with the first process being the decay of the equilibrated P521 BathoP521 BSI mixture to P521 Lumi and the second process being the decay of P521 Lumi to P521 Meta I. In spite of its large blue shift relative to P521, iso-P521 displays a normal chloride depletion induced blue shift. Iso-P521's early intermediates up to Lumi were also blue-shifted, with the P521 BathoP521 BSI equilibrated mixture being 15 nm blue-shifted and P521 Lumi being 8 nm blue-shifted relative to the intermediates formed after P521 photolysis. The blue shift associated with the iso-pigment is reduced or disappears entirely by P521 Meta I. Similar blue shifts were observed for the early intermediates observed after photolysis of bovine isorhodopsin, with the Lumi intermediate blue-shifted 5 nm compared to the Lumi intermediate formed after photolysis of bovine rhodopsin. These shifts indicate that a difference exists between the binding sites of 9- and 11-cis pigments which persists for microseconds at 20 degrees C.

  3. 110 GHz rapid, continous tuning from an optical parametric oscillator pumped by a fiber-amplified DBR diode laser

    NARCIS (Netherlands)

    Lindsay, I.D.; Adhimoolam, B.; Gross, P.; Klein, M.E.; Boller, Klaus J.

    2005-01-01

    A singly-resonant continuous-wave optical parametric oscillator (cw-OPO) pumped by a fiber-amplified diode laser is described. Tuning of the pump source allowed the OPO output to be tuned continuously, without mode-hops, over 110 GHz in 29 ms. Discontinuous pump tuning over 20 nm in the region of

  4. Bactericidal Effect of Photolysis of H2O2 in Combination with Sonolysis of Water via Hydroxyl Radical Generation.

    Directory of Open Access Journals (Sweden)

    Hong Sheng

    Full Text Available The bactericidal effect of hydroxyl radical (·OH generated by combination of photolysis of hydrogen peroxide (H2O2 and sonolysis of water was examined under the condition in which the yield of ·OH increased additively when H2O2 aqueous solution was concomitantly irradiated with laser and ultrasound. The suspension of Staphylococcus aureus mixed with the different concentrations of H2O2 was irradiated simultaneously with a laser light (wavelength: 405 nm, irradiance: 46 and 91 mW/cm2 and ultrasound (power: 30 w, frequency: 1.65 MHz at 20 ± 1°C of the water bulk temperature for 2 min. The combination of laser and ultrasound irradiation significantly reduced the viable bacterial count in comparison with the laser irradiation of H2O2 alone. By contrast, the ultrasound irradiation alone exerted almost no bactericidal effect. These results suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity was synergistic. A multi-way analysis of variance also revealed that the interaction of H2O2 concentration, laser power and ultrasound irradiation significantly affected the bactericidal activity. Since the result of oxidative DNA damage evaluation demonstrated that the combination of laser and ultrasound irradiation significantly induced oxidative damage of bacterial DNA in comparison with the laser irradiation of H2O2 alone, it was suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity would be exerted via oxidative damage of cellular components such as DNA.

  5. Investigation of N2O Production from 266 and 532 nm Laser Flash Photolysis of O3/N2/O2 Mixtures

    Science.gov (United States)

    Estupinan, E. G.; Nicovich, J. M.; Li, J.; Cunnold, D. M.; Wine, P. H.

    2002-01-01

    Tunable diode laser absorption spectroscopy has been employed to measure the amount of N2O produced from laser flash photolysis of O3/N2/O2 mixtures at 266 and 532 nm. In the 532 nm photolysis experiments very little N2O is observed, thus allowing an upper limit yield of 7 x 10(exp -8) to be established for the process O3 + N2 yield N2O + O2, where O3 is nascent O3 that is newly formed via O(3P(sub J)) + O2 recombination (with vibrational excitation near the dissociation energy of O3). The measured upper limit yield is a factor of approx. 600 smaller than a previous literature value and is approximately a factor of 10 below the threshold for atmospheric importance. In the 266 nm photolysis experiments, significant N2O production is observed and the N2O quantum yield is found to increase linearly with pressure over the range 100 - 900 Torr in air bath gas. The source of N2O in the 266 nm photolysis experiments is believed to be the addition reaction O(1D(sub 2)) + N2 + M yields (k(sub sigma)) N2O + M, although reaction of (very short-lived) electronically excited O3 with N2 cannot be ruled out by the available data. Assuming that all observed N2O comes from the O(1D(sub 2)) + N2 + M reaction, the following expression describes the temperature dependence of k(sub sigma) (in its third-order low-pressure limit) that is consistent with the N2O yield data: k(sub sigma) = (2.8 +/- 0.1) x 10(exp -36)(T/300)(sup -(0-88+0.36)) cm(sup 6) molecule(sup -2)/s, where the uncertainties are 2(sigma) and represent precision only. The accuracy of the reported rate coefficients at the 95% confidence level is estimated to be 30 - 40% depending on the temperature. Model calculations suggest that gas phase processes initiated by ozone absorption of a UV photon represent about 1.4% of the currently estimated global source strength of atmospheric N2O. However, these processes could account for a significant fraction of the oxygen mass-independent enrichment observed in atmospheric N2O, and

  6. Laser energy tuning of carrier effective mass and thermopower in epitaxial oxide thin films

    KAUST Repository

    Abutaha, Anas I.

    2012-04-18

    The effect of the laser fluence on high temperature thermoelectric properties of the La doped SrTiO3 (SLTO) thin films epitaxially grown on LaAlO3 〈100〉 substrates by pulsed laser deposition is clarified. It is shown that oxygen vacancies that influence the effective mass of carriers in SLTO films can be tuned by varying the laser energy. The highest power factor of 0.433 W K−1 m−1 has been achieved at 636 K for a filmdeposited using the highest laser fluence of 7 J cm−2 pulse−1.

  7. Laser photolysis study of anthraquinone in binary mixtures ofionic liquid [bmim][PF6] and organic solvent

    Directory of Open Access Journals (Sweden)

    Side Yao

    2006-12-01

    Full Text Available Photochemical properties of the ionic liquid (RTIL 1-butyl-3-methylimidazoliumhexafluorophosphate [bmim][PF6] and its binary mixed solutions with organic solvent(DMF and MeCN were investigated by laser photolysis at an excitation wavelength of 355nm, using anthraquinone (AQ as a probe molecule. It was indicated that the triplet excitedstate of AQ (3AQ* can abstract hydrogen from [bmim][PF6]. Moreover, along with thechange of the ratio of RTIL and organic solvent, the reaction rate constant changes regularly.Critical points were observed at volume fraction VRTIL = 0.2 for RTIL/MeCN and VRTIL =0.05 for RTIL/DMF. For both systems, before the critical point, the rate constant increasesrapidly with increasing VRTIL; however, it decreases obviously with VRTIL after the criticalpoint. We conclude that the concentration dependence is dominant at lower VRTIL, while theviscosity and phase transformation are dominant at higher VRTIL for the effect of ionic liquidon the decay of rate constant.

  8. Active thermal fine laser tuning in a broad spectral range and optical properties of cholesteric liquid crystal.

    Science.gov (United States)

    Jeong, Mi-Yun; Kwak, Keumcheol

    2016-11-20

    In this study, we achieved active fine laser tuning in a broad spectral range with dye-doped cholesteric liquid crystal wedge-type cells through temperature control. The spatial pitch gradient of each position of the wedge cell at room temperature was almost maintained after developing a temperature gradient. To achieve the maximum tuning range, the chiral dopant concentration, thickness, thickness gradient, and temperature gradient on the wedge cell should be matched properly. In order to understand the laser tuning mechanism for temperature change, we studied the temperature dependence of optical properties of the photonic bandgap of cholesteric liquid crystals. In our cholesteric liquid crystal samples, when temperature was increased, photonic bandgaps were shifted toward blue, while the width of the photonic bandgap was decreased, regardless of whether the helicity was left-handed or right-handed. This is mainly due to the combination of decreased refractive indices, higher molecular anisotropy of chiral molecules, and increased chiral molecular solubility. We envisage that this kind of study will prove useful in the development of practical active tunable CLC laser devices.

  9. Demonstrations of diode-pumped and grating-tuned ZnSe:Cr2+ lasers

    International Nuclear Information System (INIS)

    Page, R.H.; Skidmore, J.A.; Schaffers, K.I.; Beach, R.J.; Payne, S.A.; Krupke, W.F.

    1996-09-01

    Within the last few years, divalent-transition-metal-doped II-VI material class has been proposed as source of new tunable mid-IR lasers. Cr 2+ is a prime laser candidate on account of its high luminescence quantum yield and the expectation that ESA would be absent. The first ZnSe:Cr 2+ laser demonstrations were conducted in an end-pumped geometry with a tightly focused (0.2 mm spot) MgF 2 -Co 2+ laser beam, for a peak pump intensity well over 100 kW/cm 2 , so laser threshold was easily reached. Grating tuning experiments were done by replacing the cavity high-reflector with a diffraction grating. The diode array was removed and pump beam from a MgF 2 :Co 2+ laser was focused onto the crystal using the same cylindrical lens. Output wavelengths were checked with a monochromator. The long-wavelength limit of operation was 2799 nm. Short-wavelength cutoff was 2134 nm; even though the emission cross section remains substantial, self-absorption inhibits laser operation

  10. Diode laser probe of CO2 vibrational excitation produced by collisions with hot deuterium atoms from the 193 nm excimer laser photolysis D2S

    International Nuclear Information System (INIS)

    O'Neill, J.A.; Cai, J.Y.; Flynn, G.W.; Weston, R.E. Jr.

    1986-01-01

    The 193 nm excimer laser photolysis of D 2 S in D 2 S/CO 2 mixtures produces fast deuterium atoms (E/sub TR/approx.2.2 eV) which vibrationally excite CO 2 molecules via inelastic translation--vibration/rotation (T--V/R) energy exchange processes. A high resolution (10 -3 cm -1 ) cw diode laser probe was used to monitor the excitation of ν 3 (antisymmetric stretch) and ν 2 (bend) vibrations in CO 2 . The present results are compared with previous experiments involving hot hydrogen atom excitation of CO 2 in H 2 S/CO 2 mixtures as well as with theoretical calculations of the excitation probability. The probability for excitation of a ν 3 quantum in CO 2 is about 1%--2% per gas kinetic D/CO 2 collision. Bending (ν 2 ) quanta are produced about eight times more efficiently than antisymmetric stretching (ν 3 ) quanta. The thermalization rate for cooling hot D atoms below the threshold for production of a ν 3 vibrational quantum corresponds to less than 2 D*/D 2 S collisions or 15 D*/CO 2 collisions

  11. Frequency Tuning of IR First-Overtone CO Laser Radiation by Diffraction Grating and Frequency Selective Output Couplers

    National Research Council Canada - National Science Library

    Ionin, Andre

    1999-01-01

    ...: The contractor will investigate, both experimentally and theoretically, the feasibility of frequency tuning the first overtone carbon monoxide laser radiation by the use of diffraction gratings...

  12. 265 nm laser flash photolysis of some ortho-substituted anilides and related N-formylkynurenine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Pileni, M P; Santus, R [Museum National d' Histoire Naturelle, 75 - Paris (France); Land, E J

    1978-06-01

    The physical and chemical properties of the triplet state of eight ortho-substituted anilides including N-formylkynurenine(FK), the major trp UV-photooxidation product and a remarkable photodynamic agent, have been investigated using both pulse radiolysis and 265 nm laser flash photolysis techniques. The molar extinction coefficient, the inter-system-crossing quantum yield and the oscillator strength of the T/sub 1/..-->..Tsub(n) absorption band (lambdasub(max)approximately equal 450nm) have been determined. It is shown that anilides having n..pi..* triplets readily react with most solvents whereas those having ..pi..,..pi..* triplets slowly react with alcohols. In both cases, the semi-reduced species are formed. In water, the formation of the semi-reduced species most probably involves the first excited singlet state. The triplet state properties of the FK derivatives (i.e. ortho-substituted anilides having a side chain bearing charged groups such as carboxylic or amino groups) are strongly modified by the ionization state of the charged side chain. In the case of the FK derivatives possessing an uncharged amino group, quenching of the triplet state occurs via a fast reversible electron transfer reaction from the NH/sub 2/ to the triplet anilide.

  13. Automatic tuning of free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Agapov, Ilya; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL, Schenefeld (Germany); Tomin, Sergey [European XFEL, Schenefeld (Germany); NRC Kurchatov Institute, Moscow (Russian Federation)

    2017-04-07

    Existing FEL facilities often suffer from stability issues: so electron orbit, transverse electron optics, electron bunch compression and other parameters have to be readjusted often to account for drifts in performance of various components. The tuning procedures typically employed in operation are often manual and lengthy. We have been developing a combination of model-free and model-based automatic tuning methods to meet the needs of present and upcoming XFEL facilities. Our approach has been implemented at FLASH to achieve automatic SASE tuning using empirical control of orbit, electron optics and bunch compression. In this paper we describe our approach to empirical tuning, the software which implements it, and the results of using it at FLASH.We also discuss the potential of using machine learning and model-based techniques in tuning methods.

  14. Automatic tuning of free electron lasers

    International Nuclear Information System (INIS)

    Agapov, Ilya; Zagorodnov, Igor; Geloni, Gianluca; Tomin, Sergey

    2017-01-01

    Existing FEL facilities often suffer from stability issues: so electron orbit, transverse electron optics, electron bunch compression and other parameters have to be readjusted often to account for drifts in performance of various components. The tuning procedures typically employed in operation are often manual and lengthy. We have been developing a combination of model-free and model-based automatic tuning methods to meet the needs of present and upcoming XFEL facilities. Our approach has been implemented at FLASH to achieve automatic SASE tuning using empirical control of orbit, electron optics and bunch compression. In this paper we describe our approach to empirical tuning, the software which implements it, and the results of using it at FLASH.We also discuss the potential of using machine learning and model-based techniques in tuning methods.

  15. Time-kill kinetic analysis of antimicrobial chemotherapy based on hydrogen peroxide photolysis against Streptococcus mutans biofilm.

    Science.gov (United States)

    Shirato, Midori; Nakamura, Keisuke; Kanno, Taro; Lingström, Peter; Niwano, Yoshimi; Örtengren, Ulf

    2017-08-01

    A recently developed antimicrobial technique utilizing hydroxyl radicals generated by hydrogen peroxide (H 2 O 2 ) photolysis represents a promising new therapy for preventing and treating dental caries. The present study compared the antimicrobial time-kill kinetics of H 2 O 2 photolysis, conventional antiseptics, and antimicrobial photodynamic therapy (aPDT) against biofilm-forming Streptococcus mutans (cariogenic bacteria) grown on hydroxyapatite disks. H 2 O 2 photolysis was performed by irradiating the biofilm immersed in 3% H 2 O 2 with 365-nm light-emitting diode (LED) light at an irradiance of 1000mW/cm 2 for up to 1.5min. Antiseptic treatments consisted of 0.2% chlorhexidine gluconate, 0.5% povidone-iodine, and 3% H 2 O 2 . The biofilm was immersed in each antiseptic for up to 4min. aPDT was performed by irradiating the biofilm immersed in 100μM methylene blue or toluidine blue O with 655-nm laser light at 1000mW/cm 2 for up to 4min. Based on the time-kill assay, the decimal reduction value (D-value) of each treatment was determined. With a D-value of 0.06min, H 2 O 2 photolysis exhibited the highest bactericidal effect against biofilm-forming S. mutans. In contrast, antiseptics and aPDT exerted a slower bactericidal effect, with D-values of 0.9-2.7min. In conclusion, the antimicrobial technique based on H 2 O 2 photolysis using 365-nm LED represents a strong adjunctive chemotherapy for dental caries treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Flash photolysis-shock tube studies

    Energy Technology Data Exchange (ETDEWEB)

    Michael, J.V. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Even though this project in the past has concentrated on the measurement of thermal bimolecular reactions of atomic species with stable molecules by the flash or laser photolysis-shock tube (FP- or LP-ST) method using atomic resonance absorption spectrometry (ARAS) as the diagnostic technique, during the past year the authors have concentrated on studies of the thermal decompositions of selected chlorocarbon molecules. These studies are necessary if the degradation of chlorine containing organic molecules by incineration are to be understood at the molecular level. Clearly, destruction of these molecules will not only involve abstraction reactions, when possible, but also thermal decomposition followed by secondary reactions of the initially formed atoms and radicals. Studies on the thermal decomposition of CH{sub 3}Cl are complete, and the curve-of-growth for Cl-atom atomic resonance absorption has been determined. The new thermal decomposition studies are similar to those already reported for CH{sub 3}Cl.

  17. Purification of silane via laser-induced chemistry

    International Nuclear Information System (INIS)

    Clark, J.H.; Anderson, R.G.

    1979-01-01

    Impurities such as PH 3 , AsH 3 , and B 2 H 6 may be removed from SiH 4 by means of selective photolysis with ultraviolet radiation of the appropriate wavelength. An ArF laser operating at 193 nm provides an efficient and effective radiation source for the photolysis

  18. Application of Stark Tuned Laser for Interferometry and Polarimetry in Plasmas

    International Nuclear Information System (INIS)

    H.K. Park; K.C. Lee; B. Deng; C.W. Domier; M. Johnson; B. Nathan; N.C. Luhmann, Jr.

    2001-01-01

    A Stark-tuned optically pumped far-infrared CH(subscript ''3'')OH laser at 119 mm has been successfully applied in the Far Infrared Tangential Interferometer/Polarimeter (FIReTIP) system for the National Spherical Torus Experiment (NSTX). The system will provide temporally and radially resolved 2-D electron density profile [n(subscript ''e'')(r,t)] and toroidal field profile [B(subscript ''T'')(r,t)] data. In the 2001 campaign, a single channel interferometer system has been operated and tested for the Faraday rotation measurement. A plan for improvement and upgrading of the FIReTIP is discussed

  19. Analysis of mebendazole binding to its target biomolecule by laser flash photolysis.

    Science.gov (United States)

    Jornet, Dolors; Bosca, Francisco; Andreu, Jose M; Domingo, Luis R; Tormos, Rosa; Miranda, Miguel A

    2016-02-01

    Mebendazole (MBZ) and related anticancer benzimidazoles act binding the β-subunit of Tubulin (TU) before dimerization with α-TU with subsequent blocking microtubule formation. Laser flash photolysis (LFP) is a new tool to investigate drug-albumin interactions and to determine binding parameters such as affinity constant or population of binding sites. The aim of this study was to evaluate the interactions between the nonfluorescent mebendazole (MBZ) and its target biomolecule TU using this technique. Before analyzing the MBZ@TU complex it was needed to determine the photophysical properties of MBZ triplet excited state ((3)MBZ(⁎)) in different media. Hence, (3)MBZ(⁎) showed a transient absorption spectrum with maxima at 520 and 375 nm and a lifetime much longer in acetonitrile (12.5 μs) than in water (260 ns). The binding of MBZ to TU produces a greater increase of the lifetime of (3)MBZ(⁎) (25 μs). This fact and the strong electron acceptor capability observed for (3)MBZ* evidence that MBZ must not be located close to any electron donor amino acid of TU such as its tryptophan or cysteine residues. Adding increasing amounts of MBZ to aqueous TU was determined the MBZ-TU binding constant (2.0 ± 0.5 × 10(5)M(-1) at 298K) which decreased with increasing temperature. The LFP technique has proven to be a powerful tool to analyze the binding of drug-TU systems when the drug has a detectable triplet excited state. Results indicate that LFP could be the technique of choice to study the interactions of non-fluorescent drugs with their target biomolecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Hydrogen Production from Water by Photolysis, Sonolysis and Sonophotolysis with Solid Solutions of Rare Earth, Gallium and Indium Oxides as Heterogeneous Catalysts

    Directory of Open Access Journals (Sweden)

    Marta Penconi

    2015-07-01

    Full Text Available In this work, we present the hydrogen production by photolysis, sonolysis and sonophotolysis of water in the presence of newly synthesized solid solutions of rare earth, gallium and indium oxides playing as catalysts. From the experiments of photolysis, we found that the best photocatalyst is the solid solution Y0.8Ga0.2InO3 doped by sulphur atoms. In experiments of sonolysis, we optimized the rate of hydrogen production by changing the amount of water, adding ethanol and tuning the power of our piezoelectric transducer. Finally, we performed sonolysis and sonophotolysis experiments in the presence of S:Y0.8Ga0.2InO3 finding a promising synergistic effect of UV-visible electromagnetic waves and 38 kHz ultrasound waves in producing H2.

  1. A laser flash photolysis and quantum chemical study of the fluorinated derivatives of singlet phenylnitrene.

    Science.gov (United States)

    Gritsan, N P; Gudmundsdóttir, A D; Tigelaar, D; Zhu, Z; Karney, W L; Hadad, C M; Platz, M S

    2001-03-07

    Laser flash photolysis (LFP, Nd:YAG laser, 35 ps, 266 nm, 10 mJ or KrF excimer laser, 10 ns, 249 nm, 50 mJ) of 2-fluoro, 4-fluoro, 3,5-difluoro, 2,6-difluoro, and 2,3,4,5,6-pentafluorophenyl azides produces the corresponding singlet nitrenes. The singlet nitrenes were detected by transient absorption spectroscopy, and their spectra are characterized by sharp absorption bands with maxima in the range of 300-365 nm. The kinetics of their decay were analyzed as a function of temperature to yield observed decay rate constants, k(OBS). The observed rate constant in inert solvents is the sum of k(R) + k(ISC) where k(R) is the absolute rate constant of rearrangement of singlet nitrene to an azirine and k(ISC) is the absolute rate constant of nitrene intersystem crossing (ISC). Values of k(R) and k(ISC) were deduced after assuming that k(ISC) is independent of temperature. Barriers to cyclization of 4-fluoro-, 3,5-difluoro-, 2-fluoro-, 2,6-difluoro-, and 2,3,4,5,6-pentafluorophenylnitrene in inert solvents are 5.3 +/- 0.3, 5.5 +/- 0.3, 6.7 +/- 0.3, 8.0 +/- 1.5, and 8.8 +/- 0.4 kcal/mol, respectively. The barrier to cyclization of parent singlet phenylnitrene is 5.6 +/- 0.3 kcal/mol. All of these values are in good quantitative agreement with CASPT2 calculations of the relative barrier heights for the conversion of fluoro-substituted singlet aryl nitrenes to benzazirines (Karney, W. L. and Borden, W. T. J. Am. Chem. Soc. 1997, 119, 3347). A single ortho-fluorine substituent exerts a small but significant bystander effect on remote cyclization that is not steric in origin. The influence of two ortho-fluorine substituents on the cyclization is pronounced. In the case of the singlet 2-fluorophenylnitrene system, evidence is presented that the benzazirine is an intermediate and that the corresponding singlet nitrene and benzazirine interconvert. Ab initio calculations at different levels of theory on a series of benzazirines, their isomeric ketenimines, and the transition

  2. Symmetry tuning with megajoule laser pulses at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Kline J.L.

    2013-11-01

    Full Text Available Experiments conducted at the National Ignition Facility using shaped laser pulses with more than 1 MJ of energy have demonstrated the ability to control the implosion symmetry under ignition conditions. To achieve thermonuclear ignition, the low mode asymmetries must be small to minimize the size of the hotspot. The symmetry tuning experiments use symmetry capsules, “symcaps”, which replace the DT fuel with an equivalent mass of CH to emulate the hydrodynamic behavior of an ignition capsule. The x-ray self-emission signature from gas inside the capsule during the peak compression correlates with the surrounding hotspot shape. By tuning the shape of the self-emission, the capsule implosion symmetry can be made to be “round.” In the experimental results presented here, we utilized crossbeam energy transfer [S. H. Glenzer, et al., Science 327, 1228 (2010] to change the ratio of the inner to outer cone power inside the hohlraum targets on the NIF. Variations in the ratio of the inner cone to outer cone power affect the radiation pattern incident on the capsule modifying the implosion symmetry.

  3. RF discharge slab carbon monoxide laser: overtone lasing (2.5-4.0 micron) and fundamental band tuning (5.0-6.5 micron)

    Science.gov (United States)

    Ionin, Andrey A.; Kozlov, Andrey Yu.; Seleznev, Leonid V.; Sinitsyn, Dmitry V.

    2008-10-01

    Overtone lasing and fundamental band tuning was for the first time obtained in a slab carbon monoxide laser. The compact slab CO laser with active volume 3×30×250 mm3 was excited by a repetitively pulsed capacitive RF discharge (81.36 MHz) with pulse repetition rate 100-500 Hz. The laser electrodes were cooled down to 120 K. Gas mixture CO:Air:He at gas pressures 15-22 Torr was used. An optical scheme "frequency selective master oscillator - laser amplifier" was applied for getting fundamental band tuning. Single line lasing with average power up to several tens of mW was observed on ~100 rotational-vibrational transitions of CO molecule within the spectral range ~5.0 - 6.5 micron. Multiline overtone lasing was observed on ~80 spectral lines within the spectral range ~2.5 -4.0 micron, with maximum single line average output power 12 mW. Total output power of the slab overtone CO laser came up to 0.3 W, with maximum laser efficiency 0.5%. Results of parametric studies of the overtone CO laser including complicated time behavior for laser pulses on different overtone vibrational-rotational transitions are discussed.

  4. Updates to In-Line Calculation of Photolysis Rates

    Science.gov (United States)

    How photolysis rates are calculated affects ozone and aerosol concentrations predicted by the CMAQ model and the model?s run-time. The standard configuration of CMAQ uses the inline option that calculates photolysis rates by solving the radiative transfer equation for the needed ...

  5. Photolysis of aromatic pollutants in clean and dirty ice

    Science.gov (United States)

    Kahan, T.; Malley, P.; Stathis, A.

    2015-12-01

    Anthropogenic aromatic pollutants such as polycyclic aromatic hydrocarbons (PAHs) and substituted benzenes often become more toxic following atmospheric oxidation. Photolysis of these pollutants in ice can be much faster than that in aqueous solution, which might lead to higher carcinogenic loadings in snow-covered regions. In this work we investigate two things. First, we investigate whether toluene, which has been detected at very elevated concentrations near hydraulic fracturing operations, can undergo photolysis at ice surfaces. Toluene in aqueous solution does not absorb sunlight, so photolysis has not been considered a potential atmospheric fate. However, benzene was recently demonstrated to undergo a significant red shift in its absorbance at ice surfaces, leading to photolysis under environmentally-relevant conditions. Here we show that toluene also undergoes photolysis at ice surfaces. In a second set of experiments, we have investigated the effects of organic matter on the photolysis kinetics ofPAHs in ice and at ice surfaces. We found that very small loadings of hydrophobic organics such as octanol can significantly suppress PAH photolysis kinetics in ice, but that the primary effect of the more soluble fulvic acid is competitive photon absorption. Our results show that photochemistry of anthropogenic pollutants can follow very different mechanisms and kinetics in ice than in aqueous solution, and that the photochemical fate of these pollutants depends strongly on the composition of the snow. These results have implications for pollutant fate and human health in a wide range of snow-covered environments including remote areas, cities, and regions near gas and oil extraction operations.

  6. Systematic characterization of a 1550 nm microelectromechanical (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) with 7.92 THz tuning range for terahertz photomixing systems

    Science.gov (United States)

    Haidar, M. T.; Preu, S.; Cesar, J.; Paul, S.; Hajo, A. S.; Neumeyr, C.; Maune, H.; Küppers, F.

    2018-01-01

    Continuous-wave (CW) terahertz (THz) photomixing requires compact, widely tunable, mode-hop-free driving lasers. We present a single-mode microelectromechanical system (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) featuring an electrothermal tuning range of 64 nm (7.92 THz) that exceeds the tuning range of commercially available distributed-feedback laser (DFB) diodes (˜4.8 nm) by a factor of about 13. We first review the underlying theory and perform a systematic characterization of the MEMS-VCSEL, with particular focus on the parameters relevant for THz photomixing. These parameters include mode-hop-free CW tuning with a side-mode-suppression-ratio >50 dB, a linewidth as narrow as 46.1 MHz, and wavelength and polarization stability. We conclude with a demonstration of a CW THz photomixing setup by subjecting the MEMS-VCSEL to optical beating with a DFB diode driving commercial photomixers. The achievable THz bandwidth is limited only by the employed photomixers. Once improved photomixers become available, electrothermally actuated MEMS-VCSELs should allow for a tuning range covering almost the whole THz domain with a single system.

  7. Fulvic Acid Mediated Photolysis of Ibuprofen in Water.

    Science.gov (United States)

    Photolysis of the nonsteroidal anti-inflammatory drug ibuprofen was studied in solutions of fulvic acid (FA) isolated from Pony Lake, Antarctica; Suwannee River, GA, USA; and Old Woman Creek, OH, USA. At an initial concentration of 10 µM ibuprofen degrades by direct photolysis...

  8. Internal reflection flash photolysis study of the photochemistry of eosin at TiO sub 2 semiconductor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, M.A.; Fitzgerald, E.C.; Spitler, M.T. (Polaroid Corp., Cambridge, MA (USA))

    1989-08-10

    It is shown that the photoelectrochemical data on eosin Y sensitized TiO{sub 2} single-crystal electrodes cannot be interpreted unambiguously without concomitant data from flash photolysis measurements on this system. By use of a combination of internal reflection spectroscopy and laser flash photolysis, electron exchange with TiO{sub 2} was observed for the excited singlet state, the triplet state, and the cation radical of the dye. With a temporal resolution of 100 ns, the kinetics of the charge transfer are compared with those of the dye in solution and used to interpret the photoelectrochemistry of the dye at the electrode. Spectroscopic evidence revealed photocurrent production by the triplet state and a reduction of the eosin cation radical by electrons from the TiO{sub 2} conduction band and by hydroquinone.

  9. Direct photolysis of polycyclic aromatic hydrocarbons in drinking water sources

    International Nuclear Information System (INIS)

    Sanches, S.; Leitao, C.; Penetra, A.; Cardoso, V.V.; Ferreira, E.; Benoliel, M.J.; Crespo, M.T. Barreto; Pereira, V.J.

    2011-01-01

    Highlights: → Low pressure UV photolysis can be used by drinking water utilities to degrade PAHs. → Real water matrices with different compositions were tested. → Photolysis kinetic parameters and by-product formation are described. → The formation of photolysis by-products is highly dependent on the source waters. - Abstract: The widely used low pressure lamps were tested in terms of their efficiency to degrade polycyclic aromatic hydrocarbons listed as priority pollutants by the European Water Framework Directive and the U.S. Environmental Protection Agency, in water matrices with very different compositions (laboratory grade water, groundwater, and surface water). Using a UV fluence of 1500 mJ/cm 2 , anthracene and benzo(a)pyrene were efficiently degraded, with much higher percent removals obtained when present in groundwater (83-93%) compared to surface water (36-48%). The removal percentages obtained for fluoranthene were lower and ranged from 13 to 54% in the different water matrices tested. Several parameters that influence the direct photolysis of polycyclic aromatic hydrocarbons were determined and their photolysis by-products were identified by mass spectrometry. The formation of photolysis by-products was found to be highly dependent on the source waters tested.

  10. Photoionization of oxidized coenzyme Q in microemulsion: laser flash photolysis study in biomembrane-like system.

    Science.gov (United States)

    Li, Kun; Wang, Mei; Wang, Jin; Zhu, Rongrong; Sun, Dongmei; Sun, Xiaoyu; Wang, Shi-Long

    2013-01-01

    Photoexcitation to generate triplet state has been proved to be the main photoreaction in homogeneous system for many benzoquinone derivatives, including oxidized coenzyme Q (CoQ) and its analogs. In the present study, microemulsion of CoQ, a heterogeneous system, is employed to mimic the distribution of CoQ in biomembrane. The photochemistry of CoQ(10) in microemulsion and cyclohexane is investigated and compared using laser flash photolysis and results show that CoQ(10) undergoes photoionization via a monophotonic process to generate radical cation of CoQ(10) in microemulsion and photoexcitation to generate excited triplet state in cyclohexane. Meanwhile, photoreactions of duroquinone (DQ) and CoQ(0) in microemulsion are also investigated to analyze the influence of molecular structure on the photochemistry of benzoquinone derivatives in microemulsion. Results suggest that photoexcitation, which is followed by excited state-involved hydrogen-abstraction reaction, is the main photoreaction for DQ and CoQ(0) in microemulsion. However, photoexcited CoQ(0) also leads to the formation of hydrated electrons. The isoprenoid side chain-involved high resonance stabilization is proposed to explain the difference in photoreactions of CoQ(0) and CoQ(10) in microemulsion. Considering that microemulsion is close to biomembrane system, its photoionization in microemulsion may be helpful to understand the real photochemistry of biological quinones in biomembrane system. © 2012 Tongji University. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  11. Triplet state and semiquinone free radical of 5-methoxyquinizarin : a laser flash photolysis and pulse radiolysis study

    International Nuclear Information System (INIS)

    Pal, H.; Patil, D.K.; Mukherjee, T.; Mittal, J.P.

    1992-01-01

    The triplet(T) state properties like T-T absorption spectra, quantum yield, energy level and decay kinetics of 5-methoxyquinizarin (5-methoxy-1, 4-dihydroxy-9, 10-anthraquinone; MQZ) have been investigated in cyclohexane, acetonitrile and isopropyl alcohol using nanosecond laser flash photolysis technique. In isopropylalcohol, a neutral semiquinone radical is also formed which has been characterised by comparing the long lived transient spectra with the MQZ-semiquinone spectra obtained by pulse radiolysis of MQZ in the same solvent. A relatively small amount of a long lived transient formed in cyclohexane and acetonitrile, along with the triplet state of MQZ, could not be characterised unambiguously, but has been attributed to the semiquinone radical of MQZ, produced by the reaction of the excited states of the quinone with the solvent. The quantum yield of the semiquinone radical in isopropyl alcohol is considerably higher than the triplet quantum yield, showing that both the excited singlet and the triplet states of the quinone probably react with the solvent molecules to form the semiquinone radical. The photophysical properties of the triplet and the semiquinone radical of MQZ have been compared with those of simple 1,4-disubstituted anthraquinones. (author). 23 refs., 5 figs., 1 tab

  12. Multi-photon UV photolysis of gaseous polycyclic aromatic hydrocarbons: Extinction spectra and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, A. J.; Gash, E. W.; Mansfield, M. W. D. [Physics Department, University College Cork, Cork (Ireland); Ruth, A. A. [Physics Department, University College Cork, Cork (Ireland); Environmental Research Institute, University College Cork, Cork (Ireland)

    2013-08-07

    The extinction spectra of static naphthalene and static biphenylene vapor, each buffered with a noble gas at room temperature, were measured as a function of time in the region between 390 and 850 nm after UV multi-photon laser photolysis at 308 nm. Employing incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS), the spectra were found to be unstructured with a general lack of isolated features suggesting that the extinction was not solely based on absorption but was in fact dominated by scattering from particles formed in the photolysis of the respective polycyclic aromatic hydrocarbon. Following UV multi-photon photolysis, the extinction dynamics of the static (unstirred) closed gas-phase system exhibits extraordinary quasi-periodic and complex oscillations with periods ranging from seconds to many minutes, persisting for up to several hours. Depending on buffer gas type and pressure, several types of dynamical responses could be generated (classified as types I, II, and III). They were studied as a function of temperature and chamber volume for different experimental conditions and possible explanations for the oscillations are discussed. A conclusive model for the observed phenomena has not been established. However, a number of key hypotheses have made based on the measurements in this publication: (a) Following the multi-photon UV photolysis of naphthalene (or biphenylene), particles are formed on a timescale not observable using IBBCEAS. (b) The observed temporal behavior cannot be described on basis of a chemical reaction scheme alone. (c) The pressure dependence of the system's responses is due to transport phenomena of particles in the chamber. (d) The size distribution and the refractive indices of particles are time dependent and evolve on a timescale of minutes to hours. The rate of particle coagulation, involving coalescent growth and particle agglomeration, affects the observed oscillations. (e) The walls of the chamber act as a

  13. Verification of RDX Photolysis Mechanism

    National Research Council Canada - National Science Library

    Peyton, Gary

    1999-01-01

    ... such as formaldehyde and formic acid, as well as the inorganic ions nitrate and nitrite. This implies that UV photolysis might provide a satisfactory and economical treatment system for RDX in water...

  14. Ecotoxicity of ketoprofen, diclofenac, atenolol and their photolysis byproducts in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, M.S., E-mail: mesd@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Salgado, R., E-mail: r.salgado@campus.fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); ESTS-IPS, Escola Superior de Tecnologia de Setúbal do Instituto Politécnico de Setúbal, Rua Vale de Chaves, Campus do IPS, Estefanilha, 2910-761 Setúbal (Portugal); Pereira, V.J., E-mail: vanessap@itqb.unl.pt [Instituto de Biologia Experimental e Tecnológica (IBET), Av. da República (EAN), 2784-505 Oeiras (Portugal); Instituto de Tecnologia Química e Biológica (ITQB)—Universidade Nova de Lisboa (UNL), Estação Agronómica Nacional, Av. da República, 2780-157 Oeiras (Portugal); Carvalho, G., E-mail: gs.carvalho@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Instituto de Biologia Experimental e Tecnológica (IBET), Av. da República (EAN), 2784-505 Oeiras (Portugal); Oehmen, A., E-mail: a.oehmen@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Reis, M.A.M., E-mail: amr@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Noronha, J.P., E-mail: jpnoronha@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2015-02-01

    The occurrence of pharmaceutical compounds in wastewater treatment plants and surface waters has been detected worldwide, constituting a potential risk for aquatic ecosystems. Adult zebrafish, of both sexes, were exposed to three common pharmaceutical compounds (atenolol, ketoprofen and diclofenac) and their UV photolysis by-products over seven days. The results show that diclofenac was removed to concentrations < LOD after 5 min of UV irradiation. The oxidative stress response of zebrafish to pharmaceuticals and their photolysis by-products was evaluated through oxidative stress enzymes (glutathione-S-transferase, catalase, superoxide dismutase) and lipid peroxidation. Results suggest that the photolysis by-products of diclofenac were more toxic than those from the other compounds tested, showing an increase in GST and CAT levels, which are also supported by higher MDA levels. Overall, the toxicity of waters containing atenolol and ketoprofen was reduced after the parent compounds were transformed by photolysis, whereas the toxicity increased significantly from the by-products generated through diclofenac photolysis. Therefore, diclofenac photolysis would possibly necessitate higher irradiation time to ensure that the associated by-products are completely degraded to harmless form(s). - Highlights: • Toxicity evaluated for 3 common pharmaceuticals (atenolol, ketoprofen and diclofenac). • Toxicity assessed for the pharmaceuticals and UV photolysis by-products in zebrafish. • Diclofenac photolysis by-products are more toxic than the parent compound. • Ketoprofen and atenolol show stronger oxidative stress response than by-products. • UV photolysis should ensure full removal of diclofenac metabolites to avoid toxicity.

  15. Ecotoxicity of ketoprofen, diclofenac, atenolol and their photolysis byproducts in zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Diniz, M.S.; Salgado, R.; Pereira, V.J.; Carvalho, G.; Oehmen, A.; Reis, M.A.M.; Noronha, J.P.

    2015-01-01

    The occurrence of pharmaceutical compounds in wastewater treatment plants and surface waters has been detected worldwide, constituting a potential risk for aquatic ecosystems. Adult zebrafish, of both sexes, were exposed to three common pharmaceutical compounds (atenolol, ketoprofen and diclofenac) and their UV photolysis by-products over seven days. The results show that diclofenac was removed to concentrations < LOD after 5 min of UV irradiation. The oxidative stress response of zebrafish to pharmaceuticals and their photolysis by-products was evaluated through oxidative stress enzymes (glutathione-S-transferase, catalase, superoxide dismutase) and lipid peroxidation. Results suggest that the photolysis by-products of diclofenac were more toxic than those from the other compounds tested, showing an increase in GST and CAT levels, which are also supported by higher MDA levels. Overall, the toxicity of waters containing atenolol and ketoprofen was reduced after the parent compounds were transformed by photolysis, whereas the toxicity increased significantly from the by-products generated through diclofenac photolysis. Therefore, diclofenac photolysis would possibly necessitate higher irradiation time to ensure that the associated by-products are completely degraded to harmless form(s). - Highlights: • Toxicity evaluated for 3 common pharmaceuticals (atenolol, ketoprofen and diclofenac). • Toxicity assessed for the pharmaceuticals and UV photolysis by-products in zebrafish. • Diclofenac photolysis by-products are more toxic than the parent compound. • Ketoprofen and atenolol show stronger oxidative stress response than by-products. • UV photolysis should ensure full removal of diclofenac metabolites to avoid toxicity

  16. Tuned sources of submillimetre radiation

    International Nuclear Information System (INIS)

    Berezhnyj, V.L.

    1981-01-01

    The main present directions of development of sources of frequency coherent tuned radiation of electromagnetic waves in the submillimeter range: nonlinear mixing of different frequencies; semiconductor lasers; molecular lasers with optical pumping; relativistic electron beams in a magnetic field as submillimeter radiation sources; submillimeter radiation sources on the basis of SHF classical electrovacuum devices - are considered. The designs of generator systems and their specifications are presented. The main parameters of electromagnetic radiation of different sources, such as: power, stability, frequency, tuning range - are presented. The methods of improving sources and electromagnetic radiation parameters are proposed. The examples of possible applications of submillimeter radiation in different spheres of science and technology are given [ru

  17. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry

    DEFF Research Database (Denmark)

    Meusinger, Carl; Berhanu, Tesfaye A.; Erbland, Joseph

    2014-01-01

    undergoing secondary (recombination) chemistry. Modeled NOx emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200 nm band was found to be ∼ 1%, much lower than reported for aqueous chemistry. A companion paper...... are understood. It has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the photolysis products have a significant influence on the local troposphere as well as on other species in the snow. Reported quantum yields for the main reaction spans orders of magnitude...

  18. Antimicrobial activity of hydroxyl radicals generated by hydrogen peroxide photolysis against Streptococcus mutans biofilm.

    Science.gov (United States)

    Nakamura, Keisuke; Shirato, Midori; Kanno, Taro; Örtengren, Ulf; Lingström, Peter; Niwano, Yoshimi

    2016-10-01

    Prevention of dental caries with maximum conservation of intact tooth substance remains a challenge in dentistry. The present study aimed to evaluate the antimicrobial effect of H2O2 photolysis on Streptococcus mutans biofilm, which may be a novel antimicrobial chemotherapy for treating caries. S. mutans biofilm was grown on disk-shaped hydroxyapatite specimens. After 1-24 h of incubation, growth was assessed by confocal laser scanning microscopy and viable bacterial counting. Resistance to antibiotics (amoxicillin and erythromycin) was evaluated by comparing bactericidal effects on the biofilm with those on planktonic bacteria. To evaluate the effect of the antimicrobial technique, the biofilm was immersed in 3% H2O2 and was irradiated with an LED at 365 nm for 1 min. Viable bacterial counts in the biofilm were determined by colony counting. The thickness and surface coverage of S. mutans biofilm increased with time, whereas viable bacterial counts plateaued after 6 h. When 12- and 24-h-old biofilms were treated with the minimum concentration of antibiotics that killed viable planktonic bacteria with 3 log reduction, their viable counts were not significantly decreased, suggesting the biofilm acquired antibiotic resistance by increasing its thickness. By contrast, hydroxyl radicals generated by photolysis of 3% H2O2 effectively killed S. mutans in 24-h-old biofilm, with greater than 5 log reduction. The technique based on H2O2 photolysis is a potentially powerful adjunctive antimicrobial chemotherapy for caries treatment. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  19. A Fabry-Pérot electro-optic sensing system using a drive-current-tuned wavelength laser diode.

    Science.gov (United States)

    Kuo, Wen-Kai; Wu, Pei-Yu; Lee, Chang-Ching

    2010-05-01

    A Fabry-Pérot enhanced electro-optic sensing system that utilizes a drive-current-tuned wavelength laser diode is presented. An electro-optic prober made of LiNbO(3) crystal with an asymmetric Fabry-Pérot cavity is used in this system. To lock the wavelength of the laser diode at resonant condition, a closed-loop power control scheme is proposed. Experiment results show that the system can keep the electro-optic prober at high sensitivity for a long working time when the closed-loop control function is on. If this function is off, the sensitivity may be fluctuated and only one-third of the best level in the worst case.

  20. Laboratory study of nitrate photolysis in Antarctic snow

    DEFF Research Database (Denmark)

    Berhanu, Tesfaye A.; Meusinger, Carl; Erbland, Joseph

    2014-01-01

    in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry," J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate (15N, 17O, and 18O) provide...... additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters....... The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ 15N, δ 18O, and Δ 17O). From these measurements an average photolytic isotopic fractionation of 15ε = (- 15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation...

  1. Laser flash photolysis and magnetic-field-effect studies on interaction of thymine and thymidine with menadione: role of sugar in controlling reaction pattern

    Directory of Open Access Journals (Sweden)

    Adity Bose, Debarati Dey and Samita Basu

    2008-01-01

    Full Text Available The magnetic field effect (MFE in conjunction with laser flash photolysis has been used for the study of the interaction of one of the small drug like quinone molecules, 2-methyl, 1,4-naphthoquinone, commonly known as menadione (MQ, with one of the DNA bases, thymine (THN, and its corresponding nucleoside, thymidine (THDN, in acetonitrile (ACN and sodium dodecylsulfate (SDS micelles. It has been observed that THN undergoes electron transfer (ET and hydrogen (H abstraction with MQ, while THDN undergoes only H abstraction in both the media. However, our earlier studies showed that a purine base, adenine (ADN, and its nucleoside, 2'-deoxyadenosine (ADS, undergo ET in ACN and H abstraction in SDS. Here we have attempted to explain the differences in the reactions of these DNA bases with MQ. We also reveal the crucial role of a sugar unit in altering the behavior of purine and pyrimidine bases with respect to ET and H abstraction.

  2. Laser flash photolysis and magnetic-field-effect studies on interaction of thymine and thymidine with menadione: role of sugar in controlling reaction pattern

    Science.gov (United States)

    Bose, Adity; Dey, Debarati; Basu, Samita

    2008-04-01

    The magnetic field effect (MFE) in conjunction with laser flash photolysis has been used for the study of the interaction of one of the small drug like quinone molecules, 2-methyl, 1,4-naphthoquinone, commonly known as menadione (MQ), with one of the DNA bases, thymine (THN), and its corresponding nucleoside, thymidine (THDN), in acetonitrile (ACN) and sodium dodecylsulfate (SDS) micelles. It has been observed that THN undergoes electron transfer (ET) and hydrogen (H) abstraction with MQ, while THDN undergoes only H abstraction in both the media. However, our earlier studies showed that a purine base, adenine (ADN), and its nucleoside, 2'-deoxyadenosine (ADS), undergo ET in ACN and H abstraction in SDS. Here we have attempted to explain the differences in the reactions of these DNA bases with MQ. We also reveal the crucial role of a sugar unit in altering the behavior of purine and pyrimidine bases with respect to ET and H abstraction.

  3. Laser flash photolysis and magnetic-field-effect studies on interaction of thymine and thymidine with menadione: role of sugar in controlling reaction pattern

    International Nuclear Information System (INIS)

    Bose, Adity; Dey, Debarati; Basu, Samita

    2008-01-01

    The magnetic field effect (MFE) in conjunction with laser flash photolysis has been used for the study of the interaction of one of the small drug like quinone molecules, 2-methyl, 1,4-naphthoquinone, commonly known as menadione (MQ), with one of the DNA bases, thymine (THN), and its corresponding nucleoside, thymidine (THDN), in acetonitrile (ACN) and sodium dodecylsulfate (SDS) micelles. It has been observed that THN undergoes electron transfer (ET) and hydrogen (H) abstraction with MQ, while THDN undergoes only H abstraction in both the media. However, our earlier studies showed that a purine base, adenine (ADN), and its nucleoside, 2'-deoxyadenosine (ADS), undergo ET in ACN and H abstraction in SDS. Here we have attempted to explain the differences in the reactions of these DNA bases with MQ. We also reveal the crucial role of a sugar unit in altering the behavior of purine and pyrimidine bases with respect to ET and H abstraction

  4. Photobinding of tiaprofenic acid and suprofen to proteins and cells: a combined study using radiolabeling, antibodies and laser flash photolysis of model bichromophores.

    Science.gov (United States)

    Castell, J V; Hernández, D; Gómez-Lechón, M J; Lahoz, A; Miranda, M A; Morera, I M; Pérez-Prieto, J; Sarabia, Z

    1998-11-01

    Drug photoallergy is a matter of current concern. It involves the formation of drug-protein photoadducts (photoantigens) that may ultimately trigger an immunological response. Tyrosine residues appear to be key binding sites in proteins. The present work has investigated the photobinding of tiaprofenic and (TPA) and the closely related isomer suprofen (SUP) to proteins and cells by means of radioactive labelling and drug-directed antibodies. To ascertain whether preassociation with the protein may play a role in photoreactivity, two model bichromophoric compounds (TPA-Tyr and SUP-Tyr) have been prepared and studied by laser flash photolysis. The results of this work show that (a) TPA and SUP photobind to proteins with similar efficiencies, (b) both drugs form photoadducts that share a basic common structure, as they are recognized by the same antibody and (c) drug-protein preassociation must play a key role in photoreactivity, as indicated by the dramatic decrease in the triplet state lifetimes of the model bichromophores compared to the parent drugs.

  5. Laser flash photolysis and magnetic-field-effect studies on interaction of thymine and thymidine with menadione: role of sugar in controlling reaction pattern

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Adity; Dey, Debarati; Basu, Samita [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700 064 (India)], E-mail: samita.basu@saha.ac.in

    2008-04-01

    The magnetic field effect (MFE) in conjunction with laser flash photolysis has been used for the study of the interaction of one of the small drug like quinone molecules, 2-methyl, 1,4-naphthoquinone, commonly known as menadione (MQ), with one of the DNA bases, thymine (THN), and its corresponding nucleoside, thymidine (THDN), in acetonitrile (ACN) and sodium dodecylsulfate (SDS) micelles. It has been observed that THN undergoes electron transfer (ET) and hydrogen (H) abstraction with MQ, while THDN undergoes only H abstraction in both the media. However, our earlier studies showed that a purine base, adenine (ADN), and its nucleoside, 2'-deoxyadenosine (ADS), undergo ET in ACN and H abstraction in SDS. Here we have attempted to explain the differences in the reactions of these DNA bases with MQ. We also reveal the crucial role of a sugar unit in altering the behavior of purine and pyrimidine bases with respect to ET and H abstraction.

  6. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lihui [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Zhang, Yongming, E-mail: zhym@shnu.edu.cn [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Bai, Qi; Yan, Ning; Xu, Hua [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Rittmann, Bruce E. [Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5701 (United States)

    2015-04-28

    Highlights: • Intimately coupled UV photolysis accelerated nitrobenzene biodegradation. • NB biodegradation was slowed by accumulation of nitrophenol. • Oxalic acid was a key product of UV photolysis. • Oxalic acid accelerated biodegradation of nitrobenzene and nitrophenol by a co-substrate effect. • Intimate coupling of UV and biodegradation accentuated the benefits of oxalic acid. - Abstract: Photo(cata)lysis coupled with biodegradation is superior to photo(cata)lysis or biodegradation alone for removal of recalcitrant organic compounds. The two steps can be carried out sequentially or simultaneously via intimate coupling. We studied nitrobenzene (NB) removal and mineralization to evaluate why intimate coupling of photolysis with biodegradation was superior to sequential coupling. Employing an internal circulation baffled biofilm reactor, we compared direct biodegradation (B), biodegradation after photolysis (P + B), simultaneous photolysis and biodegradation (P&B), and biodegradation with nitrophenol (NP) and oxalic acid (OA) added individually and simultaneously (B + NP, B + OA, and B + NP + OA); NP and OA were NB’s main UV-photolysis products. Compared with B, the biodegradation rate P + B was lower by 13–29%, but intimately coupling (P&B) had a removal rate that was 10–13% higher; mineralization showed similar trends. B + OA gave results similar to P&B, B + NP gave results similar to P + B, and B + OA + NP gave results between P + B and P&B, depending on the amount of OA and NP added. The photolysis product OA accelerated NB biodegradation through a co-substrate effect, but NP was inhibitory. Although decreasing the UV photolysis time could minimize the inhibition impact of NP in P + B, P&B gave the fastest removal of NB by accentuating the co-substrate effect of OA.

  7. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation

    International Nuclear Information System (INIS)

    Yang, Lihui; Zhang, Yongming; Bai, Qi; Yan, Ning; Xu, Hua; Rittmann, Bruce E.

    2015-01-01

    Highlights: • Intimately coupled UV photolysis accelerated nitrobenzene biodegradation. • NB biodegradation was slowed by accumulation of nitrophenol. • Oxalic acid was a key product of UV photolysis. • Oxalic acid accelerated biodegradation of nitrobenzene and nitrophenol by a co-substrate effect. • Intimate coupling of UV and biodegradation accentuated the benefits of oxalic acid. - Abstract: Photo(cata)lysis coupled with biodegradation is superior to photo(cata)lysis or biodegradation alone for removal of recalcitrant organic compounds. The two steps can be carried out sequentially or simultaneously via intimate coupling. We studied nitrobenzene (NB) removal and mineralization to evaluate why intimate coupling of photolysis with biodegradation was superior to sequential coupling. Employing an internal circulation baffled biofilm reactor, we compared direct biodegradation (B), biodegradation after photolysis (P + B), simultaneous photolysis and biodegradation (P&B), and biodegradation with nitrophenol (NP) and oxalic acid (OA) added individually and simultaneously (B + NP, B + OA, and B + NP + OA); NP and OA were NB’s main UV-photolysis products. Compared with B, the biodegradation rate P + B was lower by 13–29%, but intimately coupling (P&B) had a removal rate that was 10–13% higher; mineralization showed similar trends. B + OA gave results similar to P&B, B + NP gave results similar to P + B, and B + OA + NP gave results between P + B and P&B, depending on the amount of OA and NP added. The photolysis product OA accelerated NB biodegradation through a co-substrate effect, but NP was inhibitory. Although decreasing the UV photolysis time could minimize the inhibition impact of NP in P + B, P&B gave the fastest removal of NB by accentuating the co-substrate effect of OA

  8. Preliminary studies on photolysis of polychlorinated dibenzo-p-dioxins on soils surface

    Energy Technology Data Exchange (ETDEWEB)

    Kobara, Y.; Ishihara, S.; Ohtsu, K.; Horio, T.; Endo, S.

    2002-07-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and di benzofurans (PCDFs) are ubiquitous environmental contaminants, and widely distributed in air, water and soil. They are persistent in the environmental and accumulate in living organisms. Some of these compounds are extremely toxic and carcinogenic to animals and possible humans. The Occurrence of PCDDs/PCDFs in the environment originated from both natural and anthropogenic sources. Anthropogenic sources are not manufactured for commercial purposes. These toxic compounds, however, are formed as unintentional by-products from chemical impurities in various industrial processes involving chlorine or by burning organic matter in the presence of chlorine molecules. A significant portion of PCDDs accumulated in soils in Japanese paddy fields was shown to have originated from agrochemicals, especially pentachlorophenol (PCP) and chloronitorofen (2, 4, 6-trichlorophenyl-4-nitrophenyl ether, CNP). Their impurities of PCP were mostly highly chlorinated congeners, especially OCDD that currently remains to the level of 20,000 pg/g in paddy soils. Compounds such as PCDDs/PCDFs that absorbed UV/Vis light can react photochemically by reaching excited state through the direct absorption of light (direct photolysis) or by accepting energy from an excited donor molecule (sensitized photolysis). Reactions can also occur with reactive oxygen species such as singlet oxygen, hydroxyl radicals, etc. formed from photochemical interactions with other organic molecules such as humic acids. Direct photolysis is the only mechanism for photolysis of organic chemicals in pure water and hydrocarbon solutions. However, PCDDs/PCDFs solubilities are extremely low in pure water. The low solubilities of these compounds in aqueous solution make photolysis experiments difficult. Therefore, in most previous studies of photolysis in aqueous solutions an acetonitrile/water mixture was used, furthermore, photolysis experiments were conducted through exposing

  9. Power and efficiency scaling of diode pumped Cr:LiSAF lasers: 770-1110 nm tuning range and frequency doubling to 387-463 nm.

    Science.gov (United States)

    Demirbas, Umit; Baali, Ilyes

    2015-10-15

    We report significant average power and efficiency scaling of diode-pumped Cr:LiSAF lasers in continuous-wave (cw), cw frequency-doubled, and mode-locked regimes. Four single-emitter broad-area laser diodes around 660 nm were used as the pump source, which provided a total pump power of 7.2 W. To minimize thermal effects, a 20 mm long Cr:LiSAF sample with a relatively low Cr-concentration (0.8%) was used as the gain medium. In cw laser experiments, 2.4 W of output power, a slope efficiency of 50%, and a tuning range covering the 770-1110 nm region were achieved. Intracavity frequency doubling with beta-barium borate (BBO) crystals generated up to 1160 mW of blue power and a record tuning range in the 387-463 nm region. When mode locked with a saturable absorber mirror, the laser produced 195 fs pulses with 580 mW of average power around 820 nm at a 100.3 MHz repetition rate. The optical-to-optical conversion efficiency of the system was 33% in cw, 16% in cw frequency-doubled, and 8% in cw mode-locked regimes.

  10. Self Assembly and Properties of C:WO3 Nano-Platelets and C:VO2/V2O5 Triangular Capsules Produced by Laser Solution Photolysis

    Directory of Open Access Journals (Sweden)

    Sideras-Haddad E

    2009-01-01

    Full Text Available Abstract Laser photolysis of WCl6 in ethanol and a specific mixture of V2O5 and VCl3 in ethanol lead to carbon modified vanadium and tungsten oxides with interesting properties. The presence of graphene’s aromatic rings (from the vibrational frequency of 1,600 cm−1 together with C–C bonding of carbon (from the Raman shift of 1,124 cm−1 present unique optical, vibrational, electronic and structural properties of the intended tungsten trioxide and vanadium dioxide materials. The morphology of these samples shows nano-platelets in WO x samples and, in VO x samples, encapsulated spherical quantum dots in conjunction with fullerenes of VO x . Conductivity studies revealed that the VO2/V2O5 nanostructures are more sensitive to Cl than to the presence of ethanol, whereas the C:WO3 nano-platelets are more sensitive to ethanol than atomic C.

  11. Diphosphine is an intermediate in the photolysis of phosphine to phosphorus and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, J P; Benson, R [Rensselaer Polytechnic Inst., Troy, NY (USA). Dept. of Chemistry

    1980-05-15

    Photolysis of phosphine (PH/sub 3/) has been investigated because of its potential significance in the atmosphere chemistry of Jupiter. It is reported that P/sub 2/H/sub 4/is the initial product of PH/sub 3/ photolysis and that it is the principal intermediate in the formation of red phosphorus. It is stated that these findings require substantial revision of the previously accepted mechanism for PH/sub 3/ photolysis.

  12. Photolysis of O-nitrobenzoin: a reinvestigation

    International Nuclear Information System (INIS)

    Dicks, P.F.; Goosen, A.; McCleland, C.W.

    1983-01-01

    Photolysis of O-nitrobenzoin produces benzaldehyde and 2-phenylbenzo[b]furan. The addition of a nitrogen dioxide scavenger and a triplet n→πsup(*) carbonyl quencher are shown to inhibit 2-phenylbenzo[b]furan formation. It is proposed that cyclization occurs through the carbonyl n→πsup(*) triplet state. The benzaldehyde could result either from rapid α-cleavage of the carbonyl group, occurring from either the singlet or triplet n→πsup(*) states in a process which is concerted with cleavage of the O-NO 2 bond, or from fragmentation of the alkoxyl radical produced upon photolysis of the nitrate ester, or from a combination of both processes. Support for the intermediacy of the alkoxyl radical is afforded by the observation that O-nitro-hydrobenzoin and some of its derivatives all afforded benzaldehyde under similar conditions

  13. Investigation of concept of efficient short wavelength laser. Interim progress report, 1 April 1977-30 April 1978

    Energy Technology Data Exchange (ETDEWEB)

    Piper, L.G.; Krech, R.H.; Taylor, R.L.

    1978-05-01

    Under this program PSI is investigating the photolytic decomposition of a class of endoergic molecules - azides. Because these compounds contain substantial chemical energy, they offer a potentially more efficient approach for the production of electronically excited fragments. The goal of the present program was to acquire sufficient data and understanding of certain fundamental processes to permit the critical evaluation of this approach for laser development. An apparatus was built to study the wavelength-selected photolysis of gaseous, covalent azides. The photolysis source is a frequency doubled, tuneable dye laser. Detection of fragment species is accomplished by observation of primary fluorescence, or by laser-induced fluorescence (LIF) using a second tuneable dye laser. The design of the apparatus is discussed in detail.

  14. Photolysis of Periodate and Periodic Acid in Aqueous Solution

    DEFF Research Database (Denmark)

    Sehested, Knud; Kläning, U. K.

    1978-01-01

    The photochemistry of periodate and periodic acid in aqueous solution was studied (i) by quantum yield measurements at low light intensity (ii) by flash photolysis, and (iii) by photolysis of glassy samples at 77 K. The photochemical studies were supplemented with pulse radiolysis studies...... of aqueous periodate solutions and with kinetic studies using stopped-flow technique. In strongly alkaline solution the photodecomposition of periodate proceeds via formation of O– and IVI. At pH solution O3 P is formed in a small...

  15. Utilization of solar energy through photosynthesis and artificial water photolysis

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    The plants build up organic matter with a carbon content of the order of 1011 t/year by means of photochemistry. Energy farming for the production of liquid or gaseous fuel is discussed. Yet the abiotic photolysis of water with production of hydrogen is preferable. By means of synthetic, asymmetric, photochemically active, membranes the primary products of water photolysis could be spatially separated so that their recombination is prevented.(author)

  16. Flash photolysis of carbon dioxide in the far ultra-violet

    International Nuclear Information System (INIS)

    Barat, F.

    1970-01-01

    The flash photolysis of CO 2 (3 torr) in the far ultra-violet, down to the transparency limit of lithium fluoride, produces vibrationally excited CO in its Χ 1 Σ electronic ground state and an electronically excited oxygen atom O( 1 D). After photolysis, the changes in the concentration of vibrationally de-excited CO in the 0 to 200 μsec, time range are followed using absorption spectroscopy. These changes can be explained on the basis of three main competing reactions: CO(Χ 1 Σ, ν'' = 0) + O( 1 D) → CO 2 ( 1 Σ g + ), O( 1 D) + CO 2 → O( 3 P) + CO 2 and CO 3 , CO(X 1 Σ, ν'' = 1,2) + CO 2 → CO(Χ 1 Σ, ν'' = 0) + CO 2 . The values of the rate constants for these three reactions are determined by analog calculations. The effect of O( 1 D) scavenging or quenching gases on the oxidation reaction of CO by O( 1 D) is examined. A study of the flash photolysis of O 2 in the presence of CO in the far ultra-violet makes it possible to eliminate the hypothesis that CO 3 is involved in the reaction leading to the disappearance of CO after photolysis. (author) [fr

  17. Alternate Tunings for the Linac Coherent Light Source Photoinjector

    CERN Document Server

    Limborg-Deprey, Cecile

    2005-01-01

    The Linac Coherent Light Source (LCLS) is an x-ray free-electron laser (FEL) project based on the SLAC linac. The LCLS Photoinjector beamline has been designed to deliver 10 ps long electron bunches of 1nC with a normalized transverse emittance of less than 1 mm.mrad for 80% of the slices constituting the core of the bunch at 135 MeV. Tolerances and regulation requirements are tight for this tuning. The main contribution to emittance is the "cathode emittance which counts for 0.72 mm.mrad for the nominal tuning. As the "cathode emittance" scales linearly with laser spot radius, the emittance will be dramatically reduced for smaller radius, but this is only possible at lower charge. In particular, for a 0.2nC, we believe we can achieve an emittance closer to 0.4 mm.mrad. This working point will be easier to tune and the beam quality should be much easier to maintain than for the nominal one. In this paper, we also discuss how emittance could be further reduced by using the appropriate laser pulse shaping.

  18. Development of AVLIS dye laser system

    International Nuclear Information System (INIS)

    Sugiyama, Akira; Nakayama, Tsuyoshi; Kato, Masaaki; Arisawa, Takashi

    1995-01-01

    CVL pumped single mode dye laser was performed. It was found that pressure tuning has some excellent feature in comparison to mechanical tuning in dye laser frequency control. For evaluation of dye laser amplifier, two-dimensional rate equation was proposed. Calculated data by this equation agreed with experimental data in large diameter input dye laser beam condition. (author)

  19. Atmospheric degradation of 2- nitrobenzaldehyde: Photolysis and reaction with OH radicals

    Science.gov (United States)

    Bouya, H.; Al Rashidi, M.; Roth, E.; Salghi, R.; Chakir, A.

    2017-12-01

    This work presents an experimental study of the gas phase kinetics of 2-nitrobenzaldehyde (2-NBA) photolysis and oxidation by OH radicals. The experiments were carried out in an atmospheric simulation chamber coupled to an FTIR spectrometer and CG/MS. The UV spectra of 2-NBA were also measured and the experimentally determined absorption cross sections were used to estimate the atmospheric photo-dissociation constant of 2-NBA with a global quantum yield of 0.5. The obtained results indicate that 2-NBA is a highly photolysable. A mechanism of 2-NBA photolysis was proposed based on the identification of photolysis degradation products. The kinetics of oxidation of 2-NBA by OH radicals was investigated over the temperature range 308-352 K. The obtained rate coefficients exhibits slight negative temperature dependence and the Arrhenius expression obtained is as follows: kOH+2-NBA(T)= (7.00 ± 3.40) × 10-12exp (577 ± 156/T) cm3 molecule-1 s-1. The calculated rate coefficients lead to tropospheric lifetimes of 2-NBA that are in the order of a few minutes, relative to photolysis, or a few hours, relative to oxidation by OH radicals.

  20. Photolysis of polycyclic aromatic hydrocarbons adsorbed on spruce [Picea abies (L.) Karst.] needles under sunlight irradiation

    International Nuclear Information System (INIS)

    Niu Junfeng; Chen Jingwen; Martens, D.; Quan Xie; Yang Fenglin; Kettrup, A.; Schramm, K.-W.

    2003-01-01

    Photolysis of PAHs on surfaces may determine their ultimate fate in the environment. - Photolysis of polycyclic aromatic hydrocarbons (PAHs) sorbed on surfaces of spruce [Picea abies (L.) Karst.] needles under sunlight irradiation was investigated. PAHs were produced by combustion of polyvinyl chloride (PVC), wood, high-density polyethylene (HDPE), and styrene in a stove. The factors of sunlight irradiation on the surfaces of spruce needles were taken into consideration when investigating the kinetic parameters. The photolysis of the 18 PAHs under study follows first-order kinetics. The photolysis half-lives range from 15 h for dibenzo(a,h)anthracene to 75 h for phenanthrene. Photolysis of some PAHs on surfaces of spruce needles may play an important role on the fate of PAHs in the environment

  1. UV Direct Laser Interference Patterning of polyurethane substrates as tool for tuning its surface wettability

    Energy Technology Data Exchange (ETDEWEB)

    Estevam-Alves, Regina [Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos (Brazil); Günther, Denise; Dani, Sophie; Eckhardt, Sebastian; Roch, Teja [Fraunhofer Institute for Material and Beam Technology IWS, Winterbergstr. 28, Dresden 01277 (Germany); Chair for Large Area Laser Based Surface Micro/Nano-Structuring, Institute for Manufacturing Technology, Technische Universität Dresden, George-Bähr-Str. 3c, 01069 Dresden (Germany); Mendonca, Cleber R., E-mail: crmendon@ifsc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos (Brazil); Cestari, Ismar N. [Heart Institute (InCOr), University of São Paulo Medical School, São Paulo 05403-000 (Brazil); Lasagni, Andrés F., E-mail: andres_fabian.lasagni@tu-dresden.de [Fraunhofer Institute for Material and Beam Technology IWS, Winterbergstr. 28, Dresden 01277 (Germany); Chair for Large Area Laser Based Surface Micro/Nano-Structuring, Institute for Manufacturing Technology, Technische Universität Dresden, George-Bähr-Str. 3c, 01069 Dresden (Germany)

    2016-06-30

    Highlights: • First reported experiments on Direct Laser Interference Patterning of polyurethane. • First reported sub-micrometer structures (feature size ∼250 nm) fabricated in polyurethane materials using laser processing technologies. • Anisotropic wetting behavior of structured surfaces and possibility to tune the contact angle as function of surface structure parameters. - Abstract: Direct Laser Interference Patterning (DLIP) is a versatile tool for the fabrication of micro and sub-micropatterns on different materials. In this work, DLIP was used to produce periodic surface structures on polyurethane (PU) substrates with spatial periods ranging from 0.5 to 5.0 μm. The influence of the laser energy density on the quality and topographical characteristics of the produced micropatterns was investigated. To characterize the surface topography of the produced structures, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Confocal Microscopy (CFM) were utilized. It was found that high quality and defect free periodic line-like patterns with spatial periods down to 500 nm could be fabricated, with structure depths between 0.88 up to 1.25 μm for spatial periods larger than 2.0 μm and up to 270 nm for spatial periods between 500 nm and 1.0 μm. Measurements of the contact angle of water on the treated surface allowed to identify an anisotropic wetting behavior depending mainly on the spatial period and filling factor of the structured surfaces.

  2. Photolysis of rhodamine-WT dye

    Science.gov (United States)

    Tai, D.Y.; Rathbun, R.E.

    1988-01-01

    Photolysis of rhodamine-WT dye under natural sunlight conditions was determined by measuring the loss of fluorescence as a function of time. Rate coefficients at 30?? north latitude ranged from 4.77 x 10-2 day-1 for summer to 3.16 x 10-2 day-1 for winter. Experimental coefficients were in good agreement with values calculated using a laboratory-determined value of the quantum yield.

  3. Photolysis of nonylphenol ethoxylates: the determination of the degradation kinetics and the intermediate products.

    Science.gov (United States)

    Chen, Ling; Zhou, Hai-Yun; Deng, Qin-Ying

    2007-06-01

    The photolysis of nonylphenol ethoxylates with an average oligomers length of ten ethoxylate units (NPEO(10)) in aqueous solution under UV, as well as the influence of humic acid (HA) on the photolysis was studied. A 125W high-pressure mercury lamp was employed as the light source. The intermediate products from the photolysis were determined by LC-MS. The results indicated that NPEO(10) underwent direct photolysis upon exposed to UV. The degradation pathway was complex. Besides the generally proposed degradation pathway of ethylene oxide (EO) side chains shortening, the oxidation of alkyl chain and EO chain led to intermediates having both a carboxylated (as well as carbonylated) ethoxylate and alkyl chain of varying lengths. The hydrogenation of benzene ring was also detected. The kinetics data showed that the first order reaction kinetics could be well used to describe the kinetics of NPEO(10) degradation. In the presence of dissolved organic matter by HA addition, the performance of NPEO(10) photodegradation was reduced. The photolysis rate decreased with increased HA concentration.

  4. Pressure dependence for the CO quantum yield in the photolysis of acetone at 248 nm: a combined experimental and theoretical study.

    Science.gov (United States)

    Somnitz, H; Fida, M; Ufer, T; Zellner, R

    2005-09-21

    The quantum yield of CO in the laser pulse photolysis of acetone at 248 nm and at 298 K in the pressure range 20-900 mbar (N2) has been measured directly using quantitative infrared diode laser absorption of CO. It is found that the quantum yield of CO shows a significant dependence on total pressure with Phi(CO) decreasing with pressure from around 0.45 at 20 mbar to approximately 0.25 at 900 mbar. From a combination of ab initio quantum chemical calculations on the molecular properties of the acetyl (CH3CO) radical and its unimolecular fragmentation as well as the application of statistical (RRKM) and dynamical calculations we show that CO production results from prompt secondary fragmentation (via(2a)) of the internally excited primary CH3CO* photolysis product with an excess energy of approximately 62.8 kJ mol(-1). Hence, our findings are consistent with a consecutive photochemically induced decomposition model, viz. step (1): CH3COCH3+hv--> CH3CO*+ CH3, step (2a): CH3CO*--> CH3+ CO or step (2b) CH3CO*-(+M)--> CH3CO. Formation of CO via a direct and/or concerted channel CH3COCH3+hv--> 2CH(3)+ CO (1') is considered to be unimportant.

  5. Automatic Laser Pointer Detection Algorithm for Environment Control Device Systems Based on Template Matching and Genetic Tuning of Fuzzy Rule-Based Systems

    Directory of Open Access Journals (Sweden)

    F.

    2012-04-01

    Full Text Available In this paper we propose a new approach for laser-based environment device control systems based on the automatic design of a Fuzzy Rule-Based System for laser pointer detection. The idea is to improve the success rate of the previous approaches decreasing as much as possible the false offs and increasing the success rate in images with laser spot, i.e., the detection of a false laser spot (since this could lead to dangerous situations. To this end, we propose to analyze both, the morphology and color of a laser spot image together, thus developing a new robust algorithm. Genetic Fuzzy Systems have also been employed to improve the laser spot system detection by means of a fine tuning of the involved membership functions thus reducing the system false offs, which is the main objective in this problem. The system presented in this paper, makes use of a Fuzzy Rule-Based System adjusted by a Genetic Algorithm, which, based on laser morphology and color analysis, shows a better success rate than previous approaches.

  6. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  7. Photolysis of low concentration H2S under UV/VUV irradiation emitted from high frequency discharge electrodeless lamps.

    Science.gov (United States)

    Xu, Jianhui; Li, Chaolin; Liu, Peng; He, Di; Wang, Jianfeng; Zhang, Qian

    2014-08-01

    The photolysis of low concentration of H2S malodorous gas was studied under UV irradiation emitted by self-made high frequency discharge electrodeless lamp with atomic mercury lines at 185/253.7nm. Experiments results showed that the removal efficiency (ηH2S) of H2S was decreased with increasing initial H2S concentration and increased slightly with gas residence time. ηH2S was increased dramatically with relative humidity from<5% to 43% while the concentration of oxygen in gas environments affected the removal of H2S. The mechanisms for direct and indirect photolysis (generation of ozone) were illustrated by the experimental results on photolysis of H2S under argon environments and ozonation of H2S under air environments, respectively. The overall ηH2S by photolysis is higher than the combination of ηH2S by direct photolysis and ozonation, suggesting that hydroxyl radical-mediated indirect photolysis played an important role during photolysis processes. The main photolysis product was confirmed to be SO4(2-) with ion chromatograph. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Advanced metaheuristic algorithms for laser optimization

    International Nuclear Information System (INIS)

    Tomizawa, H.

    2010-01-01

    A laser is one of the most important experimental tools. In synchrotron radiation field, lasers are widely used for experiments with Pump-Probe techniques. Especially for Xray-FELs, a laser has important roles as a seed light source or photo-cathode-illuminating light source to generate a high brightness electron bunch. The controls of laser pulse characteristics are required for many kinds of experiments. However, the laser should be tuned and customized for each requirement by laser experts. The automatic tuning of laser is required to realize with some sophisticated algorithms. The metaheuristic algorithm is one of the useful candidates to find one of the best solutions as acceptable as possible. The metaheuristic laser tuning system is expected to save our human resources and time for the laser preparations. I have shown successful results on a metaheuristic algorithm based on a genetic algorithm to optimize spatial (transverse) laser profiles and a hill climbing method extended with a fuzzy set theory to choose one of the best laser alignments automatically for each experimental requirement. (author)

  9. CDOM Sources and Photobleaching Control Quantum Yields for Oceanic DMS Photolysis

    KAUST Repository

    Galí, Martí

    2016-11-14

    Photolysis is a major removal pathway for the biogenic gas dimethylsulfide (DMS) in the surface ocean. Here we tested the hypothesis that apparent quantum yields (AQY) for DMS photolysis varied according to the quantity and quality of its photosensitizers, chiefly chromophoric dissolved organic matter (CDOM) and nitrate. AQY compiled from the literature and unpublished studies ranged across 3 orders of magnitude at the 330 nm reference wavelength. The smallest AQY(330) were observed in coastal waters receiving major riverine inputs of terrestrial CDOM (0.06-0.5 m3 (mol quanta)-1). In open-ocean waters, AQY(330) generally ranged between 1 and 10 m3 (mol quanta)-1. The largest AQY(330), up to 34 m3 (mol quanta)-1), were seen in the Southern Ocean potentially associated with upwelling. Despite the large AQY variability, daily photolysis rate constants at the sea surface spanned a smaller range (0.04-3.7 d-1), mainly because of the inverse relationship between CDOM absorption and AQY. Comparison of AQY(330) with CDOM spectral signatures suggests there is an interplay between CDOM origin (terrestrial versus marine) and photobleaching that controls variations in AQYs, with a secondary role for nitrate. Our results can be used for regional or large-scale assessment of DMS photolysis rates in future studies.

  10. CDOM Sources and Photobleaching Control Quantum Yields for Oceanic DMS Photolysis.

    Science.gov (United States)

    Galí, Martí; Kieber, David J; Romera-Castillo, Cristina; Kinsey, Joanna D; Devred, Emmanuel; Pérez, Gonzalo L; Westby, George R; Marrasé, Cèlia; Babin, Marcel; Levasseur, Maurice; Duarte, Carlos M; Agustí, Susana; Simó, Rafel

    2016-12-20

    Photolysis is a major removal pathway for the biogenic gas dimethylsulfide (DMS) in the surface ocean. Here we tested the hypothesis that apparent quantum yields (AQY) for DMS photolysis varied according to the quantity and quality of its photosensitizers, chiefly chromophoric dissolved organic matter (CDOM) and nitrate. AQY compiled from the literature and unpublished studies ranged across 3 orders of magnitude at the 330 nm reference wavelength. The smallest AQY(330) were observed in coastal waters receiving major riverine inputs of terrestrial CDOM (0.06-0.5 m 3 (mol quanta) -1 ). In open-ocean waters, AQY(330) generally ranged between 1 and 10 m 3 (mol quanta) -1 . The largest AQY(330), up to 34 m 3 (mol quanta) -1 ), were seen in the Southern Ocean potentially associated with upwelling. Despite the large AQY variability, daily photolysis rate constants at the sea surface spanned a smaller range (0.04-3.7 d -1 ), mainly because of the inverse relationship between CDOM absorption and AQY. Comparison of AQY(330) with CDOM spectral signatures suggests there is an interplay between CDOM origin (terrestrial versus marine) and photobleaching that controls variations in AQYs, with a secondary role for nitrate. Our results can be used for regional or large-scale assessment of DMS photolysis rates in future studies.

  11. Self assembly and properties of C:WO3 nano-platelets and C:VO2/V2O5 triangular capsules produced by laser solution photolysis

    CSIR Research Space (South Africa)

    Mwakikunga, BW

    2010-01-01

    Full Text Available -Structured Materials, P. O. Box 395, Pretoria, South Africa 123 Nanoscale Res Lett (2010) 5:389–397 DOI 10.1007/s11671-009-9494-4 coherent, intense and almost monochromatic laser light allows it to be tuned to selectively dissociate specific bonds in a precursor... in the current set of experiments. 390 Nanoscale Res Lett (2010) 5:389–397 123 2WðO � C2H5Þ6��! 248nm CxWO3�y þ . . . 2VðO � C2H5Þ4��! 248nm CxVO2þy þ . . . ð3Þ When the same precursors are irradiated with the 248-nm beam from the KrF excimer laser, the W(OR)6...

  12. Production of organic compounds in plasmas - A comparison among electric sparks, laser-induced plasmas, and UV light

    Science.gov (United States)

    Scattergood, Thomas W.; Mckay, Christopher P.; Borucki, William J.; Giver, Lawrence P.; Van Ghyseghem, Hilde

    1989-01-01

    In order to ascertain the features of organic compound-production in planetary atmospheres under the effects of plasmas and shocks, various mixtures of N2, CH4, and H2 modeling the atmosphere of Titan were subjected to discrete sparks, laser-induced plasmas, and UV radiation. The experimental results obtained suggest that UV photolysis from the plasma is an important organic compound synthesis process, as confirmed by the photolysis of gas samples that were exposed to the light but not to the shock waves emitted by the sparks. The thermodynamic equilibrium theory is therefore incomplete in the absence of photolysis.

  13. Topical treatment of oral cavity and wounded skin with a new disinfection system utilizing photolysis of hydrogen peroxide in rats.

    Science.gov (United States)

    Yamada, Yasutomo; Mokudai, Takayuki; Nakamura, Keisuke; Hayashi, Eisei; Kawana, Yoshiko; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi

    2012-01-01

    The present study aimed to evaluate the acute locally injurious property of hydroxyl radical generation system by photolysis of H(2)O(2), which is a new disinfection system for the treatment of periodontitis developed in our laboratory. Firstly, generation of the hydroxyl radical by a test device utilizing the photolysis of H(2)O(2) was confirmed by applying an electron spin resonance (ESR)-spin trapping technique. Secondly, the bactericidal effect of the device was examined under a simulant condition in which Staphylococcus aureus suspended in 1 M H(2)O(2) was irradiated with laser light emitted from the test device, resulting in substantial reduction of the colony forming unit of the bacteria within a short time as 2 min. Finally, acute topical effect of the disinfection system on rat oral mucosa and wounded skin was evaluated by histological examination. No abnormal findings were observed in the buccal mucosal region treated three times with 1 M H(2)O(2) and irradiation. Similarly, no abnormal findings were observed during the healing of skin treated with 1 M H(2)O(2) and irradiation immediately after wounding. Since topical treatment with the novel disinfection technique utilizing the photolysis of H(2)O(2) had no detrimental effect on the oral mucosa and the healing of full thickness skin wounds in rats, it is expected that the acute locally injurious property of the disinfection technique is low.

  14. Pressure dependent deuterium fractionation in the formation of molecular hydrogen in formaldehyde photolysis

    DEFF Research Database (Denmark)

    Nilsson, Elna Johanna Kristina; Andersen, Vibeke Friis; Skov, Henrik

    2009-01-01

    The pressure dependence of the relative photolysis rates of HCHO and HCDO has been investigated using a new photochemical reactor at the University of Copenhagen. The relative photolysis rate of HCHO vs. HCDO under UVA lamp irradiation was mea- 5 sured at total pressures of 50, 200, 400, 600...

  15. Relative tropospheric photolysis rates of acetaldehyde and formaldehyde measured at the European Photoreactor Facility

    DEFF Research Database (Denmark)

    Nilsson, Elna Johanna Kristina; Bache-Andreassen, Lihn; Johnson, Matthew Stanley

    2009-01-01

    The photolysis rates of HCHO, DCDO, CH3CHO, and CH3CDO are studied by long-path FTIR spectroscopy in natural tropospheric conditions at the European Photoreactor Facility (EUPHORE) in Valencia, Spain. Average relative photolysis rates jHCHO/jDCDO ) 3.15 ( 0.08 and jCH3CHO/jCH3CDO ) 1.26 ( 0.03 ar.......03 are obtained from three days of experiments for each reaction in the period June 17 to July 7, 2006.......The photolysis rates of HCHO, DCDO, CH3CHO, and CH3CDO are studied by long-path FTIR spectroscopy in natural tropospheric conditions at the European Photoreactor Facility (EUPHORE) in Valencia, Spain. Average relative photolysis rates jHCHO/jDCDO ) 3.15 ( 0.08 and jCH3CHO/jCH3CDO ) 1.26 ( 0...

  16. Continuous Monitoring of Photolysis Products by Thz Spectroscopy

    Science.gov (United States)

    Omar, Abdelaziz; Cuisset, Arnaud; Mouret, Gaël; Hindle, Francis; Eliet, Sophie; Bocquet, Robin

    2015-06-01

    We demonstrate the potential of THz spectroscopy to monitor the real time evolution of the gas phase concentration of photolysis products and determine the kinetic reaction rate constant. In the primary work, we have chosen to examine the photolysis of formaldehyde (H_2CO). Exposure of H_2CO to a UVB light (250 to 360 nm) in a single pass of 135 cm length cell leads to decomposition via two mechanisms: the radical channel with production of HCO and the molecular channel with production of CO. A commercial THz source (frequency multiplication chain) operating in the range 600-900 GHz was used to detect and quantify the various chemical species as a function of time. Monitoring the concentrations of CO and H_2CO via rotational transitions, allowed the kinetic rate of H_2CO consummation to be obtained, and an estimation of the rate constants for both the molecular and radical photolysis mechanisms. We have modified our experimental setup to increase the sensitivity of the spectrometer and changed sample preparation protocol specifically to quantify the HCO concentration. Acetaldehyde was used as the precursor for photolysis by UVC resulting in the decompositon mechanism can be described by: CH_3CHO+hν→ CH_3 + HCO → CH_4 + CO Frequency modulation of the source and Zeeman modulation is used to achieve the high sensitivity required. Particular attention has been paid to the mercury photosensitization effect that allowed us to increase the HCO production enabling quantification of the monitored radical. We quantify the HCO radical and start a spectroscopic study of the line positions. H. M. Pickett and T. L. Boyd, Chem. Phys. Lett, Vol 58, 446-449, (1978) S. Eliet, A. Cuisset, M Guinet, F. Hindle, G. Mouret, R. Bocquet, and J. Demaison, Journal of Molecular Spectroscopy, Vol 279, 12-15 (2012). G. Mouret, M. Guinet, A. Cuisset, L. Croizé, S. Eliet, R. Bocquet and F. Hindle, Sensors Journal. IEEE, Vol 13, 133 - 138, (2013)

  17. Photochemical of Polychlorinated biphenyl by the photolysis and ...

    African Journals Online (AJOL)

    Michael Horsfall

    reaction mixture inside the cell was continuously stirred with a .... work on PCB photolysis was carried out in alkanes and alcohols. .... dominant mechanism of PCBs destruction becomes hydroxyl ... (2004). Using solar and ultraviolet light to.

  18. Formation of tryptophan radicals in irradiated aqueous solutions of hexachloroplatinate(IV): a flash photolysis study.

    Science.gov (United States)

    Zang, L; Rodgers, M A

    1999-10-01

    The oxidation of tryptophan photosensitized by PtCl6(2-) has been investigated in aqueous solutions at different pH using nanosecond laser flash photolysis. Cationic and neutral radicals of tryptophan were detected at pH 2.8 and 8.5, respectively. The generation of the radical was attributed to oxidation by Cl2- that was formed from the homolytic bond cleavage in the excited state of PtCl6(2-). The bimolecular rate constant derived from the kinetics analysis, 2.8 +/- 0.2 x 10(9) M-1 s-1, is in good agreement with the value obtained in earlier pulse radiolysis studies. Both the cationic and neutral radicals decayed by second-order kinetics, consistent with the dimerization process.

  19. Prevalence and sunlight photolysis of controlled and chemotherapeutic drugs in aqueous environments

    International Nuclear Information System (INIS)

    Lin, Angela Yu-Chen; Lin, Yen-Ching; Lee, Wan-Ning

    2014-01-01

    This study addresses the occurrences and natural fates of chemotherapeutics and controlled drugs when found together in hospital effluents and surface waters. The results revealed the presence of 11 out of 16 drugs in hospital effluents, and the maximum detected concentrations were at the μg L −1 level in the hospital effluents and the ng L −1 level in surface waters. The highest concentrations corresponded to meperidine, morphine, 5-fluorouracil and cyclophosphamide. The sunlight photolysis of the target compounds was investigated, and the results indicated that morphine and codeine can be significantly attenuated, with half-lives of 0.27 and 2.5 h, respectively, in natural waters. Photolysis can lower the detected environmental concentrations, also lowering the estimated environmental risks of the target drugs to human health. Nevertheless, 5-fluorouracil and codeine were found to have a high risk quotient (RQ), demonstrating the high risks of directly releasing hospital wastewater into the environment. - Highlights: • High occurrence of chemotherapeutics and controlled substances in aqueous systems. • Photolysis lowers the detected concentrations of morphine and codeine. • 5-fluorouracil and codeine in hospital effluents have high risk quotients. - Chemotherapeutics and controlled drugs occur at significant levels in hospital effluents and surface waters. Natural sunlight photolysis reduces their environmental occurrence

  20. Improvement of a triple-wavelength erbium-doped fiber laser using a Fabry–Perot laser diode

    International Nuclear Information System (INIS)

    Peng, P C; Hu, H L; Wang, J B

    2013-01-01

    This work demonstrates the feasibility of a simple construct of a tunable triple-wavelength fiber ring laser using a Fabry–Perot laser diode (FP-LD) and an optical tunable bandpass filter. An optical tunable bandpass filter is used within the cavity of an erbium-doped fiber laser to select the lasing wavelength. Because the Fabry–Perot laser diode is in combination with the tunable bandpass filter, the erbium-doped fiber laser can stably lase three wavelengths simultaneously. Moreover, this laser is easily tuned dynamically. This triple-wavelength output performs satisfactorily, with its optical side-mode-suppression-ratio (SMSR) exceeding 40 dB. Furthermore, the wavelength tuning range of this triple-wavelength erbium-doped fiber laser is greater than 27 nm. (paper)

  1. A theoretical model of multielectrode DBR lasers

    DEFF Research Database (Denmark)

    Pan, Xing; Olesen, Henning; Tromborg, Bjarne

    1988-01-01

    A theoretical model for two- and three-section tunable distributed Bragg reflector (DBR) lasers is presented. The static tuning properties are studied in terms of threshold current, linewidth, oscillation frequency, and output power. Regions of continuous tuning for three-section DBR lasers...

  2. Broadband tunability of gain-flattened quantum-well semiconductor lasers with an external grating

    International Nuclear Information System (INIS)

    Mittelstein, M.; Mehuys, D.; Yariv, A.; Sarfaty, R.; Ungar, J.E.

    1989-01-01

    Semiconductor injection lasers are known to be tunable over a range of order kΒ · T. Quantum-well lasers, in particular, are shown to exhibit flattened, broadband gain spectra at a particular pumping condition. The gain requirement for a grating-tuned external cavity configuration is examined and is applied to a semiconductor quantum-well laser with an optimized length of gain region. The coupled-cavity formalism is employed to examine the conditions for continuous tuning. The possible tuning range of double-heterostructure lasers is compared to that of quantum-well lasers. The predicted broadband tunability of quantum-well lasers is confirmed experimentally by grating-tuning of uncoated lasers exceeding 120 nm, with single, longitudinal mode output power exceeding 300 mW

  3. Analysis of N-nitrosodiethylamine by ion chromatography coupled with UV photolysis pretreatment

    Directory of Open Access Journals (Sweden)

    Xueli Li

    2016-04-01

    Full Text Available Nitrosamines such as N-nitrosodiethylamine (NDEA are commonly detected by spectrophotometry after photolysis and Griess reaction (PG in food industries for lower cost. Results of this research indicate that NDEA decays rapidly under UV irradiation, and concentrations of the generated NO2− and NO3− ions vary with photolysis conditions. Thus, the measurement of the PG method may be inconsistent because it is based on the amount of photoproduced NO2−. In addition, more errors may be present in the PG method since NO3− cannot be measured colorimetrically using Griess reagent. In this work, the sum of the concentrations of photoproduced NO2− and NO3− was found to be equivalent to the initial NDEA before photolysis, and a photolysis–ion chromatography method was validated, which may serve as a feasible and accurate method to determine nitrosamines.

  4. Generation of spin waves by a train of fs-laser pulses: a novel approach for tuning magnon wavelength.

    Science.gov (United States)

    Savochkin, I V; Jäckl, M; Belotelov, V I; Akimov, I A; Kozhaev, M A; Sylgacheva, D A; Chernov, A I; Shaposhnikov, A N; Prokopov, A R; Berzhansky, V N; Yakovlev, D R; Zvezdin, A K; Bayer, M

    2017-07-18

    Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types. For further progress in this direction it is important to manipulate with the spectrum of the optically generated spin waves. Here we tackle this problem by launching spin waves by a sequence of femtosecond laser pulses with pulse interval much shorter than the relaxation time of the magnetization oscillations. This leads to the cumulative phenomenon and allows us to generate magnons in a specific narrow range of wavenumbers. The wavelength of spin waves can be tuned from 15 μm to hundreds of microns by sweeping the external magnetic field by only 10 Oe or by slight variation of the pulse repetition rate. Our findings expand the capabilities of the optical spin pump-probe technique and provide a new method for the spin wave generation and control.

  5. Pulse photolysis of NADH in the presence of cysteine

    International Nuclear Information System (INIS)

    Scheel, H.E.

    1976-01-01

    In the UV irradiation of NADH under anaerobic conditions, cysteine, which often acts as a radioprotective substance, has a sensitizing effect. With the aid of pulse photolysis, it was studied which reaction mechanisms in the presence or absence of cysteine are responsible for the damage to NADH in aqueous solution. In the absence of cysteine, the characteristic NADH absorption at 340 nm is reduced immediately after UV quanta have been absorbed by the adenine fraction of the molecules; in the presence of cysteine, a secondary reaction causes additional damage. The spectra of the intermediate products of NADH and cysteine have been recorded for different cysteine concentrations, and the reaction constants have been determined. These values suggest that the sensitizing effect is due to a reaction of NADH with radical anions produced by photolysis. (orig.) [de

  6. Single photon excimer laser photodissociation of highly vibrationally excited polyatomic molecules

    International Nuclear Information System (INIS)

    Tiee, J.J.; Wampler, F.B.; Rice, W.W.

    1980-01-01

    The ir + uv photodissociation of SF 6 has been performed using CO 2 and ArF lasers. The two-color photolysis significantly enhances the photodissociation process over ArF irradiation alone and is found to preserve the initial isotopic specificity of the ir excitation process

  7. Effect of colloids on the occurrence, distribution and photolysis of emerging organic contaminants in wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Caixia [School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, No. 99, Ziyang Road, Nanchang 330022 (China); State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); SmartState Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Columbia 29208,USA (United States); Nie, Minghua [School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, No. 99, Ziyang Road, Nanchang 330022 (China); Department of Environmental Science and Engineering, Fudan University, 220Handan Road, Shanghai 200433 (China); Yang, Yi, E-mail: yyang@geo.ecnu.edu.cn [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Key Laboratory of Geographic Information Science of the Ministry of Education, Department of Geosciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Zhou, Junliang [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Liu, Min [Key Laboratory of Geographic Information Science of the Ministry of Education, Department of Geosciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Baalousha, Mohammed; Lead, Jamie R. [SmartState Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Columbia 29208,USA (United States)

    2015-12-15

    Highlights: • Colloidal fractions in wastewaters were isolated using cross flow ultrafiltration. • EOCs exhibited a pseudo - first - order degradation kinetics in all water samples. • Photolysis of EOCs in permeate were accelerated, while inhibited in the retentates. • EOCs with higher degradation rates were detected at low level in natural water. - Abstract: The effect of colloids on the occurrence, phase distribution and photolysis of twenty-seven emerging organic contaminants (EOCs) was studied in domestic and livestock wastewaters (DW and LW), respectively. Filtered water (<1 μm) was separated into permeate (<1 kDa) and retentate (1 kDa-1 μm) by cross flow ultrafiltration. Results indicated that total concentration of EOCs ranged from 1220 ng L{sup −1} in permeate of DW to 5065 ng L{sup −1} in retentate of LW. The average EOC fraction associated with colloids was 13.5% and 14.4% in DW and LW. Most of the EOCs exhibited pseudo-first-order degradation kinetics in all water samples. Control experiments using glass and quartz reactors showed that UV light was more effective on the photolysis of most EOCs. The EOCs photolysis in the three fractions of DW and LW could be accelerated or inhibited compared to ultrapure water with the enhancement factor ranging from −0.94 to 7.33. The impact of colloids on the photolysis of EOCs depended on the compound and the source of water. The photolysis of most EOCs in permeates and filtrates was generally accelerated, while inhibited in the retentates, which could be attributed to the relatively high dissolved organic carbon contents in retentates.

  8. Photolysis of imidacloprid in aqueous solution

    International Nuclear Information System (INIS)

    Moza, P.N.; Hustert, K.; Feicht, E.; Kettrup, A.

    1998-01-01

    The photolysis of the insecticide imidacloprid in aqueous solution has been examined. Irradiation at 290 nm resulted in 90 % substrate transformation in 4 h. The degradation approximately followed first order kinetics; the rate constant is 1.6 × 10 −4 s −1 and half-life 1.2 h. 6-Chloronicotinaldehyde, N-methylnicotinacidamide, 1-(6-chloronicotinyl)imidazolidone and 6-chloro-3-pyridyl-methylethylendiamine were the main photoproducts identified by CG-MS analysis. (author)

  9. Spectral behavior of a terahertz quantum-cascade laser.

    Science.gov (United States)

    Hensley, J M; Montoya, Juan; Allen, M G; Xu, J; Mahler, L; Tredicucci, A; Beere, H E; Ritchie, D A

    2009-10-26

    In this paper, the spectral behavior of two terahertz (THz) quantum cascade lasers (QCLs) operating both pulsed and cw is characterized using a heterodyne technique. Both lasers emitting around 2.5 THz are combined onto a whisker contact Schottky diode mixer mounted in a corner cube reflector. The resulting difference frequency beatnote is recorded in both the time and frequency domain. From the frequency domain data, we measure the effective laser linewidth and the tuning rates as a function of both temperature and injection current and show that the current tuning behavior cannot be explained by temperature tuning mechanisms alone. From the time domain data, we characterize the intrapulse frequency tuning behavior, which limits the effective linewidth to approximately 5 MHz.

  10. Distributed feedback dye laser pumped with copper-vapor laser emission

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, S Yu; Soldatov, A N; Sukhanov, V B

    1983-10-01

    The power-spectrum characteristics of the emission of a distributed feedback dye laser pumped with a copper vapor laser have been studied. Laser action has been observed in five dyes over a tuning range of 530-723 nm with an efficiency of 12.4%. The specfic features of the distributed feedback dye laser operating at pulse repetition rates of 4 kHz are discussed.

  11. A low-cost, tunable laser lock without laser frequency modulation

    Science.gov (United States)

    Shea, Margaret E.; Baker, Paul M.; Gauthier, Daniel J.

    2015-05-01

    Many experiments in optical physics require laser frequency stabilization. This can be achieved by locking to an atomic reference using saturated absorption spectroscopy. Often, the laser frequency is modulated and phase sensitive detection used. This method, while well-proven and robust, relies on expensive components, can introduce an undesirable frequency modulation into the laser, and is not easily frequency tuned. Here, we report a simple locking scheme similar to those implemented previously. We modulate the atomic resonances in a saturated absorption setup with an AC magnetic field created by a single solenoid. The same coil applies a DC field that allows tuning of the lock point. We use an auto-balanced detector to make our scheme more robust against laser power fluctuations and stray magnetic fields. The coil, its driver, and the detector are home-built with simple, cheap components. Our technique is low-cost, simple to setup, tunable, introduces no laser frequency modulation, and only requires one laser. We gratefully acknowledge the financial support of the NSF through Grant # PHY-1206040.

  12. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Meusinger, Carl; Johnson, Matthew S. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joel, E-mail: jsavarino@lgge.obs.ujf-grenoble.fr [Univ. Grenoble Alpes, LGGE, F-38000 Grenoble (France); CNRS, LGGE, F-38000 Grenoble (France)

    2014-06-28

    Post-depositional processes alter nitrate concentration and nitrate isotopic composition in the top layers of snow at sites with low snow accumulation rates, such as Dome C, Antarctica. Available nitrate ice core records can provide input for studying past atmospheres and climate if such processes are understood. It has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the photolysis products have a significant influence on the local troposphere as well as on other species in the snow. Reported quantum yields for the main reaction spans orders of magnitude – apparently a result of whether nitrate is located at the air-ice interface or in the ice matrix – constituting the largest uncertainty in models of snowpack NO{sub x} emissions. Here, a laboratory study is presented that uses snow from Dome C and minimizes effects of desorption and recombination by flushing the snow during irradiation with UV light. A selection of UV filters allowed examination of the effects of the 200 and 305 nm absorption bands of nitrate. Nitrate concentration and photon flux were measured in the snow. The quantum yield for loss of nitrate was observed to decrease from 0.44 to 0.003 within what corresponds to days of UV exposure in Antarctica. The superposition of photolysis in two photochemical domains of nitrate in snow is proposed: one of photolabile nitrate, and one of buried nitrate. The difference lies in the ability of reaction products to escape the snow crystal, versus undergoing secondary (recombination) chemistry. Modeled NO{sub x} emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200 nm band was found to be ∼1%, much lower than reported for aqueous chemistry. A companion paper presents an analysis of the change in isotopic composition of snowpack nitrate based on the same samples as in this study.

  13. 3D studies of the NIF symmetry tuning targets

    Science.gov (United States)

    Milovich, J.; Jones, O.; Edwards, M.; Weber, S.; Dewald, E.; Landen, O.; Marinak, M.

    2009-11-01

    Minimizing radiation drive asymmetries is necessary for a successful ignition campaign. Since the ignition capsule symmetry is most sensitive to the foot (first 2 ns) and the peak of the laser pulse, two different targets will be fielded on the NIF: re-emit and symmetry capsules (Sym-Caps). The first measures the incoming flux asymmetries during the foot by observing the re-radiated flux of a high-Z ball in place of the ignition capsule. The Sym-Caps resemble the ignition target with the frozen DT layer replaced by an equivalent mass of ablator material, thus preserving the hydrodynamic implosion properties. By measuring the x-ray self-emission near peak compression the ignition capsule core shape can be tuned. Simulations with 2D radiation-hydrodynamic simulations codes omit 3D effects in the hohlraum such as diagnostic holes, capsule roughness, shot-to-shot variations caused by laser beam power imbalances and pointing errors. We study these effects by performing 3D simulations using HYDRA and found that tuning the laser pulse using a finite number of shots is not substantially compromised.

  14. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2016-01-01

    On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range.......On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range....

  15. Application of mid-infrared free-electron laser tuned to amide bands for dissociation of aggregate structure of protein.

    Science.gov (United States)

    Kawasaki, Takayasu; Yaji, Toyonari; Ohta, Toshiaki; Tsukiyama, Koichi

    2016-01-01

    A mid-infrared free-electron laser (FEL) is a linearly polarized, high-peak powered pulse laser with tunable wavelength within the mid-infrared absorption region. It was recently found that pathogenic amyloid fibrils could be partially dissociated to the monomer form by the irradiation of the FEL targeting the amide I band (C=O stretching vibration), amide II band (N-H bending vibration) and amide III band (C-N stretching vibration). In this study, the irradiation effect of the FEL on keratin aggregate was tested as another model to demonstrate an applicability of the FEL for dissociation of protein aggregates. Synchrotron radiation infrared microscopy analysis showed that the α-helix content in the aggregate structure decreased to almost the same level as that in the monomer state after FEL irradiation tuned to 6.06 µm (amide I band). Both irradiations at 6.51 µm (amide II band) and 8.06 µm (amide III band) also decreased the content of the aggregate but to a lesser extent than for the irradiation at the amide I band. On the contrary, the irradiation tuned to 5.6 µm (non-absorbance region) changed little the secondary structure of the aggregate. Scanning-electron microscopy observation at the submicrometer order showed that the angular solid of the aggregate was converted to non-ordered fragments by the irradiation at each amide band, while the aggregate was hardly deformed by the irradiation at 5.6 µm. These results demonstrate that the amide-specific irradiation by the FEL was effective for dissociation of the protein aggregate to the monomer form.

  16. Investigation of molecular mechanisms in photodynamic action and radiobiology with nanosecond flash photolysis and pulse radiolysis. Progress report, July 1, 1974--June 30, 1975

    International Nuclear Information System (INIS)

    Grossweiner, L.I.

    1975-01-01

    Initial mechanisms in the UV photooxidation of aromatic amino acids are being investigated with laser flash photolysis at 265 nm in connection with enzyme inactivation. Aqueous tryptophan (Trp) is photoionized by an efficient monophotonic process, followed by a hitherto unreported pseudo-first order recombination competing with bimolecular e - /sub aq/ decay and electron scavengers. Measurements of the photoionization quantum efficiency, the aromatic radical extinction coefficients, and the electron decay kinetics are reported. The flash photolysis of N-formylkynurenine (FK) has been studied in connection with its role in ''internal'' photodynamic action in bovine carbonic anhydrase (BCA). The triplet state of FK oxidizes Trp to the radical formed also by UV photolysis, leading to the FK semiquinone which reacts with oxygen to produce O 2 - . The same FK semiquinone species is formed by radiolytic reduction by e - /sub aq/ and CO 2 - . A parallel radiolysis study on BCA using radical anions as probes of specific residues has shown that the zinc atom protects against the inactivating attack of e - /sub aq/ and CO 2 - . Evidence for sensitive aromatic residues in BCA has been found with this technique. Photodynamic damage to biological membranes is being studied with spin label ESR methods. New work is reported on damage to unsaturated lipids sensitized by Eosin based on changes in the temperature-dependence of the spin label rotational correlation time. Preliminary results with diploid yeast membranes (Saccharomyces cerevisiae) show a loosening of the structure accompanying photodynamic inactivation. (U.S.)

  17. Mass-dependent and non-mass-dependent isotope effects in ozone photolysis: Resolving theory and experiments

    International Nuclear Information System (INIS)

    Cole, Amanda S.; Boering, Kristie A.

    2006-01-01

    In addition to the anomalous 17 O and 18 O isotope effects in the three-body ozone formation reaction O+O 2 +M, isotope effects in the destruction of ozone by photolysis may also play a role in determining the isotopic composition of ozone and other trace gases in the atmosphere. While previous experiments on ozone photolysis at 254 nm were interpreted as evidence for preferential loss of light ozone that is anomalous (or 'non-mass-dependent'), recent semiempirical theoretical calculations predicted a preferential loss of heavy ozone at that wavelength that is mass dependent. Through photochemical modeling results presented here, we resolve this apparent contradiction between experiment and theory. Specifically, we show that the formation of ozone during the UV photolysis experiments is not negligible, as had been assumed, and that the well-known non-mass-dependent isotope effects in ozone formation can account for the non-mass-dependent enrichment of the heavy isotopologs of ozone observed in the experiment. Thus, no unusual non-mass-dependent fractionation in ozone photolysis must be invoked to explain the experimental results. Furthermore, we show that theoretical predictions of a mass-dependent preferential loss of the heavy isotopologs of ozone during UV photolysis are not inconsistent with the experimental data, particularly if mass-dependent isotope effects in the chemical loss reactions of ozone during the photolysis experiments or experimental artifacts enrich the remaining ozone in 17 O and 18 O. Before the calculated fractionation factors can be quantitatively evaluated, however, further investigation of possible mass-dependent isotope effects in the reactions of ozone with O( 1 D), O( 3 P), O 2 ( 1 Δ), and O 2 ( 1 Σ) is needed through experiments we suggest here

  18. Photolysis of oxyfluorfen in aqueous methanol.

    Science.gov (United States)

    Chakraborty, Subhasish K; Chakraborty, Savitri; Bhattacharyya, Anjan; Chowdhury, Ashim

    2013-01-01

    Photolysis of oxyfluorfen, an herbicide of the nitrodiphenyl ether class, was studied in aqueous methanol under UV and sunlight. UV irradiation was carried out in a borosilicate glass photoreactor (containing 250 ppm oxyfluorfen in 50% aqueous methanol) equipped with a quartz filter and 125 watt mercury lamp (maximum output 254 nm) at 25 ± 1°C. Sunlight irradiation was conducted at 28 ± 1°C in borosilicate Erlenmeyer flasks containing 250 ppm oxyfluorfen in 50% aqueous methanol. The samples from both the irradiated conditions were withdrawn at a definite time interval and extracted to measure oxyfluorfen content by gas chromatography-flame ionization detector for rate study. The half-life values were 20 hours and 2.7 days under UV and sunlight exposure, respectively. Photolysis of oxyfluorfen yielded 13 photoproducts of which three were characterized by infrared spectrophotometer and (1)H NMR and (13)C NMR spectroscopy. The rest of the photoproducts were identified by gas chromatography-mass spectrometry (GC-MS) and thin layer chromatography (TLC). An ionization potential 70 eV was used for electron impact-mass spectrometry (EI-MS) and methane was used as reagent gas for chemical ionization-mass spectrometry (CI-MS). Two of the photoproducts were also synthesized for comparison. The main phototransformation pathways of oxyfluorfen involved nitro reduction, dechlorination, and hydrolysis as well as nucleophiles displacement reaction.

  19. Widely Tunable High-Power Tapered Diode Laser at 1060 nm

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Sumpf, Bernd; Erbert, Götz

    2011-01-01

    We report a large tuning range from 1018 to 1093 nm from a InGaAs single quantum-well 1060-nm external cavity tapered diode laser. More than 2.5-W output power has been achieved. The tuning range is to our knowledge the widest obtained from a high-power InGaAs single quantum-well tapered laser...... operating around 1060 nm. The light emitted by the laser has a nearly diffraction limited beam quality and a narrow linewidth of less than 6 pm everywhere in the tuning range....

  20. Impacts of cloud water droplets on the OH production rate from peroxide photolysis.

    Science.gov (United States)

    Martins-Costa, M T C; Anglada, J M; Francisco, J S; Ruiz-López, Manuel F

    2017-12-06

    Understanding the difference between observed and modeled concentrations of HO x radicals in the troposphere is a current major issue in atmospheric chemistry. It is widely believed that existing atmospheric models miss a source of such radicals and several potential new sources have been proposed. In recent years, interest has increased on the role played by cloud droplets and organic aerosols. Computer modeling of ozone photolysis, for instance, has shown that atmospheric aqueous interfaces accelerate the associated OH production rate by as much as 3-4 orders of magnitude. Since methylhydroperoxide is a main source and sink of HO x radicals, especially at low NO x concentrations, it is fundamental to assess what is the influence of clouds on its chemistry and photochemistry. In this study, computer simulations for the photolysis of methylhydroperoxide at the air-water interface have been carried out showing that the OH production rate is severely enhanced, reaching a comparable level to ozone photolysis.

  1. uv dye lasers

    International Nuclear Information System (INIS)

    Abakumov, G.A.; Fadeev, V.V.; Khokhlov, R.V.; Simonov, A.P.

    1975-01-01

    The most important property of visible dye lasers, that is, continuous wavelength tuning, stimulated the search for dyes capable to lase in uv. They were found in 1968. Now the need for tunable uv lasers for applications in spectroscopy, photochemistry, isotope separation, remote air and sea probing, etc. is clearly seen. A review of some recent advances in uv dye lasers is reviewed

  2. Degradation of Paracetamol by Photolysis Using C-N-codoped TiO2

    Directory of Open Access Journals (Sweden)

    Vanny Yulia Safitri

    2017-11-01

    Full Text Available Paracetamol is generally used as analgesic and antipyretic drugs. Contamination paracetamol in the environment can occur because of waste material disposal from production site and immediate disposal of household that cause water pollution. Paracetamol is degraded by photolysis method under irradiation 10 watt UV-light (λ=365 nm, visible-light (Philips LED 13 watt 1400 lux and solar-light with and without addition C-N-codoped TiO2catalyst. The solution is analyzed by UV-Vis spectrophotometer at λ 200-400 nm. Optimum weight of C-N-codoped TiO2 catalyst obtained is 20 mg under UV-light photolysis. Paracetamol 4 mg/L is degraded 45.48% after 120 minutes under UV-light irradiation without catalyst, and increases to be 69.31% by using 20 mg catalyst. While degradation percentage of paracetamol is 16.96 % without catalyst, the percentage increases to be 34.29% after using 20 mg catalyst for 120 minutes photolysis under visible-light. Degradation of paracetamol by solar light achieves only 12.27% in absance of catalyst for 120 minutes irradiation, but it increases significantly until 70.39% in presence of 20 mg catalyst.

  3. Unimolecular H2 elimination during the liquid phase radiolysis and photolysis of alkane - alkane mixtures

    International Nuclear Information System (INIS)

    Wojnarovits, L.; Foeldiak, G.

    1980-01-01

    Unimolecular H 2 elimination from alkanes was investigated in cyclopentane-cyclohexane, n-hexane-cyclohexane and cyclohexane-cyclooctane mixtures during fluradiolysis and 7.6 eV photolysis. During the radiolysis of all systems, and when the fluorescence shift law allowed it, during the photolysis as well, inhibited H 2 detachment was observed from the first component and sensitized hydrogen molecule elimination from the second. It has been concluded that the same excited state (the lowest singlet, S 1 ) is responsible for the H 2 elimination during radiolysis and photolysis and this is that one that gives rise to fluorescence in the experiments of other authors. The H 2 and H elimination from alkanes generally have different excited precursors. The direct population of S 1 by γ-irradiation is of limited importance and this intermediate is mainly produced in ''charge neutralization'' processes. (author)

  4. New Measurements of Methyl Ethyl Ketone (MEK) Photolysis Rates and Their Relevance to Global Oxidative Capacity

    Science.gov (United States)

    Brewer, J.; Ravishankara, A. R.; Mellouki, A.; Fischer, E. V.; Kukui, A.; Véronique, D.; Ait-helal, W.; Leglise, J.; Ren, Y.

    2017-12-01

    Methyl ethyl ketone (MEK) is one of the most abundant ketones in the atmosphere. MEK can be emitted directly into the atmosphere from both anthropogenic and natural sources, and it is also formed during the gas-phase oxidation of volatile organic compounds (VOCs). MEK is lost via reaction with OH, photolysis and deposition to the surface. Similar to the other atmospheric ketones, the photolysis of MEK may represent a source of HOx (OH + HO2) radicals in the upper troposphere. The degradation of MEK also leads to the atmospheric formation of acetaldehyde and formaldehyde. This work presents a new analysis of the temperature dependence of MEK photolysis cross-sections and a quantification of MEK photolysis rates under surface pressures using the CNRS HELIOS outdoor atmospheric chamber (Chambre de simulation atmosphérique à irradiation naturelle d'Orléans; http://www.era-orleans.org/ERA-TOOLS/helios-project.html). Additionally, we use the GEOS-Chem 3-D CTM (version 10-01, www.geos-chem.org) to investigate the impact of these newly measured rates and cross-sections on the global distribution and seasonality of MEK, as well as its importance to the tropospheric oxidative capacity.

  5. Tuning the localized surface plasmon resonance of silver nanoplatelet colloids

    International Nuclear Information System (INIS)

    Singh, Asha; Jayabalan, J; Chari, Rama; Srivastava, Himanshu; Oak, S M

    2010-01-01

    The effect of femtosecond laser irradiation on silver nanoplatelet colloids is described. It is shown that irradiation with a femtosecond laser of appropriate fluence can be used to tune the localized surface plasmon resonances of triangular silver nanoplatelets by a few tens of nanometres. This peak shift is shown to be caused by the structural modifications of the particle tips. We have also shown that post-preparation addition of poly-vinyl pyrrolidone to the nanocolloid arrests the peak shift.

  6. Tuning the localized surface plasmon resonance of silver nanoplatelet colloids

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Asha; Jayabalan, J; Chari, Rama [Laser Physics Applications Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Srivastava, Himanshu [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Oak, S M, E-mail: jjaya@rrcat.gov.i [Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore (India)

    2010-08-25

    The effect of femtosecond laser irradiation on silver nanoplatelet colloids is described. It is shown that irradiation with a femtosecond laser of appropriate fluence can be used to tune the localized surface plasmon resonances of triangular silver nanoplatelets by a few tens of nanometres. This peak shift is shown to be caused by the structural modifications of the particle tips. We have also shown that post-preparation addition of poly-vinyl pyrrolidone to the nanocolloid arrests the peak shift.

  7. Photolysis of the antidepressants amisulpride and desipramine in wastewaters: Identification of transformation products formed and their fate

    International Nuclear Information System (INIS)

    Gros, Meritxell; Williams, Mike; Llorca, Marta; Rodriguez-Mozaz, Sara; Barceló, Damià; Kookana, Rai S.

    2015-01-01

    Attenuation of pharmaceuticals due to natural sunlight is expected to be an important removal pathway in wastewater treatment plants using treatment lagoon systems. In this work, the photolysis of two antidepressants, amisulpride and desipramine, has been investigated in both ultrapure water and wastewater under simulated solar irradiation. Results showed that for amisulpride short irradiation times (t 1/2 approximately 3 h in pure water and 4 h in wastewater) were adequate to degrade the parent compound while a longer exposure period was required for desipramine (t 1/2 of approximately 36 h in pure water), although its degradation is enhanced almost three times by indirect photolysis in wastewaters. A significant number of transformation products (TPs) were identified for both pharmaceuticals by high-resolution mass spectrometry. In general, TPs formed are not persistent although acute toxicity tests for desipramine and its TPs showed an increase of the mixture toxicity after solar irradiation, suggesting that some TPs may be more toxic than the parent compound. In wastewaters collected from treatment lagoons, only amisulpride and one of its major TPs, TP 357, were detected. This indicates that long solar exposure times may be necessary for an effective elimination of these substances in lagoon systems or that photolysis may not be the main removal pathway for these particular compounds. - Highlights: • Photolysis of both compounds resulted in several transformation products, some of which were previously unknown. • Short irradiation times may be adequate to degrade amisulpride whereas a longer exposure is required for desipramine. • Transformation of desipramine was enhanced by about three times due to indirect photolysis in wastewaters. • For desipramine, mixture acute toxicity increased after solar irradiation. • Photolysis is unlikely to be the main removal pathway for the two antidepressants during wastewater treatment

  8. Photolysis of the antidepressants amisulpride and desipramine in wastewaters: Identification of transformation products formed and their fate

    Energy Technology Data Exchange (ETDEWEB)

    Gros, Meritxell [Commonwealth Scientific and Industrial Research Organization (CSIRO), Land and Water Flagship, Waite Campus, Urrbrae, 5064 Adelaide, SA (Australia); Swedish University of Agricultural Sciences (SLU), Department of Aquatic Sciences and Assessment, Lennart Hjelms väg 9, 75007 Uppsala (Sweden); Williams, Mike, E-mail: Mike.Williams@csiro.au [Commonwealth Scientific and Industrial Research Organization (CSIRO), Land and Water Flagship, Waite Campus, Urrbrae, 5064 Adelaide, SA (Australia); Llorca, Marta; Rodriguez-Mozaz, Sara [Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, C/Emili Grahit, 101 Girona (Spain); Barceló, Damià [Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, C/Emili Grahit, 101 Girona (Spain); Water and Soil Quality Research Group, Department of Environmental IDAEA-CSIC, Jordi Girona 18-26, E-08034 Barcelona (Spain); Kookana, Rai S. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Land and Water Flagship, Waite Campus, Urrbrae, 5064 Adelaide, SA (Australia)

    2015-10-15

    Attenuation of pharmaceuticals due to natural sunlight is expected to be an important removal pathway in wastewater treatment plants using treatment lagoon systems. In this work, the photolysis of two antidepressants, amisulpride and desipramine, has been investigated in both ultrapure water and wastewater under simulated solar irradiation. Results showed that for amisulpride short irradiation times (t{sub 1/2} approximately 3 h in pure water and 4 h in wastewater) were adequate to degrade the parent compound while a longer exposure period was required for desipramine (t{sub 1/2} of approximately 36 h in pure water), although its degradation is enhanced almost three times by indirect photolysis in wastewaters. A significant number of transformation products (TPs) were identified for both pharmaceuticals by high-resolution mass spectrometry. In general, TPs formed are not persistent although acute toxicity tests for desipramine and its TPs showed an increase of the mixture toxicity after solar irradiation, suggesting that some TPs may be more toxic than the parent compound. In wastewaters collected from treatment lagoons, only amisulpride and one of its major TPs, TP 357, were detected. This indicates that long solar exposure times may be necessary for an effective elimination of these substances in lagoon systems or that photolysis may not be the main removal pathway for these particular compounds. - Highlights: • Photolysis of both compounds resulted in several transformation products, some of which were previously unknown. • Short irradiation times may be adequate to degrade amisulpride whereas a longer exposure is required for desipramine. • Transformation of desipramine was enhanced by about three times due to indirect photolysis in wastewaters. • For desipramine, mixture acute toxicity increased after solar irradiation. • Photolysis is unlikely to be the main removal pathway for the two antidepressants during wastewater treatment.

  9. Photolysis of 2,4,6-trinitrotoluene in seawater and estuary water: Impact of pH, temperature, salinity, and dissolved organic matter

    International Nuclear Information System (INIS)

    Luning Prak, Dianne J.; Breuer, James E.T.; Rios, Evelyn A.; Jedlicka, Erin E.; O'Sullivan, Daniel W.

    2017-01-01

    The influence of salinity, pH, temperature, and dissolved organic matter on the photolysis rate of 2,4,6-trinitrotoluene (TNT) in marine, estuary, and laboratory-prepared waters was studied using a Suntest CPS +® solar simulator equipped with optical filters. TNT degradation rates were determined using HPLC analysis, and products were identified using LC/MS. Minimal or no TNT photolysis occurred under a 395-nm long pass filter, but under a 295-nm filter, first-order TNT degradation rate constants and apparent quantum yields increased with increasing salinity in both natural and artificial seawater. TNT rate constants increased slightly with increasing temperature (10 to 32 °C) but did not change significantly with pH (6.4 to 8.1). The addition of dissolved organic matter (up to 5 mg/L) to ultrapure water, artificial seawater, and natural seawater increased the TNT photolysis rate constant. Products formed by TNT photolysis in natural seawater were determined to be 2,4,6-trinitrobenzaldehyde, 1,3,5-trinitrobenzene, 2,4,6-trinitrobenzoic acid, and 2-amino-4,6-dinitrobenzoic acid. - Highlights: • 2,4,6-trinitrotoluene (TNT) was photolyzed in marine, estuary, & laboratory waters. • TNT photolysis rates increased with increasing salinity & dissolved organic matter. • Temperature and pH had minimal impact on TNT photolysis in marine waters. • In seawater, TNT photolysis produced 1,3,5-trinitrobenzene & trinitrobenzaldehyde. • Polar products were 2,4,6-trinobenzoic acid & 2-amino-4,6-dinitrobenzoic acid.

  10. Computer control of pulsed tunable dye lasers

    International Nuclear Information System (INIS)

    Thattey, S.S.; Dongare, A.S.; Suri, B.M.; Nair, L.G.

    1992-01-01

    Pulsed tunable dye lasers are being used extensively for spectroscopic and photo-chemical experiments, and a system for acquisition and spectral analysis of a volume of data generated will be quite useful. The development of a system for wavelength tuning and control of tunable dye lasers and an acquisition system for spectral data generated in experiments with these lasers are described. With this system, it is possible to control the tuning of three lasers, and acquire data in four channels, simultaneously. It is possible to arrive at the desired dye laser wavelength with a reproducibility of ± 0.012 cm -1 , which is within the absorption width (atomic interaction) caused by pulsed dye lasers of linewidth 0.08 cm -1 . The spectroscopic data generated can be analyzed for spectral identification within absolute accuracy ± 0.012 cm -1 . (author). 6 refs., 11 figs

  11. Synthesis of silver nanoparticles by radiolysis, photolysis and chemical reduction of AgNO3 in Hibiscus sabdariffa infusion (karkade)

    International Nuclear Information System (INIS)

    Cataldo, Franco; Ursini, Ornella; Angelini, Giancarlo

    2016-01-01

    Silver nanoparticles of different average diameters were synthesized by γ-radiolysis, UV-photolysis and chemical reduction of AgNO 3 solutions in Hibiscus sabdariffa infusion commonly known as 'karkade'. The UV-photolysis was performed either by using a conventional Hg low pressure lamp emitting at 254 nm and also by using a new compact UV-LED source emitting at 360 nm. The kinetics rate constant of silver nanoparticles synthesis produced by γ-radiolysis and UV photolysis were determined and the average diameter of the resulting nanoparticles was estimated. (author)

  12. Solar photolysis of ozone to singlet D oxygen atoms, O(1D)

    International Nuclear Information System (INIS)

    Blackburn, T.E.

    1984-01-01

    Ground level solar photolysis rate coefficients (jO 3 ) were measured for the photolysis of ozone by sunlight, (O 3 + hnu( 2 + O( 1 D)). The O( 1 D) atoms produced react with nitrous oxide (N 2 O) carrier gas to form higher oxides of nitrogen (NOx). Computer model predictions show that these are mainly N 2 O 5 and NO 3 . Seventy five days of data were taken during the summer of 1983, at Ann Arbor, Michigan, and are presented in the appendix. Over 390 clear air jO 3 values are correlated with effective ozone column densities, and 500 nm aerosol optical depths. The solar direct beam component of ozone photolysis was measured for the different aerosol optical depths, over two entire days from sun-up to sun-down. Temperature dependence of jO 3 was measured from 10 0 C to 39 0 C with good agreement to models. Comparison of jO 3 versus global and ultraviolet radiation are made under various ozone column densities and aerosol optical depths. A jO 3 -photometer was built using an interference filter to pass only ozone photolyzing light. Improvements to instrumental parts are shown for balloon and aircraft flyable payloads

  13. Photolysis of 5-bromouracil and some related compounds in solution. Pt. 6

    International Nuclear Information System (INIS)

    Campbell, J.M.; Sonntag, C. von; Schulte-Frohlinde, D.

    1974-01-01

    The steady state photolysis of 5-bromouracil (BU) in aqueous solution has been studied as a function of wavelength, pH, temperature, and hydrogen-donor concentration. Under all conditions studied, the primary reaction is shown to be C-Br bond cleavage followed by abstraction from the hydrogen-donor to give uracil and HBr. At pH > 12 further products are formed. In deoxygenated aqueous solution at pH 6, 20 0 C, and 254 nm, the quantum yield of BU consumption, PHI (-BU), is 1.8 x 10 -3 independent of hydrogen-donor type or concentration (e.g. 3 x 10 -2 to 2 m MeOH). With increasing pH, PHI (-BU) increases stepwise to 0.012 at pH 10 and to 0.28 at pH 14. pK-values calculated from these data are the same as ground state pK values. The results have been explained in terms of a homolytic dissociation of the C-Br bond of the excited BU followed by recombination or H atom abstraction by the radicals. At high hydrogen-donor concentration H atom abstraction can compete with cage recombination. A comparison has been made between BU photolysis in organic, hydrogen-donor solvents and BU photolysis within the DNA of bacteria or phages. (orig./HK) [de

  14. Laser Photolytic Approach to Cu/polymer Sols and Cu/polymer Nanocomposites with Amorphous Cu Phase.

    Czech Academy of Sciences Publication Activity Database

    Pola, Josef; Ouchi, A.; Bakardjieva, Snejana; Urbanová, Markéta; Boháček, Jaroslav; Šubrt, Jan

    2007-01-01

    Roč. 192, 2-3 (2007) , s. 84-92 ISSN 1010-6030 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40320502 Keywords : Cu-polymer nanocomposite * laser solution photolysis * amorphous Cu phase Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 1.911, year: 2007

  15. ArF Laser -Induced Chemical Vapour Deposition of Polythiene Films from Carbon Disulfide

    Czech Academy of Sciences Publication Activity Database

    Tomovska, R.; Bastl, Zdeněk; Vorlíček, Vladimír; Vacek, Karel; Šubrt, Jan; Plzák, Zbyněk; Pola, Josef

    2003-01-01

    Roč. 107, č. 36 (2003), s. 9793-9801 ISSN 1089-5647 R&D Projects: GA MŠk ME 612 Institutional research plan: CEZ:AV0Z4032918; CEZ:AV0Z4040901 Keywords : laser photolysis * ArF * chemical vapour deposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.679, year: 2003

  16. Development of a Laser Induced Fluorescence (LIF) System with a Tunable Diode Laser

    International Nuclear Information System (INIS)

    Woo, Hyun Jong; Do, Jeong Jun; You, Hyun Jong; Choi, Geun Sik; Lee, Myoung Jae; Chung, Kyu Sun

    2005-01-01

    The Laser Induced Fluorescence (LIF) is known as one of the most powerful techniques for measurements of ion velocity distribution function (IVDF) and ion temperature by means of Doppler broadening and Doppler shift. The dye lasers are generally used for LIF system with 611.66 nm (in vac.) for Ar ion, the low power diode laser was also proposed by Severn et al with the wavelength of 664.55 nm and 668.61 nm (in vac.) for Ar ion. Although the diode laser has the disadvantages of low power and small tuning range, it can be used for LIF system at the low temperature plasmas. A tunable diode laser with 668.614 nm of center wavelength and 10 GHz mode hop free tuning region has been used for our LIF system and it can be measured the ion temperature is up to 1 eV. The ion temperature and velocity distribution function have been measured with LaB6 plasma source, which is about 0.23 eV with Ar gas and 2.2 mTorr working pressure

  17. Tunable high-power narrow-linewidth green external-cavity GaN diode laser

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    A tunable high-power green external-cavity diode laser is demonstrated. Up to 290 mW output power and a 9.2 nm tuning is achieve. This constitutes the highest output power from a tunable green diode laser system.......A tunable high-power green external-cavity diode laser is demonstrated. Up to 290 mW output power and a 9.2 nm tuning is achieve. This constitutes the highest output power from a tunable green diode laser system....

  18. Solvent effects on the photochemistry of dimethyl sulfoxide-Cl complexes studied by combined pulse radiolysis and laser flash photolysis

    International Nuclear Information System (INIS)

    Sumiyoshi, Takashi; Minegishi, Hideki; Fujiyoshi, Ryoko; Sawamura, Sadashi

    2006-01-01

    Photolysis of complexes of dimethyl sulfoxide (DMSO) with chlorine atoms results in rapid and permanent photobleaching which may be due to intramolecular hydrogen abstraction. The effects of solvent polarity were examined in a wide variety of DMSO-carbon tetrachloride mixed solvents. The quantum yields of photobleaching decreased from 0.27 to 0.08 as the solvent polarity increased, while significant changes were observed in the low DMSO concentration range ( -3 ). This cannot be accounted for by simple solvent polarity effects. The effects of polar and nonpolar additives were also examined and it is concluded that the specific solvation effect of DMSO was the main cause of the significant change in quantum yields in the low concentration range of DMSO

  19. The argon excimer laser

    International Nuclear Information System (INIS)

    Wrobel, W.G.

    1981-02-01

    The electron-beam-pumped argon eximer laser is investigated and tuned for the first time. The electron beam is generated by means of an improved coaxial field emmision diode in which argon gas is excited with power densities of 0.3 GW/cm 3 for 18 ns. The processes in the excited gas of 20 to 65 bar are described in the context of a kinetic model as a sequence of stationary states. Investigations of the amplified spontaneous emission (superfluorescence) confirm the predictions of this model. Only the absorption due to the excited Ar atoms is anomalously high. Reproducible operation of the argon eximer laser was achieved in a wide pressure range with various resonator arrangements. The wavelength of this shortest wavelength of this shortest wavelength excimer laser is 126 nm, the laser line width approx. 1.7 nm, the pulse length 7 to 13 ns, and the laser power 250 kW. The laser emission is tuned from 123.2 nm to 128.4 nm by two different methods (diffraction grating and prism). This tunable laser is thus the one with the shortest wavelength at present. Its line width is 0.25 to 0.4 nm, and the power ue 1.7 kW. (orig.)

  20. Laser-induced chemical liquid deposition of discontinuous and continuous copper films

    Czech Academy of Sciences Publication Activity Database

    Ouchi, A.; Bastl, Zdeněk; Boháček, Jaroslav; Šubrt, Jan; Pola, Josef

    2007-01-01

    Roč. 201, č. 8 (2007), s. 4728-4733 ISSN 0257-8972 R&D Projects: GA AV ČR 1ET400400413 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502; CEZ:AV0Z40720504 Keywords : copper films * laser photolysis * Cu(II) acetylacetonate * chemical liquid deposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.678, year: 2007

  1. Room-temperature reaction of laser-photolytically generated Te nanosols with silver

    Czech Academy of Sciences Publication Activity Database

    Ouchi, A.; Bastl, Zdeněk; Boháček, Jaroslav; Šubrt, Jan; Bakardjieva, Snejana; Bezdička, Petr; Pola, Josef

    2008-01-01

    Roč. 200, 2-3 (2008), s. 187-191 ISSN 1010-6030 R&D Projects: GA AV ČR 1ET400400413 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502; CEZ:AV0Z40720504 Keywords : laser photolysis * diphenyl ditelluride * chemical liquid deposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.362, year: 2008

  2. Absolute absorption cross-section and photolysis rate of I2

    Directory of Open Access Journals (Sweden)

    A. Saiz-Lopez

    2004-01-01

    Full Text Available Following recent observations of molecular iodine (I2 in the coastal marine boundary layer (MBL (Saiz-Lopez and Plane, 2004, it has become important to determine the absolute absorption cross-section of I2 at reasonably high resolution, and also to evaluate the rate of photolysis of the molecule in the lower atmosphere. The absolute absorption cross-section (σ of gaseous I2 at room temperature and pressure (295K, 760Torr was therefore measured between 182 and 750nm using a Fourier Transform spectrometer at a resolution of 4cm-1 (0.1nm at λ=500nm. The maximum absorption cross-section in the visible region was observed at λ=533.0nm to be σ=(4.24±0.50x10-18cm2molecule-1. The spectrum is available as supplementary material accompanying this paper. The photo-dissociation rate constant (J of gaseous I2 was also measured directly in a solar simulator, yielding J(I2=0.12±0.03s-1 for the lower troposphere. This is in excellent agreement with the value of 0.12±0.015s-1 calculated using the measured absorption cross-section, terrestrial solar flux for clear sky conditions and assuming a photo-dissociation yield of unity. A two-stream radiation transfer model was then used to determine the variation in photolysis rate with solar zenith angle (SZA, from which an analytic expression is derived for use in atmospheric models. Photolysis appears to be the dominant loss process for I2 during daytime, and hence an important source of iodine atoms in the lower atmosphere.

  3. Photodegradation of dimethyl sulfide (DMS) in natural waters: laboratory assessment of the nitrate-photolysis-induced DMS oxidation.

    Science.gov (United States)

    Bouillon, René-Christian; Miller, William L

    2005-12-15

    The interaction of sunlight and dissolved chromophoric matter produces reactive chemical species that are significant in the removal of dimethyl sulfide (DMS) in the surface ocean. Using artificial solar radiation, we examined the role of several inorganic components of seawater on the kinetics of NO3- -photolysis-induced DMS removal in aqueous solution. This study strongly suggests that NO3- photolysis products react significantly with DMS in aqueous solution possibly via an electrophilic attack on the electron-rich sulfur atom. This supports previous field observations that indicate that NO3- photolysis has a substantial control on DMS photochemistry in nutrient-rich waters. A key finding of this research is that the oxidation rate of DMS induced by NO3- photolysis is dramatically enhanced in the presence of bromide ion. Moreover, our results suggest that bicarbonate/carbonate ions are involved in free radical production/scavenging processes important for DMS photochemistry. These reactions are pH dependent. We propose that DMS removal by some selective free radicals derived from bromide and bicarbonate/carbonate ion oxidation is a potentially important and previously unrecognized pathway for DMS photodegradation in marine waters.

  4. Elucidating Direct Photolysis Mechanisms of Different Dissociation Species of Norfloxacin in Water and Mg2+ Effects by Quantum Chemical Calculations.

    Science.gov (United States)

    Wang, Se; Wang, Zhuang

    2017-11-11

    The study of pollution due to combined antibiotics and metals is urgently needed. Photochemical processes are an important transformation pathway for antibiotics in the environment. The mechanisms underlying the effects of metal-ion complexation on the aquatic photochemical transformation of antibiotics in different dissociation forms are crucial problems in science, and beg solutions. Herein, we investigated the mechanisms of direct photolysis of norfloxacin (NOR) in different dissociation forms in water and metal ion Mg 2+ effects using quantum chemical calculations. Results show that different dissociation forms of NOR had different maximum electronic absorbance wavelengths (NOR 2+ direct photolysis pathways were de-ethylation (N7-C8 bond cleavage) and decarboxylation (C2-C5 bond cleavage). Furthermore, the presence of Mg 2+ changed the order of the wavelength at maximum electronic absorbance (NOR⁺-Mg 2+ direct photolysis of NOR⁰, NOR⁺, and NOR 2+ . The calculated TS results indicated that the presence of Mg 2+ increased E a for most direct photolysis pathways of NOR, while it decreased E a for some direct photolysis pathways such as the loss of the piperazine ring and the damage of the piperazine ring of NOR⁰ and the defluorination of NOR⁺.

  5. Iron-Doped Zinc Selenide: Spectroscopy and Laser Development

    Science.gov (United States)

    2014-03-27

    pulsed and CW platforms have been continuously tuned across the whole gain bandwidth of Cr:ZnSe using dispersive tuning elements [9, 13, 14]. Lasers...induced fluorescence studies of the upper state manifold of Fe:ZnSe. 3.2 Laser-Induced Fluorescence Spectroscoscopy of Fe:ZnSe A Cryo Industries of...that temperature was recorded to provide a basis for calculation of the spectral distribution of gain. The recorded spectrum was black- body

  6. Ignition tuning for the National Ignition Campaign

    OpenAIRE

    Landen O.; Edwards J.; Haan S.W.; Lindl J.D.; Boehly T.R.; Bradley D.K.; Callahan D.A.; Celliers P.M.; Dewald E.L.; Dixit S.; Doeppner T.; Eggert J.; Farley D.; Frenje J.A.; Glenn S.

    2013-01-01

    The overall goal of the indirect-drive inertial confinement fusion [1] tuning campaigns [2] is to maximize the probability of ignition by experimentally correcting for likely residual uncertainties in the implosion and hohlraum physics [3] used in our radiation-hydrodynamic computational models, and by checking for and resolving unexpected shot-to-shot variability in performance [4]. This has been started successfully using a variety of surrogate capsules that set key laser, hohlraum and caps...

  7. A Moessbauer study on the photolysis of potassium trisoxalatoferrate(III) in solid and solutions

    International Nuclear Information System (INIS)

    Sato, H.; Tominaga, T.

    1977-01-01

    The photolysis of potassium trisoxalatoferrate(III) in solid and aqueous solutions was studied by Moessbauer spectroscopy. A ferrous species was mainly detected as an intermediate product in the photoirradiated solutions. A tentative mechanism was proposed for the overall reactions in and after the photolysis of this compound. The Moessbauer spectra were measured with a Hitachi AA-40 or Shimadzu MEG-2 Moessbauer spectrometer against Co-57 in copper foil. Acrylic holders (32 mm in diameter) were used for measurements of solutions: the irradiated solution was quickly frozen before measurement by adding it dropwise into the acrylic holder which had been cooled with liquid nitrogen or dry-ice. (T.I.)

  8. Three Dimensional Speckle Imaging Employing a Frequency-Locked Tunable Diode Laser

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Bret D.; Bernacki, Bruce E.; Schiffern, John T.; Mendoza, Albert

    2015-09-01

    We describe a high accuracy frequency stepping method for a tunable diode laser to improve a three dimensional (3D) imaging approach based upon interferometric speckle imaging. The approach, modeled after Takeda, exploits tuning an illumination laser in frequency as speckle interferograms of the object (specklegrams) are acquired at each frequency in a Michelson interferometer. The resulting 3D hypercube of specklegrams encode spatial information in the x-y plane of each image with laser tuning arrayed along its z-axis. We present laboratory data of before and after results showing enhanced 3D imaging resulting from precise laser frequency control.

  9. Red and orange laser operation of Pr:KYF4 pumped by a Nd:YAG/LBO laser at 469.1 nm and a InGaN laser diode at 444 nm.

    Science.gov (United States)

    Xu, B; Starecki, F; Pabœuf, D; Camy, P; Doualan, J L; Cai, Z P; Braud, A; Moncorgé, R; Goldner, Ph; Bretenaker, F

    2013-03-11

    We report the basic luminescence properties and the continuous-wave (CW) laser operation of a Pr(3+)-doped KYF(4) single crystal in the Red and Orange spectral regions by using a new pumping scheme. The pump source is an especially developed, compact, slightly tunable and intra-cavity frequency-doubled diode-pumped Nd:YAG laser delivering a CW output power up to about 1.4 W around 469.1 nm. At this pump wavelength, red and orange laser emissions are obtained at about 642.3 and 605.5 nm, with maximum output powers of 11.3 and 1 mW and associated slope efficiencies of 9.3% and 3.4%, with respect to absorbed pump powers, respectively. For comparison, the Pr:KYF(4) crystal is also pumped by a InGaN blue laser diode operating around 444 nm. In this case, the same red and orange lasers are obtained, but with maximum output powers of 7.8 and 2 mW and the associated slope efficiencies of 7 and 5.8%, respectively. Wavelength tuning for the two lasers is demonstrated by slightly tilting the crystal. Orange laser operation and laser wavelength tuning are reported for the first time.

  10. Injection Seeded Laser for Formaldehyde Differential Fluorescence Lidar

    Directory of Open Access Journals (Sweden)

    Schwemmer G.

    2016-01-01

    Full Text Available We describe the design and development of an injection seeded Nd:YVO4 laser for use in a differential fluorescence lidar for measuring atmospheric formaldehyde profiles. A high repetition rate Q-switched laser is modified to accept injection seed input to spectrally narrow and tune the output. The third harmonic output is used to excite formaldehyde (HCHO fluorescence when tuned to a HCHO absorption line. Spectral confirmation is made with the use of a photoacoustic cell and grating spectrometer.

  11. Single-mode solid-state polymer dye laser fabricated with standard I-line UV lithography

    DEFF Research Database (Denmark)

    Balslev, Søren; Mironov, Andrej; Nilsson, Daniel

    2005-01-01

    We present single-mode solid-state polymer dye lasers fabricated with standard UV lithography. The lasers use a high-order Bragg grating and rely on index-tuning of a photosensitive polymer for waveguiding. The gain medium is Rhodamine 6G.......We present single-mode solid-state polymer dye lasers fabricated with standard UV lithography. The lasers use a high-order Bragg grating and rely on index-tuning of a photosensitive polymer for waveguiding. The gain medium is Rhodamine 6G....

  12. Spin-trapping and ESR studies of the direct photolysis of aromatic amino acids, dipeptides, tripeptides and polypeptides in aqueous solutions-II. Tyrosine and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lion, Y; Kuwabara, M; Riesz, P [National Cancer Inst., Bethesda, MD (USA)

    1982-01-01

    The UV-photolysis of peptides containing tyrosine (Tyr) was investigated in aqueous solutions at room temperature at 220 and 265 nm. The short-lived free radicals formed during photolysis were spin-trapped by t-nitrosobutane and identified by electron spin resonance. For N-acetyl-and N-formyl-L-Tyr and for peptides containing L-Tyr as the middle residue, photolysis at 265 nm under neutral conditions produced mainly spin-adducts due to the scission between the alpha carbon and the methylene group attached to the aromatic ring, while at 220 nm decarboxylation radicals were spin-trapped. Photolysis of di- and tripeptides at 275 nm in alkaline solutions predominantly generated deamination radicals. The radicals produced in the photolysis of the oxidized A chain of insulin were tentatively characterized by comparison with the results for di- and tripeptides.

  13. Tunable, diode side-pumped Er:YAG laser

    Science.gov (United States)

    Hamilton, C.E.; Furu, L.H.

    1997-04-22

    A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 {micro}m, and is tunable over a 6 nm range near about 2.936 {micro}m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 {micro}m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 {micro}m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems. 4 figs.

  14. Cooperative effect of ultraviolet and near-infrared beams in laser-induced condensation

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, M.; Henin, S.; Pomel, F.; Kasparian, J.; Wolf, J.-P. [Université de Genève, GAP-Biophotonics, Chemin de Pinchat 22, 1211 Geneva 4 (Switzerland); Théberge, F.; Daigle, J.-F. [Defence R and D Canada Valcartier, 2459 de la Bravoure Blvd., Quebec (Qc) G3J 1X5 (Canada); Lassonde, P.; Kieffer, J.-C. [INRS-EMT, 1650 Lionel Boulet Blvd., Varennes, Quebec (Qc) J3X1S2 (Canada)

    2013-12-23

    We demonstrate the cooperative effect of near infrared (NIR) and ultraviolet (UV) beams on laser-induced condensation. Launching a UV laser after a NIR pulse yields up to a 5-fold increase in the production of nanoparticles (25–300 nm) as compared to a single NIR beam. This cooperative effect exceeds the sum of those from the individual beams and occurs for delays up to 1 μs. We attribute it to the UV photolysis of ozone created by the NIR pulses. The resulting OH radicals oxidize NO{sub 2} and volatile organic compounds, producing condensable species.

  15. Tunable excimer lasers

    International Nuclear Information System (INIS)

    Sze, R.C.

    1990-01-01

    The wide bandwidth nature of the rare-gas halide excimer transitions allow reasonable tuning of the laser oscillation wavelength that makes it useful for a number of applications. At the same time this wide bandwidth makes narrow band operation difficult and special techniques are needed to insure narrow frequency lasing as well as absolute frequency resettability. The author discusses briefly some of the classical frequency narrowing techniques and then goes on to some recent work that require lasers of special frequency characteristics for special applications including KrF laser fusion

  16. A method of measuring micro-impulse with torsion pendulum based on multi-beam laser heterodyne

    Science.gov (United States)

    Li, Yan-Chao; Wang, Chun-Hui

    2012-02-01

    In this paper, we propose a novel method of multi-beam laser heterodyne measurement for micro-impulse. The measurement of the micro-impulse, which is converted into the measurement of the small tuning angle of the torsion pendulum, is realized by considering the interaction between pulse laser and working medium. Based on Doppler effect and heterodyne technology, the information regarding the small tuning angle is loaded to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, thereby obtaining many values of the small tuning angle after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, the small tuning angle can be obtained accurately and the value of the micro-impulse can eventually be calculated. Using Polyvinylchlorid+2%C as a working medium, this novel method is used to simulate the value of the micro-impulse by MATLAB which is generated by considering the interaction between the pulse laser and the working medium, the obtained result shows that the relative error of this method is just 0.5%.

  17. A method of measuring micro-impulse with torsion pendulum based on multi-beam laser heterodyne

    International Nuclear Information System (INIS)

    Li Yan-Chao; Wang Chun-Hui

    2012-01-01

    In this paper, we propose a novel method of multi-beam laser heterodyne measurement for micro-impulse. The measurement of the micro-impulse, which is converted into the measurement of the small tuning angle of the torsion pendulum, is realized by considering the interaction between pulse laser and working medium. Based on Doppler effect and heterodyne technology, the information regarding the small tuning angle is loaded to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, thereby obtaining many values of the small tuning angle after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, the small tuning angle can be obtained accurately and the value of the micro-impulse can eventually be calculated. Using Polyvinylchlorid+2%C as a working medium, this novel method is used to simulate the value of the micro-impulse by MATLAB which is generated by considering the interaction between the pulse laser and the working medium, the obtained result shows that the relative error of this method is just 0.5%. (general)

  18. A thermal lensing study of a photolysis of di- t-butyl peroxide

    Science.gov (United States)

    Fuke, K.; Hasegawa, A.; Ueda, M.; Itoh, M.

    1981-11-01

    A photolysis of di- t-butyl peroxide (BOOB) was studied by using a thermal lensing technique. This technique is found to be applicable to the determination Of the rate Constants of the decay of t-butoxy radical (BO ) and the hydrogen abstraction reaction.

  19. Development of pulsed UV lasers and their application in laser spectroscopy

    International Nuclear Information System (INIS)

    De la Rosa, M I; Perez, C; Gruetzmacher, K; GarcIa, D; Bustillo, A

    2011-01-01

    The application of two-photon laser spectroscopy to plasma diagnostics requires tuneable UV-laser spectrometers providing: some mJ pulse energy at ns time scale with spectral quality close to Fourier Transform Limit, good pulse to pulse reproducibility and tuning linearity. We report about two different systems, a first laser specially optimized for the radiation at 243 nm, which is required for the 1S-2S two photon transition of atomic hydrogen, and a second one generating 205 nm suited for the transition 1S - 3S/3D.

  20. UV Laser Deposition of Nanostructured Si/C/O/N/H Precursor to Silicon Oxycarbonitride

    Czech Academy of Sciences Publication Activity Database

    Pola, Josef; Galíková, Anna; Bastl, Zdeněk; Šubrt, Jan; Vacek, Karel; Brus, Jiří; Ouchi, A.

    2006-01-01

    Roč. 20, č. 10 (2006), s. 648-655 ISSN 0268-2605 R&D Projects: GA MŠk(CZ) ME 684 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40320502; CEZ:AV0Z40400503; CEZ:AV0Z40500505 Keywords : laser photolysis * silicon oxycarbonitride * chemical vapor deposition Subject RIV: CA - Inorganic Chemistry Impact factor: 1.233, year: 2006

  1. Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance

    Directory of Open Access Journals (Sweden)

    E. J. Steig

    2014-08-01

    Full Text Available High-precision analysis of the 17O / 16O isotope ratio in water and water vapor is of interest in hydrological, paleoclimate, and atmospheric science applications. Of specific interest is the parameter 17O excess (Δ17O, a measure of the deviation from a~linear relationship between 17O / 16O and 18O / 16O ratios. Conventional analyses of Δ17O of water are obtained by fluorination of H2O to O2 that is analyzed by dual-inlet isotope ratio mass spectrometry (IRMS. We describe a new laser spectroscopy instrument for high-precision Δ17O measurements. The new instrument uses cavity ring-down spectroscopy (CRDS with laser-current-tuned cavity resonance to achieve reduced measurement drift compared with previous-generation instruments. Liquid water and water-vapor samples can be analyzed with a better than 8 per meg precision for Δ17O using integration times of less than 30 min. Calibration with respect to accepted water standards demonstrates that both the precision and the accuracy of Δ17O are competitive with conventional IRMS methods. The new instrument also achieves simultaneous analysis of δ18O, Δ17O and δD with precision of < 0.03‰, < 0.02 and < 0.2‰, respectively, based on repeated calibrated measurements.

  2. Tunable single and dual mode operation of an external cavity quantum-dot injection laser

    International Nuclear Information System (INIS)

    Biebersdorf, A; Lingk, C; De Giorgi, M; Feldmann, J; Sacher, J; Arzberger, M; Ulbrich, C; Boehm, G; Amann, M-C; Abstreiter, G

    2003-01-01

    We investigate quantum-dot (QD) lasers in an external cavity using Littrow and Littman configurations. Here, we report on a continuously tunable QD laser with a broad tuning range from 1047 to 1130 nm with high stability and efficient side mode suppression. The full-width at half-maximum of the laser line is 0.85 nm determined mainly by the quality of the external grating. This laser can be operated in a dual-mode modus, where the mode-spacing can be tuned continuously between 1.1 and 34 nm. Simultaneous emission of the two laser modes is shown by sum frequency generation experiments

  3. O2(a1Δ) vibrational kinetics in oxygen-iodine laser

    Science.gov (United States)

    Torbin, A. P.; Pershin, A. A.; Heaven, M. C.; Azyazov, V. N.; Mebel, A. M.

    2018-04-01

    Kinetics of vibrationally-excited singlet oxygen O2(a1Δ,ν) in gas mixture O3/N2/CO2 was studied using a pulse laser technique. Molecules O2(a1Δ,ν) were produced by laser photolysis of ozone at 266 nm. The O3 molecules number density was followed using time-resolved absorption spectroscopy. It was found that an upper bound for the rate constant of chemical reaction O2(a1Δ,ν)+ O3 is about 10-15 cm3/s. The rate constants of O2(a1Δ,ν= 1, 2 and 3) quenching by CO2 are presented.

  4. Widely tunable Sampled Grating Distributed Bragg Reflector Quantum Cascade laser for gas spectroscopy applications

    Science.gov (United States)

    Diba, Abdou Salam

    Since the advent of semiconductor lasers, the development of tunable laser sources has been subject of many efforts in industry and academia arenas. This interest towards broadly tunable lasers is mainly due to the great promise they have in many applications ranging from telecommunication, to environmental science and homeland security, just to name a few. After the first demonstration of quantum cascade laser (QCL) in the early nineties, QCL has experienced a rapid development, so much so that QCLs are now the most reliable and efficient laser source in the Mid-IR range covering between 3 microm to 30 microm region of the electromagnetic spectrum. QCLs have almost all the desirable characteristics of a laser for spectroscopy applications such as narrow spectral linewidth ideal for high selectivity measurement, high power enabling high sensitivity sensing and more importantly they emit in the finger-print region of most of the trace gases and large molecules. The need for widely tunable QCLs is now more pressing than ever before. A single mode quantum cascade laser (QCL) such as a distributed feedback (DFB) QCL, is an ideal light source for gas sensing in the MIR wavelength range. Despite their performance and reliability, DFB QCLs are limited by their relatively narrow wavelength tuning range determined by the thermal rollover of the laser. An external cavity (EC) QCL, on the other hand, is a widely tunable laser source, and so far is the choice mid-infrared single frequency light sources for detecting multiple species/large molecules. However, EC QCLs can be complex, bulky and expensive. In the quest for finding alternative broadly wavelength tunable sources in the mid-infrared, many monolithic tunable QCLs are recently proposed and fabricated, including SG-DBR, DFB-Arrays, Slot-hole etc. and they are all of potentially of interest as a candidate for multi-gas sensing and monitoring applications, due to their large tuning range (>50 cm-1), and potentially low

  5. Hybrid lasers produced in potassium vapor by off-resonance pumping

    International Nuclear Information System (INIS)

    Clark, B.K.; Stack, C.A.; Muehsler, H.E.

    1993-01-01

    Pulsed amplified emissions are observed at or near atomic transitions cascading down from the K(6S) and K(4D 5/2 ) states, when a pulsed dye laser is tuned near the K(6S left-arrow 4 3/2,1/2 ) and the K(4D 5/2 left-arrow 4P 3/2 ) transitions. Emissions are suppressed when the pulsed dye laser is tuned to the K(4D 3/2 left-arrow 4P 5/3,3/2 ) transitions. The pulsed dye laser is used to excite molecules in a heat-pipe oven from high-bring ro-vibrational levels in the K 2 (X 1 Σ g + ) ground state to ro-vibrational levels in the K 2 (B 1 product u ) state that predissociate to K(4S) and K(4P) atoms. The transitions can be pumped when the laser is tuned sufficiently close to the atomic resonances. We discuss the non-linear mechanisms responsible for the observed emissions. Emissions cascading down from the K(4S) state were first reported by Wang et al

  6. Isotope separation of uranium by laser: tuning and frequency instability

    International Nuclear Information System (INIS)

    Broglia, M.; Massimi, M.; Spoglia, U.; Zampetti, P.

    1983-01-01

    Intensity measurements of laser induced fluorescence in an uranium atomic beam are affected by the axial mode structure of the commercial pulsed dye laser used and by its strong frequency instability. Qualitative and quantitative evaluations on the possible causes of frequency instability are reported

  7. A compact narrow-linewidth laser with a low-Q monolithic cavity

    International Nuclear Information System (INIS)

    Peng, Yu

    2013-01-01

    We demonstrate an approach to narrowing the linewidth of a diode laser to around 15×10 3 Hz with a compact setup of confocal and parallel monolithic Fabry–Perot cavities (MFCs). Resonances of the confocal and parallel MFCs with low finesse are obtained. Diode lasers with optical feedback from confocal and parallel monolithic MFCs are demonstrated. The frequency could be tuned 80×10 6 Hz by changing the grating position of the external cavity diode laser based on the confocal MFC, and 100×10 6 Hz by tuning the temperature of the plane MFC over 0.02 ° C for the external cavity diode laser based on the parallel MFC. (paper)

  8. Electrically tunable Brillouin fiber laser based on a metal-coated single-mode optical fiber

    Directory of Open Access Journals (Sweden)

    S.M. Popov

    Full Text Available We explore tunability of the Brillouin fiber laser employing Joule heating. For this purpose, 10-m-length of a metal-coated single-mode optical cavity fiber has been directly included into an electrical circuit, like a conductor wire. With the current up to ∼3.5 A the laser tuning is demonstrated over a spectrum range of ∼400 MHz. The observed laser line broadening up to ∼2 MHz is explained by frequency drift and mode-hoping in the laser caused by thermal noise. Keywords: Brillouin fiber laser, Metal-coated optical fiber, Laser tuning, Fiber sensors

  9. Degradation mechanisms of Microcystin-LR during UV-B photolysis and UV/H2O2 processes: Byproducts and pathways.

    Science.gov (United States)

    Moon, Bo-Ram; Kim, Tae-Kyoung; Kim, Moon-Kyung; Choi, Jaewon; Zoh, Kyung-Duk

    2017-10-01

    The removal and degradation pathways of microcystin-LR (MC-LR, [M+H] +  = 995.6) in UV-B photolysis and UV-B/H 2 O 2 processes were examined using liquid chromatography-tandem mass spectrometry. The UV/H 2 O 2 process was more efficient than UV-B photolysis for MC-LR removal. Eight by-products were newly identified in the UV-B photolysis ([M+H] +  = 414.3, 417.3, 709.6, 428.9, 608.6, 847.5, 807.4, and 823.6), and eleven by-products were identified in the UV-B/H 2 O 2 process ([M+H] +  = 707.4, 414.7, 429.3, 445.3, 608.6, 1052.0, 313.4, 823.6, 357.3, 245.2, and 805.7). Most of the MC-LR by-products had lower [M+H] + values than the MC-LR itself during both processes, except for the [M+H] + value of 1052.0 during UV-B photolysis. Based on identified by-products and peak area patterns, we proposed potential degradation pathways during the two processes. Bond cleavage and intramolecular electron rearrangement by electron pair in the nitrogen atom were the major reactions during UV-B photolysis and UV-B/H 2 O 2 processes, and hydroxylation by OH radical and the adduct formation reaction between the produced by-products were identified as additional pathways during the UV-B/H 2 O 2 process. Meanwhile, the degradation by-products identified from MC-LR during UV-B/H 2 O 2 process can be further degraded by increasing H 2 O 2 dose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Laser induced fluorescence spectroscopy for FTU

    International Nuclear Information System (INIS)

    Hughes, T.P.

    1995-07-01

    Laser induced fluorescence spectroscopy (LIFS) is based on the absorption of a short pulse of tuned laser light by a group of atoms and the observation of the resulting fluorescence radiation from the excited state. Because the excitation is resonant it is very efficient, and the fluorescence can be many times brighter than the normal spontaneous emission, so low number densities of the selected atoms can be detected and measured. Good spatial resolution can be achieved by using a narrow laser beam. If the laser is sufficiently monochromatic, and it can be tuned over the absorption line profile of the selected atoms, information can also be obtained about the velocities of the atoms from the Doppler effect which can broaden and shift the line. In this report two topics are examined in detail. The first is the effect of high laser irradiance, which can cause 'power broadening' of the apparent absorption line profile. The second is the effect of the high magnetic field in FTU. Detailed calculations are given for LIFS of neutral iron and molybdenum atoms, including the Zeeman effect, and the implementation of LIFS for these atoms on FTU is discussed

  11. Inhibition of Neutral Red Photolysis with Different Antioxidants

    Directory of Open Access Journals (Sweden)

    Zlatan Rimpapa

    2007-02-01

    Full Text Available Neutral red is a dye the azine structure which has been used as an acido-base indicator and a dye in histochemistry. In 1960 Goldhaber introduced Neutral red into the medium of resorbing bone cultures to localize the osteoclast in the living cultures. Using time-lapse microcinematography in order to follow the osteoclasts, he reported excellent contrast could be obtained with Neutral red due to the avidity of osteoclasts for this dye. Unfortunately, however, the photodynamic effect resulting from subsequent exposure of these cultures to light precluded this approach, and again in 1963. it was observed that the death of the osteoclasts was probably due to a photodynamic effect related to the dye in the cell, the presence of oxygen and the frequent exposure of light by our time-lapse photography. VIS and UV irradiation induced photolysis of Neutral red, and from Neutral red cation produced with photons a Neutral red radical. This Neutral red radical can be inhibited with action of an antioxidant, such as melatonin, glutathione, ascorbic acid, E vitamin, etc. We developed an assay with Neutral redphotolysis which utilizes a VIS and UV irradiation technique for quantification the inhibition of photolysis with action of an antioxidant. In this method Neutral red acts double, as a free radical generator and as a photosensitizer.

  12. Ignition tuning for the National Ignition Campaign

    Directory of Open Access Journals (Sweden)

    Landen O.

    2013-11-01

    Full Text Available The overall goal of the indirect-drive inertial confinement fusion [1] tuning campaigns [2] is to maximize the probability of ignition by experimentally correcting for likely residual uncertainties in the implosion and hohlraum physics [3] used in our radiation-hydrodynamic computational models, and by checking for and resolving unexpected shot-to-shot variability in performance [4]. This has been started successfully using a variety of surrogate capsules that set key laser, hohlraum and capsule parameters to maximize ignition capsule implosion velocity, while minimizing fuel adiabat, core shape asymmetry and ablator-fuel mix.

  13. Influence of satellite-derived photolysis rates and NOx emissions on Texas ozone modeling

    Science.gov (United States)

    Tang, W.; Cohan, D. S.; Pour-Biazar, A.; Lamsal, L. N.; White, A. T.; Xiao, X.; Zhou, W.; Henderson, B. H.; Lash, B. F.

    2015-02-01

    Uncertain photolysis rates and emission inventory impair the accuracy of state-level ozone (O3) regulatory modeling. Past studies have separately used satellite-observed clouds to correct the model-predicted photolysis rates, or satellite-constrained top-down NOx emissions to identify and reduce uncertainties in bottom-up NOx emissions. However, the joint application of multiple satellite-derived model inputs to improve O3 state implementation plan (SIP) modeling has rarely been explored. In this study, Geostationary Operational Environmental Satellite (GOES) observations of clouds are applied to derive the photolysis rates, replacing those used in Texas SIP modeling. This changes modeled O3 concentrations by up to 80 ppb and improves O3 simulations by reducing modeled normalized mean bias (NMB) and normalized mean error (NME) by up to 0.1. A sector-based discrete Kalman filter (DKF) inversion approach is incorporated with the Comprehensive Air Quality Model with extensions (CAMx)-decoupled direct method (DDM) model to adjust Texas NOx emissions using a high-resolution Ozone Monitoring Instrument (OMI) NO2 product. The discrepancy between OMI and CAMx NO2 vertical column densities (VCDs) is further reduced by increasing modeled NOx lifetime and adding an artificial amount of NO2 in the upper troposphere. The region-based DKF inversion suggests increasing NOx emissions by 10-50% in most regions, deteriorating the model performance in predicting ground NO2 and O3, while the sector-based DKF inversion tends to scale down area and nonroad NOx emissions by 50%, leading to a 2-5 ppb decrease in ground 8 h O3 predictions. Model performance in simulating ground NO2 and O3 are improved using sector-based inversion-constrained NOx emissions, with 0.25 and 0.04 reductions in NMBs and 0.13 and 0.04 reductions in NMEs, respectively. Using both GOES-derived photolysis rates and OMI-constrained NOx emissions together reduces modeled NMB and NME by 0.05, increases the model

  14. The effect of clouds on photolysis rates and ozone formation in the unpolluted troposphere

    Science.gov (United States)

    Thompson, A. M.

    1984-01-01

    The photochemistry of the lower atmosphere is sensitive to short- and long-term meteorological effects; accurate modeling therefore requires photolysis rates for trace gases which reflect this variability. As an example, the influence of clouds on the production of tropospheric ozone has been investigated, using a modification of Luther's two-stream radiation scheme to calculate cloud-perturbed photolysis rates in a one-dimensional photochemical transport model. In the unpolluted troposphere, where stratospheric inputs of odd nitrogen appear to represent the photochemical source of O3, strong cloud reflectance increases the concentration of NO in the upper troposphere, leading to greatly enhanced rates of ozone formation. Although the rate of these processes is too slow to verify by observation, the calculation is useful in distinguishing some features of the chemistry of regions of differing mean cloudiness.

  15. Fine tuning and MOND in a metamaterial "multiverse".

    Science.gov (United States)

    Smolyaninov, Igor I; Smolyaninova, Vera N

    2017-08-14

    We consider the recently suggested model of a multiverse based on a ferrofluid. When the ferrofluid is subjected to a modest external magnetic field, the nanoparticles inside the ferrofluid form small hyperbolic metamaterial domains, which from the electromagnetic standpoint behave as individual "Minkowski universes" exhibiting different "laws of physics", such as different strength of effective gravity, different versions of modified Newtonian dynamics (MOND) and different radiation lifetimes. When the ferrofluid "multiverse" is populated with atomic or molecular species, and these species are excited using an external laser source, the radiation lifetimes of atoms and molecules in these "universes" depend strongly on the individual physical properties of each "universe" via the Purcell effect. Some "universes" are better fine-tuned than others to sustain the excited states of these species. Thus, the ferrofluid-based metamaterial "multiverse" may be used to study models of MOND and to illustrate the fine-tuning mechanism in cosmology.

  16. Investigation of concept of efficient short wavelength laser. Quarterly progress report, 1 August 1978--31 October 1978

    International Nuclear Information System (INIS)

    Piper, L.G.; Krech, R.H.; Pugh, E.R.; Taylor, R.L.

    1978-01-01

    A concept for the development of an efficient short wavelength laser based on a class of endoergic molecules-azides is being studied. One of these two laser-device experiments involves generating high concentrations of azide radicals in the thermal pyrolysis of solid, ionic azides, with the subsequent excitation of the N 2 (B 3 pi/sub g/) state from azide-radical recombination. Laser action would then take place upon the N 2 (B 3 pi/sub g/ - A 3 Sigma + /sub u/), first-postive transition. The second laser-demonstration experiment involves creating a high density of NCl(b 1 Sigma + ) state by uv photolysis of ClN 3 . In this case laser emission is expected on the NCl(b 1 Sigma + → X 3 Sigma - ) transition at 665 nm

  17. Precision and broadband frequency swept laser source based on high-order modulation-sideband injection-locking.

    Science.gov (United States)

    Wei, Fang; Lu, Bin; Wang, Jian; Xu, Dan; Pan, Zhengqing; Chen, Dijun; Cai, Haiwen; Qu, Ronghui

    2015-02-23

    A precision and broadband laser frequency swept technique is experimentally demonstrated. Using synchronous current compensation, a slave diode laser is dynamically injection-locked to a specific high-order modulation-sideband of a narrow-linewidth master laser modulated by an electro-optic modulator (EOM), whose driven radio frequency (RF) signal can be agilely, precisely controlled by a frequency synthesizer, and the high-order modulation-sideband enables multiplied sweep range and tuning rate. By using 5th order sideband injection-locking, the original tuning range of 3 GHz and tuning rate of 0.5 THz/s is multiplied by 5 times to 15 GHz and 2.5 THz/s respectively. The slave laser has a 3 dB-linewidth of 2.5 kHz which is the same to the master laser. The settling time response of a 10 MHz frequency switching is 2.5 µs. By using higher-order modulation-sideband and optimized experiment parameters, an extended sweep range and rate could be expected.

  18. Isotopomer fractionation during photolysis of nitrous oxide by ultraviolet of 206 to 210 nm

    International Nuclear Information System (INIS)

    Toyoda, S.; Yoshida, N.; Suzuki, T.; Tsuji, K.; Shibuya, K.

    2002-01-01

    Nitrous oxide (N 2 O) is an important trace gas in the stratospheric chemistry as well as in the tropospheric radiative balance. Although there have been observations on the distribution of N 2 O in the atmosphere and its flux from individual sources, the global N 2 O budget is not fully understood. The isotopic information of N 2 O has been useful for constraining the N 2 O cycle since each source and sink has its own isotopic signature and isotope fractionation that is unique to the process. We have recently developed a method to determine isotopomers of N 2 O and showed that intramolecular distribution of 15 N is a parameter that has more fundamental and sensitive information than bulk 15 N abundance for constraining the atmospheric N 2 O budget. Here, we report the fractionation of isotopomers during ultraviolet photolysis of N 2 O in a 206 to 210 nm region. The fractionation factors are different among isotopomers and the site preference between two nitrogen isotopomers becomes larger along with the photolysis. The isotopomer fractionation factors of this representative wavelength are close to the apparent fractionation factors observed in the stratosphere indicating ultraviolet photolysis in the stratosphere is the dominant sink of N 2 O. Sources of atmospheric N 2 O including terrestrial and oceanic biological processes, agricultural activities, industrial formation and fossil fuel combustion are expected to be characterized to better constrain the global budget of N 2 O. (author)

  19. The investigation of molecular mechanisms in photodynamic action and radiobiology with nanosecond flash photolysis and pulse radiolysis: Final report for period April 1, 1972-June 30, 1987

    International Nuclear Information System (INIS)

    Grossweiner, L.I.

    1987-07-01

    Laser flash was employed to investigate initial photolysis mechanisms in enzymes and constituent aromatic amino acids. The key role of photoionization and solvated electron generation was demonstrated. The photochemistry of furocoumarins employed for phototherapy of skin diseases was investigated, emphasizing the production and subsequent reactions of singlet molecular oxygen. The photochemistry of porphyrins employed for photodynamic therapy of malignant tumors was studied, emphasizing photosensitization of model membranes, liposomes and resealed red blood cell membranes. Photosensitization in light-scattering media was investigated in a tissue model, consisting of polystyrene microspheres in an aqueous dye solution and analyzed with the diffusion approximation to radiative transfer. The diffusion approximation was employed to develop a dosimetry model for photodynamic therapy

  20. Re-tuning tuned mass dampers using ambient vibration measurements

    International Nuclear Information System (INIS)

    Hazra, B; Sadhu, A; Narasimhan, S; Lourenco, R

    2010-01-01

    Deterioration, accidental changes in the operating conditions, or incorrect estimates of the structure modal properties lead to de-tuning in tuned mass dampers (TMDs). To restore optimal performance, it is necessary to estimate the modal properties of the system, and re-tune the TMD to its optimal state. The presence of closely spaced modes and a relatively large amount of damping in the dominant modes renders the process of identification difficult. Furthermore, the process of estimating the modal properties of the bare structure using ambient vibration measurements of the structure with the TMD is challenging. In order to overcome these challenges, a novel identification and re-tuning algorithm is proposed. The process of identification consists of empirical mode decomposition to separate the closely spaced modes, followed by the blind identification of the remaining modes. Algorithms for estimating the fundamental frequency and the mode shape of the primary structure necessary for re-tuning the TMD are proposed. Experimental results from the application of the proposed algorithms to identify and re-tune a laboratory structure TMD system are presented

  1. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an al...

  2. Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates

    Science.gov (United States)

    Xing, Jia; Wang, Jiandong; Mathur, Rohit; Wang, Shuxiao; Sarwar, Golam; Pleim, Jonathan; Hogrefe, Christian; Zhang, Yuqiang; Jiang, Jingkun; Wong, David C.; Hao, Jiming

    2017-08-01

    Aerosol direct effects (ADEs), i.e., scattering and absorption of incoming solar radiation, reduce radiation reaching the ground and the resultant photolysis attenuation can decrease ozone (O3) formation in polluted areas. One the other hand, evidence also suggests that ADE-associated cooling suppresses atmospheric ventilation, thereby enhancing surface-level O3. Assessment of ADE impacts is thus important for understanding emission reduction strategies that seek co-benefits associated with reductions in both particulate matter and O3 levels. This study quantifies the impacts of ADEs on tropospheric ozone by using a two-way online coupled meteorology and atmospheric chemistry model, WRF-CMAQ, using a process analysis methodology. Two manifestations of ADE impacts on O3 including changes in atmospheric dynamics (ΔDynamics) and changes in photolysis rates (ΔPhotolysis) were assessed separately through multiple scenario simulations for January and July of 2013 over China. Results suggest that ADEs reduced surface daily maxima 1 h O3 (DM1O3) in China by up to 39 µg m-3 through the combination of ΔDynamics and ΔPhotolysis in January but enhanced surface DM1O3 by up to 4 µg m-3 in July. Increased O3 in July is largely attributed to ΔDynamics, which causes a weaker O3 sink of dry deposition and a stronger O3 source of photochemistry due to the stabilization of the atmosphere. Meanwhile, surface OH is also enhanced at noon in July, though its daytime average values are reduced in January. An increased OH chain length and a shift towards more volatile organic compound (VOC)-limited conditions are found due to ADEs in both January and July. This study suggests that reducing ADEs may have the potential risk of increasing O3 in winter, but it will benefit the reduction in maxima O3 in summer.

  3. Airborne Measurements of Atmospheric Methane Using Pulsed Laser Transmitters

    Science.gov (United States)

    Numata, Kenji; Riris, Haris; Wu, Stewart; Gonzalez, Brayler; Rodriguez, Michael; Hasselbrack, William; Fahey, Molly; Yu, Anthony; Stephen, Mark; Mao, Jianping; hide

    2016-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. At NASA Goddard Space Flight Center (GSFC) we have been developing a laser-based technology needed to remotely measure CH4 from orbit. We report on our development effort for the methane lidar, especially on our laser transmitters and recent airborne demonstration. Our lidar transmitter is based on an optical parametric process to generate near infrared laser radiation at 1651 nanometers, coincident with a CH4 absorption. In an airborne flight campaign in the fall of 2015, we tested two kinds of laser transmitters --- an optical parametric amplifier (OPA) and an optical parametric oscillator (OPO). The output wavelength of the lasers was rapidly tuned over the CH4 absorption by tuning the seed laser to sample the CH4 absorption line at several wavelengths. This approach uses the same Integrated Path Differential Absorption (IPDA) technique we have used for our CO2 lidar for ASCENDS. The two laser transmitters were successfully operated in the NASAs DC-8 aircraft, measuring methane from 3 to 13 kilometers with high precision.

  4. Hydrolysis and photolysis of diacylhydrazines-type insect growth regulator JS-118 in aqueous solutions under abiotic conditions.

    Science.gov (United States)

    Hu, J-Y; Liu, C; Zhang, Y-C; Zheng, Z-X

    2009-05-01

    JS-118 is a diacylhydrazines-type insect growth regulator which is now used extensively in China. The hydrolysis and photolysis of the pesticide JS-118 in aqueous solutions have been assessed under natural and controlled conditions in this project. Hydrolysis experimental results show that JS-118 is quite stable in aqueous solutions in dark, with no significant variations be observed in degradation under various conditions. Abiotic hydrolysis is relatively unimportant compared to photolysis. The rate of photodecomposition of JS-118 in aqueous solutions follows first-order kinetics both in UV radiation and natural sunlight. The degradation rates are faster under UV light than sunlight, with the half-lives (t (1/2) = ln2/k) of 6.00-10.85 min and 6.63-10.16 day, respectively. Under UV light, two major photoproducts are detected, and tentatively identified according to HPLC-MS spectral information as N-t-butyl-N-(3,5-dimethylbenzoyl) and 3,7-dimethyl-benzoatedihydrofuran. The corresponding photolysis pathways of JS-118 are also proposed. The results obtained indicate that direct photoreaction is an important dissipation pathway of JS-118 in natural water systems.

  5. Characterization of diamond thin films deposited by a CO{sub 2} laser-assisted combustion-flame method

    Energy Technology Data Exchange (ETDEWEB)

    McKindra, Travis, E-mail: mckindra@mst.edu [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); O' Keefe, Matthew J. [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Xie Zhiqiang; Lu Yongfeng [Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States)

    2010-06-15

    Diamond thin films were deposited by a CO{sub 2} laser-assisted O{sub 2}/C{sub 2}H{sub 2}/C{sub 2}H{sub 4} combustion-flame process. The effect of the deposition parameters, in particular the laser wavelength and power, on the film surface morphology, microstructure and phases present was the primary focus of the work. The laser power was set at 100, 400 and 800 W while the wavelength was varied and set at 10.591 {mu}m in the untuned condition and set at 10.532 {mu}m to resonantly match the CH{sub 2}-wagging vibrational mode of the C{sub 2}H{sub 4} molecule when in the tuned condition. When the laser was coupled to the combustion flame during deposition the diamond film growth was enhanced as the lateral grain size increased from 1 {mu}m to greater than 5 {mu}m. The greatest increase in grain size occurred when the wavelength was in the tuned condition. Scanning transmission electron microscopy images from focused-ion beam cross-sectioned samples revealed a sub-layer of smaller grains less than 1 {mu}m in size near the substrate surface at the lower laser powers and untuned wavelength. X-ray diffraction results showed a more intense Diamond (111) peak as the laser power increased from 100 to 800 W for the films deposited with the tuned laser wavelength. Micro-Raman spectra showed a diamond peak nearly twice as intense from the films with the tuned laser wavelength.

  6. Investigation of concept of efficient short wavelength laser. Quarterly progress report, 1 August 1978--31 October 1978

    Energy Technology Data Exchange (ETDEWEB)

    Piper, L.G.; Krech, R.H.; Pugh, E.R.; Taylor, R.L.

    1978-12-01

    A concept for the development of an efficient short wavelength laser based on a class of endoergic molecules-azides is being studied. One of these two laser-device experiments involves generating high concentrations of azide radicals in the thermal pyrolysis of solid, ionic azides, with the subsequent excitation of the N/sub 2/(B/sup 3/pi/sub g/) state from azide-radical recombination. Laser action would then take place upon the N/sub 2/(B/sup 3/pi/sub g/ - A/sup 3/Sigma/sup +//sub u/), first-postive transition. The second laser-demonstration experiment involves creating a high density of NCl(b/sup 1/Sigma/sup +/) state by uv photolysis of ClN/sub 3/. In this case laser emission is expected on the NCl(b/sup 1/Sigma/sup +/ ..-->.. X/sup 3/Sigma/sup -/) transition at 665 nm.

  7. Investigation of concept of efficient short wavelength laser. Quarterly progress report, 1 November 1978-31 January 1979

    Energy Technology Data Exchange (ETDEWEB)

    Krech, R.H.; Piper, L.G.; Pugh, E.R.; Taylor, R.L.

    1979-03-01

    A concept for the development of an efficient short wavelength laser based on a class of endoergic molecules-azides is being investigated. The first of two laser-device experiments involves generating high concentrations of azide radicals in the thermal pyrolysis of solid, ionic azides, with the subsequent excitation of the N/sub 2/(B/sup 3/..pi../sub g/) state from azide-radical recombination. Laser action would then take place upon the N/sub 2/(B/sup 3/..pi../sub g/-A/sup 3/..sigma../sup +//sub u/), first-positive transition. The second laser-demonstration experiment involves creating a high density of NCl(b/sup 1/..sigma../sup +/) state by uv photolysis of ClN/sub 3/. In this case laser emission is expected on the NCl(b/sup 1/..sigma../sup +/..-->..X/sup 3/..sigma../sup -/) transition at 665 nm.

  8. Nonlinear optics and solid-state lasers advanced concepts, tuning-fundamentals and applications

    CERN Document Server

    Yao, Jianquan

    2012-01-01

    This book covers the complete spectrum of nonlinear optics and all solid state lasers.The book integrates theory, calculations and practical design, technology, experimental schemes and applications. With the expansion and further development of Laser technology, the wavelength spectrum of Lasers had to be enlarged, even to be tunable which requires the use of nonlinear optical and Laser tunable technology. It systematically summarizes and integrates the analysis of international achievements within the last 20 years in this field. It will be helpful for university teachers, graduate students as well as engineers.

  9. Radiation Chemistry of Xenon Trioxide, Xenate and Perxenate and Photochemistry of Perxenate - A Pulse Radiolysis and Laser Flash-Photolysis Study

    DEFF Research Database (Denmark)

    Kläning, U. K.; Sehested, Knud; Wolff, T.

    1982-01-01

    O2–6 are assumed. HXeO3 and H3XeO2–6 are formed in reactions of the hydrated electron with XeO3 and HXeO3–6, respectively. HXeO4 and H3XeO2–7 are formed in reactions of the hydroxyl radical with XeO3 and HXeO3–6 in which the hydroxyl radical adds to a ligand oxygen atom to form peroxy compounds. HXe......O2–5 is formed in a reaction with the hydroxyl radical anion in which the hydroxyl radical anion adds to the xenon atom and by photolysis of HXeO3–6: HXeO3–6 [graphic omitted] HXeO2–5+ O–. XeV, XeVII and XeIX and corresponding iodine species in the oxidation states four, six and eight have similar...

  10. Narrow-line, cw orange light generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings.

    Science.gov (United States)

    Chen, Y L; Chen, W W; Du, C E; Chang, W K; Wang, J L; Chung, T Y; Chen, Y H

    2009-12-07

    We report on the demonstration of a narrow-line, cw orange 593-nm laser achieved via intracavity sum-frequency generation (SFG) of a diode-pumped dual-wavelength (1064 and 1342 nm) Nd:YVO(4) laser using two volume Bragg grating (VBG) reflectors. At diode pump power of up to 3.6 W, the 593-nm intracavity SFG laser radiates at the single longitudinal mode of spectral linewidth as narrow as approximately 15 MHz. More than 23-mW single-longitudinal-mode or 40-mW, diode pump power) 593-nm orange lights can be obtained from this compact laser system. Spectral tuning of the orange light was performed via the temperature tuning of the two VBGs in this system, achieving an effective tuning rate of ~5 pm/degrees C.

  11. Solar Pumped Lasers and Their Applications

    Science.gov (United States)

    Lee, Ja H.

    1991-01-01

    Since 1980, NASA has been pursuing high power solar lasers as part of the space power beaming program. Materials in liquid, solid, and gas phases have been evaluated against the requirements for solar pumping. Two basic characteristics of solar insolation, namely its diffuse irradiance and 5800 K blackbody-like spectrum, impose rather stringent requirements for laser excitation. However, meeting these requirements is not insurmountable as solar thermal energy technology has progressed today, and taking advantage of solar pumping lasers is becoming increasingly attractive. The high density photons of concentrated solar energy have been used for mainly electric power generation and thermal processing of materials by the DOE Solar Thermal Technologies Program. However, the photons can interact with materials through many other direct kinetic paths, and applications of the concentrated photons could be extended to processes requiring photolysis, photosynthesis, and photoexcitation. The use of solar pumped lasers on Earth seems constrained by economics and sociopolitics. Therefore, prospective applications may be limited to those that require use of quantum effects and coherency of the laser in order to generate extremely high value products and services when conventional and inexpensive means are ineffective or impossible. The new applications already proposed for concentrated solar photons, such as destruction of hazardous waste, production of renewable fuel, production of fertilizer, and air/water pollution controls, may benefit from the use of inexpensive solar pumped laser matched with the photochemical kinetics of these processes.

  12. In vitro and in vivo anti-Staphylococcus aureus activities of a new disinfection system utilizing photolysis of hydrogen peroxide.

    Science.gov (United States)

    Hayashi, Eisei; Mokudai, Takayuki; Yamada, Yasutomo; Nakamura, Keisuke; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi

    2012-08-01

    The present study aimed to evaluate in vitro and in vivo antibacterial activity of hydroxyl radical generation system by photolysis of H(2)O(2), which is a new disinfection system for the treatment of oral infection diseases such as periodontitis developed in our laboratory. Firstly, generation of the hydroxyl radical by the photolysis of H(2)O(2) in which 1 mol l(-1) H(2)O(2) was irradiated with a dual wavelength-light emitting diode (LED) at wavelengths of 400 and 465 nm was confirmed by applying an electron spin resonance-spin trapping technique. Secondly, the bactericidal effect of the system was examined under a similar condition in which Staphylococcus aureus suspended in 1 mol l(-1) H(2)O(2) was irradiated with LED light, resulting in substantial reduction of the colony forming unit (CFU) of the bacteria within a short time as 2 min. Finally, in vivo antibacterial effect of the photolysis of H(2)O(2) on a rat model of S. aureus infection was evaluated by a culture study. Since a significant reduction of recovered CFU of S. aureus was obtained, it is expected that in vitro antibacterial effect attributable to hydroxyl radicals generated by photolysis of H(2)O(2) could be well reflected in in vivo superficial bacterial infection. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Tune-Based Halo Diagnostics

    International Nuclear Information System (INIS)

    Cameron, Peter

    2003-01-01

    Tune-based halo diagnostics can be divided into two categories -- diagnostics for halo prevention, and diagnostics for halo measurement. Diagnostics for halo prevention are standard fare in accumulators, synchrotrons, and storage rings, and again can be divided into two categories -- diagnostics to measure the tune distribution (primarily to avoid resonances), and diagnostics to identify instabilities (which will not be discussed here). These diagnostic systems include kicked (coherent) tune measurement, phase-locked loop (PLL) tune measurement, Schottky tune measurement, beam transfer function (BTF) measurements, and measurement of transverse quadrupole mode envelope oscillations. We refer briefly to tune diagnostics used at RHIC and intended for the SNS, and then present experimental results. Tune-based diagnostics for halo measurement (as opposed to prevention) are considerably more difficult. We present one brief example of tune-based halo measurement

  14. Planar Laser-Based QEPAS Trace Gas Sensor

    Directory of Open Access Journals (Sweden)

    Yufei Ma

    2016-06-01

    Full Text Available A novel quartz enhanced photoacoustic spectroscopy (QEPAS trace gas detection scheme is reported in this paper. A cylindrical lens was employed for near-infrared laser focusing. The laser beam was shaped as a planar line laser between the gap of the quartz tuning fork (QTF prongs. Compared with a spherical lens-based QEPAS sensor, the cylindrical lens-based QEPAS sensor has the advantages of easier laser beam alignment and a reduction of stringent stability requirements. Therefore, the reported approach is useful in long-term and continuous sensor operation.

  15. Tuning the structural and optical properties of gold/silver nanoalloys prepared by laser ablation in liquids for ultra-sensitive spectroscopy and optical trapping

    Directory of Open Access Journals (Sweden)

    F. Neri

    2011-09-01

    Full Text Available The plasmon resonance of metallic Au/Ag alloys in the colloidal state was tuned from 400 nm to 500 nm using a laser irradiated technique, performed directly in the liquid state. Interesting optical nonlinearities, trapping effects and spectroscopic enhancements were detected as function of gold concentration in the nanoalloys. In particular a reduction of the limiting threshold was observed by increasing the gold amount. The SERS activity of the Au/Ag alloys was tested in liquid and in solid state in presence of linear carbon chains as probe molecules. The dependence of the increased Raman signals on the nanoparticle Au/Ag atomic ratio is presented and discussed. Finally preliminary studies and prospects for optical and Raman tweezers experiments are discussed.

  16. Tunable ultraviolet solid-state dye laser based on MPMMA doped with pyrromethene 597

    International Nuclear Information System (INIS)

    Jiang, Y G; Fan, R W; Xia, Y Q; Chen, D Y

    2011-01-01

    Solid-state dye sample based on modified polymethyl methacrylate (MPMMA) co-doped with pyrromethene 597 (PM597), and coumarin 460 (C460) were prepared. A frequency-doubled pulsed Nd:YAG laser is used to pump solid-state dye sample, and the narrow linewidth dye laser of 94.4 mJ was obtained at 582 nm in an oscillator-amplifier configuration. Using a beta-BaB 2 O 4 (BBO) crystal to frequency double the dye laser into ultraviolet (UV), a tuning range from 279 to 305 nm was demonstrated from a single doped PM597 dye. To the best of our knowledge, the UV tuning range is the best under the same condition so far. The conversion slope efficiency from solid dye laser to UV laser was 8.9% and the highest UV laser output energy reached 6.94 mJ at 291 nm

  17. Higher coherent x-ray laser

    International Nuclear Information System (INIS)

    Hasegawa, Noboru; Nagashima, Keisuke; Kawachi, Tetsuya

    2001-01-01

    X-ray lasers generated by an ultra short pulse laser have advantages such as monochromatic, short pulse duration, small beam divergence, high intensity, and coherence. Spatial coherence is most important for applications, we have investigated the transient collisional excitation (TCE) scheme x-ray laser lasing from Ne-like titanium (31.6 nm), Ne-like silver (13.9 nm) and tin (11.9 nm). However, the spatial coherence was not so good with this scheme. We have been studying to improve the spatial coherence of the x-ray laser and have proposed to use coherent seed light tuned to the x-ray laser wavelength generated from higher harmonics generation (HHG), which is introduced to the x-ray laser medium (Ne-like titanium, Ni-like silver plasmas). We present about the theoretical study of the coupling efficiency HHG light with x-ray laser medium. (author)

  18. Reaction of hydrogen atoms produced by radiolysis and photolysis in solid phase at 4 and 77 K

    International Nuclear Information System (INIS)

    Miyazaki, Tetsuo

    1991-01-01

    The behavior of H atoms in the solid phase has been reviewed with special attention to comparison of H atoms produced by radiolysis with those produced by photolysis. The paper consists of three parts. I -Production of H atoms: (1) the experimental results which indicate H-atom formation in the radiolysis of solid alkane are summarized; (2) ESR saturation behavior of trapped H atoms depends upon the method of H-atom-production, i.e. photolysis or radiolysis, and upon the initial energy of H atoms in the photolysis. II - Diffusion of H atoms: (1) activation energies for thermally-activated diffusion of H atoms are shown; (2) quantum diffusion of H atoms in solid H 2 is explained in terms of repetition of tunneling reaction H 2 + H → H + H 2 . III -Reaction of H atoms: (1) reactions and trapping processes of hot H atoms have been shown in solid methane and argon by use of hot H atoms with specified initial energy; (2) when H atoms are produced by the radiolysis of solvent alkane or by the photolysis of HI in the alkane mixtures at 77 K, the H atoms react very selectively with solute alkane at low concentration. The selective reaction of the H atom has been found in eight matrices; (3) activation energy for a hydrogen-atom-abstraction reaction by thermal H atoms at low temperatures is less than than several kJ mol -1 because of quantum tunneling. The absolute rate constants for H 2 (D 2 , HD) + H(D) tunneling reactions have been determined experimentally in solid hydrogen at 4.2K; (4) theoretical studies for tunneling reactions H 2 (D 2 ,HD) + H(D) at ultralow temperatures were reviewed. The calculated rate constants were compared with the rate constants obtained experimentally. (author)

  19. Mapping of upper electronic reaction surfaces by tuned laser photolysis and by absorption and emission spectroscopies

    International Nuclear Information System (INIS)

    Morgan, M.A.

    1989-07-01

    Potential energy surfaces for photorotamerization of two intramolecularly hydrogen-bonded molecules, o-hydroxybenzaldehyde (OHBA) and methyl salicylate (MS), isolated in cryogenic matrices have been spectroscopically mapped. In addition, the external heavy atom effect of krypton and xenon matrices on the coupling between the S 1 and T 1 surfaces of 4-(dimethylamino)benzonitrile has been examined. Heavy atom matrices are known to increase rates of spin-forbidden processes. The phosphorescence intensity of DMABN increases in krypton and xenon matrices, while the fluorescence intensity, and phosphorescence and fluorescence lifetimes, decrease. These effects are interpreted in terms of a model in which the phosphorescence rate constant increases 300-fold in xenon compared to argon, while the rate constants for intersystem crossing and nonradiative relaxation from the triplet state increase by factors of less than 5. Lifetime measurements in argon matrices doped with heavy atoms indicate that even one heavy atom neighbor has a significant effect on both singlet and triplet lifetimes. 78 refs., 35 figs., 15 tabs

  20. Atmospheric fate of a series of carbonyl nitrates: photolysis frequencies and OH-oxidation rate constants.

    Science.gov (United States)

    Suarez-Bertoa, R; Picquet-Varrault, B; Tamas, W; Pangui, E; Doussin, J-F

    2012-11-20

    Multifunctional organic nitrates are potential NO(x) reservoirs whose atmospheric chemistry is somewhat little known. They could play an important role in the spatial distribution of reactive nitrogen species and consequently in ozone formation and distribution in remote areas. In this work, the rate constants for the reaction with OH radical and the photolysis frequencies of α-nitrooxyacetone, 3-nitrooxy-2-butanone, and 3-methyl-3-nitrooxy-2-butanone have been determined at room temperature at 1000 mbar total pressure of synthetic air. The rate constants for the OH oxidation were measured using the relative rate technique, with methanol as reference compound. The following rate constants were obtained for the reaction with OH: k(OH) = (6.7 ± 2.5) × 10(-13) cm(3) molecule(-1) s(-1) for α-nitrooxyacetone, (10.6 ± 4.1) × 10(-13) cm(3) molecule(-1) s(-1) for 3-nitrooxy-2-butanone, and (2.6 ± 0.9) × 10(-13) cm(3) molecule(-1) s(-1) for 3-methyl-3-nitrooxy-2-butanone. The corresponding photolysis frequencies extrapolated to typical atmospheric conditions for July first at noon at 40° latitude North were (4.8 ± 0.3) × 10(-5) s(-1), (5.7 ± 0.3) × 10(-5) s(-1), and (7.4 ± 0.2) × 10(-5) s(-1), respectively. The data show that photolysis is a major atmospheric sink for these organic nitrates.

  1. Portable Diode Laser Diagnostic System for Collaborative Research on Air-Breathing Combustion

    National Research Council Canada - National Science Library

    Hanson, Ronald

    2003-01-01

    This equipment grant focused on four areas: (1) portable diode laser sensors with new fiber-coupled diode lasers and the support equipment to provide higher power with extended wavelength tuning range and speed; (2...

  2. Investigation of diode-laser pumped thulium-doped fluoride lasers; Investigacao de lasers de floureto dopados com tulio e bombeados por diodo-laser

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Paulo Sergio Fabris de

    2006-07-01

    Tunable lasers emitting around 2.3 mum region are important in many areas, like gas detection, remote sensing and medical applications. Thulium has a large emission spectra around 2.3 mum with demonstrated tuning range of 2.2-2.45 mum using the YLF host. For efficient pump absorption, a high concentration sensitizer like ytterbium can be used. We demonstrate quasi-cw operation of the Yb:Tm:YLF laser, pumped at 960 nm with a 20 W diode bar achieving the highest output power reported so far of 620 mW. Simultaneous pumping of the 2.3 mm Yb:Tm:YLF laser at 685 nm and 960 nm is demonstrated, showing higher slope efficiency than 960 nm alone. Numerical simulations and analytical models show the best ratio of pump power between both wavelengths. (author)

  3. InGaAs GRINSCH-SQW lasers with novel carbon delta doped contact layer

    NARCIS (Netherlands)

    Shu, Y.; Li, Gang; Tan, H.H.; Jagadish, C.; Karouta, F.

    1996-01-01

    In conclusion, we have demonstrated the use of novel carbon delta doped layers in the contact layer of InGaAs SQW GRINSCH lasers and compared with lasers consisting of Zn bulk doped contact layers. These carbon delta doped contact layer lasers are of interest for post growth tuning of the laser

  4. Applied optics. Gain modulation by graphene plasmons in aperiodic lattice lasers.

    Science.gov (United States)

    Chakraborty, S; Marshall, O P; Folland, T G; Kim, Y-J; Grigorenko, A N; Novoselov, K S

    2016-01-15

    Two-dimensional graphene plasmon-based technologies will enable the development of fast, compact, and inexpensive active photonic elements because, unlike plasmons in other materials, graphene plasmons can be tuned via the doping level. Such tuning is harnessed within terahertz quantum cascade lasers to reversibly alter their emission. This is achieved in two key steps: first, by exciting graphene plasmons within an aperiodic lattice laser and, second, by engineering photon lifetimes, linking graphene's Fermi energy with the round-trip gain. Modal gain and hence laser spectra are highly sensitive to the doping of an integrated, electrically controllable, graphene layer. Demonstration of the integrated graphene plasmon laser principle lays the foundation for a new generation of active, programmable plasmonic metamaterials with major implications across photonics, material sciences, and nanotechnology. Copyright © 2016, American Association for the Advancement of Science.

  5. Transients observed in the low temperature photolysis of alkyl radicals and divalent sulfur substrates

    International Nuclear Information System (INIS)

    Adam, F.C.

    1976-01-01

    The 253.7 nm photolysis of the isometric butyl radicals is described. These radicals are produced by electron capture during the γ-radiolysis of the corresponding butyl chlorides diluted in a rigid glass of 3-methylpentane-d14 at 77K. Thus t-butyl gives an equilibrium mixture of i-butyl and methyl radicals. Solvent radicals, M, are also produced and these obscure the former species in 3-MP-h14. Likewise sec-butyl radicals give rise to the ethyl, n-butyl, methyl and small amounts of the i-butyl radicals. Solvent radicals also rearrange and degrade in the photolytic beam, and the mechanism by which these processes occur is discussed. The procedure has also been used to study the formation and photolability of the alkyl thinyl and perthyl radicals occuring in the photolysis of RSH, RSR and RSSR. The thinyl radical is found to be unstable and gives the alkyl radical and atomic sulfur while the perthiyl radical is stable to radiation > 240 nm. (author)

  6. Low SWaP Semiconductor Laser Transmitter Modules For ASCENDS Mission Applications

    Science.gov (United States)

    Prasad, Narasimha S.; Rosiewicz, Alex; Coleman, Steven M.

    2012-01-01

    The National Research Council's (NRC) Decadal Survey (DS) of Earth Science and Applications from Space has identified the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as an important atmospheric science mission. NASA Langley Research Center, working with its partners, is developing fiber laser architecture based intensity modulated CW laser absorption spectrometer for measuring XCO2 in the 1571 nm spectral band. In support of this measurement, remote sensing of O2 in the 1260 nm spectral band for surface pressure measurements is also being developed. In this paper, we will present recent progress made in the development of advanced transmitter modules for CO2 and O2 sensing. Advanced DFB seed laser modules incorporating low-noise variable laser bias current supply and low-noise variable temperature control circuit have been developed. The 1571 nm modules operate at >80 mW and could be tuned continuously over the wavelength range of 1569-1574nm at a rate of 2 pm/mV. Fine tuning was demonstrated by adjusting the laser drive at a rate of 0.7 pm/mV. Heterodyne linewidth measurements have been performed showing linewidth 200 kHz and frequency jitter 75 MHz. In the case of 1260 nm DFB laser modules, we have shown continuous tuning over a range of 1261.4 - 1262.6 nm by changing chip operating temperature and 1261.0 - 1262.0 nm by changing the laser diode drive level. In addition, we have created a new laser package configuration which has been shown to improve the TEC coefficient of performance by a factor of 5 and improved the overall efficiency of the laser module by a factor of 2.

  7. Investigation of diode-laser pumped thulium-doped fluoride lasers

    International Nuclear Information System (INIS)

    Matos, Paulo Sergio Fabris de

    2006-01-01

    Tunable lasers emitting around 2.3 mum region are important in many areas, like gas detection, remote sensing and medical applications. Thulium has a large emission spectra around 2.3 mum with demonstrated tuning range of 2.2-2.45 mum using the YLF host. For efficient pump absorption, a high concentration sensitizer like ytterbium can be used. We demonstrate quasi-cw operation of the Yb:Tm:YLF laser, pumped at 960 nm with a 20 W diode bar achieving the highest output power reported so far of 620 mW. Simultaneous pumping of the 2.3 mm Yb:Tm:YLF laser at 685 nm and 960 nm is demonstrated, showing higher slope efficiency than 960 nm alone. Numerical simulations and analytical models show the best ratio of pump power between both wavelengths. (author)

  8. NASA Space Laser Technology

    Science.gov (United States)

    Krainak, Michael A.

    2015-01-01

    Over the next two decades, the number of space based laser missions for mapping, spectroscopy, remote sensing and other scientific investigations will increase several fold. The demand for high wall-plug efficiency, low noise, narrow linewidth laser systems to meet different systems requirements that can reliably operate over the life of a mission will be high. The general trends will be for spatial quality very close to the diffraction limit, improved spectral performance, increased wall-plug efficiency and multi-beam processing. Improved spectral performance will include narrower spectral width (very near the transform limit), increased wavelength stability and or tuning (depending on application) and lasers reaching a wider range of wavelengths stretching into the mid-infrared and the near ultraviolet. We are actively developing high efficiency laser transmitter and high-sensitivity laser receiver systems that are suitable for spaceborne applications.

  9. Continuously tunable S and C+L bands ultra wideband erbium-doped fiber ring laser

    International Nuclear Information System (INIS)

    Wang, Q; Yu, Q X

    2009-01-01

    This paper presents an ultra wideband tunable silica-based erbium doped fiber ring laser (EDFRL) that can be continuously tuned in S and C+L bands from 1475 to 1619 nm. It is the first time that a fiber ring laser's tuning range reaches 144 nm using a standard silica-based C-band erbium-doped fiber as gain media. In the laser configuration two isolators are used in the fiber loop for suppressing the ASE in C-band and elevating the lasing gain in S-band. As a result the available lasing wavelength is extended toward the shorter wavelength of the gain bandwidth. The optimized erbium-doped fiber length, output coupling ratio and pumping laser power have been obtained through experimental study. This ring fiber laser has simple configuration, low threshold, flat laser spectral distribution and high signal-to-ASE-noise ratio. The laser will have many potential applications in fiber sensor wavelength interrogation, high-resolution spectroscopy and fiber optic communications

  10. Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method.

    Science.gov (United States)

    Feng, Ting; Ding, Dongliang; Yan, Fengping; Zhao, Ziwei; Su, Hongxin; Yao, X Steve

    2016-08-22

    High stability single- and dual-wavelength compound cavity erbium-doped fiber lasers (EDFLs) with ultra-narrow linewidth, high optical signal to noise ratio (OSNR) and widely tunable range are demonstrated. Different from using traditional cascaded Type-1/Type-2 fiber rings as secondary cavities, we nest a Type-1 ring inside a Type-2 ring to form a passive subring cavity to achieve single-longitudinal-mode (SLM) lasing with ultra-narrow linewidth for the first time. We also show that the SLM lasing stability can be further improved by inserting a length of polarization maintaining fiber in the Type-2 ring. Using a uniform fiber Bragg grating (FBG) and two superimposed FBGs as mode restricting elements, respectively, we obtain a single-wavelength EDFL with a linewidth as narrow as 715 Hz and an OSNR as high as 73 dB, and a dual-wavelength EDFL with linewidths less than 1 kHz and OSNRs higher than 68 dB for both lasing wavelengths. Finally, by employing a novel self-designed strain adjustment device capable of applying both the compression and tension forces to the FBGs for wavelength tuning, we achieve the tuning range larger than 10 nm for both of the EDFLs.

  11. Electrical tuning of the oscillator strength in type II InAs/GaInSb quantum wells for active region of passively mode-locked interband cascade lasers

    Science.gov (United States)

    Dyksik, Mateusz; Motyka, Marcin; Kurka, Marcin; Ryczko, Krzysztof; Misiewicz, Jan; Schade, Anne; Kamp, Martin; Höfling, Sven; Sęk, Grzegorz

    2017-11-01

    Two designs of active region for an interband cascade laser, based on double or triple GaInSb/InAs type II quantum wells (QWs), were compared with respect to passive mode-locked operation in the mid-infrared range around 4 µm. The layer structure and electron and hole wavefunctions under external electric field were engineered to allow controlling the optical transition oscillator strength and the resulting lifetimes. As a result, the investigated structures can mimic absorber-like and gain-like sections of a mode-locked device when properly polarized with opposite bias. A significantly larger oscillator strength tuning range for triple QWs was experimentally verified by Fourier-transform photoreflectance.

  12. A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms

    Energy Technology Data Exchange (ETDEWEB)

    Miake, Yudai; Mukaiyama, Takashi, E-mail: muka@ils.uec.ac.jp [Institute for Laser Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); O’Hara, Kenneth M. [Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802-6300 (United States); Gensemer, Stephen [CSIRO Manufacturing Flagship, Lindfield, NSW 2070 (Australia)

    2015-04-15

    We have constructed a solid-state light source for experiments with laser cooled lithium atoms based on a Nd:Y V O{sub 4} ring laser with second-harmonic generation. Unidirectional lasing, an improved mode selection, and a high output power of the ring laser were achieved by weak coupling to an external cavity which contained the lossy elements required for single frequency operation. Continuous frequency tuning is accomplished by controlling two piezoelectric transducers (PZTs) in the internal and the external cavities simultaneously. The light source has been utilized to trap and cool fermionic lithium atoms into the quantum degenerate regime.

  13. Temperature-feedback direct laser reshaping of silicon nanostructures

    Science.gov (United States)

    Aouassa, M.; Mitsai, E.; Syubaev, S.; Pavlov, D.; Zhizhchenko, A.; Jadli, I.; Hassayoun, L.; Zograf, G.; Makarov, S.; Kuchmizhak, A.

    2017-12-01

    Direct laser reshaping of nanostructures is a cost-effective and fast approach to create or tune various designs for nanophotonics. However, the narrow range of required laser parameters along with the lack of in-situ temperature control during the nanostructure reshaping process limits its reproducibility and performance. Here, we present an approach for direct laser nanostructure reshaping with simultaneous temperature control. We employ thermally sensitive Raman spectroscopy during local laser melting of silicon pillar arrays prepared by self-assembly microsphere lithography. Our approach allows establishing the reshaping threshold of an individual nanostructure, resulting in clean laser processing without overheating of the surrounding area.

  14. Photolysis of phosphodiester bonds in plasmid DNA by high intensity UV laser irradiation

    International Nuclear Information System (INIS)

    Croke, D.T.; Blau, Werner; OhUigin, Colm; Kelly, J.M.; McConnell, D.J.

    1988-01-01

    The cleavage of phosphodiester bonds in DNA exposed to high intensity UV laser pulses in aerated aqueous solution has been investigated using a krypton fluoride excimer laser (248 nm) and bacterial plasmid DNA. The dependence of strand breakage on fluence and intensity has been studied in detail and shows that the process is non-linear with respect to intensity. The relationship between the quantum yield for strand breakage and intensity shows that the strand breakage reaction involves two-photon excitation of DNA bases. The quantum yield rises with intensity from a lower value of 7 x 10 -5 until a maximum value of 4.5 x 10 -4 is attained at intensities of 10 11 W m -2 and above. This value is approximately fifty-fold higher than the quantum yield for strand breakage induced by exposure to low density UV irradiation (254 nm, 12 W m -2 ). DNA sequencing experiments have shown that strand breakage occurs by the specific cleavage of the phosphodiester bond which lies immediately 3' to guanine residues in the DNA, leaving some alkali-labile remnant attached to the terminal phosphate. A mechanism for DNA strand breakage which involves the generation of guanine radical cations is proposed. (author)

  15. Ponderomotive dressing of doubly-excited states with intensity-controlled laser light

    Directory of Open Access Journals (Sweden)

    Ding Thomas

    2013-03-01

    Full Text Available We laser-dress several doubly-excited states in helium. Tuning the coupling-laser intensity from perturbative to the strong-coupling regime, we are able to measure phases imprinted on the two-electron wavefunctions, and observe a new continuum coupling mechanism.

  16. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence

    Energy Technology Data Exchange (ETDEWEB)

    Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joël [Laboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, F-38041 Grenoble (France); Univ. Grenoble Alpes, LGGE, F-38041 Grenoble (France); Meusinger, Carl; Johnson, Matthew S. [Copenhagen Center for Atmospheric Research (CCAR), Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Jost, Rémy [Laboratoire de Interdisciplinaire de Physique (LIPHY) Univ. de Grenoble, Grenoble (France); Bhattacharya, S. K. [Research Center for Environmental Changes, Academia Sinica, Nangang, Taipei 115, Taiwan (China)

    2014-06-28

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. [“Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry,” J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate ({sup 15}N, {sup 17}O, and {sup 18}O) provide additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ{sup 15}N, δ{sup 18}O, and Δ{sup 17}O). From these measurements an average photolytic isotopic fractionation of {sup 15}ε = (−15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of {sup 15}ε = (−47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from −40 to −74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of {sup 14}NO{sub 3}{sup −} and {sup 15}NO{sub 3}{sup −} in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by applying

  17. PERI auto-tuning

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D H; Williams, S [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Chame, J; Chen, C; Hall, M [USC/ISI, Marina del Rey, CA 90292 (United States); Dongarra, J; Moore, S; Seymour, K; You, H [University of Tennessee, Knoxville, TN 37996 (United States); Hollingsworth, J K; Tiwari, A [University of Maryland, College Park, MD 20742 (United States); Hovland, P; Shin, J [Argonne National Laboratory, Argonne, IL 60439 (United States)], E-mail: mhall@isi.edu

    2008-07-15

    The enormous and growing complexity of today's high-end systems has increased the already significant challenges of obtaining high performance on equally complex scientific applications. Application scientists are faced with a daunting challenge in tuning their codes to exploit performance-enhancing architectural features. The Performance Engineering Research Institute (PERI) is working toward the goal of automating portions of the performance tuning process. This paper describes PERI's overall strategy for auto-tuning tools and recent progress in both building auto-tuning tools and demonstrating their success on kernels, some taken from large-scale applications.

  18. Aerosol formation on the flash photolysis of SO2/gas mixtures

    International Nuclear Information System (INIS)

    Fogel, L.D.; Sutherland, J.W.

    1979-01-01

    A long-lived transient absorption observed on the flash photolysis of SO 2 /gas mixtures at lambda> or =190 nm has been identified as resulting from light scattering by H 2 SO 4 aerosols. No detectable signals were monitored on photolysis at lambda> or =270 nm, indicating that the aerosol precursors originated from the promotion of SO 2 into its second singlet level and into its dissociation continuum. The SO 3 that was formed was hydrated immediately to yield H 2 SO 4 vapor in a highly supersaturated state and heteromolecular homogeneous nucleation to produce H 2 SO 4 aerosols ensued. This nucleation was quenched rapidly as the acid vapor was consumed by further nucleation, by condensation, and by vapor diffusion to the cell walls. A model was formulated in which the condensations of the H 2 SO 4 and the H 2 O vapors on the growing droplets were considered kinetically negligible and the particles grew by coagulation; simultaneously, they were lost by tranquil gravitational settling and by diffusion to the cell walls. Computer simulations demonstrated that the observed time dependence of the absorbance data (measured at a fixed wavelength) could be accounted for by this scheme. The effects of temperature, pressure, and wavelength (of the analyzing light) were also described satisfactorily by this model

  19. A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser.

    Science.gov (United States)

    Patimisco, Pietro; Borri, Simone; Sampaolo, Angelo; Beere, Harvey E; Ritchie, David A; Vitiello, Miriam S; Scamarcio, Gaetano; Spagnolo, Vincenzo

    2014-05-07

    An innovative quartz enhanced photoacoustic (QEPAS) gas sensing system operating in the THz spectral range and employing a custom quartz tuning fork (QTF) is described. The QTF dimensions are 3.3 cm × 0.4 cm × 0.8 cm, with the two prongs spaced by ∼800 μm. To test our sensor we used a quantum cascade laser as the light source and selected a methanol rotational absorption line at 131.054 cm(-1) (∼3.93 THz), with line-strength S = 4.28 × 10(-21) cm mol(-1). The sensor was operated at 10 Torr pressure on the first flexion QTF resonance frequency of 4245 Hz. The corresponding Q-factor was 74 760. Stepwise concentration measurements were performed to verify the linearity of the QEPAS signal as a function of the methanol concentration. The achieved sensitivity of the system is 7 parts per million in 4 seconds, corresponding to a QEPAS normalized noise-equivalent absorption of 2 × 10(-10) W cm(-1) Hz(-1/2), comparable with the best result of mid-IR QEPAS systems.

  20. Practical tuning for Oracle

    International Nuclear Information System (INIS)

    Kwon, Sun Yong

    2005-02-01

    This book deals with tuning for oracle application, which consists of twenty two chapters. These are the contents of this book : what is tuning?, procedure of tuning, collection of performance data using stats pack, collection of performance data in real time, disk IO dispersion, architecture on Index, partition and IOT, optimization of cluster Factor, optimizer, analysis on plan of operation, selection of Index, tuning of Index, parallel processing architecture, DML, analytic function join method, join type, analysis of application, Lock architecture, SGA architecture and wait event and segment tuning.

  1. Laser cooling at resonance

    Science.gov (United States)

    Yudkin, Yaakov; Khaykovich, Lev

    2018-05-01

    We show experimentally that three-dimensional laser cooling of lithium atoms on the D2 line is possible when the laser light is tuned exactly to resonance with the dominant atomic transition. Qualitatively, it can be understood by applying simple Doppler cooling arguments to the specific hyperfine structure of the excited state of lithium atoms, which is both dense and inverted. However, to build a quantitative theory, we must resolve to a full model which takes into account both the entire atomic structure of all 24 Zeeman sublevels and the laser light polarization. Moreover, by means of Monte Carlo simulations, we show that coherent processes play an important role in showing consistency between the theory and the experimental results.

  2. Oxidation of Cu(II) aminopolycarboxylates by carbonate radical. A flash photolysis study

    International Nuclear Information System (INIS)

    Mandal, P.C.; Bardhan, D.K.

    1999-01-01

    Reactions of carbonate radical (CO 3 -. ) generated by photolysis or by radiolysis of a carbonate solution, with Cu(II) complexes of aminopolycarboxylic acids viz., Cu(II)ethylenediamine tetraacetate [Cu II EDTA] 2- and Cu(II)-iminodiacetate [Cu II IDA] were studied at pH 10.5 and ionic strength 0.2 mol x dm -3 . Time-resolved spectroscopy and kinetics for the transients were studied using flash photolysis and stable products arising from the ligand degradation of the complex were ascertained by steady-state radiolysis experiments. From the kinetic data it is observed that CO 3 -. radical reacts initially with Cu II -complex to form a transient intermediate having maximum absorption at 335 nm and 430 nm. From the subsequent reactions of this intermediate it was assigned to be Cu III .species. This Cu(III) species undergoes intermolecular electron transfer with the Cu II -complex to give a radical intermediate which again slowly reacts with Cu II -complex to give a long lived species containing Cu-C bond. This long lived species, however, slowly decomposed to give glyoxalic reaction between Cu III -complex and a suitable donor, the one electron reduction potential for [Cu III EDTA] 1- /[Cu II EDTA] 2- and [Cu III IDA] +1 /Cu II IDA was determined. (author)

  3. Investigations of UV photolysis of PVP-capped silver nanoparticles in the presence and absence of dissolved organic carbon

    International Nuclear Information System (INIS)

    Poda, Aimee R.; Kennedy, Alan J.; Cuddy, Michael F.; Bednar, Anthony J.

    2013-01-01

    This study investigated the effect of UV irradiation on the characteristics and toxicity of 50 nm (nominal diameter) polyvinylpyrrolidone-capped silver nanoparticles (AgNPs) in the presence and absence of dissolved organic carbon (DOC). The photolysis resulted in a decrease in average particle size as measured by field flow fractionation interfaced with inductively coupled plasma mass spectrometry. The decrease in size was attributed to the photo-induced oxidation of the PVP and dissolution of metallic silver. Moreover, photolysis of the AgNPs in solutions containing DOC appeared to give rise to small nanoparticles (∼5 nm) formed via reduction of dissolved silver ions. These results were consistent with photolysis of AgNO 3 solutions initially devoid of nanoparticles. Thus, the carbon-containing constituents of DOC serve as reducing agents for Ag + , primarily under conditions of UV irradiation. The standard zooplankton model, Daphnia magna, indicated that the toxicity of nanosilver was significantly reduced when the AgNPs have been exposed to UV light. Observed toxicity was further reduced when AgNPs in DOC-containing solutions were exposed to UV. These results suggest that environmentally relevant conditions such as DOC and UV light are important mitigating factors that mediate the aquatic toxicity of AgNPs.

  4. Snow nitrate photolysis in polar regions and the mid-latitudes: Impact on boundary layer chemistry and implications for ice core records

    Science.gov (United States)

    Zatko, Maria C.

    The formation and recycling of nitrogen oxides (NOx=NO+NO 2) associated with snow nitrate photolysis has important implications for air quality and the preservation of nitrate in ice core records. This dissertation examines snow nitrate photolysis in polar and mid-latitude regions using field and laboratory based observations combined with snow chemistry column models and a global chemical transport model to explore the impacts of snow nitrate photolysis on boundary layer chemistry and the preservation of nitrate in polar ice cores. Chapter 1 describes how a global chemical transport model is used to calculate the photolysis-driven flux and redistribution of nitrogen across Antarctica, and Chapter 2 presents similar work for Greenland. Snow-sourced NOx is most dependent on the quantum yield for nitrate photolysis as well as the concentration of photolabile nitrate and light-absorbing impurities (e.g., black carbon, dust, organics) in snow. Model-calculated fluxes of snow-sourced NOx are similar in magnitude in Antarctica (0.5--7.8x108 molec cm-2 s -1) and Greenland (0.1--6.4x108 molec cm-2 s-1) because both nitrate and light-absorbing impurity concentrations in snow are higher (by factors of 2 and 10, respectively) in Greenland. Snow nitrate photolysis influences boundary layer chemistry and ice-core nitrate preservation less in Greenland compared to Antarctica largely due to Greenland's proximity to NOx-source regions. Chapter 3 describes how a snow chemistry column model combined with chemistry and optical measurements from the Uintah Basin Winter Ozone Study (UBWOS) 2014 is used to calculate snow-sourced NOx in eastern Utah. Daily-averaged fluxes of snow-sourced NOx (2.9x10 7--1.3x108 molec cm-2 s-1) are similar in magnitude to polar snow-sourced NO x fluxes, but are only minor components of the Uintah Basin boundary layer NOx budget and can be neglected when developing ozone reduction strategies for the region. Chapter 4 presents chemical and optical

  5. Compact electron accelerator for pumping gas lasers

    International Nuclear Information System (INIS)

    Duncan, C.V.; Bradley, L.P.

    1976-01-01

    A description is given of the design and application of a simple e-beam generator for the repetitive pulse pumping of gas lasers. The circuit uses a low inductance Marx and series tuned pulse forming elements

  6. Tunability of optofluidic distributed feedback dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2007-01-01

    We investigate the tunability of optofluidic distributed feedback (DFB) dye lasers. The lasers rely on light-confinement in a nano-structured polymer film where an array of nanofluidic channels constitutes a third order Bragg grating DFB laser resonator with a central phase-shift. The lasers...... are operated by filling the DFB laser resonator with a dye solution by capillary action and optical pumping with a frequency doubled Nd: YAG laser. The low reflection order of the DFB laser resonator yields low out-of-plane scattering losses as well as a large free spectral range (FSR), and low threshold...... fluences down to similar to 7 mu J/mm2 are observed. The large FSR facilitates wavelength tuning over the full gain spectrum of the chosen laser dye and we demonstrate 45 nm tunability using a single laser dye by changing the grating period and dye solution refractive index. The lasers are straight...

  7. Photolysis study of octyl p-methoxycinnamate loaded microemulsion by molecular fluorescence and chemometric approach

    Science.gov (United States)

    Nascimento, Danielle Silva; Insausti, Matías; Band, Beatriz Susana Fernández; Grünhut, Marcos

    2018-02-01

    Octyl p-methoxycinnamate (OMC) is one of the most widely used sunscreen agents. However, the efficiency of OMC as UV filter over time is affected due to the formation of the cis-isomer which presents a markedly lower extinction coefficient (εcis = 12,600 L mol- 1 cm- 1 at 291 nm) than the original trans-isomer (εtrans = 24,000 L mol- 1 cm- 1 at 310 nm). In this work, a novel carrier for OMC based on an oil-in-water microemulsion is proposed in order to improve the photostability of this sunscreen. The formulation was composed of 29.2% (w/w) of a 3:1 mixture of ethanol (co-surfactant) and decaethylene glycol mono-dodecyl ether (surfactant), 1.5% (w/w) of oleic acid (oil phase) and 69.2% (w/w) of water. This microemulsion was prepared in a simple way, under moderate stirring at 25 °C and using acceptable, biocompatible and accessible materials for topical use. OMC was incorporated in the vehicle at a final concentration of 5.0% (w/w), taking into account the maximum permitted levels established by international norms. Then, a photolysis study of the loaded formulation was performed using a continuous flow system. The direct photolysis was monitored over time by molecular fluorescence. The recorded spectra data between 370 y 490 nm were analyzed by multivariate curve resolution-alternating least squares algorithm. The kinetic rate constants corresponding to the photolysis of the trans-OMC were calculated from the concentration profiles, resulting in 0.0049 s- 1 for the trans-OMC loaded microemulsion and 0.0131 s- 1 for the trans-OMC in aqueous media. These results demonstrate a higher photostability of the trans-OMC when loaded in the proposed vehicle with respect to the free trans-OMC in aqueous media.

  8. Effect of nitrate, carbonate/bicarbonate, humic acid, and H2O2 on the kinetics and degradation mechanism of Bisphenol-A during UV photolysis.

    Science.gov (United States)

    Kang, Young-Min; Kim, Moon-Kyung; Zoh, Kyung-Duk

    2018-08-01

    In this study, the effects of natural water components (nitrate, carbonate/bicarbonate, and humic acid) on the kinetics and degradation mechanisms of bisphenol A (BPA) during UV-C photolysis and UV/H 2 O 2 reaction were examined. The presence of NO 3 - (0.04-0.4 mM) and CO 3 2- /HCO 3 - (0.4-4 mM) ions increased BPA degradation during UV photolysis. Humic acid less than 3 mg/L promoted BPA degradation, but greater than 3 mg/L of humic acid inhibited BPA degradation. During the UV/H 2 O 2 reaction, all water matrix components acted as radical scavengers in the order of humic acid > CO 3 2- /HCO 3 -  > NO 3 - . All of the degradation reactions agreed with the pseudo-first-order kinetics. While eight byproducts (m/z = 122, 136, 139, 164, 181, 244, 273, 289) were identified in UV-C/NO 3 - photolysis reaction, four (m/z = 122, 136, 164, 244) and three byproducts (m/z = 122, 136, 164) were observed during UV-C/NO 3 - /CO 3 2- /HCO 3 - and UV-C/CO 3 2- /HCO 3 - reactions. Nitrogenated and hydrogenated byproducts were first observed during the UV-C/NO 3 - photolysis, but only hydrogenated byproducts as adducts were detected during the UV-C/NO 3 - /CO 3 2- /HCO 3 - photolysis. Nitrogenated and hydrogenated byproducts were formed in the early stage of degradation by OH or NO 2 radicals, and these byproducts were subsequently degraded into smaller compounds with further reaction during UV-C/NO 3 - and UV-C/NO 3 - /CO 3 2- /HCO 3 - reactions. In contrast, BPA was directly degraded into smaller compounds by β-scission of the isopropyl group by CO 3 - /HCO 3 radicals during UV-C/CO 3 2- /HCO 3 - reaction. Our results imply that the water components can change the degradation mechanism of BPA during UV photolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Micromachining of laser fusion target parts

    International Nuclear Information System (INIS)

    Weir, J.T.; Hendricks, C.D.; Weinstein, B.W.; Willenborg, D.L.

    1976-01-01

    A 5W argon ion laser that operates CW is used. A broad band rear mirror is tuned to maximum power output. The beam is directed vertically by an adjustable turning prism, through a beam splitter, and then focused with an ordinary microscope objective lens onto the material to be cut. The beam splitter allows a telescope and television camera arranged to view the cutting through the same lens that is focusing the laser. The object to be cut is mounted on a micromanipulator which can move the object in two dimensions in the focal plane of the laser

  10. Frequency modulation of semiconductor disk laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zolotovskii, I O; Korobko, D A; Okhotnikov, O G [Ulyanovsk State University, Ulyanovsk (Russian Federation)

    2015-07-31

    A numerical model is constructed for a semiconductor disk laser mode-locked by a semiconductor saturable absorber mirror (SESAM), and the effect that the phase modulation caused by gain and absorption saturation in the semiconductor has on pulse generation is examined. The results demonstrate that, in a laser cavity with sufficient second-order dispersion, alternating-sign frequency modulation of pulses can be compensated for. We also examine a model for tuning the dispersion in the cavity of a disk laser using a Gires–Tournois interferometer with limited thirdorder dispersion. (control of radiation parameters)

  11. Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor

    Science.gov (United States)

    Lee, Hyun Ji; Kim, Sung-Jo; Ko, Myeong Ock; Kim, Jong-Hyun; Jeon, Min Yong

    2018-03-01

    We propose a tunable multiwavelength-swept laser based on a nematic liquid crystal (NLC) Fabry-Perot (FP) etalon, which is embedded in the resonator of a wavelength-swept laser. We achieve the continuous wavelength tuning of the multiwavelength-swept laser by applying the electric field to the NLC FP etalon. The free spectral range of the fabricated NLC FP etalon is approximately 7.9 nm. When the electric field applied to the NLC FP etalon exceeds the threshold value (Fréedericksz threshold voltage), the output of the multiwavelength-swept laser can be tuned continuously. The tuning range of the multiwavelength-swept laser can be achieved at a value greater than 75 nm, which has a considerably wider tunable range than a conventional multiwavelength laser based on an NLC FP etalon. The slope efficiencies in the spectral and temporal domains for the tunable multiwavelength-swept laser are 22.2 nm/(mVrms / μm) and 0.17 ms/(mVrms / μm), respectively in the linear region. Therefore, the developed multiwavelength-swept laser based on the NLC FP etalon can be applied to an electric-field sensor. Because the wavelength measurement and time measurement have a linear relationship, the electric-field sensor can detect a rapid change in the electric-field intensity by measuring the peak change of the pulse in the temporal domain using the NLC FP etalon-based multiwavelength-swept laser.

  12. Development of the re-emit technique for ICF foot symmetry tuning for indirect drive ignition on NIF

    Science.gov (United States)

    Dewald, Eduard; Milovich, Jose; Edwards, John; Thomas, Cliff; Kalantar, Dan; Meeker, Don; Jones, Ogden

    2007-11-01

    Tuning of the the symmetry of the hohlraum radiation drive for the first 2 ns of the ICF pulse on NIF will be assessed by the re-emit technique [1] which measures the instantaneous x-ray drive asymmetry based on soft x-ray imaging of the re-emission of a high-Z sphere surrogate capsule. We will discuss the design of re-emit foot symmetry tuning measurements planned on NIF and their surrogacy for ignition experiments, including assessing the residual radiation asymmetry of the patches required for soft x-ray imaging. We will present the tuning strategy and expected accuracies based on calculations, analytical estimates and first results from scaled experiments performed at the Omega laser facility. [1] N. Delamater, G. Magelssen, A. Hauer, Phys. Rev. E 53, 5241 (1996.)

  13. Development of a non-thermal accelerated pulsed UV photolysis assisted digestion method for fresh and dried food samples

    International Nuclear Information System (INIS)

    Solis, C.; Lagunas-Solar, M.C.; Perley, B.P.; Pina, C.; Aguilar, L.F.; Flocchini, R.G.

    2002-01-01

    A simple, fast digestion procedure for fresh and dried foods, using high-power pulsed UV photolysis in the presence of hydrogen peroxide, is being developed. The homogenized food samples were mixed with H 2 O 2 or with a mixture of H 2 O 2 and HNO 3 , and irradiated for short times with a 248-nm UV excimer laser. After centrifugation, a clear, colorless solution was obtained and aliquots were deposited on Teflon filters for XRF and/or PIXE analyses. Standard reference materials (NIST Peach Leaves; Typical Diet) were also analyzed to compare recoveries and detection limits. Improvements in detection limits were observed, but a few trace elements (<1 ppm) were not reproducibly detected (Fe, Sr). This method proved to be practical for the accelerated digestion of food samples and preparing analytes in short-time intervals. In combination with PIXE and XRF, it allows high-sensitivity multi-elemental analyses for screening the nutritional elements and for food safety purposes regarding the potential presence of toxic elements. Further development to optimize and validate this procedure for a broader range of analytes is in progress

  14. SQL Tuning

    CERN Document Server

    Tow, Dan

    2003-01-01

    A poorly performing database application not only costs users time, but also has an impact on other applications running on the same computer or the same network. SQL Tuning provides an essential next step for SQL developers and database administrators who want to extend their SQL tuning expertise and get the most from their database applications.There are two basic issues to focus on when tuning SQL: how to find and interpret the execution plan of an SQL statement and how to change SQL to get a specific alternate execution plan. SQL Tuning provides answers to these questions and addresses a third issue that's even more important: how to find the optimal execution plan for the query to use.Author Dan Tow outlines a timesaving method he's developed for finding the optimum execution plan--rapidly and systematically--regardless of the complexity of the SQL or the database platform being used. You'll learn how to understand and control SQL execution plans and how to diagram SQL queries to deduce the best executio...

  15. Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates

    Science.gov (United States)

    Aerosol direct effects (ADE), i.e., scattering and absorption of incoming solar radiation, reduce radiation reaching the ground and the resultant photolysis attenuation can decrease O3 formation in polluted areas. One the other hand, evidence also suggests that ADE associated coo...

  16. Study of the selective abstration reaction of the hydrogen atom in the radiolysis and photolysis of alkane mixture at 77 K

    International Nuclear Information System (INIS)

    Guedes, S.M.L.

    1979-01-01

    The occurence of the selective abstraction reaction of the solute hydrogen atom by hydrogen atom produced during radiolysis or photolysis of the systems such as neopentane/cyclo-hexane/HI, neopentane/2,3 dimethylbutane, n-pentane/HI/cyclo-hexane and cyclo-hexane/HI/n-pentane, at 77 K is studied. Experiments have been undertaken on the kinetics nature of the active species, the H atom, during radiolysis and photolysis of the neopentane/cyclo-hexane/HI system at 77 K, presenting competitive reactions. Studies have also been made on the occurrence of the selective abstraction reaction in inverted systems, in which the concentrations of the components of a system are so much altered that the solute becomes the solvent and vice-versa, in the other system. By means of photolysis at 77 K, it has been observed that for the two systems constitued by the cyclo-hexane and n-pentane the selective abstraction reaction occurs. However, for radiolysis of that same two systems it has been observed that only the hydrogen atom abstraction reaction corresponding to the solvent occurs. (Author) [pt

  17. Degradation of Paracetamol by Photolysis Using C-N-codoped TiO2

    OpenAIRE

    Vanny Yulia Safitri; Adlis Santoni; Diana Vanda Wellia; Khoiriah Khoiriah; Safni Safni

    2017-01-01

    Paracetamol is generally used as analgesic and antipyretic drugs. Contamination paracetamol in the environment can occur because of waste material disposal from production site and immediate disposal of household that cause water pollution. Paracetamol is degraded by photolysis method under irradiation 10 watt UV-light (λ=365 nm), visible-light (Philips LED 13 watt 1400 lux) and solar-light with and without addition C-N-codoped TiO2catalyst. The solution is analyzed by UV-Vis spectrophotomete...

  18. Laser Diagnostics for Reacting Flows

    Science.gov (United States)

    2010-01-11

    the high-temperature kinetics of n-heptane pyrolysis . The two-wavelength temperature and vapor concentration diagnostic designed for n- dodecane was...features ranging from 1338 nm to 1469 nm and one laser tuned to a CO2 transition near 1997 nm were combined onto a single mode optical fiber ( Corning

  19. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters

    International Nuclear Information System (INIS)

    Vione, D.; Calza, P.; Galli, F.; Fabbri, D.; Santoro, V.; Medana, C.

    2015-01-01

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with ·OH radicals would be negligible and that with "3CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO_2, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO_2 yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde. - Highlights: • Study of the photolytic and photocatalytic transformation

  20. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Vione, D. [Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino (Italy); Calza, P., E-mail: paola.calza@unito.it [Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino (Italy); Galli, F.; Fabbri, D. [Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino (Italy); Santoro, V.; Medana, C. [Department of Molecular Biotechnology and Health Sciences, University of Torino, via P. Giuria 5, 10125 Torino (Italy)

    2015-12-15

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with ·OH radicals would be negligible and that with {sup 3}CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO{sub 2}, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO{sub 2} yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde. - Highlights: • Study of the photolytic and photocatalytic

  1. Progress in Rapidly-Tunable External Cavity Quantum Cascade Lasers with a Frequency-Shifted Feedback

    Directory of Open Access Journals (Sweden)

    Arkadiy Lyakh

    2016-04-01

    Full Text Available The recent demonstration of external cavity quantum cascade lasers with optical feedback, controlled by an acousto-optic modulator, paves the way to ruggedized infrared laser systems with the capability of tuning the emission wavelength on a microsecond scale. Such systems are of great importance for various critical applications requiring ultra-rapid wavelength tuning, including combustion and explosion diagnostics and standoff detection. In this paper, recent research results on these devices are summarized and the advantages of the new configuration are analyzed in the context of practical applications.

  2. Solvent effects on lasing characteristics for Rh B laser dye

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Jaison, E-mail: jaison.peter@gmail.com [International School of Photonics, Cochin University of Science and Technology, Cochin 682022 (India); Kumar, Mahesh [Department of Applied Chemistry, Cochin University of Science and Technology, Cochin 682022 (India); Ananad, V.R.; Saleem, Rasool; Sebastian, Ananthu; Radhakrishnan, P.; Nampoori, V.P.N.; Vallabhan, C.P.G. [International School of Photonics, Cochin University of Science and Technology, Cochin 682022 (India); Prabhu, Radhakrishna [School of Engineering, Robert Gordon University, Aberdeen AB10 1FR, Scotland (United Kingdom); Kailasnath, M. [International School of Photonics, Cochin University of Science and Technology, Cochin 682022 (India)

    2016-01-15

    We demonstrate pulsed, photopumped multimode laser emission in the visible spectral range from rhodamine B dye dissolved in various solvents. The laser emission is characterized by a well-defined, low threshold pump power at which the emission spectral intensity dramatically increases and collapsed into several dominant laser modes with reduced mode spacing and spectral width. The modes were found to originate from the subcavities formed by the plane-parallel walls of the cuvette containing the gain medium. The cavity lasing spectral structure and the numbers of longitudinal modes were easily controlled by changing the solvents. A shift in the emission spectra has been also observed by changing the solvents will allow a limited range of tuning of laser emission wavelength. We also determined the gain coefficient and stimulated emission cross-section for the Rh B dye dissolved liquid laser system. A detailed discussion of the solvent effect in the lasing characteristics of Rh B in different solution is explained along with the computational data. - Highlights: • Report multimode laser emission from rhodamine B dye dissolved in various solvents. • Modes are originated from the plane-parallel walls of the cuvette. • Spectral range and the number of modes can be controlled by changing the solvents. • Changing solvents also allows a limited range of tuning of laser emission.

  3. Surface properties tuning of welding electrode-deposited hardfacings by laser heat treatment

    Science.gov (United States)

    Oláh, Arthur; Croitoru, Catalin; Tierean, Mircea Horia

    2018-04-01

    In this paper, several Cr-Mn-rich hardfacings have been open-arc deposited on S275JR carbon quality structural steel and further submitted to laser treatment at different powers. An overall increase with 34-98% in the average microhardness and wear resistance of the coatings has been obtained, due to the formation of martensite, silicides, as well as simple and complex carbides on the surface of the hardfacings, in comparison with the reference, not submitted to laser thermal treatment. Surface laser treatment of electrode-deposited hardfacings improves their chemical resistance under corrosive saline environments, as determined by the 43% lower amount of leached iron and respectively, 28% lower amount of manganese ions leached in a 10% wt. NaCl aqueous solution, comparing with the reference hardfacings. Laser heat treatment also promotes better compatibility of the hardfacings with water-based paints and oil-based paints and primers, through the relative increasing in the polar component of the surface energy (with up to 65%) which aids both water and filler spreading on the metallic surface.

  4. Construction of a flash-photolysis apparatus having a short discharge time

    International Nuclear Information System (INIS)

    Devillers, C.

    1964-01-01

    Flash photolysis aims at reaching directly the primary mechanisms resulting from the action of light on an absorbent matter. This makes it necessary to produce a flash as short and as bright as possible. Our main effort was directed towards reducing the duration of the flash by decreasing the self-inductance of the discharge circuit. A description of this circuit and study of the characteristics of the apparatus are followed by a short description of the two analytical methods: flash spectrography and absorption spectrophotometry at a given wave-length. (author) [fr

  5. Laser-assisted shape selective fragmentation of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, P.V. [Wave Research Center, General Physics Institute of the Russian Academy of Sciences, 38, Vavilov street, 117942 Moscow (Russian Federation); Simakin, A.V. [Wave Research Center, General Physics Institute of the Russian Academy of Sciences, 38, Vavilov street, 117942 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center, General Physics Institute of the Russian Academy of Sciences, 38, Vavilov street, 117942 Moscow (Russian Federation)]. E-mail: shafeev@kapella.gpi.ru; Viau, G. [ITODYS, UMR 7086, Universite Paris 7-Denis Diderot, case 7090, 2 place Jussieu, 75251 Paris Cedex 05 (France); Soumare, Y. [ITODYS, UMR 7086, Universite Paris 7-Denis Diderot, case 7090, 2 place Jussieu, 75251 Paris Cedex 05 (France); Bozon-Verduraz, F. [ITODYS, UMR 7086, Universite Paris 7-Denis Diderot, case 7090, 2 place Jussieu, 75251 Paris Cedex 05 (France)

    2007-07-31

    Experimental results are presented on laser-assisted fragmentation of gold-containing nanoparticles suspended in liquids (either ethanol or water). Two kinds of nanoparticles are considered: (i) elongated Au nanorods synthesized by laser ablation of a gold target immersed in liquid phase; (ii) gold-covered NiCo nanorods with high aspect ratio ({theta} {approx} 10) synthesized by wet chemistry processes. The shape selectivity induced by laser fragmentation of these nanorods is gained via tuning the wavelength of laser radiation into different parts of the spectrum of their plasmon resonance corresponding to different aspect ratios {theta}. Fragmentation is performed using three laser wavelengths, involving a Cu vapour laser (510 and 578 nm) and a Nd:YAG (1064 nm). Nanoparticles are characterized by UV-vis spectrometry, Transmission Electron Microscopy (TEM). The effect of laser pulse duration (nanosecond against picosecond range) is also studied in the case of fragmentation with an IR laser radiation.

  6. Reflective variable optical attenuators and fibre ring lasers for wavelength-division multiplexing systems

    Science.gov (United States)

    Liu, He Liang

    Wavelength division multiplexing (WDM) optical fibre system is an important enabling technology to fulfill the demands for bandwidth in the modern information age. The main objective of this project is to study novel devices with the potential to enhance the performance of WDM systems. In particular, a novel reflective variable optical attenuator (RVOA) used for dynamic gain equalization (DGE) and fibre lasers based on an entirely new type of erbium-doped fibres with ultrawide tuning range were investigated theoretically and experimentally. We proposed a new type of RVOA device which could be potentially integrated with arrayed waveguide grating (AWG) to reduce the cost of DGE substantially. Initially, fibre-based RVOAs, fabricated with optical fibre components such as fibre coupler and Faraday rotator mirror, were investigated theoretically and experimentally. Larger attenuation range up to 22 dB was realized for fibre coupler-based ROVA with a Faraday rotator mirror and its polarization-dependent loss is about 0.5 dB. Then polymeric waveguide-based RVOAs were investigated theoretically and experimentally. Using an epoxy Novolak resin as core material and an UV-cured resin (Norland's NOA61) as cladding material, a polymeric waveguide RVOA was successfully fabricated. The dynamic 15 dB attenuation range was achieved and the PDL was less than 0.2 dB. The measured insertion loss of the polymeric waveguide RVOA was too large (about 18 dB) and was mainly induced by coupling loss, material loss and poor alignment. In the second part of the study, fibre ring lasers with continuous wavelength tuning over wide wavelength range and fibre ring lasers with discrete wavelength tuning were investigated. Tunable lasers are important devices in WDM systems because they could be employed as reserved sources and therefore avoiding the need to stock large inventory of lasers to cover the ITU-wavelength grid. In this project, erbium ions doped bismuth oxide glass fibres instead of

  7. Stabilization in laser wavelength semiconductor with fiber optical amplifier application doped with erbium

    International Nuclear Information System (INIS)

    Camas, J.; Anzueto, G.; Mendoza, S.; Hernandez, H.; Garcia, C.; Vazquez, R.

    2009-01-01

    In this work, we present a novel electronic design of a DC source, which automatically controls the temperature of a tunable laser. The temperature change in the laser is carried out by the control of DC that circulates through a cooling stage where the laser is set. The laser can be tuned in a wavelength around 1550 nm. Its application is in Erbium Doped Fiber Amplifier (EDFA) in reflective configuration. (Author)

  8. Primary photochemical processes for Pt(iv) diazido complexes prospective in photodynamic therapy of tumors.

    Science.gov (United States)

    Shushakov, Anton A; Pozdnyakov, Ivan P; Grivin, Vjacheslav P; Plyusnin, Victor F; Vasilchenko, Danila B; Zadesenets, Andrei V; Melnikov, Alexei A; Chekalin, Sergey V; Glebov, Evgeni M

    2017-07-25

    Diazide diamino complexes of Pt(iv) are considered as prospective prodrugs in oxygen-free photodynamic therapy (PDT). Primary photophysical and photochemical processes for cis,trans,cis-[Pt(N 3 ) 2 (OH) 2 (NH 3 ) 2 ] and trans,trans,trans-[Pt(N 3 ) 2 (OH) 2 (NH 3 ) 2 ] complexes were studied by means of stationary photolysis, nanosecond laser flash photolysis and ultrafast kinetic spectroscopy. The process of photolysis is multistage. The first stage is the photosubstitution of an azide ligand to a water molecule. This process was shown to be a chain reaction involving redox stages. Pt(iv) and Pt(iii) intermediates responsible for the chain propagation were recorded using ultrafast kinetic spectroscopy and nanosecond laser flash photolysis. The mechanism of photosubstitution is proposed.

  9. Ultraviolet SO lasers optically pumped by a tunable, line-narrowed KrF laser

    International Nuclear Information System (INIS)

    Stuart, B.C.D.

    1992-06-01

    The feasibility of an ultraviolet energy storage laser based on the long-lived sulfur monoxide A 3 π-χ 3 Σ - electronic transition was investigated, and an ultraviolet laser based on the short-lived SO(B 3 Σ - -χ 3 Σ - ) transition was demonstrated and modeled. Both were optically pumped by a continuously tunable, line-narrowed KrF laser developed for efficient rotationally resolved excitation of SO. SO was produced by both microwave discharge and excimer laser photolysis of the precursor molecules SO 2 and SOCl 2 , with a maximum SO concentration (10 16 cm -3 ) generated by ArF (193 nm) photodissociation of SO 2 . Laser induced fluorescence of SO was used to study the excitation spectroscopy, vibrational branching ratios, lifetimes and deactivation rates. The radiative lifetime of SO(A 3 π 2 ,v' = 5) was measured to be 6.9 μs and that of SO(B,v' = 1) to be 33 ns. Lifetimes in the highly perturbed SO(B,v' = 2) level ranged from 28--90 ns. Measurements and modeling of the excitation saturation fluence as a function of buffer gas pressure determined what fraction of the ground state SO(X) molecules could be excited to SO(A) or SO(B). No evidence of excited state absorption was seen. Lasing on six new ultraviolet SO(B-X) vibrational bands in the range 262--315 nm was demonstrated. SO(B-X) pulse energies of up to 11 μJ were obtained and the gain coefficient was estimated to be 0.1 cm -1 . A multi-level rate equation model of the SO(B-X) excitation and lasing transitions, including collisional rotational mixing, described the dynamics of the lasing and measured output very well. Modeling showed and experiments confirmed that the maximum possible SO laser gain simply corresponded to saturating the excitation of a single rotational level. Collisional coupling of the rotational levels increased the laser output energy

  10. Frequency-modulated laser ranging sensor with closed-loop control

    Science.gov (United States)

    Müller, Fabian M.; Böttger, Gunnar; Janeczka, Christian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Schneider-Ramelow, Martin

    2018-02-01

    Advances in autonomous driving and robotics are creating high demand for inexpensive and mass-producible distance sensors. A laser ranging system (Lidar), based on the frequency-modulated continuous-wave (FMCW) method is built in this work. The benefits of an FMCW Lidar system are the low-cost components and the performance in comparison to conventional time-of-flight Lidar systems. The basic system consists of a DFB laser diode (λ= 1308 nm) and an asymmetric fiber-coupled Mach-Zehnder interferometer with a fixed delay line in one arm. Linear tuning of the laser optical frequency via injection current modulation creates a beat signal at the interferometer output. The frequency of the beat signal is proportional to the optical path difference in the interferometer. Since the laser frequency-to-current response is non-linear, a closed-loop feed-back system is designed to improve the tuning linearity, and consequently the measurement resolution. For fast active control, an embedded system with FPGA is used, resulting in a nearly linear frequency tuning, realizing a narrow peak in the Fourier spectrum of the beat signal. For free-space measurements, a setup with two distinct interferometers is built. The fully fiber-coupled Mach-Zehnder reference interferometer is part of the feed-back loop system, while the other - a Michelson interferometer - has a free-space arm with collimator lens and reflective target. A resolution of 2:0 mm for a 560 mm distance is achieved. The results for varying target distances show high consistency and a linear relation to the measured beat-frequency.

  11. Commissioning of Japanese x-ray free electron laser, SACLA and achieved laser performance

    International Nuclear Information System (INIS)

    Tanaka, Hitoshi; Amselem, Arnaud; Aoyagi, Hideki

    2012-01-01

    After 8 months of beam commissioning of SPring-8 Angstrom Compact free electron LAser, SACLA reached the primary target performance, i.e., a shortest laser wavelength of ∼0.6 Angstrom and a laser pulse energy value of sub-mJ at a wavelength of 1.2 Angstrom. This success was due to the following four factors; (1) performance estimation of each component of SACLA required for the target laser performance and its achievement, (2) elaboration of beam diagnostics and control systems enabling precise accelerator and undulator tuning, (3) a rational and strategic commissioning plan, (4) most adequate response to various accidental events during the beam commissioning period. This article, in order to light up the above four factors leading us to the success, starts with the features of SACLA and critical tolerance for the sub-system components, and then, explains our approach to achieve the target laser performance and how the beam commissioning of SACLA proceeded. At last, the article summarizes the present laser and operational status. (author)

  12. 2-Shock layered tuning campaign

    Science.gov (United States)

    Masse, Laurent; Dittrich, T.; Khan, S.; Kyrala, G.; Ma, T.; MacLaren, S.; Ralph, J.; Salmonson, J.; Tipton, R.; Los Alamos Natl Lab Team; Lawrence Livermore Natl Lab Team

    2016-10-01

    The 2-Shock platform has been developed to maintain shell sphericity throughout the compression phase of an indirect-drive target implosion and produce a stagnating hot spot in a quasi 1D-like manner. A sub-scale, 1700 _m outer diameter, and thick, 200 _m, uniformly Silicon doped, gas-filled plastic capsule is driven inside a nominal size 5750 _m diameter ignition hohlraum. The hohlraum fill is near vacuum to reduce back-scatter and improve laser/drive coupling. A two-shock pulse of about 1 MJ of laser energy drives the capsule. The thick capsule prevents ablation front feed-through to the imploded core. This platform has demonstrated its efficiency to tune a predictable and reproducible 1-D implosion with a nearly round shape. It has been shown that the high foot performance was dominated by the local defect growth due to the ablation front instability and by the hohlraum radiation asymmetries. The idea here is to take advantage of this 2-Shock platform to design a 1D-like layered implosion and eliminates the deleterious effects of radiation asymmetries and ablation front instability growth. We present the design work and our first experimental results of this near one-dimensional 2-Shock layered design. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  13. Optimization Performance of a CO[subscript 2] Pulsed Tuneable Laser

    Science.gov (United States)

    Ribeiro, J. H. F.; Lobo, R. F. M.

    2009-01-01

    In this paper, a procedure is presented that will allow (i) the power and (ii) the energy of a pulsed and tuneable TEA CO[subscript 2] laser to be optimized. This type of laser represents a significant improvement in performance and portability. Combining a pulse mode with a grating tuning facility, it enables us to scan the working wavelength…

  14. Solid state lasers II; Proceedings of the Meeting, Los Angeles, CA, Jan. 24, 25, 1991

    International Nuclear Information System (INIS)

    Dube, G.

    1991-01-01

    Topics presented include an upgrade of the LLNL Nova laser for inertial confinement fusion, the design and energy characteristics of a multisegment glass-disk amplifier, a wavemeter for tuning solid state lasers, and the fabrication of laser materials by laser-heated pedestal growth. Also presented are the suppression of relaxation oscillations in flash-pumped 2-micron lasers, diode pumping of tunable Cr-doped lasers, 2D periodic structures in a solid state laser resonator, and single-frequency solid state lasers and amplifiers

  15. Cyclotron resonance cooling by strong laser field

    International Nuclear Information System (INIS)

    Tagcuhi, Toshihiro; Mima, Kunioka

    1995-01-01

    Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers

  16. Dual-wavelength high-power diode laser system based on an external-cavity tapered amplifier with tunable frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2012-01-01

    knowledge, this is the broadest tuning range of the frequency difference from a dual-wavelength diode laser system. The spectrum, output power, and beam quality of the diode laser system are characterized. The power stability of each wavelength is measured, and the power fluctuations of the two wavelengths......A dual-wavelength high-power semiconductor laser system based on a tapered amplifier with double-Littrow external cavity is demonstrated around 800 nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 10.0 THz. To our...

  17. Tunable eye-safe Er:YAG laser

    International Nuclear Information System (INIS)

    Němec, M; Šulc, J; Indra, L; Fibrich, M; Jelínková, H

    2015-01-01

    Er:YAG crystal was investigated as the gain medium in a diode (1452 nm) pumped tunable laser. The tunability was reached in an eye-safe region by an intracavity birefringent filter. The four tuning bands were obtained peaking at wavelengths 1616, 1632, 1645, and 1656 nm. The broadest continuous tunability was 6 nm wide peaking at 1616 nm. The laser was operating in a pulsed regime (10 ms pulse length, 10 Hz repetition rate). The maximum mean output power was 26.5 mW at 1645 nm. The constructed system demonstrated the tunability of a resonantly diode-pumped Er:YAG laser which could be useful in the development of compact diode-pumped lasers for spectroscopic applications. (paper)

  18. Wide range optofluidically tunable multimode interference fiber laser

    International Nuclear Information System (INIS)

    Antonio-Lopez, J E; LiKamWa, P; Sanchez-Mondragon, J J; May-Arrioja, D A

    2014-01-01

    An optofluidically tunable fiber laser based on multimode interference (MMI) effects with a wide tuning range is proposed and demonstrated. The tunable mechanism is based on an MMI fiber filter fabricated using a special fiber known as no-core fiber, which is a multimode fiber (MMF) without cladding. Therefore, when the MMI filter is covered by liquid the optical properties of the no-core fiber are modified, which allow us to tune the peak wavelength response of the MMI filter. Rather than applying the liquid on the entire no-core fiber, we change the liquid level along the no-core fiber, which provides a highly linear tuning response. In addition, by selecting the adequate refractive index of the liquid we can also choose the tuning range. We demonstrate the versatility of the optofluidically tunable MMI filter by wavelength tuning two different gain media, erbium doped fiber and a semiconductor optical amplifier, achieving tuning ranges of 55 and 90 nm respectively. In both cases, we achieve side-mode suppression ratios (SMSR) better than 50 dBm with output power variations of less than 0.76 dBm over the whole tuning range. (paper)

  19. Laser assisted fabrication of random rough surfaces for optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Brissonneau, V., E-mail: vincent.brissonneau@im2np.fr [Thales Optronique SA, Avenue Gay-Lussac, 78995 Elancourt (France); Institut Materiaux Microelectronique Nanosciences de Provence, Aix Marseille Universite, Avenue Escadrille Normandie Niemen, 13397 Marseille (France); Escoubas, L. [Institut Materiaux Microelectronique Nanosciences de Provence, Aix Marseille Universite, Avenue Escadrille Normandie Niemen, 13397 Marseille (France); Flory, F. [Institut Materiaux Microelectronique Nanosciences de Provence, Ecole Centrale Marseille, Marseille (France); Berginc, G. [Thales Optronique SA, Avenue Gay-Lussac, 78995 Elancourt (France); Maire, G.; Giovannini, H. [Institut Fresnel, Aix Marseille Universite, Avenue Escadrille Normandie Niemen, 13397 Marseille (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Random rough surfaces are photofabricated using an argon ion laser. Black-Right-Pointing-Pointer Speckle and surface correlation function are linked. Black-Right-Pointing-Pointer Exposure beam is modified allowing tuning the correlation. Black-Right-Pointing-Pointer Theoretical examples are presented. Black-Right-Pointing-Pointer Experimental results are compared with theoretical expectation. - Abstract: Optical surface structuring shows great interest for antireflective or scattering properties. Generally, fabricated surface structures are periodical but random surfaces that offer new degrees of freedom and possibilities by the control of their statistical properties. We propose an experimental method to create random rough surfaces on silicon by laser processing followed by etching. A photoresist is spin coated onto a silicon substrate and then exposed to the scattering of a modified laser beam. The beam modification is performed by using a micromirror matrix allowing laser beam shaping. An example of tuning is presented. An image composed of two white circles with a black background is displayed and the theoretical shape of the correlation is calculated. Experimental surfaces are elaborated and the correlation function calculated from height mapping. We finally compared the experimental and theoretical correlation functions.

  20. iTunes music

    CERN Document Server

    Katz, Bob

    2013-01-01

    Apple's exciting new Mastered for iTunes (MFiT) initiative, introduced in early 2012, introduces new possibilities for delivering high-quality audio. For the first time, record labels and program producers are encouraged to deliver audio materials to iTunes in a high resolution format, which can produce better-sounding masters. In iTunes Music, author and world-class mastering engineer Bob Katz starts out with the basics, surveys the recent past, and brings you quickly up to the present-where the current state of digital audio is bleak. Katz explains the evolution of

  1. Widely tunable asymmetric long-period fiber grating with high sensitivity using optical polymer on laser-ablated cladding.

    Science.gov (United States)

    Chen, Nan-Kuang; Hsu, Der-Yi; Chi, Sien

    2007-08-01

    We demonstrate high-efficiency, wideband-tunable, laser-ablated long-period fiber gratings that use an optical polymer overlay. Portions of the fiber cladding are periodically removed by CO(2) laser pulses to induce periodic index changes for coupling the core mode into cladding modes. An optical polymer with a high thermo-optic coefficient with a dispersion distinct from that of silica is used on a deep-ablated cladding structure so that the effective indices of cladding modes become dispersive and the resonant wavelengths can be efficiently tuned. The tuning efficiency can be as high as 15.8 nm/ degrees C, and the tuning range can be wider than 105 nm (1545-1650 nm).

  2. Automation of the positioning of a laser anemometer flow rate measurement bench; Automatisation du positionnement d`un banc de mesure de vitesses d`ecoulements par anemometrie laser

    Energy Technology Data Exchange (ETDEWEB)

    Gobillot, G

    1998-01-24

    The laser anemometry technique is commonly used by the Core Hydraulics Laboratory of the CEA for the determination of the field of flow rates inside fuel rod bundles. The adjustment of measurement point coordinates represents an important part of the velocimetry campaign. In order to increase the number of measurements and the preciseness of the positioning operation, the automation of these preliminary tasks was decided. This work describes first the principle of Doppler laser velocimetry, the components of the measurement system and their functioning conditions. Then, the existing software for tuning and measurement is presented. A new software, called PAMELA, for the automatic positioning of the laser anemometer using a moving table with 5 degrees of freedom, has been developed and tested. This software, written with the LabView language, advises the operator, drives the bench and executes the tunings with a greater precision than manually. (J.S.) 16 refs.

  3. Nitrate photolysis in salty snow

    Science.gov (United States)

    Donaldson, D. J.; Morenz, K.; Shi, Q.; Murphy, J. G.

    2016-12-01

    Nitrate photolysis from snow can have a significant impact on the oxidative capacity of the local atmosphere, but the factors affecting the release of gas phase products are not well understood. Here, we report the first systematic study of the amounts of NO, NO2, and total nitrogen oxides (NOy) emitted from illuminated snow samples as a function of both nitrate and total salt (NaCl and Instant Ocean) concentration. We show that the release of nitrogen oxides to the gas phase is directly related to the expected nitrate concentration in the brine at the surface of the snow crystals, increasing to a plateau value with increasing nitrate, and generally decreasing with increasing NaCl or Instant Ocean (I.O.). In frozen mixed nitrate (25 mM) - salt (0-500 mM) solutions, there is an increase in gas phase NO2 seen at low added salt amounts: NO2 production is enhanced by 35% at low prefreezing [NaCl] and by 70% at similar prefreezing [I.O.]. Raman microscopy of frozen nitrate-salt solutions shows evidence of stronger nitrate exclusion to the air interface in the presence of I.O. than with added NaCl. The enhancement in nitrogen oxides emission in the presence of salts may prove to be important to the atmospheric oxidative capacity in polar regions.

  4. Vibrational relaxation of CDCl3 induced by infrared laser radiation

    International Nuclear Information System (INIS)

    Alvarez, R.F.; Azcarate, M.L.; Alonso, E.M.; Dangelo, R.J.; Quel, E.J.

    1990-01-01

    A CO 2 TEA laser was used to excite mode ν 4 of CDCl 3 (914cm- 1 ). The laser was constructed at the laboratory, tuned in line 10P(48), (10.91 μm). Infrared fluorescence technique was used to determine V-T/R relaxation times for CDCl 3 both pure and in Ar mixtures. (Author). 9 refs., 3 figs

  5. Java performance tuning

    CERN Document Server

    Shirazi, Jack

    2003-01-01

    Performance has been an important issue for Java developers ever since the first version hit the streets. Over the years, Java performance has improved dramatically, but tuning is essential to get the best results, especially for J2EE applications. You can never have code that runs too fast. Java Peformance Tuning, 2nd edition provides a comprehensive and indispensable guide to eliminating all types of performance problems. Using many real-life examples to work through the tuning process in detail, JPT shows how tricks such as minimizing object creation and replacing strings with arrays can

  6. Generation and photosensitization properties of the oxidized radical of riboflavin: a laser flash photolysis study

    International Nuclear Information System (INIS)

    Han Zhenhui; Lu Changyuan; Wang Wenfeng; Lin Weizhen; Yao Side; Lin Nianyun

    2000-01-01

    Direct excitation of riboflavin with 248 nm laser gives rise to a transient absorption spectrum with contributions from (1) oxidized radical, (2) hydrated electron, (3) triplet state and reduced radical, and distinction between the transient species below 360 nm is difficult for the absorption overlapped. The RF ·+ or RF(-H) · has been clearly produced via direct photoionization by 248 nm laser in aqueous solution, which has been unambiguously identified by SO 4 ·- radical oxidation, although its transient absorption can not be observed clearly for both lower absorption coefficient (ε = 2000 dm 3 mol -1 cm -1 at 640 nm at pH 7.1) and overlap from others. In the present paper, electron transfer from purine and pyrimidine nucleotides to one-electron oxidized radical of riboflavin were observed for the first time in aqueous solution, and the reaction rate constants were determined respectively, which would obviously be of considerable significance in vivo and in vitro. The results clearly demonstrate the importance of oxidized radical of riboflavin in flavin photochemistry and photobiology. These reaction paths are important for the elucidation of the interaction between riboflavin and DNA nucleotides under photoexcitation. When riboflavin was excited, triplet state and oxidized radical can be formed directly or by sequence reactions of triplet state. In the presence of DNA, electron transfer can take place to form a base radical cation, then hole migration to GG step along base-stacking of DNA leads to DNA strand scission, which has been verified by many steady product analysis. This selective cleavage of DNA shows the potential application of riboflavin as a site-specify photonuclease, which has become a highlight' in the currently photochemistry, photomedicine and photobiology areas. The mechanism implies that riboflavin can be applied potentially to photosensitization of oxygen deficient or under high intensity pulsed laser irradiation. (author)

  7. Mixed garnet laser crystals for water vapour DIAL transmitter

    Science.gov (United States)

    Treichel, Rainer; Czeranowsky, Christoph; Ileri, Bilge; Petermann, Klaus; Huber, Günter

    2017-11-01

    There are more or less well established technologies such as the optical-parametric-oscillator (OPO), the Raman-laser, and the Ti-Sapphire laser, which are able to emit laser light in the region of the water vapour absorption lines. For WALES the regions of about 935 nm, 942 nm, and 944 nm have been identified as the most suitable wavelength ranges. However, each of these laser designs is highly sophisticated. Current baseline for WALES is the Ti-Sapphire laser. A fourth possibility to achieve these wavelength ranges is to shift the groundstate laser lines (938 nm and 946 nm) of the Nd:YAG laser by replacing Aluminium and Yttrium by other rare earth elements. Changes of the host lattice characteristics lead to a shift of the upper and lower laser levels. These modified crystals are summarized under the name of "Mixed Garnet" crystals. Only the Mixed Garnet lasers can be pumped directly with diode laser and use a direct approach to generate the required laser pulses without frequency conversion. Therefore no additional non-linear crystals are needed and a higher electric to optical efficiency is expected as well as single frequency operation using spectral tuning elements like etalons. Such lasers have the great potential to fulfil the requirements and to become the preferred transmitter concept for WALES as well as for follow up missions. Within a ESA study several crystal compositions have been grown, spectrally characterised and analysed. Absorbed space radiation energy in the crystal lattice causes colour centres, which can reabsorb the pump and laser wavelength and consequently reduce the laser gain considerably. Co-dopants such as Chromium and Cerium are able to suppress the colour centres and are candidates for effective radiation hardening. The results of the crystal tuning, the co-doping with different radiation hardeners and the radiation tests will be presented. There applicability for a space based water vapour DIAL transmitter will be discussed.

  8. Laser-induced atomic assembling of periodic layered nanostructures of silver nanoparticles in fluoro-polymer film matrix

    International Nuclear Information System (INIS)

    Bagratashvili, V N; Minaev, N V; Timashev, P S; Yusupov, V I; Rybaltovsky, A O; Firsov, V V

    2010-01-01

    Fluorinated acrylic polymer (FAP) films have been impregnated with silver precursor (Ag(hfac)COD) by supercritical fluid technique and next irradiated with laser (λ = 532 nm). Laser-chemically reduced Ag atoms have been assembled into massifs of Ag nanoparticles (3 – 8 nm) in FAP/Ag(hfac)COD films matrix in the form of periodic layered nanostructures (horizontal to film surface) with unexpectedly short period (90 – 180 nm). The wavelet analysis of TEM images reveals the existence of even shorter-period structures in such films. Photolysis with non-coherent light or pyrolysis of FAP/Ag(hfac)COD film results in formation of Ag nanoparticles massifs but free of any periodic nanoparticle assemblies. Our interpretation of the observed effect of laser formation of short-period nano-sized Ag nanoparticle assemblies is based on self-enhanced interference process in the course of modification of optical properties of film

  9. Remote tuning of NMR probe circuits.

    Science.gov (United States)

    Kodibagkar, V D; Conradi, M S

    2000-05-01

    There are many circumstances in which the probe tuning adjustments cannot be located near the rf NMR coil. These may occur in high-temperature NMR, low-temperature NMR, and in the use of magnets with small diameter access bores. We address here circuitry for connecting a fixed-tuned probe circuit by a transmission line to a remotely located tuning network. In particular, the bandwidth over which the probe may be remotely tuned while keeping the losses in the transmission line acceptably low is considered. The results show that for all resonant circuit geometries (series, parallel, series-parallel), overcoupling of the line to the tuned circuit is key to obtaining a large tuning bandwidth. At equivalent extents of overcoupling, all resonant circuit geometries have nearly equal remote tuning bandwidths. Particularly for the case of low-loss transmission line, the tuning bandwidth can be many times the tuned circuit's bandwidth, f(o)/Q. Copyright 2000 Academic Press.

  10. In-fiber modal interferometer based on multimode and double cladding fiber segments for tunable fiber laser applications

    Science.gov (United States)

    Prieto-Cortés, P.; Álvarez-Tamayo, R. I.; Durán-Sánchez, M.; Castillo-Guzmán, A.; Salceda-Delgado, G.; Ibarra-Escamilla, B.; Kuzin, E. A.; Barcelata-Pinzón, A.; Selvas-Aguilar, R.

    2018-02-01

    We report an in-fiber structure based on the use of a multimode fiber segment and a double cladding fiber segment, and its application as spectral filter in an erbium-doped fiber laser for selection and tuning of the laser line wavelength. The output transmission of the proposed device exhibit spectrum modulation of the input signal with free spectral range of 21 nm and maximum visibility enhanced to more than 20 dB. The output spectrum of the in-fiber filter is wavelength displaced by bending application which allows a wavelength tuning of the generated laser line in a range of 12 nm. The use of the proposed in-fiber structure is demonstrated as a reliable, simple, and low-cost wavelength filter for tunable fiber lasers design and optical instrumentation applications.

  11. Iodine-stabilized single-frequency green InGaN diode laser.

    Science.gov (United States)

    Chen, Yi-Hsi; Lin, Wei-Chen; Shy, Jow-Tsong; Chui, Hsiang-Chen

    2018-01-01

    A 520-nm InGaN diode laser can emit a milliwatt-level, single-frequency laser beam when the applied current slightly exceeds the lasing threshold. The laser frequency was less sensitive to diode temperature and could be finely tuned by adjusting the applied current. Laser frequency was stabilized onto a hyperfine component in an iodine transition through the saturated absorption spectroscopy. The uncertainty of frequency stabilization was approximately 8×10 -9 at a 10-s integration time. This compact laser system can replace the conventional green diode-pumped solid-state laser and applied as a frequency reference. A single longitudinal mode operational region with diode temperature, current, and output power was investigated.

  12. A digital intensity stabilization system for HeNe laser

    Science.gov (United States)

    Wei, Zhimeng; Lu, Guangfeng; Yang, Kaiyong; Long, Xingwu; Huang, Yun

    2012-02-01

    A digital intensity stabilization system for HeNe laser is developed. Based on a switching power IC to design laser power supply and a general purpose microcontroller to realize digital PID control, the system constructs a closed loop to stabilize the laser intensity by regulating its discharge current. The laser tube is made of glass ceramics and its integrated structure is steady enough to eliminate intensity fluctuations at high frequency and attenuates all intensity fluctuations, and this makes it easy to tune the control loop. The control loop between discharge current and photodiode voltage eliminates the long-term drifts. The intensity stability of the HeNe laser with this system is 0.014% over 12 h.

  13. Second harmonic generation of frequency-locked pulsed dye laser for selective photoionization of T1-203 isotope

    International Nuclear Information System (INIS)

    Lim, Gwon; Jeong, Do Young; Ko, Kwang Hoon; Kim, Jae Woo; Kim, Taek Soo; Rho, Sipyo; Kim, Cheol Jung

    2003-01-01

    We have constructed the frequency-locked pulsed dye laser system. It is composed with a GIM-type oscillator and 3 stage longitudinally pumped amplifiers. The pump laser is the second harmonic of pulse Nd:YAG laser at the repetition rate of 6 kHz. Frequency-locking of dye laser oscillator is actively controlled by the feedback loop between a photoionization signal of T1-203 isotope and a wavelength tuning control. The tuning mirror rotates the order of micro degree per a step of step motor. Feedback system for frequency locking is operated with a PC-based control interface, including the data analysis of photoionization signals and the wavelength control using step pumping method for a medical application. Therefor, the dye laser has to be locked at 583.66 nm for SHG or BBO crystal. With the frequency-locking system, the photoionization experiment has been done for more than 10 hours.

  14. Optically pumped FIR lasers and their application in plasma diagnostics

    International Nuclear Information System (INIS)

    Bakos, J.S.

    1986-06-01

    The pysics and the construction of the far infrared lasers (FIRL) and of the infrared lasers pumping them are reviewed. The details of the construction, resonating and pumping systems, spectral and power characteristics of the FIRLs are discussed. Recently more than 1000 laser lines are known and used in the 27-80 mm wavelength range, but in many cases the laser kinetics are not fully understood, and some instability phenomena cannot be prevented. New nonlinear processes were found: two-photon pumping, hyper Raman laser tuning and relaxation phenomena. A broad application field, the plasma diagnostics by far infrared lasers is described. Scattering of infrared laser radiation can give new interesting information on the not understood effect of the anomalous transport in the high temperature plasma. (D.Gy.)

  15. Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability

    Science.gov (United States)

    Parali, Ufuk; Sheng, Xin; Minassian, Ara; Tawy, Goronwy; Sathian, Juna; Thomas, Gabrielle M.; Damzen, Michael J.

    2018-03-01

    We report the first experimental demonstration of a wavelength tunable passively Q-switched red-diode-end pumped Alexandrite laser using a semiconductor saturable absorber mirror (SESAM). We present the results of the study of passive SESAM Q-switching and wavelength-tuning in continuous diode-pumped Alexandrite lasers in both linear cavity and X-cavity configurations. In the linear cavity configuration, pulsed operation up to 27 kHz repetition rate in fundamental TEM00 mode was achieved and maximum average power was 41 mW. The shortest pulse generated was 550 ns (FWHM) and the Q-switched wavelength tuning band spanned was between 740 nm and 755 nm. In the X-cavity configuration, a higher average power up to 73 mW, and obtained with higher pulse energy 6 . 5 μJ at 11.2 kHz repetition rate, in fundamental TEM00 mode with excellent spatial quality M2 < 1 . 1. The Q-switched wavelength tuning band spanned was between 775 nm and 781 nm.

  16. Discretely tunable micromachined injection-locked lasers

    International Nuclear Information System (INIS)

    Cai, H; Yu, M B; Lo, G Q; Kwong, D L; Zhang, X M; Liu, A Q; Liu, B

    2010-01-01

    This paper reports a micromachined injection-locked laser (ILL) to provide tunable discrete wavelengths. It utilizes a non-continuously tunable laser as the master to lock a Fabry–Pérot semiconductor laser chip. Both lasers are integrated into a deep-etched silicon chip with dimensions of 3 mm × 3 mm × 0.8 mm. Based on the experimental results, significant improvements in the optical power and spectral purity have been achieved in the fully locked state, and optical hysteresis and bistability have also been observed in response to the changes of the output wavelength and optical power of the master laser. As a whole system, the micromachined ILL is able to provide single mode, discrete wavelength tuning, high power and direct modulation with small size and single-chip solution, making it promising for advanced optical communications such as wavelength division multiplexing optical access networks.

  17. Laser impulse coupling at 130 fs

    International Nuclear Information System (INIS)

    Phipps, C.; Luke, J.; Funk, D.; Moore, D.; Glownia, J.; Lippert, T.

    2006-01-01

    We measured the momentum coupling coefficient C m and laser-generated ion drift velocity and temperature in the femtosecond (fs) region, over a laser intensity range from ablation threshold to about one hundred times threshold. Targets were several pure metals and three organic compounds. The organic compounds were exothermic polymers specifically developed for the micro-laser plasma thruster, and two of these used 'tuned absorbers' rather than carbon particles for laser absorption. The metals ranged from Li to W in atomic weight. We measured time of flight (TOF) profiles for ions. Specific impulse reached record values for this type of measurement and ablation efficiency was near 100%. These measurements extend the laser pulsewidth three orders of magnitude downward in pulsewidth relative to previous reports. Over this range, we found C m to be essentially constant. Ion velocity ranged from 60 to 180 km/s

  18. Prompt and delayed excitation and photolysis of cesium dimers

    International Nuclear Information System (INIS)

    Davanloo, F.; Collins, C.B.; Inamdar, A.S.; Mehendale, N.Y.; Nagvi, A.S.

    1984-01-01

    In this work a time-delayed, double resonance technique was used for the study of the state selective photolysis of Cs 2 excited in the yellow range of visible wavelengths. Particular attention being placed on the production of the fine structure components of the 5 2 D and 6 2 P states of Cs and upon the lifetimes of the product populations in the cesium vapor. A quantitative model was constructed to fit the data and rate coefficients were extracted for processes tending to attenuate the product state selectivity. Reported here is what appears to be the first value for the fine-structure mixing cross section for Cs(5 2 D5/2 → 5 2 D 3 /sub 3/2/) of 17 A 2 +-50%, close to the geometric cross section

  19. Widely tunable quantum cascade laser-based terahertz source.

    Science.gov (United States)

    Danylov, Andriy A; Light, Alexander R; Waldman, Jerry; Erickson, Neal; Qian, Xifeng

    2014-07-10

    A compact, tunable, ultranarrowband terahertz source, Δν∼1  MHz, is demonstrated by upconversion of a 2.324 THz, free-running quantum cascade laser with a THz Schottky-diode-balanced mixer using a swept, synthesized microwave source to drive the nonlinearity. Continuously tunable radiation of 1 μW power is demonstrated in two frequency regions: ν(Laser) ± 0 to 50 GHz and ν(Laser) ± 70 to 115 GHz. The sideband spectra were characterized with a Fourier-transform spectrometer, and the radiation was tuned through CO, HDO, and D2O rotational transitions.

  20. Gas phase radiolysis and vacuum ultraviolet photolysis of heterocyclic organic compounds. Progress report, February 1, 1974--February 1, 1975

    International Nuclear Information System (INIS)

    Scala, A.A.; Salomon, D.; Colon, I.; D'Angona, J.

    1975-01-01

    In the γ radiolysis of tetrahydrofuran there are pronounced density effects in the pressure range from 0 to 50 Torr with the most important ion-pair yields decreasing as the pressure increases. The relative product yields of the radiolysis is compared with that of xenon photolysis. Possible mechanisms to explain the results obtained are discussed. The ion-pair yields from the γ radiolysis of the heterocyclic amines, ethylenimine, azetidine, pyrrolidine, and piperidine, are determined, and the pressure effects are evaluated. Reactions mechanisms are discussed. The vacuum ultraviolet photolysis products of thietane and tetrahydrothiophene are studied and compared with the γ radiolysis products. Reaction mechanisms are discussed. The status of the construction of a photoionization mass spectrometer and the measurement of the ionization efficiencies and extinction coefficients of organic compounds is reported. (U.S.)

  1. Frequency locking of compact laser-diode modules at 633 nm

    Science.gov (United States)

    Nölleke, Christian; Leisching, Patrick; Blume, Gunnar; Jedrzejczyk, Daniel; Pohl, Johannes; Feise, David; Sahm, Alexander; Paschke, Katrin

    2018-02-01

    This work reports on a compact diode-laser module emitting at 633 nm. The emission frequency can be tuned with temperature and current, while optical feedback of an internal DBR grating ensures single-mode operation. The laser diode is integrated into a micro-fabricated package, which includes optics for beam shaping, a miniaturized optical isolator, and a vapor cell as frequency reference. The achieved absolute frequency stability is below 10-8 , while the output power can be more than 10 mW. This compact absolute frequency-stabilized laser system can replace gas lasers and may be integrated in future quantum technology devices.

  2. A reliable, compact and low-cost Michelson wavemeter for laser wavelength measurement

    International Nuclear Information System (INIS)

    Fox, P.J.; Scholten, R.E.; Walkiewicz, M.R.; Drullinger, R.E.

    1998-01-01

    We describe the construction and operation of a simple, compact and cost effective Michelson wavemeter with picometer accuracy. The low cost of the device means that it can form the basis of an undergraduate laboratory experiment, yet it is sufficiently reliable and accurate that it has become an important tool in our research laboratory, where it is regularly used to tune lasers to atomic transitions. The usefulness and accuracy of the wavemeter is demonstrated by tuning two separate extended cavity diode lasers to achieve two-step excitation of the Rb 5 2 D state, observed by detecting 420 nm blue fluorescence from the 5 2 D → 6 2 P → 5 2 S decay path. (authors)

  3. ULTRAVIOLET TRANSITIONS IN EUROPIUM STUDIED WITH A FREQUENCY-DOUBLED CW RING DYE-LASER

    NARCIS (Netherlands)

    Eliel, E.R.; Hogervorst, W.; van Leeuwen, K.A.H.; Post, B.H.

    1981-01-01

    High resolution laser spectroscopy has been applied to the study of three ultraviolet transitions in Europium at λ = 294.8, 295.1 and 295.8 nm. The tunable narrowband UV has been generated by intracavity frequency doubling in a cw ring dye laser using a temperate tuned, Brewster angled ADA crystal.

  4. Alternative laser system for cesium magneto-optical trap via optical injection locking to sideband of a 9-GHz current-modulated diode laser.

    Science.gov (United States)

    Diao, Wenting; He, Jun; Liu, Zhi; Yang, Baodong; Wang, Junmin

    2012-03-26

    By optical injection of an 852-nm extended-cavity diode laser (master laser) to lock the + 1-order sideband of a ~9-GHz-current-modulated diode laser (slave laser), we generate a pair of phase-locked lasers with a frequency difference up to ~9-GHz for a cesium (Cs) magneto-optical trap (MOT) with convenient tuning capability. For a cesium MOT, the master laser acts as repumping laser, locked to the Cs 6S₁/₂ (F = 3) - 6P₃/₂ (F' = 4) transition. When the + 1-order sideband of the 8.9536-GHz-current-modulated slave laser is optically injection-locked, the carrier operates on the Cs 6S₁/₂ (F = 4) - 6P₃/₂ (F' = 5) cooling cycle transition with -12 MHz detuning and acts as cooling/trapping laser. When carrying a 9.1926-GHz modulation signal, this phase-locked laser system can be applied in the fields of coherent population trapping and coherent manipulation of Cs atomic ground states.

  5. Automation of the positioning of a laser anemometer flow rate measurement bench

    International Nuclear Information System (INIS)

    Gobillot, G.

    1998-01-01

    The laser anemometry technique is commonly used by the Core Hydraulics Laboratory of the CEA for the determination of the field of flow rates inside fuel rod bundles. The adjustment of measurement point coordinates represents an important part of the velocimetry campaign. In order to increase the number of measurements and the preciseness of the positioning operation, the automation of these preliminary tasks was decided. This work describes first the principle of Doppler laser velocimetry, the components of the measurement system and their functioning conditions. Then, the existing software for tuning and measurement is presented. A new software, called PAMELA, for the automatic positioning of the laser anemometer using a moving table with 5 degrees of freedom, has been developed and tested. This software, written with the LabView language, advises the operator, drives the bench and executes the tunings with a greater precision than manually. (J.S.)

  6. High-Power Hybrid Mode-Locked External Cavity Semiconductor Laser Using Tapered Amplifier with Large Tunability

    Directory of Open Access Journals (Sweden)

    Andreas Schmitt-Sody

    2008-01-01

    Full Text Available We report on hybrid mode-locked laser operation of a tapered semiconductor amplifier in an external ring cavity, generating pulses as short as 0.5 ps at 88.1 MHz with an average power of 60 mW. The mode locking is achieved through a combination of a multiple quantum well saturable absorber (>10% modulation depth and an RF current modulation. This designed laser has 20 nm tuning bandwidth in continuous wave and 10 nm tuning bandwidth in mode locking around 786 nm center wavelength at constant temperature.

  7. Tunable blue–violet Cr3+:LiCAF + BiBO compact laser

    International Nuclear Information System (INIS)

    Maestre, H; Torregrosa, A J; Capmany, J

    2015-01-01

    We present a compact continuous wave (CW) external-cavity tunable Cr 3+ :LiCaAlF 6 (Cr:LiCAF) laser which is intracavity frequency doubled using a BiB 3 O 6 (BiBO) nonlinear crystal to obtain tunable blue–violet radiation. The generated second harmonic (SH) can be tuned by means of either angular or temperature variation of the nonlinear crystal. We have obtained SH radiation between 390–415 nm and a maximum output power of 34 mW at 400 nm. Future improvements on the SH tuning range and output power are addressed in the text. Our results may be applied in the design of compact tunable composite external-cavity solid-state lasers. (paper)

  8. Photolysis of model emerging contaminants in ultra-pure water: kinetics, by-products formation and degradation pathways.

    Science.gov (United States)

    Benitez, F Javier; Acero, Juan L; Real, Francisco J; Roldan, Gloria; Rodriguez, Elena

    2013-02-01

    The photolysis of five frequent emerging contaminants (Benzotriazole, Chlorophene, N,N-diethyl-m-toluamide or DEET, Methylindole, and Nortriptyline HCl) was investigated in ultrapure water under monochromatic ultraviolet radiation at 254 nm and by a combination of UV and hydrogen peroxide. The results revealed that the photolysis rates followed first-order kinetics, with rate constant values depending on the nature of the specific compound, the pH, and the presence or absence of the scavenger tert-butanol. Quantum yields were also determined and values in the range of 53.8 × 10⁻³ - 9.4 × 10⁻³ mol E⁻¹ for Benzotriazole, 525 × 10⁻³ - 469 × 10⁻³ mol E⁻¹ for Chlorophene, 2.8 × 10⁻³ - 0.9 × 10⁻³ mol E⁻¹ for DEET, 108 × 10⁻³ - 165 × 10⁻³ mol E⁻¹ for Methylindole, and 13.8 × 10⁻³ - 15.0 × 10⁻³ mol E⁻¹ for Nortriptyline were obtained. The study also found that the UV/H₂O₂ process enhanced the oxidation rate in comparison to direct photolysis. High-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS) technique was applied to the concentrations evaluation and further identification of the parent compounds and their by-products, which allowed the proposal of the degradation pathways for each compound. Finally, in order to assess the aquatic toxicity in the photodegradation of these compounds, the Vibrio fischeri acute toxicity test was used, and the results indicated an initial increase of this parameter in all cases, followed by a decrease in the specific case of Benzotriazole, DEET, Methylindole, and Chlorophene. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. New tuning method of the low-mode asymmetry for ignition capsule implosions

    International Nuclear Information System (INIS)

    Gu, Jianfa; Dai, Zhensheng; Zou, Shiyang; Song, Peng; Ye, Wenhua; Zheng, Wudi; Gu, Peijun

    2015-01-01

    In the deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility, the hot spot and the surrounding main fuel layer show obvious P2 asymmetries. This may be caused by the large positive P2 radiation flux asymmetry during the peak pulse resulting form the poor propagation of the inner laser beam in the gas-filled hohlraum. The symmetry evolution of ignition capsule implosions is investigated by applying P2 radiation flux asymmetries during different time intervals. A series of two-dimensional simulation results show that a positive P2 flux asymmetry during the peak pulse results in a positive P2 shell ρR asymmetry; while an early time positive P2 flux asymmetry causes a negative P2 in the fuel ρR shape. The opposite evolution behavior of shell ρR asymmetry is used to develop a new tuning method to correct the radiation flux asymmetry during the peak pulse by adding a compensating same-phased P2 drive asymmetry during the early time. The significant improvements of the shell ρR symmetry, hot spot shape, hot spot internal energy, and neutron yield indicate that the tuning method is quite effective. The similar tuning method can also be used to control the early time drive asymmetries

  10. Efficiencies and Physical Principles of Various Solar Energy Conversion Processes Leading to the Photolysis of Water

    Energy Technology Data Exchange (ETDEWEB)

    Bergene, T

    1996-12-31

    In the application of solar energy, hydrogen is likely to be used as an energy carrier and a storage medium. Production of molecular hydrogen and oxygen from water requires energy input, which may come from solar energy in various ways. This thesis begins with a literature survey of the different conversion processes and the efficiencies, which is an introduction to a series of enclosed papers. These papers are: (1) Trapping of Minority Charge Carriers at Irradiated Semiconductor/Electrolyte Heterojunctions, (2) Model Calculations on Flat-Plate Solar Heat Collector With Integrated Solar Cells, and (3) Efficiencies and Physical Principles of Photolysis of Water By Microalgae. In the papers, The qualitative features of the ``illumination-current``-characteristic curve are deduced. The hypothesis is that trapping originates in some specific cases because of confinement, which leads to charge injections into energy states above that corresponding to the band edge. The quantitative features of certain hybrid photovoltaic/thermal configuration are deduced. An analysis of the theoretical and realizable efficiencies of the photolysis of water by micro algae is given. 151 refs., 18 figs., 1 table

  11. Simultaneous gains tuning in boiler/turbine PID-based controller clusters using iterative feedback tuning methodology.

    Science.gov (United States)

    Zhang, Shu; Taft, Cyrus W; Bentsman, Joseph; Hussey, Aaron; Petrus, Bryan

    2012-09-01

    Tuning a complex multi-loop PID based control system requires considerable experience. In today's power industry the number of available qualified tuners is dwindling and there is a great need for better tuning tools to maintain and improve the performance of complex multivariable processes. Multi-loop PID tuning is the procedure for the online tuning of a cluster of PID controllers operating in a closed loop with a multivariable process. This paper presents the first application of the simultaneous tuning technique to the multi-input-multi-output (MIMO) PID based nonlinear controller in the power plant control context, with the closed-loop system consisting of a MIMO nonlinear boiler/turbine model and a nonlinear cluster of six PID-type controllers. Although simplified, the dynamics and cross-coupling of the process and the PID cluster are similar to those used in a real power plant. The particular technique selected, iterative feedback tuning (IFT), utilizes the linearized version of the PID cluster for signal conditioning, but the data collection and tuning is carried out on the full nonlinear closed-loop system. Based on the figure of merit for the control system performance, the IFT is shown to deliver performance favorably comparable to that attained through the empirical tuning carried out by an experienced control engineer. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Modulation of Frequency Doubled DFB-Tapered Diode Lasers for Medical Treatment

    DEFF Research Database (Denmark)

    Christensen, Mathias; Hansen, Anders Kragh; Noordegraaf, Danny

    2017-01-01

    have demonstrated power modulation from 0.1 Hz to 10 kHz at 532 nm with a modulation depth above 97% by wavelength detuning of the laser diode. The laser diode is a 1064 nm monolithic device with a distributed feedback (DFB) laser as the master oscillator (MO), and a tapered power amplifier (PA......). The MO and PA have separate electrical contacts and the modulation is achieved with wavelength tuning by adjusting the current through the MO 40 mA....

  13. Tolfenamic acid degradation by direct photolysis and the UV-ABC/H2O2 process: factorial design, kinetics, identification of intermediates, and toxicity evaluation.

    Science.gov (United States)

    de Melo da Silva, Lucas; Pereira Cavalcante, Rodrigo; Fabbro Cunha, Rebeca; Gozzi, Fábio; Falcao Dantas, Renato; de Oliveira, Silvio Cesar; Machulek, Amilcar

    2016-12-15

    This study employed direct UV-ABC photolysis and the UV-ABC/H 2 O 2 process to investigate the degradation of tolfenamic acid (TA), a common anti-inflammatory drug used in both human and veterinary medicine. A 2 3 factorial design with added center point was used to evaluate the effect of three independent variables-namely, H 2 O 2 concentration ([H 2 O 2 ]), TA concentration ([TA]), and experiment time (time)-on TA degradation and H 2 O 2 photolysis during UV-ABC/H 2 O 2 treatment using a high-pressure mercury vapor lamp (photon flux of 2.6307 × 10 4 J s -1 ) as the UV irradiation source. The responses yielded similar values, revealing a linear behavior, with correlation coefficients R = 0.9968 and R adj = 0.9921 for TA degradation and R = 0.9828 and R adj = 0.9570 for H 2 O 2 photolysis. The most efficient combination of variables was [H 2 O 2 ] = 255 mg L -1 and [TA] = 25 mg L -1 , resulting in 100% TA degradation and 98.87% H 2 O 2 photolysis by 90 min of treatment. Additionally, the second-order kinetic constant of the reaction between TA and HO ● was determined using a competitive kinetic model, employing 2,4-dichlorophenoxyacetic acid (2,4D) as the reference compound. The kinetic constant was 1.9 × 10 10 M -1 s -1 in alkaline medium. TA degradation by direct photolysis generated quinone imines as by-products, responsible for the formation of a dark red "internal filter" that increased the value of acute toxicity to Artemia salina. The UV-ABC/H 2 O 2 process did not promote formation of quinone imines by 90 min of treatment and therefore did not increase acute toxicity values. Several by-products generated during TA degradation were identified and possible degradation pathways for the UV-ABC and UV-ABC/H 2 O 2 processes were proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Adaptive Self-Tuning Networks

    Science.gov (United States)

    Knox, H. A.; Draelos, T.; Young, C. J.; Lawry, B.; Chael, E. P.; Faust, A.; Peterson, M. G.

    2015-12-01

    The quality of automatic detections from seismic sensor networks depends on a large number of data processing parameters that interact in complex ways. The largely manual process of identifying effective parameters is painstaking and does not guarantee that the resulting controls are the optimal configuration settings. Yet, achieving superior automatic detection of seismic events is closely related to these parameters. We present an automated sensor tuning (AST) system that learns near-optimal parameter settings for each event type using neuro-dynamic programming (reinforcement learning) trained with historic data. AST learns to test the raw signal against all event-settings and automatically self-tunes to an emerging event in real-time. The overall goal is to reduce the number of missed legitimate event detections and the number of false event detections. Reducing false alarms early in the seismic pipeline processing will have a significant impact on this goal. Applicable both for existing sensor performance boosting and new sensor deployment, this system provides an important new method to automatically tune complex remote sensing systems. Systems tuned in this way will achieve better performance than is currently possible by manual tuning, and with much less time and effort devoted to the tuning process. With ground truth on detections in seismic waveforms from a network of stations, we show that AST increases the probability of detection while decreasing false alarms.

  15. The role of spin-orbit coupling in the photolysis of methylcobalamin

    Energy Technology Data Exchange (ETDEWEB)

    Andruniów, Tadeusz [Department of Chemistry, Advanced Materials Engineering and Modelling Group, Wroclaw University of Technology, 50-370 Wroclaw (Poland); Lodowski, Piotr; Jaworska, Maria [Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia, Szkolna 9, PL-40 006 Katowice (Poland); Garabato, Brady D. [Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292 (United States); Kozlowski, Pawel M., E-mail: pawel@louisville.edu [Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292 (United States); Department of Food Sciences, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk (Poland)

    2016-03-28

    The photolysis of the methylcobalamin cofactor (MeCbl) in its base-off form was investigated by considering the extent of spin-orbit coupling (SOC). Triplet Co–C photodissociation pathways previously invoked at the density functional theory level using Landau-Zener theory were further validated with ab initio calculations that combine SOC based on multi-state second order perturbation theory. It was determined that SOC is feasible between singlet and triplet states at elongated Co–C distances, leading to photodissociation from the state having dominant σ(d{sub z}{sup 2}) character, by either direct coupling with the lowest singlet states or by crossing with SOC mixed triplets.

  16. Affinement spectral dans les lasers à colorants pulsés.

    Science.gov (United States)

    Flamant, P

    1978-03-15

    Spectral narrowing in pulsed dye lasers is studied theoretically. Fabry-Perot etalons, gratings, and prisms are considered as tuning elements. Each one is characterized by a new parameter: the spectral width associated with a round trip in the laser cavity. Numerical examples show that depending on cavity parameters it is either the round-trip spectral width or the width due to beam divergence which limits the bandwidth of the laser emission. Instantaneous spectral narrowing is found to be proportional to the square root of the time elapsed after the laser onset when a Fabry-Perot etalon or grating is used. When a prism is set in the laser cavity the instantaneous narrowing is proportional to time.

  17. Quantitative assessment on the contribution of direct photolysis and radical oxidation in photochemical degradation of 4-chlorophenol and oxytetracycline.

    Science.gov (United States)

    Liu, Yiqing; He, Xuexiang; Fu, Yongsheng; Dionysiou, Dionysios D

    2016-07-01

    In UV-254 nm/H2O2 advanced oxidation process (AOP), the potential degradation pathways for organic pollutants include (1) hydrolysis, (2) direct H2O2 oxidation, (3) UV direct photolysis, and (4) hydroxyl radical (HO(•)) reaction. In this study, the contribution of these pathways was quantitatively assessed in the photochemical destruction of 4-chlorophenol (4-CP), demonstrating pathways (3) and (4) to be predominantly responsible for the removal of 4-CP by UV/H2O2 in 50 mM phosphate buffer solution. Increasing reaction pH could significantly enhance the contribution of direct photolysis in UV/H2O2 process. The contribution of HO(•) oxidation was improved with increasing initial H2O2 concentration probably due to the increased formation of HO(•). Presence of sodium carbonate (Na2CO3) as in UV/H2O2/Na2CO3 system promoted the degradation of 4-CP, with carbonate radical (CO3 (•-)) reaction and direct photolysis identified to be the main contributing pathways. The trends in the contribution of each factor were further evaluated and validated on the degradation of the antibiotic compound oxytetracycline (OTC). This study provides valuable information on the relative importance of different reaction pathways on the photochemical degradation of organic contaminants such as 4-CP and OTC in the presence and absence of a CO3 (•-) precursor.

  18. The ATLAS Monte Carlo tuning system

    CERN Document Server

    Wahrmund, S

    2012-01-01

    The ATLAS experiment moved the tuning of the underlying event and minimum bias event shape modeling, previously done in a manual fashion, to the automated Professor tuning tool, employed in connection with the Rivet analysis framework, when the first corresponding experimental analysis from LHC became available. The tuning effort for the Pythia 8 generator, which includes improved models for diffraction, has been started in this automated way in ATLAS, with the aim of getting a good description of the pile-up generated by multiple minimum bias interactions. The first results for these Pythia 8 tunes, as well as Pythia 6 shower tunes are presented, including a study of tunes for various PDFs.

  19. Continuously tunable monomode mid-infrared vertical external cavity surface emitting laser on Si

    Science.gov (United States)

    Khiar, A.; Rahim, M.; Fill, M.; Felder, F.; Hobrecker, F.; Zogg, H.

    2010-10-01

    A tunable PbTe based mid-infrared vertical external cavity surface emitting laser is described. The active part is a ˜1 μm thick PbTe layer grown epitaxially on a Bragg mirror on the Si-substrate. The cavity is terminated with a curved Si/SiO Bragg top mirror and pumped optically with a 1.55 μm laser. Cavity length is <100 μm in order that only one longitudinal mode is supported. By changing the cavity length, up to 5% wavelength continuous and mode-hop free tuning is achieved at fixed temperature. The total tuning extends from 5.6 to 4.7 μm at 100-170 K operation temperature.

  20. External amplitude and frequency modulation of a terahertz quantum cascade laser using metamaterial/graphene devices.

    Science.gov (United States)

    Kindness, S J; Jessop, D S; Wei, B; Wallis, R; Kamboj, V S; Xiao, L; Ren, Y; Braeuninger-Weimer, P; Aria, A I; Hofmann, S; Beere, H E; Ritchie, D A; Degl'Innocenti, R

    2017-08-09

    Active control of the amplitude and frequency of terahertz sources is an essential prerequisite for exploiting a myriad of terahertz applications in imaging, spectroscopy, and communications. Here we present a optoelectronic, external modulation technique applied to a terahertz quantum cascade laser which holds the promise of addressing a number of important challenges in this research area. A hybrid metamaterial/graphene device is implemented into an external cavity set-up allowing for optoelectronic tuning of feedback into a quantum cascade laser. We demonstrate powerful, all-electronic, control over the amplitude and frequency of the laser output. Full laser switching is performed by electrostatic gating of the metamaterial/graphene device, demonstrating a modulation depth of 100%. External control of the emission spectrum is also achieved, highlighting the flexibility of this feedback method. By taking advantage of the frequency dispersive reflectivity of the metamaterial array, different modes of the QCL output are selectively suppressed using lithographic tuning and single mode operation of the multi-mode laser is enforced. Side mode suppression is electrically modulated from ~6 dB to ~21 dB, demonstrating active, optoelectronic modulation of the laser frequency content between multi-mode and single mode operation.

  1. Spatial modification of laser beam under the influence of Λ-type strong pump

    International Nuclear Information System (INIS)

    Lee, Won Kyu; Noh, Young Chul; Jeon, Jin Ho; Lee, Jai Hyung; Chang, Joon Sung

    1999-01-01

    The laser beam propagating through the resonant medium undergo severe deformation because of nonlinear interaction such as self-focusing, self-defocusing, etc. When strong pump beam coexists with the probe beam, propagation characteristics can be changed. We use samarium (Sm) vapor as the nonlinear medium. Probe laser is tuned around 4f 6 6s 27 F 0 -> 4f 6 ( 7 F)6s6p( 1 P 0 ) transition line of Sm (561.601 nm) and the pump laser is tuned around 4f 6 6s 27 F 1 -> 4f 6 ( 7 F)6s6p( 1 P 0 ) transition line of Sm (572.019 nm). The probe and the pump beams are Λ-type configuration. The transmission of the probe beam is changed as the intensity and the detuning of the pump beam are varied. The degree of self-focusing is also modified. (author)

  2. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters.

    Science.gov (United States)

    Vione, D; Calza, P; Galli, F; Fabbri, D; Santoro, V; Medana, C

    2015-12-15

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with OH radicals would be negligible and that with (3)CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO2, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO2 yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Achromatic and isochronous electron beam transport for tunable free electron lasers

    International Nuclear Information System (INIS)

    Bengtsson, J.; Kim, K.J.

    1991-09-01

    We have continued the study of a suitable electron beam transport line, which is both isochronous and achromatic, for the free electron laser being designed at Lawrence Berkeley Laboratory. A refined version of the beam transport optics is discussed that accommodates two different modes of FEL wavelength tuning. For the fine tuning involving a small change of the electron beam energy, sextupoles are added to cancel the leading nonlinear dispersion. For the main tuning involving the change of the undulator gap, a practical solution of maintaining the beam matching condition is presented. Calculation of the higher order aberrations is facilitated by a newly developed code. 11 refs., 4 figs., 3 tabs

  4. Laser heating of a molecular gas channel

    International Nuclear Information System (INIS)

    Olsen, J.N.; Baker, L.

    1980-02-01

    The first steps toward laser-initiated discharge channels are outlined, wherein we determine the temperature and density changes which are to be expected with reasonable laser energies. To this end, absorption cross sections were measured as a function of gas pressure, line tuning, and laser energy for NH 3 and C 2 H 4 gases. Based on these values a number of hydrodynamic simulations were performed with the CHARTB hydrocode which show that an efficient conversion of initial vibrational temperature into translational temperature occurs. Moreover, it is seen that the hydrodynamic motion is slow compared to reasonable relaxation times so that this efficiency is not unique to NH 3 with its anomalously fast relaxation time

  5. Determination of the photolysis rate coefficient of monochlorodimethyl sulfide (MClDMS) in the atmosphere and its implications for the enhancement of SO2 production from the DMS + Cl2 reaction.

    Science.gov (United States)

    Copeland, G; Lee, E P F; Williams, R G; Archibald, A T; Shallcross, D E; Dyke, J M

    2014-01-01

    In this work, the photolysis rate coefficient of CH3SCH2Cl (MClDMS) in the lower atmosphere has been determined and has been used in a marine boundary layer (MBL) box model to determine the enhancement of SO2 production arising from the reaction DMS + Cl2. Absorption cross sections measured in the 28000-34000 cm(-1) region have been used to determine photolysis rate coefficients of MClDMS in the troposphere at 10 solar zenith angles (SZAs). These have been used to determine the lifetimes of MClDMS in the troposphere. At 0° SZA, a photolysis lifetime of 3-4 h has been obtained. The results show that the photolysis lifetime of MClDMS is significantly smaller than the lifetimes with respect to reaction with OH (≈ 4.6 days) and with Cl atoms (≈ 1.2 days). It has also been shown, using experimentally derived dissociation energies with supporting quantum-chemical calculations, that the dominant photodissocation route of MClDMS is dissociation of the C-S bond to give CH3S and CH2Cl. MBL box modeling calculations show that buildup of MClDMS at night from the Cl2 + DMS reaction leads to enhanced SO2 production during the day. The extra SO2 arises from photolysis of MClDMS to give CH3S and CH2Cl, followed by subsequent oxidation of CH3S.

  6. Continuous-wave diode-pumped Yb 3+:LYSO tunable laser

    Science.gov (United States)

    Du, Juan; Liang, Xiaoyan; Xu, Yi; Li, Ruxin; Yan, Chengfeng; Zhao, Guangjun; Su, Liangbi; Xu, Jun; Xu, Zhizhan

    2007-01-01

    A new alloyed crystal, Yb:LYSO, has been grown by the Czochralski method in our institute for the first time, and its effective diode-pumped cw tunable laser action was demonstrated. The alloyed crystal retains excellent laser properties of LSO with reduced growth cost, as well as the favorable growth properties of YSO. With a 5-at.% Yb:LYSO sample, we achieved 2.84 W output power at 1085 nm and a slope efficiency of 63.5%. And its laser wavelength could be tuned over a range broader than 80nm, from 1030nm to 1111 nm. This is the broadest tunable range achieved for Yb:LYSO laser, as far as we know.

  7. SC tuning fork

    CERN Document Server

    The tuning fork used to modulate the radiofrequency system of the synchro cyclotron (SC) from 1957 to 1973. This piece is an unused spare part. The SC was the 1st accelerator built at CERN. It operated from August 1957 until it was closed down at the end of 1990. In the SC the magnetic field did not change with time, and the particles were accelerated in successive pulses by a radiofrequency voltage of some 20kV which varied in frequency as they spiraled outwards towards the extraction radius. The frequency varied from 30MHz to about 17Mz in each pulse. The tuning fork vibrated at 55MHz in vacuum in an enclosure which formed a variable capacitor in the tuning circuit of the RF system, allowing the RF to vary over the appropriate range to accelerate protons from the centre of the macine up to 600Mev at extraction radius. In operation the tips of the tuning fork blade had an amplitude of movement of over 1 cm. The SC accelerator underwent extensive improvements from 1973 to 1975, including the installation of a...

  8. Are UV photolysis and UV/H2O2 process efficient to treat estrogens in waters? Chemical and biological assessment at pilot scale.

    Science.gov (United States)

    Cédat, Bruno; de Brauer, Christine; Métivier, Hélène; Dumont, Nathalie; Tutundjan, Renaud

    2016-09-01

    In this study, UV based treatments were implemented at pilot scale to assess their ability to remove hormones from treated wastewater, especially with the view to equip small and medium size Wastewater Treatment Plants (WTPs). To this end, the degradation of a mixture of estrogenic hormones (Estrone (E1), β-Estradiol (E2), and 17α-Ethinyl Estradiol (EE2)) in waters by UV photolysis and UV/H2O2 process was investigated in real conditions. A particular attention was paid at designing a well validated laboratory scale pilot in order to optimise oxidant concentrations and UV fluence. A Low pressure lamp (254 nm) was used in a flow through commercial reactor. The effects of water matrices (drinking water and treated wastewater) and H2O2 concentrations (10, 40, and 90 mg/L) on the pilot efficiency were first determined. Only E1 could be partially degraded by UV photolysis whereas hormones were all well removed by UV/H2O2 process in both matrices. The second part of the study focused on a chemical and biological assessment of UV photolysis and UV/H2O2 process (30 and 50 mg/L). Degradation rate constants of hormones as well as changes in estrogenic activity (YES bioassay) and toxicity (Vibrio fischeri) were followed at the same time. UV photolysis could not remove neither estrogens nor estrogenic activity at relevant UV fluence in waters. However 80% of initial estrogenic compounds and estrogenic activity could be removed from treated wastewater by combining UV fluence of 423 and 520 mJ/cm(2) with 50 and 30 mg/L of H2O2, respectively. No high estrogenic or toxic by-products were detected by the two bioassays following UV photolysis or UV/H2O2 process. Operating costs were estimated for a full scale pilot. H2O2 was the major cost. By combining the appropriate concentration of H2O2 and UV fluence, it could be possible to design a cost effective treatment for treating estrogens in small and medium size WTPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Deep modulation of second-harmonic light by wavelength detuning of a laser diode

    DEFF Research Database (Denmark)

    Christensen, Mathias; Hansen, Anders Kragh; Noordegraaf, Danny

    2017-01-01

    ) master oscillator power amplifier (MOPA) laser diode with separate electrical contacts for the MO and the PA. A modulation depth in excess of 97% from 0.1 Hz to 10 kHz is demonstrated. This is done by wavelength tuning of the laser diode using only a 40 mA adjustment of the current through the MO...

  10. Highly optimized tunable Er3+-doped single longitudinal mode fiber ring laser, experiment and model

    DEFF Research Database (Denmark)

    Poulsen, Christian; Sejka, Milan

    1993-01-01

    A continuous wave (CW) tunable diode-pumped Er3+-doped fiber ring laser, pumped by diode laser at wavelengths around 1480 nm, is discussed. Wavelength tuning range of 42 nm, maximum slope efficiency of 48% and output power of 14.4 mW have been achieved. Single longitudinal mode lasing...... with a linewidth of 6 kHz has been measured. A fast model of erbium-doped fiber laser was developed and used to optimize output parameters of the laser...

  11. Laser energy tuning of carrier effective mass and thermopower in epitaxial oxide thin films

    KAUST Repository

    Abutaha, Anas I.; Sarath Kumar, S. R.; Alshareef, Husam N.

    2012-01-01

    The effect of the laser fluence on high temperature thermoelectric properties of the La doped SrTiO3 (SLTO) thin films epitaxially grown on LaAlO3 〈100〉 substrates by pulsed laser deposition is clarified. It is shown that oxygen vacancies

  12. Laser Measurements of the H Atom + Ozone Rate Constant at Atmospheric Temperatures

    Science.gov (United States)

    Liu, Y.; Smith, G. P.; Peng, J.; Reppert, K. J.; Callahan, S. L.

    2015-12-01

    The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We have remeasured its rate constant to reduce resulting uncertainties and the measurement extend to lower mesospheric temperatures using modern laser techniques. H atoms are produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O(D) with added H2. A second, delayed, frequency-mixed dye laser measures the reaction decay rate with the remaining ozone by laser induced fluorescence. We monitor either the H atom decay by 2 photon excitation at 205 nm and detection of red fluorescence, or the OH(v=9) product time evolution with excitation of the B-X (0,9) band at 237 nm and emission in blue B-A bands. By cooling the enclosed low pressure flow cell we obtained measurements from 146-305 K. Small kinetic modeling corrections are made for secondary regeneration of H atoms. The results fully confirm the current NASA JPL recommendation for this rate constant, and establish its extrapolation down to the lower temperatures of the mesosphere. This work was supported by the NSF Aeronomy Program and an NSF Physics summer REU student grant.

  13. Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser

    Science.gov (United States)

    Song, Yuxin; Wang, Cong; Dong, Xinran; Yin, Kai; Zhang, Fan; Xie, Zheng; Chu, Dongkai; Duan, Ji'an

    2018-06-01

    In this study, a facile and detailed strategy to fabricate superhydrophobic aluminum surfaces with controllable adhesion by femtosecond laser ablation is presented. The influences of key femtosecond laser processing parameters including the scanning speed, laser power and interval on the wetting properties of the laser-ablated surfaces are investigated. It is demonstrated that the adhesion between water and superhydrophobic surface can be effectively tuned from extremely low adhesion to high adhesion by adjusting laser processing parameters. At the same time, the mechanism is discussed for the changes of the wetting behaviors of the laser-ablated surfaces. These superhydrophobic surfaces with tunable adhesion have many potential applications, such as self-cleaning surface, oil-water separation, anti-icing surface and liquid transportation.

  14. Data Driven Tuning of Inventory Controllers

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Santacoloma, Paloma Andrade; Poulsen, Niels Kjølstad

    2007-01-01

    A systematic method for criterion based tuning of inventory controllers based on data-driven iterative feedback tuning is presented. This tuning method circumvent problems with modeling bias. The process model used for the design of the inventory control is utilized in the tuning...... as an approximation to reduce time required on experiments. The method is illustrated in an application with a multivariable inventory control implementation on a four tank system....

  15. Chemically Patterned Inverse Opal Created by a Selective Photolysis Modification Process.

    Science.gov (United States)

    Tian, Tian; Gao, Ning; Gu, Chen; Li, Jian; Wang, Hui; Lan, Yue; Yin, Xianpeng; Li, Guangtao

    2015-09-02

    Anisotropic photonic crystal materials have long been pursued for their broad applications. A novel method for creating chemically patterned inverse opals is proposed here. The patterning technique is based on selective photolysis of a photolabile polymer together with postmodification on released amine groups. The patterning method allows regioselective modification within an inverse opal structure, taking advantage of selective chemical reaction. Moreover, combined with the unique signal self-reporting feature of the photonic crystal, the fabricated structure is capable of various applications, including gradient photonic bandgap and dynamic chemical patterns. The proposed method provides the ability to extend the structural and chemical complexity of the photonic crystal, as well as its potential applications.

  16. Tunable diode-pumped-LNA laser

    International Nuclear Information System (INIS)

    Cassimi, A.; Hardy, V.; Hamel, J.; Leduc, M.

    1987-01-01

    Diode-pumped crystals provided recently new compact laser devices. We report the first end pumping of a La x Nd 1-x MgAl 11 O 19 (LNA) crystal using a 200mW diode array (Spectra Diode Lab). We also report the first results obtained with a 1mW diode (SONY). This C.W. laser can be tuned from 1.048μm to 1.086μm. Without selective elements in the cavity, the laser emits around 1.054μm with a threshold of 24mW and a slope efficiency of 4.4% (output mirror of transmission T = 1%) when pumped by the diode array. With the selective elements, the threshold increases to 100mW and we obtain a power of 4mW for a pump power of 200mW

  17. Rate Constant of the Reaction between CH3O2 Radicals and OH Radicals Revisited.

    Science.gov (United States)

    Assaf, Emmanuel; Song, Bo; Tomas, Alexandre; Schoemaecker, Coralie; Fittschen, Christa

    2016-11-17

    The reaction between CH 3 O 2 and OH radicals has been studied in a laser photolysis cell using the reaction of F atoms with CH 4 and H 2 O for the simultaneous generation of both radicals, with F atoms generated through 248 nm photolysis of XeF 2 . An experimental setup combining cw-Cavity Ring Down Spectroscopy (cw-CRDS) and high repetition rate laser-induced fluorescence (LIF) to a laser photolysis cell has been used. The absolute concentration of CH 3 O 2 was measured by cw-CRDS, while the relative concentration of OH(v = 0) radicals was determined by LIF. To remove dubiety from the quantification of CH 3 O 2 by cw-CRDS in the near-infrared, its absorption cross section has been determined at 7489.16 cm -1 using two different methods. A rate constant of k 1 = (1.60 ± 0.4) × 10 -10 cm 3 s -1 has been determined at 295 K, nearly a factor of 2 lower than an earlier determination from our group ((2.8 ± 1.4) × 10 -10 cm 3 s -1 ) using CH 3 I photolysis as a precursor. Quenching of electronically excited I atoms (from CH 3 I photolysis) in collision with OH(v = 0) is suspected to be responsible for a bias in the earlier, fast rate constant.

  18. Split-disk micro-lasers: Tunable whispering gallery mode cavities

    Directory of Open Access Journals (Sweden)

    T. Siegle

    2017-09-01

    Full Text Available Optical micro-cavities of various types have emerged as promising photonic structures, for both the investigation of fundamental science in cavity quantum electrodynamics and simultaneously for various applications, e.g., lasers, filters, or modulators. In either branch a demand for adjustable and tunable photonic devices becomes apparent, which has been mainly based on the modification of the refractive index of the micro-resonators so far. In this paper, we report on a novel type of whispering gallery mode resonator where resonance tuning is achieved by modification of the configuration. This is realized by polymeric split-disks consisting of opposing half-disks with an intermediate air gap. Functionality of the split-disk concept and its figures of merit like low-threshold lasing are demonstrated for laser dye-doped split-disks fabricated by electron beam lithography on Si substrates. Reversible resonance tuning is achieved for split-disks structured onto elastomeric substrates by direct laser writing. The gap width and hence the resonance wavelength can be well-controlled by mechanically stretching the elastomer and exploiting the lateral shrinkage of the substrate. We demonstrate a broad spectral tunability of laser modes by more than three times the free spectral range. These cavities have the potential to form a key element of flexible and tunable photonic circuits based on polymers.

  19. Short-wavelength soft-x-ray laser pumped in double-pulse single-beam non-normal incidence

    International Nuclear Information System (INIS)

    Zimmer, D.; Ros, D.; Guilbaud, O.; Habib, J.; Kazamias, S.; Zielbauer, B.; Bagnoud, V.; Ecker, B.; Aurand, B.; Kuehl, T.; Hochhaus, D. C.; Neumayer, P.

    2010-01-01

    We demonstrated a 7.36 nm Ni-like samarium soft-x-ray laser, pumped by 36 J of a neodymium:glass chirped-pulse amplification laser. Double-pulse single-beam non-normal-incidence pumping was applied for efficient soft-x-ray laser generation. In this case, the applied technique included a single-optic focusing geometry for large beam diameters, a single-pass grating compressor, traveling-wave tuning capability, and an optimized high-energy laser double pulse. This scheme has the potential for even shorter-wavelength soft-x-ray laser pumping.

  20. Effective scheme of photolysis of GFP in live cell as revealed with confocal fluorescence microscopy

    Science.gov (United States)

    Glazachev, Yu I.; Orlova, D. Y.; Řezníčková, P.; Bártová, E.

    2018-05-01

    We proposed an effective kinetics scheme of photolysis of green fluorescent protein (GFP) observed in live cells with a commercial confocal fluorescence microscope. We investigated the photolysis of GFP-tagged heterochromatin protein, HP1β-GFP, in live nucleus with the pulse position modulation approach, which has several advantages over the classical pump-and-probe method. At the basis of the proposed scheme lies a process of photoswitching from the native fluorescence state to the intermediate fluorescence state, which has a lower fluorescence yield and recovers back to native state in the dark. This kinetics scheme includes four effective parameters (photoswitching, reverse switching, photodegradation rate constants, and relative brightness of the intermediate state) and covers the time scale from dozens of milliseconds to minutes of the experimental fluorescence kinetics. Additionally, the applicability of the scheme was demonstrated in the cases of continuous irradiation and the classical pump-and-probe approach using numerical calculations and analytical solutions. An interesting finding of experimental data analysis was that the overall photodegradation of GFP proceeds dominantly from the intermediate state, and demonstrated approximately the second-order reaction versus irradiation power. As a practical example, the proposed scheme elucidates the artifacts of fluorescence recovery after the photobleaching method, and allows us to propose some suggestions on how to diminish them.

  1. Transverse betatron tune measurements

    International Nuclear Information System (INIS)

    Serio, M.

    1989-01-01

    In this paper the concept of the betatron tune and the techniques to measure it are discussed. The smooth approximation is introduced along with the terminology of betatron oscillations, phase advance and tune. Single particle and beam spectra in the presence of synchro-betatron oscillations are treated with emphasis on the consequences of sampling the beam position. After a general presentation of various kinds of beam position monitors and transverse kickers, the time domain and frequency domain analysis of the beam response to a transverse excitation are discussed and several methods and applications of the tune measurements are listed

  2. Photolysis of Mono- and Dichloramines in UV/Hydrogen Peroxide: Effects on 1,4-Dioxane Removal and Relevance in Water Reuse.

    Science.gov (United States)

    Patton, Samuel; Romano, Mariano; Naddeo, Vincenzo; Ishida, Kenneth P; Liu, Haizhou

    2018-06-05

    Growing demands and increasing scarcity of fresh water resources necessitate potable water reuse, which has been implemented with the aid of UV-based advanced oxidation processes (UV/AOPs) that remove potentially hazardous trace organic contaminants from reclaimed water. During the potable reuse treatment process, chloramines are added to prevent membrane fouling that are carried over to the UV/AOP, where hydrogen peroxide (H 2 O 2 ) is commonly added. However, the impact of chloramines on the photolysis of H 2 O 2 and the overall performance of the UV/AOP remains unknown. This study investigated the impacts of the photochemistry of monochloramine (NH 2 Cl) and dichloramine (NHCl 2 ) associated with the photolysis of H 2 O 2 on the degradation of 1,4-dioxane (1,4-D), a trace organic contaminant ubiquitous in recycled water. Results indicated that NH 2 Cl and NHCl 2 alone functioned as oxidants upon UV photolysis, which produced HO • and Cl 2 •- as the two primary oxidative radicals. The speciation of chloramines did not have a significant impact on the degradation kinetics. The inclusion of monochloramine in UV/H 2 O 2 greatly decreased 1,4-D removal efficiency. HO • was the major radical in the mixed H 2 O 2 /chloramine system. Results from this study suggest that recognizing the existence of chloramines in UV/H 2 O 2 systems is important for predicting UV/AOP performance in the treatment train of potable reuse.

  3. Magnetic and micellar effects on photoreactions. 1. 13C isotopic enrichment of dibenzyl ketone via photolysis in aqueous detergent solution

    International Nuclear Information System (INIS)

    Turro, N.J.; Chow, M.F.; Chung, C.J.; Kraeutler, B.

    1981-01-01

    The photolysis of dibenzyl ketone (DBK) in homogeneous organic solutions and in micelle-containing detergent solutions has been investigated from the standpoint of determining the extent and location of 13 C enrichment that occurs. In a series of experiments it is established that for incomplete conversions the residual, recovered DBK is enriched in 13 C relative to the initial unphotolyzed DBK. The efficiency of the 13 C/ 12 C separation is shown to be characterized by an isotope enrichment parameter, α, which is independent of the extent of conversion. A combination of mass spectrometry and nuclear magnetic resonance spectroscopy provides support for the primary location of the 13 C enrichment at C-1 (the carbonyl carbon) with a lesser but significant enrichment at C-2 (the methylene carbon). A very small but experimentally distinct enrichment of the aromatic rings is indicated by 13 C NMR analysis. An isomer of DBK, 1-phenyl-4'-methylacetophenone (PMAP) is formed as a minor product of photolysis in micellar solutions. PMAP, like the recovered, residual DBK, is found to be substantially enriched in 13 C relative to the starting DBK. The magnitude of α is found to be significantly influenced by the application of laboratory magnetic fields to the photolysis sample. The latter result, along with the unusually large magnitude of α, suggests that the mechanism involved in isotopic enrichment is not dominated by kinetic mass isotope effects but rather by nuclear magnetic moment and/or magnetic spin isotope effects

  4. The ATLAS Monte Carlo tuning system

    CERN Document Server

    Wahrmund, S; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment moved the tuning of the underlying event and minimum bias event shape modeling, previously done in a manual fashion, to the automated Professor tuning tool, employed in connection with the Rivet analysis framework, when the first corresponding experimental analysis from LHC became available. The tuning effort for the Pythia 8 generator, which includes improved models for diffraction, has been started in this automated way in ATLAS, with the aim of getting a good description of the pile-up generated by multiple minimum bias interactions. The first results for these Pythia 8 tunes are presented, including a study of tunes for various PDFs.

  5. Oracle SQL tuning with Oracle SQLTXPLAIN

    CERN Document Server

    Charalambides, Stelios

    2013-01-01

    Oracle SQL Tuning with SQLTXPLAIN is a practical guide to SQL tuning the way Oracle's own experts do it, using a freely downloadable tool called SQLTXPLAIN. Using this simple tool you'll learn how to tune even the most complex SQL, and you'll learn to do it quickly, without the huge learning curve usually associated with tuning as a whole.  Firmly based in real world problems, this book helps you reclaim system resources and avoid the most common bottleneck in overall performance, badly tuned SQL.  You'll learn how the optimizer works, how to take advantage of its latest features, and when it'

  6. Discrete multi-wavelength tuning of a continuous wave diode-pumped Nd:GdVO4 laser

    Science.gov (United States)

    Nadimi, Mohammad; Waritanant, Tanant; Major, Arkady

    2018-05-01

    Discrete multi-wavelength operation of a diode-pumped Nd:GdVO4 laser at four different wavelengths was demonstrated using a single birefringent filter plate. The laser achieved maximum output powers of 5.92 W, 5.66 W, 5.56 W and 3.98 W at 1063.2 nm, 1070.8 nm, 1082.5 nm and 1086.2 nm wavelengths, respectively. To the best of our knowledge, apart from achieving the maximum output powers at ~1071 nm and ~1086 nm and best efficiencies at ~1071 nm, ~1083 nm and ~1086 nm wavelengths for a Nd:GdVO4 laser, this is also the largest number of wavelengths from the 4F3/2  →  4I11/2 transition that was ever obtained in a controlled manner from a single laser setup based on any of the Nd-doped laser crystals.

  7. Broadband pulsed difference frequency generation laser source centered 3326 nm based on ring fiber lasers

    Science.gov (United States)

    Chen, Guangwei; Li, Wenlei

    2018-03-01

    A broadband pulsed mid-infrared difference frequency generation (DFG) laser source based on MgO-doped congruent LiNbO3 bulk is experimentally demonstrated, which employs a homemade pulsed ytterbium-doped ring fiber laser and a continuous wave erbium-doped ring fiber laser to act as seed sources. The experimental results indicate that the perfect phase match crystal temperature is about 74.5∘C. The maximum spectrum bandwidth of idler is about 60 nm with suitable polarization states of fundamental lights. The central wavelength of idlers varies from 3293 nm to 3333 nm over the crystal temperature ranges of 70.4-76∘C. A jump of central wavelength exists around crystal temperature of 72∘C with variation of about 30 nm. The conversion efficiency of DFG can be tuned with the crystal temperature and polarization states of fundamental lights.

  8. THUNDER Piezoelectric Actuators as a Method of Stretch-Tuning an Optical Fiber Grating

    Science.gov (United States)

    Allison, Sidney G.; Fox, Robert L.; Froggatt, Mark E.; Childers, Brooks A.

    2000-01-01

    A method of stretching optical fiber holds interest for measuring strain in smart structures where the physical displacement may be used to tune optical fiber lasers. A small, light weight, low power tunable fiber laser is ideal for demodulating strain in optical fiber Bragg gratings attached to smart structures such as the re-usable launch vehicle that is being developed by NASA. A method is presented for stretching optical fibers using the THUNDER piezoelectric actuators invented at NASA Langley Research Center. THUNDER actuators use a piezoelectric layer bonded to a metal backing to enable the actuators to produce displacements larger than the unbonded piezoelectric material. The shift in reflected optical wavelength resulting from stretching the fiber Bragg grating is presented. Means of adapting THUNDER actuators for stretching optical fibers is discussed, including ferrules, ferrule clamp blocks, and plastic hinges made with stereo lithography.

  9. Research on tunable multiwavelength fiber lasers with two-section birefringence fibers and a nonlinear optical loop

    Science.gov (United States)

    Chen, Jiao; Tong, Zhengrong; Zhang, Weihua; Xue, Lifang; Pan, Honggang

    2018-05-01

    Two types of tunable multiwavelength fiber lasers based on two-section polarization maintaining fibers (PMFs) cascaded/in parallel and nonlinear optical loop are proposed and experimentally demonstrated. Two-section cascaded PMFs and two polarization controllers (PCs) form the two-stage Lyot filter, which can generate comb spectrum to achieve multiwavelength output. When two sections of PMFs are in parallel, PCs in two paths are adjusted to change the beam’s polarization to suppress the light of one branch, and then the light of the other branch passes through the cavity. Additionally, a nonlinear optical loop acts as an intensity-dependent component, which can suppress the mode competition to maintain a stable output of multiwavelength lasing. The nonlinear optical loop is made by a 3 dB coupler, a PC3, and a 200 m high nonlinear fiber. Two types of tunable multiwavelength fiber lasers can achieve tuning of the channel space and the number of lasing wavelengths by adjusting PC1 and PC2. The channel space of the multiwavelengh laser can be tuned at nearly 0.4, 0.68, and 0.92 nm. Meanwhile, the spectral range of multiwavelength lasing can be controlled by PC3 in the nonlinear optical loop, and the tuning range of two multiwavelength lasers is about 2.28 and 1.45 nm, respectively.

  10. Band gap tuning in As40Se53Sb07 thin films by 532 nm laser irradiation: An optical investigation by spectroscopic techniques

    Science.gov (United States)

    Pradhan, Prabhudutta; Naik, R.; Das, N.; Panda, A. K.

    2018-01-01

    The chalcogenide thin films belongs to a special category of important materials due to the unique IR transparency and light induced linear and non linear optical properties change. The optical band gap tuning in thermally evaporated As40Se53Sb07 chalcogenide thin film is being probed under the influence of 532 nm laser illumination. The gradual decrease in transmission and red shift of optical absorption edge with illumination at different time scale is recorded by Fourier transmission infrared spectroscopy. The simultaneous increase in refractive index and absorption coefficient of the illuminated film makes the material as useful candidate for optical switching. The dispersion of refractive index is being analyzed by using Wemple-DiDomenico (WDD) single oscillator model and static refractive index (n0) has also been reported. The exponential decrease of optical band gap with time is attributed to the increase in density of localized states and vacancies. The entire mechanism is explained by the microscopic model in which heteropolar bonds are converted to homopolar ones by the absorption of high energy photons investigated by X-ray photoelectron spectra. The amorphous nature of the studied films was revealed from X-ray diffraction and composition of the film was determined from energy dispersive X-ray analysis. The surface morphology was determined from the scanning electron microscopy. The optical change in absorption coefficient, refractive index, band gap by influence in laser irradiation in such materials may be suitable for optical disc(memory) application for optical time division switch.

  11. Tuning magnet power supply

    International Nuclear Information System (INIS)

    Han, B.M.; Karady, G.G.; Thiessen, H.A.

    1989-01-01

    The particles in a Rapid Cycling Accelerator are accelerated by rf cavities, which are tuned by dc biased ferrite cores. The tuning is achieved by the regulation of bias current, which is produced by a power supply. The tuning magnet power supply utilizes a bridge circuit, supplied by a three phase rectifier. During the rise of the current, when the particles are accelerated, the current is controlled with precision by the bridge which operates a power amplifier. During the fall of the current, the bridge operates in a switching mode and recovers the energy stored in the ferrites. The recovered energy is stored in a capacitor bank. The bridge circuit is built with 150 power transistors. The drive, protection and control circuit were designed and built from commercial component. The system will be used for a rf cavity experiment in Los Alamos and will serve as a prototype tuning power supply for future accelerators. 1 ref., 7 figs

  12. A resonant ionization laser ion source at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Stracener, D.W.

    2016-06-01

    Multi-step resonance laser ionization has become an essential tool for the production of isobarically pure radioactive ion beams at the isotope separator on-line (ISOL) facilities around the world. A resonant ionization laser ion source (RILIS) has been developed for the former Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory. The RILIS employs a hot-cavity ion source and a laser system featuring three grating-tuned and individually pumped Ti:Sapphire lasers, especially designed for stable and simple operation. The RILIS has been installed at the second ISOL production platform of former HRIBF and has successfully provided beams of exotic neutron-rich Ga isotopes for beta decay studies. This paper reports the features, advantages, limitations, and on-line and off-line performance of the RILIS.

  13. Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers

    DEFF Research Database (Denmark)

    Liu, Junqiu; Brasch, Victor; Pfeiffer, Martin H. P.

    2016-01-01

    Frequency-comb-assisted diode laser spectroscopy, employing both the accuracy of an optical frequency comb and the broad wavelength tuning range of a tunable diode laser, has been widely used in many applications. In this Letter, we present a novel method using cascaded frequency agile diode lasers......, which allows us to extend the measurement bandwidth to 37.4 THz (1355-1630 nm) at megahertz resolution with scanning speeds above 1 THz/s. It is demonstrated as a useful tool to characterize a broadband spectrum for molecular spectroscopy, and in particular it enables us to characterize the dispersion...

  14. Control of waveguide properties by tuning femtosecond laser induced compositional changes

    International Nuclear Information System (INIS)

    Hoyo, Jesús; Fernandez, Toney Teddy del; Siegel, Jan; Solis, Javier; Vazquez, Rebeca Martinez; Osellame, Roberto; Sotillo, Belén; Fernández, Paloma

    2014-01-01

    Local compositional changes induced by high repetition rate fs-laser irradiation can be used to produce high performance optical waveguides in phosphate-based glasses. The waveguide refractive index contrast is determined by the local concentration of La, which can be changed by the action of the writing laser pulses. In this work, we have investigated the degree of control that can be exerted using this waveguide writing mechanism over the cross-section of the guiding region, and the local refractive index and compositional changes induced. These variables can be smoothly controlled via processing parameters using the slit shaping technique with moderate Numerical Aperture (NA 0.68) writing optics. The combined use of X-ray microanalysis and near field refractive index profilometry evidences a neat linear correlation between local La content and refractive index increase over a broad Δn interval (>3 × 10 −2 ). This result further confirms the feasibility of generating efficient, integrated optics elements via spatially selective modification of the glass composition.

  15. Laser-induced reversion of δ′ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    KAUST Repository

    Khushaim, Muna Saeed Amin

    2016-06-14

    The influence of tuning the laser pulse energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction, and composition of δ\\' precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser pulse energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser pulse energy of 100 pJ was in fairly good agreement with reported range of δ\\' solvus temperature, suggesting a result of reversion upon heating due to laser pulsing. © 2016 Wiley Periodicals, Inc.

  16. Laser-induced reversion of δ′ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    KAUST Repository

    Khushaim, Muna Saeed Amin; Gemma, Ryota; Al-Kassab, Talaat

    2016-01-01

    The influence of tuning the laser pulse energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction, and composition of δ' precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser pulse energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser pulse energy of 100 pJ was in fairly good agreement with reported range of δ' solvus temperature, suggesting a result of reversion upon heating due to laser pulsing. © 2016 Wiley Periodicals, Inc.

  17. ATLAS Run 1 Pythia8 tunes

    CERN Document Server

    The ATLAS collaboration

    2014-01-01

    We present tunes of the Pythia8 Monte~Carlo event generator's parton shower and multiple parton interaction parameters to a range of data observables from ATLAS Run 1. Four new tunes have been constructed, corresponding to the four leading-order parton density functions, CTEQ6L1, MSTW2008LO, NNPDF23LO, and HERAPDF15LO, each simultaneously tuning ten generator parameters. A set of systematic variations is provided for the NNPDF tune, based on the eigentune method. These tunes improve the modeling of observables that can be described by leading-order + parton shower simulation, and are primarily intended for use in situations where next-to-leading-order and/or multileg parton-showered simulations are unavailable or impractical.

  18. Chloride effect on the early photolysis intermediates of a gecko cone-type visual pigment.

    Science.gov (United States)

    Lewis, J W; Liang, J; Ebrey, T G; Sheves, M; Kliger, D S

    1995-05-02

    Nanosecond laser photolysis measurements were conducted on the cone-type visual pigment P521 in digitonin extracts of Tokay gecko (Gekko gekko) retina containing physiological chloride ion levels and also on samples which had been chloride depleted or which contained high levels (4 M) of chloride. Absorbance difference spectra were recorded at a sequence of time delays from 30 ns to 60 microseconds following excitation with a pulse of either 532- or 477-nm actinic light. Global analysis showed the kinetic decay data for gecko pigment P521 to be best fit by two exponential processes under all chloride conditions. The initial photoproduct detected had a broad spectrum characteristic of an equilibrated mixture of a Batho P521 intermediate with its blue-shifted intermediate (BSI P521) decay product. The first exponential process was assigned to the decay of this mixture to the Lumi P521 intermediate. The second exponential process was identified as the decay of Lumi P521 to Meta I P521. The initial photoproduct's spectrum exhibited a strong dependence on chloride concentration, indicating that chloride affects the composition of the equilibrated mixture of Batho P521 and BSI P521. These results suggest that the affinity for chloride is reduced approximately 5-fold in the Batho P521 intermediate and approximately 50-fold in the BSI P521 intermediate. Chloride concentration also affects the apparent decay rate of the equilibrated mixture. When the apparent decay rate is corrected for the composition of the equilibrated mixture, a relatively invariant microscopic rate constant is obtained for BSI decay (k = 1/55 ns-1).(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Laser Photoradiation Therapy For Neonatal Jaundice

    Science.gov (United States)

    Hamza, Mostafa; Hamza, Mohammad

    1987-04-01

    This paper describes our leading experience in the clinical application of laser in the treatment of neonatal jaundice. Currently, the irradiation of jaundiced infants during neonatal life to fluorescent light is the most common treatment of neonatal hyperbilirubinemia. The authors have investigated the photodegradation of bilirubin by laser in vitro and in Gunn rats before embarking on its clinical application in the treatment of jaundice in the new born child. This work was done to study the theraputic effect of laser compared to the currently used phototherapy in the treatment of neonatal jaundice. We selected 16 full term neonates with jaundice to be the subject of this study. The neonates of the study were devided into two groups. The first group was treated with continuous phototherapy . The second group recieved photoradiation therapy with gas laser The laser used was a CW argon-ion laser tuned to oscillate at 488.0 nm wavelength. This wavelength selection was based on our previous studies on the effect of laser irradiation of Gunn rats at different wavelengths. Comparison of the results of both methods of treatment will be reported in detail. The advantages and limitations of laser photoradiation therapy for neonatal jaundice will be discussed.

  20. Robust Self Tuning Controllers

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    1985-01-01

    The present thesis concerns robustness properties of adaptive controllers. It is addressed to methods for robustifying self tuning controllers with respect to abrupt changes in the plant parameters. In the thesis an algorithm for estimating abruptly changing parameters is presented. The estimator...... has several operation modes and a detector for controlling the mode. A special self tuning controller has been developed to regulate plant with changing time delay.......The present thesis concerns robustness properties of adaptive controllers. It is addressed to methods for robustifying self tuning controllers with respect to abrupt changes in the plant parameters. In the thesis an algorithm for estimating abruptly changing parameters is presented. The estimator...

  1. Utilizing wheel-ring architecture for stable and selectable single-longitudinal-mode erbium fiber laser

    Science.gov (United States)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai

    2018-03-01

    To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.

  2. Pre-tuning of TRISTAN superconducting RF cavities

    International Nuclear Information System (INIS)

    Tajima, Tsuyoshi; Furuya, Takaaki; Suzuki, Toshiji; Iino, Yohsuke.

    1990-01-01

    Pre-tuning of thirty-two TRISTAN superconducting cavities has been done. In this paper are described the pre-tuning system and the results of all the cavities. The average field flatness was 1.4 % after pre-tuning. From our experience, the followings are important, 1) to evacuate the cavity during the process of the pre-tuning to avoid the uncertainty in evacuation, 2) pre-tuning is needed after annealing because it causes changes of the cell length and the field profile and 3) field flatness sometimes changes when expanded and 4) cells should not be expanded more than 1.5 mm after pre-tuning since inelastic deformation occurs. (author)

  3. Fiscal 2000 survey report. Research on laser-aided photolysis of environmental pollutant in liquid phase system; 2000 nendo ekisokei ni okeru kankyo osen busshitsu no laser hikari bunkai gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Experiments were conducted on laser-aided decomposition and removal of chemical substances in liquid phase systems on the assumption that there existed chemical pollutants in wastewater or water after washing burned ash. The aim of the research was to split carbon-chlorine bonds and break benzene rings, the two being the cause of harmfulness, and experiments were conducted using chlorophenol. The photolytic lasers were ArF excimer laser and KrF excimer laser. It was found that the reduction rate of chlorophenol in a water solution under excimer laser irradiation was 1.7 times higher under KrF laser than under ArF laser. For mediums other than water, isopropanol was used, more convenient than chlorophenol in separating organic pollutants from burned ash and the like. In this case, organochlorine compounds were generated at the beginning, but they disappeared when irradiation was prolonged. It was demonstrated that the laser-aided environmental cleaning technology would find a very wide scope of application as an effective photolytic means. (NEDO)

  4. How safe is tuning a radio?: using the radio tuning task as a benchmark for distracted driving.

    Science.gov (United States)

    Lee, Ja Young; Lee, John D; Bärgman, Jonas; Lee, Joonbum; Reimer, Bryan

    2018-01-01

    Drivers engage in non-driving tasks while driving, such as interactions entertainment systems. Studies have identified glance patterns related to such interactions, and manual radio tuning has been used as a reference task to set an upper bound on the acceptable demand of interactions. Consequently, some view the risk associated with radio tuning as defining the upper limit of glance measures associated with visual-manual in-vehicle activities. However, we have little knowledge about the actual degree of crash risk that radio tuning poses and, by extension, the risk of tasks that have similar glance patterns as the radio tuning task. In the current study, we use counterfactual simulation to take the glance patterns for manual radio tuning tasks from an on-road experiment and apply these patterns to lead-vehicle events observed in naturalistic driving studies. We then quantify how often the glance patterns from radio tuning are associated with rear-end crashes, compared to driving only situations. We used the pre-crash kinematics from 34 crash events from the SHRP2 naturalistic driving study to investigate the effect of radio tuning in crash-imminent situations, and we also investigated the effect of radio tuning on 2,475 routine braking events from the Safety Pilot project. The counterfactual simulation showed that off-road glances transform some near-crashes that could have been avoided into crashes, and glance patterns observed in on-road radio tuning experiment produced 2.85-5.00 times more crashes than baseline driving. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Demonstration of Bias-Controlled Algorithmic Tuning of Quantum Dots in a Well (DWELL) MidIR Detectors

    Science.gov (United States)

    2009-06-01

    imaging, as well as imaging and nonimaging active laser and radar systems. Dr. Tyo is a Fellow of the International Society for Optical Engineers (SPIE...possible to reconstruct the spec- tral content of a target electronically without using any disper- sive optical elements for tuning, thereby...chtm.unm.edu; skr- ishna@chtm.unm.edu). J. S. Tyo is with the College of Optical Sciences, University of Arizona, Tucson, AZ 85721 USA (e-mail: tyo

  6. Freedom from band-gap slavery: from diode lasers to quantum cascade lasers

    Science.gov (United States)

    Capasso, Federico

    2010-02-01

    Semiconductor heterostructure lasers, for which Alferov and Kromer received part of the Nobel Prize in Physics in 2000, are the workhorse of technologies such as optical communications, optical recording, supermarket scanners, laser printers and fax machines. They exhibit high performance in the visible and near infrared and rely for their operation on electrons and holes emitting photons across the semiconductor bandgap. This mechanism turns into a curse at longer wavelengths (mid-infrared) because as the bandgap, shrinks laser operation becomes much more sensitive to temperature, material defects and processing. Quantum Cascade Laser (QCL), invented in 1994, rely on a radically different process for light emission. QCLs are unipolar devices in which electrons undergo transitions between quantum well energy levels and are recycled through many stages emitting a cascade of photons. Thus by suitable tailoring of the layers' thickness, using the same heterostructure material, they can lase across the molecular fingerprint region from 3 to 25 microns and beyond into the far-infrared and submillimiter wave spectrum. High power cw room temperature QCLs and QCLs with large continuous single mode tuning range have found many applications (infrared countermeasures, spectroscopy, trace gas analysis and atmospheric chemistry) and are commercially available. )

  7. Resonant laser ablation: mechanisms and applications

    International Nuclear Information System (INIS)

    Anderson, J.E.; Bodla, R.; Eiden, G.C.; Nogar, N.S.; Smith, C.H.

    1996-01-01

    Resonant laser ablation (RLA) typically relies on irradiation of a sample in a mass spectrometer with modest intensity laser pulses tuned to a one or two photon resonant transition in the analyte of interest. This paper shows that RLA is well suited for highly sensitive analyses of complex samples. The examples actually studied are trace components in rhenium and technetium in nickel. The authors also studied the 2+1 multiphoton ionization spectrum of iron-56 detected by RLA of Re containing 70 ppm iron. Two-photon transition rates for Fe transitions were calculated perturbatively and found to agree semi-quantitatively with experimentally observed intensities. 17 refs., 3 figs

  8. Sub-1100 nm lasing from post-growth intermixed InAs/GaAs quantum-dot lasers

    KAUST Repository

    Alhashim, Hala H.

    2015-08-15

    Impurity free vacancy disordering induced highly intermixed InAs/GaAs quantum-dot lasers are reported with high internal quantum efficiency (>89%). The lasers are shown to retain the device characteristics after intermixing and emitting in the important wavelength of ∼1070–1190 nm. The non-coated facet Fabry-Pērot post-growth wavelength tuned lasers exhibits high-power (>1.4W) and high-gain (∼50 cm −1), suitable for applications in frequency doubled green–yellow–orange laser realisation, gas sensing, metrology etc.

  9. Report on the FY 1999 study of the decomposition/removal of environmental pollutants using laser induced chemical reaction; 1999 nendo laser yuki kagaku hanno wo mochiita kankyo osen busshitsu no bunkai jokyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the cleavage of carbon-chlorine connection and decomposition of benzene rings which are hazardous causes of the environmental pollutants represented by dioxins, the photolysis of gaseous phase chlorobenzene used as a model compound was made using KrF and ArF excimer laser. The decomposition is high efficiency, and ArF shorter in wavelength can be compounded twice-four times as fast as KrF. It was found out that in the system where oxygen exists, carbon monoxide, carbon dioxide, acetylene, hydrogen chloride, etc. are produced as decomposition products. From the results of the gaschromatographical analysis, chlorine compounds were detected as solid phase decomposition products. However, by the oxygen existence effect and laser shorter wavelength effect, the formation of polychlorinated aromatics was controlled, and chlorine compounds were made non-pollutant together with the composition. It was indicated that the environmental clean-up technology using laser is effective for making low-concentration environmental pollutants non-pollutant, and it is a method to clean up the environment which has a wide range of the application field. (NEDO)

  10. Spectral tuning via multi-phonon-assisted stokes and anti-stokes excitations in LaF{sub 3}: Tm{sup 3+} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dangli, E-mail: gaodangli@163.com [School of Materials & Mineral Resources, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); College of Science, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); Shaanxi Key Laboratory of Nano Materials and Technology, Xi' an, Shaanxi 710055 (China); Tian, Dongping, E-mail: dptian@xauat.edu.cn [School of Materials & Mineral Resources, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); College of Science, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); Chong, Bo; Li, Long [College of Science, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); Zhang, Xiangyu [College of Science, Chang' an University, Xi' an, Shaanxi 710064 (China)

    2016-09-05

    We present a facile and highly effective method to tailor upconversion (UC) emission from LaF{sub 3}: Tm{sup 3+} nanoparticles (NPs) by adjusting ambient temperature from 20 K to 400 K accompanied with the pulse laser excitation. Spectral tuning mechanism controlled by ambient temperature at pulse laser excitation is revealed, and a mechanism based on the modification on multi-phonon relaxation rates for the rapid population of intermediate level {sup 3}H{sub 4} and multi-phonon-assisted excited state absorption is proposed. Based on multi-phonon relaxation theory and time-resolved photoluminescence studies, it is reasonable that UC luminescence under short-pulse laser excitation mainly originates from the ions at/near the surface of NPs. These exciting findings in ambient temperature accompanied with the short-pulse excitation dependent UC selectivity offer a general approach to tailoring lanthanide related UC emissions, which will benefit multicolor displays and imaging. - Graphical abstract: An effective method to tailor upconversion from LaF{sub 3}: Tm{sup 3+} nanoparticles by adjusting ambient temperature accompanied with the short-pulse laser excitation is presented and the spectral tuning mechanism based the modification on multi-phonon relaxation rate and multi-phonon-assisted excited state absorption is also revealed. - Highlights: • The luminescence switching is controlled by temperature and pulse duration. • The mechanism based on the multi-phonon-assisted excitations is proposed. • Blue luminescence under short-pulse excitation originates from the surface ions. • Temperature has a big effect on luminescence color output.

  11. Mechanisms for the production of harmonics in free electron lasers

    NARCIS (Netherlands)

    Elgin, J.N.; Penman, C.

    1991-01-01

    Harmonics in the radiation of a free electron laser are useful for extending the range of tuning, may originate in spontaneous or parametric processes, and can take part in stimulated emission or amplification. These mechanisms exhibit interesting analogies with those of nonlinear optics. Apart from

  12. D2O laser pumped by an injection-locked CO2 laser for ion-temperature measurements

    International Nuclear Information System (INIS)

    Okada, Tatsuo; Ohga, Tetsuaki; Yokoo, Masakazu; Muraoka, Katsunori; Akazaki, Masanori.

    1986-01-01

    The cooperative Thomson scattering method is one of the various new techniques proposed for measuring the temperature of ions in nuclear fusion critical plasma, for which a high-performance FIR laser pumped by an injection-locked CO 2 laser is required. This report deals with D 2 O laser with a wavelength of 385 μm which is pumped by injection-locked single-mole TEA CO 2 laser composed of a driver laser and an output-stage laser. A small-sized automatic pre-ionization type laser is employed for the driver. The resonator of the driver laser consists of a plane grating of littrow arrangement and ZnSe plane output mirrors with reflection factor of 50 %. An aperture and ZnSe etalon are inserted in the resonator to produce single transverse- and longitudinal-mode oscillation, respectively. The output-stage laser is also of the automatic pre-ionization type. Theoretically, an injection power of 0.1 pW/mm 3 is required for a CO 2 laser. Single-mode oscillation of several hundred nW/mm 3 can be produced by the CO 2 laser used in this study. Tuning of the output-stage laser is easily controlled by the driver laser. High stability of the injection-locked operation is demonstrated. CO 2 laser beam is introduced into the D 2 O laser through a KCl window to excite D 2 O laser beam in the axial direction. Input and output characteristics of the D 2 O laser are shown. Also presented are typical pulse shapes from the D 2 O laser pumped by a free-running CO 2 laser pulse or by an injection-locked single-mode CO 2 laser pulse. (Nogami, K.)

  13. Betatron tune measurement

    International Nuclear Information System (INIS)

    Dinev, D.

    2001-01-01

    On the basis of the comparative review of the methods for the betatron tune measurement in cyclic accelerators of synchrotrons type, the research of these methods is carried out from the point of view of their applicability to Nuclotron. Both methods using measurement of the statistical fluctuations of the beam current (Schottky noise) and methods using coherent beam excitation have been discussed. The emphasis is on the final results of importance for the tune measurement practice. Signal processing is briefly discussed too

  14. Upgrades to PEP-II Tune Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Alan S.

    2002-07-30

    The tune monitors for the two-ring PEP-II collider convert signals from one set of four BPM-type pickup buttons per ring into horizontal and vertical differences, which are then downconverted from 952 MHz (twice the RF) to baseband. Two-channel 10-MHz FFT spectrum analyzers show spectra in X-window displays in the Control Room, to assist PEP operators. When operating with the original system near the beam-beam limit, collisions broadened and flattened the tune peaks, often bringing them near the noise floor. We recently installed new downconverters that increase the signal-to-noise ratio by about 5 dB. In addition, we went from one to two sets of pickups per ring, near focusing and defocusing quadrupoles, so that signals for both planes originate at locations with large amplitudes. We also have just installed a tune tracker, based on a digital lock-in amplifier (one per tune plane) that is controlled by an EPICS software feedback loop. The tracker monitors the phase of the beam's response to a sinusoidal excitation, and adjusts the drive frequency to track the middle of the 1 go-degree phase transition across the tune resonance. We plan next to test an outer loop controlling the tune quadrupoles based on this tune measurement.

  15. Upgrades to PEP-II Tune Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Alan S.

    2002-07-30

    The tune monitors for the two-ring PEP-II collider convert signals from one set of four BPM-type pickup buttons per ring into horizontal and vertical differences, which are then downconverted from 952 MHz (twice the RF) to baseband. Two-channel l0-MHz FFT spectrum analyzers show spectra in X-window displays in the Control Room, to assist PEP operators. When operating with the original system near the beam-beam limit, collisions broadened and flattened the tune peaks, often bringing them near the noise floor. We recently installed new downconverters that increase the signal-to-noise ratio by about 5 dB. In addition, we went from one to two sets of pickups per ring, near focusing and defocusing quadrupoles, so that signals for both planes originate at locations with large amplitudes. We also have just installed a tune tracker, based on a digital lock-in amplifier (one per tune plane) that is controlled by an EPICS software feedback loop. The tracker monitors the phase of the beam's response to a sinusoidal excitation, and adjusts the drive frequency to track the middle of the 180-degree phase transition across the tune resonance. We plan next to test an outer loop controlling the tune quadrupoles based on this tune measurement.

  16. Upgrades to PEP-II tune measurements

    International Nuclear Information System (INIS)

    Fisher, Alan S.; Petree, Mark; Wienands, Uli; Allison, Stephanie; Laznovsky, Michael; Seeman, Michael; Robin, Jolene

    2002-01-01

    The tune monitors for the two-ring PEP-II collider convert signals from one set of four BPM-type pickup buttons per ring into horizontal and vertical differences, which are then downconverted from 952 MHz (twice the RF) to baseband. Two-channel 10-MHz FFT spectrum analyzers show spectra in X-window displays in the Control Room, to assist PEP operators. When operating with the original system near the beam-beam limit, collisions broadened and flattened the tune peaks, often bringing them near the noise floor. We recently installed new downconverters that increase the signal-to-noise ratio by about 5 dB. In addition, we went from one to two sets of pickups per ring, near focusing and defocusing quadrupoles, so that signals for both planes originate at locations with large amplitudes. We also have just installed a tune tracker, based on a digital lock-in amplifier (one per tune plane) that is controlled by an EPICS software feedback loop. The tracker monitors the phase of the beam's response to a sinusoidal excitation, and adjusts the drive frequency to track the middle of the 180-degree phase transition across the tune resonance. We plan next to test an outer loop controlling the tune quadrupoles based on this tune measurement

  17. Enlargement of Tuning Range in a Ferrite-Tuned Cavity Through Superposed Orthogonal and Parallel Magnetic Bias

    CERN Document Server

    Vollinger, C

    2013-01-01

    Conventional ferrite-tuned cavities operate either with bias fields that are orthogonal or parallel to the magnetic RF-field. For a cavity that tunes rapidly over an overall frequency range around 100-400 MHz with high Q, we use ferrite garnets exposed to an innovative new biasing method consisting of a superposition of perpendicular and parallel magnetic fields. This method leads to a significant enlargement of the high-Q cavity tuning range by defining an operation point close to the magnetic saturation and thus improving ferrite material behaviour. A further advantage of this technique is the fast tuning speed resulting from the fact that tuning is carried out either with pure parallel biasing, or together with a very small change of operating point from perpendicular bias. In this paper, several scaled test models of ferrite-filled resonators are shown; measurements on the set-ups are compared and discussed.

  18. Independent control of arbitrary orders of dispersion at the high power end of CPA lasers

    International Nuclear Information System (INIS)

    Goerbe, M.; Jojart, P.; Szeged University, Szeged; Kovacs, M.; Osvay, K.

    2010-01-01

    Complete text of publication follows. One of the most crucial issues in chirped pulse amplification (CPA) systems is the precise temporal recompression of the pulses hitting the target. In case of few cycle high intensity lasers, the stabilization of the carrier-envelope phase (CEP) of the pulses is also required. An acousto-optical programmable dispersion filter can satisfy both aims, providing dispersion (pre)compensation up to the fourth order of dispersion and make the CEP shift stable. Its use is, however, limited to a pulse intensity of 100 MW/cm 2 , hence its application is restricted to the front end of the (OP)CPA laser systems. A simple optical arrangement consisting of wedges with different materials and different apex angles was proposed recently for isochronic control of CEP of a pulse train. In this paper we show that assembly of wedges can be specifically designed to tune only one of the dispersion coefficients, while all the others, including CEP, remain practically unchanged. Wedge pairs changing solely the zeroth (CEP) and second order (group delay) dispersion (GDD) are experimentally presented along with a triplet of wedges tuning the third order dispersion (TOD) only. The experiment was carried out with the use of spectrally resolved interferometry (SRI). A Michelson-interferometer was illuminated by 100 nm bandwidth laser pulses of a Ti:Sapphire oscillator. The sample arm of the interferometer contained the wedge assembly, set to near Brewster-angle incidence at each surfaces, designed for tuning the required order of dispersion. At the output of the interferometer the spectral interference between the pulses from the sample and reference arms was resolved with a spectrograph. The dispersion was tuned by perpendicular shift of the entire wedge assembly to the laser beam. In the measurements spectral interferograms were recorded and evaluated at each spatial position of the assembly. Three different wedge combinations, two doublets and a triplet

  19. Control of waveguide properties by tuning femtosecond laser induced compositional changes

    Energy Technology Data Exchange (ETDEWEB)

    Hoyo, Jesús; Fernandez, Toney Teddy del; Siegel, Jan; Solis, Javier, E-mail: j.solis@io.cfmac.csic.es [Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, 28006 Madrid (Spain); Vazquez, Rebeca Martinez; Osellame, Roberto [Instituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Sotillo, Belén; Fernández, Paloma [Depto. de Física de Materiales, Facultad de Físicas, Univ. Complutense, 28040 Madrid (Spain)

    2014-09-29

    Local compositional changes induced by high repetition rate fs-laser irradiation can be used to produce high performance optical waveguides in phosphate-based glasses. The waveguide refractive index contrast is determined by the local concentration of La, which can be changed by the action of the writing laser pulses. In this work, we have investigated the degree of control that can be exerted using this waveguide writing mechanism over the cross-section of the guiding region, and the local refractive index and compositional changes induced. These variables can be smoothly controlled via processing parameters using the slit shaping technique with moderate Numerical Aperture (NA 0.68) writing optics. The combined use of X-ray microanalysis and near field refractive index profilometry evidences a neat linear correlation between local La content and refractive index increase over a broad Δn interval (>3 × 10{sup −2}). This result further confirms the feasibility of generating efficient, integrated optics elements via spatially selective modification of the glass composition.

  20. Product channels in the 193-nm photodissociation of HCNO (fulminic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Wenhui; Hershberger, John F., E-mail: john.hershberger@ndsu.edu

    2016-06-15

    IR diode laser spectroscopy was used to detect the products of HCNO (fulminic acid) photolysis at 193 nm. Six product channels are energetically possible at this photolysis wavelength: O + HCN, H + NCO/CNO, CN + OH, CO + NH, NO + CH and HNCO. In some experiments, isotopically labeled {sup 15}N{sup 18}O, C{sub 2}D{sub 6} or C{sub 6}H{sub 12} reagents were included into the photolysis mixture in order to suppress and/or redirect possible secondary reactions. HCN, OC{sup 18}O, {sup 15}N{sup 15}NO, CO, DCN and HNCO molecules were detected upon laser photolysis of HCNO/reagents/buffer gas mixtures. Analysis of the yields of product molecules leads to the following photolysis quantum yields: ϕ{sub 1a} (O + HCN) = 0.38 ± 0.04, ϕ{sub 1b} (H + (NCO)) = 0.07 ± 0.02, ϕ{sub 1c} (CN + OH) = 0.24 ± 0.03, ϕ{sub 1d} (CO + NH(a{sup 1}Δ)) < 0.22 ± 0.1, ϕ{sub 1e} (HNCO) = 0.02 ± 0.01 and ϕ{sub 1f} (CH + NO) = 0.21 ± 0.1, respectively.

  1. A molecular low power CO/sub 2/ laser with a stabilized output frequency

    Energy Technology Data Exchange (ETDEWEB)

    Plinski, E.F.; Abramski, K.M.; Nowicki, R.; Pienkowski, J.; Rzepka, J.

    1983-01-01

    This laser has a resonator consisting of a spherical mirror with a slope radius of 10 meters and a reflecting diffraction grating (120 lines per millimeter). The use of this grating makes it possible to isolate one of the lines in the 10.4 or 9.4 micrometer bands. A mirror with a central hole 2.5 millimeters in diameter is mounted on a piezoceramic holder designed for tuning the resonator. Frequency stabilization is based on synchronous detection. An auxillary modulating signal injected to a specific section of the piezoceramic holder modulates the level of the laser. The change in the output power may be detected using an uncooled detector (Cd, Hg) Te. The error signal, injected to the holder, tunes the resonator so that it operates in the center of the output power curve.

  2. Nitrogen-Containing, Light-Absorbing Oligomers Produced in Aerosol Particles Exposed to Methylglyoxal, Photolysis, and Cloud Cycling.

    Science.gov (United States)

    De Haan, David O; Tapavicza, Enrico; Riva, Matthieu; Cui, Tianqu; Surratt, Jason D; Smith, Adam C; Jordan, Mary-Caitlin; Nilakantan, Shiva; Almodovar, Marisol; Stewart, Tiffany N; de Loera, Alexia; De Haan, Audrey C; Cazaunau, Mathieu; Gratien, Aline; Pangui, Edouard; Doussin, Jean-François

    2018-04-03

    Aqueous methylglyoxal chemistry has often been implicated as an important source of oligomers in atmospheric aerosol. Here we report on chemical analysis of brown carbon aerosol particles collected from cloud cycling/photolysis chamber experiments, where gaseous methylglyoxal and methylamine interacted with glycine, ammonium, or methylammonium sulfate seed particles. Eighteen N-containing oligomers were identified in the particulate phase by liquid chromatography/diode array detection/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry. Chemical formulas were determined and, for 6 major oligomer products, MS 2 fragmentation spectra were used to propose tentative structures and mechanisms. Electronic absorption spectra were calculated for six tentative product structures by an ab initio second order algebraic-diagrammatic-construction/density functional theory approach. For five structures, matching calculated and measured absorption spectra suggest that they are dominant light-absorbing species at their chromatographic retention times. Detected oligomers incorporated methylglyoxal and amines, as expected, but also pyruvic acid, hydroxyacetone, and significant quantities of acetaldehyde. The finding that ∼80% (by mass) of detected oligomers contained acetaldehyde, a methylglyoxal photolysis product, suggests that daytime methylglyoxal oligomer formation is dominated by radical addition mechanisms involving CH 3 CO*. These mechanisms are evidently responsible for enhanced browning observed during photolytic cloud events.

  3. Gravity and Nonconservative Force Model Tuning for the GEOSAT Follow-On Spacecraft

    Science.gov (United States)

    Lemoine, Frank G.; Zelensky, Nikita P.; Rowlands, David D.; Luthcke, Scott B.; Chinn, Douglas S.; Marr, Gregory C.; Smith, David E. (Technical Monitor)

    2000-01-01

    The US Navy's GEOSAT Follow-On spacecraft was launched on February 10, 1998 and the primary objective of the mission was to map the oceans using a radar altimeter. Three radar altimeter calibration campaigns have been conducted in 1999 and 2000. The spacecraft is tracked by satellite laser ranging (SLR) and Doppler beacons and a limited amount of data have been obtained from the Global Positioning Receiver (GPS) on board the satellite. Even with EGM96, the predicted radial orbit error due to gravity field mismodelling (to 70x70) remains high at 2.61 cm (compared to 0.88 cm for TOPEX). We report on the preliminary gravity model tuning for GFO using SLR, and altimeter crossover data. Preliminary solutions using SLR and GFO/GFO crossover data from CalVal campaigns I and II in June-August 1999, and January-February 2000 have reduced the predicted radial orbit error to 1.9 cm and further reduction will be possible when additional data are added to the solutions. The gravity model tuning has improved principally the low order m-daily terms and has reduced significantly the geographically correlated error present in this satellite orbit. In addition to gravity field mismodelling, the largest contributor to the orbit error is the non-conservative force mismodelling. We report on further nonconservative force model tuning results using available data from over one cycle in beta prime.

  4. Production of organic compounds in plasmas: A comparison among electric sparks, laser-induced plasmas and UV light

    Science.gov (United States)

    Scattergood, T. W.; Mckay, C. P.; Borucki, W. J.; Giver, L. P.; Vanghyseghem, H.; Parris, J. E.; Miller, S. L.

    1991-01-01

    In order to study the production of organic compounds in plasmas (and shocks), various mixtures of N2, CH4, and H2, modeling the atmosphere of Titan, were exposed to discrete sparks, laser-induced plasmas (LIP) and ultraviolet light. The yields of HCN and simple hydrocarbons were measured and compared to those calculated from a simple quenched thermodynamic equilibrium model. The agreement between experiment and theory was fair for HCN and C2H2. However, the yields of C2H6 and other hydrocarbons were much higher than those predicted by the model. Our experiments suggest that photolysis by ultraviolet light from the plasma is an important process in the synthesis. This was confirmed by the photolysis of gas samples exposed to the light, but not to the plasma or shock waves. The results of these experiments demonstrate that, in addition to the well-known efficient synthesis of organic compounds in plasmas, the yields of saturated species, e.g., ethane, may be higher than predicted by theory and that LIP provide a convenient and clean way of simulating planetary lightning and impact plasmas in the laboratory.

  5. Model-independent particle accelerator tuning

    Directory of Open Access Journals (Sweden)

    Alexander Scheinker

    2013-10-01

    Full Text Available We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: (1 it has the ability to handle unknown, time-varying systems, (2 it gives known bounds on parameter update rates, (3 we give an analytic proof of its convergence and its stability, and (4 it has a simple digital implementation through a control system such as the experimental physics and industrial control system (EPICS. Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme for uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multiparticle simulation results demonstrating the scheme’s ability to simultaneously adaptively adjust the set points of 22 quadrupole magnets and two rf buncher cavities in the Los Alamos Neutron Science Center (LANSCE Linear Accelerator’s transport region, while the beam properties and rf phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.

  6. High resolution laser spectroscopy as a diagnostic tool in beams

    International Nuclear Information System (INIS)

    Bergmann, K.; Hefter, U.; Hering, P.

    1977-01-01

    The combination of high resolution laser spectroscopy with the technique of molecular beams allows a very detailed beam research since molecules or atoms in specific quantum states can be sampled yielding previously unavailable sources of data. In these experiments a Na/Na 2 beam emerges from a 0.2 mm nozzle and is collimated by a 2 mm wide slit 50 cm downstream. To probe the molecules a single mode Ar + -laser was used which can be tuned within the gain profile of the laser line (8 GHz) to several transitions between specific levels in the ground state and second electronically excited state of the Na 2 molecule. (Auth.)

  7. Efficient Long Wave IR Laser from Ho:YAG 2 {mu}m Pumped ZnGeP{sub 2} Optical Parametric Oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Li-Gang,; Bao-Quan, Yao; Xiao-Ming, Duan; Guo-Li, Zhu; Yue-Zhu, Wang; You-Lun, Ju [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2010-01-15

    An efficient high power long wave infrared laser based on ZnGeP{sub 2} optical parametric oscillator pumped by a 2.09 {mu}m Tm:YLF/Ho:YAG laser at 10KHz pulse repetition rate is reported. The pump to idler conversion efficiency is 8% at 15.6 W Ho pump power level and a quantum efficiency of 31 % when the 1'idler wavelength is tuned at 8.08 {mu}m. The wavelength tuning range from 8-9.1 {mu}m is also achieved by rotating the ZGP crystal. (fundamental areas of phenomenology(including applications))

  8. Modeling of mode-locked coupled-resonator optical waveguide lasers

    DEFF Research Database (Denmark)

    Agger, Christian; Skovgård, Troels Suhr; Gregersen, Niels

    2010-01-01

    Coupled-resonator optical waveguides made from coupled high-Q photonic crystal nanocavities are investigated for use as cavities in mode-locked lasers. Such devices show great potential in slowing down light and can serve to reduce the cavity length of a mode-locked laser. An explicit expression...... of the emerging pulse train. A range of tuning around this frequency allows for effective mode locking. Finally, noise is added to the generalized single-cavity eigenfrequencies in order to evaluate the effects of fabrication imperfections on the cold-cavity transmission properties and consequently on the locking...

  9. Topology optimization of free vibrations of fiber laser packages

    DEFF Research Database (Denmark)

    Hansen, Lars Voxen

    2005-01-01

    The optimization problems described in the present paper are inspired by the problem of fiber laser package design for vibrating environments. The optical frequency of tuned fiber lasers glued to stiff packages is sensitive to acoustic or other mechanical vibrations. The paper presents a method...... for reducing this sensitivity by limiting the glue point movement on the package while using only a limited knowledge of vibrating external forces. By use of topology optimization a density distribution for the package is obtained, where the critical eigenmode of the package only effects a small elongation...

  10. Laser spectroscopy of relativistic beams of H- and H

    International Nuclear Information System (INIS)

    Smith, W.W.; Tang, C.Y.; Harris, P.G.; Mohagheghi, A.H.; Bryant, H.C.; Reeder, R.A.; Toutounchi, H.; Sharifian, H.

    1989-01-01

    Laser spectroscopy on near-light velocity H- ions and H atoms has been carried out at the Los Alamos Meson Physics Facility using a variety of fixed frequency lasers intersecting accelerated beams at variable angles. Beam energies up to 800 MeV (v/c) = 0.84 make possible an unusually wide tuning range at modestly high resolution. A dedicated beam line, the High Resolution Atomic Beam (HIRAB), also makes possible Stark effect and field ionization studies in the multi-megavolt/cm range. Preliminary results on multiphoton detachment of fast H-ions using a pulsed CO 2 laser focussed to ∼10 11 W/cm 2 over a factor 10 photon energy range (CM frame) are presented in this paper

  11. In-situ sequential laser transfer and laser reduction of graphene oxide films

    Science.gov (United States)

    Papazoglou, S.; Petridis, C.; Kymakis, E.; Kennou, S.; Raptis, Y. S.; Chatzandroulis, S.; Zergioti, I.

    2018-04-01

    Achieving high quality transfer of graphene on selected substrates is a priority in device fabrication, especially where drop-on-demand applications are involved. In this work, we report an in-situ, fast, simple, and one step process that resulted in the reduction, transfer, and fabrication of reduced graphene oxide-based humidity sensors, using picosecond laser pulses. By tuning the laser illumination parameters, we managed to implement the sequential printing and reduction of graphene oxide flakes. The overall process lasted only a few seconds compared to a few hours that our group has previously published. DC current measurements, X-Ray Photoelectron Spectroscopy, X-Ray Diffraction, and Raman Spectroscopy were employed in order to assess the efficiency of our approach. To demonstrate the applicability and the potential of the technique, laser printed reduced graphene oxide humidity sensors with a limit of detection of 1700 ppm are presented. The results demonstrated in this work provide a selective, rapid, and low-cost approach for sequential transfer and photochemical reduction of graphene oxide micro-patterns onto various substrates for flexible electronics and sensor applications.

  12. Nonintrusive gas monitoring in neonatal lungs using diode laser spectroscopy: feasibility study.

    Science.gov (United States)

    Lewander, Märta; Bruzelius, Anders; Svanberg, Sune; Svanberg, Katarina; Fellman, Vineta

    2011-12-01

    A feasibility study on noninvasive, real-time monitoring of gases in lungs of preterm infants is reported, where a laser-spectroscopic technique using diode lasers tuned to oxygen and water vapor absorption lines was employed on realistic tissue phantoms. Our work suggests that the technique could provide a new possibility for surveillance of the lung function of preterm infants, in particular the oxygenation, which is of prime importance in this patient group.

  13. Rapid patterning of 'tunable' hydrophobic valves on disposable microchips by laser printer lithography.

    Science.gov (United States)

    Ouyang, Yiwen; Wang, Shibo; Li, Jingyi; Riehl, Paul S; Begley, Matthew; Landers, James P

    2013-05-07

    We recently defined a method for fabricating multilayer microdevices using poly(ethylene terephthalate) transparency film and printer toner, and showed these could be successfully applied to DNA extraction and amplification (Duarte et al., Anal. Chem. 2011, 83, 5182-5189). Here, we advance the functionality of these microdevices with flow control enabled by hydrophobic valves patterned using laser printer lithography. Laser printer patterning of toner within the microchannel induces a dramatic change in surface hydrophobicity (change in contact angle of DI water from 51° to 111°) with good reproducibility. Moreover, the hydrophobicity of the surface can be controlled by altering the density of the patterned toner via varying the gray-scale setting on the laser printer, which consequently tunes the valve's burst pressure. Toner density provided a larger burst pressure bandwidth (158 ± 18 Pa to 573 ± 16 Pa) than could be achieved by varying channel geometry (492 ± 18 Pa to 573 ± 16 Pa). Finally, we used a series of tuned toner valves (with varied gray-scale) for passive valve-based fluidic transfer in a predictable manner through the architecture of a rotating PeT microdevice. While an elementary demonstration, this presents the possibility for simplistic and cost-effective microdevices with valved fluid flow control to be fabricated using nothing more than a laser printer, a laser cutter and a laminator.

  14. Time-resolved FTIR [Fourier transform infrared] emission studies of laser photofragmentation and chain reactions

    International Nuclear Information System (INIS)

    Leone, S.R.

    1990-01-01

    Recent progress is described resulting from the past three years of DOE support for studies of combustion-related photofragmentation dynamics, energy transfer, and reaction processes using a time-resolved Fourier transform infrared (FTIR) emission technique. The FTIR is coupled to a high repetition rate excimer laser which produces radicals by photolysis to obtain novel, high resolution measurements on vibrational and rotational state dynamics. The results are important for the study of numerous radical species relevant to combustion processes. The method has been applied to the detailed study of photofragmentation dynamics in systems such as acetylene, which produces C 2 H; chlorofluoroethylene to study the HF product channel; vinyl chloride and dichloroethylene, which produce HCl; acetone, which produces CO and CH 3 ; and ammonia, which produces NH 2 . In addition, we have recently demonstrated use of the FTIR technique for preliminary studies of energy transfer events under near single collision conditions, radical-radical reactions, and laser-initiated chain reaction processes

  15. TUNABLE DIODE LASER MEASUREMENTS OF NO2 NEAR 670 NM AND 395 NM. (R823933)

    Science.gov (United States)

    Two single-mode diode lasers were used to record high-resolution absorption spectra of NO2 (dilute in Ar) near 670.2 and 394.5 nm over a range of temperatures (296 to 774 K) and total pressures (2.4 x 10(-2) to 1 atm). A commercial InGaAsP laser was tuned 1.3 cm(-1) at a repetiti...

  16. Tunable Landau-Zener transitions using continuous- and chirped-pulse-laser couplings

    Science.gov (United States)

    Sarreshtedari, Farrokh; Hosseini, Mehdi

    2017-03-01

    The laser coupled Landau-Zener avoided crossing has been investigated with an aim towards obtaining the laser source parameters for precise controlling of the state dynamics in a two-level quantum system. The conventional Landau-Zener equation is modified for including the interaction of the system with a laser field during a bias energy sweep and the obtained Hamiltonian is numerically solved for the investigation of the two-state occupation probabilities. We have shown that in the Landau-Zener process, using an additional laser source with controlled amplitude, frequency, and phase, the system dynamics could be arbitrarily engineered. This is while, by synchronous frequency sweeping of a chirped-pulse laser, the system could be guided into a resonance condition, which again gives the remarkable possibility for precise tuning and controlling of the quantum system dynamics.

  17. Flash photolysis of rhodopsin in the cat retina

    International Nuclear Information System (INIS)

    Ripps, H.; Mehaffey, L.; Siegel, I.M.; Ernst, W.; Kemp, C.M.

    1981-01-01

    The bleaching of rhodopsin by short-duration flashes of a xenon discharge lamp was studied in vivo in the cat retina with the aid of a rapid, spectral-scan fundus reflectometer. Difference spectra recorded over a broad range of intensities showed that the bleaching efficacy of high-intensity flashes was less than that of longer duration, steady lights delivering the same amount of energy. Both the empirical results and those derived from a theoretical analysis of flash photolysis indicate that, under the conditions of these experiments, the upper limit of the flash bleaching of rhodopsin in cat is approximately 90%. Although the fact that a full bleach could not be attained is attributable to photoreversal, i.e., the photic regeneration of rhodopsin from its light-sensitive intermediates, the 90% limit is considerably higher than the 50% (or lower) value obtained under other experimental circumstances. Thus, it appears that the duration (approximately 1 ms) and spectral composition of the flash, coupled with the kinetic parameters of the thermal and photic reactions in the cat retina, reduce the light-induced regeneration of rhodopsin to approximately 10%

  18. Studies on atom deceleration process by using the Zeeman-tuned technique

    International Nuclear Information System (INIS)

    Bagnato, V.S.

    1990-01-01

    The Zeeman-tuned technique to slow an atomic beam of sodium atoms was detailed studied. A new technique to study the deceleration which consists in monitoring the fluorescence along the deceleration path is used. This allows a direct observation of the process and open possibilities to investigate the adiabatic following of atoms in the magnetic field, and others very important aspects of the process. With a single laser and some modification of the magnetic field profile it is possible stop atoms outside the slower solenoid, which make a lot of experiments much simpler. A systematic study of the optical pumping effects and adiabatic following conditions allow to produce a very strong slow motion atomic beam. (author)

  19. Sub-wavelength plasmon laser

    Science.gov (United States)

    Bora, Mihail; Bond, Tiziana C.

    2016-04-19

    A plasmonic laser device has resonant nanocavities filled with a gain medium containing an organic dye. The resonant plasmon frequencies of the nanocavities are tuned to align with both the absorption and emission spectra of the dye. Variables in the system include the nature of the dye and the wavelength of its absorption and emission, the wavelength of the pumping radiation, and the resonance frequencies of the nanocavities. In addition the pumping frequency of the dye is selected to be close to the absorption maximum.

  20. Tuning by means of laser annealing of electronic and structural properties of nc-Si/a-Si:H

    International Nuclear Information System (INIS)

    Poliani, E.; Somaschini, C.; Sanguinetti, S.; Grilli, E.; Guzzi, M.; Le Donne, A.; Binetti, S.; Pizzini, S.; Chrastina, D.; Isella, G.

    2009-01-01

    We report the effect of laser annealing on the structural and electronic properties of nc-Si/a-Si:H samples grown close to the amorphous to nanocrystalline transition. The nc-Si/a-Si:H thin films were produced by low-energy plasma-enhanced chemical vapor deposition through a gas discharge containing SiH 4 . The samples were subjected to different laser fluencies and were characterized for changes in their structural and electronic properties via Raman spectroscopy and photoluminescence measurements. The laser annealing effects are twofold: i) the nanocrystalline phase grows, during the laser treatment, respect to the amorphous phase; ii) the photoluminescence spectra show the suppression, after laser annealing, of the frequencies above the crystalline Si band-gap.

  1. Study on improvement of laser system performance for uranium isotope separation

    International Nuclear Information System (INIS)

    Fujii, Takashi

    1998-01-01

    For the purpose of reducing the cost of Atomic Vapor Laser Isotope Separation (AVLIS), I developed the following laser technologies. (1) I developed a solid-state pulse power supply, of which output power was the almost highest value achieved for a copper vapor laser in 1989, using a GTO as a switching device and a magnetic pulse compression circuit. (2) I developed a new technique of tuning the laser wavelength to an atomic absorption band using high-speed wavelength shift of a laser diode by direct modulation. (3) I developed a new technique of stabilizing the laser wavelength at an absorption band of a target atom, by locking the sideband generated by phase modulation of a laser beam to a Fabry-Perot interferometer. (4) I proposed the Cr 4+ -doped forsterite laser system as an all solid-state laser system for the AVLIS. I obtained the slope efficiency of 25%, which was the highest value achieved in the case of pulse operation of the Cr 4+ -doped forsterite laser in 1995, using the forsterite with high Cr 4+ -ion concentration. (author)

  2. Estudo da degradação do fármaco Nabumetona por fotólise direta Study of Nabumetone degradation through direct photolysis

    Directory of Open Access Journals (Sweden)

    Florangela Maionchi

    2002-03-01

    Full Text Available O presente trabalho teve por objetivo estudar a degradação do fármaco Nabumetona por fotólise direta. Soluções etanólicas de amostras (20 mg/mL foram preparadas e divididas em cubetas de quartzo com tampas de teflon. Estas foram colocadas em uma câmara de fotólise à temperatura de 35ºC. As quantificações das fotodegradações foram analisadas por Cromatografia Líquida de Alta Eficiência (CLAE; após 47 dias de fotólise, a degradação da amostra foi de 67%, após 73 dias 88,5% e após 111 dias 89,5%. Determinações espectrofotométricas (240 a 360 nm foram realizadas após 28, 47 e 73 dias de fotólise. Os fotoprodutos foram separados por CLAE e analisados por Cromatografia Gasosa Acoplada ao Espectro de Massa de Baixa Resolução (CG-EM. A análise em CG-EM da Nabumetona fotolisada durante 111 dias permitiu a sugestão de duas substâncias.The present work aims to study the degradation of Nabumetone through direct photolysis. Solutions of Nabumetone in ethanol (20 mg/mL were prepared and divided in quartz cuvettes with teflon lids. These were placed in the photolysis cabinet at 35ºC. The photodegradation quantifications were analyzed in High Performance Liquid Cromatography (HPLC; after 47 days of photolysis the sample degradation was 67%, after 73 days 88.5% and after 111 days 89.5%. Spectrophotometers determinations (240 to 360 nm were accomplished after 28, 47 and 73 days of photolysis. The photoproducts were separate for HPLC and analyzed by Gas Cromatograph coupled to Mass Spectrometer (GC-MS. The analysis in GC-MS of the Nabumetona photolyseded for 111 days allowed the suggestion of two substances.

  3. Control of Fermilab Booster tunes

    International Nuclear Information System (INIS)

    Johnson, R.P; Meisner, K.; Sandberg, B.

    1977-01-01

    Control of the radial and vertical tunes of the booster is implemented using ramped correction quadrupoles. Minor modifications to the power supply cards for the 48 (previously) dc correction quadrupoles allow ''the tunes'' to be continuously programmed or held constant throughout the 33 ms acceleration cycle. This capability is in addition to the usual use of these quadrupoles to be independently varied to correct for harmonic distortions in the lattice. An automatic computer program measures and displays the tunes vs. time in the cycle to monitor performance and to allow the ramps to be adjusted by the machine operator

  4. Gravity and Macro-Model Tuning for the Geosat Follow-on Spacecraft

    Science.gov (United States)

    Lemoine, Frank G.; Rowlands, David D.; Marr, Gregory C.; Zelensky, Nikita P.; Luthcke, Scott B.; Cox, Christopher M.

    1999-01-01

    The US Navy's GEOSAT Follow-On (GFO) spacecraft was launched on February 10, 1998 and the primary objective of the mission was to map the oceans using a radar altimeter. The spacecraft tracking complement consisted of GPS receivers, a laser retroreflector and Doppler beacons. Since the GPS receivers have not yet returned reliable data, the only means of providing high-quality precise orbits has been though satellite laser ranging (SLR). The spacecraft has been tracked by the international satellite laser ranging network since April 22, 1998, and an average of 7.4 passes per day have been obtained from US and participating foreign stations. Since the predicted radial orbit error due to the gravity field is two to three cm, the largest contributor to the high SLR residuals (7-10 cm RMS for five day arcs) is the mismodelling of the non-conservative forces, not withstanding the development of a three-dimensional eight-panel model and an analytical attitude model for the GFO spacecraft. The SLR residuals show a clear correlation with beta-prime (solar elevation) angle, peaking in mid-August 1998 when the beta-prime angle reached -80 to -90 degrees. In this paper we discuss the tuning of the non-conservative force model, for GFO and report the subsequent addition of the GFO tracking data to the Earth gravity model solutions.

  5. Multiband carbon monoxide laser (2.5 -- 4.0 and 5.0 -- 6.5 micron) pumped by capacitive slab RF discharge

    Science.gov (United States)

    Ionin, Andrey; Kozlov, Andrey; Seleznev, Leonid; Sinitsyn, Dmitry

    2008-10-01

    Overtone lasing and fundamental band tuning was for the first time obtained in a carbon monoxide laser excited by repetitively pulsed capacitive slab RF discharge (81.36 MHz). RF discharge pulse repetition rate was 100--500 Hz. The active volume was 3x30x250 cubic mm. Laser electrodes were cooled down to 120 K. Gas mixture CO:air:He at gas pressure 15 Torr was used. The optical scheme ``frequency selective master oscillator - laser amplifier'' was applied for getting fundamental band tuning. Single line lasing with average power up to several tens of mW was observed on about 100 rotational-vibrational transitions of CO molecule within the spectral range 5.0--6.5 micron. Multiline overtone lasing was observed on about 80 spectral lines within the spectral range 2.5-4.0 micron, with maximum single line average output power 12 mW. The total output power of the slab overtone CO laser came up to 0.35 W, with laser efficiency 0.5 percent. The results of parametric studies of capacitive slab RF discharge in carbon monoxide mixtures, and overtone and fundamental band CO laser characteristics are discussed.

  6. Selective enhancement of orientation tuning before saccades.

    Science.gov (United States)

    Ohl, Sven; Kuper, Clara; Rolfs, Martin

    2017-11-01

    Saccadic eye movements cause a rapid sweep of the visual image across the retina and bring the saccade's target into high-acuity foveal vision. Even before saccade onset, visual processing is selectively prioritized at the saccade target. To determine how this presaccadic attention shift exerts its influence on visual selection, we compare the dynamics of perceptual tuning curves before movement onset at the saccade target and in the opposite hemifield. Participants monitored a 30-Hz sequence of randomly oriented gratings for a target orientation. Combining a reverse correlation technique previously used to study orientation tuning in neurons and general additive mixed modeling, we found that perceptual reports were tuned to the target orientation. The gain of orientation tuning increased markedly within the last 100 ms before saccade onset. In addition, we observed finer orientation tuning right before saccade onset. This increase in gain and tuning occurred at the saccade target location and was not observed at the incongruent location in the opposite hemifield. The present findings suggest, therefore, that presaccadic attention exerts its influence on vision in a spatially and feature-selective manner, enhancing performance and sharpening feature tuning at the future gaze location before the eyes start moving.

  7. Undulator commissioning by characterization of radiation in x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2012-11-01

    Full Text Available In x-ray free electron lasers (XFELs where a long undulator composed of many segments is installed, there exist a number of error sources to reduce the FEL gain such as the trajectory error, K value discrepancy, and phase mismatch, which are related to the segmented-undulator structure. Undulator commissioning, which refers to the tuning and alignment processes to eliminate the possible error sources, is thus an important step toward realization of lasing. In the SPring-8 angstrom compact free electron laser (SACLA facility, the undulator commissioning has been carried out by means of characterization of x-ray radiation, i.e., measurements of the spatial and spectral profiles of monochromatized spontaneous undulator radiation as well as by probing the FEL intensity. The achieved tuning and alignment accuracies estimated from the statistics of actual measurements in SACLA show the effectiveness of this commissioning scheme.

  8. Diode-pumped two-frequency lasers based on c-cut vanadate crystals

    International Nuclear Information System (INIS)

    Sirotkin, A A; Garnov, Sergei V; Zagumennyi, A I; Zavartsev, Yu D; Kutovoi, S A; Vlasov, V I; Shcherbakov, Ivan A

    2009-01-01

    The luminescent and lasing properties of the neo-dymium ion at the 4 F 3/2 - 4 I 11/2 transition in c-cut vanadate crystals (Nd:YVO 4 , Nd:GdVO 4 , and Nd:Gd 1-x Y x VO 4 ) are studied. Tuning of the laser radiation wavelength (Δλ = 5.4 nm) is demonstrated. Two-frequency laser schemes with the use of a Lyot filter, a Fabry-Perot etalon, and a Brewster prism as spectral selection elements are proposed and experimentally realised. Stable two-frequency lasing of a laser based on the c-cut Nd:GdVO 4 crystal was obtained in the cw, Q-switched (nanosecond pulses), and active acousto-optic mode-locked (picosecond pulses) regimes. (lasers)

  9. Laser-controlled stress of Si nanocrystals in a free-standing Si /SiO2 superlattice

    Science.gov (United States)

    Khriachtchev, Leonid; Räsänen, Markku; Novikov, Sergei

    2006-01-01

    We report laser manipulations with stress at the nanoscale level. The continuous-wave Ar+ laser radiation melts Si nanocrystals in a free-standing Si /SiO2 superlattice. Silicon crystallization from the liquid phase leads to a compressive stress, which can be accurately tuned in the 3GPa range using laser annealing below the Si melting temperature and then recovered by laser annealing above the melting temperature. This allows investigations of various phenomena as a function of stress and makes a case of Si-nanocrystal memory with very long retention time, which can be written, erased, and read by optical means.

  10. Laser-controlled stress of Si nanocrystals in a free-standing Si/SiO2 superlattice

    International Nuclear Information System (INIS)

    Khriachtchev, Leonid; Raesaenen, Markku; Novikov, Sergei

    2006-01-01

    We report laser manipulations with stress at the nanoscale level. The continuous-wave Ar + laser radiation melts Si nanocrystals in a free-standing Si/SiO 2 superlattice. Silicon crystallization from the liquid phase leads to a compressive stress, which can be accurately tuned in the 3 GPa range using laser annealing below the Si melting temperature and then recovered by laser annealing above the melting temperature. This allows investigations of various phenomena as a function of stress and makes a case of Si-nanocrystal memory with very long retention time, which can be written, erased, and read by optical means

  11. Ionization mechanism of cesium plasma produced by irradiation of dye laser

    International Nuclear Information System (INIS)

    Yamada, Jun; Shibata, Kohji; Uchida, Yoshiyuki; Hioki, Yoshiaki; Sahashi, Toshio.

    1992-01-01

    When a cesium vapor was irradiated by a dye laser which was tuned to the cesium atomic transition line, the number of charged particles produced by the laser radiation was observed. Several sharp peaks in the number of charged particles were observed, which corresponded to the atomic transition where the lower level was the 6P excited atom. The ionization mechanism of the laser-produced cesium plasma has been discussed. An initial electron is produced by laser absorptions of the cesium dimer. When the cesium density is high, many 6P excited atoms are excited by electron collisions. The 6P excited atom further absorbs the laser photon and is ionized through the higher-energy state. As the cesium vapor pressure increases, the resonance effect becomes observable. The 6P excited atom plays dominant role in the ionization mechanism of the laser-produced cesium plasma. (author)

  12. Tunable KTA Stokes laser based on stimulated polariton scattering and its intracavity frequency doubling.

    Science.gov (United States)

    Zang, Jie; Cong, Zhenhua; Chen, Xiaohan; Zhang, Xingyu; Qin, Zengguang; Liu, Zhaojun; Lu, Jianren; Wu, Dong; Fu, Qiang; Jiang, Shiqi; Zhang, Shaojun

    2016-04-04

    This paper presents the tunable Stokes laser characteristics of KTiOAsO4 (KTA) crystal based on stimulated polariton scattering (SPS). When the pumping laser wavelength is 1064.2 nm, the KTA Stokes wave can be discontinuously tuned from 1077.9 to 1088.4 nm with four gaps from 1079.0 to 1080.1 nm, from 1080.8 to 1082.8 nm, from 1083.6 to 1085.5 nm, and from 1085.8 to 1086.8 nm. When a frequency doubling crystal LiB3O5 (LBO) is inserted into the Stokes laser cavity, the frequency-doubled wave can be discontinuously tuned from 539.0 to 539.5 nm, from 540.1 to 540.4 nm, from 541.3 to 541.8 nm, from 542.7 to 542.9 nm and from 543.4 to 544.2 nm. With a pumping pulse energy of 130.0 mJ and an output coupler reflectivity of about 30%, the obtained maximum Stokes laser pulse energy at 1078.6 nm is 33.9 mJ and the obtained maximum frequency-doubled laser pulse energy at 543.8 nm is 15.7 mJ. By using the most probably coupled transverse optical modes obtained from the literature, the polariton refractive indexes, and the simplified polariton Sellmeier equations, the polariton dispersion curve is obtained. The formation of the Stokes frequency gaps is explained.

  13. DEUTERIUM FRACTIONATION DURING AMINO ACID FORMATION BY PHOTOLYSIS OF INTERSTELLAR ICE ANALOGS CONTAINING DEUTERATED METHANOL

    Energy Technology Data Exchange (ETDEWEB)

    Oba, Yasuhiro; Watanabe, Naoki; Kouchi, Akira [Institute of Low Temperature Science, Hokkaido University, N19W8, Kita-ku, Sapporo, Hokkaido 060-0819 (Japan); Takano, Yoshinori, E-mail: oba@lowtem.hokudai.ac.jp [Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061 (Japan)

    2016-08-10

    Deuterium (D) atoms in interstellar deuterated methanol might be distributed into complex organic molecules through molecular evolution by photochemical reactions in interstellar grains. In this study, we use a state-of-the-art high-resolution mass spectrometer coupled with a high-performance liquid chromatography system to quantitatively analyze amino acids and their deuterated isotopologues formed by the photolysis of interstellar ice analogs containing singly deuterated methanol CH{sub 2}DOH at 10 K. Five amino acids (glycine, α -alanine, β -alanine, sarcosine, and serine) and their deuterated isotopologues whose D atoms are bound to carbon atoms are detected in organic residues formed by photolysis followed by warming up to room temperature. The abundances of singly deuterated amino acids are in the range of 0.3–1.1 relative to each nondeuterated counterpart, and the relative abundances of doubly and triply deuterated species decrease with an increasing number of D atoms in a molecule. The abundances of amino acids increase by a factor of more than five upon the hydrolysis of the organic residues, leading to decreases in the relative abundances of deuterated species for α -alanine and β -alanine. On the other hand, the relative abundances of the deuterated isotopologues of the other three amino acids did not decrease upon hydrolysis, indicating different formation mechanisms of these two groups upon hydrolysis. The present study facilitates both qualitative and quantitative evaluations of D fractionation during molecular evolution in the interstellar medium.

  14. DEUTERIUM FRACTIONATION DURING AMINO ACID FORMATION BY PHOTOLYSIS OF INTERSTELLAR ICE ANALOGS CONTAINING DEUTERATED METHANOL

    International Nuclear Information System (INIS)

    Oba, Yasuhiro; Watanabe, Naoki; Kouchi, Akira; Takano, Yoshinori

    2016-01-01

    Deuterium (D) atoms in interstellar deuterated methanol might be distributed into complex organic molecules through molecular evolution by photochemical reactions in interstellar grains. In this study, we use a state-of-the-art high-resolution mass spectrometer coupled with a high-performance liquid chromatography system to quantitatively analyze amino acids and their deuterated isotopologues formed by the photolysis of interstellar ice analogs containing singly deuterated methanol CH 2 DOH at 10 K. Five amino acids (glycine, α -alanine, β -alanine, sarcosine, and serine) and their deuterated isotopologues whose D atoms are bound to carbon atoms are detected in organic residues formed by photolysis followed by warming up to room temperature. The abundances of singly deuterated amino acids are in the range of 0.3–1.1 relative to each nondeuterated counterpart, and the relative abundances of doubly and triply deuterated species decrease with an increasing number of D atoms in a molecule. The abundances of amino acids increase by a factor of more than five upon the hydrolysis of the organic residues, leading to decreases in the relative abundances of deuterated species for α -alanine and β -alanine. On the other hand, the relative abundances of the deuterated isotopologues of the other three amino acids did not decrease upon hydrolysis, indicating different formation mechanisms of these two groups upon hydrolysis. The present study facilitates both qualitative and quantitative evaluations of D fractionation during molecular evolution in the interstellar medium.

  15. Seven-laser diode end-pumped Nd

    International Nuclear Information System (INIS)

    Berger, J.; Welch, D.F.; Streifer, W.; Scifres, D.R.; Smith, J.J.; Hoffman, H.J.; Peisley, D.; Radecki, D.

    1988-01-01

    End pumping of solid-state lasers by single semiconductor laser diode arrays (LDAs) is efficient, but the maximum pump power is limited by the source brightness and matching the TEM/sub 00/ Nd:YAG cavity mode. To increase the output power from a solid-state Nd:YAG laser, one option is to employ a multiplicity of LDA to provide more pump power than is available from a single source. The authors report herein a 660-mW cw TEM/sub 00/ Nd:YAG laser, end-pumped by seven LDA, with bundled optical fibers coupling the light from each diode to the Nd:YAG rod end. The maximum electrical-to-optical conversion efficiency attained was 4.7% at 560-mW Nd:YAG output power. The LDAs (SDL-2430-C, 100 μm wide) were mounted on separate thermoelectric coolers to tune emission wavelength to the Nd:YAG absorption bands. The diodes were operated at their rated output power (50,000 h mean time to failure). The 110/125-μm diam 0.37-N.A. fibers were butt coupled to the lasers and glued together into a hexagonal close pack. The authors have obtained the highest average power demonstrated to date in the TEM/sub 00/ mode from a Nd:YAG laser, reliably end-pumped by multiple laser diodes with good efficiency

  16. Widespread auditory deficits in tune deafness.

    Science.gov (United States)

    Jones, Jennifer L; Zalewski, Christopher; Brewer, Carmen; Lucker, Jay; Drayna, Dennis

    2009-02-01

    The goal of this study was to investigate auditory function in individuals with deficits in musical pitch perception. We hypothesized that such individuals have deficits in nonspeech areas of auditory processing. We screened 865 randomly selected individuals to identify those who scored poorly on the Distorted Tunes test (DTT), a measure of musical pitch recognition ability. Those who scored poorly were given a comprehensive audiologic examination, and those with hearing loss or other confounding audiologic factors were excluded from further testing. Thirty-five individuals with tune deafness constituted the experimental group. Thirty-four individuals with normal hearing and normal DTT scores, matched for age, gender, handedness, and education, and without overt or reported psychiatric disorders made up the normal control group. Individual and group performance for pure-tone frequency discrimination at 1000 Hz was determined by measuring the difference limen for frequency (DLF). Auditory processing abilities were assessed using tests of pitch pattern recognition, duration pattern recognition, and auditory gap detection. In addition, we evaluated both attention and short- and long-term memory as variables that might influence performance on our experimental measures. Differences between groups were evaluated statistically using Wilcoxon nonparametric tests and t-tests as appropriate. The DLF at 1000 Hz in the group with tune deafness was significantly larger than that of the normal control group. However, approximately one-third of participants with tune deafness had DLFs within the range of performance observed in the control group. Many individuals with tune deafness also displayed a high degree of variability in their intertrial frequency discrimination performance that could not be explained by deficits in memory or attention. Pitch and duration pattern discrimination and auditory gap-detection ability were significantly poorer in the group with tune deafness

  17. Photolysis of low concentration H2S under UV/VUV irradiation emitted from microwave discharge electrodeless lamps.

    Science.gov (United States)

    Xia, Lan-Yan; Gu, Ding-Hong; Tan, Jing; Dong, Wen-Bo; Hou, Hui-Qi

    2008-04-01

    The photolysis of simulating low concentration of hydrogen sulfide malodorous gas was studied under UV irradiation emitted by self-made microwave discharge electrodeless lamps (i.e. microwave UV electrodeless mercury lamp (185/253.7 nm) and iodine lamp (178.3/180.1/183/184.4/187.6/206.2 nm)). Experiments results showed that the removal efficiency (eta H2S) of hydrogen sulfide was decreased with increasing initial H2S concentration and increased slightly with gas residence time; H2S removal efficiency was decreased dramatically with enlarged pipe diameter. Under the experimental conditions with pipe diameter of 36 mm, gas flow rate of 0.42 standard l s(-1), eta H2S was 52% with initial H2S concentration of 19.5 mg m(-3) by microwave mercury lamp, the absolute removal amount (ARA) was 4.30 microg s(-1), and energy yield (EY) was 77.3 mg kW h(-1); eta H2S was 56% with initial H2S concentration of 18.9 mg m(-3) by microwave iodine lamp, the ARA was 4.48 microg s(-1), and the EY was 80.5mg kW h(-1). The main photolysis product was confirmed to be SO4(2-) with IC.

  18. Tune splitting in the presence of linear coupling

    International Nuclear Information System (INIS)

    Parzen, G.

    1991-01-01

    The presence of random skew quadrupole field errors will couple the x and y motions. The x and y motions are then each given by the sum of 2 normal modes with the tunes v 1 and v 2 , which may differ appreciably from v x and v y , the unperturbed tunes. This is often called tune splitting since |v 1 - v 2 | is usually larger than |v x - v y |. This tune splitting may be large in proton accelerators using superconducting magnets, because of the relatively large random skew quadrupole field errors that are expected in these magnets. This effect is also increased by the required insertions in proton colliders which generate large β-functions in the insertion region. This tune splitting has been studied in the RHIC accelerator. For RHIC, a tune splitting as large as 0.2 was found in one worse case. A correction system has been developed for correcting this large tune splitting which uses two families of skew quadrupole correctors. It has been found that this correction system corrects most of the large tune splitting, but a residual tune splitting remains that is still appreciable. This paper discusses the corrections to this residual time

  19. Free Electron Laser in Poland

    CERN Document Server

    Romaniuk, Ryszard

    2009-01-01

    The idea of building a new IVth generation of light sources of high luminosity, which use accelerators, arose in the 80ties of XXth century. Now, in a numerable synchrotron and laser laboratories in Europe, there is carried out, since a couple of years, intense applied research on free electron lasers (FEL) [17,18]. Similarly, in this country, free electron laser in Poland – POLFEL [9] is, in a design, a coherent light source of the IVth generation, characterized by very short pulses in the range of 10-100fs, of big power 0,2GW and UV wavelength of 27nm, of average power 1W, with effective high power third harmonic of 9nm. The laser consists of a linear superconducting accelerator 100m in length, undulator and experimental lines. It generates a monochromatic and coherent radiation and can be tuned from THz range via IR, visible to UV, and potentially to X-rays. The linac works in quasi-CW or real-CW mode. It is planned by IPJ [9,10] and XFEL-Poland Consortium [16] as a part of the ESFRI [1] priority EuroFEL...

  20. Telling in-tune from out-of-tune: widespread evidence for implicit absolute intonation.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon L M; Huang, Alex; Rutstein, Brooke; Nusbaum, Howard C

    2017-04-01

    Absolute pitch (AP) is the rare ability to name or produce an isolated musical note without the aid of a reference note. One skill thought to be unique to AP possessors is the ability to provide absolute intonation judgments (e.g., classifying an isolated note as "in-tune" or "out-of-tune"). Recent work has suggested that absolute intonation perception among AP possessors is not crystallized in a critical period of development, but is dynamically maintained by the listening environment, in which the vast majority of Western music is tuned to a specific cultural standard. Given that all listeners of Western music are constantly exposed to this specific cultural tuning standard, our experiments address whether absolute intonation perception extends beyond AP possessors. We demonstrate that non-AP listeners are able to accurately judge the intonation of completely isolated notes. Both musicians and nonmusicians showed evidence for absolute intonation recognition when listening to familiar timbres (piano and violin). When testing unfamiliar timbres (triangle and inverted sine waves), only musicians showed weak evidence of absolute intonation recognition (Experiment 2). Overall, these results highlight a previously unknown similarity between AP and non-AP possessors' long-term musical note representations, including evidence of sensitivity to frequency.

  1. Laser and plasma diagnostics for the OMEGA Upgrade Laser System (invited) (abstract)

    International Nuclear Information System (INIS)

    Letzring, S.A.

    1995-01-01

    The upgraded OMEGA laser system will be capable of delivering up to 30 kJ of 351-nm laser light with various temporal pulse shapes onto a variety of targets for both ICF and basic plasma physics experiments. ICF experiments will cover a wide parameter space up to near-ignition conditions, and basic interaction and plasma physics experiments will cover previously unattainable parameter spaces. The laser system is the tool with which the experiments are performed; the diagnostics, both of the laser system and the interaction between the laser and the target, form the heart of the experiment. A new suite of diagnostics is now being designed and constructed. Most of these are based on diagnostics previously fielded on the OMEGA laser system very successfully over the last ten years, but there are some new diagnostics, both for the laser and the interaction experiments, which have had to be invented. Laser system diagnostics include high-energy, full-beam calorimetry for all of the 60 beams of the upgrade; a novel, multispectral energy-measuring system for assessing the tuning of the frequency-multiplying crystals; a beam-balance diagnostic that forms the heart of the energy-balance system; and a peak power diagnostic that forms the heart of the power-balance system. Target diagnostics will include the usual time-integrated x-ray imaging systems, both pinhole cameras and x-ray microscopes; x-ray spectrometers, both imaging and spatially integrating; plamsa calorimeters, including x-ray calorimetry; and time-resolved x-ray diagnostics, both nonimaging and imaging in one and two dimensions. Neutron diagnostics will include several measurements of total yield, secondary, and possibly tertiary yield and neutron spectroscopy with several time-of-flight spectrometers. Other measurements will include ''knock-on'' particle measurements and neutron activation of shell materials as a diagnostic of compressed fuel and shell density

  2. Wavelength-tunable laser based on nonlinear dispersive-wave generation in a tapered optical waveguide

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a method and a wavelength tunable laser comprising a first laser source configured to emit a first optical pulse having a pump wavelength, the first optical pulse being emitted in a first longitudinal direction. Furthermore, the wavelength tunable laser comprises...... a waveguide extending in the first longitudinal direction, the waveguide having longitudinally varying phase matching conditions, the waveguide being configured to generate a second optical pulse with a centre wavelength upon receiving the first optical pulse, wherein the wavelength tunable laser...... is configured to tune the centre wavelength of the second optical pulse by varying at least one pulse property of the first optical pulse....

  3. Apple iTunes music store

    OpenAIRE

    Lenzi, R.; Schmucker, M.; Spadoni, F.

    2003-01-01

    This technical report analyses the Apple iTunes Music Store and its success factors. Besides the technical aspects, user and customer aspects as well as content aspects are considered. Furthermore, iTunes Music Store's impact to online music distribution services is analysed and a short outlook to future music online distribution is given.

  4. Broad band tunable dye laser development

    International Nuclear Information System (INIS)

    Lee, Jong Min; Kim, Jung Bog; Kim, Sung Ho; Go, Do Kyung; Lim, Chang Hwan; Rho, Si Pyo; Song, Kyu Seok; Lee, Byung Cheol; Rhi, Jong Hoon; Han, Jae Min; Cha, Hyung Ki; Cha, Byung Hun; Jeong, Do Yung; Han, Jae Min; Jung, Yeu Chang; Im, Ho; Yoo, Choon Sun; Jung, Byung Ik; Seok, Gum Sook

    1992-12-01

    The technical goal and objectives are the development of a tunable laser which can be tuned from UV to near IR and commercialization for uses in various fields. Two kinds of resonators are developed. User can select one resonator and change into the other without changing other parts. GIM type has a linewidth of 5GHz which is able to be used usually, and SLM type is very narrow linewidth of less than 1GHz. Each system can have one or two amplifiers depending on output power or cost. High stability and safety, cost-down, and modules into about 30 components have been tried. We hope that this laser can help developments in researches of university, industry, and institute. (Author)

  5. Comparison on different repetition rate locking methods in Er-doped fiber laser

    Science.gov (United States)

    Yang, Kangwen; Zhao, Peng; Luo, Jiang; Huang, Kun; Hao, Qiang; Zeng, Heping

    2018-05-01

    We demonstrate a systematic comparative research on the all-optical, mechanical and opto-mechanical repetition rate control methods in an Er-doped fiber laser. A piece of Yb-doped fiber, a piezoelectric transducer and an electronic polarization controller are simultaneously added in the laser cavity as different cavity length modulators. By measuring the cavity length tuning ranges, the output power fluctuations, the temporal and frequency repetition rate stability, we show that all-optical method introduces the minimal disturbances under current experimental condition.

  6. Novel gas target for laser wakefield accelerators

    Science.gov (United States)

    Aniculaesei, C.; Kim, Hyung Taek; Yoo, Byung Ju; Oh, Kyung Hwan; Nam, Chang Hee

    2018-02-01

    A novel gas target for interactions between high power lasers and gaseous medium, especially for laser wakefield accelerators, has been designed, manufactured, and characterized. The gas target has been designed to provide a uniform density profile along the central gas cell axis by combining a gas cell and slit nozzle. The gas density has been tuned from ˜1017 atoms/cm3 to ˜1019 atoms/cm3 and the gas target length can be varied from 0 to 10 cm; both changes can be made simultaneously while keeping the uniform gas profile. The gas density profile inside the gas cell has been measured using interferometry and validated using computational fluid dynamics.

  7. Tunable and stable single-longitudinal-mode dual-wavelength erbium fiber laser with 1.3 nm mode spacing output

    International Nuclear Information System (INIS)

    Yeh, C H; Shih, F Y; Wang, C H; Chow, C W; Chi, S

    2008-01-01

    In this investigation, we propose and investigate a stable and tunable dual-wavelength erbium-doped fiber (EDF) ring laser with self-injected Fabry-Perot laser diode (FP-LD) scheme. By using an FP-LD incorporated with a tunable bandpass filter (TBF) within the gain cavity, the fiber laser can lase at two single-longitudinal-mode (SLM) wavelengths simultaneously due to the self-injected operation. The proposed dual-wavelength laser has a good performance of the output power and optical side-mode suppression ratio (SMSR). The laser also shows a wide tuning range from 1523.08 to 1562.26 nm. Besides, the output stabilities of the fiber laser are also discussed

  8. Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser

    NARCIS (Netherlands)

    Klein, M.E.; Gross, P.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.

    2003-01-01

    We report on rapid, all-electronically controlled wavelength tuning of a continuous-wave (cw) optical parametric oscillator (OPO) pumped by an ytterbium fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled lithium niobate crystal in a

  9. Studies of free radicals by ultraviolet excimer laser photolysis. Progress report, 1 April 1980-1 November 1980

    International Nuclear Information System (INIS)

    Leone, S.R.

    1980-01-01

    An experimental technique has been developed to produce and directly study vibrationally excited free radicals. Pulses of light from an ultraviolet excimer laser are used to photodissociate small molecules to generate free radicals with high internal excitation. The radicals are detected directly by the technique of time and wavelength-resolved infrared emission spectroscopy using a background-limited copper-doped germanium infrared detector. New results have been obtained on the CH 3 radical. A complete spectrum of the CH 3 umbrella band reveals for the first time accurate positions of the vibrational progression in this band. Photofragmentation of (CH 3 ) 2 Hg has yielded detailed information on the vibrational distribution, rotational temperature, and deactivation rates of the CH 3 stretch mode. A technique to study chemical chain reactions using low power, radical-specific, laser initiation and realtime kinetics detection had previously been demonstrated. The results provide a general method to study a large number of chain reaction combustion systems in greater detail. New results on more complex chain reactions such as Cl 2 /butane reveal that highly detailed infrared emission spectra of various products of the chain and their time evolution is possible. Partitioning of energy between vibrational degrees of freedom and translational heating is obtained over the course of the combustion

  10. The minimally tuned minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Essig, Rouven; Fortin, Jean-Francois

    2008-01-01

    The regions in the Minimal Supersymmetric Standard Model with the minimal amount of fine-tuning of electroweak symmetry breaking are presented for general messenger scale. No a priori relations among the soft supersymmetry breaking parameters are assumed and fine-tuning is minimized with respect to all the important parameters which affect electroweak symmetry breaking. The superpartner spectra in the minimally tuned region of parameter space are quite distinctive with large stop mixing at the low scale and negative squark soft masses at the high scale. The minimal amount of tuning increases enormously for a Higgs mass beyond roughly 120 GeV

  11. Optical trapping assembling of clusters and nanoparticles in solution by CW and femtosecond lasers

    KAUST Repository

    Masuhara, Hiroshi

    2015-02-01

    Laser trapping of molecular systems in solution is classified into three cases: JUST TRAPPING, EXTENDED TRAPPING, and NUCLEATION and GROWTH. The nucleation in amino acid solutions depends on where the 1064-nm CW trapping laser is focused, and crystallization and liquid–liquid phase separation are induced by laser trapping at the solution/air surface and the solution/glass interface, respectively. Laser trapping crystallization is achieved even in unsaturated solution, on which unique controls of crystallization are made possible. Crystal size is arbitrarily controlled by tuning laser power for a plate-like anhydrous crystal of l-phenylalanine. The α- or γ-crystal polymorph of glycine is selectively prepared by changing laser power and polarization. Further efficient trapping of nanoparticles and their following ejection induced by femtosecond laser pulses are introduced as unique trapping phenomena and finally future perspective is presented.

  12. Optical trapping assembling of clusters and nanoparticles in solution by CW and femtosecond lasers

    KAUST Repository

    Masuhara, Hiroshi; Sugiyama, Teruki; Yuyama, Kenichi; Usman, Anwar

    2015-01-01

    Laser trapping of molecular systems in solution is classified into three cases: JUST TRAPPING, EXTENDED TRAPPING, and NUCLEATION and GROWTH. The nucleation in amino acid solutions depends on where the 1064-nm CW trapping laser is focused, and crystallization and liquid–liquid phase separation are induced by laser trapping at the solution/air surface and the solution/glass interface, respectively. Laser trapping crystallization is achieved even in unsaturated solution, on which unique controls of crystallization are made possible. Crystal size is arbitrarily controlled by tuning laser power for a plate-like anhydrous crystal of l-phenylalanine. The α- or γ-crystal polymorph of glycine is selectively prepared by changing laser power and polarization. Further efficient trapping of nanoparticles and their following ejection induced by femtosecond laser pulses are introduced as unique trapping phenomena and finally future perspective is presented.

  13. Impairment analysis of WDM-PON based on low-cost tunable lasers

    DEFF Research Database (Denmark)

    Wagner, Christoph; Eiselt, Michael H.; Lawin, Mirko

    2016-01-01

    channel must be kept below 15%. Similar values result for the upstream pilot tones. In order to limit crosstalk, such systems require reduced launch power during wavelength tuning and can cover up to 40 km differential reach. These results confirm that WDM-PON based on low-cost lasers is a technically...

  14. Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

    2011-07-15

    Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

  15. Femtosecond laser patterning, synthesis, defect formation, and structural modification of atomic layered materials

    International Nuclear Information System (INIS)

    Yoo, Jae-Hyuck; Kim, Eunpa; Hwang, David J.

    2016-01-01

    This article summarizes recent research on laser-based processing of twodimensional (2D) atomic layered materials, including graphene and transition metal dichalcogenides (TMDCs). Ultrafast lasers offer unique processing routes that take advantage of distinct interaction mechanisms with 2D materials to enable extremely localized energy deposition. Experiments have shown that ablative direct patterning of graphene by ultrafast lasers can achieve resolutions of tens of nanometers, as well as single-step pattern transfer. Ultrafast lasers also induce non-thermal excitation mechanisms that are useful for the thinning of TMDCs to tune the 2D material bandgap. Laser-assisted site-specific doping was recently demonstrated where ultrafast laser radiation under ambient air environment could be used for the direct writing of high-quality graphene patterns on insulating substrates. This article concludes with an outlook towards developing further advanced laser processing with scalability, in situ monitoring strategies and potential applications.

  16. Unstable Resonator Mid-Infrared Laser Sources

    Science.gov (United States)

    2016-02-26

    effective refractive indices of the guided mode at the grating ridge and groove were calcu- lated using a 4-layer slab waveguide model with a top clad... waterfall plot of the spectra. This DFB laser device demonstrated a continuous, mode-hop-free, tuning range of 80 nm, from 3057 to 3137 nm at ~2.5...curve is a quadratic fit. The inset shows the grating normal pump configuration (GNC). (b) Waterfall plot of the individual spectra vs. pump position

  17. Control of the hyperbolic dispersion of dielectrics by an ultrashort laser pulse

    Science.gov (United States)

    Zhang, Xiaoqin; Wang, Feng; Zhang, Fengshou; Yao, Yugui

    2018-01-01

    An idea of controlling hyperbolic dispersion of dielectric materials by an ultrashort laser pulse is proposed. Taking the diamond as a concrete example and using time-dependent density functional theory calculations, we show that the permittivity tensor of the material can be effectively tuned by an ultrashort laser pulse, serving as a transient hyperbolic medium with wide working frequency window. With easily tunable laser parameters, the material can even be switched by reversal of both elliptic and hyperbolic for a particular light frequency. Our result points out a route toward transient hyperbolic materials, and it offers methods to achieve tunable hyperbolic dispersion with great potential for ultrafast device applications.

  18. Diode-pumped passively mode-locked sub-picosecond Yb:LuAG ceramic laser

    International Nuclear Information System (INIS)

    Zhu Jiang-Feng; Liu Kai; Wang Jun-Li; Yang Yu; Wang Hui-Bo; Gao Zi-Ye; Jiang Li; Xie Teng-Fei; Chao-Yu Li; Pan Yu-Bai; Wei Zhi-Yi

    2017-01-01

    In this paper the laser activities of a diode-pumped Yb:LuAG ceramic which was prepared by the solid-state reactive sintering method were reported. The maximum output power was 1.86 W in the continuous wave (CW) laser operation, corresponding to a slope efficiency of 53.6%. The CW laser could be tuned from 1030 to 1096 nm by inserting a prism in the cavity. With the assist of a semiconductor saturable absorber mirror (SESAM), passive mode-locking was realized, delivering sub-picosecond pulses with 933 fs duration and an average power of 532 mW at a repetition rate of 90.35 MHz. (paper)

  19. A parametric study of laser induced ablation-oxidation on porous silicon surfaces

    International Nuclear Information System (INIS)

    De Stefano, Luca; Rea, Ilaria; Nigro, M Arcangela; Della Corte, Francesco G; Rendina, Ivo

    2008-01-01

    We have investigated the laser induced ablation-oxidation process on porous silicon layers having different porosities and thicknesses by non-destructive optical techniques. In particular, the interaction between a low power blue light laser and the porous silicon surfaces has been characterized by variable angle spectroscopic ellipsometry and Fourier transform infrared spectroscopy. The oxidation profiles etched on the porous samples can be tuned as functions of the layer porosity and laser fluence. Oxide stripes of width less than 2 μm and with thicknesses between 100 nm and 5 μm have been produced, depending on the porosity of the porous silicon, by using a 40 x focusing objective

  20. Evaluation of 2.1μm DFB lasers for space applications

    Science.gov (United States)

    Barbero, J.; López, D.; Esquivias, I.; Tijero, J. M. G.; Fischer, M.; Roessner, K.; Koeth, J.; Zahir, M.

    2017-11-01

    This paper presents the results obtained in the frame of an ESA-funded project called "Screening and Preevaluation of Shortwave Infrared Laser Diode for Space Application" with the objective of verifying the maturity of state of the art SWIR DFB lasers at 2.1μm to be used for space applications (mainly based on the occultation measurement principle and spectroscopy). The paper focus on the functional and environmental evaluation test plan. It includes high precision characterization, mechanical test (vibration and SRS shocks), thermal cycling, gamma and proton radiation tests, life test and some details of the Destructive Physical Analysis performed. The electro-optical characterization includes measurements of the tuning capabilities of the laser both by current and by temperature, the wavelength stability and the optical power versus laser current.

  1. Nanosecond laser scribing of CIGS thin film solar cell based on ITO bottom contact

    Science.gov (United States)

    Kuk, Seungkuk; Wang, Zhen; Fu, Shi; Zhang, Tao; Yu, Yi Yin; Choi, JaeMyung; Jeong, Jeung-hyun; Hwang, David J.

    2018-03-01

    Cu(In,Ga)Se2 (CIGS) thin films, a promising photovoltaic architecture, have mainly relied on Molybdenum for the bottom contact. However, the opaque nature of Molybdenum (Mo) poses limitations in module level fabrication by laser scribing as a preferred method for interconnect. We examined the P1, P2, and P3 laser scribing processes on CIGS photovoltaic architecture on the indium tin oxide (ITO) bottom contact with a cost-effective nanosecond pulsed laser of 532 nm wavelength. Laser illuminated from the substrate side, enabled by the transparent bottom contact, facilitated selective laser energy deposition onto relevant interfaces towards high-quality scribing. Parametric tuning procedures are described in conjunction with experimental and numerical investigation of relevant mechanisms, and preliminary mini-module fabrication results are also presented.

  2. Application of genetic algorithms to tuning fuzzy control systems

    Science.gov (United States)

    Espy, Todd; Vombrack, Endre; Aldridge, Jack

    1993-01-01

    Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.

  3. Revisiting fine-tuning in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Graham G. [Oxford Univ. (United Kingdom). Rudolf Peierls Centre for Theoretical Physics; Schmidt-Hoberg, Kai [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Staub, Florian [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Physik; Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Experimentelle Kernphysik

    2017-03-15

    We evaluate the amount of fine-tuning in constrained versions of the minimal supersymmetric standard model (MSSM), with different boundary conditions at the GUT scale. Specifically we study the fully constrained version as well as the cases of non-universal Higgs and gaugino masses. We allow for the presence of additional non-holomorphic soft-terms which we show further relax the fine-tuning. Of particular importance is the possibility of a Higgsino mass term and we discuss possible origins for such a term in UV complete models. We point out that loop corrections typically lead to a reduction in the fine-tuning by a factor of about two compared to the estimate at tree-level, which has been overlooked in many recent works. Taking these loop corrections into account, we discuss the impact of current limits from SUSY searches and dark matter on the fine-tuning. Contrary to common lore, we find that the MSSM fine-tuning can be as small as 10 while remaining consistent with all experimental constraints. If, in addition, the dark matter abundance is fully explained by the neutralino LSP, the fine-tuning can still be as low as ∝20 in the presence of additional non-holomorphic soft-terms. We also discuss future prospects of these models and find that the MSSM will remain natural even in the case of a non-discovery in the foreseeable future.

  4. Revisiting fine-tuning in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Graham G. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Schmidt-Hoberg, Kai [DESY, Notkestraße 85, D-22607 Hamburg (Germany); Staub, Florian [Institute for Theoretical Physics (ITP), Karlsruhe Institute of Technology, Engesserstraße 7, D-76128 Karlsruhe (Germany); Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2017-03-06

    We evaluate the amount of fine-tuning in constrained versions of the minimal supersymmetric standard model (MSSM), with different boundary conditions at the GUT scale. Specifically we study the fully constrained version as well as the cases of non-universal Higgs and gaugino masses. We allow for the presence of additional non-holomorphic soft-terms which we show further relax the fine-tuning. Of particular importance is the possibility of a Higgsino mass term and we discuss possible origins for such a term in UV complete models. We point out that loop corrections typically lead to a reduction in the fine-tuning by a factor of about two compared to the estimate at tree-level, which has been overlooked in many recent works. Taking these loop corrections into account, we discuss the impact of current limits from SUSY searches and dark matter on the fine-tuning. Contrary to common lore, we find that the MSSM fine-tuning can be as small as 10 while remaining consistent with all experimental constraints. If, in addition, the dark matter abundance is fully explained by the neutralino LSP, the fine-tuning can still be as low as ∼20 in the presence of additional non-holomorphic soft-terms. We also discuss future prospects of these models and find that the MSSM will remain natural even in the case of a non-discovery in the foreseeable future.

  5. A mechanism for tuning 5 GHz HTS filters

    Energy Technology Data Exchange (ETDEWEB)

    Ohsaka, M.; Takeuchi, S.; Ono, S.; Lee, J.H.; Saito, A. [Department of Electrical Engineering, Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan); Akasegawa, A.; Yamanaka, K.; Kurihara, K. [Fujitsu LTD., 10-1 Wakamiya, Morinosato, Atsugi, Kanagawa 243-0197 (Japan); Ohshima, S. [Department of Electrical Engineering, Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan)], E-mail: ohshima@yz.yamagata-u.ac.jp

    2008-09-15

    We developed a tuning mechanism of HTS filter with a dielectric tuning plate, dielectric trimming rods, and conducting trimming rods. The tuning plate has windows through which the dielectric and conducting trimming rods pass. The tuning plate was designed for a 3-pole filter with 5 GHz center frequency (f{sub c}) and 100 MHz bandwidth (BW) using a 3-dimensional electromagnetic simulator. We were able to shift the f{sub c} to frequencies below 500 MHz using the tuning plate with a dielectric constant of 45. However, the insertion loss (IL) and the pass-band ripple of the filter became more severe and the BW of the filter was narrower after tuning. We tried to improve the filter properties after tuning using the dielectric and conducting trimming rods. We decreased the IL and the pass-band ripple by adjusting the height of the dielectric trimming rods to above the resonators. Also, the BW was improved by using copper (Cu) trimming rods above the spaces between the resonators. The tuning plate and the trimming rods did not affect the IL. So, we simulated 500 MHz tuning without the filter properties deteriorating at f{sub c} = 5 GHz. Also, we experimentally evaluated that the f{sub c} could be shifted to 340 MHz using the dielectric plate, the pass-band ripple could be decreased by ripple trimming using the dielectric rods, and the BW could be increased 31 MHz by BW trimming using the Cu rods.

  6. Dispersion engineering of mode-locked fibre lasers

    Science.gov (United States)

    Woodward, R. I.

    2018-03-01

    Mode-locked fibre lasers are important sources of ultrashort pulses, where stable pulse generation is achieved through a balance of periodic amplitude and phase evolutions. A range of distinct cavity pulse dynamics have been revealed, arising from the interplay between dispersion and nonlinearity in addition to dissipative processes such as filtering. This has led to the discovery of numerous novel operating regimes, offering significantly improved laser performance. In this Topical Review, we summarise the main steady-state pulse dynamics reported to date through cavity dispersion engineering, including average solitons, dispersion-managed solitons, dissipative solitons, giant-chirped pulses and similaritons. Characteristic features and the stabilisation mechanism of each regime are described, supported by numerical modelling, in addition to the typical performance and limitations. Opportunities for further pulse energy scaling are discussed, in addition to considering other recent advances including automated self-tuning cavities and fluoride-fibre-based mid-infrared mode-locked lasers.

  7. Flash and Continuous Photolysis Studies of the Thionitrosyl Complex Cr(CH3CN)5(NS)2+ and the Nitric Oxide Analogs. Reactions of Nitrogen Monosulfide in Solution

    DEFF Research Database (Denmark)

    Dethlefsen, Johannes Wied; Hedegård, Erik; Rimmer, R. Dale

    2009-01-01

    Photolysis of the thionitrosyl complex Cr(CH3CN)5(NS)2+ (1) in acetonitrile solution leads to the dissociation of nitrogen monosulfide (NS).  In deaerated solution, this reaction is reversible, and flash photolysis studies demonstrate that NS reacts with Cr(CH3CN)62+ according to the rate law d[1...... dependent quantum yields of 0.3-1.0 mol/Einstein. Mass spectroscopic studies of the product solutions demonstrate formation of S8, presumably from the decomposition of NS. The quantitative photochemical behaviors of 1 and the nitrosyl analog 2 are compared. Udgivelsesdato: Jan....

  8. Sub-nanometrically resolved chemical mappings of quantum-cascade laser active regions

    International Nuclear Information System (INIS)

    Pantzas, Konstantinos; Beaudoin, Grégoire; Patriarche, Gilles; Largeau, Ludovic; Mauguin, Olivia; Sagnes, Isabelle; Pegolotti, Giulia; Vasanelli, Angela; Calvar, Ariane; Amanti, Maria; Sirtori, Carlo

    2016-01-01

    A procedure that produces sub-nanometrically resolved chemical mappings of MOCVD-grown InGaAs/InAlAs/InP quantum cascade lasers is presented. The chemical mappings reveal that, although the structure is lattice-matched to InP, the InAlAs barriers do not attain the nominal aluminum content—48%—and are, in fact, InGaAlAs quaternaries. This information is used to adjust the aluminum precursor flow and fine-tune the composition of the barriers, resulting in a significant improvement of the fabricated lasers. (paper)

  9. Summary of ATLAS Pythia 8 tunes

    CERN Document Server

    The ATLAS collaboration

    2012-01-01

    We summarize the latest ATLAS Pythia 8 minimum bias and underlying event tunes. The Pythia 8 MPI tunes in this note have been constructed for nine different PDFs, making use of a new x-dependent hadronic matter distribution model.

  10. Wavelength tunable ultrafast fiber laser via reflective mirror with taper structure.

    Science.gov (United States)

    Fang, Li; Huang, Chuyun; Liu, Ting; Gogneau, Noelle; Bourhis, Eric; Gierak, Jacques; Oudar, Jean-Louis

    2016-12-20

    Laser sources with a controllable flexible wavelength have found widespread applications in optical fiber communication, optical sensing, and microscopy. Here, we report a tunable mode-locked fiber laser using a graphene-based saturable absorber and a tapered mirror as an end mirror in the cavity. The phase layer in the mirror is precisely etched by focused ion beam (FIB) milling technology, and the resonant wavelength of the mirror shifts correspond to the different etch depths. By scanning the tapered mirror mechanically, the center wavelength of a mode-locked fiber laser can be continuously tuned from 1562 to 1532 nm, with a pulse width in the sub-ps level and repetition rate of 27 MHz.

  11. IGZO TFT-based circuit with tunable threshold voltage by laser annealing

    Science.gov (United States)

    Huang, Xiaoming; Yu, Guang; Wu, Chenfei

    2017-11-01

    In this work, a high-performance inverter based on amorphous indium-gallium-zinc oxide thin-film transistors (TFTs) has been fabricated, which consists of a driver TFT and a load TFT. The threshold voltage (Vth) of the load TFT can be tuned by applying an area-selective laser annealing. The transfer curve of the load TFT shows a parallel shift into the negative bias direction upon laser annealing. Based on x-ray photoelectron spectroscopy analyses, the negative Vth shift can be attributed to the increase of oxygen vacancy concentration within the device channel upon laser irradiation. Compared to the untreated inverter, the laser annealed inverter shows much improved switching characteristics, including a large output swing range which is close to full swing, as well as an enhanced output voltage gain. Furthermore, the dynamic performance of ring oscillator based on the laser-annealed inverter is improved.

  12. Assignment and analysis of the A3Πi-X3Σ- transition of the CCO molecule. Formation and disappearance of the CCO's X3Σ- state during flash photolysis of the carbon suboxide

    International Nuclear Information System (INIS)

    Devillers, Claude

    1971-01-01

    As the C 2 O radical appeared to be the necessary intermediate compound which could lead from atomic carbon to carbon suboxide by a chain of elementary reactions for the study of the effect of radiations on CO, this research thesis, after a recall on the nature of primary compounds of carbon suboxide photolysis, presents experimental techniques aimed at the investigation of C 2 O: flash photolysis to observe it with low resolution, experimental set-up to record its spectrum with a high resolution, experimental set-up to observe it by pulse radiolysis of carbon oxide. The author reports the identification and analysis of the C 2 O spectrum, and discusses the formation and disappearance of the CCO's X 3 Σ - state with or without the presence of sensors during flash photolysis of the carbon suboxide [fr

  13. Pressure dependent isotopic fractionation in the photolysis of formaldehyde-d2

    DEFF Research Database (Denmark)

    Nilsson, E.J.K.; Schmidt, Johan Albrecht; Johnson, Matthew Stanley

    2014-01-01

    role in the observed pressure dependent photolytic fractionation of deuterium. The model shows that part of the fractionation is a result of competition between the isotopologue dependent rates of unimolecular dissociation and collisional relaxation. We suggest that the remaining fractionation is due......The isotope effects in formaldehyde photolysis are the key link between the δD of methane emissions and the δD of atmospheric in situ hydrogen production. A few recent studies have suggested that a pressure dependence in the isotopic fractionation can partly explain enrichment of deuterium...... with altitude in the atmosphere. The mechanism and the extent of this pressure dependency is, however, not adequately described. In the present work D2CO and H2CO were photolyzed in a static reaction chamber at bath gas pressures of 50, 200, 400, 600 and 1000 mbar; these experiments compliment and extend our...

  14. Stretchable Random Lasers with Tunable Coherent Loops.

    Science.gov (United States)

    Sun, Tzu-Min; Wang, Cih-Su; Liao, Chi-Shiun; Lin, Shih-Yao; Perumal, Packiyaraj; Chiang, Chia-Wei; Chen, Yang-Fang

    2015-12-22

    Stretchability represents a key feature for the emerging world of realistic applications in areas, including wearable gadgets, health monitors, and robotic skins. Many optical and electronic technologies that can respond to large strain deformations have been developed. Laser plays a very important role in our daily life since it was discovered, which is highly desirable for the development of stretchable devices. Herein, stretchable random lasers with tunable coherent loops are designed, fabricated, and demonstrated. To illustrate our working principle, the stretchable random laser is made possible by transferring unique ZnO nanobrushes on top of polydimethylsiloxane (PDMS) elastomer substrate. Apart from the traditional gain material of ZnO nanorods, ZnO nanobrushes were used as optical gain materials so they can serve as scattering centers and provide the Fabry-Perot cavity to enhance laser action. The stretchable PDMS substrate gives the degree of freedom to mechanically tune the coherent loops of the random laser action by changing the density of ZnO nanobrushes. It is found that the number of laser modes increases with increasing external strain applied on the PDMS substrate due to the enhanced possibility for the formation of coherent loops. The device can be stretched by up to 30% strain and subjected to more than 100 cycles without loss in laser action. The result shows a major advance for the further development of man-made smart stretchable devices.

  15. Investigation of concept of efficient short wavelength laser. Final technical report, April 1, 1977-July 31, 1979

    International Nuclear Information System (INIS)

    Piper, L.G.; Krech, R.H.; Pugh, E.; Taylor, R.L.

    1979-01-01

    The feasibility of producing an efficient, short wavelength, storage laser for ICF driven applications by making use of certain state-specific reactions of exoergic azide compounds has been investigated. The ultraviolet (approx. 300 nm) photolysis of gaseous ClN 3 produced prompt emission in the red, which was attributed to the efficient formation of ClN(b 1 Σ + ) with subsequent ClN(X reverse arrow b) fluorescence. Based on these results, a small-scale laser demonstration experiment was constructed using short duration Xe flash lamps as the photolytic source. The results of this latter experiment were negative. The most plausible explanation was that the flash lamps provided sufficient far-uv radiation to dissociate and/or ionize the ClN(b) produced in the primary photolytic step. In parallel, limited experiments were performed on the rapid pyrolysis of a solid, ionic azide, NaN 3 , to produce gaseous N 3 radicals and subsequent production of triplet N 2 molecules

  16. The use of laser diodes for control of uranium vaporization rates

    International Nuclear Information System (INIS)

    Hagans, K.; Galkowski, J.

    1993-09-01

    Within the Atomic Vapor Laser Isotope Separation (AVLIS) program we have successfully used the laser absorption spectroscopy technique (LAS) to diagnose process physics performance and control vaporization rate. In the LAS technique, a narrow line-width laser is tuned to an absorption line of the species to be measured. The laser light that is propagated through the sample is and, from this data, the density of the species can be calculated. These laser systems have exclusively consisted of expensive, cumbersome, and difficult to maintain argon-ion-pumped ring dye lasers. While the wavelength flexibility of dye lasers is very useful in a laboratory environment, these laser systems are not well suited for the industrial process control system under development for an AVLIS plant. Diode-lasers offer lower system costs, reduced man power requirements, reduced space requirements, higher system availability, and improved operator safety. We report the. successful deployment and test of a prototype laser diode based uranium vapor rate control system. Diode-laser generated LAS data was used to control the uranium vaporization rate in a hands-off mode for greater than 50 hours. With one minor adjustment the system successfully controlled the vaporization rate for greater than 147 hours. We report excellent agreement with ring dye laser diagnostics and uranium weigh-back measurements

  17. Dye laser with distributed feedback and with pumping by copper-vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, S Yu; Soldatov, A N; Sukhanov, V B

    1983-10-01

    An experimental study was made for determining the characteristics of dye lasers with distributed feedback, not requiring intricate resonator structures, and the feasibility of their pumping with radiation from a metal-vapor laser. The experiments were performed with five different dyes lasing in the yellow-red (510.6 - 578.2 nm) range of the spectrum: rhodamine 110, 6G, S and ocazine 17,1 in ethyl alcohol solution. The optical equipment included a copper-vapor pumping laser with the gas-discharge tube inside a telescopic resonator of the unstable type. Pumping pulses of 20 ns duration were generated at 510.6 and 578.2 nm wavelengths and a 4 kHz repetition rate. The pumping power was varied by means of an interference filter smoothly adjustable through rotation. The pumping laser beam was focused by a cylindrical lens on the dye cell. At optimum dye concentrations, corresponding to a maximum attainable emission power, dye concentrate was added into the circulation system for determining the dependence of the pumping threshold power on the dye concentration. Also measured were the dependence of the emission efficiency on the pumping power and the tuning range of each dye laser. The efficiency was found to remain constant over the pumping power range from threshold level to eight times higher level. The results reveal different angles of laser beam divergence in the vertical plane and in the horizontal plane, the divergence angle being four times larger in the vertical plane. The conversion efficiency increased, without significant changes in spectral characteristics, with a single annular reflector instead of two reflectors. 9 references, 4 figures, 1 table.

  18. Frequency Tuning of Vibration Absorber Using Topology Optimization

    Science.gov (United States)

    Harel, Swapnil Subhash

    A tuned mass absorber is a system for reducing the amplitude in one oscillator by coupling it to a second oscillator. If tuned correctly, the maximum amplitude of the first oscillator in response to a periodic driver will be lowered, and much of the vibration will be 'transferred' to the second oscillator. The tuned vibration absorber (TVA) has been utilized for vibration control purposes in many sectors of Civil/Automotive/Aerospace Engineering for many decades since its inception. Time and again we come across a situation in which a vibratory system is required to run near resonance. In the past, approaches have been made to design such auxiliary spring mass tuned absorbers for the safety of the structures. This research focuses on the development and optimization of continuously tuned mass absorbers as a substitute to the discretely tuned mass absorbers (spring- mass system). After conducting the study of structural behavior, the boundary condition and frequency to which the absorber is to be tuned are determined. The Modal analysis approach is used to determine mode shapes and frequencies. The absorber is designed and optimized using the topology optimization tool, which simultaneously designs, optimizes and tunes the absorber to the desired frequency. The tuned, optimized absorber, after post processing, is attached to the target structure. The number of the absorbers are increased to amplify bandwidth and thereby upgrade the safety of structure for a wide range of frequency. The frequency response analysis is carried out using various combinations of structure and number of absorber cell.

  19. Investigations on the photoelectrochemical decomposition of water using solar radiation (photolysis). Final report. Untersuchung zur photoelektrochemischen Wasserzersetzung mit Hilfe von Sonnenenergie (Photolyse). Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, R N

    1985-01-01

    Laboratory experiments were carried out on illuminated TiO/sub 2/-electrodes to examine the possibility of conversion and storage of solar radiation in a chemical system especially as hydrogen from the photolysis of water. Methods of preparation of new photosensitive semiconducting electrodes were studied. For the preparation of the electrodes various technique of vapour deposition and surface treatment including ion implantation were employed. The thin-layered electrodes were characterized by absorption spectroscopy and by electrochemical methods. The results of the investigations are published in 29 original contributions quoted as references and in 3 PhD thesis of co-workers. Using solar radiation only small yields of hydrogen were obtained in the photolysis of water on TiO/sub 2/ electrodes. Nevertheless it is concluded that photoelectrochemistry possesses a high potential in photocatalysis and in investigations of photooxidation processes occurring in the atmosphere. (orig.) With 36 refs., 2 tabs., 56 figs.

  20. AFM study of excimer laser patterning of block-copolymer: Creation of ordered hierarchical, hybrid, or recessed structures

    International Nuclear Information System (INIS)

    Švanda, Jan; Siegel, Jakub; Švorčík, Vaclav; Lyutakov, Oleksiy

    2016-01-01

    Highlights: • Combination of bottom-up (BCP separation) and top-down (laser patterning) technologies allows obtaining hierarchical structures. • Surface morphologies were determined by the order of patterning steps (laser modification, annealing, surface reconstruction). • Tuning the order of steps enables the reorientation of BCP domain at large scale, fabrication of hierarchical, hybrid or recessed structures. • The obtained structures can find potential applications in nanotechnology, plasmonics, information storage, sensors and smart surfaces. - Abstract: We report fabrication of the varied range of hierarchical structures by combining bottom-up self-assembly of block copolymer poly(styrene-block-vinylpyridine) (PS-b-P4VP) with top-down excimer laser patterning method. Different procedures were tested, where laser treatment was applied before phase separation and after phase separation or phase separation and surface reconstruction. Laser treatment was performed using either polarized laser light with the aim to create periodical pattern on polymer surface or non-polarized light for preferential removing of polystyrene (PS) part from PS-b-P4VP. Additionally, dye was introduced into one part of block copolymer (P4VP) with the aim to modify its response to laser light. Resulting structures were analyzed by XPS, UV–vis and AFM techniques. Application of polarized laser light leads to creation of structures with hierarchical, recessed or hybrid geometries. Non-polarized laser beam allows pronouncing the block copolymer phase separated structure. Tuning the order of steps or individual step conditions enables the efficient reorientation of block-copolymer domain at large scale, fabrication of hierarchical, hybrid or recessed structures. The obtained structures can find potential applications in nanotechnology, photonics, plasmonics, information storage, optical devices, sensors and smart surfaces.

  1. UV Photolysis of Chloramine and Persulfate for 1,4-Dioxane Removal in Reverse-Osmosis Permeate for Potable Water Reuse.

    Science.gov (United States)

    Li, Wei; Patton, Samuel; Gleason, Jamie M; Mezyk, Stephen P; Ishida, Kenneth P; Liu, Haizhou

    2018-06-05

    A sequential combination of membrane treatment and UV-based advanced oxidation processes (UV/AOP) has become the industry standard for potable water reuse. Chloramines are used as membrane antifouling agents and therefore carried over into the UV/AOP. In addition, persulfate (S 2 O 8 2- ) is an emerging oxidant that can be added into a UV/AOP, thus creating radicals generated from both chloramines and persulfate for water treatment. This study investigated the simultaneous photolysis of S 2 O 8 2- and monochloramine (NH 2 Cl) on the removal of 1,4-dioxane (1,4-D) for potable-water reuse. The dual oxidant effects of NH 2 Cl and S 2 O 8 2- on 1,4-D degradation were examined at various levels of oxidant dosage, chloride, and solution pH. Results showed that a NH 2 Cl-to-S 2 O 8 2- molar ratio of 0.1 was optimal, beyond which the scavenging by NH 2 Cl of HO • , SO 4 •- , and Cl 2 •- radicals decreased the 1,4-D degradation rate. At the optimal ratio, the degradation rate of 1,4-D increased linearly with the total oxidant dose up to 6 mM. The combined photolysis of NH 2 Cl and S 2 O 8 2- was sensitive to the solution pH due to a disproportionation of NH 2 Cl at pH lower than 6 into less-photoreactive dichloramine (NHCl 2 ) and radical scavenging by NH 4 + . The presence of chloride transformed HO • and SO 4 •- to Cl 2 •- that is less-reactive with 1,4-D, while the presence of dissolved O 2 promoted gaseous nitrogen production. Results from this study suggest that the presence of chloramines can be beneficial to persulfate photolysis in the removal of 1,4-D; however, the treatment efficiency depends on a careful control of an optimal NH 2 Cl dosage and a minimal chloride residue.

  2. Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    Science.gov (United States)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by two methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback. We coupled a nominal 935 run-wavelength Fabry-Perot laser diode to an ultra narrow band (18 pm) FBG. When tuned by varying its temperature, the laser wavelength is pulled toward the centerline of the Bragg grating, and the spectrum of the laser output is seen to fall into three discrete stability regimes as measured by the side-mode suppression ratio.

  3. Efficient tuning in supervised machine learning

    NARCIS (Netherlands)

    Koch, Patrick

    2013-01-01

    The tuning of learning algorithm parameters has become more and more important during the last years. With the fast growth of computational power and available memory databases have grown dramatically. This is very challenging for the tuning of parameters arising in machine learning, since the

  4. Dynamic Performance Tuning Supported by Program Specification

    Directory of Open Access Journals (Sweden)

    Eduardo César

    2002-01-01

    Full Text Available Performance analysis and tuning of parallel/distributed applications are very difficult tasks for non-expert programmers. It is necessary to provide tools that automatically carry out these tasks. These can be static tools that carry out the analysis on a post-mortem phase or can tune the application on the fly. Both kind of tools have their target applications. Static automatic analysis tools are suitable for stable application while dynamic tuning tools are more appropriate to applications with dynamic behaviour. In this paper, we describe KappaPi as an example of a static automatic performance analysis tool, and also a general environment based on parallel patterns for developing and dynamically tuning parallel/distributed applications.

  5. Selective hydrogen atom abstraction by hydrogen atoms in photolysis of cyclohexane-normal pentane mixtures at 77 K

    International Nuclear Information System (INIS)

    Miyazaky, T.; Guedes, S.M.L.; Andrade e Silva, L.G. de; Fernandes, L.

    1977-01-01

    The reaction of H atoms, produced by the photolysis of HI, has been studied in c-C 6 H 12 -n-C 5 H 12 mixtures at 77K. H atoms in c-C 6 H 12 matrix react more effectively with solute n-C 5 H 12 than solvent c-C 6 H 12 , while H atoms in n-C 5 H 12 matrix react more effectively with solute c-C 6 H 12 than solvent n-C 5 H 12 [pt

  6. A tuning method for nonuniform traveling-wave accelerating structures

    International Nuclear Information System (INIS)

    Gong Cunkui; Zheng Shuxin; Shao Jiahang; Jia Xiaoyu; Chen Huaibi

    2013-01-01

    The tuning method of uniform traveling-wave structures based on non-resonant perturbation field distribution measurement has been widely used in tuning both constant-impedance and constant-gradient structures. In this paper, the method of tuning nonuniform structures is proposed on the basis of the above theory. The internal reflection coefficient of each cell is obtained from analyzing the normalized voltage distribution. A numerical simulation of tuning process according to the coupled cavity chain theory has been done and the result shows each cell is in right phase advance after tuning. The method will be used in the tuning of a disk-loaded traveling-wave structure being developed at the Accelerator Laboratory, Tsinghua University. (authors)

  7. Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers.

    Science.gov (United States)

    Eigenwillig, Christoph M; Wieser, Wolfgang; Todor, Sebastian; Biedermann, Benjamin R; Klein, Thomas; Jirauschek, Christian; Huber, Robert

    2013-01-01

    Ultrafast lasers have a crucial function in many fields of science; however, up to now, high-energy pulses directly from compact, efficient and low-power semiconductor lasers are not available. Therefore, we introduce a new approach based on temporal compression of the continuous-wave, wavelength-swept output of Fourier domain mode-locked lasers, where a narrowband optical filter is tuned synchronously to the round-trip time of light in a kilometre-long laser cavity. So far, these rapidly swept lasers enabled orders-of-magnitude speed increase in optical coherence tomography. Here we report on the generation of ~60-70 ps pulses at 390 kHz repetition rate. As energy is stored optically in the long-fibre delay line and not as population inversion in the laser-gain medium, high-energy pulses can now be generated directly from a low-power, compact semiconductor-based oscillator. Our theory predicts subpicosecond pulses with this new technique in the future.

  8. Selective isotope determination of lanthanum by diode-laser-initiated resonance-ionization mass spectrometry

    International Nuclear Information System (INIS)

    Young, J.P.; Shaw, R.W.

    1995-01-01

    A diode-laser step has been incorporated into a resonance-ionization mass spectrometry optical excitation process to enhance the isotopic selectivity of the technique. Lanthanum isotope ratio enhancements as high as 10 3 were achieved by use of a single-frequency cw diode laser tuned to excite the first step of a three-step excitation--ionization optical process; the subsequent steps were excited by use of a pulsed dye laser. Applying the same optical technique, we measured atomic hyperfine constants for the high-lying even-parity 4 D 5/2 state of lanthanum at 30 354 cm --1 . The general utility of this spectral approach is discussed

  9. An optimal tuning strategy for tidal turbines

    Science.gov (United States)

    2016-01-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This ‘impatient-tuning strategy’ results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing ‘patient-tuning strategy’ which maximizes the power output averaged over the tidal cycle. This paper presents a ‘smart patient tuning strategy’, which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine’s average power output. PMID:27956870

  10. An optimal tuning strategy for tidal turbines.

    Science.gov (United States)

    Vennell, Ross

    2016-11-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This 'impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing 'patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a 'smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.

  11. Iterative Feedback Tuning in district heating systems; Iterative Feedback Tuning i vaermeproduktionsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Raaberg, Martin; Velut, Stephane; Bari, Siavosh Amanat

    2010-10-15

    The project goal is to evaluate and describe how Iterative Feedback Tuning (IFT) can be used to tune controllers in the typical control loops in heat- and power plants. There are only a few practical studies carried out for IFT and they are not really relevant for power and heat processes. It is the practical problems in implementing the IFT and the result of trimming that is the focus of this project. The project will start with theoretical studies of the IFT-method, then realization and simple simulations in scilab. The IFT equations are then implemented in Freelance 2000, an ABB control system, for practical tests on a SISO- and a MIMO-process. By performing reproducible experiments on the process and analyze the results IFT can adjust the controller parameters to minimize a cost function that represents the control goal. The project selected for SISO experiments a pressure controller in an oil transportation system. By controlling the valve position of a control valve for the reversal to the supply tank, the pressure in the oil transport system is regulated. A disturbance in oil pressure can be achieved by changing the position of a valve that lets oil through to the day tank. The selected MIMO-process is a pre-heater in a degassing process. In this process, a valve on the secondary side is utilized to control the flow in the secondary system. A valve on the primary side is utilized to control the district heating water flow through the heat exchanger to control the temperature on the secondary side. An increased secondary flow increases the heat demand and thus requiring an increase in primary flow to maintain the secondary side outlet temperature. This is the cross-coupling responsible for why it is an advantage to consider the process as multi-variable. Using the IFT method, the two original PID-controllers and a feed-forward controller is tuned simultaneously. IFT-method was difficult to implement but worked well in both simulations and in real processes

  12. Small Commercial Building Re-tuning: A Primer

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A.; Hostick, Donna J.; Underhill, Ronald M.; Fernandez, Nicholas; Katipamula, Srinivas

    2013-09-30

    To help building owners and managers address issues related to energy-efficient operation of small buildings, DOE has developed a Small Building Re-tuning training curriculum. This "primer" provides additional background information to understand some of the concepts presented in the Small Building Re-tuning training. The intent is that those who are less familiar with the buidling energy concepts will review this material before taking the building re-tuning training class.

  13. Vacuum laser-initiated plasma shutters for retropulse isolation in Antares

    International Nuclear Information System (INIS)

    Sheheen, T.W.; Czuchlewski, S.J.; Hyde, J.; Ainsworth, R.L.

    1983-03-01

    We have demonstrated that sintered LiF spatial filters may be used in a 10 -6 -torr vacuum environment as laser-initiated plasma shutters for retropulse isolation in the Antares high-energy laser fusion system. In our experiments, a 1.1-ns pulsed CO 2 laser, at a 10-μm wavelength and an energy of up to 3.0 J, was used for plasma initiation; a chopped probe laser tuned to a 9l6-μm wavelength was used in determining the blocking time of the plasma. We measured the 10.6- and 9.6-μm beam transmissions as a function of fluence on the aperture edge. For an 800-μm-diam aperture and a 1.2-mm-diam Gaussian beam determined at the 1/e 2 intensity points, we observed blocking times in excess of 1.0 μs

  14. Wavelength-tunable colloidal quantum dot laser on ultra-thin flexible glass

    Energy Technology Data Exchange (ETDEWEB)

    Foucher, C.; Guilhabert, B.; Laurand, N.; Dawson, M. D. [Institute of Photonics, SUPA, University of Strathclyde, Glasgow (United Kingdom)

    2014-04-07

    A mechanically flexible and wavelength-tunable laser with an ultra-thin glass membrane as substrate is demonstrated. The optically pumped hybrid device has a distributed feedback cavity that combines a colloidal quantum dot gain film with a grating-patterned polymeric underlayer, all on a 30-μm thick glass sheet. The total thickness of the structure is only 75 μm. The hybrid laser has an average threshold fluence of 450 ± 80 μJ/cm{sup 2} (for 5-ns excitation pulses) at an emitting wavelength of 607 nm. Mechanically bending the thin-glass substrate enables continuous tuning of the laser emission wavelength over an 18-nm range, from 600 nm to 618 nm. The correlation between the wavelength tunability and the mechanical properties of the thin laser structure is verified theoretically and experimentally.

  15. Oracle SQL Tuning pocket Reference

    CERN Document Server

    Gurry, Mark

    2002-01-01

    One of the most important challenges faced by Oracle database administrators and Oracle developers is the need to tune SQL statements so that they execute efficiently. Poorly tuned SQL statements are one of the leading causes of substandard database performance and poor response time. SQL statements that perform poorly result in frustration for users, and can even prevent a company from serving its customers in a timely manner

  16. The effect of temperature and wavelength on production and photolysis of a UV-induced photosensitive DNA lesion which is not repaired in xeroderma pigmentosum variant cells

    International Nuclear Information System (INIS)

    Francis, A.A.; Carrier, W.L.; Regan, J.D.

    1988-01-01

    Ultraviolet light causes a type of damage to the DNA of human cells that results in a DNA strand break upon subsequent irradiation with wavelengths around 300 nm. This DNA damage disappears from normal human fibroblasts within 5 h, but not from pyrimidine dimer excision repair deficient xeroderma pigmentosum group A cells or from excision proficient xeroderma pigmentosum variant cells. The apparent lack of repair of the ultraviolet light DNA damage described here may contribute to the cancer prone nature of xeroderma pigmentosum variant individuals. These experiments show that the same amount of damage was produced at 0 0 C and 37 0 C indicating a photodynamic effect and not an enzymatic reaction. The disappearance of the photosensitive lesions from the DNA is probably enzymatic since none of the damage was removed at 0 0 C. Both the formation of the lesion and its photolysis by near ultraviolet light were wavelength dependent. An action spectrum for the formation of photosensitive lesions was similar to that for the formation of pyrimidine dimers and (6-4) photoproducts and included wavelengths found in sunlight. The DNA containing the lesions was sensitive to wavelengths from 304 to 340 nm with a maximum at 313 to 317 nm. This wavelength dependence of photolysis is similar to the absorption and photolysis spectra of the pyrimidine (6-4) photoproducts. (author)

  17. LED-pumped Alexandrite laser oscillator and amplifier

    Science.gov (United States)

    Pichon, Pierre; Blanchot, Jean-Philippe; Balembois, François; Druon, Frédéric; Georges, Patrick

    2018-02-01

    In this paper, we report the first LED-pumped transition-metal-doped laser oscillator and amplifier based on an alexandrite crystal (Cr3+:BeAl2O4). A Ce:YAG luminescent concentrator illuminated by blue LEDs is used to reach higher pump powers than with LEDs alone. The luminescent 200-mm-long-composit luminescent concentrator involving 2240 LEDs can delivers up to 268 mJ for a peak irradiance of 8.5 kW/cm2. In oscillator configuration, an LED-pumped alexandrite laser delivering an energy of 2.9 mJ at 748 nm in free running operation is demonstrated. In the cavity, we measured a double pass small signal gain of 1.28, in good agreement with numerical simulations. As amplifier, the system demonstrated to boost a CW Ti:sapphire laser by a factor of 4 at 750 nm in 8 passes with a large tuning range from 710 nm to 800 nm.

  18. Stress-tuned conductor-polymer composite for use in sensors

    Science.gov (United States)

    Martin, James E; Read, Douglas H

    2013-10-22

    A method for making a composite polymeric material with electrical conductivity determined by stress-tuning of the conductor-polymer composite, and sensors made with the stress-tuned conductor-polymer composite made by this method. Stress tuning is achieved by mixing a miscible liquid into the polymer precursor solution or by absorbing into the precursor solution a soluble compound from vapor in contact with the polymer precursor solution. The conductor may or may not be ordered by application of a magnetic field. The composite is formed by polymerization with the stress-tuning agent in the polymer matrix. The stress-tuning agent is removed following polymerization to produce a conductor-polymer composite with a stress field that depends on the amount of stress-tuning agent employed.

  19. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy phenols from biomass burning

    Science.gov (United States)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2014-03-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O : C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O : C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to depend on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O : C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  20. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy-phenols from biomass burning

    Science.gov (United States)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2013-10-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy-phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O:C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O:C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to be dependent on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O:C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study