WorldWideScience

Sample records for tunable synchrotron vuv

  1. Atmospheric pressure photoionization using tunable VUV synchrotron radiation

    International Nuclear Information System (INIS)

    Giuliani, A.; Giorgetta, J.-L.; Ricaud, J.-P.; Jamme, F.; Rouam, V.; Wien, F.; Laprévote, O.; Réfrégiers, M.

    2012-01-01

    Highlights: ► Coupling of an atmospheric pressure photoionization source with a vacuum ultra-violet (VUV) beamline. ► The set up allows photoionization up to 20 eV. ► Compared to classical atmospheric pressure photoionization (APPI), our set up offers spectral purity and tunability. ► Allows photoionization mass spectrometry on fragile and hard to vaporize molecules. - Abstract: We report here the first coupling of an atmospheric pressure photoionization (APPI) source with a synchrotron radiation beamline in the vacuum ultra-violet (VUV). A commercial APPI source of a QStar Pulsar i from AB Sciex was modified to receive photons from the DISCO beamline at the SOLEIL synchrotron radiation facility. Photons are delivered at atmospheric pressure in the 4–20 eV range. The advantages of this new set up, termed SR-APPI, over classical APPI are spectral purity and continuous tunability. The technique may also be used to perform tunable photoionization mass spectrometry on fragile compounds difficult to vaporize by classical methods.

  2. Airfoil sampling of a pulsed Laval beam with tunable vacuum ultraviolet (VUV) synchrotron ionization quadrupole mass spectrometry: Application to low--temperature kinetics and product detection

    Energy Technology Data Exchange (ETDEWEB)

    Soorkia, Satchin; Liu, Chen-Lin; Savee, John D; Ferrell, Sarah J; Leone, Stephen R; Wilson, Kevin R

    2011-10-12

    A new pulsed Laval nozzle apparatus with vacuum ultraviolet (VUV) synchrotron photoionization quadrupole mass spectrometry is constructed to study low-temperature radicalneutralchemical reactions of importance for modeling the atmosphere of Titan and the outer planets. A design for the sampling geometry of a pulsed Laval nozzle expansion has beendeveloped that operates successfully for the determination of rate coefficients by time-resolved mass spectrometry. The new concept employs airfoil sampling of the collimated expansion withexcellent sampling throughput. Time-resolved profiles of the high Mach number gas flow obtained by photoionization signals show that perturbation of the collimated expansion by theairfoil is negligible. The reaction of C2H with C2H2 is studied at 70 K as a proof-of-principle result for both low-temperature rate coefficient measurements and product identification basedon the photoionization spectrum of the reaction product versus VUV photon energy. This approach can be used to provide new insights into reaction mechanisms occurring at kinetic ratesclose to the collision-determined limit.

  3. National synchrotron light source VUV storage ring

    International Nuclear Information System (INIS)

    Blumberg, L.; Bittner, J.; Galayda, J.; Heese, R.; Krinsky, S.; Schuchman, J.; van Steenbergen, A.

    1979-01-01

    A 700 MeV electron storage ring designed for synchrotron radiation applications is described. Lattice and stability calculations are presented and the vacuum, correction and injection systems are discussed

  4. Calibration of VUV spectrometer-detector system using synchrotron radiation

    International Nuclear Information System (INIS)

    McPherson, A.; Rouze, N.; Westerveld, W.B.; Risley, J.S.

    1986-01-01

    A new technique and apparatus have been developed for the measurement of absolute electron impact photoemission cross sections in the 30--150-nm wavelength range. Synchrotron light is used as the primary intensity standard for the calibration of the detection efficiency of a vacuum ultraviolet (VUV) spectrometer-detector system. A multiadjustable manipulator was used to position precisely a Seya-Namioka-type spectrometer-detector system with respect to a narrow ray of synchrotron radiation. By scanning the beam of synchrotron radiation across the surface of the grating in the spectrometer, precise simulation of the geometry of the light source encountered in the electron impact photoemission mesurement was realized. Analysis of the results underscores the fact that for spectrometer calibrations in the VUV, the calibration procedure depends on the geometry of the experimental source. The simultaneous determination of the absolute apparatus response function of the spectrometer--detector system and the geometrical factors pertaining to the electron impact photoemission source allows photoemission cross sections in the VUV to be determined with unparalleled precision

  5. VUV photochemistry simulation of planetary upper atmosphere using synchrotron radiation.

    Science.gov (United States)

    Carrasco, Nathalie; Giuliani, Alexandre; Correia, Jean Jacques; Cernogora, Guy

    2013-07-01

    The coupling of a gas reactor, named APSIS, with a vacuum-ultraviolet (VUV) beamline at the SOLEIL synchrotron radiation facility, for a photochemistry study of gas mixtures, is reported. The reactor may be irradiated windowless with gas pressures up to hundreds of millibar, and thus allows the effect of energetic photons below 100 nm wavelength to be studied on possibly dense media. This set-up is perfectly suited to atmospheric photochemistry investigations, as illustrated by a preliminary report of a simulation of the upper atmospheric photochemistry of Titan, the largest satellite of Saturn. Titan's atmosphere is mainly composed of molecular nitrogen and methane. Solar VUV irradiation with wavelengths no longer than 100 nm on the top of the atmosphere enables the dissociation and ionization of nitrogen, involving a nitrogen chemistry specific to nitrogen-rich upper atmospheres.

  6. Molecular beam studies of unimolecular and bimolecular chemical reaction dynamics using VUV synchrotron radiation as a product probe

    Energy Technology Data Exchange (ETDEWEB)

    Blank, David Andrew [Univ. of California, Berkeley, CA (United States)

    1997-08-01

    This dissertation describes the use of a new molecular beam apparatus designed to use tunable VUV synchrotron radiation for photoionization of the products from scattering experiments. The apparatus was built at the recently constructed Advanced Light Source at Lawrence Berkeley National Laboratory, a third generation 1-2 GeV synchrotron radiation source. The new apparatus is applied to investigations of the dynamics of unimolecular reactions, photodissociation experiments, and bimolecular reactions, crossed molecular beam experiments. The first chapter describes the new apparatus and the VUV radiation used for photoionization. This is followed by a number of examples of the many advantages provided by using VUV photoionization in comparison with the traditional technique of electron bombardment ionization. At the end of the chapter there is a discussion of the data analysis employed in these scattering experiments. The remaining four chapters are complete investigations of the dynamics of four chemical systems using the new apparatus and provide numerous additional examples of the advantages provided by VUV photoionizaiton of the products. Chapters 2-4 are photofragment translational spectroscopy studies of the photodissociation dynamics of dimethyl sulfoxide, acrylonitrile, and vinyl chloride following absorption at 193 mn. All of these systems have multiple dissociation channels and provide good examples of the ability of the new apparatus to unravel the complex UV photodissociation dynamics that can arise in small polyatomic molecules.

  7. Dynamics of synchrotron VUV-induced intracluster reactions

    Energy Technology Data Exchange (ETDEWEB)

    Grover, J.R. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    Photoionization mass spectrometry (PIMS) using the tunable vacuum ultraviolet radiation available at the National Synchrotron Light Source is being exploited to study photoionization-induced reactions in small van der Waals mixed complexes. The information gained includes the observation and classification of reaction paths, the measurement of onsets, and the determination of relative yields of competing reactions. Additional information is obtained by comparison of the properties of different reacting systems. Special attention is given to finding unexpected features, and most of the reactions investigated to date display such features. However, understanding these reactions demands dynamical information, in addition to what is provided by PIMS. Therefore the program has been expanded to include the measurement of kinetic energy release distributions.

  8. Beam line design for synchrotron spectroscopy in the VUV

    Energy Technology Data Exchange (ETDEWEB)

    Howells, M R

    1980-01-01

    The character of the radiation source provided by an electron storage ring is briefly reviewed from the point of view of utilization for VUV spectroscopy. The design of beam line components is then considered with special reference to the problems of contamination of optical surfaces and vacuum protection. The issues involved in designing mirrors for use with storage rings are considered with emphasis on the questions of power dissipation, image quality and materials selection.

  9. Beam line design for synchrotron spectroscopy in the VUV

    International Nuclear Information System (INIS)

    Howells, M.R.

    1980-01-01

    The character of the radiation source provided by an electron storage ring is briefly reviewed from the point of view of utilization for VUV spectroscopy. The design of beam line components is then considered with special reference to the problems of contamination of optical surfaces and vacuum protection. The issues involved in designing mirrors for use with storage rings are considered with emphasis on the questions of power dissipation, image quality and materials selection

  10. National Synchrotron Light Source users manual: Guide to the VUV and x-ray beam lines

    International Nuclear Information System (INIS)

    Gmuer, N.F.; White-DePace, S.M.

    1987-08-01

    The success of the National Synchrotron Light Source in the years to come will be based, in large part, on the size of the users community and the diversity of the scientific disciplines represented by these users. In order to promote this philosophy, this National Synchrotron Light Source (NSLS) Users Manual: Guide to the VUV and X-Ray Beam Lines, has been published. This manual serves a number of purposes. In an effort to attract new research, it will present to the scientific community-at-large the current and projected architecture and capabilities of the various VUV and x-ray beam lines and storage rings. We anticipate that this publication will be updated periodically in order to keep pace with the constant changes at the NSLS

  11. UV-VUV synchrotron radiation spectroscopy of NiWO4

    Science.gov (United States)

    Kuzmin, A.; Pankratov, V.; Kalinko, A.; Kotlov, A.; Shirmane, L.; Popov, A. I.

    2016-07-01

    Photoluminescence and excitation spectra of microcrystalline and nanocrystalline nickel tungstate (NiWO4) were measured using UV-VUV synchrotron radiation source. The origin of the bands is interpreted using comparative analysis with isostructural ZnWO4 tungstate and based on the results of recent first-principles band structure calculations. The influence of the local atomic structure relaxation and of Ni2+ intra-ion d-d transitions on the photoluminescence band intensity are discussed.

  12. DOE/DMS workshop on future synchrotron VUV and x-ray beam Lines

    International Nuclear Information System (INIS)

    Green, P.H.

    1992-03-01

    This document contains an overview of the participating DOE Laboratory beam line interests and the projected science to be addressed on these beam lines, both at new and existing synchrotron facilities. The scientific programs associated with present and planned synchrotron research by DOE Laboratories are discussed in chapters titled ''VUV and Soft X-Ray Research'' and ''Hard X-Ray Research.'' This research encompasses a broad range of the nation's scientific and technical research needs from fundamental to applied, in areas including environmental, biological, and physical sciences; new materials; and energy-related technologies. The projected cost of this proposed construction has been provided in tabular form using a uniform format so that anticipated DOE and outside funding agency contributions for construction and for research and development can be determined. The cost figures are, of course, subject to uncertainties of detailed design requirements and the availability of facility-designed generic components and outside vendors. The report also contains a compendium (as submitted by the beam line proposers) of the design capabilities, the anticipated costs, and the scientific programs of projected beam line construction at the four synchrotron facilities. A summary of the projected cost of these beam lines to be requested of DOE is compiled

  13. Synchrotron radiation sources: their properties and applications for VUV and X-ray spectroscopy

    International Nuclear Information System (INIS)

    Koch, E.E.

    1976-09-01

    Synchrotron radiation from accelerators and storage rings offers far reaching possibilities for many fields of basic and applied physics. The properties of synchrotron radiation, existing and planned synchrotron radiation facilities, as well as instrumental aspects are discussed. In order to illustrate the usefulness of the synchrotron radiation sources a few highlights from atomic, molelucar, and solid state spectroscopy are presented and examples from x-ray experiments and from the field of applied physics are given. (orig.) [de

  14. National synchrotron light source user's manual: Guide to the VUV and x-ray beamlines: Third edition

    International Nuclear Information System (INIS)

    Gmuer, N.F.; Thomlinson, W.; White-DePace, S.

    1989-01-01

    This report contains information on the following topics: A Word on the Writing of Beamline Descriptions; Beamline Equipment Utilization for General Users; the Vacuum Ultraviolet (VUV) Storage Ring and Beamlines; VUV Beamline Descriptions--An Explanation; VUV Beamline Descriptions; X-Ray Storage Ring and Beamlines; X-Ray Beamline Descriptions--An Explanation; and X-Ray Beamline Descriptions

  15. National synchrotron light source user's manual: Guide to the VUV and x-ray beamlines: Third edition

    Energy Technology Data Exchange (ETDEWEB)

    Gmuer, N.F.; Thomlinson, W.; White-DePace, S.

    1989-01-01

    This report contains information on the following topics: A Word on the Writing of Beamline Descriptions; Beamline Equipment Utilization for General Users; the Vacuum Ultraviolet (VUV) Storage Ring and Beamlines; VUV Beamline Descriptions--An Explanation; VUV Beamline Descriptions; X-Ray Storage Ring and Beamlines; X-Ray Beamline Descriptions--An Explanation; and X-Ray Beamline Descriptions.

  16. Competitive fragmentation pathways of acetic acid dimer explored by synchrotron VUV photoionization mass spectrometry and electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Guan Jiwen; Hu Yongjun; Zou Hao [MOE Key laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); Cao Lanlan; Liu Fuyi; Shan Xiaobin; Sheng Liusi [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029 (China)

    2012-09-28

    In present study, photoionization and dissociation of acetic acid dimers have been studied with the synchrotron vacuum ultraviolet photoionization mass spectrometry and theoretical calculations. Besides the intense signal corresponding to protonated cluster ions (CH{sub 3}COOH){sub n}{center_dot}H{sup +}, the feature related to the fragment ions (CH{sub 3}COOH)H{sup +}{center_dot}COO (105 amu) via {beta}-carbon-carbon bond cleavage is observed. By scanning photoionization efficiency spectra, appearance energies of the fragments (CH{sub 3}COOH){center_dot}H{sup +} and (CH{sub 3}COOH)H{sup +}{center_dot}COO are obtained. With the aid of theoretical calculations, seven fragmentation channels of acetic acid dimer cations were discussed, where five cation isomers of acetic acid dimer are involved. While four of them are found to generate the protonated species, only one of them can dissociate into a C-C bond cleavage product (CH{sub 3}COOH)H{sup +}{center_dot}COO. After surmounting the methyl hydrogen-transfer barrier 10.84 {+-} 0.05 eV, the opening of dissociative channel to produce ions (CH{sub 3}COOH){sup +} becomes the most competitive path. When photon energy increases to 12.4 eV, we also found dimer cations can be fragmented and generate new cations (CH{sub 3}COOH){center_dot}CH{sub 3}CO{sup +}. Kinetics, thermodynamics, and entropy factors for these competitive dissociation pathways are discussed. The present report provides a clear picture of the photoionization and dissociation processes of the acetic acid dimer in the range of the photon energy 9-15 eV.

  17. Temperature-dependent absorption cross-section measurements of 1-butene (1-C4H8) in VUV and IR

    KAUST Repository

    Es-sebbar, Et-touhami

    2013-01-01

    Vacuum ultraviolet (VUV) and infrared (IR) absorption cross-section measurements of 1-butene (1-C4H8; CH2=CHCH2CH3; Butylene) are reported over the temperature range of 296-529K. The VUV measurements are performed between 115 and 205nm using synchrotron radiation as a tunable VUV light source. Fourier Transform Infrared (FTIR) spectroscopy is employed to measure absorption cross-section and band strengths in the IR region between 1.54 and 25μm (~6500-400cm-1). The measured room-temperature VUV and IR absorption cross-sections are compared with available literature data and are found to be in good agreement. The oscillator strength for the electronic transition (A1A\\'→X1A\\') around 150-205nm is determined to be 0.32±0.01.The gas temperature has a strong effect on both VUV and IR spectra. Measurements made in the VUV region show that the peak value of the band cross-section decreases and the background continuum increases with increasing gas temperature. This behavior is due to a change in the rotational and vibrational population distribution of 1-butene molecule. Similar changes in rotational population are observed in the IR spectra. Moreover, variation of the IR spectra with temperature is used to measure the enthalpy difference between syn and skew conformations of 1-butene and is found to be 0.24±0.03. kcal/mol, which is in excellent agreement with values reported in the literature. The measurements reported in this work will provide the much-needed spectroscopic information for the development of high-temperature quantitative diagnostics in combustion applications and validation of atmospheric chemistry models of extra-solar planets. © 2012 Elsevier Ltd.

  18. Imaging with Mass Spectrometry: A SIMS and VUV-Photoionization Study of Ion-Sputtered Atoms and Clusters from GaAs and Au

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Lynelle; Zhou, Jia; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid

    2008-12-05

    A new mass spectrometry surface imaging method is presented in which ion-sputtered neutrals are postionized by wavelength-tunable vacuum ultraviolet (VUV) light from a synchrotron source. Mass spectra and signal counts of the photoionized neutrals from GaAs (100) and Au are compared to those of the secondary ions. While clusters larger than dimers are more efficiently detected as secondary ions, certain species, such as As2, Au and Au2, are more efficiently detected through the neutral channel. Continuously tuning the photon wavelength allows photoionization efficiency (PIE) curves to be obtained for sputtered Asm (m=1,2) and Aun (n=1-4). From the observed ionization thresholds, sputtered neutral As and Au show no clear evidence of electronic excitation, while neutral clusters have photoionization onsets shifted to lower energies by ~;;0.3 eV. These shifts are attributed to unresolved vibrational and rotational excitations. High-spatial resolution chemical imaging with synchrotron VUV postionization is demonstrated at two different photon energies using a copper TEM grid embedded in indium. The resulting images are used to illustrate the use of tunable VUV light for verifying mass peak assignments by exploiting the unique wavelength-dependent PIE of each sputtered neutral species. This capability is valuable for identifying compounds when imaging chemically complex systems with mass spectrometry-based techniques.

  19. Desorption Dynamics, Internal Energies and Imaging of Organic Molecules from Surfaces with Laser Desorption and Vacuum Ultraviolet (VUV) Photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Kostko, Oleg; Takahashi, Lynelle K.; Ahmed, Musahid

    2011-04-05

    There is enormous interest in visualizing the chemical composition of organic material that comprises our world. A convenient method to obtain molecular information with high spatial resolution is imaging mass spectrometry. However, the internal energy deposited within molecules upon transfer to the gas phase from a surface can lead to increased fragmentation and to complications in analysis of mass spectra. Here it is shown that in laser desorption with postionization by tunable vacuum ultraviolet (VUV) radiation, the internal energy gained during laser desorption leads to minimal fragmentation of DNA bases. The internal temperature of laser-desorbed triacontane molecules approaches 670 K, whereas the internal temperature of thymine is 800 K. A synchrotron-based VUV postionization technique for determining translational temperatures reveals that biomolecules have translational temperatures in the range of 216-346 K. The observed low translational temperatures, as well as their decrease with increased desorption laser power is explained by collisional cooling. An example of imaging mass spectrometry on an organic polymer, using laser desorption VUV postionization shows 5 mu m feature details while using a 30 mu m laser spot size and 7 ns duration. Applications of laser desorption postionization to the analysis of cellulose, lignin and humic acids are briefly discussed.

  20. Demonstration experiment of a laser synchrotron source for tunable, monochromatic x-rays at 500 eV

    Energy Technology Data Exchange (ETDEWEB)

    Ting, A.; Fischer, R.; Fisher, A. [Naval Research Lab., Washington, DC (United States)] [and others

    1995-12-31

    A Laser Synchrotron Source (LSS) was proposed to generate short-pulsed, tunable x-rays by Thomson scattering of laser photons from a relativistic electron beam. A proof-of-principle experiment was performed to generate x-ray photons of 20 eV. A demonstration experiment is being planned and constructed to generate x-ray photons in the range of {approximately}500 eV. Laser photons of {lambda}=1.06 {mu}m are Thomson backscattered by a 4.5 MeV electron beam which is produced by an S-band RF electron gun. The laser photons are derived from either (i) a 15 Joules, 3 nsec Nd:glass laser, (ii) the uncompressed nsec: pulse of the NRL table-top terawatt (T{sup 3}) laser, or (iii) the compressed sub-picosec pulse of the T{sup 3} laser. The RF electron gun is being constructed with initial operation using a thermionic cathode. It will be upgraded to a photocathode to produce high quality electron beams with high current and low emittance. The x-ray pulse structure consists of {approximately}10 psec within an envelope of a macropulse whose length depends on the laser used. The estimated x-ray photon flux is {approximately}10{sup 18} photons/sec, and the number of photons per macropulse is {approximately}10{sup 8}. Design parameters and progress of the experiment will be presented.

  1. Threshold photoelectron spectroscopy of the methyl radical isotopomers, CH3, CH2D, CHD2 and CD3: synergy between VUV synchrotron radiation experiments and explicitly correlated coupled cluster calculations.

    Science.gov (United States)

    Cunha de Miranda, Bárbara K; Alcaraz, Christian; Elhanine, Mohamed; Noller, Bastian; Hemberger, Patrick; Fischer, Ingo; Garcia, Gustavo A; Soldi-Lose, Héloïse; Gans, Bérenger; Mendes, Luiz A Vieira; Boyé-Péronne, Séverine; Douin, Stéphane; Zabka, Jan; Botschwina, Peter

    2010-04-15

    Threshold photoelectron spectra (TPES) of the isotopomers of the methyl radical (CH(3), CH(2)D, CHD(2), and CD(3)) have been recorded in the 9.5-10.5 eV VUV photon energy range using third generation synchrotron radiation to investigate the vibrational spectroscopy of the corresponding cations at a 7-11 meV resolution. A threshold photoelectron-photoion coincidence (TPEPICO) spectrometer based on velocity map imaging and Wiley-McLaren time-of-flight has been used to simultaneously record the TPES of several radical species produced in a Ar-seeded beam by dc flash-pyrolysis of nitromethane (CH(x)D(y)NO(2), x + y = 3). Vibrational bands belonging to the symmetric stretching and out-of-plane bending modes have been observed and P, Q, and R branches have been identified in the analysis of the rotational profiles. Vibrational configuration interaction (VCI), in conjunction with near-equilibrium potential energy surfaces calculated by the explicitly correlated coupled cluster method CCSD(T*)-F12a, is used to calculate vibrational frequencies for the four radical isotopomers and the corresponding cations. Agreement with data from high-resolution IR spectroscopy is very good and a large number of predictions is made. In particular, the calculated wavenumbers for the out-of-plane bending vibrations, nu(2)(CH(3)(+)) = 1404 cm(-1), nu(4)(CH(2)D(+)) = 1308 cm(-1), nu(4)(CHD(2)(+)) = 1205 cm(-1), and nu(2)(CD(3)(+)) = 1090 cm(-1), should be accurate to ca. 2 cm(-1). Additionally, computed Franck-Condon factors are used to estimate the importance of autoionization relative to direct ionization. The chosen models globally account for the observed transitions, but in contrast to PES spectroscopy, evidence for rotational and vibrational autoionization is found. It is shown that state-selected methyl cations can be produced by TPEPICO spectroscopy for ion-molecule reaction studies, which are very important for the understanding of the planetary ionosphere chemistry.

  2. Experience with synchrotron radiation sources

    International Nuclear Information System (INIS)

    Krinsky, S.

    1987-01-01

    The development of synchrotron radiation sources is discussed, emphasizing characteristics important for x-ray microscopy. Bending magnets, wigglers and undulators are considered as sources of radiation. Operating experience at the national Synchrotron Light Source on the VUV and XRAY storage rings is reviewed, with particular consideration given to achieved current and lifetime, transverse bunch dimensions, and orbit stability. 6 refs., 3 figs

  3. Reflectometry with synchrotron radiation

    International Nuclear Information System (INIS)

    Krumrey, Michael; Cibik, Levent; Fischer, Andreas; Gottwald, Alexander; Kroth, Udo; Scholze, Frank

    2014-01-01

    The measurement of the reflectivity for VUV, XUV, and X-radiation at the PTB synchrotron radiation sources is described. The corresponding data of the used beams are presented. Results of experiments on a Cu-Ni double-layer, SiO 2 , Si, and MgF 2 are presented. (HSI)

  4. Synchrotron Radiation

    International Nuclear Information System (INIS)

    Asfour, F.I

    2000-01-01

    Synchrotron light is produced by electron accelerators combined with storage rings. This light is generated over a wide spectral region; from infra-red (IR) through the visible and vacuum ultraviolet (VUV), and into the X-ray region. For relativistic electrons (moving nearly with the speed of light), most radiation is concentrated in a small cone with an opening angle of 1/gamma(some 0.1 to 1 milliradian),where gamma is the electron energy in units of rest energy (typically 10 3 -10 4 ). In synchrotron radiation sources (storage rings) highly relativistic electrons are stored to travel along a circular path for many hours. Radiation is caused by transverse acceleration due to magnetic forces(bending magnets). The radiation is emitted in pulses of 10-20 picosecond, separated by some 2 nanosecond or longer separation

  5. A VUV photoionization measurement and ab-initio calculation of the ionization energy of gas phase SiO2

    Energy Technology Data Exchange (ETDEWEB)

    Kostko, Oleg; Ahmed, Musahid; Metz, Ricardo B.

    2008-12-05

    In this work we report on the detection and vacuum-ultraviolet (VUV) photoionization of gas phase SiO2 generated in situ via laser ablation of silicon in a CO2 molecular beam. The resulting species are investigated by single photon ionization with tunable VUV synchrotron radiation and mass analyzed using reflectron mass spectrometry. Photoionization efficiency (PIE) curves are recorded for SiO and SiO2 and ionization energy estimates are revealed from such measurements. A state-to-state ionizationenergy of 12.60 (+-0.05) eV is recorded by fitting two prominent peaks in the PIE curve for the following process: 1SUM O-Si-O --> 2PRODg [O-Si-O]+. Electronic structure calculations aid in the interpretation of the photoionization process and allow for identification of the symmetric stretch of 2PRODg [O-Si-O]+ which is observed in the PIE spectrum to be 0.11 eV (890 cm-1) above the ground state of the cation and agrees with the 892 cm-1 symmetric stretch frequency calculated at the CCSD(T)/aug-cc-pVTZ level.

  6. VUV-soft x-ray beamline for spectroscopy and calibration

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Trela, W.J.; Michaud, F.D.; Southworth, S.H.; Rothe, R.; Alkire, R.W.

    1986-01-01

    The authors describe the design and performance of the Los Alamos VUV synchrotron radiation beamline, U3C, on the VUV ring of the National Synchrotron Light Source at Brookhaven National Laboratory. The beamline uses separate function optics to collect and focus the horizontally and vertically diverging beam. The monochromator is a grazing incidence Roland circle instrument of the extended grasshopper design (ERG). A post monochromator refocusing mirror is used to focus or collimate the diverging beam from the monochromator. The beamline control and diagnostics systems are also discussed

  7. New perspectives for organic chemistry and biochemistry in VUV: reaction kinetics, chirality and thermochemistry. Summaries

    International Nuclear Information System (INIS)

    Nahon, Laurent; Field, David; Gerber, Thomas; Knopp, Gregor; Beaud, Paul; Radi, Peter; Tulej, Marek; Dedonder-Lardeux, Claude; Jung, J.M.; Laprevote, Olivier; Thissen, Roland; Le Barbu, K.; Lahmani, F.; Zehnacker, A.; Maurizot, Jean Claude; Barbier, Bernard; Kagan, Henri B.

    2001-10-01

    The aim of this workshop was to examine the conditions of use of VUV for the study of complex molecular systems, and notably bio-molecules, a domain which is greatly expanding. The conclusions of this one-day workshop should allow to define new fields of utilization of the synchrotron radiation in VUV, to precise certain performances that are needed for the transferred line, to establish the complementarities with other VUV sources (lasers, free electron lasers, lamps) and to determine the eventual need for a second low energy light line at SOLEIL. The titles of the various abstract papers presented are (two papers are in English, the rest is in French): SU5, a high resolution and variable polarization VUV line that should be transferred at SOLEIL; Interstellar organic chemistry (in English); Application of spectroscopic techniques in the VUV to combustion relevant molecules (in English); Gaseous phase reaction kinetics (bi-molecular reactions in collision and in aggregates); Liquids of biological interest (excitation and relaxation close to the ionization threshold); Successes and impediments in protein mass spectrometry (the potential contribution of VUV synchrotron radiation); Stereo-specific effects; Complexes between chiral molecules; circular dichroism of biomolecules; Exobiology; asymmetric synthesis (principles and recent results)

  8. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Musahid; Ahmed, Musahid; Wilson, Kevin R.; Belau, Leonid; Kostko, Oleg

    2008-05-12

    In this work we report on thevacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuumultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH + (n=1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H + (n=2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH +, (CH 3OH)2 +, (CH3OH)nH + (n=1-9), and (CH 3OH)n(H2O)H + (n=2-9 ) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  9. Vacuum-Ultraviolet (VUV) Photoionization of Small Methanol and Methanol-Water Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Kostko, Oleg; Belau, Leonid; Wilson, Kevin R.; Ahmed, Musahid

    2008-04-24

    In this work, we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH+(n = 1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH n(H2O)H+ (n = 2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH+, (CH3OH)2+, (CH3OH)nH+ (n = 1-9), and (CH3OH)n(H2O)H+ (n = 2-9) as a function of photon energy. With an increasein the water content in the molecular beam, there is an enhancement of photoionization intensity for the methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  10. Brominated Tyrosine and Polyelectrolyte Multilayer Analysis by Laser Desorption VUV Postionization and Secondary Ion Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    University of Illinois at Chicago; Blaze, Melvin M. T.; Takahashi, Lynelle; Zhou, Jia; Ahmed, Musahid; Gasper, Gerald; Pleticha, F. Douglas; Hanley, Luke

    2011-03-14

    The small molecular analyte 3,5-dibromotyrosine (Br2Y) and chitosan-alginate polyelectrolyte multilayers (PEM) with and without adsorbed Br2Y were analyzed by laser desorption postionization mass spectrometry (LDPI-MS). LDPI-MS using 7.87 eV laser and tunable 8 ? 12.5 eV synchrotron vacuum ultraviolet (VUV) radiation found that desorption of clusters from Br2Y films allowed detection by≤8 eV single photon ionization. Thermal desorption and electronic structure calculations determined the ionization energy of Br2Y to be ~;;8.3?0.1 eV and further indicated that the lower ionization energies of clusters permitted their detection at≤8 eV photon energies. However, single photon ionization could only detect Br2Y adsorbed within PEMs when using either higher photon energies or matrix addition to the sample. All samples were also analyzed by 25 keV Bi3 + secondary ion mass spectrometry (SIMS), with the negative ion spectra showing strong parent ion signal which complemented that observed by LDPI-MS. The negative ion SIMS depended strongly on the high electron affinity of this specific analyte and the analyte?s condensed phase environment.

  11. A new horizon in secondary neutral mass spectrometry: post-ionization using a VUV free electron laser

    International Nuclear Information System (INIS)

    A new time-of-flight (TOF) mass spectrometer incorporating post-ionization of sputtered neutral species with tunable vacuum ultraviolet (VUV) light generated by a free electron laser (FEL) has been developed. Capabilities of this instrument, called SPIRIT, were demonstrated by experiments with photoionization of sputtered neutral gold atoms with 125 nm light generated by the VUV FEL located at Argonne National Laboratory (ANL). In a separate series of experiments with a fixed wavelength VUV light source, a 157 nm F 2 laser, a useful yield (atoms detected per atoms sputtered) of about 12% and a mass resolution better than 1500 were demonstrated for molybdenum

  12. Photoluminescence of phosphors for PDP with VUV excitation

    International Nuclear Information System (INIS)

    Lu, H.-C.; Chen, H.-K.; Tseng, T.-Y.; Kuo, W.-L.; Alam, M.S.; Cheng, B.-M.

    2005-01-01

    In a plasma display panel (PDP) He-Xe or Ne-Xe gaseous mixtures are subjected to electric discharge between two glass panels, so to generate VUV light. Red, green and blue phosphors absorb this VUV radiation and re-radiate the energy as visible light to produce the colors that appear on the screen. The phosphor plays an important role in the working of a PDP. To improve the efficiency of phosphors, we have established a photoluminescence end station coupled to the beam line of a synchrotron to study the luminescence of PDP phosphors. This luminescence is analyzed with a 0.32 m monochromator having maximum resolution 0.04 nm, and is monitored with a photomultiplier tube operated in a photon-counting mode. Preliminary data demonstrate the powerful performance of this end-station for studying PDP phosphors

  13. National synchrotron light source basic design and project status

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1981-01-01

    A summary description and the basic design parameters of the National Synchrotron Light Source, a facility for the generation of intense synchrotron radiation in the vuv and x-ray range is presented, the parameters of the sources are given, the presently planned facility beam lines are tabulated and the status of the project is indicated

  14. Reflectometry with synchrotron radiation; Reflektometrie mit Synchrotronstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Krumrey, Michael [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany). Arbeitsgruppe ' Roentgenradiometrie' ; Cibik, Levent; Fischer, Andreas; Gottwald, Alexander; Kroth, Udo; Scholze, Frank

    2014-09-15

    The measurement of the reflectivity for VUV, XUV, and X-radiation at the PTB synchrotron radiation sources is described. The corresponding data of the used beams are presented. Results of experiments on a Cu-Ni double-layer, SiO{sub 2}, Si, and MgF{sub 2} are presented. (HSI)

  15. VUV Optics Development for the Elettra Storage Ring FEL

    CERN Document Server

    Guenster, Stefan

    2004-01-01

    Vacuum ultraviolet optical components for the storage ring FEL at Elettra are under continuous development in the European research consortium EUFELE. Target of the project is the progress to shorter lasing wavelengths in the VUV spectral range. The current status allows lasing with oxide mirror systems down to 190 nm. The main obstacles for the development of optical coatings for shorter wavelengths is the high energetic background of the synchrotron radiation impinging onto the front mirror in the laser cavity. Investigations in single layer systems and multilayer stacks of oxide or fluoride materials demonstrate that fluoride mirrors reach highest reflectivity values down to 140 nm, and oxide coatings possess a satisfactory resistance against the high energetic background irradiation. However, pure oxide multilayer stacks exhibit significant absorption below 190 nm and pure fluoride stacks suffer from strong degradation effects under synchrotron radiation. A solution could be hybrid systems, combining fluo...

  16. Interference effects in the UV(VUV)-excited luminescence spectroscopy of thin dielectric films.

    Science.gov (United States)

    Buntov, Evgeny; Zatsepin, Anatoly

    2013-05-01

    The problem of exciting UV and VUV light interference affecting experimental photoluminescence excitation spectra is analysed for the case of thin transparent films containing arbitrarily distributed emission centres. A numerical technique and supplied software aimed at modelling the phenomenon and correcting the distorted spectra are proposed. Successful restoration results of the experimental synchrotron data for ion-implanted silica films show that the suggested method has high potential.

  17. Synchrotron light; Lumiere synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    'Synchrotron Light' is an interactive and detailed introduction to the physics and technology of the generation of coherent radiation from accelerators as well as to its widespread high-tech applications in science, medicine and engineering. The topics covered are the interaction of light and matter, the technology of synchrotron light sources, spectroscopy, imaging, scattering and diffraction of X-rays, and applications to materials science, biology, biochemistry, medicine, chemistry, food and pharmaceutical technology. All synchrotron light facilities are introduced with their home-page addresses. 'Synchrotron Light' provides an instructive and comprehensive multimedia learning tool for students, experienced practitioners and novices wishing to apply synchrotron radiation in their future work. Its multiple-entry points permit an easy exploration of the CD-Rom according to the users knowledge and interest. 2-D and 3-D animations and virtual reconstruction with computer-generated images guide visitors into the scientific and technical world of a synchrotron and into the applications of synchrotron radiation. This bilingual (English and French) CD-Rom can be used for self-teaching and in courses at various levels in physics, chemistry, engineering, and biology. (author)

  18. Tunability enhanced electromagnetic wiggler

    Science.gov (United States)

    Schlueter, R.D.; Deis, G.A.

    1992-03-24

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.

  19. Infrared synchrotron radiation from electron storage rings

    International Nuclear Information System (INIS)

    Duncan, W.D.; Williams, G.P.

    1983-01-01

    Simple and useful approximations, valid at infrared wavelengths, to the equations for synchrotron radiation are presented and used to quantify the brightness and power advantage of current synchrotron radiation light sources over conventional infrared broadband laboratory sources. The Daresbury Synchrotron Radiation Source (SRS) and the Brookhaven National Synchrotron Light Source (vacuum ultraviolet) [NSLS(VUV)] storage rings are used as examples in the calculation of the properties of infrared synchrotron radiation. The pulsed nature of the emission is also discussed, and potential areas of application for the brightness, power, and time structure advantages are presented. The use of infrared free electron lasers and undulators on the next generation of storage ring light sources is briefly considered

  20. VUV action spectroscopy of protonated leucine-enkephalin peptide in the 6-14 eV range

    Energy Technology Data Exchange (ETDEWEB)

    Ranković, M. Lj. [Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Canon, F. [INRA, UMR1324 Centre des Sciences du Goût et de l’Alimentation, F-21000 Dijon (France); Nahon, L. [SOLEIL, l’Orme des Merisiers, St Aubin, BP48, 91192 Gif sur Yvette Cedex (France); Giuliani, A. [SOLEIL, l’Orme des Merisiers, St Aubin, BP48, 91192 Gif sur Yvette Cedex (France); INRA, UAR1008, CEPIA, Rue de la Géraudière, BP 71627, 44316 Nantes (France); Milosavljević, A. R., E-mail: vraz@ipb.ac.rs [Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2015-12-28

    We have studied the Vacuum Ultraviolet (VUV) photodissociation of gas-phase protonated leucine-enkephalin peptide ion in the 5.7 to 14 eV photon energy range by coupling a linear quadrupole ion trap with a synchrotron radiation source. We report VUV activation tandem mass spectra at 6.7, 8.4, and 12.8 eV photon energies and photodissociation yields for a number of selected fragments. The obtained results provide insight into both near VUV radiation damage and electronic properties of a model peptide. We could distinguish several absorption bands and assign them to particular electronic transitions, according to previous theoretical studies. The photodissociation yields appear to be very different for the various observed fragmentation channels, depending on both the types of fragments and their position along the peptide backbone. The present results are discussed in light of recent gas-phase spectroscopic data on peptides.

  1. Synchrotron light sources: The search for quantum chaos

    Energy Technology Data Exchange (ETDEWEB)

    Schlachter, Fred

    2001-02-01

    A storage ring is a specialized synchrotron in which a stored beam of relativistic electrons produces radiation in the vuv and x-ray regions of the spectrum. High-brightness radiation is used at the ALS to study doubly excited autoionizing states of the helium atom in the search for quantum chaos.

  2. Optical systems for synchrotron radiation. Lecture 2. Mirror systems

    International Nuclear Information System (INIS)

    Howells, M.R.

    1986-02-01

    The process of reflection of VUV and x-radiation is summarized. The functions of mirrors in synchrotron beamlines are described, which include deflection, filtration, power absorption, formation of a real image, focusing, and collimation. Fabrication of optical surfaces for synchrotron radiation beamlines are described, and include polishing of a near spherical surface as well as bending a cylindrical surface to toroidal shape. The imperfections present in mirrors, aberrations and surface figure inaccuracy, are discussed. Calculation of the thermal load of a mirror in a synchrotron radiation beam and the cooling of the mirror are covered briefly. 50 refs., 7 figs

  3. New synchrotron radiation facility project. Panel on new synchrotron radiation facility project

    CERN Document Server

    Sato, S; Kimura, Y

    2003-01-01

    The project for constructing a new synchrotron radiation facility dedicated to the science in VUV (or EUV) and Soft X-ray (SX) region has been discussed for these two years at the Panel on New Synchrotron Radiation Facility Project. The Panel together with the Accelerator Design Working Group (WG), Beamline Design WG and Research Program WG suggested to the Ministry of Education, Science, Culture and Sports the construction of a 1.8 GeV electron storage ring suitable for 'Top-Up' operation and beamlines and monochromators designed for undulator radiation. The scientific programs proposed by nationwide scientists are summarized with their requirements of the characteristics of the beam. (author)

  4. Actinide science with soft x-ray synchrotron radiation

    International Nuclear Information System (INIS)

    Shuh, D.

    2002-01-01

    Several workshops, some dating back more than fifteen years, recognised both the potential scientific impact and opportunities that would be made available by the capability to investigate actinide materials in the vacuum ultraviolet (VUV)/soft X-ray region of the synchrotron radiation (SR) spectrum. This spectral region revolutionized the approach to surface materials chemistry and physics nearly two decades ego. The actinide science community was unable to capitalize on these SR methodologies for the study of actinide materials until recently because of radiological safety concerns. ,The Advanced Light Source (ALS) at LBNL is a third-generation light source providing state-of-the-art performance in the VUV/soft X-ray region. Along with corresponding improvements in detector and vacuum technology, the ALS has rendered experiments with small amounts of actinide materials possible. In particular, it has been the emergence and development of micro-spectroscopic techniques that have enabled investigations of actinide materials at the ALS. The primary methods for the experimental investigation of actinide materials in the VUV/soft X-ray region are the complementary photoelectron spectroscopies, near-edge X-ray absorption fine structure (NEXAFS) and X-ray emission spectroscopy (XES) techniques. Resonant photo-emission is capable of resolving the 5f electron contributions to actinide bonding and can be used to characterise the electronic structure of actinide materials. This technique is clearly a most important methodology afforded by the tunable SR source. Core level and valence band photoelectron spectroscopies are valuable for the characterisation of the electronic properties of actinide materials, as well as for general analytical purposes. High-resolution core-level photo-emission and resonant photo-emission measurements from the a (monoclinic) and δ (FCC) allotropic phases of plutonium metal have been collected on beam line 7.0 at the ALS and the spectra show

  5. The linear lattice design of an advanced VUV/SXR photon source for Daresbury

    International Nuclear Information System (INIS)

    Clarke, J.A.; Corlett, J.N.; Poole, M.W.; Smith, S.L.; Suller, V.P.; Welbourne, L.A.

    1992-01-01

    The linear lattice design of an advanced synchrotron radiation source in the VUV/SXR region, optimised to produce undulator radiation with high brilliance over the range 5-1000 eV, is discussed. The photon source is based on a 10 cell double bend achromat which will operate over the range 0.5-1.2 GeV. The linear lattice properties over the total available working region are presented for this structure. It is demonstrated that the circular lattice can be extended to a racetrack configuration by the inclusion of two long matched straights with free lengths of over 15 m each. (author) 8 refs.; 5 figs.; 1 tab

  6. Chemical evolution of Titan’s aerosol analogues under VUV irradiation

    Science.gov (United States)

    Carrasco, Nathalie; Gavilan, Lisseth; Tigrine, Sarah; Vettier, Ludovic; Nahon, Laurent; Pernot, Pascal

    2017-10-01

    Since the Cassini-CAPS measurements, organic aerosols are known to be present and formed at high altitudes in the diluted and partially ionized medium that is Titan’s ionosphere [1].After production in the ionosphere, Titan’s aerosols evolve through microphysics during their sedimentation down to Titan’s surface [2]. Starting with a few nanomers size in the upper atmosphere, they reach a fractal structure of a few hundreds nanometers close to the surface [3]. During sedimentation, aerosols are also submitted to solar irradiation. As laboratory analogs of Titan’s atmospheric aerosols (tholins) show a strong UV absorption [4], we suspect that VUV irradiation could also induce a chemical evolution of Titan’s aerosols during their descent in Titan’s atmosphere.The aim of this work ist to simulate the irradiation process occuring on the aerosols in Titan’s atmosphere and to address whether this irradiation impacts the chemical composition of the organic solids. First aerosol analogues were produced in a N2-CH4 plasma discharge as thin organic films of a few hundreds of nanometers thick [5]. Then those were irradiated at Lyman-α wavelength, the strongest VUV line in the solar spectrum, with a high photon flux on a synchrotron VUV beamline. We will present and discuss the significant chemical evolutions observed on the analogues after VUV irradiation by mid-IR absorption spectroscopy.[1] Waite et al. (2009) Science , 316, p. 870[2] Lavvas et al. (2011) Astrophysical Journal, 728:80[3] Tomasko et al. (2008) Planetary and Space Science, 56, p. 669[4] Mahjoub et al. (2012) Icarus 221, P. 670[5] Carrasco et al. (2016) Planetary and Space Science, 128, p. 52

  7. Characteristics and performance of the Los Alamos VUV beamline at the NSLS

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Trela, W.J.; Michaud, F.D.; Southworth, S.H.; Alkire, R.W.; Roy, P.; Rothe, R.; Walsh, P.J.; Shinn, N.

    1988-01-01

    We describe the design and performance of the Los Alamos VUV synchrotron radiation beamline, U3C, on the VUV ring of the National Synchrotron Light Source at Brookhaven National Laboratory. The beamline uses separate function optics to collect and focus the horizontally and vertically diverging beam. The monochromator is a grazing incidence Rowland circle instrument of the extended grasshopper design (ERG). A postmonochromator refocusing mirror is used to focus or collimate the diverging beam from the monochromator. The beamline control and diagnostics systems are also discussed. Particular emphasis in the design has been placed on the reduction of stray and harmonic light. Higher order light is reduced by a grazing angle mirror low pass filter installed immediately downstream from the monochromator while stray light is reduced through the use of baffles and thin film filters. Also included in the line is a differential pumping section that permits gas phase and other experiments requiring pressures in the 10 -5 to 10 -4 Torr range to be coupled to the beamline. (orig.)

  8. Synchrotron radiation

    CERN Document Server

    Kunz, C

    1974-01-01

    The production of synchrotron radiation as a by-product of circular high-energy electron (positron) accelerators or storage rings is briefly discussed. A listing of existing or planned synchrotron radiation laboratories is included. The following properties are discussed: spectrum, collimation, polarization, and intensity; a short comparison with other sources (lasers and X-ray tubes) is also given. The remainder of the paper describes the experimental installations at the Deutsches Elektronen-Synchrotron (DESY) and DORIS storage rings, presents a few typical examples out of the fields of atomic, molecular, and solid-state spectroscopy, and finishes with an outlook on the use of synchrotron radiation in molecular biology. (21 refs).

  9. Collisionally Excited XUV and VUV Coherent Sources

    Science.gov (United States)

    1990-05-31

    spectrometer. A pho- tomultiplier tube equipped with a sodium salicylate scintillator provided time-resolved fluores- cence data in conjunction with a...beam cells have been designed for operation with dye vapors and metals for visible or near UV wavelengths and have been limited to temperatures of 600...Discharge for Applications to VUV Spectroscopy and to Micromechanics," to be published. AFOSR-87-0247 Final Report 20 IV. Publications and Conference

  10. VUV spectroscopy in impurity injection experiments at KSTAR using prototype ITER VUV spectrometer

    Science.gov (United States)

    Seon, C. R.; Hong, J. H.; Song, I.; Jang, J.; Lee, H. Y.; An, Y. H.; Kim, B. S.; Jeon, T. M.; Park, J. S.; Choe, W.; Lee, H. G.; Pak, S.; Cheon, M. S.; Choi, J. H.; Kim, H. S.; Biel, W.; Bernascolle, P.; Barnsley, R.

    2017-08-01

    The ITER vacuum ultra-violet (VUV) core survey spectrometer has been designed as a 5-channel spectral system so that the high spectral resolving power of 200-500 could be achieved in the wavelength range of 2.4-160 nm. To verify the design of the ITER VUV core survey spectrometer, a two-channel prototype spectrometer was developed. As a subsequent step of the prototype test, the prototype VUV spectrometer has been operated at KSTAR since the 2012 experimental campaign. From impurity injection experiments in the years 2015 and 2016, strong emission lines, such as Kr xxv 15.8 nm, Kr xxvi 17.9 nm, Ne vii 46.5 nm, Ne vi 40.2 nm, and an array of largely unresolved tungsten lines (14-32 nm) could be measured successfully, showing the typical photon number of 1013-1015 photons/cm2 s.

  11. VUV spectroscopy in impurity injection experiments at KSTAR using prototype ITER VUV spectrometer.

    Science.gov (United States)

    Seon, C R; Hong, J H; Song, I; Jang, J; Lee, H Y; An, Y H; Kim, B S; Jeon, T M; Park, J S; Choe, W; Lee, H G; Pak, S; Cheon, M S; Choi, J H; Kim, H S; Biel, W; Bernascolle, P; Barnsley, R

    2017-08-01

    The ITER vacuum ultra-violet (VUV) core survey spectrometer has been designed as a 5-channel spectral system so that the high spectral resolving power of 200-500 could be achieved in the wavelength range of 2.4-160 nm. To verify the design of the ITER VUV core survey spectrometer, a two-channel prototype spectrometer was developed. As a subsequent step of the prototype test, the prototype VUV spectrometer has been operated at KSTAR since the 2012 experimental campaign. From impurity injection experiments in the years 2015 and 2016, strong emission lines, such as Kr xxv 15.8 nm, Kr xxvi 17.9 nm, Ne vii 46.5 nm, Ne vi 40.2 nm, and an array of largely unresolved tungsten lines (14-32 nm) could be measured successfully, showing the typical photon number of 10 13 -10 15 photons/cm 2 s.

  12. Synchrotron radiation

    International Nuclear Information System (INIS)

    Nave, C.; Quinn, P.; Blake, R.J.

    1988-01-01

    The paper on Synchrotron Radiation contains the appendix to the Daresbury Annual Report 1987/88. The appendix is mainly devoted to the scientific progress reports on the work at the Synchrotron Radiation Source in 1987/8. The parameters of the Experimental Stations and the index to the Scientific Reports are also included in the appendix. (U.K.)

  13. The national synchrotron light source and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.P.

    1989-01-01

    We describe the National Synchrotron Light Source facility including its beamlines and operational characteristics. Research results on selected beamlines on the VUV ring which highlight new experimental capabilities are described since they are more relevant to the program at HESYRL. Examples chosen are spin-polarized photoemission, infra-red surface science, high resolution core level spectroscopy, X- Ray lithography, photoelectron/Auger coincidence spectroscopy and high electron momentum resolution surface studies. 7 refs., 3 figs., 3 tabs.

  14. Synchrotron light

    International Nuclear Information System (INIS)

    2001-01-01

    'Synchrotron Light' is an interactive and detailed introduction to the physics and technology of the generation of coherent radiation from accelerators as well as to its widespread high-tech applications in science, medicine and engineering. The topics covered are the interaction of light and matter, the technology of synchrotron light sources, spectroscopy, imaging, scattering and diffraction of X-rays, and applications to materials science, biology, biochemistry, medicine, chemistry, food and pharmaceutical technology. All synchrotron light facilities are introduced with their home-page addresses. 'Synchrotron Light' provides an instructive and comprehensive multimedia learning tool for students, experienced practitioners and novices wishing to apply synchrotron radiation in their future work. Its multiple-entry points permit an easy exploration of the CD-Rom according to the users knowledge and interest. 2-D and 3-D animations and virtual reconstruction with computer-generated images guide visitors into the scientific and technical world of a synchrotron and into the applications of synchrotron radiation. This bilingual (English and French) CD-Rom can be used for self-teaching and in courses at various levels in physics, chemistry, engineering, and biology. (author)

  15. Laser Desorption Postionization Mass Spectrometry of Antibiotic-Treated Bacterial Biofilms using Tunable Vacuum Ultraviolet Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gasper, Gerald L; Takahashi, Lynelle K; Zhou, Jia; Ahmed, Musahid; Moore, Jerry F; Hanley, Luke

    2010-08-04

    Laser desorption postionization mass spectrometry (LDPI-MS) with 8.0 ? 12.5 eV vacuum ultraviolet synchrotron radiation is used to single photon ionize antibiotics andextracellular neutrals that are laser desorbed both neat and from intact bacterial biofilms. Neat antibiotics are optimally detected using 10.5 eV LDPI-MS, but can be ionized using 8.0 eV radiation, in agreement with prior work using 7.87 eV LDPI-MS. Tunable vacuum ultraviolet radiation also postionizes laser desorbed neutrals of antibiotics and extracellular material from within intact bacterial biofilms. Different extracellular material is observed by LDPI-MS in response to rifampicin or trimethoprim antibiotic treatment. Once again, 10.5 eV LDPI-MS displays the optimum trade-off between improved sensitivity and minimum fragmentation. Higher energy photons at 12.5 eV produce significant parent ion signal, but fragment intensity and other low mass ions are also enhanced. No matrix is added to enhance desorption, which is performed at peak power densities insufficient to directly produce ions, thus allowing observation of true VUV postionization mass spectra of antibiotic treated biofilms.

  16. Synchrotron radiation

    International Nuclear Information System (INIS)

    Helliwell, J.R.; Walker, R.P.

    1985-01-01

    A detailed account of the research work associated with the Synchrotron Radiation Source at Daresbury Laboratory, United Kingdom, in 1984/85, is presented in the Appendix to the Laboratory's Annual Report. (U.K.)

  17. Synchrotron radiation

    International Nuclear Information System (INIS)

    Norman, D.; Walker, R.P.; Durham, P.J.; Ridley, P.A.

    1986-01-01

    The paper on synchrotron radiation is the appendix to the Daresbury (United Kingdom) annual report, 1985/86. The bulk of the volume is made up of the progress reports for the work carried out during the year under review using the Synchrotron Radiation Source (SRS) at Daresbury. The Appendix also contains: the scientific programmes at the the SRS, progress on beamlines, instrumentation and computing developments, and activities connected with accelerator development. (U.K.)

  18. Synchrotron radiation

    International Nuclear Information System (INIS)

    Poole, M.W.; Lea, K.R.

    1982-01-01

    A report is given on the work involving the Synchrotron Radiation Division of the Daresbury Laboratory during the period January 1981 - March 1982. Development of the source, beamlines and experimental stations is described. Progress reports from individual investigators are presented which reveal the general diversity and interdisciplinary nature of the research which benefits from access to synchrotron radiation and the associated facilities. Information is given on the organisation of the Division and publications written by the staff are listed. (U.K.)

  19. Atomic photoelectron-spectroscopy studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobrin, P.H.

    1983-02-01

    Photoelectron spectroscopy combined with tunable synchrotron radiation has been used to study the photoionization process in several atomic systems. The time structure of the synchrotron radiation source at the Stanford Synchrotron Radiation Laboratory (SSRL) was used to record time-of-flight (TOF) photoelectron spectra of gaseous Cd, Hg, Ne, Ar, Ba, and Mn. The use of two TOF analyzers made possible the measurement of photoelectron angular distributions as well as branching ratios and partial cross sections

  20. VUV studies of molecular photofragmentation dynamics

    Energy Technology Data Exchange (ETDEWEB)

    White, M.G. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    State-resolved, photoion and photoelectron methods are used to study the neutral fragmentation and ionization dynamics of small molecules relevant to atmospheric and combustion chemistry. Photodissociation and ionization are initiated by coherent VUV radiation and the fragmentation dynamics are extracted from measurements of product rovibronic state distributions, kinetic energies and angular distributions. The general aim of these studies is to investigate the multichannel interactions between the electronic and nuclear motions which determine the evolution of the photoexcited {open_quotes}complex{close_quotes} into the observed asymptotic channels.

  1. Ideas for future synchrotron light sources

    International Nuclear Information System (INIS)

    Jackson, A.; Hassenzahl, W.; Meddahi, M.

    1992-03-01

    Synchrotron light sources have advanced in the past two-to-three decades through three ''generations,'' from irritating parasitic sources on high-energy physics accelerators to dedicated electron and position storage rings of unprecedented low emittance, utilizing undulator and wiggler magnets. The evolution through these three generations followed a predicable, science-driven, course towards brighter beams of VUV- and x-radiation. The requirements of future light sources is not so clear. The limit on how emittance has certainly not been reached, and diffraction-limited sources at shorter wavelengths would be the natural progression from previous generations. However, scientists are now looking at other radiation characteristics that might better serve their needs, for example, more coherent power, fast switching polarization, ultra-short (sub-picosecond) time structure, and synchronized beams for pump-probe experiments. This paper discusses some current ideas that might drive the fourth-generation synchrotron light source

  2. National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Lazarz, N.M.

    1993-04-01

    This report contains seven sections discussing the following: (1) scientific research at the NSLS; (2) symposia and workshops held at the NSLS; (3) a facility report; (4) NSLS projects; (5) NSLS operational highlights; (6) informational guides to the VUV and X-ray beamlines; and (7) appendices which include abstracts on projects carried out at the VUV and X-ray beamlines

  3. Medical applications of synchrotron radiation at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1992-01-01

    The overriding features of the synchrotron beams which make them applicable to medical research are their extremely high intensity and broadband energy spectrum. Several orders of magnitude separate the smooth, continuous spectrum of the synchrotron from the sharply peaked characteristic emission spectrum of a conventional source. Basically, the high intensity and tunability allow monochromatic beams to be generated at virtually any energy. The standard problem of beam hardening in both medical imaging and therapy is eliminated by the monochromatic beams since the energy spectrum does not change with passage through tissue. The tunable spectrum allows enhancement of images and therapeutic dose by selection of the most effective energy for a given procedure

  4. VUV photoionization and dissociative photoionization of the prebiotic molecule acetyl cyanide: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bellili, A.; Hochlaf, M., E-mail: hochlaf@univ-mlv.fr, E-mail: martin.schwell@lisa.u-pec.fr [Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est, 5 bd Descartes, 77454 Marne-la-Vallée (France); Schwell, M., E-mail: hochlaf@univ-mlv.fr, E-mail: martin.schwell@lisa.u-pec.fr; Bénilan, Y.; Fray, N.; Gazeau, M.-C. [Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR 7583 CNRS, Institut Pierre et Simon Laplace, Universités Paris-Est Créteil et Paris Diderot, 61 Avenue du Général de Gaulle, 94010 Créteil (France); Mogren Al-Mogren, M. [Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Guillemin, J.-C. [Institut des Sciences Chimiques de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7 (France); Poisson, L. [Laboratoire Francis Perrin, CNRS URA 2453, CEA, IRAMIS, Laboratoire Interactions Dynamique et Lasers, Bât 522, F-91191 Gif/Yvette (France)

    2014-10-07

    The present combined theoretical and experimental investigation concerns the single photoionization of gas-phase acetyl cyanide and the fragmentation pathways of the resulting cation. Acetyl cyanide (AC) is inspired from both the chemistry of cyanoacetylene and the Strecker reaction which are thought to be at the origin of medium sized prebiotic molecules in the interstellar medium. AC can be formed by reaction from cyanoacetylene and water but also from acetaldehyde and HCN or the corresponding radicals. In view of the interpretation of vacuum ultraviolet (VUV) experimental data obtained using synchrotron radiation, we explored the ground potential energy surface (PES) of acetyl cyanide and of its cation using standard and recently implemented explicitly correlated methodologies. Our PES covers the regions of tautomerism (between keto and enol forms) and of the lowest fragmentation channels. This allowed us to deduce accurate thermochemical data for this astrobiologically relevant molecule. Unimolecular decomposition of the AC cation turns out to be very complex. The implications for the evolution of prebiotic molecules under VUV irradiation are discussed.

  5. VUV spectroscopy of pure LiCaAlF6 crystals

    International Nuclear Information System (INIS)

    Kirm, M.; True, M.; Vielhauer, S.; Zimmerer, G.; Shiran, N.V.; Shpinkov, I.; Spassky, D.; Shimamura, K.; Ichinose, N.

    2005-01-01

    Reflection, excitation and luminescence spectra of as-grown and X-ray irradiated high-purity LiCaAlF 6 crystals were studied in the temperature range of 10-300 K using synchrotron radiation in VUV. The intrinsic luminescence of samples at 10 K consists of a non-elementary broad band with maximum at 4.4 eV under excitation at 11.45 eV. It is ascribed to the radiative decay of self-trapped excitons. The energy gap is estimated to be 12.65 eV in LiCaAlF 6 . Under interband excitation a red shift of luminescence was observed. The electron-hole recombination leads to the emission peaking at 3.7 eV. The excitation processes and origin of overlapping emissions of LiCaAlF 6 are discussed

  6. A syncrhronized FIR/VUV light source at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Shinn, Michelle D. [JLAB, Newport News, VA (United States)

    2013-05-31

    This slide show presents an introduction to Free-Electron Lasers (FELs) and what makes the JLab FELs unique. Ways of exploring the nature of matter with the FEL are shown, including applications in the THz, IR, UV, and VUV. The Jefferson Lab FEL Facility is unique in its high average brightness in the THz, and IR -- VUV spectral regions and Sub ps-pulses at MHz repetition rates. With an installation of a rebuilt 'F100' cryomodule the linac energy will increase to > 150MeV. This will permit lasing further into the UV and extend VUV. With the swap of our CEBAF-style cryounit for an improved booster, we could lase in the VUV. Addition of a wiggler and optical cavity slightly canted from the UV beamline would allow simultaneous lasing of UV and THz for high E-field 2 color experiments.

  7. National synchrotron light source. Activity report, October 1, 1994--September 30, 1995

    International Nuclear Information System (INIS)

    Rothman, E.Z.; Hastings, J.

    1996-05-01

    This report discusses research conducted at the National Synchrotron Light Source in the following areas: atomic and molecular science; energy dispersive diffraction; lithography, microscopy, and tomography; nuclear physics; scattering and crystallography studies of biological materials; time resolved spectroscopy; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; the 1995 NSLS annual users' meeting; 17th international free electron laser conference; micro bunches workshop; VUV machine; VUV storage ring parameters; beamline technical improvements; x-ray beamlines; x-ray storage ring parameters; the NSLS source development laboratory; the accelerator test facility (ATF); NSLS facility improvements; NSLS advisory committees; NSLS staff; VUV beamline guide; and x-ray beamline guide

  8. National synchrotron light source. Activity report, October 1, 1994--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Rothman, E.Z.; Hastings, J. [eds.

    1996-05-01

    This report discusses research conducted at the National Synchrotron Light Source in the following areas: atomic and molecular science; energy dispersive diffraction; lithography, microscopy, and tomography; nuclear physics; scattering and crystallography studies of biological materials; time resolved spectroscopy; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; the 1995 NSLS annual users` meeting; 17th international free electron laser conference; micro bunches workshop; VUV machine; VUV storage ring parameters; beamline technical improvements; x-ray beamlines; x-ray storage ring parameters; the NSLS source development laboratory; the accelerator test facility (ATF); NSLS facility improvements; NSLS advisory committees; NSLS staff; VUV beamline guide; and x-ray beamline guide.

  9. Synchrotron radiation applications in medical research

    Energy Technology Data Exchange (ETDEWEB)

    Thomlinson, W.

    1997-08-01

    Over the past two decades there has been a phenomenal growth in the number of dedicated synchrotron radiation facilities and a corresponding growth in the number of applications in both basic and applied sciences. The high flux and brightness, tunable beams, time structure and polarization of synchrotron radiation provide an ideal x- ray source for many applications in the medical sciences. There is a dual aspect to the field of medical applications of synchrotron radiation. First there are the important in-vitro programs such as structural biology, x-ray microscopy, and radiation cell biology. Second there are the programs that are ultimately targeted at in-vivo applications. The present status of synchrotron coronary angiography, bronchography, multiple energy computed tomography, mammography and radiation therapy programs at laboratories around the world is reviewed.

  10. Experimental and theoretical simulations of Titan's VUV photochemistry

    Science.gov (United States)

    Peng, Z.; Carrasco, N.; Pernot, P.

    2013-12-01

    A new reactor, named APSIS (Atmospheric Photochemistry SImulated by Synchrotron), has been designed to simulate planetary atmospheric photochemistry [Peng et al. JGR-E. 2013, 118, 778]. We report here a study focusing on Titan's upper atmosphere. A nitrogen-methane gas flow was irradiated by a continuous 60-350 nm VUV beam provided by the DISCO line at SOLEIL synchrotron radiation facility. The production of C2-C4 hydrocarbons as well as several nitriles (HCN, CH3 CN and C2N2) was detected by in situ mass spectrometry, in agreement with Cassini's INMS observations at Titan, and ex situ GC-MS of a cryogenic experiment. We compared the mass spectra with those obtained by a plasma experiment [Carrasco et al. Icarus. 2012, 219, 230] and with another synchrotron-based experiment [Imanaka and Smith. PNAS. 2010, 107, 12423], and with the in situ measurements of the INMS instrument onboard Cassini probing the neutral content of Titan's upper atmosphere. In spite of lower photochemical production efficiency and different environmental conditions, the APSIS reactor seems to simulate Titan's neutral composition rather well. To interpret these experimental data, we developed a fully coupled ion-neutral photochemical model of the reactor, with uncertainty management, based on the neutral model of Hébrard et al. [J. Photochem. Photobiol. A. 2006, 7, 211], the model of ion chemistry of Plessis et al. [J. Chem. Phys. 2010, 133, 134110], and a new representation of photolysis cross-sections and branching ratios [Gans et al. Icarus. 2013, 223, 330]. Compared to the measurements, the production in Cn blocks is in good agreement. Ion chemistry and the full dissociative recombination scheme have been demonstrated to be important features of the model. The photolysis was confirmed to be globally influential by sensivity analysis. We observed the importance of the addition of small (C1 or C2) units in molecular growth, as well as 3 growth families, promoted by C2H2, C2H4 and C2H5/C2H6

  11. Synchrotron sources

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.L.

    1999-12-13

    Synchrotron radiation is a very bright, broadband, polarized, pulsed source of electromagnetic radiation extending from the infrared to the x-ray region. Brightness, defined as flux per unit area per unit solid angle, is normally a more important quantity than flux or intensity, particularly in throughput limited applications which include those in which monochromators are used. The authors have attempted to compile the formulae needed to calculate the flux, brightness, polarization and power produced by the three standard storage ring synchrotron radiation sources: bending magnets, wigglers and undulators. Where necessary, these formulae have contained reference to the emittance of the electron beam, as well as to the electron beam size and its divergence. For all three type sources, the source phase space area, i.e. the spatial and angular extent of the effective (real) source, is a convolution of its electron and photon components.

  12. Medical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved

  13. Synchrotron radiation in atomic physics

    International Nuclear Information System (INIS)

    Crasemann, B.

    1998-01-01

    Much of present understanding of atomic and molecular structure and dynamics was gained through studies of photon-atom interactions. In particular, observations of the emission, absorption, and scattering of X rays have complemented particle-collision experiments in elucidating the physics of atomic inner shells. Grounded on Max von Laue's theoretical insight and the invention of the Bragg spectrometer, the field's potential underwent a step function with the development of synchrotron-radiation sources. Notably current third-generation sources have opened new horizons in atomic and molecular physics by producing radiation of wide tunability and exceedingly high intensity and polarization, narrow energy bandwidth, and sharp time structure. In this review, recent advances in synchrotron-radiation studies in atomic and molecular science are outlined. Some tempting opportunities are surveyed that arise for future studies of atomic processes, including many-body effects, aspects of fundamental photon-atom interactions, and relativistic and quantum-electrodynamic phenomena. (author)

  14. Medical Applications of Synchrotron Radiation

    Science.gov (United States)

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  15. VUV Spectroscopy in DIII-D Divertor

    International Nuclear Information System (INIS)

    Alkesh Punjabi; Nelson Jalufka

    2004-01-01

    The research carried out on this grant was motivated by the high power emission from the CIV doublet at 155 nm in the DIII-D divertor and to study the characteristics of the radiative divertor. The radiative divertor is designed to reduce the heat load to the target plates of the divertor by reducing the energy in the divertor plasma using upstream scrape-off-layer (SOL) radiation. In some cases, particularly in Partially Detached Divertor (PDD) operations, this emission accounts for more than 50% of the total radiation from the divertor. In PDD operation, produced by neutral gas injection, the particle flow to the target plate and the divertor temperature are significantly reduced. A father motivation was to study the CIV emission distribution in the lower, open divertor and the upper baffled divertor. Two Vacuum Ultra Violet Tangential viewing Television cameras (VUV TTV) were constructed and installed in the upper, baffled and the lower, open divertor. The images recorded by these cameras were then inverted to produce two-dimensional distributions of CIV in the poloidal plane. Results obtained in the project are summarized in this report

  16. VUV diagnostic spectroscopy at the edge of space

    International Nuclear Information System (INIS)

    Meier, R.R.

    2004-01-01

    Full text: During the early decades of the space age, most of our knowledge of the character of the upper atmosphere and ionosphere came from satellite and sounding rocket missions that carried out in situ measurements. As well, ground based radars and visible airglow measurements contributed measurements of very localized features. Consequently, global pictures could only be built up using statistical or climatological representations of the data. More recently, technology sensitive in the VUV has been employed to obtain space-based images and spectra that are rich in information about the state of the upper atmosphere. The VUV has been used because extinction by molecular oxygen restricts visibility to above about 100 km, thereby avoiding the bright Rayleigh-scattered background from below. Unlike traditional remote sensing, which commonly uses multi-spectral or hyper spectral measurements of scattered or reflected light, VUV systems rely on observations of isolated spectral features of individual species that are related to density, composition, temperature, and dynamics. The three main processes responsible for producing VUV emissions in the upper atmosphere are photoelectron impact excitation, resonant scattering of sunlight, and photochemical-induced emission. Energetic atom or ion impact excitation also takes place, primarily in the auroral zones. In this review, we examine the properties of these excitation mechanisms and describe what can be learned about the upper atmosphere from their remote sensing. Underlying the VUV remote sensing technology is the need for accurate laboratory measurements and theoretical modeling of the atomic and molecular processes and spectroscopy

  17. Synchrotron radiation

    International Nuclear Information System (INIS)

    Pattison, P.; Quinn, P.

    1990-01-01

    This report details the activities in synchrotron radiation and related areas at Daresbury Laboratory during 1989/90. The number and scope of the scientific reports submitted by external users and in-house staff is a reflection of the large amount of scheduled beamtime and high operating efficiency achieved at the Synchrotron Radiation Source (SRS) during the past year. Over 4000 hours of user beam were available, equivalent to about 80% of the total scheduled time. Many of the reports collected here illustrate the increasing technical complexity of the experiments now being carried out at Daresbury. Provision of the appropriate technical and scientific infrastructure and support is a continuing challenge. The development of the Materials Science Laboratory together with the existing Biological Support Laboratory will extend the range of experiments which can be carried out on the SRS. This will particularly facilitate work in which the sample must be prepared or characterised immediately before or during an experiment. The year 1989/90 has also seen a substantial upgrade of several stations, especially in the area of x-ray optics. Many of the advantages of the High Brightness Lattice can only be exploited effectively with the use of focusing optics. As the performance of these stations improves, the range of experiments which are feasible on the SRS will be extended significantly. (author)

  18. Mirror and grating surface figure requirements for grazing incidence synchrotron radiation beamlines: Power loading effects

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.L.; Sharma, S.

    1987-01-01

    At present, grazing incidence mirrors are used almost exclusively as the first optical element in VUV and soft x-ray synchrotron radiation beamlines. The performance of these mirrors is determined by thermal and mechanical stress-induced figure errors as well as by figure errors remaining from the grinding and polishing process. With the advent of VUV and soft x-ray undulators and wigglers has come a new set of thermal stress problems related to both the magnitude and the spatial distribution of power from these devices. In many cases the power load on the entrance slits and gratings in these beamlines is no longer negligible. The dependence of thermally-induced front-end mirror figure errors on various storage ring and insertion device parameters (especially those at the National Synchrotron Light Source) and the effects of these figure errors on two classes of soft x-ray beamlines are presented.

  19. VUV emission and breakdown in parallel-plate chambers

    International Nuclear Information System (INIS)

    Fonte, P.; Peskov, V.; Sauli, F.

    1991-01-01

    The emission of vacuum ultraviolet (VUV) light by the electron avalanches is responsible for the photon feedback in gaseous detectors, worsening their performance at high gains. It is also generally assumed that there is a connection between breakdown and photon feedback in these detectors. We measured the VUV light emission from the avalanches in a parallel-plate avalanche chamber (PPAC) in the spectral region 120-170 nm. The radiation was detected by a photosensitive wire chamber coupled to the PPAC through an UV-transparent window. By choosing the gas filling of the wire chamber several spectral bands could be selected, suggesting an identification of the emission origin. The breakdown limit of the PPAC was simultaneously measured and found to be fairly independent of the measured VUV emission. The results obtained provide a guide to the selection of gaseous mixtures for practical use in photon-counting detectors, minimizing the photon feedback. (orig.)

  20. VUV PHOTO-PROCESSING OF PAH CATIONS: QUANTITATIVE STUDY ON THE IONIZATION VERSUS FRAGMENTATION PROCESSES

    International Nuclear Information System (INIS)

    Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M.

    2016-01-01

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7–20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ∼13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies all species behave similarly; the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ∼18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them; all are in good agreement with theoretical ones, confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.

  1. Activity report of Synchrotron Radiation Laboratory 2004

    International Nuclear Information System (INIS)

    2005-11-01

    The Synchrotron Radiation Laboratory (SRL) has been promoting the 'Super SOR' project, the new synchrotron radiation facility with an electron storage ring of a third generation type. The University of Tokyo considered the project as one of the most important future academic plans and strongly endorses to construct the new facility in the Kashiwa campus. In 2005, the design of the accelerator system has been slightly modified to obtain stronger support of the people in the field of bio-sciences, such as medicine, pharmacy, agriculture, etc. The energy of the storage ring was increased to 2.4 GeV, which is determined to obtain undulator radiation with sufficient brightness of make protein crystallography experiments in X-ray region. The value was also optimised to avoid considerable degradation of undulator radiation in the VUV and soft X-ray regions. The accelerator group of SRL have been continuing to achieve research and development (R and D) for the Super SOR. The staff members of solid state spectroscopy and instrumentation group has promoted new beamline of the Super SOR project and supported users at the three beamlines in the Photon Factory (PF). The discussion on the research program at the new facility has been continued with supports of nationwide researches using synchrotron radiation. In 2004, three symposia was held for the discussion on the nano-technology, bio-sciences and new frontier and new field of science opened by the third generation synchrotron radiation in VUV and soft X-ray region. It should be remarked that in all symposia, many young scientists have presented their scientific activities and taken part in the discussion on the new opportunities with undulator radiation. This report contains the latest results of R and D of the Super SOR project, which are described in Chap. 2 following to the present status of the three beamlines in PF. The three beamlines at PF, BL18A, 19A and 19B, which are maintained by SRL-ISSP, have been successfully

  2. Activity report of Synchrotron Radiation Laboratory 2002

    International Nuclear Information System (INIS)

    2003-11-01

    In 2002, we observed a steady progress in the 'super SOR' project for constructing a new synchrotron radiation facility dedicated to sciences in VUV and Soft X-ray (SX) region. The project has been discussed extensively for these two years at the Panel on New Synchrotron Radiation Facility Project organized by the Ministry of Education, Science, Culture and Sports in Japan. In May 2002, based on the reports made by the Review Committee, the Panel suggested to the Ministry the construction of a 1.8 GeV electron storage ring of a third generation type and beamlines and monochromators designed for undulator radiation in VUV and SX regions. The University of Tokyo strongly endorsed the project to construct the proposed new facility in its Kashiwa new campus. The details of the new facility have been discussed and planned by the Accelerator Design Working Group (WG), the Beamline Design WG and the Research Program WG with supports by accelerator scientists and engineers as well as researches using synchrotron radiation. The results of the discussion are summarized as a 'New Synchrotron Radiation Project -Design Report-' in September 2002. The discussions at the WGs are going on at this moment to update the plan. Also, research and developments (R and D) of every part of the accelerator system and beamline have been continuing by the staff members of the SRL-ISSP. This report contains the latest results of R and D of the 'super SOR' project, which are described in Chap. 3 following to the present status of the existing beamlines in the Photon Factory, KEK. At the three beamlines at the Photon factory, BL18A, 19A and 19B, which are maintained by SRL-ISSP, we have made considerable progresses in controlling the beamlines and the date acquisition systems, e.g. a new version of the simultaneous scanning of the undulator and the monochromator, a new data-taking program at ARPES apparatus in BL18A, etc. The progress of the beamlines makes the three beamlines still productive

  3. Proceedings of the workshop on LAMPF II synchrotron

    International Nuclear Information System (INIS)

    Cooper, R.K.

    1983-01-01

    Topics covered at the workshop include: considerations for a staged approach to synchrotron construction; consideration of energy and cost for a kaon and/or antiproton factory; changing the transition energy in the main ring for the Fermilab antiproton beam; a lattice with 50% undispersed straight sections; bunch width considerations in a stretcher ring; a self-consistent longitudinal distribution; rapid-cycling tuned rf cavity for synchrotron use; considerations on a high-shunt impedance tunable RF cavity; rotating condensers; low extraction from the stretcher ring; an antiproton source for LAMPF II; synchrotron magnet circuit; power supply and ring magnet options; and notes for a kaon factory design

  4. Photoionization studies of atoms and molecules using synchrotron radiation

    International Nuclear Information System (INIS)

    Lindle, D.W.

    1988-01-01

    Photoionization studies of free atoms and molecules have undergone considerable development in the past decade, in large part due to the use of synchrotron radiation. The tunability of synchrotron radiation has permitted the study of photoionization processes near valence-and core-level ionization thresholds for atoms and molecules throught the Periodic Table. A general illustration of these types of study will be presented, with emphasis on a few of the more promising new directions in atomic and molecular physics being pursued with synchrotron radiation. (author) [pt

  5. Synchrotron-radiation research

    International Nuclear Information System (INIS)

    Cunningham, J.E.

    1982-01-01

    The use of radiation from synchrotron sources has started a renaissance in materials, physics, chemistry, and biology. Synchrotron radiation has advantages over conventional x rays in that its source brightness is a thousand times greater throughout a continuous energy spectrum, and resonances are produced with specific electron energy levels. Two major synchrotron radiation sources are operated by DOE: the Stanford Synchrotron Radiation Laboratory at SLAC, and the National Synchrotron Light Source at Brookhaven

  6. Synchrotron radiation

    International Nuclear Information System (INIS)

    Seddon, E.A.; Reid, R.J.

    1992-01-01

    Work at the Daresbury SRS has of necessity been interrupted this year (1991/92) due to the incorporation of Wiggler II. However, considerable beamtime was awarded before the shutdown and the major part of this appendix is concerned with the progress reports of the research undertaken then. The reports have been organised under the following broad headings: Molecular Science (19 papers), Surface and Materials Science (169 papers), Biological Science (85 papers), Instrumental and Technique Developments (13 papers) and Accelerator Physics (3 papers). It is hoped that in time the number of contributions on accelerator physics will grow to reflect the in-house activity on, for example, accelerator improvement and design. The research reports are preceded by the Annual Report of the Synchrotron Radiation Facilities Committee, which outlines the research highlights identified by that Committee (also included are details of the current membership of the SRFC and the chairmen of the Beamtime Allocation Panels). Following the reports are the specifications for the beamlines and stations. This year Section 3 contains 289 reports (nearly 100 more than last year) and the number of publications, generated by scientists and engineers who have used or are associated with Daresbury Laboratory facilities, has topped 500 for the first time. (author)

  7. Electron impact dissociation and VUV photoabsorption of frozen formamide

    DEFF Research Database (Denmark)

    Sivaraman, Bhala; Raja Sekhar, B. N.; Nair, B. G.

    2014-01-01

    We report the results of an extensive study of formamide (HCONH2) ices carried out under experimental conditions that simulate those found in the interstellar medium (ISM). Vacuum Ultraviolet (VUV) and Infrared (IR) spectroscopic techniques were used to measure photoabsorption cross sections...

  8. Single bunch transfer system for the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Sheehan, J.; Singh, O.; Rambo, W.

    1983-01-01

    The accelerator system at the National Synchrotron Light Source consists of an S-band 85 MeV linac and three synchrotron rings. The electron beam from the linac is accelerated by the booster ring to 600 MeV and transferred to one of the two storage rings. The smaller of the two rings operates between 300 and 800 MeV emtting photons in the vacuum ultraviolet (VUV), while the larger storage ring operates up to 2.5 GeV and emits photons in the x-ray spectrum. A system is described for loading the storage rings by filling a single-phase space bunch in the booster ring and transferring it at the end of each booster cycle into a selected bucket in one of the storage rings. By controlling the timing of the transfer on successive transfer cycles, many fill patterns may be obtained

  9. VUV free electron laser with a distributed feedback cavity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Fujita, M.; Asakawa, M. [Osaka Univ. (Japan)] [and others

    1995-12-31

    Development of FEL to the VUV/x-ray regime is looked as one of the possible directions to its success. For eliminating the need for optical cavities, difficult to be built at that regime, we propose a VUV (50nm) SASE FEL. According to Pellegrini`s scaling law, for a 290MeV/200A e-beam passing through a 10.8m long and 2cm period wiggler, a high peak power 85.5MW and a high average brightness 2.44 X 10{sup +21} (photons/[mm{sup 2}.mrad{sup 2}.bw]) can be obtained. However, it requires {epsilon} n=2.3mm.mrad and {Delta}{gamma}/{gamma} = 0.15% about one order above the practical parameters we can realize. For enhancing the efficiency and decreasing the requirements on the e-beam quality and the wiggler length, we put forward a concept of VUV FEL with a distributed feedback cavity. In x-ray region, the natural periodicity of crystals provides strong Bragg coupling and it has been demonstrated as the parametric radiation. In vuv region, current intense research on superlattice can provide a periodical structure with a short period in 250 {Angstrom} order. High-performance vuv multilayer coatings on the inner-wall of the waveguide are used to guide the spontaneous emission and decrease the x-ray ohmic losses on the roundtrip passes. By this DFB cavity structure, it is expected to realize the lasing in a smaller size. Other practical methods such as the optical klystron for shortening the wiggler length and the tapper wiggler for enhancing the saturation power are also considered. The analytical considerations are based on the 1-D FEL equations and 1-D perturbation theory of dielectric waveguide.

  10. High resolution VUV facility at INDUS-1

    International Nuclear Information System (INIS)

    Krishnamurty, G.; Saraswathy, P.; Rao, P.M.R.; Mishra, A.P.; Kartha, V.B.

    1993-01-01

    Synchrotron radiation (SR) generated in the electron storage rings is an unique source for the study of atomic and molecular spectroscopy especially in the vacuum ultra violet region. Realizing the potential of this light source, efforts are in progress to develop a beamline facility at INDUS-1 to carry out high resolution atomic and molecular spectroscopy. This beam line consists of a fore-optic which is a combination of three cylindrical mirrors. The mirrors are so chosen that SR beam having a 60 mrad (horizontal) x 6 mrad (vertical) divergence is focussed onto a slit of a 6.65 metre off-plane spectrometer in Eagle Mount equipped with horizontal slit and vertical dispersion. The design of the various components of the beam line is completed. It is decided to build the spectrometer as per the requirements of the user community. Details of the various aspects of the beam line will be presented. (author). 3 figs

  11. A HIGH REPETITION RATE VUV-SOFT X-RAY FEL CONCEPT

    International Nuclear Information System (INIS)

    Corlett, J.; Byrd, J.; Fawley, W.M.; Gullans, M.; Li, D.; Lidia, S.M.; Padmore, H.; Penn, G.; Pogorelov, I.; Qiang, J.; Robin, D.; Sannibale, F.; Staples, J.W.; Steier, C.; Venturini, M.; Virostek, S.; Wan, W.; Wells, R.; Wilcox, R.; Wurtele, J.; Zholents, A.

    2007-01-01

    We report on design studies for a seeded FEL light source that is responsive to the scientific needs of the future. The FEL process increases radiation flux by several orders of magnitude above existing incoherent sources, and offers the additional enhancements attainable by optical manipulations of the electron beam: control of the temporal duration and bandwidth of the coherent output, reduced gain length in the FEL, utilization of harmonics to attain shorter wavelengths, and precise synchronization of the x-ray pulse with seed laser systems. We describe an FEL facility concept based on a high repetition rate RF photocathode gun, that would allow simultaneous operation of multiple independent FEL's, each producing high average brightness, tunable over the VUV-soft x-ray range, and each with individual performance characteristics determined by the configuration of the FEL. SASE, enhanced-SASE (ESASE), seeded, harmonic generation, and other configurations making use of optical manipulations of the electron beam may be employed, providing a wide range of photon beam properties to meet varied user demands

  12. Recent development of VUV-based processes for air pollutants degradation

    Directory of Open Access Journals (Sweden)

    Haibao eHuang

    2016-03-01

    Full Text Available As air pollution become more and more serious nowadays, it is essential to find out a way to efficiently degrade the air pollutants. Vacuum ultraviolet (VUV-based processes are an emerging and promising technologies for environmental remediation such as air cleaning, wastewater treatment and air/water disinfection. With VUV irradiation, photolysis, photocatalyst is and ozone-assisted oxidation are involved at the same time, resulting in the fast degradation of air pollutants because of their strong oxidizing capacity. The mechanisms of how the oxidants are produced and reacted are discussed in this review. This paper mainly focuses on the three VUV-based oxidation processes including VUV photolysis, VUV combined with ozone-assisted oxidation and VUV-PCO with emphasis on their mechanisms and applications. Also, the outlooks of these processes are outlined in this paper.

  13. Duke storage rink UV/VUV FEL: Status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Burnham, B.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The 1 GeV Duke storage ring was successfully commissioned with parameters exceeding initial specification. The OK-4 FEL has arrived at the Duke FEL laboratory from the Novosibirsk Institute of Nuclear Physics. The OK-4 installation and commissioning is in progress. In this paper we describe the up-to-date status of the Duke storage ring and the OK-4 FEL. The projected performance of the OK-4 UV/VUV FEL is presented based on the electron beam parameters achieved. Initial plans to operate the OK-4 UV/VUV FEL at the Duke 1 GeV storage ring are outlined. Future plans and prospects of both the OK-4 FEL and the Duke storage ring are discussed.

  14. Atomic and molecular effects in the VUV spectra of solids

    International Nuclear Information System (INIS)

    Sonntag, B.

    1977-10-01

    The VUV spectra of solids are often dominated by atomic or molecular effects, which clearly manifest themselves in the gross features of the spectra and the fine structure at inner shell excitation thresholds. Evidence for the influence of atomic and molecular matrix elements, multiplet-splitting and correlation is presented. Special emphasis is given to the direct experimental verification based on the comparison of atomic and solid state spectra. (orig.) [de

  15. Sensitivities in synchrotron radiation TXRF

    International Nuclear Information System (INIS)

    Pianetta, P.; Baur, K.; Brennan, S.

    2000-01-01

    This work describes the progress we achieved at the Stanford Synchrotron Radiation Laboratory (SSRL) in improving the sensitivity for both the transition metals and light elements such as Al and Na. The transition metal work has matured to the point where a facility exists at SSRL in which semiconductor companies are able to perform industrially relevant measurements at state of the art detection limits. This facility features clean wafer handling and automated data acquisition making routine analytical measurements possible. The best sensitivity demonstrated so far is 3.4 E7 atoms/cm 2 for a 5000 second count time corresponding to 7.6 E7 atoms/cm 2 for a standard 1000 second count time. This is more than a factor of 100 better than what can be achieved with conventional TXRF systems. The detection of light elements such as Al and Na is challenging due to the presence of the h stronger Si fluorescence peak. For traditional energy-dispersive detection only the tunability of synchrotron radiation to excitation energies below the Si-K absorption edge leads to an acceptable sensitivity for Al detection which is limited by a large background due to inelastic x-ray Raman scattering. An alternative approach to overcome the Raman contribution and the strong Si fluorescence is to use a wavelength-dispersive spectrometer for fluorescence detection. The benefits of such a multilayer spectrometer over a solid state detector are its higher energy resolution and greater dynamic range. This strategy allows primary excitation above the Si K absorption edge, eliminating the background due to Raman scattering, and a gracing emission geometry to guarantee high surface sensitivity. Studies testing this concept in combination with high flux synchrotron radiation are underway and first results will be presented. (author)

  16. The Australian synchrotron; Le synchrotron australien

    Energy Technology Data Exchange (ETDEWEB)

    Farhi, R

    2005-06-15

    This document recalls the historical aspects of the Australian Synchrotron which will be implemented in 2007. It presents then the objectives of this program, the specifications of the ring and the light lines. (A.L.B.)

  17. Analytical research using synchrotron radiation based techniques

    International Nuclear Information System (INIS)

    Jha, Shambhu Nath

    2015-01-01

    There are many Synchrotron Radiation (SR) based techniques such as X-ray Absorption Spectroscopy (XAS), X-ray Fluorescence Analysis (XRF), SR-Fourier-transform Infrared (SRFTIR), Hard X-ray Photoelectron Spectroscopy (HAXPS) etc. which are increasingly being employed worldwide in analytical research. With advent of modern synchrotron sources these analytical techniques have been further revitalized and paved ways for new techniques such as microprobe XRF and XAS, FTIR microscopy, Hard X-ray Photoelectron Spectroscopy (HAXPS) etc. The talk will cover mainly two techniques illustrating its capability in analytical research namely XRF and XAS. XRF spectroscopy: XRF spectroscopy is an analytical technique which involves the detection of emitted characteristic X-rays following excitation of the elements within the sample. While electron, particle (protons or alpha particles), or X-ray beams can be employed as the exciting source for this analysis, the use of X-ray beams from a synchrotron source has been instrumental in the advancement of the technique in the area of microprobe XRF imaging and trace level compositional characterisation of any sample. Synchrotron radiation induced X-ray emission spectroscopy, has become competitive with the earlier microprobe and nanoprobe techniques following the advancements in manipulating and detecting these X-rays. There are two important features that contribute to the superb elemental sensitivities of microprobe SR induced XRF: (i) the absence of the continuum (Bremsstrahlung) background radiation that is a feature of spectra obtained from charged particle beams, and (ii) the increased X-ray flux on the sample associated with the use of tunable third generation synchrotron facilities. Detection sensitivities have been reported in the ppb range, with values of 10 -17 g - 10 -14 g (depending on the particular element and matrix). Keeping in mind its demand, a microprobe XRF beamline has been setup by RRCAT at Indus-2 synchrotron

  18. Variable-Period Undulators for Synchrotron Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shenoy, Gopal; Lewellen, John; Shu, Deming; Vinokurov, Nikolai

    2005-02-22

    A new and improved undulator design is provided that enables a variable period length for the production of synchrotron radiation from both medium-energy and high energy storage rings. The variable period length is achieved using a staggered array of pole pieces made up of high permeability material, permanent magnet material, or an electromagnetic structure. The pole pieces are separated by a variable width space. The sum of the variable width space and the pole width would therefore define the period of the undulator. Features and advantages of the invention include broad photon energy tunability, constant power operation and constant brilliance operation.

  19. VUV optical ring resonator for Duke storage ring free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H.; Litvinenko, V.N.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The conceptual design of the multifaceted-mirror ring resonator for Duke storage ring VUV FEL is presented. The expected performance of the OK-4 FEL with ring resonator is described. We discuss in this paper our plans to study reflectivity of VUV mirrors and their resistivity to soft X-ray spontaneous radiation from OK-4 undulator.

  20. Design of ITER divertor VUV spectrometer and prototype test at KSTAR tokamak

    International Nuclear Information System (INIS)

    Seon, C.; An, Y.; Lee, H.; Pak, S.; Cheon, M.S.; Choi, J.; Kim, H.; Hong, J.; Song, I.; Jang, J.; Lee, H.; Jeon, T.; Park, J.; Choe, W.; Kim, B.; Biel, W.; Bernascolle, P.; Barnsley, R.; O'Mullane, M.

    2017-01-01

    Design and development of the ITER divertor VUV spectrometer have been performed from the year 1998, and it is planned to be installed in the year 2027. Currently, the design of the ITER divertor VUV spectrometer is in the phase of detail design. It is optimized for monitoring of chord-integrated VUV signals from divertor plasmas, chosen to contain representative lines emission from the tungsten as the divertor material, and other impurities. Impurity emission from overall divertor plasmas is collimated through the relay optics onto the entrance slit of a VUV spectrometer with working wavelength range of 14.6-32 nm. To validate the design of the ITER divertor VUV spectrometer, two sets of VUV spectrometers have been developed and tested at KSTAR tokamak. One set of spectrometer without the field mirror employs a survey spectrometer with the wavelength ranging from 14.6 nm to 32 nm, and it provides the same optical specification as the spectrometer part of the ITER divertor VUV spectrometer system. The other spectrometer with the wavelength range of 5-25 nm consists of a commercial spectrometer with a concave grating, and the relay mirrors with the same geometry as the relay mirrors of the ITER divertor VUV spectrometer. From test of these prototypes, alignment method using backward laser illumination could be verified. To validate the feasibility of tungsten emission measurement, furthermore, the tungsten powder was injected in KSTAR plasmas, and the preliminary result could be obtained successfully with regard to the evaluation of photon throughput. (authors)

  1. Synchrotron radiation facilities

    CERN Multimedia

    1972-01-01

    Particularly in the past few years, interest in using the synchrotron radiation emanating from high energy, circular electron machines has grown considerably. In our February issue we included an article on the synchrotron radiation facility at Frascati. This month we are spreading the net wider — saying something about the properties of the radiation, listing the centres where synchrotron radiation facilities exist, adding a brief description of three of them and mentioning areas of physics in which the facilities are used.

  2. Flux and brightness calculations for various synchrotron radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Weber, J.M.; Hulbert, S.L.

    1991-11-01

    Synchrotron radiation (SR) storage rings are powerful scientific and technological tools. The first generation of storage rings in the US., e.g., SURF (Washington, D.C.), Tantalus (Wisconsin), SSRL (Stanford), and CHESS (Cornell), revolutionized VUV, soft X-ray, and hard X-ray science. The second (present) generation of storage rings, e.g. the NSLS VUV and XRAY rings and Aladdin (Wisconsin), have sustained the revolution by providing higher stored currents and up to a factor of ten smaller electron beam sizes than the first generation sources. This has made possible a large number of experiments that could not performed using first generation sources. In addition, the NSLS XRAY ring design optimizes the performance of wigglers (high field periodic magnetic insertion devices). The third generation storage rings, e.g. ALS (Berkeley) and APS (Argonne), are being designed to optimize the performance of undulators (low field periodic magnetic insertion devices). These extremely high brightness sources will further revolutionize x-ray science by providing diffraction-limited x-ray beams. The output of undulators and wigglers is distinct from that of bending magnets in magnitude, spectral shape, and in spatial and angular size. Using published equations, we have developed computer programs to calculate the flux, central intensity, and brightness output bending magnets and selected wigglers and undulators of the NSLS VUV and XRAY rings, the Advanced Light Source (ALS), and the Advanced Photon Source (APS). Following is a summary of the equations used, the graphs and data produced, and the computer codes written. These codes, written in the C programming language, can be used to calculate the flux, central intensity, and brightness curves for bending magnets and insertion devices on any storage ring.

  3. Flux and brightness calculations for various synchrotron radiation sources

    International Nuclear Information System (INIS)

    Weber, J.M.; Hulbert, S.L.

    1991-11-01

    Synchrotron radiation (SR) storage rings are powerful scientific and technological tools. The first generation of storage rings in the US., e.g., SURF (Washington, D.C.), Tantalus (Wisconsin), SSRL (Stanford), and CHESS (Cornell), revolutionized VUV, soft X-ray, and hard X-ray science. The second (present) generation of storage rings, e.g. the NSLS VUV and XRAY rings and Aladdin (Wisconsin), have sustained the revolution by providing higher stored currents and up to a factor of ten smaller electron beam sizes than the first generation sources. This has made possible a large number of experiments that could not performed using first generation sources. In addition, the NSLS XRAY ring design optimizes the performance of wigglers (high field periodic magnetic insertion devices). The third generation storage rings, e.g. ALS (Berkeley) and APS (Argonne), are being designed to optimize the performance of undulators (low field periodic magnetic insertion devices). These extremely high brightness sources will further revolutionize x-ray science by providing diffraction-limited x-ray beams. The output of undulators and wigglers is distinct from that of bending magnets in magnitude, spectral shape, and in spatial and angular size. Using published equations, we have developed computer programs to calculate the flux, central intensity, and brightness output bending magnets and selected wigglers and undulators of the NSLS VUV and XRAY rings, the Advanced Light Source (ALS), and the Advanced Photon Source (APS). Following is a summary of the equations used, the graphs and data produced, and the computer codes written. These codes, written in the C programming language, can be used to calculate the flux, central intensity, and brightness curves for bending magnets and insertion devices on any storage ring

  4. Study of the absorption and energy transfer processes in inorganic luminescent materials in the UV and VUV region

    International Nuclear Information System (INIS)

    Mayolet, A.

    1995-01-01

    In order to find a green emitting phosphor showing high quantum efficiency and a short decay time which can be used in the color Plasma Display Panels developed by Thomson-TTE-TIV company, a VUV spectrophotometer built at IPN Orsay, using the synchrotron radiation from the SUPER-ACO storage ring as an excitation source, allow us the simultaneous recording of the luminescence excitation and diffuse reflectivity spectra of the inorganic compounds in the UV-VUV range. In addition, this experimental set-up enable us to determine the luminescence quantum efficiency of phosphors in the whole energy range of investigation. The chemical synthesis of rare-earth ortho-- and metaborate and rare-earth ortho- and metaphosphate doped with trivalent lanthanide ions cerium, praseodymium, europium and terbium have been made. The energy variation of the thresholds of the luminescence excitation mechanisms in function of the nature and the structure of the host matrix is discussed. We have determined the influence of the nephelauxetic effect and the crystal field intensity on the energy of the f-d inter-configuration transitions. The variation of the luminescence quantum efficiency of the dopant ion is interpreted through the 'impurity bound exciton' model. The systematic comparison of the cerium and terbium trivalent ions spectroscopic properties in the Y(AG)G host lattice series stands to reason that the self-ionized state of the luminescent center plays an important role in the rate of the non radiative relaxation. It is the redox power of the host matrix which imposes to the luminescent center, the energy of this state. (author)

  5. VUV-absorption cross section of carbon dioxide from 150 to 800 K and applications to warm exoplanetary atmospheres

    Science.gov (United States)

    Venot, O.; Bénilan, Y.; Fray, N.; Gazeau, M.-C.; Lefèvre, F.; Es-sebbar, Et.; Hébrard, E.; Schwell, M.; Bahrini, C.; Montmessin, F.; Lefèvre, M.; Waldmann, I. P.

    2018-01-01

    Context. Most exoplanets detected so far have atmospheric temperatures significantly higher than 300 K. Often close to their star, they receive an intense UV photons flux that triggers important photodissociation processes. The temperature dependency of vacuum ultraviolet (VUV) absorption cross sections are poorly known, leading to an undefined uncertainty in atmospheric models. Similarly, data measured at low temperatures similar to those of the high atmosphere of Mars, Venus, and Titan are often lacking. Aims: Our aim is to quantify the temperature dependency of the VUV absorption cross sections of important molecules in planetary atmospheres. We want to provide high-resolution data at temperatures prevailing in these media, and a simple parameterisation of the absorption in order to simplify its use in photochemical models. This study focuses on carbon dioxide (CO2). Methods: We performed experimental measurements of CO2 absorption cross sections with synchrotron radiation for the wavelength range (115-200 nm). For longer wavelengths (195-230 nm), we used a deuterium lamp and a 1.5 m Jobin-Yvon spectrometer. We used these data in our one-dimensional (1D) thermo-photochemical model in order to study their impact on the predicted atmospheric compositions. Results: The VUV absorption cross section of CO2 increases with the temperature. The absorption we measured at 150 K seems to be close to the absorption of CO2 in the fundamental ground state. The absorption cross section can be separated into two parts: a continuum and a fine structure superimposed on the continuum. The variation in the continuum of absorption can be represented by the sum of three Gaussian functions. Using data at high temperature in thermo-photochemical models significantly modifies the abundance and the photodissociation rates of many species in addition to CO2, such as methane and ammonia. These deviations have an impact on synthetic transmission spectra, leading to variations of up to 5 ppm

  6. VUV modification promotes endothelial cell proliferation on PTFE vascular grafts

    Science.gov (United States)

    Cezeaux, J. L.; Romoser, C. E.; Benson, R. S.; Buck, C. K.; Sackman, J. E.

    1998-05-01

    Small diameter (⩽6 mm ID ) synthetic vascular grafts, used as lower-limb vessel replacements in patients without suitable autologous saphenous veins, have a failure rate of 53% after 4 yr. Graft failure is due to thrombosis and intimal hyperplasia, an increase in smooth muscle cells in the lumen of the vessel which leads to progressive closing and ultimate occlusion of the vessel. In an effort to increase patency rates of synthetic grafts, investigators have seeded vascular grafts with endothelial cells prior to implantation in an attempt to control both thrombosis and smooth muscle proliferation. This technique has been successful for the development of an endothelial monolayer in animal trials, but has met with limited success in humans. The hydrophobicity, low surface energy, and weak electrical charge of expanded polytetrafluoroethylene (ePTFE) provides conditions which are not optimal for endothelial cell attachment. The purpose of this study is to evaluate the effect of vacuum ultraviolet (VUV) modification of ePTFE on endothelial cell adhesion and proliferation. Pieces of ePTFE graft material were exposed to 10, 20 or 40 W VUV radiation for 10, 20 or 40 min using a UV excimer lamp. Prior to cell adhesion and proliferation experiments, the grafts pieces were autoclaved and cut into pledgets. Half of the pledgets were precoated with fibronectin ( 20 μg/ml). Cell adhesion was measured by seeding 3H-thymidine labeled human umbilical vein endothelial cells (HUVEC) onto the pledgets for 60 min. The pledgets were then washed and the remaining radioactivity assayed using scintillation counting. For the cell proliferation experiments, pledgets were seeded with unlabeled HUVEC which were allowed to adhere to the graft material for 18 h. The cells were then exposed to 3H-thymidine ( 1 μCi/ml) for approximately 48 h and then washed to remove any unincorporated 3H-thymidine. Incorporation of 3H-thymidine was measured using scintillation counting. Four replicate

  7. Future prospects for studies in the VUV-SX region

    International Nuclear Information System (INIS)

    Tanaka, Kenichiro; Kitajima, Yoshinori

    1989-09-01

    This book carries papers presented at a workshop 'Future Prospects for Studies in the VUV-SX Region' held on March 22 and 23, 1989. The workshop focussed particularly on the promotion of research in the VUV and soft X-ray regions. Three sessions were held: Session 1 for studies in peripheral areas, Session 2 for theoretical studies, and Session 3 for recent developments. Session 1 covered five studies: 'Laser Spectroscopy: High-Resolution Observation of Highly Electronically Excited Gaseous Molecule', 'High-Resolution Electron Spectroscopy: Surface Phonon Spectroscopy', 'Experimental Study on Atoms and Molecules through Ion Trap', 'Basic Mechanism of Photo-Induced CVD', and 'Application of Circularly Polarized Light'. Session 2 covered five studies: 'Electronic State of High Tc Superconducting Oxide', 'Surface Condition and Electronic State', 'XES and XAS Study of Rare Earth Compound', 'Resonance Photoelectric Spectroscopy on Strongly Correlated Electronic System', and 'Circularly Polarized Light and Atomic Process in Soft X-Ray Region'. Session 3 covered six studies: 'Prospects of Application of Supercritical Liquid to Research on Physical Characteristics', 'Application of Orbit Radiation to Polarization Spectroscopy', 'XES Research for La Compounds', 'Characteristics of Ultra-Fine Particles', 'Surface Study by Angular-Resolution Photoelectric Spectroscopy', and 'EXAFS Study of Light Element'. (N.K.)

  8. Synchrotron radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    van Steenbergen, A.

    1979-01-01

    As a result of the exponential growth of the utilization of synchrotron radiation for research in the domain of the material sciences, atomic and molecular physics, biology and technology, a major construction activity has been generated towards new dedicated electron storage rings, designed optimally for synchrotron radiation applications, also, expansion programs are underway at the existing facilities, such as DORIS, SPEAR, and VEPP. In this report the basic properties of synchrotron radiation will be discussed, a short overview will be given of the existing and new facilities, some aspects of the optimization of a structure for a synchrotron radiation source will be discussed and the addition of wigglers and undulators for spectrum enhancement will be described. Finally, some parameters of an optimized synchrotron radiation source will be given.

  9. Synchrotron radiation from protons

    International Nuclear Information System (INIS)

    Dutt, S.K.

    1992-12-01

    Synchrotron radiation from protons, though described by the same equations as the radiation from electrons, exhibits a number of interesting features on account of the parameters reached in praxis. In this presentation, we shall point out some of the features relating to (i) normal synchrotron radiation from dipoles in proton machines such as the High Energy Booster and the Superconducting Super Collider; (ii) synchrotron radiation from short dipoles, and its application to light monitors for proton machines, and (iii) synchrotron radiation from undulators in the limit when, the deflection parameter is much smaller than unity. The material for this presentation is taken largely from the work of Hofmann, Coisson, Bossart, and their collaborators, and from a paper by Kim. We shall emphasize the qualitative aspects of synchrotron radiation in the cases mentioned above, making, when possible, simple arguments for estimating the spectral and angular properties of the radiation. Detailed analyses can be found in the literature

  10. Beam Line Commissioning of a UV/VUV FEL at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Stephen; Blackburn, Keith; Bullard, Daniel; Clavero Perez, Cesar; Coleman, James; Dickover, Cody; Douglas, David; Ellingsworth, Forrest; Evtushenko, Pavel; Hernandez-Garcia, Carlos; Gould, Christopher; Gubeli, Joseph; Hardy, David; Jordan, Kevin; Klopf, John; James, Kortze; Legg, Robert; Marchlik, Matthew; Moore, Steven; Neil, George; Powers, Thomas; Sexton, Daniel; Shinn, Michelle D; Tennant, Christopher; Walker, Richard; Williams, Gwyn; Wilson, Frederick

    2011-08-01

    Many novel applications in photon sciences require very high brightness and/or short pulses in the vacuum ultra-violet (VUV). Jefferson Lab has commissioned a UV oscillator with high gain and has transported the third harmonic of the UV to a user lab. The experimental performance of the UV FEL is much better than simulated performance in both gain and efficiency. This success is important for efforts to push towards higher gain FELs at short wavelengths where mirrors absorb strongly. We will report on efforts to characterize the UV laser and the VUV coherent harmonics as well as designs to lase directly in the VUV wavelength range.

  11. Update on VUV and soft X-ray facilities at SSRL

    International Nuclear Information System (INIS)

    Waldhauer, A.

    1988-01-01

    The number of experimental stations at SSRL devoted to the VUV and soft X-ray region is increasing rapidly. In 1986 there were five VUV/soft X-ray beam lines in regular operation. These consisted of two grasshopper lines, a Seya-Namioka line, a white light lithography line, and the UHV double crystal line, Jumbo. By 1988 ten beam lines, including two with insertion devices, covering the spectral range 5-4000 eV in five overlapping ranges will be operational. With the addition of these new stations, SSRL will have increased dramatically its facilities for performing VUV and soft X-ray research. (orig.)

  12. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    International Nuclear Information System (INIS)

    Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2010-01-01

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

  13. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2010-03-14

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

  14. National Synchrotron Light Source 2008 Activity Report

    International Nuclear Information System (INIS)

    Nasta, K.

    2009-01-01

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R and D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for

  15. National Synchrotron Light Source 2008 Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Nasta,K.

    2009-05-01

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R&D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for

  16. National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Lazarz, N.M.

    1991-04-01

    This report discussion research being conducted at the National Synchrotron light source. In particular, this report contains operations summaries; symposia, workshops, and projects; NSLS highlights; and abstracts of science at the NSLS

  17. The World of Synchrotrons

    Indian Academy of Sciences (India)

    -particles when .... ence, high-vacuum environment, etc.) make synchrotron radiation a very powerful tool for a variety of .... one of the leading countries along with the United States and the European Union in accelerator-based science re-.

  18. A VUV prism spectrometer for RICH radiator refractometry

    CERN Document Server

    Moyssides, P G; Fokitis, E

    2000-01-01

    A prism spectrometer has been developed to operate in the VUV wavelength range from 120 to 200 nm. It can be used as a pre- disperser in conjunction with a Fabry-Perot based gas refractometer. This instrument has also been used to measure the refractive index of the liquid radiator C/sub 6/F/sub 14/ in various spectral lines. This radiator is used in the RICH detectors of the DELPHI experiment and has been proposed for ALICE, and LHCb experiments. The spectral resolution of the system is improved as the wavelength decreases and the data are consistent with a wavelength accuracy about 0.4 nm at 140 nm. The results for the dispersion curve of the above liquid are presented. (17 refs).

  19. Deuterium Enrichment of PAHs by VUV Irradiation of Interstellar Ices

    Science.gov (United States)

    Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Gillette, J. Seb; Zare, Richard N.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    Laboratory results demonstrate that polycyclic aromatic hydrocarbons (PAHs) rapidly exchange their hydrogen atoms with those of nearby molecules when they are frozen into low-temperature ices and exposed to vacuum ultraviolet radiation. As a result, PAHs quickly become deuterium-enriched when VUV irradiated in D-containing ices. This mechanism has important consequences for several astrophysical issues owing to the ubiquitous nature of PAHs in the interstellar medium. For example, this process may explain the deuterium enrichments found in PAHs in meteorites and interplanetary dust particles. These results also provide general predictions about the molecular siting of the deuterium on aromatic materials in meteorites if this process produced a significant fraction of their D-enrichment.

  20. VUV Spectroscopy of the Sun as a Star

    Science.gov (United States)

    Kankelborg, Charles; Philip, Judge; Winebarger, Amy R.; Kobayashi, Ken; Smart, Roy

    2017-08-01

    We describe a new sounding rocket mission to obtain the first high resolution, high quality VUV (100-200 nm) spectrum of the Sun-as-a-star. Our immediate science goal is to understand better the processes of chromospheric and coronal heating. HST data exist for a dozen or so Sun-like stars of a quality already beyond our ability to construct a comparable sun-as-a-star UV spectrum. The solar spectrum we obtain will enable us to understand the nature of magnetic energy dissipation as a Sun-like star evolves, and the dependence of magnetic activity on stellar mass and metallicity. This poster presents the instrument design, scientific prospects, and broader impacts of the proposed mission.

  1. Uncooled Radiation Hard SiC Schottky VUV Detectors Capable of Single Photon Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to design, fabricate, characterize and commercialize very large area, uncooled and radiative hard 4H-SiC VUV detectors capable of near single...

  2. European Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Buras, B.

    1985-01-01

    How a European Synchrotron Radiation Facility has developed into a detailed proposal recently accepted as the basis for construction of the facility at Grenoble is discussed. In November 1977, the General Assembly of the European Science Foundation (ESF) approved the report of the ESF working party on synchrotron radiation entitled Synchrotron Radiation - a Perspective View for Europe. This report contained as one of its principal recommendations that work should commence on a feasibility study for a European synchrotron radiation laboratory having a dedicated hard X-ray storage ring and appropriate advanced instrumentation. In order to prepare a feasibility study the European Science Foundation set up the Ad-hoc Committee on Synchrotron Radiation, which in turn formed two working groups: one for the machine and another for instrumentation. This feasibility study was completed in 1979 with the publication of the Blue Book describing in detail the so called 1979 European Synchrotron Radiation Facility. The heart of the facility was a 5 GeV electron storage ring and it was assumed that mainly the radiation from bending magnets will be used. The facility is described

  3. Design of ITER divertor VUV spectrometer and prototype test at KSTAR tokamak

    Science.gov (United States)

    Seon, Changrae; Hong, Joohwan; Song, Inwoo; Jang, Juhyeok; Lee, Hyeonyong; An, Younghwa; Kim, Bosung; Jeon, Taemin; Park, Jaesun; Choe, Wonho; Lee, Hyeongon; Pak, Sunil; Cheon, MunSeong; Choi, Jihyeon; Kim, Hyeonseok; Biel, Wolfgang; Bernascolle, Philippe; Barnsley, Robin; O'Mullane, Martin

    2017-12-01

    Design and development of the ITER divertor VUV spectrometer have been performed from the year 1998, and it is planned to be installed in the year 2027. Currently, the design of the ITER divertor VUV spectrometer is in the phase of detail design. It is optimized for monitoring of chord-integrated VUV signals from divertor plasmas, chosen to contain representative lines emission from the tungsten as the divertor material, and other impurities. Impurity emission from overall divertor plasmas is collimated through the relay optics onto the entrance slit of a VUV spectrometer with working wavelength range of 14.6-32 nm. To validate the design of the ITER divertor VUV spectrometer, two sets of VUV spectrometers have been developed and tested at KSTAR tokamak. One set of spectrometer without the field mirror employs a survey spectrometer with the wavelength ranging from 14.6 nm to 32 nm, and it provides the same optical specification as the spectrometer part of the ITER divertor VUV spectrometer system. The other spectrometer with the wavelength range of 5-25 nm consists of a commercial spectrometer with a concave grating, and the relay mirrors with the same geometry as the relay mirrors of the ITER divertor VUV spectrometer. From test of these prototypes, alignment method using backward laser illumination could be verified. To validate the feasibility of tungsten emission measurement, furthermore, the tungsten powder was injected in KSTAR plasmas, and the preliminary result could be obtained successfully with regard to the evaluation of photon throughput. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  4. Development of high resolution vacuum ultraviolet beam line at Indus-1 synchrotron source

    International Nuclear Information System (INIS)

    Shukla, R.P.; Das, N.C.; Udupa, D.V.; Saraswathy, P.; Sunanda, K.; Jha, S.N.; Shastri, Aparna; Singh, Paramjeet; Mallick, Manika; Mishra, A.P.; Sahoo, N.K.; Sinha, A.K.; Bhatt, S.; Sahni, V.C.

    2005-07-01

    High resolution vacuum ultraviolet beamline at Indus-1 450 MeV synchrotron source has been developed for carrying out absorption spectral studies of atoms and molecules. The beamline consists of three major parts i.e. a focusing optical system, an absorption cell and a high resolution 6.65 m vacuum ultraviolet spectrometer in Eagle mount. The wavelength range of the spectrometer is from 700 A to 2000 A and the resolution of the spectrometer is 0.01 A. Using the synchrotron source Indus-1, the absorption spectra of oxygen, ammonia and carbon disulphide have been recorded at the wavelength band of 1750 A, 1881 A and 3100 A respectively. Details of different aspects of design and development of the high resolution VUV beamline are described in this report. (author)

  5. Space-Resolved VUV and EUV Spectrometers in HL-2A

    International Nuclear Information System (INIS)

    Cui Zhengying; Zhou Hangyu; Fu Bingzhong; Sun Ping; Gao Yadong; Xu Yuan; Yang Qingwei; Morita, S.; Goto, M.; Dong Chunfeng

    2013-01-01

    A normal incidence vacuum ultraviolet (VUV) and a grazing incidence extreme ultraviolet (EUV) spectrometers have been developed for the edge and core impurity measurements in HL-2A tokamak. The VUV and the EUV spectrometers cover wavelength ranges of 300∼3200 Å and 50∼500 Å, respectively. A spatial resolution of 2 mm has been achieved for the VUV spectrometer when a space-resolved slit 50 μm in width is used. The space-resolved slit is placed between the entrance slit and the grating of the spectrometer. The spectral resolutions of 0.15 Å for the VUV spectrometer in the wavelength coverage of the concave 1200 grooves/mm grating and of 0.22 Å for the EUV spectrometer at λ=200 Å with a flat-field laminar-type holographic grating are obtained. The sensitivity of the VUV spectrometer was calibrated in situ with the plasma bremsstrahlung radiation. The experimental results from both spectrometers are presented, especially the line intensity radial profiles measured by the VUV spectrometer. (magnetically confined plasma)

  6. Tunable and Memory Metamaterials

    Science.gov (United States)

    2015-12-02

    AFRL-AFOSR-VA-TR-2015-0402 TUNABLE AND MEMORY METAMATERIALS Dimitri Basov UNIVERSITY OF CALIFORNIA SAN DIEGO Final Report 12/02/2015 DISTRIBUTION A...DATES COVERED (From - To) 15-08-2010 to 14-08-2015 4. TITLE AND SUBTITLE TUNABLE AND MEMORY METAMATERIALS 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550...common limitations of infrared metamaterials in order to achieve low electromagnetic losses and broad tunability of the electromagnetic response. One

  7. National Synchrotron Light Source. Annual report 1992

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.L.; Lazarz, N.M. [eds.

    1993-04-01

    This report contains seven sections discussing the following: (1) scientific research at the NSLS; (2) symposia and workshops held at the NSLS; (3) a facility report; (4) NSLS projects; (5) NSLS operational highlights; (6) informational guides to the VUV and X-ray beamlines; and (7) appendices which include abstracts on projects carried out at the VUV and X-ray beamlines.

  8. Tunable laser applications

    CERN Document Server

    Duarte, FJ

    2008-01-01

    Introduction F. J. Duarte Spectroscopic Applications of Tunable Optical Parametric Oscillators B. J. Orr, R. T. White, and Y. He Solid-State Dye Lasers Costela, I. García-Moreno, and R. Sastre Tunable Lasers Based on Dye-Doped Polymer Gain Media Incorporating Homogeneous Distributions of Functional Nanoparticles F. J. Duarte and R. O. James Broadly Tunable External-Cavity Semiconductor Lasers F. J. Duarte Tunable Fiber Lasers T. M. Shay and F. J. Duarte Fiber Laser Overview and Medical Applications

  9. Future Synchrotron Radiation Sources

    CERN Document Server

    Winick, Herman

    2003-01-01

    Sources of synchrotron radiation (also called synchrotron light) and their associated research facilities have experienced a spectacular growth in number, performance, and breadth of application in the past two to three decades. In 1978 there were eleven electron storage rings used as light sources. Three of these were small rings, all below 500 mega-electron volts (MeV), dedicated to this purpose; the others, with energy up to 5 giga-electron volts (GeV), were used parasitically during the operation of the ring for high energy physics research. In addition, at that time synchrotron radiation from nine cyclic electron synchrotrons, with energy up to 5 GeV, was also used parasitically. At present no cyclic synchrotrons are used, while about 50 electron storage rings are in operation around the world as fully dedicated light sources for basic and applied research in a wide variety of fields. Among these fields are structural molecular biology, molecular environmental science, materials, analytic chemistry, micr...

  10. Australian synchrotron radiation science

    International Nuclear Information System (INIS)

    White, J.W.

    1996-01-01

    Full text: The Australian Synchrotron Radiation Program, ASRP, has been set up as a major national research facility to provide facilities for scientists and technologists in physics, chemistry, biology and materials science who need access to synchrotron radiation. Australia has a strong tradition in crystallography and structure determination covering small molecule crystallography, biological and protein crystallography, diffraction science and materials science and several strong groups are working in x-ray optics, soft x-ray and vacuum ultra-violet physics. A number of groups whose primary interest is in the structure and dynamics of surfaces, catalysts, polymer and surfactant science and colloid science are hoping to use scattering methods and, if experience in Europe, Japan and USA can be taken as a guide, many of these groups will need third generation synchrotron access. To provide for this growing community, the Australian National Beamline at the Photon Factory, Tsukuba, Japan, has been established since 1990 through a generous collaboration with Japanese colleagues, the beamline equipment being largely produced in Australia. This will be supplemented in 1997 with access to the world's most powerful synchrotron x-ray source at the Advanced Photon Source, Argonne National Laboratory, USA. Some recent experiments in surface science using neutrons as well as x-rays from the Australian National Beamline will be used to illustrate one of the challenges that synchrotron x-rays may meet

  11. The Compact Light Source A Miniature Synchrotron Light Source

    CERN Document Server

    Ruth, Ronald D

    2005-01-01

    During the past 30 years, synchrotron light sources have become the x-ray probe of choice for physicists, chemists, biologists and research physicians. With their high-quality, intense x-ray beams, these national research facilities have spawned a broad array of applications. Past research at Stanford Linear Accelerator Center has led to a new x-ray source concept that can substantially reduce the size of the required synchrotron.* This research has spawned a new corporation, Lyncean Technologies, Inc. which is now developing the Compact Light Source (CLS). The CLS is a tunable, homelab x-ray source with up to three beamlines that can be used like the x-ray beamlines at the synchrotrons-but it is about 200 times smaller than a synchrotron light source. The compact size is achieved using a laser undulator and a miniature electron-beam storage ring. The photon flux on a sample will be comparable to the flux of highly productive synchrotron beamlines. At Lyncean Technologies, Inc. we have constructed a prototype...

  12. Phase 2 safety analysis report: National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Stefan, P.

    1989-06-01

    The Phase II program was established in order to provide additional space for experiments, and also staging and equipment storage areas. It also provides additional office space and new types of advanced instrumentation for users. This document will deal with the new safety issues resulting from this extensive expansion program, and should be used as a supplement to BNL Report No. 51584 ''National Synchrotron Light Source Safety Analysis Report,'' July 1982 (hereafter referred to as the Phase I SAR). The initial NSLS facility is described in the Phase I SAR. It comprises two electron storage rings, an injection system common to both, experimental beam lines and equipment, and office and support areas, all of which are housed in a 74,000 sq. ft. building. The X-ray Ring provides for 28 primary beam ports and the VUV Ring, 16. Each port is capable of division into 2 or 3 separate beam lines. All ports receive their synchrotron light from conventional bending magnet sources, the magnets being part of the storage ring lattice. 4 refs

  13. Stability and vibration control in synchrotron light source buildings

    Energy Technology Data Exchange (ETDEWEB)

    Godel, J.B.

    1991-01-01

    Synchrotron light sources have undergone three generations of development in the last two decades. The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory has two second generation'' storage rings that currently provide the world's most intense sources of photons in the VUV and X-ray spectral ranges. There are almost 90 beam lines serving a community of 2600 scientists from 370 institutions. They are engaged in basic and applied research in physics, chemistry, biology, medicine, materials science and various technologies. When design of the NSLS began in 1977, emphasis was given to the stability of the concrete slab on which the storage rings and experimental beam lines were placed. Stability is the result of controlling: vibration from sources internal and external to the building, thermal effects of air and water temperature variations, foundation settlement and contact between the slab and underlying subsoil. With the advent of new research where highly focused beams of x-rays must be placed on increasingly smaller targets located 35 meters or more from the source, and the development of x-ray lithography with resolutions approaching 0.1 micron at chip exposure stations, even greater attention to stability is required in building designs. This paper will review the results of the successful NSLS experience and give an integrated design approach that includes elements which contribute to instabilities, and the means available to reduce them to acceptable levels.

  14. Stability and vibration control in synchrotron light source buildings

    Energy Technology Data Exchange (ETDEWEB)

    Godel, J.B.

    1991-12-31

    Synchrotron light sources have undergone three generations of development in the last two decades. The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory has two ``second generation`` storage rings that currently provide the world`s most intense sources of photons in the VUV and X-ray spectral ranges. There are almost 90 beam lines serving a community of 2600 scientists from 370 institutions. They are engaged in basic and applied research in physics, chemistry, biology, medicine, materials science and various technologies. When design of the NSLS began in 1977, emphasis was given to the stability of the concrete slab on which the storage rings and experimental beam lines were placed. Stability is the result of controlling: vibration from sources internal and external to the building, thermal effects of air and water temperature variations, foundation settlement and contact between the slab and underlying subsoil. With the advent of new research where highly focused beams of x-rays must be placed on increasingly smaller targets located 35 meters or more from the source, and the development of x-ray lithography with resolutions approaching 0.1 micron at chip exposure stations, even greater attention to stability is required in building designs. This paper will review the results of the successful NSLS experience and give an integrated design approach that includes elements which contribute to instabilities, and the means available to reduce them to acceptable levels.

  15. MEMS Tunable Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    Addressing low frequency bands is challenging on small platforms. Tunability is a promising solution to cover the bandwidth required for 4G mobile communication. The work presents two designs and shows that for comparable efficiency and bandwidth, the tunable antenna occupies half the volume requ...

  16. SYNCHROTRON RADIATION SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    HULBERT,S.L.; WILLIAMS,G.P.

    1998-07-01

    Synchrotron radiation is a very bright, broadband, polarized, pulsed source of light extending from the infrared to the x-ray region. It is an extremely important source of Vacuum Ultraviolet radiation. Brightness is defined as flux per unit area per unit solid angle and is normally a more important quantity than flux alone particularly in throughput limited applications which include those in which monochromators are used. It is well known from classical theory of electricity and magnetism that accelerating charges emit electromagnetic radiation. In the case of synchrotron radiation, relativistic electrons are accelerated in a circular orbit and emit electromagnetic radiation in a broad spectral range. The visible portion of this spectrum was first observed on April 24, 1947 at General Electric's Schenectady facility by Floyd Haber, a machinist working with the synchrotron team, although the first theoretical predictions were by Lienard in the latter part of the 1800's. An excellent early history with references was presented by Blewett and a history covering the development of the utilization of synchrotron radiation was presented by Hartman. Synchrotron radiation covers the entire electromagnetic spectrum from the infrared region through the visible, ultraviolet, and into the x-ray region up to energies of many 10's of kilovolts. If the charged particles are of low mass, such as electrons, and if they are traveling relativistically, the emitted radiation is very intense and highly collimated, with opening angles of the order of 1 milliradian. In electron storage rings there are three possible sources of synchrotron radiation; dipole (bending) magnets; wigglers, which act like a sequence of bending magnets with alternating polarities; and undulators, which are also multi-period alternating magnet systems but in which the beam deflections are small resulting in coherent interference of the emitted light.

  17. Properties of synchrotron radiation

    International Nuclear Information System (INIS)

    Materlik, G.

    1982-01-01

    This paper forms the introductory chapter to a book concerning the use of synchrotron radiation for investigation of the structure and mechanism of biological macromolecules. After a historical section, the physics of synchrotron radiation is summarized so that the most promising experiments may be extrapolated. Irradiated power and intensity, polarization and angular distribution, brilliance of a real source, and developments such as wigglers and undulators are briefly dealt with. The paper includes a tabulated compilation of proposed and operating machines in 1982, with some of their characteristics. (U.K.)

  18. Compact synchrotron light sources

    CERN Document Server

    Weihreter, Ernst

    1996-01-01

    This book covers a new niche in circular accelerator design, motivated by the promising industrial prospects of recent micromanufacturing methods - X-ray lithography, synchrotron radiation-based micromachining and microanalysis techniques. It describes the basic concepts and the essential challenges for the development of compact synchrotron radiation sources from an accelerator designer's point of view and gives an outline of the actual state of the art. The volume is intended as an introduction and as a reference for physicists, engineers and managers involved in this rapidly developing fiel

  19. Tunable nanoparticle arrays at charged interfaces.

    Science.gov (United States)

    Srivastava, Sunita; Nykypanchuk, Dmytro; Fukuto, Masafumi; Gang, Oleg

    2014-10-28

    Structurally tunable two-dimensional (2D) arrays of nanoscale objects are important for modulating functional responses of thin films. We demonstrate that such tunable and ordered nanoparticles (NP) arrays can be assembled at charged air-water interfaces from nanoparticles coated with polyelectrolyte chains, DNA. The electrostatic attraction between the negatively charged nonhybridizing DNA-coated gold NPs and a positively charged lipid layer at the interface facilitates the formation of a 2D hexagonally closed packed (HCP) nanoparticle lattice. We observed about 4-fold change of the monolayer nanoparticle density by varying the ionic strength of the subphase. The tunable NP arrays retain their structure reasonably well when transferred to a solid support. The influence of particle's DNA corona and lipid layer composition on the salt-induced in-plane and normal structural evolution of NP arrays was studied in detail using a combination of synchrotron-based in situ surface scattering methods, grazing incidence X-ray scattering (GISAXS), and X-ray reflectivity (XRR). Comparative analysis of the interparticle distances as a function of ionic strength reveals the difference between the studied 2D nanoparticle arrays and analogous bulk polyelectrolyte star polymers systems, typically described by Daoud-Cotton model and power law scaling. The observed behavior of the 2D nanoparticle array manifests a nonuniform deformation of the nanoparticle DNA corona due to its electrostatically induced confinement at the lipid interface. The present study provides insight on the interfacial properties of the NPs coated with charged soft shells.

  20. Coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Agoh, Tomonori

    2006-01-01

    This article presents basic properties of coherent synchrotron radiation (CSR) with numerical examples and introduces the reader to important aspects of CSR in future accelerators with short bunches. We show interesting features of the single bunch instability due to CSR in storage rings and discuss the longitudinal CSR field via the impedance representation. (author)

  1. The World of Synchrotrons

    Indian Academy of Sciences (India)

    Charged-particles when accelerated radiateelectromag- netic energy. This interesting physical phenomenon, now known by the name synchrotron radiation had its theoretical beginnings, a long time ago, at the time of classical electrodynamics. These theoretical studies had to wait for about half a century till the ...

  2. The World of Synchrotrons

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 11. The World of Synchrotrons. Sameen Ahmed Khan. General Article Volume 6 Issue 11 November 2001 pp 77-84. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/006/11/0077-0084 ...

  3. Characteristics of synchrotron radiation

    International Nuclear Information System (INIS)

    Brown, G.S.

    1984-01-01

    The characteristics and production of synchrotron radiation are qualitatively discussed. The spectral properties of wigglers and undulators are briefly described. Possible applications in condensed matter physics are outlined. These include atomic and molecular studies, crystallography, impurities in solids and radiographic imaging

  4. Synchrotron radiation research

    International Nuclear Information System (INIS)

    Markus, N.

    1995-01-01

    In the many varied application fields of accelerators, synchrotron radiation ranks as one of the most valuable and widely useful tools. Synchrotron radiation is produced in multi-GeV electron synchrotrons and storage rings, and emerges tangentially in a narrow vertical fan. Synchrotron radiation has been used extensively for basic studies and, more recently, for applied research in the chemical, materials, biotechnology and pharmaceutical industries. Initially, the radiation was a byproduct of high energy physics laboratories but the high demand soon resulted in the construction of dedicated electron storage rings. The accelerator technology is now well developed and a large number of sources have been constructed, with energies ranging from about 1.5 to 8 GeV including the 6 GeV European Synchrotron Radiation Facility (ESRF) source at Grenoble, France. A modern third-generation synchrotron radiation source has an electron storage ring with a complex magnet lattice to produce ultra-low emittance beams, long straights for 'insertion devices', and 'undulator' or 'wiggler' magnets to generate radiation with particular properties. Large beam currents are necessary to give high radiation fluxes and long beam lifetimes require ultra high vacuum systems. Industrial synchrotron radiation research programmes use either Xray diffraction or spectroscopy to determine the structures of a wide range of materials. Biological and pharmaceutical applications study the functions of various proteins. With this knowledge, it is possible to design molecules to change protein behaviour for pharmaceuticals, or to configure more active proteins, such as enzymes, for industrial processes. Recent advances in molecular biology have resulted in a large increase in protein crystallography studies, with researchers using crystals which, although small and weakly diffracting, benefit from the high intensity. Examples with commercial significance include the study of

  5. Laser synchrotron radiation and beam cooling

    Energy Technology Data Exchange (ETDEWEB)

    Esarey, E.; Sprangle, P.; Ting, A. [Naval Research Lab., Washington, DC (United States)] [and others

    1995-12-31

    The interaction of intense {approx_gt} 10{sup 18} W/cm{sup 2}, short pulse ({approx_lt} 1 ps) lasers with electron beams and plasmas can lead to the generation of harmonic radiation by several mechanisms. Laser synchrotron radiation may provide a practical method for generating tunable, near monochromatic, well collimated, short pulse x-rays in compact, relatively inexpensive source. The mechanism for the generation of laser synchrotron radiation is nonlinear Thomson scattering. Short wavelengths can be generated via Thomson scattering by two methods, (i) backscattering from relativistic electron beams, in which the radiation frequency is upshifted by the relativistic factor 4{gamma}{sup 2}, and (ii) harmonic scattering, in which a multitude of harmonics are generated with harmonic numbers extending out to the critical harmonic number nc{approx_equal}a{sub 0}{sup 3} {much_gt} 1, where a{sub 0} {approx_equal}10{sup -9}{lambda}I{sup 1/2}, {lambda} is the laser wavelength in {mu}m and I is the laser intensity in W/cm{sup 2}. Laser synchrotron sources are capable of generating short ({approx_lt} ps) x-ray pulses with high peak flux ({approx_gt} 10{sup 21} photons/s) and brightness ({approx_gt}{sup 19} photons/s-mm{sup 2}-mrad{sup 2} 0.1%BW. As the electron beam radiates via Thomson scattering, it can subsequently be cooled, i.e., the beam emittance and energy spread can be reduced. This cooling can occur on rapid ({approximately} ps) time scales. In addition, electron distributions with sufficiently small axial energy spreads can be used to generate coherent XUV radiation via a laser-pumped FEL mechanism.

  6. Tunable Handset Antenna

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Foroozanfard, Ehsan; Morris, Art

    2017-01-01

    With the future LTE auction for TV white spaces at 600 MHz, there is a strong need for efficient handset antennas operating at very low frequencies. This paper shows a tunable antenna covering the LTE bands from 600 MHz to 2.6 GHz. The antenna uses state-of-the-art MEMS tunable capacitors in order...... to reconfigure its operating frequency. In this work, the design mitigates the tuning loss with a tunable extended ground plane. The resulting dual-resonant antenna exhibits a peak total efficiency of -3.9 dB at 600 MHz....

  7. Photolytic degradation of sulfamethoxazole and trimethoprim using UV-A, UV-C and vacuum-UV (VUV).

    Science.gov (United States)

    Kim, Hyun Young; Kim, Tae-Hun; Yu, Seungho

    2015-01-01

    The photolytic degradation of the non-degradable pharmaceuticals sulfamethoxazole (SMX) and trimethoprim (TMP) in an aqueous solution was investigated using three kinds of low-pressure mercury lamp UV-A (352 nm), UV-C (254 nm), and vacuum-UV (VUV, 185 nm and 254 nm). The degradation rates were highly dependent on the target compounds as well as the UV sources. No degradation of the target compounds was observed using UV-A treatment, because there was no overlap between the UV-A emission spectrum and absorption spectrum of the target compounds. On the other hand, UVC and VUV revealed higher reactivity. The results also indicated that SMX had a greater potential to react photochemically than TMP. Among the UV sources, VUV was the most effective process for the degradation of target compounds. Furthermore, the addition of oxidants such as hydrogen peroxide (H2O2) and sodium persulfate (Na2S2O8) to the reaction system improved the overall degradation rate significantly.The experimental results for the VUV-irradiated samples with the addition of methanol as a hydroxyl radical scavenger revealed that hydroxyl radicals contribute significantly to the elimination of the target compound. Overall, the degradation rate of the target compounds was in the order: VUV = UV-C > UV-A for sulfamethoxazole and VUV/H2O2 > VUV/ Na2S2O8 > VUV >UV-C >UV-A for trimethoprim.

  8. CORNELL: Synchrotron 25

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    A recent celebration marked the twenty-fifth anniversary of the Cornell Electron Synchrotron. The major milestone in the commissioning of the synchrotron was on October 11, 1967 when Helen Edwards, Boyce McDaniel, and Maury Tigner achieved a 7 GeV beam, a worldrecord energy for electron synchrotrons at that time. Like so many advances in experimental physics, this occurred early in the morning - 3 a.m.! The transition from accelerator commissioning to high energy physics operation was extremely rapid; 7 GeV operation for data collection was routine just five weeks later. Throughout its life as a source of photon and electron beams for fixed target experiments, the synchrotron maintained energy leadership for circular electron machines. Originally designed for operation at 10 GeV, eventually it consistently provided beams for experiments at energies up to 11.6 GeV. It now operates at 5 GeV, serving as the injector for the CESR electron-positron storage ring. Robert Wilson was director of the laboratory during the design and most of the construction of the machine. He left near the end of the construction to become the first director of Fermilab and was replaced by Boyce McDaniel, who guided the laboratory from the completion of the synchrotron to the construction and early operation of CESR. Wilson recalled how the laboratory had originally proposed a 3 GeV turnkey machine to be built entirely by industry and would fit in the space previously occupied by earlier Cornell accelerators. However, members of the laboratory realized that 3 GeV would not open new physics frontiers, that the construction of the accelerator was much of the fun of doing high energy physics experiments, and that a more challenging project was needed. This led to the proposal for the 10 GeV synchrotron which was built in the ''Cornell Style'' with many of the components fabricated and nearly all of the assembly done at Cornell

  9. Optimization of a seeding option for the VUV free electron laser at DESY

    CERN Document Server

    Saldin, E L; Yurkov, M V

    2000-01-01

    In order to get fully coherent radiation from the Free Electron Laser (FEL) amplifier starting from the shot noise, it is foreseen to implement a seeding option into the VUV FEL being under construction at DESY (DESY print TESLA-FEL 95-03, Hamburg, DESY, 1995, Seeding option for the VUV free electron laser at DESY: joint DESY and GKSS proposal; Available at DESY upon request only). It consists of an additional undulator, a bypass for electrons and an X-ray monochromator. This paper presents the results of optimization of the seeding option for the VUV FEL providing maximal spectral brightness at minimal shot-to-shot intensity fluctuations. Calculations are performed with three-dimensional, time-dependent simulation code FAST (Nucl. Instr. and Meth. A 429 (1999) 233).

  10. Tunable Optical Polymer Systems

    National Research Council Canada - National Science Library

    Jenekhe, S. A; Bard, Allen J; Chen, S. H; Hammond, P. T; Rothberg, L. J

    2004-01-01

    This multidisciplinary university research initiative (MURI) program investigated tunable optical polymer systems suitable for large-area color-switchable coatings and devices, displays, sensors, and other electronic applications...

  11. Tunable micro-optics

    CERN Document Server

    Duppé, Claudia

    2015-01-01

    Presenting state-of-the-art research into the dynamic field of tunable micro-optics, this is the first book to provide a comprehensive survey covering a varied range of topics including novel materials, actuation concepts and new imaging systems in optics. Internationally renowned researchers present a diverse range of chapters on cutting-edge materials, devices and subsystems, including soft matter, artificial muscles, tunable lenses and apertures, photonic crystals, and complete tunable imagers. Special contributions also provide in-depth treatment of micro-optical characterisation, scanners, and the use of natural eye models as inspiration for new concepts in advanced optics. With applications extending from medical diagnosis to fibre telecommunications, Tunable Micro-optics equips readers with a solid understanding of the broader technical context through its interdisciplinary approach to the realisation of new types of optical systems. This is an essential resource for engineers in industry and academia,...

  12. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    International Nuclear Information System (INIS)

    Niemi, K.; O'Connell, D.; Gans, T.; Oliveira, N. de; Joyeux, D.; Nahon, L.; Booth, J. P.

    2013-01-01

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N 2 /O 2 (4:1) admixtures. A maximum in the O-atom concentration of (9.1 ± 0.7)×10 20 m −3 was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 ± 0.4)×10 19 m −3 at 0.1 vol. %

  13. Degradation of organic pollutants by Vacuum-Ultraviolet (VUV): Kinetic model and efficiency.

    Science.gov (United States)

    Xie, Pengchao; Yue, Siyang; Ding, Jiaqi; Wan, Ying; Li, Xuchun; Ma, Jun; Wang, Zongping

    2018-04-15

    Vacuum-Ultraviolet (VUV), an efficient and green method to produce hydroxyl radical (•OH), is effective in degrading numerous organic contaminants in aqueous solution. Here, we proposed an effective and simple kinetic model to describe the degradation of organic pollutants in VUV system, by taking the •OH scavenging effects of formed organic intermediates as co-existing organic matter in whole. Using benzoic acid (BA) as a •OH probe, •OH was regarded vital for pollutant degradation in VUV system, and the thus developed model successfully predicted its degradation kinetics under different conditions. Effects of typical influencing factors such as BA concentrations and UV intensity were investigated quantitatively by the model. Temperature was found to be an important influencing factor in the VUV system, and the quantum yield of •OH showed a positive linear dependence on temperature. Impacts of humic acid (HA), alkalinity, chloride, and water matrices (realistic waters) on the oxidation efficiency were also examined. BA degradation was significantly inhibited by HA due to its scavenging of •OH, but was influenced much less by the alkalinity and chloride; high oxidation efficiency was still obtained in the realistic water. The degradation kinetics of three other typical micropollutants including bisphenol A (BPA), nitrobenzene (NB) and dimethyl phthalate (DMP), and the mixture of co-existing BA, BPA and DMP were further studied, and the developed model predicted the experimental data well, especially in realistic water. It is expected that this study will provide an effective approach to predict the degradation of organic micropollutants by the promising VUV system, and broaden the application of VUV system in water treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Coherent Spectroscopy of Ultra-Cold Mercury for the UV to VUV

    Science.gov (United States)

    2015-11-20

    AFRL-AFOSR-VA-TR-2015-0388 COHERENT SPECTROSCOPY OF ULTRA-COLD MERCURY FOR THE UV TO VUV R Jason Jones ARIZONA UNIV BOARD OF REGENTS TUCSON Final...TITLE AND SUBTITLE COHERENT SPECTROSCOPY OF ULTRA-COLD MERCURY FOR THE UV TO VUV 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-09-1-0563 5c. PROGRAM...approved for public release Final  Report     Award  Title:     “Coherent   Spectroscopy  of  Ultra-­‐cold  Hg  from  the   UV

  15. VUV and soft x-ray ionization of a plant volatile: Vanillin (C8H8O3)

    International Nuclear Information System (INIS)

    Betancourt, A. Moreno; Moura, C. E. V. de; Rocha, A. B.; Souza, G. G. B. de; Coutinho, L. H.; Bernini, R. B.

    2016-01-01

    Plant volatiles are emitted by plants in response to several forms of stress, including interaction with energetic photons. In the present work, we discuss the interaction of extreme UV and soft X-ray photons with a plant volatile, vanillin. The single and double (multiple) ionization of the vanillin molecule have been studied for the first time using time-of-flight mass spectrometry and VUV and soft X-ray photons (synchrotron radiation, at 12.0 eV, 21.2 eV, 130 eV, 310 eV, 531 eV, and 550 eV). At 12.0 and 21.2 eV, only singly charged species are observed and the parent ion, C 8 H 8 O 3 + , is the dominant species. Energy differences for some selected fragments were calculated theoretically in this energy region. At 130 eV, direct double and triple ionization of the valence electrons may occur. The fragmentation increases and CHO + becomes one of the main cations in the mass spectrum. The molecular ion is still the dominant species, but other fragments, such as C 6 H 5 O + , begin to present similar intensities. At 310 eV, C 1s electrons may be ionized and Auger processes give rise to dissociative doubly ionized cations. Ionization around the O 1s edge has been studied both at the 531 eV resonance and above the ionization edge. Resonant and normal Auger processes play a significant role in each case and a large fragmentation of the molecule is observed at both photon energies, with intense fragments such as CHO + and CH 3 + being clearly observed. A near edge X-ray absorption fine structure spectrum of the vanillin molecule was obtained around the O 1s ionization threshold. In addition, the fragmentation of vanillin has also been studied using a fast beam of electrons (800 eV), for the sake of comparison.

  16. VUV and soft x-ray ionization of a plant volatile: Vanillin (C8H8O3)

    Science.gov (United States)

    Betancourt, A. Moreno; Coutinho, L. H.; Bernini, R. B.; de Moura, C. E. V.; Rocha, A. B.; de Souza, G. G. B.

    2016-03-01

    Plant volatiles are emitted by plants in response to several forms of stress, including interaction with energetic photons. In the present work, we discuss the interaction of extreme UV and soft X-ray photons with a plant volatile, vanillin. The single and double (multiple) ionization of the vanillin molecule have been studied for the first time using time-of-flight mass spectrometry and VUV and soft X-ray photons (synchrotron radiation, at 12.0 eV, 21.2 eV, 130 eV, 310 eV, 531 eV, and 550 eV). At 12.0 and 21.2 eV, only singly charged species are observed and the parent ion, C8H8O3+, is the dominant species. Energy differences for some selected fragments were calculated theoretically in this energy region. At 130 eV, direct double and triple ionization of the valence electrons may occur. The fragmentation increases and CHO+ becomes one of the main cations in the mass spectrum. The molecular ion is still the dominant species, but other fragments, such as C6H5O+, begin to present similar intensities. At 310 eV, C 1s electrons may be ionized and Auger processes give rise to dissociative doubly ionized cations. Ionization around the O 1s edge has been studied both at the 531 eV resonance and above the ionization edge. Resonant and normal Auger processes play a significant role in each case and a large fragmentation of the molecule is observed at both photon energies, with intense fragments such as CHO+ and CH3+ being clearly observed. A near edge X-ray absorption fine structure spectrum of the vanillin molecule was obtained around the O 1s ionization threshold. In addition, the fragmentation of vanillin has also been studied using a fast beam of electrons (800 eV), for the sake of comparison.

  17. Activity report of Synchrotron Radiation Laboratory 2005

    International Nuclear Information System (INIS)

    2006-11-01

    Since 1980s, the Synchrotron Radiation Laboratory (SRL) has been promoting the 'Super-SOR' project, the new synchrotron radiation facility dedicated to sciences in vacuum ultraviolet and soft X-ray regions. The University of Tokyo considered the project as one of the most important future academic plans and strongly endorsed to construct the new facility with an electron storage ring of third generation type in the Kashiwa campus. During last year, the design of the accelerator system was slightly modified to obtain stronger support of the people in the field of bio-sciences, such as medicine, pharmacy, agriculture, etc. The energy of the storage ring was increased to 2.4 GeV, which is determined to obtain undulator radiation with sufficient brightness in X-ray region for the protein crystallography experiments. The value was also optimised to avoid considerable degradation of undulator radiation in the VUV and soft X-ray regions. However, in October last year, the president office of the University found out that the promotion of the project was very difficult for financial reasons. The budget for the new facility project is too big to be supported by a single university. The decision was intensively discussed by the International Review Committee on the Institute for Solid State Physics (ISSP), which was held at ISSP from November 14 to 16. The committee understood that the restructuring of the University system in Japan would overstrain the financial resources of the University of Tokyo and accepted the decision by the University. Presently, SRL has inclined to install beamlines using undulator radiation in other SR facilities instead of constructing a facility with a light source accelerator. At new beamlines, SRL will promote advanced materials sciences utilizing high brilliance and small emittance of synchrotron radiation which have been considered in the Super-SOR project. They are those such as microscopy and time-resolved experiments, which will only be

  18. National Synchrotron Light Source: Annual report 1986 for the period of October 1, 1985 through September 30, 1986

    International Nuclear Information System (INIS)

    White-DePace, S.; Gmur, N.

    1986-10-01

    The National Synchrotron Light Source (NSLS) is the nation's largest facility dedicated solely to the production of synchrotron radiation. The facility has two electron storage rings: a vacuum ultraviolet (VUV) ring which operates at an electron energy of 750 MeV designed for optimum radiation at energies from 10 eV to 1 keV, and an x-ray ring which operates at 2.5 GeV to optimize radiation from 1 keV to 20 keV. A total of 44 beam ports emanate from these rings. Each beam port is capable of supporting one to four experiments. The VUV and x-ray rings presently accommodate over 800 scientists representing over 71 universities, industries, and government laboratories. Both basic and applied research are being done at the NSLS by groups from a variety of disciplines which include physics, chemistry, materials science, metallurgy, biology, and medicine. Among the techniques used are EXAFS (extended x-ray absorption fine structure), scattering, diffraction, topography, fluorescence, gas phase spectroscopy, lithography, tomography, microscopy, and circular dichroism

  19. V-UV spectrographic imager (FUV) for Icon mission: from optical design to vacuum calibration

    Science.gov (United States)

    Loicq, Jérôme; Blain, Pascal; Kintziger, Christian; Desselle, Richard; Stockman, Yvan; Rider, Kodi; Chou, Cathy; Frey, Harald U.; Mende, Stephen B.

    2017-09-01

    The ICON mission is led by the University of California-Berkeley (Space Sciences Laboratory). In the frame of this mission the Space Center of Liege was involved in the optical design optimization and related analysis, and VUV on ground calibration.

  20. Hydrocarbons in interstellar ice analogues : UV-vis spectroscopy and VUV photochemistry

    NARCIS (Netherlands)

    Cuylle, Steven Hendrik

    2015-01-01

    This thesis treats the chemical behaviour of carbonaceous molecules in water-dominated interstellar ices. VUV photons are considered as the chemical trigger to induce solid state chemistry as it is omnipresent. Lyman- radiation occurs even in dense molecular clouds as a result of cosmic ray

  1. UV and VUV spectroscopy and photochemistry of small molecules in a supersonic jet

    Science.gov (United States)

    Ruehl, E.; Vaida, V.

    1990-01-01

    UV and VUV absorption and emission spectroscopy is used to probe jet cooled molecules, free radicals, and clusters in the gas phase. Due to efficient cooling inhomogeneous effects on spectral line widths are eliminated. Therefore from these spectra, both structural and dynamical information is obtained. The photoproducts of these reactions are probed by resonance enhanced multiphoton ionization.

  2. Simultaneous removal of NO and SO2using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS).

    Science.gov (United States)

    Liu, Yangxian; Wang, Yan; Wang, Qian; Pan, Jianfeng; Zhang, Jun

    2018-01-01

    Simultaneous removal process of SO 2 and NO from flue gas using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS) in a VUV spraying reactor was proposed. The key influencing factors, active species, reaction products and mechanism of SO 2 and NO simultaneous removal were investigated. The results show that vacuum ultraviolet light (185 nm) achieves the highest NO removal efficiency and yield of and under the same test conditions. NO removal is enhanced at higher PMS concentration, light intensity and oxygen concentration, and is inhibited at higher NO concentration, SO 2 concentration and solution pH. Solution temperature has a double impact on NO removal. CO 2 concentration has no obvious effect on NO removal. and produced from VUV-activation of PMS play a leading role in NO removal. O 3 and ·O produced from VUV-activation of O 2 also play an important role in NO removal. SO 2 achieves complete removal under all experimental conditions due to its very high solubility in water and good reactivity. The highest simultaneous removal efficiency of SO 2 and NO reaches 100% and 91.3%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Penning plasma based simultaneous light emission source of visible and VUV lights

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, G. L., E-mail: glvyas27@gmail.com [Manipal University Jaipur (India); Prakash, R.; Pal, U. N. [CSIR-Central Electronics and Engineering Research Institute, Microwave Tubes Division (India); Manchanda, R. [Institute for Plasma Research (India); Halder, N. [Manipal University Jaipur (India)

    2016-06-15

    In this paper, a laboratory-based penning plasma discharge source is reported which has been developed in two anode configurations and is able to produce visible and VUV lights simultaneously. The developed source has simultaneous diagnostics facility using Langmuir probe and optical emission spectroscopy. The two anode configurations, namely, double ring and rectangular configurations, have been studied and compared for optimum use of the geometry for efficient light emissions and recording. The plasma is produced using helium gas and admixture of three noble gases including helium, neon, and argon. The source is capable to produce eight spectral lines for pure helium in the VUV range from 20 to 60 nm and total 24 spectral lines covering the wavelength range 20–106 nm for the admixture of gases. The large range of VUV lines is generated from gaseous admixture rather from the sputtered materials. The recorded spectrum shows that the plasma light radiations in both visible and VUV range are larger in double ring configuration than that of the rectangular configurations at the same discharge operating conditions. To clearly understand the difference, the imaging of the discharge using ICCD camera and particle-in-cell simulation using VORPAL have also been carried out. The effect of ion diffusion, metastable collision with the anode wall and the nonlinear effects are correlated to explain the results.

  4. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    Science.gov (United States)

    Hedqvist, Anders; Rachlew-Källne, Elisabeth

    1998-09-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and 0741-3335/40/9/004/img1 together with a description of the interpretation and the equipment are presented.

  5. Absorption of acrylates and polysilazanes in the far UVC and the VUV regions

    Energy Technology Data Exchange (ETDEWEB)

    Prager, Lutz, E-mail: lutz.prager@iom-leipzig.de [Leibniz-Institut fuer Oberflaechenmodifizierung e.V. (IOM), Chemical Department, Permoserstr. 15, D-04318 Leipzig (Germany); Wennrich, Luise; Knolle, Wolfgang; Naumov, Sergej; Prager, Andrea [Leibniz-Institut fuer Oberflaechenmodifizierung e.V. (IOM), Chemical Department, Permoserstr. 15, D-04318 Leipzig (Germany)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Absorption coefficients were determined on acrylates and polysilazanes in the VUV spectral range. Black-Right-Pointing-Pointer Coefficients change during irradiation. Black-Right-Pointing-Pointer Quantum-chemical calculations explain the findings. Black-Right-Pointing-Pointer XPS depth profiles reveal degradation effects in a thin surface layer. - Abstract: A simple but reliable method was developed for the determination of wavelength-dependent absorption coefficients in the vacuum-UV (VUV) spectral range 160 nm < {lambda} < 195 nm. Absorption coefficients were determined on thin layers of UV curable compounds like acrylates and of polysilazanes, which are subject to photo-induced conversion into SiO{sub x} layers. Results were discussed in terms of changing values of the absorption coefficients during irradiation. In case of acrylates polymerization leads to the decrease of the absorption coefficients especially in the wavelength range about 195 nm from about 10 {mu}m{sup -1} to about 1 {mu}m{sup -1}. Results of quantum-chemical calculations explain this finding by the depletion of double bonds for which {pi}{pi}* transitions are characteristic. XPS depth profiles reveal the VUV induced degradation of carboxyl and ether functionalities in a thin surface layer corresponding to the penetration depth of the VUV photons.

  6. Compact synchrotron radiation source

    International Nuclear Information System (INIS)

    Liu, N.; Wang, T.; Tian, J.; Lin, Y.; Chen, S.; He, W.; Hu, Y.; Li, Q.

    1985-01-01

    A compact 800 MeV synchrotron radiation source is discussed. The storage ring has a circumference of 30.3 m, two 90 degree and four 45 degree bending magnet sections, two long straight sections and four short straight sections. The radius of the bending magnet is 2.224m. The critical wave length is 24A. The injector is a 15 Mev Microtron Electrons are accelerated from 15 Mev to 800 Mev by ramping the field of the ring. The expected stored current will be around 100 ma

  7. The synchrotron radiation

    International Nuclear Information System (INIS)

    Chevallier, P.

    1994-01-01

    Synchrotron Radiation is a fantastic source of electromagnetic radiation the energy spectrum of which spreads continuously from the far infrared to hard X-rays. For this reason a wide part of the scientific community, fundamentalists as well as industry, is concerned by its use. We shall describe here the main properties of this light source and give two examples of application in the field of characterization of materials: EXAFS (Extended X-Ray Absorption Fine Structure) and X-ray fluorescence. (author). 8 figs., 21 refs

  8. Synchrotron radiation and applications

    International Nuclear Information System (INIS)

    Nenner, I.; Dexpert, H.; Bessiere, M.

    1989-01-01

    Synchrotron radiation gives a very large wavelength spectra from infrared to X-rays. The continuous spectra in the far ultraviolet and X rays and also the brightness of the source enlarge the studies of structural and electronic properties of matter. In a brief review of main applications, the paper presents more particularly absorption, diffusion and diffraction phenomena. Examples taken in inorganic chemistry and condensed matter physics show the power of X-ray aborption spectroscopy and electron spectroscopy methods (angular analysis of photoelectrons and mass spectroscopy) for the study of surfaces and solids. 51 refs [fr

  9. Synchrotron Moessbauer reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, D.L.; Bottyan, L.; Deak, L.; Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics (Hungary); Spiering, H. [Johannes Gutenberg Universitaet Mainz, Institut fuer Anorganische und Analytische Chemie (Germany); Dekoster, J.; Langouche, G. [K.U. Leuven, Instituut voor Kern- en Stralingsfysica (Belgium)

    2000-07-15

    Grazing incidence nuclear resonant scattering of synchrotron radiation can be applied to perform depth-selective phase analysis and to determine the isotopic and magnetic structure of thin films and multilayers. Principles and recent experiments of this new kind of reflectometry are briefly reviewed. Methodological aspects are discussed. Model calculations demonstrate how the orientations of the sublattice magnetisation in ferro- and antiferromagnetic multilayers affect time-integral and time-differential spectra. Experimental examples show the efficiency of the method in investigating finite-stacking, in-plane and out-of-plane anisotropy and spin-flop effects in magnetic multilayers.

  10. Ultra-high vacuum system of the Brookhaven National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, C.L.

    1995-12-31

    The rings of the National Synchrotron Light Source (NSLS) have been supplying light to numerous users for approximately a decade and we recently enjoyed a fully conditioned machine vacuum at design currents. A brief description of the X-Ray storage ring, the VUV storage ring and their current supply is given along with some of their features. The ultra-high vacuum system employed for the storage rings and their advantages for the necessary stored beam environments are discussed including, a brief history of time. After several hundred amp hours of stored beam current operation, very little improvement in machine performance was seen due to conditioning. Sections of the rings were vented, to dry nitrogen and replacement components were pre-baked and pre-argon glow conditioned prior to installation. Very little machine conditioning was needed to return to operation after recovering vacuum due to well established conditioning procedures. All straight sections in the X-Ray ring and the VUV ring have been filled with various insertion devices and most are fully operational. Each storage ring has a computer controlled total pressure and partial pressure monitoring system for the ring and its beam ports, to insure good vacuum.

  11. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  12. Study of the absorption and energy transfer processes in inorganic luminescent materials in the UV and VUV region; Etude des processus d`absorption et de transfert d`energie au sein de materiaux inorganiques luminescents dans le domaine UV et VUV

    Energy Technology Data Exchange (ETDEWEB)

    Mayolet, A

    1995-11-29

    In order to find a green emitting phosphor showing high quantum efficiency and a short decay time which can be used in the color Plasma Display Panels developed by Thomson-TTE-TIV company, a VUV spectrophotometer built at IPN Orsay, using the synchrotron radiation from the SUPER-ACO storage ring as an excitation source, allow us the simultaneous recording of the luminescence excitation and diffuse reflectivity spectra of the inorganic compounds in the UV-VUV range. In addition, this experimental set-up enable us to determine the luminescence quantum efficiency of phosphors in the whole energy range of investigation. The chemical synthesis of rare-earth ortho-- and metaborate and rare-earth ortho- and metaphosphate doped with trivalent lanthanide ions cerium, praseodymium, europium and terbium have been made. The energy variation of the thresholds of the luminescence excitation mechanisms in function of the nature and the structure of the host matrix is discussed. We have determined the influence of the nephelauxetic effect and the crystal field intensity on the energy of the f-d inter-configuration transitions. The variation of the luminescence quantum efficiency of the dopant ion is interpreted through the `impurity bound exciton` model. The systematic comparison of the cerium and terbium trivalent ions spectroscopic properties in the Y(AG)G host lattice series stands to reason that the self-ionized state of the luminescent center plays an important role in the rate of the non radiative relaxation. It is the redox power of the host matrix which imposes to the luminescent center, the energy of this state. (author) 134 refs.

  13. Synchrotron Elettra. Status and perspectives

    International Nuclear Information System (INIS)

    Remec, I.

    1992-01-01

    Synchrotron radiation and the possibilities for its applications are shortly presented. Elettra, the third generation synchrotron, now under construction in Trieste, Italy, is briefly described and its main characteristics are given. Current activities in Slovenia, related to Elettra, are presented. (author) [sl

  14. Atomic physics at high brilliance synchrotron sources: Proceedings

    International Nuclear Information System (INIS)

    Berry, G.; Cowan, P.; Gemmell, D.

    1994-08-01

    This report contains papers on the following topics: present status of SPring-8 and the atomic physics undulator beamline; recent photoabsorption measurements in the rare gases and alkalis in the 3 to 15 keV proton energy region; atomic and molecular physics at LURE; experiments on atoms, ions and small molecules using the new generation of synchrotron radiation sources; soft x-ray fluorescence spectroscopy using tunable synchrotron radiation; soft x-ray fluorescence spectroscopy excited by synchrotron radiation: Inelastic and resonant scattering near threshold; outer-shell photoionization of ions; overview of the APS BESSRC beamline development; the advanced light source: Research opportunities in atomic and molecular physics; Photoionization of the Ba + ion by 4d shell excitation; decay dynamics of inner-shell excited atoms and molecules; absorption of atomic Ca, Cr, Mn and Cu; High-resolution photoelectron studies of resonant molecular photoionization; radiative and radiationless resonant raman scattering by synchrotron radiation; auger spectrometry of atoms and molecules; some thoughts of future experiments with the new generation of storage rings; Electron spectroscopy studies of argon K-shell excitation and vacancy cascades; ionization of atoms by high energy photons; ion coincidence spectroscopy on rare gas atoms and small molecules after photoexcitation at energies of several keV; an EBIS for use with synchrotron radiation photoionization of multiply charged ions and PHOBIS; gamma-2e coincidence measurements the wave of the future in inner-shell electron spectroscopy; recoil momentum spectroscopy in ion-atom and photon-atom collisions; a study of compton ionization of helium; future perspectives of photoionization studies at high photon energies; and status report on the advanced photon source. These papers have been cataloged separately elsewhere

  15. Stanford Synchrotron Radiation Laboratory. Activity report for 1988

    Energy Technology Data Exchange (ETDEWEB)

    Cantwell, K. [ed.

    1996-01-01

    For SSRL operations, 1988 was a year of stark contrasts. The first extended PEP parasitic running since the construction of our two beam lines on that storage ring took place in November and December. Four experiments discussed below, were performed and detailed operational procedures which allowed synchrotron radiation an high energy users to coexist were established. SSRL anticipates that there will be significant amounts of beam time when PEP is run again for high energy physics. On the other hand, activity on SPEAR consisted of brief parasitic running on the VUV lines in December when the ring was operated at 1.85 GeV for colliding beam experiments. There was no dedicated SPEAR running throughout the entire calendar year. This is the first time since dedicated SPEAR operation was initiated in 1980 that there was no such running. The decision was motivated by both cost and performance factors, as discussed in Section 1 of this report. Fortunately, SLAC and SSRL have reached an agreement on SPEAR and PEP dedicated time charges which eliminates the cost volatility which was so important in the cancellation of the June-July dedicated SPEAR run. As discussed in Section 2, the 3 GeV SPEAR injector construction is proceeding on budget and on schedule. The injector will overcome the difficulties associated with the SLC-era constraint of only two injections per day. SSR and SLAC have also embarked on a program to upgrade SPEAR to achieve high reliability and performance. As a consequence, SSRL`s users may anticipate a highly effective SPEAR by 1991, at the latest. At that time, SPEAR is expected to be fully dedicated to synchrotron radiation research and operated by SSRL. Also contained in this report is a discussion of the improvements to SSRL`s experimental facilities and highlights of the experiments of the past year.

  16. Stanford Synchrotron Radiation Laboratory. Activity report for 1988

    International Nuclear Information System (INIS)

    Cantwell, K.

    1996-01-01

    For SSRL operations, 1988 was a year of stark contrasts. The first extended PEP parasitic running since the construction of our two beam lines on that storage ring took place in November and December. Four experiments discussed below, were performed and detailed operational procedures which allowed synchrotron radiation an high energy users to coexist were established. SSRL anticipates that there will be significant amounts of beam time when PEP is run again for high energy physics. On the other hand, activity on SPEAR consisted of brief parasitic running on the VUV lines in December when the ring was operated at 1.85 GeV for colliding beam experiments. There was no dedicated SPEAR running throughout the entire calendar year. This is the first time since dedicated SPEAR operation was initiated in 1980 that there was no such running. The decision was motivated by both cost and performance factors, as discussed in Section 1 of this report. Fortunately, SLAC and SSRL have reached an agreement on SPEAR and PEP dedicated time charges which eliminates the cost volatility which was so important in the cancellation of the June-July dedicated SPEAR run. As discussed in Section 2, the 3 GeV SPEAR injector construction is proceeding on budget and on schedule. The injector will overcome the difficulties associated with the SLC-era constraint of only two injections per day. SSR and SLAC have also embarked on a program to upgrade SPEAR to achieve high reliability and performance. As a consequence, SSRL's users may anticipate a highly effective SPEAR by 1991, at the latest. At that time, SPEAR is expected to be fully dedicated to synchrotron radiation research and operated by SSRL. Also contained in this report is a discussion of the improvements to SSRL's experimental facilities and highlights of the experiments of the past year

  17. Activity report of Synchrotron Radiation Laboratory, ISSP. 1983 ed.

    International Nuclear Information System (INIS)

    1983-01-01

    The 6th issue of the Activity Report covers scientific activities during 1983 at the Synchrotron Radiation Laboratory of ISSP. Main breakthroughs in the machine physics aspect during the period are twofold. One is the successful operation of Landau Cavity which resulted in suppression of the light fluctuation caused by beam instability. The second is the improvement in the light quality for time-resolved spectroscopy at the single-bunch operation mode, which was achieved by introducing new techniques into the RF knock-out procedure. As for the solid state physics researches, an impressive development has been observed toward two directions. One is in the spectroscopic studies for elucidating the electronic structure of materials with a variety of recent interests of their own. The other is in the photoelectron spectroscopy, which has been currently inspired by the new physics such as in the resonance enhancement phenomena of various origins. The VUV-SX spectroscopy is now established as one of the powerful methods in solid state physics research, no longer just an exotic branch of spectroscopy. (author)

  18. Proton synchrotron accelerator theory

    International Nuclear Information System (INIS)

    Wilson, E.J.N.

    1977-01-01

    This is the text of a series of lectures given as part of the CERN Academic Training Programme and primarily intended for young engineers and technicians in preparation for the running-in of the 400 GeV Super Proton Synchrotron (SPS). Following the definition of basic quantities, the problems of betatron motion and the effect of momentum spread and orbital errors on the transverse motion of the beam are reviewed. Consideration is then given to multipole fields, chromaticity and non-linear resonances. After dealing with basic relations governing longitudinal beam dynamics, the space-charge, resistive-wall and other collective effects are treated, with reference to precautions in the SPS to prevent their occurrence. (Auth.)

  19. A Green Method to Determine VUV (185 nm) Fluence Rate Based on Hydrogen Peroxide Production in Aqueous Solution.

    Science.gov (United States)

    Yang, Laxiang; Li, Mengkai; Li, Wentao; Bolton, James R; Qiang, Zhimin

    2018-02-19

    A mini-fluidic vacuum ultraviolet/ultraviolet (VUV/UV) photoreaction system (MVPS) was developed in our previous study. Based on the MVPS, a green method to determine VUV fluence rate has been developed using the production rate of H 2 O 2 when water is exposed to 185 nm VUV. The H 2 O 2 production followed pseudo-zero-order reaction kinetics well over the first 10 min of VUV/UV exposure. This new method was well calibrated with a standard cis-cyclooctene cis-trans photoisomerization actinometer as recommended by the International Union of Pure and Applied Chemistry. The apparent quantum yield for H 2 O 2 production by 185 nm VUV irradiation of water was determined to be 0.024 ± 0.002. As the solution pH increased from 5.0 to 8.0, the H 2 O 2 production rate decreased from 0.83 to 0.40 μM min -1 . Dissolved oxygen had a negligible influence on the H 2 O 2 production. This study proposes a novel VUV fluence rate determination method with advantages of non-toxicity, low detection limits, low costs and convenience, and it can be used as a good alternative to traditional actinometers. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Real-time monitoring of trace-level VOCs by an ultrasensitive compact lamp-based VUV photoionization mass spectrometer

    Science.gov (United States)

    Sun, W. Q.; Shu, J. N.; Zhang, P.; Li, Z.; Li, N. N.; Liang, M.; Yang, B.

    2015-06-01

    In this study, we report on the development of a compact lamp-based vacuum ultraviolet (VUV) photoionization mass spectrometer (PIMS; hereafter referred to as VUV-PIMS) in our laboratory; it is composed of a radio frequency-powered VUV lamp, a VUV photoionizer, an ion-immigration region, and a reflection time-of-flight mass spectrometer. By utilizing the novel photoionizer consisting of a photoionization cavity and a VUV light baffle, extremely low background noise was obtained. An ultrasensitive detection limit (2σ) of 3 pptv was achieved for benzene after an acquisition time of 10 s. To examine its potential for application in real-time sample monitoring, the developed VUV-PIMS was employed for the continuous measurement of urban air for six days in Beijing, China. Strong signals of trace-level volatile organic compounds such as benzene and its alkylated derivatives were observed in the mass spectra. These initial experimental results reveal that the instrument can be used for the online monitoring of trace-level species in the atmosphere.

  1. VUV photoionization of acetamide studied by electron/ion coincidence spectroscopy in the 8-24 eV photon energy range

    KAUST Repository

    Schwell, Martin

    2012-01-01

    A VUV photoionization study of acetamide was carried out over the 8-24 eV photon energy range using synchrotron radiation and photoelectron/photoion coincidence (PEPICO) spectroscopy. Threshold photoelectron photoion coincidence (TPEPICO) measurements were also made. Photoion yield curves and branching ratios were measured for the parent ion and six fragment ions. The adiabatic ionization energy of acetamide was determined as I.E. (1 2A′) = (9.71 ± 0.02) eV, in agreement with an earlier reported photoionization mass spectrometry (PIMS) value. The adiabatic energy of the first excited state of the ion, 1 2A″, was determined to be ≈10.1 eV. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made. The neutral species lost in the principal dissociative photoionization processes are CH 3, NH 2, NH 3, CO, HCCO and NH 2CO. Heats of formation are derived for all ions detected and are compared with literature values. Some astrophysical implications of these results are discussed. © 2011 Elsevier B.V. All rights reserved.

  2. Effect of the methyl substitution on the combustion of two methylheptane isomers: Flame chemistry using vacuum-ultraviolet (VUV) photoionization mass spectrometry

    KAUST Repository

    Selim, Hatem

    2015-04-16

    Alkanes with one or more methyl substitutions are commonly found in liquid transportation fuels, so a fundamental investigation of their combustion chemistry is warranted. In the present work, stoichiometric low-pressure (20 Torr) burner-stabilized flat flames of 2-methylheptane and 3-methylheptane were investigated. Flame species were measured via time-of-flight molecular-beam mass spectrometry, with vacuum-ultraviolet (VUV) synchrotron radiation as the ionization source. Mole fractions of major end-products and intermediate species (e.g., alkanes, alkenes, alkynes, aldehydes, and dienes) were quantified axially above the burner surface. Mole fractions of several free radicals were also measured (e.g., CH3, HCO, C2H3, C3H3, and C3H5). Isomers of different species were identified within the reaction pool by an energy scan between 8 and 12 eV at a distance of 2.5 mm away from the burner surface. The role of methyl substitution location on the alkane chain was determined via comparisons of similar species trends obtained from both flames. The results revealed that the change in CH3 position imposed major differences on the combustion of both fuels. Comparison with numerical simulations was performed for kinetic model testing. The results provide a comprehensive set of data about the combustion of both flames, which can enhance the erudition of both fuels combustion chemistry and also improve their chemical kinetic reaction mechanisms. © 2015 American Chemical Society.

  3. Potential applications of a dual-sweep streak camera system for characterizing particle and photon beams of VUV, XUV, and x-ray FELS

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. [Argonne National Lab., IL (United States)

    1995-12-31

    The success of time-resolved imaging techniques in the Characterization of particle beams and photon beams of the recent generation of L-band linac-driven or storage ring FELs in the infrared, visible, and ultraviolet wavelength regions can be extended to the VUV, XUV, and x-ray FELs. Tests and initial data have been obtained with the Hamamatsu C5680 dual-sweep streak camera system which includes a demountable photocathode (thin Au) assembly and a flange that allows windowless operation with the transport vacuum system. This system can be employed at wavelengths shorter than 100 nm and down to 1 {Angstrom}. First tests on such a system at 248-nm wavelengths have been performed oil the Argonne Wakefield Accelerator (AWA) drive laser source. A quartz window was used at the tube entrance aperture. A preliminary test using a Be window mounted on a different front flange of the streak tube to look at an x-ray bremsstrahlung source at the AWA was limited by photon statistics. This system`s limiting resolution of {sigma}{approximately}1.1 ps observed at 248 nm would increase with higher incoming photon energies to the photocathode. This effect is related to the fundamental spread in energies of the photoelectrons released from the photocathodes. Possible uses of the synchrotron radiation sources at the Advanced Photon Source and emerging short wavelength FELs to test the system will be presented.

  4. The European Synchrotron Radiation Facility

    DEFF Research Database (Denmark)

    Buras, B.; Materlik, G.

    1986-01-01

    In recent years, X-ray synchrotron radiation became a powerful tool for studies of condensed matter, and in view of that a proposal for the construction of a European Synchrotron Radiation Facility (ESRF) was elaborated in some detail by the European Synchrotron Radiation Project. The heart...... by a great flexibility and a small emittance (7×10−9 rad m) leading to a very high brilliance (1019 photons/(s mm2 mrad2) in a relative bandwidth of 0.1% in case of a 1 Å undulator). The overview, as seen from the users point of view, gives a brief account of the storage ring, emitted radiation...

  5. Use of a synchrotron radiation x-ray microprobe for elemental analysis at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1980-01-01

    The National Synchrotron Light Source (NSLS) is a facility consisting of a 700 MeV and a 2.5 GeV electron storage ring and dedicated to providing synchrotron radiation in the energy range from the vacuum ultraviolet to high energy x rays. Some of the properties of synchrotron radiation that contribute to its usefulness for x-ray fluorescence are: a continuous, tunable energy spectrum, strong collimation in the horizontal plane, high polarization in the storage ring plane, and relatively low energy deposition. The highest priority is for the development of an x-ray microprobe beam line capable of trace analysis in the parts per million range with spatial resolution as low as one micrometer. An eventual capability for bulk sample analysis is also planned with sensitivities in the more favorable cases beings low as 50 parts per billion in dry biological tissue. The microprobe technique has application to a variety of fields including the geological, medical, materials and environmental sciences. Examples of investigations include multielemental trace analysis across grain boundaries for the study of diffusion and cooling processes in geological and materials sciences samples; in leukocytes and other types of individual cells for studying the relationship between trace element concentrations and disease or nutrition; and in individual particles in air pollution samples

  6. National Synchrotron Light Source annual report 1991

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system

  7. National Synchrotron Light Source annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.L.; Lazarz, N.M. (eds.)

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  8. Characterization of Vacuum Ultraviolet (VUV) Radiation for the Development of a Fluorescent Lamp

    International Nuclear Information System (INIS)

    Khatun, Hasina; Sharma, A. K.; Barhai, P. K.

    2011-01-01

    A negative unipolar pulsed voltage is applied to study internal electrical parameters of the xenon filled dielectric barrier discharge (DBD) sources. The VUV radiation emitted from these sources is characterized by means of the photoluminescence intensity of the red phosphor pellet. The red phosphor converts the VUV radiation into visible radiation and the emission spectra include a peak at 619.56 nm. The emission characteristics of the red phosphor are analyzed in terms of the pressure-distance (pd), rise time and frequency of the pulsed voltage waveform. The emission intensity measured at different operational conditions confirms that the formation and decay of the xenon excimer, Xe 2 *, increase with the increase in reduced electric field, E/N. After exceeding certain limits of E/N, the intensity of Xe 2 * decreases rapidly. (plasma technology)

  9. Luminescence mechanism in doubly Gd, Nd-codoped fluoride crystals for VUV scintillators

    Czech Academy of Sciences Publication Activity Database

    Pejchal, Jan; Fukuda, K.; Babin, Vladimir; Kurosawa, S.; Yokota, Y.; Yoshikawa, A.; Nikl, Martin

    2016-01-01

    Roč. 169, Jan (2016), s. 682-689 ISSN 0022-2313. [International Conference on Luminescence and Optical Spectroscopy of Condensed Matter /17./. Wroclaw, 13.07.2014-18.07.2014] R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : barium–lutetium–yttrium fluoride * lutetium fluoride * scintillator * VUV luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.686, year: 2016

  10. Degradation of Solar Array Components in a Combined UV/VUV High Temperature Test Environment

    Directory of Open Access Journals (Sweden)

    Nömayr Christel

    2017-01-01

    A design verification test under UV/VUV conditions of sun exposed materials and technologies on component level is presented which forms part of the overall verification and qualification of the solar array design of the MTM and MPO. The test concentrates on the self-contamination aspects and the resulting performance losses of the solar array under high intensity and elevated temperature environment representative for the photovoltaic assembly (PVA.

  11. Tunable surface plasmon devices

    Science.gov (United States)

    Shaner, Eric A [Rio Rancho, NM; Wasserman, Daniel [Lowell, MA

    2011-08-30

    A tunable extraordinary optical transmission (EOT) device wherein the tunability derives from controlled variation of the dielectric constant of a semiconducting material (semiconductor) in evanescent-field contact with a metallic array of sub-wavelength apertures. The surface plasmon resonance wavelength can be changed by changing the dielectric constant of the dielectric material. In embodiments of this invention, the dielectric material is a semiconducting material. The dielectric constant of the semiconducting material in the metal/semiconductor interfacial region is controllably adjusted by adjusting one or more of the semiconductor plasma frequency, the concentration and effective mass of free carriers, and the background high-frequency dielectric constant in the interfacial region. Thermal heating and/or voltage-gated carrier-concentration changes may be used to variably adjust the value of the semiconductor dielectric constant.

  12. Inverse comptonization vs. thermal synchrotron

    International Nuclear Information System (INIS)

    Fenimore, E.E.; Klebesadel, R.W.; Laros, J.G.

    1983-01-01

    There are currently two radiation mechanisms being considered for gamma-ray bursts: thermal synchrotron and inverse comptonization. They are mutually exclusive since thermal synchrotron requires a magnetic field of approx. 10 12 Gauss whereas inverse comptonization cannot produce a monotonic spectrum if the field is larger than 10 11 and is too inefficient relative to thermal synchrotron unless the field is less than 10 9 Gauss. Neither mechanism can explain completely the observed characteristics of gamma-ray bursts. However, we conclude that thermal synchrotron is more consistent with the observations if the sources are approx. 40 kpc away whereas inverse comptonization is more consistent if they are approx. 300 pc away. Unfortunately, the source distance is still not known and, thus, the radiation mechanism is still uncertain

  13. Regions compete for French synchrotron

    CERN Multimedia

    2000-01-01

    Ten regions in France have placed bids to host the planned national synchrotron Soleil. Leading contenders include a joint bid from Ile-de-France and Essonne for Orsay, offering FF 1 billion towards the construction costs (2 paragraphs).

  14. Proton synchrotrons for cancer therapy

    CERN Document Server

    Coutrakon, G

    2000-01-01

    Synchrotrons offer several advantages over linear accelerators and cyclotrons for cancer treatment. Their compact size, low radiation shielding requirements, and ease of energy control make them ideally suited to this application. In this paper, we examine the requirements for therapy machines and compare the capabilities of linear accelerators, cyclotrons, and synchrotrons, which are currently being used, or are in development, for cancer treatment. At Loma Linda University Medical Center, a 250-MeV proton synchrotron has been in use to treat more than five thousand patients in the last 10 yr. The capabilities of this accelerator will be presented as well as some of the new synchrotrons which are being built or designed for future therapy applications. (0 refs).

  15. Synchrotron light source data book

    International Nuclear Information System (INIS)

    Murphy, J.

    1989-01-01

    The ''Synchrotron Light Source Data Book'' is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-ray Data Booklet, edited by D. Vaughan (LBL PUB-490), address the 'use' of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in 'practical units' and a brief description of many of the existing and planned light source lattices

  16. Reshuffle lifts French synchrotron hopes

    CERN Multimedia

    McCabe, H

    2000-01-01

    The sacking of Claude Allegre as research minister has raised doubts over the level of France's promised participation in the construction of Diamond but reawakened French hopes that the synchrotron Soleil may now be built (1 page).

  17. Tunable laser optics

    CERN Document Server

    Duarte, FJ

    2015-01-01

    This Second Edition of a bestselling book describes the optics and optical principles needed to build lasers. It also highlights the optics instrumentation necessary to characterize laser emissions and focuses on laser-based optical instrumentation. The book emphasizes practical and utilitarian aspects of relevant optics including the essential theory. This revised, expanded, and improved edition contains new material on tunable lasers and discusses relevant topics in quantum optics.

  18. Tunable high pressure lasers

    Science.gov (United States)

    Hess, R. V.

    1976-01-01

    Atmospheric transmission of high energy CO2 lasers is considerably improved by high pressure operation which, due to pressure broadening, permits tuning the laser lines off atmospheric absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers and for vertical transmission through the entire atmosphere. Applications of tunable high pressure CO2 lasers to energy transmission and to remote sensing are discussed along with initial efforts in tuning high pressure CO2 lasers.

  19. VUV emission spectroscopy combined with H- density measurements in the ion source Prometheus I

    Science.gov (United States)

    Aleiferis, S.; Laulainen, J.; Svarnas, P.; Tarvainen, O.; Bacal, M.; Béchu, S.

    2017-08-01

    "Prometheus I" is a volume H- negative ion source, driven by a network of dipolar electron cyclotron resonance (ECR; 2.45 GHz) modules. The vacuum-ultraviolet (VUV) emission spectrum of low-temperature hydrogen plasmas may be related to molecular and atomic processes involved directly or indirectly in the production of negative ions. In this work, VUV spectroscopy has been performed in the above source, Prometheus I, both in the ECR zones and the bulk (far from ECR zones and surfaces) plasma. The acquired VUV spectra are correlated with the negative ion densities, as measured by means of laser photodetachment, and the possible mechanisms of negative ion production are considered. The well-established H- formation process of dissociative attachment to vibrationally excited molecules is evaluated, while an additional production path (i.e. neutral resonant ionization) is tested due to the recently attracted interest. The obtained results indicate that for the source Prometheus I, the dominant formation process is dissociative attachment.

  20. VUV/UV light inducing accelerated phenol degradation with a low electric input.

    Science.gov (United States)

    Li, Mengkai; Wen, Dong; Qiang, Zhimin; Kiwi, John

    2017-01-23

    This study presents the first evidence for the accelerated degradation of phenol by Fenton's reagent in a mini-fluidic VUV/UV photoreaction system (MVPS). A low-pressure mercury lamp used in the MVPS led to a complete degradation of phenol within 4-6 min. The HO˙ and HO 2 ˙ originating from both Fenton's reagent and VUV photolysis of water were identified with suitable radical scavengers. The effects of initial concentrations of phenol, H 2 O 2 and Fe 3+ as well as solution pH on phenol degradation kinetics were examined. Increasing the initial phenol concentration slowed down the phenol degradation, whereas increasing the initial H 2 O 2 or Fe 3+ concentration accelerated the phenol degradation. The optimal solution pH was 3.7. At both 254 and 185 nm, increasing phenol concentration enhanced its absorption for the incident photons. The reaction mechanism for the degradation of phenol was suggested consistent with the results obtained. This study indicates that the VUV/UV photo-Fenton process has potential applications in the treatment of industrial wastewater containing phenol and related aromatic pollutants.

  1. Quantification of isomerically summed hydrocarbon contributions to crude oil by carbon number, double bond equivalent, and aromaticity using gas chromatography with tunable vacuum ultraviolet ionization.

    Science.gov (United States)

    Nowak, Jeremy A; Weber, Robert J; Goldstein, Allen H

    2018-03-12

    The ability to structurally characterize and isomerically quantify crude oil hydrocarbons relevant to refined fuels such as motor oil, diesel, and gasoline represents an extreme challenge for chromatographic and mass spectrometric techniques. This work incorporates two-dimensional gas chromatography coupled to a tunable vacuum ultraviolet soft photoionization source, the Chemical Dynamics Beamline 9.0.2 of the Advanced Light Source at the Lawrence Berkeley National Laboratory, with a time-of-flight mass spectrometer (GC × GC-VUV-TOF) to directly characterize and isomerically sum the contributions of aromatic and aliphatic species to hydrocarbon classes of four crude oils. When the VUV beam is tuned to 10.5 ± 0.2 eV, both aromatic and aliphatic crude oil hydrocarbons are ionized to reveal the complete chemical abundance of C 9 -C 30 hydrocarbons. When the VUV beam is tuned to 9.0 ± 0.2 eV only aromatic hydrocarbons are ionized, allowing separation of the aliphatic and aromatic fractions of the crude oil hydrocarbon chemical classes in an efficient manner while maintaining isomeric quantification. This technique provides an effective tool to determine the isomerically summed aromatic and aliphatic hydrocarbon compositions of crude oil, providing information that goes beyond typical GC × GC separations of the most dominant hydrocarbon isomers.

  2. Ionization Thresholds of Small Carbon Clusters: Tunable VUVExperiments and Theory

    Energy Technology Data Exchange (ETDEWEB)

    Belau, Leonid; Wheeler, Steven E.; Ticknor, Brian W.; Ahmed,Musahid; Leone, Stephen R.; Allen, Wesley D.; Schaefer III, Henry F.; Duncan, Michael A.

    2007-07-31

    Small carbon clusters (Cn, n = 2-15) are produced in amolecular beam by pulsed laser vaporization and studied with vacuumultraviolet (VUV) photoionization mass spectrometry. The required VUVradiation in the 8-12 eV range is provided by the Advanced Light Source(ALS) at the Lawrence Berkeley National Laboratory. Mass spectra atvarious ionization energies reveal the qualitative relative abundances ofthe neutral carbon clusters produced. By far the most abundant species isC3. Using the tunability of the ALS, ionization threshold spectra arerecorded for the clusters up to 15 atoms in size. The ionizationthresholds are compared to those measured previously with charge-transferbracketing methods. To interpret the ionization thresholds for differentcluster sizes, new ab initio calculations are carried out on the clustersfor n = 4-10. Geometric structures are optimized at the CCSD(T) levelwith cc-pVTZ (or cc-pVDZ) basis sets, and focal point extrapolations areapplied to both neutral and cation species to determine adiabatic andvertical ionization potentials. The comparison of computed and measuredionization potentials makes it possible to investigate the isomericstructures of the neutral clusters produced in this experiment. Themeasurements are inconclusive for the n = 4-6 species because ofunquenched excited electronic states. However, the data provide evidencefor the prominence of linear structures for the n = 7, 9, 11, 13 speciesand the presence of cyclic C10.

  3. Depth profiling the solid electrolyte interphase on lithium titanate (Li4Ti5O12) using synchrotron-based photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Nordh, Tim; Younesi, Reza; Brandell, Daniel

    2015-01-01

    The presence of a surface layer on lithium titanate (Li4Ti5O12, LTO) anodes, which has been a topic of debate in scientific literature, is here investigated with tunable high surface sensitive synchrotron-based photoelectron spectroscopy (PES) to obtain a reliable depth profile of the interphase...

  4. Tunable X-ray source

    Science.gov (United States)

    Boyce, James R [Williamsburg, VA

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  5. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...

  6. Tunable resistance coatings

    Science.gov (United States)

    Elam, Jeffrey W.; Mane, Anil U.

    2015-08-11

    A method and article of manufacture of intermixed tunable resistance composite materials containing at least one of W:Al.sub.2O.sub.3, Mo:Al.sub.2O.sub.3 or M:Al.sub.2O.sub.3 where M is a conducting compound containing either W or Mo. A conducting material and an insulating material are deposited by such methods as ALD or CVD to construct composites with intermixed materials which do not have structure or properties like their bulk counterparts.

  7. MEMS Tunable nanostructured photodetector

    DEFF Research Database (Denmark)

    Learkthanakhachon, Supannee

    This thesis was prepared at the department of Photonics Engineering, the Technical University of Denmark in fulfilment of the requirements for acquiring a Philosophiae doctor (Ph.D.) in Photonics Engineering. The thesis deals with the design and fabrication of tunable resonant......-cavity-enhanced photodetector using dielectric subwavelength gratings as reflectors operating at 1550 nm optical communication wavelength. The main work in this thesis divided equally into device design and process development. The properties of dielectric subwavelength grating are described. The main result of the thesis...

  8. Tunable multiwalled nanotube resonator

    Science.gov (United States)

    Jensen, Kenneth J; Girit, Caglar O; Mickelson, William E; Zettl, Alexander K; Grossman, Jeffrey C

    2013-11-05

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  9. Tunable Nitride Josephson Junctions.

    Energy Technology Data Exchange (ETDEWEB)

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lewis, Rupert M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfley, Steven L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolak, Matthaeus [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We have developed an ambient temperature, SiO2/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the TaxN barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlOx barriers for low - power, high - performance computing.

  10. Integrated tunable CMOS laser.

    Science.gov (United States)

    Creazzo, Timothy; Marchena, Elton; Krasulick, Stephen B; Yu, Paul K L; Van Orden, Derek; Spann, John Y; Blivin, Christopher C; He, Lina; Cai, Hong; Dallesasse, John M; Stone, Robert J; Mizrahi, Amit

    2013-11-18

    An integrated tunable CMOS laser for silicon photonics, operating at the C-band, and fabricated in a commercial CMOS foundry is presented. The III-V gain medium section is embedded in the silicon chip, and is hermetically sealed. The gain section is metal bonded to the silicon substrate creating low thermal resistance into the substrate and avoiding lattice mismatch problems. Optical characterization shows high performance in terms of side mode suppression ratio, relative intensity noise, and linewidth that is narrow enough for coherent communications.

  11. Spin echo in synchrotrons

    Directory of Open Access Journals (Sweden)

    Alexander W. Chao

    2007-01-01

    Full Text Available As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency Δν_{spin} of the beam (particularly due to its energy spread is sufficiently large that the spin precession phases of individual particles smear out completely during the time τ between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference-overlap effect and a spin echo effect. This paper is to address these two effects. The interference-overlap effect occurs when Δν_{spin} is too small, or when τ is too short, to complete the smearing process. In this case, the two resonance crossings overlap each other, and the final polarization exhibits constructive or destructive interference patterns depending on the exact value of τ. Typically, the beam’s energy spread is large and this interference-overlap effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time τ after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when τ is very large, and could be a sensitive (albeit challenging way to experimentally test the intricate spin dynamics in a synchrotron

  12. Contact microscopy with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Panessa-Warren, B.J.

    1985-10-01

    Soft x-ray contact microscopy with synchrotron radiation offers the biologist and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM or SEM methods (i.e. hydrated samples, samples easily damaged by an electron beam, electron dense samples, thick specimens, unstained low contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash x-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of x-ray wavelengths or specific individual wavelengths which optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of x-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples. 24 refs., 10 figs.

  13. Tunable Topological Phononic Crystals

    KAUST Repository

    Chen, Zeguo

    2016-05-27

    Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.

  14. Electrothermally Tunable Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2017-03-18

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated microelectromechanical arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. An electrothermal voltage is applied between the anchors of the beam generating a current that controls the axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to an increase in its curvature, thereby increasing its resonance frequencies. We show here that the first resonance frequency can increase monotonically up to twice its initial value. We show also that after some electrothermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators. Analytical results based on the nonlinear Euler Bernoulli beam theory are generated and compared with the experimental data and the results of a multi-physics finite-element model. A good agreement is found among all the results. [2016-0291

  15. Synchrotron radiation and structural proteomics

    CERN Document Server

    Pechkova, Eugenia

    2011-01-01

    This book presents an overview of the current state of research in both synchrotron radiation and structural proteomics from different laboratories worldwide. The book presents recent research results in the most advanced methods of synchrotron radiation analysis, protein micro- and nano crystallography, X-ray scattering and X-ray optics, coherent X-Ray diffraction, and laser cutting and contactless sample manipulation are described in details. The book focuses on biological applications and highlights important aspects such as radiation damage and molecular modeling.

  16. Efficient degradation of H2S over transition metal modified TiO2 under VUV irradiation: Performance and mechanism

    Science.gov (United States)

    Liu, Gaoyuan; Ji, Jian; Hu, Peng; Lin, Sixin; Huang, Haibao

    2018-03-01

    Odor pollution causes great harm to the atmospheric environment and human health. H2S, as an odor gas, is highly toxic and corrosive and thus requires removal efficiently. In this study, TiO2 catalysts modified by transition metals including Mn, Cu, Ni and Co, were prepared using a modified sol-gelatin method and tested under UV-PCO or VUV-PCO process. H2S degradation was great enhanced in VUV-PCO compared with conventional UV-PCO. Among the catalysts, 1 wt% Mn-TiO2 showed the highest removal efficiency of 89.9%, which is 30 times higher than that under 254 nm UV irradiation. Residual ozone in the outlet can be completely eliminated by Mn-TiO2. Photocatalytic oxidation, photolysis and ozone-assisted catalytic oxidation all involved in the VUV-PCO process and their contribution were determined by H2S removal efficiency.

  17. Far-infrared transition and diffraction radiation. Pt. 2. The THz beamline at the VUV-FEL linac

    International Nuclear Information System (INIS)

    Casalbuoni, S.; Schmidt, B.; Schmueser, P.; Steffen, B.; Hamburg Univ.

    2006-01-01

    In order to facilitate longitudinal bunch diagnostics with high-resolution interferometric or spectroscopic devices outside the VUV-FEL tunnel we have designed a Tera-Hertz beamline at the 140 m position of the VUV-FEL linac. The vacuum chamber housing the transition and diffraction radiation screens is located between the last acceleration module and the collimator section in front of the undulator. In Part I of this report we have presented a general scheme for computing the generation, diffraction and optical propagation of transition and diffraction radiation. In the present Part II we describe the design, technical layout and optical performance of the THz beamline at the VUV-FEL and show first measurements. (orig.)

  18. Combined UV-C/H2O2-VUV processes for the treatment of an actual slaughterhouse wastewater.

    Science.gov (United States)

    Naderi, Kambiz Vaezzadeh; Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab; Abdekhodaie, Mohammad Jafar

    2017-05-04

    In this study, a three-factor, three-level Box-Behnken design with response surface methodology were used to maximize the TOC removal and minimize the H 2 O 2 residual in the effluent of the combined UV-C/H 2 O 2 -VUV system for the treatment of an actual slaughterhouse wastewater (SWW) collected from one of the meat processing plants in Ontario, Canada. The irradiation time and the initial concentrations of total organic carbon (TOC o ) and hydrogen peroxide (H 2 O 2o ) were the three predictors, as independent variables, studied in the design of experiments. The multiple response approach was used to obtain desirability response surfaces at the optimum factor settings. Subsequently, the optimum conditions to achieve the maximum percentage TOC removal of 46.19% and minimum H 2 O 2 residual of 1.05% were TOC o of 213 mg L -1 , H 2 O 2o of 450 mg L -1 , and irradiation time of 9 min. The attained optimal operating conditions were validated with a complementary test. Consequently, the TOC removal of 45.68% and H 2 O 2 residual of 1.03% were achieved experimentally, confirming the statistical model reliability. Three individual processes, VUV alone, VUV/H 2 O 2 , and UV-C/H 2 O 2 , were also evaluated to compare their performance for the treatment of the actual SWW using the optimum parameters obtained in combined UV-C/H 2 O 2 -VUV processes. Results confirmed that an adequate combination of the UV-C/H 2 O 2 -VUV processes is essential for an optimized TOC removal and H 2 O 2 residual. Finally, respirometry analyses were also performed to evaluate the biodegradability of the SWW and the BOD removal efficiency of the combined UV-C/H 2 O 2 -VUV processes.

  19. X-ray fluorescence with synchrotron radiation

    International Nuclear Information System (INIS)

    Raman, S.; Sparks, C.J. Jr.

    1978-01-01

    An experimental set-up for x-ray fluorescence analysis with synchrotron radiation was built and installed at the Stanford Synchrotron Radiation Project. X-ray spectra were taken from numerous and varied samples in order to assess the potential of synchrotron radiation as an excitation source for multielement x-ray fluorescence analysis. For many applications, the synchrotron radiation technique is shown to be superior to other x-ray fluorescence methods, especially those employing electrons and protons as excitation sources

  20. Technical development of UV-C- and VUV-photochemically induced oxidative degradation processes.

    Science.gov (United States)

    Braun, A M; Pintori, I G; Popp, H P; Wakahata, Y; Wörner, M

    2004-01-01

    Technical development work is presented, where the VUV photochemically induced oxidative degradation is used: (i) for analytic purposes, and (ii) for small to medium scale (lamp/reactor combination may be used for functionalization purposes prior to e.g. GC or HPLC analyses. In the second case, mass transfer limitations between the non-irradiated bulk volume and the irradiated volume are overcome by the electrochemical generation of molecular oxygen within or close to the irradiated volume and by the design of the photochemical part of the reactor.

  1. Gain length dependence on phase shake in the VUV-FEL at the TESLA Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Pflueger, J. [DESY/HASYLAB, Hamburg (Germany); Schneidmiller, E.A. [Automatic Systems Corporation, Samara (Russian Federation); Pierini, P. [INFN, Milano (Italy)

    1995-12-31

    The TTF VUV FEL, which is in its design stage at DESY, consists of a 30 m long SASE FEL which will radiate around 6 nm, driven by a superconducting linac with final energy of 1 GeV. One of the important issues in its design is the undulator performance, which is studied in this paper. The present setup, including FODO lattice, is discussed in this paper. Results of simulations, including the realistic wiggler field errors and beam stearing, are presented. Dependence of the performance, in particular the gain and saturation length as well as the saturation peak power, on the wiggler field errors is discussed.

  2. Behaviour of large-area avalanche photodiodes under intense magnetic fields for VUV- visible- and X-ray photon detection

    International Nuclear Information System (INIS)

    Fernandes, L.M.P.; Antognini, A.; Boucher, M.; Conde, C.A.N.; Huot, O.; Knowles, P.; Kottmann, F.; Ludhova, L.; Mulhauser, F.; Pohl, R.; Schaller, L.A.; Santos, J.M.F. dos; Taqqu, D.; Veloso, J.F.C.A.

    2003-01-01

    The behaviour of large-area avalanche photodiodes for X-rays, visible and vacuum-ultra-violet (VUV) light detection in magnetic fields up to 5 T is described. For X-rays and visible light detection, the photodiode pulse amplitude and energy resolution were unaffected from 0 to 5 T, demonstrating the insensitivity of this type of detector to strong magnetic fields. For VUV light detection, however, the photodiode relative pulse amplitude decreases with increasing magnetic field intensity reaching a reduction of about 24% at 5 T, and the energy resolution degrades noticeably with increasing magnetic field

  3. Mid-infrared tunable metamaterials

    Science.gov (United States)

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A; Passmore, Brandon Scott; Jun, Young Chul

    2015-04-28

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  4. Mid-infrared tunable metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A.; Passmore, Brandon Scott

    2017-07-11

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  5. Tunable grating with active feedback

    Science.gov (United States)

    Rosset, Samuel; O'Brien, Benjamin M.; Gisby, Todd; Xu, Daniel; Shea, Herbert R.; Anderson, Iain A.

    2013-04-01

    We report on the use of capacitive self-sensing to operate a DEA-based tunable grating in closed-loop mode. Due to their large strain capabilities, DEAs are key candidates for tunable optics applications. However, the viscoelasticity of elastomers is detrimental for applications that require long-term stability, such as tunable gratings and lenses. We show that capacitive sensing of the electrode strain can be used to suppress the strain drift and increase the response speed of silicone-based actuators. On the other hand, VHB actuators exhibit a time-dependent permittivity, which causes a drift between the device capacitance and its strain.

  6. DESY: Synchrotron and storage rings

    CERN Multimedia

    1972-01-01

    An improvement programme has been under way for several years at the 7.5 GeV électron synchrotron at DESY. In particular it has been designed to increase the accelerated beam intensity, to achieve better quality of the ejected électron beams and photon beams and to improve machine reliability.

  7. Biological physics and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Filhol, J.M.; Chavanne, J. [European Synchrotron Radiation Facility, 38 - Grenoble (France); Weckert, E. [Hasylab at Desy, Hamburg (Germany)] [and others

    2001-07-01

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  8. The Australian synchrotron research program

    International Nuclear Information System (INIS)

    Garrett, R.F.

    1998-01-01

    Full text: The Australian Synchrotron Research Program (ASRP) was established in 1996 under a 5 year grant from the Australian Government, and is managed by ANSTO on behalf of a consortium of Australian universities and research organisations. It has taken over the operation of the Australian National Beamline Facility (ANBF) at the Photon Factory, and has joined two CATS at the Advanced Photon Source: the Synchrotron Radiation Instrumentation CAT (SRI-CAT) and the Consortium for Advanced Radiation Sources (CARS). The ASRP thus manages a comprehensive range of synchrotron radiation research facilities for Australian science. The ANBF is a general purpose hard X-ray beamline which has been in operation at the Photon Factory since 1993. It currently caters for about 35 Australian research teams per year. The facilities available at the ANBF will be presented and the research program will be summarised. The ASRP facilities at the APS comprise the 5 sectors operated by SRI-CAT, BioCARS and ChemMatCARS. A brief description will be given of the ASRP research programs at the APS, which will considerably broaden the scope of Australian synchrotron science

  9. Optical systems for synchrotron radiation

    International Nuclear Information System (INIS)

    Howells, M.R.

    1985-12-01

    Various fundamental topics which underlie the design and use of optical systems for synchrotron radiation are considered from the viewpoint of linear system theory. These topics include the damped harmonic oscillator, free space propagation of an optical field, electromagnetic theory of optical properties of materials, theory of dispersion, and the Kramers-Kronig relations. 32 refs., 5 figs

  10. Biological physics and synchrotron radiation

    International Nuclear Information System (INIS)

    Filhol, J.M.; Chavanne, J.; Weckert, E.

    2001-01-01

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  11. Relaxation experiments with synchrotron radiation

    NARCIS (Netherlands)

    Leupold, O; Bernhard, A; Gerdau, E; Jaschke, J; Ruter, HD; Shvydko, Y; Alp, EE; Hession, P; Hu, M; Sturhahn, W; Sutter, J; Toellner, T; Chumakov, AI; Metge, J; Ruffer, R

    1998-01-01

    Relaxation phenomena show up in standard energy domain Mossbauer spectra via line broadening. The evaluation of such spectra is in most cases done by adopting the stochastic theory mainly developed in the 60s and 70s. Due to the time structure and the polarization of the synchrotron radiation

  12. Tandems as injectors for synchrotrons

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1993-01-01

    This is a review on the use of tandem electrostatic accelerators for injection and fitting of synchrotrons to accelerate intense beams of heavy ions to relativistic energies. The paper emphasizes the need of operating the tandems in pulsed mode for this application. It has been experimentally demonstrated that at present this type of accelerator still provides the most reliable and best performance. (orig.)

  13. Synchrotron radiation and biomedical imaging

    International Nuclear Information System (INIS)

    Luccio, A.

    1986-08-01

    In this lecture we describe the characteristics of Synchrotron radiation as a source of X rays. We discuss the properties of SR arc sources, wigglers, undulators and the use of backscattering of laser light. Applications to angiography, X ray microscopy and tomography are reviewed. 16 refs., 23 figs

  14. Electrothermally Tunable Bridge Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2016-12-05

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator compressed by a force due to electrothermal actuation. We demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally, by passing a DC current through it. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and to simulation results of a multi-physics finite-element model. A good agreement is found among all the results.

  15. High-intensity laser synchrotron x-ray source

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1995-10-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the Laser Synchrotron Light Source (LSLS) concept is still waiting for a convincing demonstration. Available at the BNL's Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power C0 2 laser may be used as prototype LSLS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps C0 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 70 MeV electron bunch. Flashes of well-collimated, up to 9.36-keV (∼ Angstrom) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to a variable e-beam energy. A natural short-term extension of the proposed experiment would be further enhancement of the x-ray flux to a 10 21 -10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 1 TW peak power and electron bunch shortening to 3 ps. The ATF LSLS x-ray beamline, exceeding by orders of magnitude the peak fluxes attained at the National Synchrotron Light Source (NSLS) x-ray storage ring, may become attractive for certain users, e.g., for biological x-ray microscopy. In addition, a terawatt CO 2 laser will enable harmonic multiplication of the x-ray spectrum via nonlinear Compton scattering

  16. Electrostatically Tunable Nanomechanical Shallow Arches

    KAUST Repository

    Kazmi, Syed N. R.

    2017-11-03

    We report an analytical and experimental study on the tunability of in-plane doubly-clamped nanomechanical arches under varied DC bias conditions at room temperature. For this purpose, silicon based shallow arches are fabricated using standard e-beam lithography and surface nanomachining of a highly conductive device layer on a silicon-on-insulator (SOI) wafer. The experimental results show good agreement with the analytical results with a maximum tunability of 108.14% for 180 nm thick arch with a transduction gap of 1 μm between the beam and the driving/sensing electrodes. The high tunability of shallow arches paves the ways for highly tunable band pass filtering applications in high frequency range.

  17. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    International Nuclear Information System (INIS)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-01-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10 -4 for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  18. Production and detection of axion-like particles at the VUV-FEL. Letter of intent

    International Nuclear Information System (INIS)

    Koetz, U.; Ringwald, A.; Tschentscher, T.

    2006-06-01

    Recently, the PVLAS collaboration has reported evidence for an anomalously large rotation of the polarization of light generated in vacuum in the presence of a transverse magnetic field. This may be explained through the production of a new light spin-zero particle coupled to two photons. In this Letter of Intent, we propose to test this hypothesis by setting up a photon regeneration experiment which exploits the photon beam of the Vacuum-UltraViolet Free-Electron Laser VUV-FEL, sent along the transverse magnetic field of a linear arrangement of dipole magnets of size B L ∼ 30 Tm. The high photon energies available at the VUV-FEL increase substantially the expected photon regeneration rate in the mass range implied by the PVLAS anomaly, in comparison to the rate expected at visible lasers of similar power. We find that the particle interpretation of the PVLAS result can be tested within a short running period. The pseudoscalar vs. scalar nature can be determined by varying the direction of the magnetic field with respect to the laser polarization. The mass of the particle can be measured by running at different photon energies. The proposed experiment offers a window of opportunity for a firm establishment or exclusion of the particle interpretation of the PVLAS anomaly before other experiments can compete. (Orig.)

  19. Photofragmentation spectra of halogenated methanes in the VUV photon energy range

    Energy Technology Data Exchange (ETDEWEB)

    Cartoni, Antonella, E-mail: antonella.cartoni@uniroma1.it [Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, Roma 00185 (Italy); Bolognesi, Paola; Fainelli, Ettore; Avaldi, Lorenzo [CNR-IMIP, Area della Ricerca di Roma 1, Monterotondo Scalo (Rm) 00015 (Italy)

    2014-05-14

    In this paper an investigation of the photofragmentation of dihalomethanes CH{sub 2}X{sub 2} (X = F, Cl, Br, I) and chlorinated methanes (CH{sub n}Cl{sub 4−n} with n = 0–3) with VUV helium, neon, and argon discharge lamps is reported and the role played by the different halogen atoms is discussed. Halogenated methanes are a class of molecules used in several fields of chemistry and the study of their physical and chemical proprieties is of fundamental interest. In particular their photodissociation and photoionization are of great importance since the decomposition of these compounds in the atmosphere strongly affects the environment. The results of the present work show that the halogen-loss is the predominant fragmentation channel for these molecules in the VUV photon energy range and confirm their role as reservoir of chlorine, bromine, and iodine atoms in the atmosphere. Moreover, the results highlight the peculiar feature of CH{sub 2}F{sub 2} as a source of both fluorine and hydrogen atoms and the characteristic formation of I{sub 2}{sup +} and CH{sub 2}{sup +} ions from the photofragmentation of the CH{sub 2}I{sub 2} molecule.

  20. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2016-01-01

    On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range.......On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range....

  1. Pneumatically tunable optofluidic dye laser

    OpenAIRE

    Song, W.; Psaltis, D.

    2010-01-01

    We presented a tunable optofluidic dye laser with integrated elastomeric air-gap etalon controlled by air pressure. The chip was fabricated with polydimethylsiloxane (PDMS) via replica molding. It comprises a liquid waveguide and microscale air-gap mirrors providing the feedback. The lasing wavelength is chosen by the interference between two parallel PDMS-air interfaces inside the internal tunable air-gap etalon, of which pneumatic tuning can be realized by inflating the air-gap etalon with ...

  2. Spectral and Radiometric Calibration Using Tunable Lasers

    Science.gov (United States)

    McCorkel, Joel (Inventor)

    2017-01-01

    A tunable laser system includes a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, and a controller operable to simultaneously control parameters of at least the tunable laser, the first optical parametric oscillator, and the adjustable laser cavity to produce a range of wavelengths emitted from the tunable laser system. A method of operating a tunable laser system includes using a controller to simultaneously control parameters of a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, and a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, to produce a range of wavelengths emitted from the tunable laser system.

  3. VUV Pump and Probe of Phase Separation and Oxygen Interstitials in La2NiO4+y Using Spectromicroscopy

    Directory of Open Access Journals (Sweden)

    Antonio Bianconi

    2018-02-01

    Full Text Available While it is known that strongly correlated transition metal oxides described by a multi-band Hubbard model show microscopic multiscale phase separation, little is known about the possibility to manipulate them with vacuum ultraviolet (VUV, 27 eV lighting. We have investigated the photo-induced effects of VUV light illumination of a super-oxygenated La2NiO4+y single crystal by means of scanning photoelectron microscopy. VUV light exposure induces the increase of the density of states (DOS in the binding energy range around Eb = 1.4 eV below EF. The photo-induced states in this energy region have been predicted due to clustering of oxygen interstitials by band structure calculations for large supercell of La2CuO4.125. We finally show that it is possible to generate and manipulate oxygen rich domains by VUV illumination as it was reported for X-ray illumination of La2CuO4+y. This phenomenology is assigned to oxygen-interstitials ordering and clustering by photo-illumination forming segregated domains in the La2NiO4+y surface.

  4. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haibao, E-mail: seabao8@gmail.com [School of Environmental Science and Engineering, Sun Yat-Sen University (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University) (China); Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo [School of Environmental Science and Engineering, Sun Yat-Sen University (China)

    2017-01-01

    Graphical abstract: Mn nanoparticles are highly dispersed on ZSM-5 and most efficient in benzene degradation in the VUV-OZCO process. - Highlights: • Vacuum UV irradiation is well combined with O{sub 3} catalytic oxidation. • O{sub 3} byproducts was used to enhance catalytic oxidation of VOCs. • Mn/ZSM-5 achieved the best catalytic activity for benzene degradation. - Abstract: Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O{sub 3}, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O{sub 3} catalytic decomposition and utilization. Benzene and O{sub 3} removal efficiency reached as high as 97% and 100% after 360 min, respectively. O{sub 3} was catalytically decomposed, generating highly reactive oxidants such as ·OH and ·O for benzene oxidation.

  5. Comparison of different undulator schemes with superimposed alternating gradients for the VUV-FEL at the TESLA Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Pflueger, J.; Nikitina, Y.M. [DESY/HASYLAB, Hamburg (Germany)

    1995-12-31

    For the VUV-FEL at the TESLA Test Facility an undulator with a total length of 30 m is needed. In this study three different approaches to realize an undulator with a sinusoidal plus a superimposed quadrupolar field were studied with the 3D code MAFIA.

  6. Moessbauer spectroscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Bergmann, U.

    1994-01-01

    The short pulse nature of synchrotron radiation makes it possible to perform Moessbauer spectroscopy in the time domain, i.e. instead of measuring the transmitted intensity time integrated as a function of source/absorber velocity, the intensity of the scattered radiation is measured time differential. The resulting time spectrum is essentially source independent and complications in the data analysis which are related to the radioactive source are completely removed. Furthermore, the large brightness and well defined polarization of the synchrotron radiation can, e.g., speed up the data collection and facilitate studies of polarization phenomena. To illustrate these new spectroscopic possibilities, measurements of the temperature dependence and polarization dependence of forward scattering from alpha - sup 5 sup 7 Fe nuclei are presented and discussed 26 refs., 5 figs. (author)

  7. Australian synchrotron light source - (boomerang)

    International Nuclear Information System (INIS)

    Boldeman, J.

    2001-01-01

    The Australian National Synchrotron Light Source - (Boomerang) is to be installed at the Monash University in Victoria. This report provides some background to the proposed facility and discusses aspects of a prospective design. Recently, significant effort was devoted to refining the in principle design and a lattice providing an emittance od 18 nm rad was obtained with a distributed dispersion in the straight section of 0.29m. Exhaustive studies have been made of the economic benefits that would accrue to Australia to Australia following the installation of this facility. This design is a refinement of the design concept presented to the SRI -2000, Berlin (Boldeman, Einfeld et al), to the meeting of the 4th Asian Forum and the Preliminary Design Study presented to the Australian Synchrotron Research Program

  8. An ion synchrotron design program

    International Nuclear Information System (INIS)

    Yoshida, Katsuhisa; Ishi, Yoshihiro

    1995-01-01

    Ion synchrotrons have promising applications in medical and other commercial settings as well as in physics research. Mitsubishi Electric has developed a program to facilitate efficiency studies on processes such as ion injection, radio-frequency capture and acceleration, and beam extraction. The integration method used in the particle-orbit calculations maintains the symplectic characteristic of Hamilton dynamics making it possible to simulate long-term phenomena reliably. The article introduces this program and several of its applications. (author)

  9. Synchrotron-based photoelectron microscopy

    International Nuclear Information System (INIS)

    Barinov, Alexei; Dudin, Pavel; Gregoratti, Luca; Locatelli, Andrea; Onur Mentes, Tevfik; Angel Nino, Miquel; Kiskinova, Maya

    2009-01-01

    The paper is a brief overview of the operation principles and the potentials of the scanning photoelectron microscopes (SPEM) and X-ray photoemission electron microscopes (XPEEM) operating at synchrotron facilities. Selected results will illustrate the impact of high spatial resolution for micro-characterization of the surface composition and electronic structure, a key issue for analysis of technologically relevant materials and for fundamental understanding of many unexplored surface phenomena.

  10. Threedimensional microfabrication using synchrotron radiation

    International Nuclear Information System (INIS)

    Ehrfeld, W.

    1990-01-01

    For fabricating microstructures with extreme structural heights a technology has been developed which is based on deep-etch lithography and subsequent replication processes. A particularly high precision is achieved if the lithographic process is carried out by means of synchrotron radiation. Electroforming and molding processes are used for the replication of microstructures from a large variety of materials. The field of application comprises sensors, electrical and optical microconnectors, components for fluid technology, microfiltration systems and novel composite materials. (author)

  11. Apport du rayonnement synchrotron infrarouge aux techniques de microscopie en champ proche optique

    OpenAIRE

    Silveira, Miguel

    2009-01-01

    My project is concerned with the development of an infrared apertureless scanning near-eld optical microscope (SNOM) that will use the synchrotron radiation of the ESRF as source of infrared light. This radiation has two main particularities well-suited to spectroscopic studies: this is a white source of light covering the near infrared band from 5 to 15 microns where tunable laser sources are still under development and it is very bright and stable, both in time and space. Once developed, th...

  12. Trace element characterization using a synchrotron radiation X-ray microprobe

    OpenAIRE

    早川, 慎二郎

    1996-01-01

    A scanning X-ray microprobe using synchrotron radiation was developed employing an X-ray focusing system with total reflection mirrors. Utilizing a Wolter mirror system, a hard X-ray microbeam was first realized. With an energy tunable X-ray microprobe, sensitivity in X-ray fluorescence (XRF) analysis can be optimized for the element of interest at less than 1 ppm in relative concentration. Moreover, small area X-ray absorption fine structure (XAFS) measurements with XRF detection can provide...

  13. Infrared microspectroscopy with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Carr, G.L.; Williams, G.P. [Brookhaven National Lab., Upton, NY (United States). National Synchrotron Light Source

    1997-09-01

    Infrared microspectroscopy with a high brightness synchrotron source can achieve a spatial resolution approaching the diffraction limit. However, in order to realize this intrinsic source brightness at the specimen location, some care must be taken in designing the optical system. Also, when operating in diffraction limited conditions, the effective spatial resolution is no longer controlled by the apertures typically used for a conventional (geometrically defined) measurement. Instead, the spatial resolution depends on the wavelength of light and the effective apertures of the microscope`s Schwarzchild objectives. The authors have modeled the optical system from the synchrotron source up to the sample location and determined the diffraction-limited spatial distribution of light. Effects due to the dependence of the synchrotron source`s numerical aperture on wavelength, as well as the difference between transmission and reflection measurement modes, are also addressed. Lastly, they examine the benefits (when using a high brightness source) of an extrinsic germanium photoconductive detector with cone optics as a replacement for the standard MCT detector.

  14. Synchrotron/crystal sample preparation

    Science.gov (United States)

    Johnson, R. Barry

    1993-01-01

    The Center for Applied Optics (CAO) of the University of Alabama in Huntsville (UAH) prepared this final report entitled 'Synchrotron/Crystal Sample Preparation' in completion of contract NAS8-38609, Delivery Order No. 53. Hughes Danbury Optical Systems (HDOS) is manufacturing the Advanced X-ray Astrophysics Facility (AXAF) mirrors. These thin-walled, grazing incidence, Wolter Type-1 mirrors, varying in diameter from 1.2 to 0.68 meters, must be ground and polished using state-of-the-art techniques in order to prevent undue stress due to damage or the presence of crystals and inclusions. The effect of crystals on the polishing and grinding process must also be understood. This involves coating special samples of Zerodur and measuring the reflectivity of the coatings in a synchrotron system. In order to gain the understanding needed on the effect of the Zerodur crystals by the grinding and polishing process, UAH prepared glass samples by cutting, grinding, etching, and polishing as required to meet specifications for witness bars for synchrotron measurements and for investigations of crystals embedded in Zerodur. UAH then characterized these samples for subsurface damage and surface roughness and figure.

  15. Emerging Approaches in Synchrotron Studies of Materials from Cultural and Natural History Collections.

    Science.gov (United States)

    Bertrand, Loïc; Bernard, Sylvain; Marone, Federica; Thoury, Mathieu; Reiche, Ina; Gourrier, Aurélien; Sciau, Philippe; Bergmann, Uwe

    2016-02-01

    Synchrotrons have provided significant methods and instruments to study ancient materials from cultural and natural heritages. New ways to visualise (surfacic or volumic) morphologies are developed on the basis of elemental, density and refraction contrasts. They now apply to a wide range of materials, from historic artefacts to paleontological specimens. The tunability of synchrotron beams owing to the high flux and high spectral resolution of photon sources is at the origin of the main chemical speciation capabilities of synchrotron-based techniques. Although, until recently, photon-based speciation was mainly applicable to inorganic materials, novel developments based, for instance, on STXM and deep UV photoluminescence bring new opportunities to study speciation in organic and hybrid materials, such as soaps and organometallics, at a submicrometric spatial resolution over large fields of view. Structural methods are also continuously improved and increasingly applied to hierarchically structured materials for which organisation results either from biological or manufacturing processes. High-definition (spectral) imaging appears as the main driving force of the current trend for new synchrotron techniques for research on cultural and natural heritage materials.

  16. Magnetostatic wave tunable resonators

    Science.gov (United States)

    Castera, J.-P.; Hartemann, P.

    1983-06-01

    Theoretical principles and techniques for the implementation of magnetostatic surface wave and volume wave resonators in high frequency oscillators are discussed. Magnetostatic waves are magnetic waves that propagate in materials exposed to a polarized magnetic field. The propagation speed ranges from 3-300 km/sec for wavelengths between 1 micron and 10 mm, in the presence of lags from 10-1000 nsec/ cm. Tunable resonators in the 1-20 GHz frequency range have been manufactured with YIG using liquid phase epitaxy for deposition on gadolinium and gallium substrates. Distributed-mirror Fabry-Perot cavity resonators are described and performance tests results are reported, including losses of 8 dB, a quality coefficient under voltage of 450, and frequency rejection outside of resonance better than 10 dB. However, saturation occurs at low power levels at frequencies lower than 4.2 GHz, a feature overcome with forward volume magnetostatic wave generators, which have a quality factor of 500, an insertion loss of 22 dB, and rejection around 15 dB.

  17. Storage ring development at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Krinsky, S.; Bittner, J.; Fauchet, A.M.; Johnson, E.D.; Keane, J.; Murphy, J.; Nawrocky, R.J.; Rogers, J.; Singh, O.V.; Yu, L.H.

    1991-09-01

    This report contains papers on the following topics: Transverse Beam Profile Monitor; Bunch Length Measurements in the VUV Storage Ring; Photoelectric Effect Photon Beam Position Monitors; RF Receivers for Processing Electron Beam Pick-up Electrode Signals; Real-Time Global Orbit Feedback Systems; Local Orbit Feedback; Active Interlock System for High Power Insertion Devices in the X-ray Ring; Bunch Lengthening Cavity for the VUV Ring; SXLS Storage Ring Design

  18. Tunable Multiband Microwave Photonic Filters

    Directory of Open Access Journals (Sweden)

    Mable P. Fok

    2017-11-01

    Full Text Available The increasing demand for multifunctional devices, the use of cognitive wireless technology to solve the frequency resource shortage problem, as well as the capabilities and operational flexibility necessary to meet ever-changing environment result in an urgent need of multiband wireless communications. Spectral filter is an essential part of any communication systems, and in the case of multiband wireless communications, tunable multiband RF filters are required for channel selection, noise/interference removal, and RF signal processing. Unfortunately, it is difficult for RF electronics to achieve both tunable and multiband spectral filtering. Recent advancements of microwave photonics have proven itself to be a promising candidate to solve various challenges in RF electronics including spectral filtering, however, the development of multiband microwave photonic filtering still faces lots of difficulties, due to the limited scalability and tunability of existing microwave photonic schemes. In this review paper, we first discuss the challenges that were facing by multiband microwave photonic filter, then we review recent techniques that have been developed to tackle the challenge and lead to promising developments of tunable microwave photonic multiband filters. The successful design and implementation of tunable microwave photonic multiband filter facilitate the vision of dynamic multiband wireless communications and radio frequency signal processing for commercial, defense, and civilian applications.

  19. Synchrotron Environmental Science-I Workshop Report

    International Nuclear Information System (INIS)

    1999-01-01

    Attendees of the Synchrotrons Environmental Science 1 (SES-1) workshop represented a broad spectrum of environmental science research areas and expertise in all of the current synchrotrons techniques (X-ray scattering and diffraction, X-ray absorption spectroscopy, and two- and three-dimensional X-ray imaging). These individuals came together to discuss current measurement obstacles in environmental research and, more specifically, ways to overcome such obstacles by applying synchrotrons radiation techniques. Significant obstacles in measurement affect virtually all of the research issues described. Attendees identified synchrotrons approaches of potential value in their research. A number of the environmental research studies discussed are currently being addressed with some success by synchrotron-based approaches. Nevertheless, improvements in low-Z measurement capabilities are needed to facilitate the use of synchrotrons radiation methodologies in environmental research

  20. Synchrotron Environmental Science-I Workshop Report.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-08

    Attendees of the Synchrotrons Environmental Science 1 (SES-1) workshop represented a broad spectrum of environmental science research areas and expertise in all of the current synchrotrons techniques (X-ray scattering and diffraction, X-ray absorption spectroscopy, and two- and three-dimensional X-ray imaging). These individuals came together to discuss current measurement obstacles in environmental research and, more specifically, ways to overcome such obstacles by applying synchrotrons radiation techniques. Significant obstacles in measurement affect virtually all of the research issues described. Attendees identified synchrotrons approaches of potential value in their research. A number of the environmental research studies discussed are currently being addressed with some success by synchrotron-based approaches. Nevertheless, improvements in low-Z measurement capabilities are needed to facilitate the use of synchrotrons radiation methodologies in environmental research.

  1. Light source for synchrotron radiation x-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL)

    International Nuclear Information System (INIS)

    Zhao Jiyong; Jiang Jianhua; Tian Yulian

    1992-01-01

    Characteristics of the synchrotron radiation source for X-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL) is described, local geometrical resolution of topographies is discussed, and the diffracting intensities of white beam topography is given

  2. Intensity calibrations of the broadband VUV impurity survey spectrometer - KT2

    International Nuclear Information System (INIS)

    Hawkes, N.; Peacock, N.; Lawson, K.

    1991-08-01

    Since first becoming operational in 1984 the survey spectrometer, KT2, has undergone slight modifications on the Joint European Torus Joint Undertaking (JET), and following a failure at one point the original spectrometer-'A', was exchanged for an almost identical instrument-'B'. Periodically, calibrations have been performed on the diagnostic using the diverse techniques of charge exchange branching ratios, deuterium lamp transfer irradiance standard, branching ratios from visible transitions, VUV transfer radiance standard and model calculations of line intensities in low Z ions from JET. Comparisons have been made with the theoretical instrument performance and with the prototype instruments of similar construction. This report summarises these various calibrations, carried out by the Culham Task Agreement team, until the end of 1990 when the responsability for the operation of the diagnostic was handed over to JET staff. (author)

  3. The measurement of various molecules of pyrolysis gas of coal by using VUV-SPI-TOFMS

    Science.gov (United States)

    Tsuji, Norihiro; Nishifuji, Masayuki; Hayash, Shun-ichi

    2013-04-01

    We developed and tested a system that combines a vacuum ultraviolet single photon ionization time-of-flight mass spectrometer (VUV-SPI-TOFMS) with a Fourier transform-infrared (FT-IR) spectrometer and used it for the simultaneous detection of the various compounds generated during the pyrolysis of coal. We characterized the performance of the system, including its limits of detection and time resolution. We also determined the various compounds that could be detected using the system. The instrument exhibited a laboratory-determined detection limit that was in the parts per billion volume (ppbv) range and a detection time of 10 s for most of the aromatic compounds generated during the pyrolysis process. In addition, using this system, it was possible to determine the correlation between the pyrolysis temperature and the various compounds generated from different types of coals during the pyrolysis process.

  4. Intensity radial profiles of VUV line radiation near the solid target in a hot plasma

    Science.gov (United States)

    Piffl, V.; Weinzettl, V.; Burdakov, A.; Polosatkin, S. V.

    2004-03-01

    An investigation of hot plasma interaction with solid target is carried out at the CASTOR tokamak (IPP Prague) and the GOL-3 multi-mirror magnetic trap faccility (Budker Institute, Novosibirsk) [1], [5]. In both experiments, the Imaging Seya-Namioka Spectrometer based on a spherical dispersion grating has been upraded to monitor the radial profiles of the chord-integrated low- Z impurity line intensities in VUV spectral range. Such spatial resolved intensity monitoring in radial direction together with application of the radiation code simulation allows obtaining a radial distribution of ions of different ionization stages near the target immersed in edge plasma. The energy release from plasma to the target is order of 100 J/m2 in the CASTOR tokamak and 30 MJ/m2 int he GOL-3 magnetic open confinement system.

  5. V.U.V. plasma spectroscopy diagnostic of electron cyclotron resonance multicharged ion sources

    International Nuclear Information System (INIS)

    Berreby, R.

    1997-12-01

    To characterize the multicharged ions within the plasma of an E.C.R. ion source, the V.U.V. spectroscopy is used as a non invasive diagnostic of excited matter. In E.C.R.I. S. (electron cyclotron resonance ion source) electrons are heated and magnetically confined within the mirror machine to overcome the successive ionization potentials of the desired elements. As the electrons bounce inside the magnetic configuration in their gyration movement, they interact with the microwaves injected into the source at the resonance frequency. To enhance the performances in high charge states and extracted currents delivered by E.C.R.I.S., the fundamental parameters of the plasma created in these machines must be known. The goal of spectroscopic diagnostics in the V.U.V. range installed on the sources is to determine electron density and temperature on one hand, and the ionic densities and confinement time on the other hand. We used microchannel plates as detector on a 3 meter grazing incidence spectrometer equipped with a 600 lines/mm holographic grating. The calibration of the whole grating with detector was performed by two different methods. These are the branching ratio and charge exchange methods. Identification of lines emitted by a plasma, which gather the whole charge states of ions is necessary to make an exhaustive study of the plasma state. And finally, the determination of plasma parameters like electron density and temperature and ion densities and confinement times that uses theoretical models were the aim of this work. (author)

  6. Effects of inorganics on the degradation of micropollutants with vacuum UV (VUV) advanced oxidation.

    Science.gov (United States)

    Duca, Clara; Imoberdorf, Gustavo; Mohseni, Madjid

    2017-05-12

    This research focused on the effects of inorganic water constituents on the efficiency of vacuum UV (VUV) for the degradation of micropollutants in surface water supplies. Atrazine was used as a model miropollutant, and bicarbonate, sulphate, and nitrate were used as the most common inorganic constituents in the water matrix. First, the absorbance of radiation at 254 and 185 nm was measured in the presence of different ions. At 254 nm, only nitrate showed a measurable absorption coefficient of [Formula: see text] = 3.51 M[Formula: see text] cm[Formula: see text], and all other ions showed a molar absorption coefficient below the detection limit. However, at 185 nm, all the ions showed high absorption coefficients, with nitrate giving the highest absorption coefficient of [Formula: see text] = 5568 M[Formula: see text] cm[Formula: see text]. Second, the hydroxyl radical (HO[Formula: see text]) scavenging effects of the same inorganic ions were evaluated; nitrate and bicarbonate showed a negative effect during the UV/H 2 O 2 and VUV advanced oxidation processes. Sulfate was photolyzed with 185 nm UV to form HO[Formula: see text], and for this reason, it assisted the degradation of the target micropollutant, as demonstrated by increases in the degradation rate constant. An additional component of this work involved developing a method for measuring the quantum yield of atrazine at 185 nm. This made it possible to distinguish the contribution of OH radical attach from that of direct photolysis towards the degradation of atrazine.

  7. VUV treatment combined with mechanical strain of stretchable polymer foils resulting in cell alignment

    Energy Technology Data Exchange (ETDEWEB)

    Barb, R.-A. [Institute of Applied Physics, Johannes Kepler University Linz (Austria); Magnus, B. [Innovacell Biotechnologie AG, Innsbruck (Austria); Innerbichler, S. [Innerbichler GmbH, Breitenbach am Inn (Austria); Greunz, T. [CDL-MS-MACH, Johannes Kepler University Linz (Austria); Wiesbauer, M. [Institute of Applied Physics, Johannes Kepler University Linz (Austria); Marksteiner, R. [Innovacell Biotechnologie AG, Innsbruck (Austria); Stifter, D. [CDL-MS-MACH, Johannes Kepler University Linz (Austria); Heitz, J., E-mail: johannes.heitz@jku.at [Institute of Applied Physics, Johannes Kepler University Linz (Austria)

    2015-01-15

    Highlights: • Elastic polyurethane (PU) foils were exposed to the vacuum-UV in reactive atmosphere. • The photomodification resulted in improved cytocompatibilty. • Parallel microgrooves formed on the irradiated PU surfaces after strong elongation. • Cells seeded onto microgrooves aligned their shapes in the direction of the grooves. • Elongation occurred also for cells on PU subjected to cyclic mechanical stretching. - Abstract: Cell-alignment along a defined direction can have a direct effect on the cell functionality and differentiation. Oriented micro- or nanotopographic structures on cell culture substrates can induce cell-alignment. Surface chemistry, wettability, and stiffness of the substrate are also important material features as they strongly influence the cell–substrate interactions. For improved bio-compatibility, highly elastic polyurethane (PU) foils were exposed to the vacuum-UV (VUV) light of a Xe{sub 2}{sup *} excimer lamp at 172 nm in a nitrogen containing atmosphere (N{sub 2} or NH{sub 3}). The irradiation resulted in a change in the chemical surface composition. Additionally, the formation of regular parallel microgrooves was observed on the irradiated surfaces after strong uni-axial deformation (i.e., more than about 50% strain) of the photo-modified PU foils. Cell seeding experiments demonstrated that the VUV modified polymer foils strongly enhance cell adhesion and proliferation. Cells seeded onto microgrooves aligned their shapes and elongated in the direction of the grooves. A similar effect was observed for cells seeded on photo-modified PU foils subjected to cyclic mechanical stretching at lower strain levels (i.e., typically 10% strain) without groove-formation. The cells had also here an elongated shape, however they not always align in a defined direction relative to the stretching.

  8. Synchrotron Radiation in Biology and Medicine

    International Nuclear Information System (INIS)

    Pelka, J.B.

    2008-01-01

    This work is focused on a present status of synchrotron radiation X-ray applications in medicine and biology to imaging, diagnostics, and radio- therapy. Properties of X-ray beams generated by synchrotron sources are compared with radiation produced by classical laboratory X-ray tubes. A list of operating and planned synchrotron facilities applicable to biomedical purposes is given, together with their basic characteristics. A concise overview of typical X-ray synchrotron techniques in biology and medicine is carried out with discussion of their specific properties and examples of typical results. (author)

  9. Atomic physics research with synchrotron radiation

    International Nuclear Information System (INIS)

    Crasemann, B.; Wuilleumier, F.

    1985-01-01

    This chapter discusses applications of synchrotron light in atomic and molecular physics. Use of the radiation from storage rings has expanded and lent access to new areas of absorption and photoemission spectroscopy and scattering experiments. Techniques applied in connection with synchrotron radiation are discussed including absorption spectroscopy, photoelectron spectroscopy, fluorescence spectroscopy and X-ray scattering. Problem areas that are being studied by the techniques mentioned above are discussed. Synchrotron radiation has provided the means for measuring the threshold-excitation and interference effects that signal the breakdown of the two-step model of atomic excitation/deexcitation. Synchrotron radiation provides more means of excited-state photoionization measurements

  10. Support for Synchrotron Access by Environmental Scientists

    International Nuclear Information System (INIS)

    Daly, Michael; Madden, Andrew; Palumbo, Anthony; Qafoku, N.

    2006-01-01

    To support ERSP-funded scientists in all aspects of synchrotron-based research at the Advanced Photon Source (APS). This support comes in one or more of the following forms: (1) writing proposals to the APS General User (GU) program, (2) providing time at MRCAT/EnviroCAT beamlines via the membership of the Molecular Environmental Science (MES) Group in MRCAT/EnviroCAT, (3) assistance in experimental design and sample preparation, (4) support at the beamline during the synchrotron experiment, (5) analysis and interpretation of the synchrotron data, and (6) integration of synchrotron experimental results into manuscripts

  11. Strengthening and damping of synchrotron oscillations

    International Nuclear Information System (INIS)

    Taratin, A.M.

    2001-01-01

    Resonance strengthening and damping of synchrotron oscillations of collider bunch halo particles was studied by simulation. It was shown that the strengthening of particle synchrotron oscillations can be highly efficient with using a resonance pulse sequence. The resonance damping of particle synchrotron oscillations is only possible when the inverse population of the accelerated bunch halo is realized. Resonance method of synchrotron oscillation strengthening can be used for the extraction of beam halo particles with a bent crystal to improve the background conditions for colliding beam experiments and to fulfill simultaneously some fixed target experiments

  12. Tunable features of magnetoelectric transformers.

    Science.gov (United States)

    Dong, Shuxiang; Zhai, Junyi; Priya, Shashank; Li, Jie-Fang; Viehland, Dwight

    2009-06-01

    We have found that magnetostrictive FeBSiC alloy ribbons laminated with piezoelectric Pb(Zr,Ti)O(3) fiber can act as a tunable transformer when driven under resonant conditions. These composites were also found to exhibit the strongest resonant magnetoelectric voltage coefficient of 750 V/cm-Oe. The tunable features were achieved by applying small dc magnetic biases of -5 transformer features can be attributed to large changes in the piezomagnetic coefficient and permeability of the magnetostrictive phase under H(dc).

  13. Vacuum system for HIMAC synchrotrons

    International Nuclear Information System (INIS)

    Kanazawa, M.; Sudou, M.; Sato, K.

    1994-01-01

    HIMAC synchrotrons are now under construction, which require vacuum chambers of large aperture and high vacuum of about 10 -9 torr. Wide thin wall vacuum chamber of 0.3 mm thickness reinforced with ribs has been developed as the chamber at dipole magnet. We have just now started to evacuate the lower ring. The obtained average value was about 5x10 -8 torr with turbo-molecular and sputter ion pumps, and 1.1x10 -9 torr after baking. (author)

  14. Synchrotron light and its uses

    International Nuclear Information System (INIS)

    Blewett, J.P.

    1978-01-01

    It was known for a century that charged particles radiate when accelerated and that relativistic electrons in the energy range between 100 MeV and several GeV and constrained to travel in circular orbits emit concentrated, intense beams with broad continuous spectra that can cover the electromagnetic spectrum from infrared through hard x-rays. Recently the possible applications of this radiation were appreciated and electron synchrotrons and electron storage rings are now being used in many centers for studies of the properties of matter in the solid, liquid and gaseous states. 10 references

  15. Tunable electro-optic filter stack

    Energy Technology Data Exchange (ETDEWEB)

    Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa

    2017-09-05

    A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.

  16. A tunable low-energy photon source for high-resolution angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Harter, John W.; Monkman, Eric J.; Shai, Daniel E.; Nie Yuefeng; Uchida, Masaki; Burganov, Bulat; Chatterjee, Shouvik; King, Philip D. C.; Shen, Kyle M.

    2012-01-01

    We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to ∼7 eV, delivering under typical conditions >10 12 ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.

  17. Rotatable high-resolution ARPES system for tunable linear-polarization geometry.

    Science.gov (United States)

    Iwasawa, H; Shimada, K; Schwier, E F; Zheng, M; Kojima, Y; Hayashi, H; Jiang, J; Higashiguchi, M; Aiura, Y; Namatame, H; Taniguchi, M

    2017-07-01

    A rotatable high-resolution angle-resolved photoemission spectroscopy (ARPES) system has been developed to utilize tunable linear-polarization geometries on the linear undulator beamline (BL-1) at Hiroshima Synchrotron Radiation Center. By rotating the whole ARPES measurement system, the photoelectron detection plane can be continuously changed from parallel to normal against the electric field vector of linearly polarized undulator radiation. This polarization tunability enables us to identify the symmetry of the initial electronic states with respect to the mirror planes, and to selectively observe the electronic states based on the dipole selection rule in the photoemission process. Specifications of the rotatable high-resolution ARPES system are described, as well as its capabilities with some representative experimental results.

  18. Tunable vacuum ultraviolet laser based spectrometer for angle resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Rui; Mou, Daixiang; Wu, Yun; Huang, Lunan; Kaminski, Adam [Division of Materials Science and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); McMillen, Colin D.; Kolis, Joseph [Department of Chemistry, Clemson University, Clemson, South Carolina 29634 (United States); Giesber, Henry G.; Egan, John J. [Advanced Photonic Crystals LLC, Fort Mill, South Carolina 29708 (United States)

    2014-03-15

    We have developed an angle-resolved photoemission spectrometer with tunable vacuum ultraviolet laser as a photon source. The photon source is based on the fourth harmonic generation of a near IR beam from a Ti:sapphire laser pumped by a CW green laser and tunable between 5.3 eV and 7 eV. The most important part of the set-up is a compact, vacuum enclosed fourth harmonic generator based on potassium beryllium fluoroborate crystals, grown hydrothermally in the US. This source can deliver a photon flux of over 10{sup 14} photon/s. We demonstrate that this energy range is sufficient to measure the k{sub z} dispersion in an iron arsenic high temperature superconductor, which was previously only possible at synchrotron facilities.

  19. Photoemission spectroscopy using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobayashi, K.L.I.

    1980-01-01

    It is an epoch making event for photoemission spectroscopy that the light sources of continuous wavelength from vacuum ultra-violet to X-ray region have become available by the advent of synchrotron radiation. Specifically the progress after stable intense light has become obtainable from storage rings is very significant. One of the features of these synchrotron radiation is its extreme polarization of radiating pattern. Though the elementary processes of photoemission out of solids are the basic themes, phenomenalistic 3-stage model is usually applied to the analysis of experiments. In this model, the process of photoemission is considered by dividing into three stages, namely the generation of photoelectrons due to optical transition between electron status -- the transportation of photoelectrons to solid surfaces -- breaking away from the surfaces. The spectrometers, the energy analyzers of photoelectrons, and sample-preparing room used for photoemission spectroscopy are described. Next, energy distribution curves are explained. At the end, photoelectron yield spectroscopy, CFS (constant final energy spectroscopy) and CIS (constant initial energy spectroscopy), Auger yield and interatomic Auger yield, the determination of surface structure by normal emission CIS, and surface EXAFS (extended X-ray absorption fine structure) are described. As seen above, the application specifically to surface physics is promising in the future. (Wakatsuki, Y.)

  20. Synchrotron-driven spallation sources

    CERN Document Server

    Bryant, P J

    1996-01-01

    The use of synchrotrons for pulsed neutron spallation sources is an example of scientific and technological spin-off from the accelerator development for particle physics. Accelerator-driven sources provide an alternative to the continuous-flux, nuclear reactors that currently furnish the majority of neutrons for research and development. Although the present demand for neutrons can be adequately met by the existing reactors, this situation is unlikely to continue due to the increasing severity of safety regulations and the declared policies of many countries to close down their reactors within the next decade or so. Since the demand for neutrons as a research tool is, in any case,expected to grow, there has been a corresponding interest in sources that are synchrotron-driven or linac-driven with a pulse compression ring and currently several design studies are being made. These accelerator-driven sources also have the advantage of a time structure with a high peak neutron flux. The basic requirement is for a...

  1. Sirepo for Synchrotron Radiation Workshop

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-25

    Sirepo is an open source framework for cloud computing. The graphical user interface (GUI) for Sirepo, also known as the client, executes in any HTML5 compliant web browser on any computing platform, including tablets. The client is built in JavaScript, making use of the following open source libraries: Bootstrap, which is fundamental for cross-platform web applications; AngularJS, which provides a model–view–controller (MVC) architecture and GUI components; and D3.js, which provides interactive plots and data-driven transformations. The Sirepo server is built on the following Python technologies: Flask, which is a lightweight framework for web development; Jinja, which is a secure and widely used templating language; and Werkzeug, a utility library that is compliant with the WSGI standard. We use Nginx as the HTTP server and proxy, which provides a scalable event-driven architecture. The physics codes supported by Sirepo execute inside a Docker container. One of the codes supported by Sirepo is the Synchrotron Radiation Workshop (SRW). SRW computes synchrotron radiation from relativistic electrons in arbitrary magnetic fields and propagates the radiation wavefronts through optical beamlines. SRW is open source and is primarily supported by Dr. Oleg Chubar of NSLS-II at Brookhaven National Laboratory.

  2. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2015-01-01

    A chip scale tunable laser in the visible spectral band is realized by generating a periodic droplet array inside a microfluidic channel. Combined with a gain medium within the droplets, the periodic structure provides the optical feedback of the laser. By controlling the pressure applied to two...

  3. Synchrotron applications in wood preservation and deterioration

    Science.gov (United States)

    Barbara L. Illman

    2003-01-01

    Several non-intrusive synchrotron techniques are being used to detect and study wood decay. The techniques use high intensity synchrotron-generated X-rays to determine the atomic structure of materials with imaging, diffraction, and absorption. Some of the techniques are X-ray absorption near edge structure (XANES), X-ray fluorescence spectroscopy (XFS), X-ray...

  4. High pressure and synchrotron radiation satellite workshop

    International Nuclear Information System (INIS)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A.

    2006-01-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations

  5. High-Intensity Synchrotron Radiation Effects

    CERN Document Server

    Suetsugu, Y.

    2016-01-01

    Various effects of intense synchrotron radiation on the performance of particle accelerators, especially for storage rings, are discussed. Following a brief introduction to synchrotron radiation, the basic concepts of heat load, gas load, electron emission, and the countermeasures against these effects are discussed.

  6. High pressure and synchrotron radiation satellite workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A

    2006-07-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations.

  7. Funding problems threaten Middle East's synchrotron

    CERN Multimedia

    McCabe, H

    1999-01-01

    Scientists will tour the Middle East to try to raise support for the Synchrotron radiation for Experimental Science and Applications in the Middle East project. The plan is to dismantle and move a decommissioned synchrotron from Berlin to the Middle East where scientists of any nationality would be able to use it (3 paragraphs).

  8. Luminescence properties of Tb3+ doped Sr2SnO4 green phosphor in UV/VUV regions.

    Science.gov (United States)

    Srinivas, M; Rao, B Appa; Vithal, M; Rao, P Raghava

    2013-01-01

    Polycrystalline Sr2SnO4 phosphors doped with Tb(3+) were prepared by conventional solid-state reaction method. Materials were characterized by powder XRD and EDS techniques. The luminescence properties of these materials were investigated under UV and VUV excitation. Upon excitation at 272 nm, phosphors exhibited intense emissions at 492 and 543 nm due to (5)D4 → (7)F6 and (5)D4 → (7)F5 transitions of Tb(3+) ions, respectively. Materials also exhibited strong emissions from these transitions under VUV excitation at 147, 173 and 230 nm. Quantitative analysis of the spectra indicated probable applications of these phosphors for PDP and other display devices as green emitting phosphors. Copyright © 2012 John Wiley & Sons, Ltd.

  9. A laboratory experimental setup for photo-absorption studies using synchrotron radiation

    CERN Document Server

    Shastri, A; Saraswati, P; Sunanda, K

    2002-01-01

    The photophysics beamline, which is being installed at the 450 MeV Synchrotron Radiation Source (SRS), Indus-l, is a medium resolution beamline useful for a variety of experiments in the VUV region viz. 500-2000 A. One of the major applications of this beamline is gas-phase photo-absorption studies. An experimental set up to be used for these experiments was designed, developed and tested in our laboratory. The setup consists of a high vacuum absorption cell, 1/4 m monochromator and detection system. For the purpose of testing, xenon and tungsten continuum sources were used and absorption spectra were recorded in the UV region. This setup was used to record the absorption spectrum of a few molecules like acetone, ammonia, benzene, formaldehyde and acetaldehyde in order to evaluate the performance of the experimental system which will subsequently be used with the photophysics beamline. Details of the design, fabrication and testing of the absorption cell and experimental procedures are presented in this repor...

  10. Protein Data Bank Depositions from Synchrotron Sources

    International Nuclear Information System (INIS)

    Jiang, J.; Sweet, R.

    2004-01-01

    A survey and analysis of Protein Data Bank (PDB) depositions from international synchrotron radiation facilities, based on the latest released PDB entries, are reported. The results ( ) show that worldwide, every year since 1999, more than 50% of the deposited X-ray structures have used synchrotron facilities, reaching 75% by 2003. In this web-based database, all PDB entries among individual synchrotron beamlines are archived, synchronized with the weekly PDB release. Statistics regarding the quality of experimental data and the refined model for all structures are presented, and these are analysed to reflect the impact of synchrotron sources. The results confirm the common impression that synchrotron sources extend the size of structures that can be solved with equivalent or better quality than home sources

  11. Extinction correction and synchrotron radiation

    International Nuclear Information System (INIS)

    Suortti, P.

    1983-01-01

    The primary extinction factor ysub(p) is defined as the ratio of the integrated reflection from a coherently diffracting domain to the integrated kinematical reflection from the same domain. When ysub(p) is larger than 0.5 it may be approximated by ysub(p)= exp[-(αdelta) 2 ], where α is about 0.5 and delta the average size of the coherent domain when measured in units of the extinction length Λ, delta = D/Λ. Transfer equations are applied to symmetrical Laue diffraction, and the reflectivity per unit length, sigma(epsilon) is solved from the measured reflecting ratio as a function of the rocking angle epsilon = theta -thetasub(B). Measurements with conventional x-ray sources are made on single crystal slabs of Be and Si using AgKβ, MoKα 1 and CuKα radiation. The primary extinction factor ysub(p)(epsilon) is solved from a point-by-point comparison of two measurements where the extinction length Λ is changed by varying the polarization and/or wavelength of the x-ray beam. The results show that primary and secondary extinction are strongly correlated, and that the customary assumption of independent size and orientation distributions of crystal mosaics is unjustified. The structure factors for Be and Si show close agreement with other recent measurements and calculations. The limitations of the method are discussed in length, particularly the effects of beam divergences and incoherence of the rays in the crystal. It is concluded that under typical experimental conditions the requirements of the theory are met. Practical limitations arising from the use of characteristic wavelengths and unpolarized radiation prohibit the use of the full potential of the method. The properties of a synchrotron radiation source are compared with a conventional x-ray source, and it is demonstrated that the experimental limitations can be removed by the use of synchrotron radiation. A diffraction experiment with synchrotron radiation is outlined, as well as generalization of the

  12. Medical application of Synchrotron Radiation

    International Nuclear Information System (INIS)

    Hyodo, Kazuyuki; Nishimura, Katsuyuki.

    1990-01-01

    The number of patients suffering from ischemic heart disease is also increasing rapidly in Japan. The standard method for assessing coronary artery diseases is the coronary angiography. Excellent images are taken by this method, however, it is an invasive method in which a catheter into a peripheral artery. The patients would obtain great benefit if the coronary arteries could be distinguished by intravenous injection of the contrast material. The K-edge subtraction method, which uses the K-edge discontinuity in the attenuation coefficient of the contrast material, is considered to be the most suitable method for coronary angiography by peripheral venous injection. Synchrotron Radiation (SR) is so intense that it allows selection of monochromatic X-rays, and studies on K-edge subtraction using SR has been started at some facilities. Recent activities K-edge subtraction method at the Accumulation Ring are briefly described here. (author)

  13. Rapid cycling superconducting booster synchrotron

    International Nuclear Information System (INIS)

    Dinev, D.; Agapov, N.; Butenko, A.

    2001-01-01

    The existing set of Nuclotron heavy ion sources, such as duoplasmatron, polarized deuteron, laser and electron beam ion sources permits to have ion beams over a wide range of masses. The main problem for us now is to gain high intensity of accelerator particles. It can be solved by means of multiturn injection of the low current beams into the booster, acceleration up to the intermediate energies, stripping and transferring into the main ring. A design study of this accelerator - the 250 MeV/Amu Nuclotron booster synchrotron at 1 Hz repetition rate and circumference of 84 m, has been completed. The lattice dipole and quadrupole magnets have an iron yoke coils, made of hollow superconductor, are cooled by two-phase Helium flow, as well as the Nuclotron magnets. (authors)

  14. High heat load synchrotron optics

    International Nuclear Information System (INIS)

    Mills, D.M.

    1993-01-01

    Third generation synchrotron radiation sources currently being constructed worldwide will produce x-ray beams of unparalleled power and power density. These high heat fluxes coupled with the stringent dimensional requirements of the x-ray optical components pose a prodigious challenge to designers of x-ray optical elements, specifically x-ray mirrors and crystal monochromators. Although certain established techniques for the cooling of high heat flux components can be directly applied to this problem, the thermal management of high heat load x-ray optical components has several unusual aspects that may ultimately lead to unique solutions. This manuscript attempts to summarize the various approaches currently being applied to this undertaking and to point out the areas of research that require further development

  15. Synchrotron tomography on metallic foams

    International Nuclear Information System (INIS)

    Haibel, A.; Banhart, J.

    2003-01-01

    Metallic foams are a class of materials with unique properties. In contrast to most aqueous foams which are stable due to surface active agents, the liquid state of metallic foams can be stabilized by admixing small non-soluble particles. We present the results of our investigations on such materials consisting three different components: an aluminium alloy, silicon carbide particles for foam stabilization, and titanium hydride acting as blowing agent. By means of synchrotron-tomography we visualized the three dimensional distribution of the silicon carbide and the titanium hydride particles in the unfoamed cast solid precursor, in the fully foamed liquid state, and in the solidified final state of the foam. We analyzed the silicon carbide formation in these three foaming stages and its influence of the pore stability

  16. VUV and soft x-ray ionization of a plant volatile: Vanillin (C{sub 8}H{sub 8}O{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt, A. Moreno; Moura, C. E. V. de; Rocha, A. B.; Souza, G. G. B. de, E-mail: rafael.bernini@ifrj.edu.br, E-mail: gerson@iq.ufrj.br [Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ) 21949-900 Rio de Janeiro–RJ (Brazil); Coutinho, L. H. [Instituto de Física, Universidade Federal do Rio de Janeiro (UFRJ) 21941-972 Rio de Janeiro–RJ (Brazil); Bernini, R. B., E-mail: rafael.bernini@ifrj.edu.br, E-mail: gerson@iq.ufrj.br [Instituto Federal de Ciência e Tecnologia do Rio de Janeiro (IFRJ), 25050-100 Duque de Caxias–RJ (Brazil)

    2016-03-21

    Plant volatiles are emitted by plants in response to several forms of stress, including interaction with energetic photons. In the present work, we discuss the interaction of extreme UV and soft X-ray photons with a plant volatile, vanillin. The single and double (multiple) ionization of the vanillin molecule have been studied for the first time using time-of-flight mass spectrometry and VUV and soft X-ray photons (synchrotron radiation, at 12.0 eV, 21.2 eV, 130 eV, 310 eV, 531 eV, and 550 eV). At 12.0 and 21.2 eV, only singly charged species are observed and the parent ion, C{sub 8}H{sub 8}O{sub 3}{sup +}, is the dominant species. Energy differences for some selected fragments were calculated theoretically in this energy region. At 130 eV, direct double and triple ionization of the valence electrons may occur. The fragmentation increases and CHO{sup +} becomes one of the main cations in the mass spectrum. The molecular ion is still the dominant species, but other fragments, such as C{sub 6}H{sub 5}O{sup +}, begin to present similar intensities. At 310 eV, C 1s electrons may be ionized and Auger processes give rise to dissociative doubly ionized cations. Ionization around the O 1s edge has been studied both at the 531 eV resonance and above the ionization edge. Resonant and normal Auger processes play a significant role in each case and a large fragmentation of the molecule is observed at both photon energies, with intense fragments such as CHO{sup +} and CH{sub 3}{sup +} being clearly observed. A near edge X-ray absorption fine structure spectrum of the vanillin molecule was obtained around the O 1s ionization threshold. In addition, the fragmentation of vanillin has also been studied using a fast beam of electrons (800 eV), for the sake of comparison.

  17. Theory of electromagnetic insertion devices and the corresponding synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Muhammad Shumail

    2016-07-01

    Full Text Available Permanent magnet insertion devices (IDs, which are the main radiation generating devices in synchrotron light sources and free-electron lasers, use a time-invariant but space-periodic magnetic field to wiggle relativistic electrons for short-wavelength radiation generation. Recently, a high power microwave based undulator has also been successfully demonstrated at SLAC which promises the advantage of dynamic tunability of radiation spectrum and polarization. Such IDs employ transverse elecromagnetic fields which are periodic in both space and time to undulate the electrons. In this paper we develop a detailed theory of the principle of electromagnetic IDs from first principles for both linear and circular polarization modes. The electromagnetic equivalent definitions of undulator period (λ_{u} and undulator deflection parameter (K are derived. In the inertial frame where the average momentum of the electron is zero, we obtain the figure-8-like trajectory for the linear polarization mode and the circular trajectory for the circular polarization mode. The corresponding radiation spectra and the intensity of harmonics is also calculated.

  18. Report of the Synchrotron Radiation Vacuum Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Avery, R.T.

    1984-06-01

    The Synchrotron Radiation Vacuum Workshop was held to consider two vacuum-related problems that bear on the design of storage rings and beam lines for synchrotron radiation facilities. These problems are gas desorption from the vacuum chamber walls and carbon deposition on optical components. Participants surveyed existing knowledge on these topics and recommended studies that should be performed as soon as possible to provide more definitive experimental data on these topics. This data will permit optimization of the final design of the Advanced Light Source (ALS) and its associated beam lines. It also should prove useful for other synchrotron radiation facilities as well.

  19. Synchrotron power supply of TARN II

    International Nuclear Information System (INIS)

    Watanabe, Shin-ichi.

    1991-07-01

    The construction and performance of synchrotron power supply of TARN II are described. The 1.1 GeV synchrotron-cooler TARN II has been constructed at Institute for Nuclear Study, University of Tokyo. Constructed power supply for the dipole magnets is 600 V, 2500 A operated in the mode of trapezoid wave form with the repetition cycle of 0.1 Hz. The stability of magnetic field within 10 -3 and tracking error of 10 -4 have been attained with the aid of computer control system. First trial of synchrotron acceleration of He 2+ beam has been done up to 600 MeV in April, 1991. (author)

  20. Report of the Synchrotron Radiation Vacuum Workshop

    International Nuclear Information System (INIS)

    Avery, R.T.

    1984-06-01

    The Synchrotron Radiation Vacuum Workshop was held to consider two vacuum-related problems that bear on the design of storage rings and beam lines for synchrotron radiation facilities. These problems are gas desorption from the vacuum chamber walls and carbon deposition on optical components. Participants surveyed existing knowledge on these topics and recommended studies that should be performed as soon as possible to provide more definitive experimental data on these topics. This data will permit optimization of the final design of the Advanced Light Source (ALS) and its associated beam lines. It also should prove useful for other synchrotron radiation facilities as well

  1. Experimental Demonstration of the Induction Synchrotron

    International Nuclear Information System (INIS)

    Takayama, Ken; Nakamura, Eiji; Arakida, Yoshio; Iwashita, Taiki; Kono, Tadaaki; Shimosaki, Yoshito; Wake, Masayoshi; Dixit, Tanuja; Otsuka, Kazunori; Torikai, Kota

    2007-01-01

    We report an experimental demonstration of the induction synchrotron, the concept of which has been proposed as a future accelerator for the second generation of neutrino factory or hadron collider. The induction synchrotron supports a superbunch and a superbunch permits more charge to be accelerated while observing the constraints of the transverse space-charge limit. By using a newly developed induction acceleration system instead of radio-wave acceleration devices, a single proton bunch injected from the 500 MeV booster ring and captured by the barrier bucket created by the induction step voltages was accelerated to 6 GeV in the KEK proton synchrotron

  2. Tunable excitons in bilayer graphene

    Science.gov (United States)

    Ju, Long; Wang, Lei; Cao, Ting; Taniguchi, Takashi; Watanabe, Kenji; Louie, Steven G.; Rana, Farhan; Park, Jiwoong; Hone, James; Wang, Feng; McEuen, Paul L.

    2017-11-01

    Excitons, the bound states of an electron and a hole in a solid material, play a key role in the optical properties of insulators and semiconductors. Here, we report the observation of excitons in bilayer graphene (BLG) using photocurrent spectroscopy of high-quality BLG encapsulated in hexagonal boron nitride. We observed two prominent excitonic resonances with narrow line widths that are tunable from the mid-infrared to the terahertz range. These excitons obey optical selection rules distinct from those in conventional semiconductors and feature an electron pseudospin winding number of 2. An external magnetic field induces a large splitting of the valley excitons, corresponding to a g-factor of about 20. These findings open up opportunities to explore exciton physics with pseudospin texture in electrically tunable graphene systems​.

  3. Tunable Meta-Liquid Crystals.

    Science.gov (United States)

    Liu, Mingkai; Fan, Kebin; Padilla, Willie; Powell, David A; Zhang, Xin; Shadrivov, Ilya V

    2016-02-24

    Meta-liquid crystals, a novel form of tunable 3D metamaterials, are proposed and experimentally demonstrated in the terahertz frequency regime. A morphology change under a bias electric field and a strong modulation of the transmission are observed. In comparison to conventional liquid crystals, there is considerable freedom to prescribe the electromagnetic properties through the judicious design of the meta-atom geometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A proposed VUV oscillator-based FEL upgrade at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S. V. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Douglas, D. R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Evtushenko, P. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hannon, F. E. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hernandez-Garcia, C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Klopf, J. M. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Legg, R. A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Neil, G. R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Shinn, M. D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Tennant, C. D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Williams, G. P. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2011-09-20

    Advances in superconducting linac technology offer the possibility of an upgrade of the Jefferson Lab Free Electron Laser (JLab FEL) facility to an oscillator-based VUV-FEL that would produce 6 x 10{sup 12} coherent 100 eV photons per pulse at multi-MHz repetition rates in the fundamental. At present JLab operates a pair of oscillator-based continuous-wave Free Electron Lasers (FELs) as a linac-based next generation light source in the IR and UV, with sub-picosecond pulses up to 75 MHz. Harmonics upwards of 10 eV are produced and the fully coherent nature of the source results in peak and average brightness values that are several orders of magnitude higher than storage rings. The accelerator uses an energy recovered linac design for efficiency of operation. New style superconducting linac cryomodules with higher gradient, combined with a new injector and beam transport system allow the development of the FEL to higher photon energies.

  5. VUV spectroscopy and photochemistry of five interstellar and putative prebiotic molecules

    Science.gov (United States)

    Schwell, M.; Gaie-Levrel, F.; Bénilan, Y.; Gazeau, M.-C.; Fray, N.; Saul, G.; Champion, N.; Leach, S.; Guillemin, J.-C.

    2012-02-01

    For many years, our group has been investigating the VUV spectroscopy and photochemistry of molecules of astrophysical (Jochims et al. 2006a,b; Leach et al. 2008; Schwell et al. 2012) and prebiotic interest (Schwell et al. 2006). Polyynes and cyano-polyynes that are abundant in the interstellar medium (ISM) and in planetary atmospheres, have been investigated too (e.g. Fray et al. 2010). An aerosol source for reactive and thermo-labile compounds has been developed (Gaie-Levrel et al. 2011) to perform gas-phase measurements. These are necessary to measure intrinsic molecular properties and to compare to quantum chemical calculations. Besides measuring absolute absorption and photoionization cross sections, dissociative channels and their involved excited states are identified for a number of molecules of interstellar interest. Branching ratios of the respective elementary photoreactions are determined in order to understand and model the photochemistry occurring in the ISM. Some very recent results on the dissociative photoionization of methylformate (MF), glycolaldehyde (GA), dimethylether (DIM), aminoacetonitrile (AAC) and cyanoacetylene (CA), are presented here.

  6. Interaction of VUV-photons with molecules. Spectroscopy and dynamics of molecular superexcited states

    International Nuclear Information System (INIS)

    Hatano, Y.

    2002-01-01

    Complete text of publication follows. A survey is given of recent progress in experimental studies of the interaction of VUV-photons with molecules, i.e., those of photoabsorption, photoionization, and photodissociation of molecules in the excitation photon energy range of 10-50 eV, with a particular emphasis placed on current understanding of the spectroscopy and dynamics of formed molecular superexcited states. These studies are of great importance in understanding the interaction of ionizing radiation with matter. Molecules studied are ranged from simple diatomic and triatomic molecules to polyatomic molecules such as hydrocarbons. Most of the observed molecular superexcited states are assigned to high Rydber states which are vibrationally, doubly, or inner-core excited and converge to each of ion states. Non-Rydberg superexcited states are also observed. Dissociation into neutral fragments in comparison with ionization is of unexpectedly great importance in the observed decay of each of these state-assigned superexcited molecules. Dissociation dynamics as well as its products of superexcited states are remarkably different from those of lower excited states below about ionization thresholds. Some remarks are also presented of molecules in the condensed phase

  7. Technical development of UV-C- and VUV-photochemically induced oxidative degradation processes

    Energy Technology Data Exchange (ETDEWEB)

    Braun, A.M.; Gassiot Pintori, I.; Wakahata, Y.; Woerner, M. [Lehrstuhl fuer Umweltmesstechnik, Univ. Karlsruhe, Karlsruhe (Germany); Popp, H.P. [Lehrstuhl fuer Umweltmesstechnik, Univ. Karlsruhe, Karlsruhe (Germany)]|[Lichttechnisches Inst., Univ. Karlsruhe, Karlsruhe (Germany)

    2003-07-01

    Technical development work is presented, where the VUV photochemically induced oxidative degradation is used (i) for analytic purposes and (ii) for small to medium scale (< 10 m{sup 2}/d) waste water treatment processes or ultra pure water production. In the first case, small xe-excimer radiation sources with an integrated reaction space designed for optimal conditions, as far as incident photon flux density, turbulence and concentration of dissolved molecular oxygen are concerned, have been built and tested. Under conditions of exhaustive oxidation and/or mineralization of pollutants in a continuous regime, they may be used for sample pre-treatment modules prior TOC, TOX and electrochemical trace metal analysis. Under conditions of partial oxidation or mineralization, the same lamp/reactor combination may be used for functionalization purposes prior to e.g. GC or HPLC analyses. In the second case, mass transfer limitations between the non-irradiated bulk volume and the irradiated volume are overcome by the electrochemical generation of molecular oxygen within or close to the irradiated volume and by the design of the photochemical part of the reactor. (orig.)

  8. Radical-induced chemistry from VUV photolysis of interstellar ice analogues containing formaldehyde

    Science.gov (United States)

    Butscher, Teddy; Duvernay, Fabrice; Danger, Grégoire; Chiavassa, Thierry

    2016-09-01

    Surface processes and radical chemistry within interstellar ices are increasingly suspected to play an important role in the formation of complex organic molecules (COMs) observed in several astrophysical regions and cometary environments. We present new laboratory experiments on the low-temperature solid state formation of complex organic molecules - glycolaldehyde, ethylene glycol, and polyoxymethylene - through radical-induced reactivity from VUV photolysis of formaldehyde in water-free and water-dominated ices. Radical reactivity and endogenous formation of COMs were monitored in situ via infrared spectroscopy in the solid state and post photolysis with temperature programmed desorption (TPD) using a quadripole mass spectrometer. We show the ability of free radicals to be stored when formed at low temperature in water-dominated ices, and to react with other radicals or on double bonds of unsaturated molecules when the temperature increases. It experimentally confirms the role of thermal diffusion in radical reactivity. We propose a new pathway for formaldehyde polymerisation induced by HCO radicals that might explain some observations made by the Ptolemy instrument on board the Rosetta lander Philae. In addition, our results seem to indicate that H-atom additions on H2CO proceed preferentially through CH2OH intermediate radicals rather than the CH3O radical.

  9. Evaluation of 1024 channel VUV-photo-diodes for soft x-ray diagnostic applications

    International Nuclear Information System (INIS)

    Molvik, A.W.

    1997-01-01

    We tested the operation of 1024 channel diode arrays (Model AXUV-1024, from IRD, Inc.) in subdued room light to establish that they worked and to determine the direction and speed of the scan of the 1024 channels. Further tests were performed in vacuum in the HAP, High-Average-Power Facility. There we found that the bare or glass covered diodes detected primarily visible light as expected, but diodes filtered by aluminized parylene, produced a signal consistent with soft x-rays. It is probable that the spectral response and sensitivity, as discussed below, reproduce that previously demonstrated by 1 to 16 channel VUV-photodiodes; however, significantly more effort would be required to establish that experimentally. These detectors appear to be worth further evaluation where 25 w spatial resolution bolometers or spectrograph detectors of known sensitivity are required, and single-shot or 0.02-0.2s time response is adequate. (Presumably, faster readout would be available with custom drive circuitry.)

  10. Additive manufacturing of tunable lenses

    Science.gov (United States)

    Schlichting, Katja; Novak, Tobias; Heinrich, Andreas

    2017-02-01

    Individual additive manufacturing of optical systems based on 3D Printing offers varied possibilities in design and usage. In addition to the additive manufacturing procedure, the usage of tunable lenses allows further advantages for intelligent optical systems. Our goal is to bring the advantages of additive manufacturing together with the huge potential of tunable lenses. We produced tunable lenses as a bundle without any further processing steps, like polishing. The lenses were designed and directly printed with a 3D Printer as a package. The design contains the membrane as an optical part as well as the mechanical parts of the lens, like the attachments for the sleeves which contain the oil. The dynamic optical lenses were filled with an oil. The focal length of the lenses changes due to a change of the radius of curvature. This change is caused by changing the pressure in the inside of the lens. In addition to that, we designed lenses with special structures to obtain different areas with an individual optical power. We want to discuss the huge potential of this technology for several applications. Further, an appropriate controlling system is needed. Wéll show the possibilities to control and regulate the optical power of the lenses. The lenses could be used for illumination tasks, and in the future, for individual measurement tasks. The main advantage is the individuality and the possibility to create an individual design which completely fulfills the requirements for any specific application.

  11. Highly Tunable Electrostatic Nanomechanical Resonators

    KAUST Repository

    Kazmi, Syed Naveed Riaz

    2017-11-24

    There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 $mu$m separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler-Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow band-pass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

  12. Highly tunable NEMS shallow arches

    KAUST Repository

    Kazmi, Syed N. R.

    2017-11-30

    We report highly tunable nanoelectromechanical systems NEMS shallow arches under dc excitation voltages. Silicon based in-plane doubly clamped bridges, slightly curved as shallow arches, are fabricated using standard electron beam lithography and surface nanomachining of a highly conductive device layer on a silicon-on-insulator wafer. By designing the structures to have gap to thickness ratio of more than four, the mid-plane stretching of the nano arches is maximized such that an increase in the dc bias voltage will result into continuous increase in the resonance frequency of the resonators to wide ranges. This is confirmed analytically based on a nonlinear beam model. The experimental results are found to be in good agreement with that of the results from developed analytical model. A maximum tunability of 108.14% for a 180 nm thick arch with an initially designed gap of 1 μm between the beam and the driving/sensing electrodes is achieved. Furthermore, a tunable narrow bandpass filter is demonstrated, which opens up opportunities for designing such structures as filtering elements in high frequency ranges.

  13. Lightweight Tunable Infrared Filter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Michigan Aerospace Corporation has developed spaceflight qualified compact tunable Fabry-Perot interferometers for a number of applications, from ranging direct...

  14. Liquid Tunable Microlenses based on MEMS techniques

    Science.gov (United States)

    Zeng, Xuefeng; Jiang, Hongrui

    2013-01-01

    The recent rapid development in microlens technology has provided many opportunities for miniaturized optical systems, and has found a wide range of applications. Of these microlenses, tunable-focus microlenses are of special interest as their focal lengths can be tuned using micro-scale actuators integrated with the lens structure. Realization of such tunable microlens generally relies on the microelectromechanical system (MEMS) technologies. Here, we review the recent progress in tunable liquid microlenses. The underlying physics relevant to these microlenses are first discussed, followed by description of three main categories of tunable microlenses involving MEMS techniques, mechanically driven, electrically driven, and those integrated within microfluidic systems. PMID:24163480

  15. Spain in quandry over French synchrotron

    CERN Multimedia

    Bosch, X

    2000-01-01

    The French government has invited Spain to participate in the funding and operation of its proposed synchrotron Soleil. This could result though in the end of Spanish scientists' hopes for their own machine (1 page).

  16. National Synchrotron Light Source annual report 1988

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.; Lazarz, N.; Williams, G. (eds.)

    1988-01-01

    This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

  17. Simulation of synchrotron motion with rf noise

    International Nuclear Information System (INIS)

    Leemann, B.T.; Forest, E.; Chattopadhyay, S.

    1986-08-01

    The theoretical formulation is described that is behind an algorithm for synchrotron phase-space tracking with rf noise and some preliminary simulation results of bunch diffusion under rf noise obtained by actual tracking

  18. Stanford Synchrotron Radiation Light Source (SSRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The SSRL at SLAC National Accelerator Laboratory was built in 1974 to take and use for synchrotron studies the intense x-ray beams from the SPEAR storage ring that...

  19. Synchrotron X-ray magnetic scattering

    CERN Document Server

    Stirling, W G

    2003-01-01

    Research on magnetic materials constitutes an increasingly important part of the programmes of most major synchrotron radiation centres. The extremely high brilliance and small spot size of advanced synchrotron beamlines, combined with element-specific resonant effects at certain absorption edges, provide a powerful probe of magnetic structures and phase transitions, with excellent wavevector resolution. Over the last decade a variety of experimental techniques have been developed, exploiting these effects for the study of thin film, multilayer and bulk magnetic materials. In this paper the basic concepts of X-ray magnetic scattering will be introduced, followed by recent examples taken from work at Daresbury Laboratory (UK), the European Synchrotron Radiation Facility (Grenoble, France) and the National Synchrotron Light Source (Brookhaven National Laboratory, USA). Investigations of domain patterns in thin magnetic films employing X-ray resonant magnetic scattering (XRMS) will be described, followed by a se...

  20. Molecular photoemission studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Truesdale, C.M.

    1983-04-01

    The angular distributions of photoelectrons and Auger electrons were measured by electron spectroscopy using synchrotron radiation. The experimental results are compared with theoretical calculations to interpret the electronic behavior of photoionization for molecular systems

  1. Applications of synchrotron radiation in Biophysics

    International Nuclear Information System (INIS)

    Bemski, G.

    1983-01-01

    A short introduction to the generation of the synchrotron radiation is made. Following, the applications of such a radiation in biophysics with emphasis to the study of the hemoglobin molecule are presented. (L.C.) [pt

  2. Fiber structural analysis by synchrotron radiation

    CERN Document Server

    Kojima, J I; Kikutani, T

    2003-01-01

    Topics of fiber structural analysis by synchrotron radiation are explained. There are only three synchrotron radiation facilities in the world, SPring-8 (Super Photon ring-8) in Japan, APS (Advanced Photon Source) in U.S.A. and ESRF (European Synchrotron Radiation Facility) in France. Online measurement of melt spinning process of PET and Nylon6 is explained in detail. Polypropylene and PBO (poly-p-phenylenebenzobisoxazole) was measured by WAXD (Wide Angle X-ray Diffraction)/SAXS (Small Angle X-ray Scattering) at the same time. Some examples of measure of drawing process of fiber are described. The structure formation process of spider's thread was measured. Micro beam of X-ray of synchrotron facility was improved and it attained to 65nm small angle resolving power by 10 mu m beamsize. (S.Y.)

  3. Panel backs next-generation synchrotron

    CERN Multimedia

    Service, R F

    1999-01-01

    A key federal panel recommended continued research into development of a fourth-generation synchrotron. It would be capable of creating x-ray pulses billions of times more intense than current designs (1 page).

  4. National synchrotron light source. Activity report, October 1, 1995--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Rothman, E.Z.; Hastings, J.B. [eds.

    1997-05-01

    The hard work done by the synchrotron radiation community, in collaboration with all those using large-scale central facilities during 1995, paid off in FY 1996 through the DOE`s Presidential Scientific Facilities Initiative. In comparison with the other DOE synchrotron radiation facilities, the National Synchrotron Light Source benefited least in operating budgets because it was unable to increase running time beyond 100%-nevertheless, the number of station hours was maintained. The major thrust at Brookhaven came from a 15% increase in budget which allowed the recruitment of seven staff in the beamlines support group and permitted a step increment in the funding of the extremely long list of upgrades; both to the sources and to the beamlines. During the December 1995 shutdown, the VUV Ring quadrant around U10-U12 was totally reconstructed. New front ends, enabling apertures up to 90 mrad on U10 and U12, were installed. During the year new PRTs were in formation for the infrared beamlines, encouraged by the investment the lab was able to commit from the initiative funds and by awards from the Scientific Facilities Initiative. A new PRT, specifically for small and wide angle x-ray scattering from polymers, will start work on X27C in FY 1997 and existing PRTs on X26C and X9B working on macromolecular crystallography will be joined by new members. Plans to replace aging radio frequency cavities by an improved design, originally a painfully slow six or eight year project, were brought forward so that the first pair of cavities (half of the project for the X-Ray Ring) will now be installed in FY 1997. Current upgrades to 350 mA initially and to 438 mA later in the X-Ray Ring were set aside due to lack of funds for the necessary thermally robust beryllium windows. The Scientific Facilities Initiative allowed purchase of all 34 windows in FY 1996 so that the power upgrade will be achieved in FY 1997.

  5. Early British synchrotrons, an informal history

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1997-02-01

    An historical account of the design and construction of early synchrotrons in the United Kingdom, based partly on personal reminiscences, is presented. Material is also drawn from archives at Birmingham and CERN. The document covers the period from plans for the world's first synchrotron at Malvern after the Second World War to work done at Harwell Laboratory for CERN in the period 1951-1953. (UK)

  6. Synchrotron radiation from spherically accreting black holes

    International Nuclear Information System (INIS)

    Ipser, J.R.; Price, R.H.

    1982-01-01

    Spherical accretion onto a Schwartzchild black hole, of gas with frozen-in magnetic field, is studied numerically and analytically for a range of hole masses and accretion rates in which synchrotron emission is the dominant radiative mechanism. At small radii the equipartition of magnetic, kinetic, and gravitational energy is assumed to apply, and the gas is heated by dissipation of infalling magnetic energy, turbulent energy, etc. The models can be classified into three types: (a) synchrotron cooling negligible, (b) synchrotron cooling important but synchrotron self-absorption negligible, (c) synchrotron cooling and self-absorption important. In the first case gas temperatures become very high near the horizon but luminosity efficiencies (luminosity/mass-energy accretion rate) are low. In cases (b) and (c) the gas flow near the horizon is essentially isothermal and luminosity efficiencies are fairly high. The analysis and results for the isothermal cases (b) and (c) are valid only for moderate dissipative heating and synchrotron self-absorption. If self-absorption is very strong or if dissipated energy is comparable to infall energy, Comptonization effects, not included in the analysis, become important

  7. Starting up the Saturne synchrotron

    International Nuclear Information System (INIS)

    Salvat, M.

    1958-02-01

    Illustrated by many drawings and graphs, this report describes and comments all operations and measurements to be performed for starting up the Saturne synchrotron until particle acceleration exclusively. The author reports the study of beam as it goes out of the Van de Graaff: experiment of position and stability of the beam axis, study of beam current and geometric characteristics (calibration of the induction probe), experiment of mass separation and proton percentage, and adjustment of regulation and Van de Graaff fall law. In a second part, he reports the optics alignment and the study of optics property (installation of the different sectors, study of inflector end voltage, and influence of inflector position in the chamber). The third part addresses the examination of phenomena associated with injection: injection method and definition of the initial instant, search for injection optimum conditions, study of particle lifetime and of phenomena on the inner probe. The fourth part proposes theoretical additional elements regarding the movement of particles at the injection in the useful area, and phenomena occurring on targets and on the inner probe

  8. Protein microcrystallography using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Masaki Yamamoto

    2017-09-01

    Full Text Available The progress in X-ray microbeam applications using synchrotron radiation is beneficial to structure determination from macromolecular microcrystals such as small in meso crystals. However, the high intensity of microbeams causes severe radiation damage, which worsens both the statistical quality of diffraction data and their resolution, and in the worst cases results in the failure of structure determination. Even in the event of successful structure determination, site-specific damage can lead to the misinterpretation of structural features. In order to overcome this issue, technological developments in sample handling and delivery, data-collection strategy and data processing have been made. For a few crystals with dimensions of the order of 10 µm, an elegant two-step scanning strategy works well. For smaller samples, the development of a novel method to analyze multiple isomorphous microcrystals was motivated by the success of serial femtosecond crystallography with X-ray free-electron lasers. This method overcame the radiation-dose limit in diffraction data collection by using a sufficient number of crystals. Here, important technologies and the future prospects for microcrystallography are discussed.

  9. Development and trends in synchrotron studies of ancient and historical materials

    International Nuclear Information System (INIS)

    Bertrand, Loïc; Cotte, Marine; Stampanoni, Marco; Thoury, Mathieu; Marone, Federica; Schöder, Sebastian

    2012-01-01

    Synchrotron photon-based methods are increasingly being used for the physico-chemical study of ancient and historical materials (archaeology, palaeontology, conservation sciences, palaeo-environments). In particular, parameters such as the high photon flux, the small source size and the low divergence attained at the synchrotron make it a very efficient source for a range of advanced spectroscopy and imaging techniques, adapted to the heterogeneity and great complexity of the materials under study. The continuous tunability of the source — its very extended energy distribution over wide energy domains (meV to keV) with a high intensity — is an essential parameter for techniques based on a very fine tuning of the probing energy to reach high chemical sensitivity such as XANES, EXAFS, STXM, UV/VIS spectrometry, etc. The small source size attained (a few micrometres) at least in the vertical plane leads to spatial coherence of the photon beams, giving rise in turn to a series of imaging methods already crucial to the field. This review of the existing literature shows that microfocused hard X-ray spectroscopy (absorption, fluorescence, diffraction), full-field X-ray tomography and infrared spectroscopy are the leading synchrotron techniques in the field, and presents illustrative examples of the study of ancient and historical materials for the various methods. Fast developing analytical modalities in scanning spectroscopy (STXM, macro-XRF scanning) and novel analytical strategies regarding optics, detectors and other instrumental developments are expected to provide major contributions in the years to come. Other energy domains are increasingly being used or considered such as far-infrared and ultraviolet/visible for spectroscopy and imaging. We discuss the main instrumental developments and perspectives, and their impact for the science being made on ancient materials using synchrotron techniques.

  10. Development and trends in synchrotron studies of ancient and historical materials

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Loic, E-mail: loic.bertrand@synchrotron-soleil.fr [IPANEMA, USR 3461 CNRS/MCC, Synchrotron SOLEIL, Gif-sur-Yvette (France); Cotte, Marine [European Synchrotron Radiation Facility, Polygone Scientifique Louis Néel, Grenoble (France) and Centre de Recherche et de Restauration des Musées de France, UMR 171 CNRS, Palais du Louvre, Paris (France); Stampanoni, Marco [Swiss Light Source, Paul Scherrer Institut, Villegen (Switzerland) and Institute for Biomedical Engineering, University and Eidgenössische Technische Hochschule Zurich, Zurich (Switzerland); Thoury, Mathieu [IPANEMA, USR 3461 CNRS/MCC, Synchrotron SOLEIL, BP48 Saint-Aubin, F-91192 Gif-sur-Yvette (France); Marone, Federica [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Schöder, Sebastian [IPANEMA, USR 3461 CNRS/MCC, Synchrotron SOLEIL, Gif-sur-Yvette (France)

    2012-10-01

    Synchrotron photon-based methods are increasingly being used for the physico-chemical study of ancient and historical materials (archaeology, palaeontology, conservation sciences, palaeo-environments). In particular, parameters such as the high photon flux, the small source size and the low divergence attained at the synchrotron make it a very efficient source for a range of advanced spectroscopy and imaging techniques, adapted to the heterogeneity and great complexity of the materials under study. The continuous tunability of the source — its very extended energy distribution over wide energy domains (meV to keV) with a high intensity — is an essential parameter for techniques based on a very fine tuning of the probing energy to reach high chemical sensitivity such as XANES, EXAFS, STXM, UV/VIS spectrometry, etc. The small source size attained (a few micrometres) at least in the vertical plane leads to spatial coherence of the photon beams, giving rise in turn to a series of imaging methods already crucial to the field. This review of the existing literature shows that microfocused hard X-ray spectroscopy (absorption, fluorescence, diffraction), full-field X-ray tomography and infrared spectroscopy are the leading synchrotron techniques in the field, and presents illustrative examples of the study of ancient and historical materials for the various methods. Fast developing analytical modalities in scanning spectroscopy (STXM, macro-XRF scanning) and novel analytical strategies regarding optics, detectors and other instrumental developments are expected to provide major contributions in the years to come. Other energy domains are increasingly being used or considered such as far-infrared and ultraviolet/visible for spectroscopy and imaging. We discuss the main instrumental developments and perspectives, and their impact for the science being made on ancient materials using synchrotron techniques.

  11. VUV Testing of Science Cameras at MSFC: QE Measurement of the CLASP Flight Cameras

    Science.gov (United States)

    Champey, Patrick R.; Kobayashi, Ken; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, B.; Beabout, D.; Stewart, M.

    2015-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512x512 detector, dual channel analog readout electronics and an internally mounted cold block. At the flight operating temperature of -20 C, the CLASP cameras achieved the low-noise performance requirements (less than or equal to 25 e- read noise and greater than or equal to 10 e-/sec/pix dark current), in addition to maintaining a stable gain of approximately equal to 2.0 e-/DN. The e2v CCD57-10 detectors were coated with Lumogen-E to improve quantum efficiency (QE) at the Lyman- wavelength. A vacuum ultra-violet (VUV) monochromator and a NIST calibrated photodiode were employed to measure the QE of each camera. Four flight-like cameras were tested in a high-vacuum chamber, which was configured to operate several tests intended to verify the QE, gain, read noise, dark current and residual non-linearity of the CCD. We present and discuss the QE measurements performed on the CLASP cameras. We also discuss the high-vacuum system outfitted for testing of UV and EUV science cameras at MSFC.

  12. A tangentially viewing VUV TV system for the DIII-D divertor

    International Nuclear Information System (INIS)

    Nilson, D.G.; Ellis, R.; Fenstermacher, M.E.; Brewis, G.; Jalufka, N.

    1998-07-01

    A video camera system capable of imaging VUV emission in the 120--160 nm wavelength range, from the entire divertor region in the DIII-D tokamak, was designed. The new system has a tangential view of the divertor similar to an existing tangential camera system which has produced two dimensional maps of visible line emission (400--800 nm) from deuterium and carbon in the divertor region. However, the overwhelming fraction of the power radiated by these elements is emitted by resonance transitions in the ultraviolet, namely the C IV line at 155.0 nm and Ly-α line at 121.6 nm. To image the ultraviolet light with an angular view including the inner wall and outer bias ring in DIII-D, a 6-element optical system (f/8.9) was designed using a combination of reflective and refractive optics. This system will provide a spatial resolution of 1.2 cm in the object plane. An intermediate UV image formed in a secondary vacuum is converted to the visible by means of a phosphor plate and detected with a conventional CID camera (30 ms framing rate). A single MgF 2 lens serves as the vacuum interface between the primary and secondary vacuums; a second lens must be inserted in the secondary vacuum to correct the focus at 155 nm. Using the same tomographic inversion method employed for the visible TV, they reconstruct the poloidal distribution of the UV divertor light. The grain size of the phosphor plate and the optical system aberrations limit the best focus spot size to 60 microm at the CID plane. The optical system is designed to withstand 350 C vessel bakeout, 2 T magnetic fields, and disruption-induced accelerations of the vessel

  13. DOOCS based control system for FPGA based cavity simulator and controller in VUV FEL

    Energy Technology Data Exchange (ETDEWEB)

    Pucyk, P.

    2005-09-01

    The X-ray free-electron laser XFEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short X-ray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new perspectives for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated for LLRF 1 system in VUV FEL experiment It is being developed by ELHEP 2 group in Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller for stabilizing the vector sum of fields in cavities of one cryo module in the experiment. The device can be also used as the simulator of the cavity and test bench for other devices. Ths paper describes the concept, implementation and tests of the DOOCS based control system for SIMCON. The designed system is based the concept of autonomic and extendable modules connected by well defined, unified interfaces. The communication module controls the access to the hardware. It is crucial, that all modules (this presented in thesis and developed in the future) use this interface. Direct access to the control tables let the engineers to perform algorithm development or diagnostic measurements of the LLRF system. Default control tables generator makes the whole SIMCON an autonomic device, which can start immediately the operation without any additional tools. (orig.)

  14. DOOCS based control system for FPGA based cavity simulator and controller in VUV FEL

    Energy Technology Data Exchange (ETDEWEB)

    Pucyk, P.D.

    2006-03-15

    The X-ray free-electron laser XFEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short X-ray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new perspectives for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated for LLRF 1 system in VUV FEL experiment It is being developed by ELHEP 2 group in Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller for stabilizing the vector sum of fields in cavities of one cryo module in the experiment. The device can be also used as the simulator of the cavity and test bench for other devices. This paper describes the concept, implementation and tests of the DOOCS based control system for SIMCON. The designed system is based the concept of autonomic and extendable modules connected by well defined, unified interfaces. The communication module controls the access to the hardware. It is crucial, that all modules (this presented in thesis and developed in the future) use this interface. Direct access to the control tables let the engineers to perform algorithm development or diagnostic measurements of the LLRF system. Default control tables generator makes the whole SIMCON an autonomic device, which can start immediately the operation without any additional tools. (Orig.)

  15. Artificial Oxide Heterostructures with Tunable Band Gap

    Science.gov (United States)

    2016-12-20

    tunable band gap and band structures in epitaxial grown CaMnO3. The efforts have been devoted to (1) the thin film growth; (2) the tunable optical...plan to pursue a claim for personal or organizational intellectual property? Changes in research objectives (if any): Change in AFOSR Program Officer

  16. Characterization of the Hamamatsu S8664 avalanche photodiode for X-ray and VUV-light detection

    Energy Technology Data Exchange (ETDEWEB)

    Lux, T., E-mail: Thorsten.Lux@ifae.es [Institut de Fisica d' Altes Energies (IFAE), 08193 Bellaterra (Barcelona) (Spain); Freitas, E.D.C.; Amaro, F.D. [Centro de Instrumentracao, Departamento de Fisica, Universidade de Coimbra, Coimbra (Portugal); Ballester, O.; Jover-Manas, G.V.; Martin, C. [Institut de Fisica d' Altes Energies (IFAE), 08193 Bellaterra (Barcelona) (Spain); Monteiro, C.M.B. [Centro de Instrumentracao, Departamento de Fisica, Universidade de Coimbra, Coimbra (Portugal); Sanchez, F. [Institut de Fisica d' Altes Energies (IFAE), 08193 Bellaterra (Barcelona) (Spain); Rico, J. [Institut de Fisica d' Altes Energies (IFAE), 08193 Bellaterra (Barcelona) (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona (Spain)

    2012-09-01

    We present the first operation of the VUV-sensitive avalanche photodiode (APD) from Hamamatsu to xenon scintillation light and to direct X-rays of 22.1 keV and 5.9 keV. A large non-linear response was observed for the direct X-ray detection. At 415 V APD bias voltage it was of about 30% for 22.1 keV and about 45% for 5.9 keV. The quantum efficiency for 172 nm photons has been measured to be 69{+-}15%.

  17. Measuring the temporal coherence of a high harmonic generation setup employing a Fourier transform spectrometer for the VUV/XUV

    Energy Technology Data Exchange (ETDEWEB)

    Terschlüsen, J.A., E-mail: Joachim.Terschluesen@physics.uu.se; Agåker, M.; Svanqvist, M.; Plogmaker, S.; Nordgren, J.; Rubensson, J.-E.; Siegbahn, H.; Söderström, J.

    2014-12-21

    In this experiment we used an 800 nm laser to generate high-order harmonics in a gas cell filled with Argon. Of those photons, a harmonic with 42 eV was selected by using a time-preserving grating monochromator. Employing a modified Mach–Zehnder type Fourier transform spectrometer for the VUV/XUV it was possible to measure the temporal coherence of the selected photons to about 6 fs. We demonstrated that not only could this kind of measurement be performed with a Fourier transform spectrometer, but also with some spatial resolution without modifying the XUV source or the spectrometer.

  18. Study of pulsed neon-xenon VUV radiating low pressure plasmas for mercury free fluorescent sign optimization

    Science.gov (United States)

    Robert, E.; Point, S.; Dozias, S.; Viladrosa, R.; Pouvesle, J. M.

    2010-04-01

    This work deals with the study and optimization of mercury free fluorescent discharge tubes for publicity lighting applications. The experimental set-up allows for time resolved spectroscopy from 110 up to 900 nm, photometric characterization in a large volume integrating sphere and the current and voltage measurement of microsecond duration signals delivered by lab-developed pulsed drivers. The glow and afterglow radiative process analysis indicates that the best performance measured with the pulsed excitation of rare gas plasma, in comparison with the conventional ac excitation, essentially originates from the efficient plasma relaxation during the afterglow at the benefit of the vacuum ultraviolet (VUV) resonance line radiated at 146.9 nm for xenon. The fit of the VUV time resolved experimental measurements, with the results issued from a simplified kinetic model of neon-xenon plasmas, evidences the crucial role of production of molecular ions during the glow phase and of their radiative recombination during the afterglow. The pulse duration and the gas mixture pressure appear as two experimental parameters whose influence, studied over an extended range, has been demonstrated to bring about a significant sign performance enhancement. There exists an optimum pulse duration range, which results in the appearance of limited stepwise excitation and ionization processes, favourable for an intense afterglow VUV production. The pressure dependence study shows that the best performance for pulsed excitation is obtained in Ne/Xe (100/1) mixtures around 50 mbar, at the difference of an ac driven Ne/Xe plasma for which the best conditions were reported to be of a few millibars. This pressure increase results both in the VUV and sign light output enhancement and the successful continuous operation of pulsed mercury free signs for time as long as 4000 h with neither electrode erosion, nor glass or phosphor degradation nor chromatic coordinate variation. For the green

  19. Tunable synthesis of copper nanotubes

    International Nuclear Information System (INIS)

    Kaniukov, E; Yakimchuk, D; Kozlovsky, A; Shlimas, D; Zdorovets, M; Kadyrzhanov, K

    2016-01-01

    Simple method of tunable synthesis of copper nanotubes based on template synthesis was developed. A comprehensive study of the structural, morphological and electrical characteristics of the obtained nanostructures was carried out. Characterization of structural features was made by methods of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffractometry analysis. Evaluation of wall thickness is made by methods of gas permeability. Electrical conductivity of nanotubes was define in the study of their current-voltage characteristics. The possibility to control of copper nanotubes physical properties by variation of the deposition parameters was shown. (paper)

  20. Metrology of reflection optics for synchrotron radiation

    International Nuclear Information System (INIS)

    Takacs, P.Z.

    1985-09-01

    Recent years have seen an almost explosive growth in the number of beam lines on new and existing synchrotron radiation facilities throughout the world. The need for optical components to utilize the unique characteristics of synchrotron radiation has increased accordingly. Unfortunately, the technology to manufacture and measure the large, smooth, exotic optical surfaces required to focus and steer the synchrotron radiation beam has not progressed as rapidly as the operational demands on these components. Most companies do not wish to become involved with a project that requires producing a single, very expensive, aspheric optic with surface roughness and figure tolerances that are beyond their capabilities to measure. This paper will review some of the experiences of the National Synchrotron Light Source in procuring grazing incidence optical components over the past several years. We will review the specification process - how it is related to the function of the optic, and how it relates to the metrology available during the manufacturing process and after delivery to the user's laboratory. We will also discuss practical aspects of our experience with new technologies, such as single point diamond turning of metal mirrors and the use of SiC as a mirror material. Recent advances in metrology instrumentation have the potential to move the measurement of surface figure and finish from the research laboratory into the optical shop, which should stimulate growth and interest in the manufacturing of optics to meet the needs of the synchrotron radiation user community

  1. Synchrotron radiation applications in medical research

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1995-01-01

    The medical projects employing synchrotron radiation as discussed in this paper are, for the most part, still in their infancies and no one can predict the direction in which they will develop. Both the basic research and applied medical programs are sure to be advanced at the new facilities coming on line, especially the ESRF and Spring- 8. However, success is not guaranteed. There is a lot of competition from advances in conventional imaging with the development of digital angiography, computed tomography, functional magnetic resonance imaging and ultrasound. The synchrotron programs will have to provide significant advantages over these modalities in order to be accepted by the medical profession. Advances in image processing and potentially the development of compact sources will be required in order to move the synchrotron developed imaging technologies into the clinical world. In any event, it can be expected that the images produced by the synchrotron technologies will establish ''gold standards'' to be targeted by conventional modalities. A lot more work needs to be done in order to bring synchrotron radiation therapy and surgery to the level of human studies and, subsequently, to clinical applications

  2. High-performance UV/VUV optics for the Storage Ring FEL at ELETTRA

    CERN Document Server

    Gatto, A; Kaiser, N; Ristau, D; Guenster, S; Kohlhaas, J; Marsi, M; Trovò, M; Walker, R P

    2002-01-01

    Going to shorter wavelengths beyond the deep ultraviolet involves the development of dedicated optics for FEL with devoted coating techniques and characterizations. Low loss, high reflectivity dielectric mirrors with a long lifetime in a strongly harsh synchrotron radiation environment are required. In February 2001, lasing at 189.7 nm was obtained with Al sub 2 O sub 3 /SiO sub 2 Ion Beam Sputtering mirrors, the shortest wavelength obtained so far with FEL oscillators. In July 2001, 330 mW extracted power was measured with optimized transmission mirrors. Coating research and development correlated to lasing performance obtained so far is reported.

  3. High-performance UV/VUV optics for the Storage Ring FEL at ELETTRA

    Energy Technology Data Exchange (ETDEWEB)

    Gatto, A. E-mail: alexandre.gatto@iof.fraunhofer.de; Heber, J.; Kaiser, N.; Ristau, D.; Guenster, S.; Kohlhaas, J.; Marsi, M.; Trovo' , M.; Walker, R.P

    2002-05-01

    Going to shorter wavelengths beyond the deep ultraviolet involves the development of dedicated optics for FEL with devoted coating techniques and characterizations. Low loss, high reflectivity dielectric mirrors with a long lifetime in a strongly harsh synchrotron radiation environment are required. In February 2001, lasing at 189.7 nm was obtained with Al{sub 2}O{sub 3}/SiO{sub 2} Ion Beam Sputtering mirrors, the shortest wavelength obtained so far with FEL oscillators. In July 2001, 330 mW extracted power was measured with optimized transmission mirrors. Coating research and development correlated to lasing performance obtained so far is reported.

  4. Fifth school on Magnetism and Synchrotron Radiation

    CERN Document Server

    Beaurepaire, Eric; Scheurer, Fabrice; Kappler, Jean-Paul; Magnetism and Synchrotron Radiation : New Trends

    2010-01-01

    Advances in the synthesis of new materials with often complex, nano-scaled structures require increasingly sophisticated experimental techniques that can probe the electronic states, the atomic magnetic moments and the magnetic microstructures responsible for the properties of these materials. At the same time, progress in synchrotron radiation techniques has ensured that these light sources remain a key tool of investigation, e.g. synchrotron radiation sources of the third generation are able to support magnetic imaging on a sub-micrometer scale. With the Fifth Mittelwihr School on Magnetism and Synchrotron Radiation the tradition of teaching the state-of-the-art on modern research developments continues and is expressed through the present set of extensive lectures provided in this volume. While primarily aimed at postgraduate students and newcomers to the field, this volume will also benefit researchers and lecturers actively working in the field.

  5. Chemical applications of synchrotron radiation: Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

  6. Chemical applications of synchrotron radiation: Workshop report

    International Nuclear Information System (INIS)

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases

  7. Photophysical and photochemical effects of UV and VUV photo-oxidation and photolysis on PET and PEN

    Science.gov (United States)

    Morgan, Andrew

    Polyethylene Terephthalate (PET) is a widely used polymer in the bottling, packaging, and clothing industry. In recent years an increasing global demand for PET has taken place due to the Solar Disinfection (SODIS) process. SODIS is a method of sterilizing fresh water into drinkable water. The PET bottles are used in the process to contain the water during solar irradiation due to its highly transparent optical property. Alongside PET, polyethylene 2,6-napthalate (PEN) is used in bottling and flexible electronic applications. The surface of PEN would need to be modified to control the hydrophilicity and the interaction it exudes as a substrate. The UV light absorption properties of PET and PEN are of great importance for many applications, and thus needs to be studied along with its photochemical resistance. The optical and chemical nature of PET was studied as it was treated by UV photo-oxidation, photo-ozonation, and photolysis under atmospheric pressure. Another investigation was also used to study PEN and PET as they are treated by vacuum UV (VUV) photo-oxidation, VUV photolysis, and remote oxygen reactions. The extent of the photoreactions' effect into the depth of the polymers is examined as treatment conditions are changed. The different experimental methods established the rate of several competing photoreactions on PET and PEN during irradiance, and their effect on the optical quality of the polymers.

  8. Photochemical defluorination of aqueous perfluorooctanoic acid (PFOA) by Fe(0)/GAC micro-electrolysis and VUV-Fenton photolysis.

    Science.gov (United States)

    Zhang, Li-Hong; Cheng, Jian-Hua; You, Xia; Liang, Xiao-Yan; Hu, Yong-You

    2016-07-01

    Perfluorooctanoic acid (PFOA) is extremely persistent and bioaccumulative in the environment; thus, it is very urgent to investigate an effective and moderate technology to treat the pollution of PFOA. In this study, a process combined iron and granular activated carbon (Fe(0)/GAC) micro-electrolysis with VUV-Fenton system is employed for the remediation of PFOA. Approximately 50 % PFOA (10 mg L(-1)) could be efficiently defluorinated under the following conditions: pH 3.0, dosage of Fe 7.5 g L(-1), dosage of GAC 12.5 g L(-1), and concentration of H2O2 22.8 mmol L(-1). Meanwhile, during the process, evident defluorination was observed and the concentration of fluoride ion was eventually 3.23 mg L(-1). The intermediates including five shorter-chain perfluorinated carboxylic acids (PFCAs), i.e., C7, C6, C5, C4, and C3, were also analyzed by high-performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS) and defluorination mechanisms of PFOA was proposed, which involved photochemical of OH·, direct photolysis (185-nm VUV), and photocatalytic degradation of PFOA in the presence of Fe(3+) (254-nm UV).

  9. Run-away electron preionized diffuse discharge as a source of efficient laser emission in the IR, UV, VUV

    Science.gov (United States)

    Panchenko, A. N.; Panchenko, N. A.; Tarasenko, V. F.

    2017-05-01

    REP DD was suggested as an excitation source of various gas lasers. The efficient lasing was obtained in the IR, UV, and VUV spectral ranges. The ultimate intrinsic efficiency of non-chain chemical lasers on HF(DF) molecules was achieved. REP DD pumped N2 laser with an ultimate electrical efficiency of 0.2% was developed. Lasing on N2 molecules with 2 or 3 peaks in successive REP DD current oscillations was obtained for the first time. The laser action on F2* at 157 nm and rare gas fluorides (KrF*, XeF*) under REP DD pumping was obtained for the first time, as well. It has been shown that the volume stage of REP DD in mixtures with fluorine can last over 50 ns during several current half-cycles. Therewith, the efficiency and the pulse duration of lasers on rare gas fluorides and VUV F2* laser parameters under REP DD excitation are comparable with those obtained in suitable transverse discharges. The results allow the conclusion that the REP DD homogeneity in mixtures with F2 and SF6 is high enough for attaining high laser efficiency.

  10. Synchrotron environmental laboratory (SUL) at Anka

    International Nuclear Information System (INIS)

    Denecke, M.A.

    2002-01-01

    A research facility dedicated to environmental/geochemical research, the Synchrotron Environmental Laboratory (SUL), is planned to be installed and operated at ANKA. ANKA is the new synchrotron facility at the Research Centre Karlsruhe (FZK), Karlsruhe, Germany. ANKA is now in commissioning and planning operations for the fall of 2000. As the Institute for Nuclear Waste Disposal (INE) at FZK conducts a vigorous synchrotron-based research programme, INE was instrumental in the original impetus for installing such a facility at ANKA. These research activities at INE concentrate on actinide speciation in nuclear waste forms, geological media and geochemical model systems. In order for INE to direct their synchrotron research activities to ANKA, equipment and licensing required for performing experiments on actinide-containing samples is required. One great advantage of performing experiments on actinide-containing samples at ANKA is that the INE radiological laboratories lie in the near vicinity of the facility. This will minimise transport hazards and costs and allow experiments to be performed on samples whose characteristics may change with time. Experiments on radioactive samples with activities below the exemption level, according to German regulations, will be possible at ANKA at the start of operations. Licensing for work on higher levels of activity will be applied for in the future. The decades of experience in radiological work at FZK will facilitate development of procedure and equipment as prerequisites to licensing. A consortium of synchrotron radiation-user groups with environmental research interests has specified their requirements and needs for this facility. This scientific case serves as the foundation for the SUL design and is the basis for an application for federal funding. The SUL design reflects the heterogeneity and complexity of challenges facing researchers in the environmental/geochemical sciences. X-ray absorption fine structure (XAFS

  11. Overview of Industrial Synchrotron Radiation Use

    Science.gov (United States)

    Laderman, Stephen S.

    1996-03-01

    Relevant, reliable and accessible synchrotron radiation methods can play an important role in industrial activities. To date, the application of synchrotron radiation based materials characterization methods by industrial concerns has followed the path of laboratory based x-ray methods: early adoption, continuous improvement, and a high degree of specialization to meet specific goals, which may change over time. Like all x-ray methods, their applicability to segments of the biotechnology, chemical, electronics, medical and metallurgical industries arises from a need to develop sophisticated processes for precisely controlling microstructures. An increasing number of those processes are being developed in ways which can, in principle, be more effectively studied if synchrotron radiation based analyses are performed. Technical limitations confined the efforts of early synchrotron radiation users to long-range research investigations. Nowadays, progress in data collection methods, analysis algorithims, accelerator performance, and worker training, have removed many constraints. However, commercial technologies are being improved at steadily higher rates, shortening the time between research, development and manufacturing and, in many cases, blurring their distinctions. Certainly, rapid rates of innovation increase the opportunities for synchrotron radiation techniques to bring competitive advantage since they can be used to shrink development times, to maintain yields and, perhaps, as part of advanced manufacturing. At the same time, rapid rates of innovation also impose stringent criteria on the reliability and timeliness of the supporting methods. Successful conventional x-ray methods have resulted from efforts to create useful new capabilities that effectively balance such forces. Currently, synchrotron radiation users throughout the world are pursuing analogous goals.

  12. Challenges and opportunities in synchrotron radiation optics

    Science.gov (United States)

    Rehn, V.

    Design necessities germaine to advances in optics for experimentation with synchrotron radiation are explored. Objectives for development include improved beam-line performance using new mirror materials or coatings, filtering and order-sorting enhancement, and lower surface scattering. A summary is presented of optical systems currently in use, together with requirements imposed by storage rings and experimental design. Advances are recommended in intensity, collimation, focus, and spectral purity of synchrotron beam lines. Any new storage ring mirror is noted to be required to dissipate several hundred watts, something which polished Cu is mentioned as being capable of handling, while standard SiO2 mirrors cannot.

  13. Proposal for a national synchrotron light source

    International Nuclear Information System (INIS)

    Blewett, J.P.

    1977-02-01

    Since 1971 discussions have been held at Brookhaven National Laboratory on the desirability of construction of a storage ring which would be used exclusively for production of intense beams of photons with wavelengths in the ultraviolet and X-ray ranges. A proposal is given which discusses in detail the machine, its characteristics, and its expected uses. The proposal includes: (1) characteristics of synchrotron radiation; (2) scientific justification for a synchrotron radiation facility; (3) facility design; (4) wiggler magnets; (5) experimental facilities; (6) buildings and utilities; (7) construction schedules, costs, and manpower; and (8) environmental assessment

  14. 12 Experimental Techniques at Synchrotron Lightsource Beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Peter L [US Department of Energy Office of Science Office Basic Energy Sciences; Rhyne, James J [US Department of Energy Office of Science Office of Basic Energy Sciences

    2015-01-01

    The unique properties of synchrotron radiation are its continuous spectrum, high flux and brightness, and high coherence, which make it an indispensable tool in the exploration of matter. The wavelengths of the emitted photons span a range of dimensions from the atomic level to biological cells, thereby providing incisive probes for advanced research in materials science, physical and chemical sciences, metrology, geosciences, environmental sciences, biosciences, medical sciences, and pharmaceutical sciences. The features of synchrotron radiation are especially well matched to the needs of nanoscience.

  15. Preliminar plan of a machine for the synchrotron radiation production

    International Nuclear Information System (INIS)

    Moscati, G.; Takahashi, J.; Miyao, Y.

    1985-01-01

    A preliminar plan, with all the technical specifications, for the construction of a machine for the synchrotron radiation production to be done by the National Synchrotron Radiation Laboratory in Brazil is presented. (L.C.) [pt

  16. Comparison of the disinfection effects of vacuum-UV (VUV) and UV light on Bacillus subtilis spores in aqueous suspensions at 172, 222 and 254 nm.

    Science.gov (United States)

    Wang, Ding; Oppenländer, Thomas; El-Din, Mohamed Gamal; Bolton, James R

    2010-01-01

    The efficacy of UV and vacuum-UV (VUV) disinfection of Bacillus subtilis spores in aqueous suspensions at wavelengths of 172, 222 and 254 nm was evaluated. A Xe(2)* excilamp, a KrCl* excilamp and a low-pressure mercury lamp were used as almost monochromatic light sources at these three wavelengths. The first-order inactivation rate constants at 172, 222 and 254 nm were 0.0023, 0.122 and 0.069 cm(2) mJ(-1), respectively. Therefore, a 2 log reduction of B. subtilis spores was reached with fluences (UV doses) of 870, 21.6 and 40.4 mJ cm(-2) at these individual wavelengths. Consequently, for the inactivation of B. subtilis spores, VUV exposure at 172 nm is much less efficient than exposure at the other two wavelengths, while exposure at 222 nm is more efficient than that at 254 nm, which is probably because triplet energy transfer from DPA to thymine bases at 222 nm is higher than that at 254 nm. This research indicated quantitatively that VUV light is not practicable for microorganism disinfection in water and wastewater treatment. However, in comparison with other advanced oxidation processes (e.g. UV/TiO(2), UV/H(2)O(2) or O(3)/H(2)O(2)) the VUV-initiated photolysis of water is likely more efficient in generating hydroxyl radicals and more effective for the inactivation of microorganisms.

  17. Luminescent properties of (Y,Gd)BO3:Bi3+,RE3+ (RE=Eu, Tb) phosphor under VUV/UV excitation

    International Nuclear Information System (INIS)

    Zeng Xiaoqing; Im, Seoung-Jae; Jang, Sang-Hun; Kim, Young-Mo; Park, Hyoung-Bin; Son, Seung-Hyun; Hatanaka, Hidekazu; Kim, Gi-Young; Kim, Seul-Gi

    2006-01-01

    Bi 3+ - and RE 3+ -co-doped (Y,Gd)BO 3 phosphors were prepared and their luminescent properties under vacuum ultraviolet (VUV)/UV excitation were investigated. Strong red emission for (Y,Gd)BO 3 :Bi 3+ ,Eu 3+ and strong green emission for (Y,Gd)BO 3 :Bi 3+ ,Tb 3+ are observed under VUV excitation from 147 to 200 nm with a much broader excitation region than that of single Eu 3+ -doped or Tb 3+ -doped (Y,Gd)BO 3 phosphor. Strong emissions are also observed under UV excitation around 265 nm where as nearly no luminescence is observed for single Eu 3+ -doped or Tb 3+ -doped (Y,Gd)BO 3 . The luminescence enhancement of Bi 3+ - and RE 3+ -co-doped (Y,Gd)BO 3 phosphors is due to energy transfer from Bi 3+ ion to Eu 3+ or Tb 3+ ion not only in the VUV region but also in the UV region. Besides, host sensitization competition between Bi 3+ and Eu 3+ or Tb 3+ is also observed. The investigated phosphors may be preferable for devices with a VUV light 147-200 nm as an excitation source such as PDP or mercury-free fluorescent lamp

  18. Nonlinear, tunable and active metamaterials

    CERN Document Server

    Lapine, Mikhail; Kivshar, Yuri

    2015-01-01

    Metamaterials, artificial electromagnetic media achieved by structuring on the subwave-length-scale were initially suggested for the negative index and superlensing. They became a paradigm for engineering electromagnetic space and controlling propagation of waves. The research agenda is now shifting on achieving tuneable, switchable, nonlinear and sensing functionalities. The time has come to talk about the emerging research field of metadevices employing active and tunable metamaterials with unique functionalities achieved by structuring of functional matter on the subwave-length scale. This book presents the first systematic and comprehensive summary of the reviews written by the pioneers and top-class experts in the field of metamaterials. It addresses many grand challenges of the cutting edge research for creating smaller and more efficient photonic structures and devices.

  19. What is a synchrotron and why does Australia need one?

    CERN Document Server

    Nugent, K A

    2002-01-01

    Construction of a $157 million synchrotron will soon begin in Melbourne. The author describes what this facility means for Australian science. The Australian synchrotron is a third generation device. The facility would have the capacity to do a wide range of science and technology at the same time. A number of applications, which are the priority for the Australian synchrotron project are briefly described. The huge technological spin-offs of this knowledge have made synchrotrons an attractive proposition to state governments

  20. Spectral Evolution of Synchrotron and Inverse Compton Emission in ...

    Indian Academy of Sciences (India)

    and the 0.5–10 keV fluxes for the IC component, and Fig. 2(c) the synchrotron and. IC 0.5–10 keV fluxes are plotted against the total (i.e., synchrotron plus IC) 0.5–10. keV fluxes, respectively. The results can be summarized as follows. The synchrotron spectra appear to harden with larger synchrotron fluxes, whereas the IC ...

  1. VUV Fourier-Transform absorption study of the np pi (1)Pi(-)(u) nu,N

    NARCIS (Netherlands)

    Glass-Maujean, M.; Jungen, C.; Dickenson, G.D.; Ubachs, W.M.G.; de Oliveira, N.; Joyeux, D.

    2015-01-01

    Abstract The DESIRS beamline of the SOLEIL synchrotron facility, equipped with a vacuum ultraviolet Fourier-Transform spectrometer has been used to measure Q(N″)(N-N″=0) absorption transitions of the D

  2. Tunable conductivity in mesoporous germanium

    Science.gov (United States)

    Beattie, Meghan N.; Bioud, Youcef A.; Hobson, David G.; Boucherif, Abderraouf; Valdivia, Christopher E.; Drouin, Dominique; Arès, Richard; Hinzer, Karin

    2018-05-01

    Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10‑3) Ω‑1 cm‑1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10‑3 Ω‑1 cm‑1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.

  3. Assessing noise sources at synchrotron infrared ports

    International Nuclear Information System (INIS)

    Lerch, Ph.; Dumas, P.; Schilcher, T.; Nadji, A.; Luedeke, A.; Hubert, N.; Cassinari, L.; Boege, M.; Denard, J.-C.; Stingelin, L.; Nadolski, L.; Garvey, T.; Albert, S.; Gough, Ch.; Quack, M.; Wambach, J.; Dehler, M.; Filhol, J.-M.

    2012-01-01

    Low-frequency noise present in the electron and photon beams of two comparable storage rings, SOLEIL and SLS, are carefully compared in the context of IR spectroscopy using the Fourier transform technique. Today, the vast majority of electron storage rings delivering synchrotron radiation for general user operation offer a dedicated infrared port. There is growing interest expressed by various scientific communities to exploit the mid-IR emission in microspectroscopy, as well as the far infrared (also called THz) range for spectroscopy. Compared with a thermal (laboratory-based source), IR synchrotron radiation sources offer enhanced brilliance of about two to three orders of magnitude in the mid-IR energy range, and enhanced flux and brilliance in the far-IR energy range. Synchrotron radiation also has a unique combination of a broad wavelength band together with a well defined time structure. Thermal sources (globar, mercury filament) have excellent stability. Because the sampling rate of a typical IR Fourier-transform spectroscopy experiment is in the kHz range (depending on the bandwidth of the detector), instabilities of various origins present in synchrotron radiation sources play a crucial role. Noise recordings at two different IR ports located at the Swiss Light Source and SOLEIL (France), under conditions relevant to real experiments, are discussed. The lowest electron beam fluctuations detectable in IR spectra have been quantified and are shown to be much smaller than what is routinely recorded by beam-position monitors

  4. Atomic physics research with synchrotron radiation

    International Nuclear Information System (INIS)

    Crasemann, B.

    1981-01-01

    Applications of synchrotron radiation to research in high-energy atomic physics are summarized. These lie in the areas of photoelectron spectrometry, photon scattering, x-ray absorption spectroscopy, time-resolved measurements, resonance spectroscopy and threshold excitation, and future, yet undefined studies

  5. Overview of United States synchrotron radiation facilities

    International Nuclear Information System (INIS)

    Watson, R.E.

    1983-01-01

    There has been considerable activity within the past year involving the creation of new and the improvement of existing capabilities for research with synchrotron light. The purpose of this review is to summarize what has happened within the United States. Being a status report, some of the information necessarily has a date attached to it - the date, in this case, being early September 1983

  6. Electro-Optic Tunable Laser Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop a compact, rugged, rapidly and widely tunable laser based on a quantum cascade diode laser at...

  7. Computerized microtomography using synchrotron radiation from the NSLS [National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Spanne, P.; Rivers, M.L.

    1986-09-01

    Results of microtomography experiments that employ filtered radiation from the National Synchrotron Light Source X-26 Microprobe beam line are presented. These experiments have yielded images of a freeze-dried caterpillar with a spatial resolution of the order of 30 μm and show that the limit on the spatial resolution with the present apparatus will be 1 to 10 μm. Directions for improvement in synchrotron microtomography techniques and some possible applications are discussed. 14 refs., 3 figs

  8. Tunable Beam Diffraction in Infiltrated Microstructured Fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.

    We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites.......We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites....

  9. Liquid crystal tunable photonic crystal dye laser

    DEFF Research Database (Denmark)

    Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron

    2010-01-01

    We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium.......We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium....

  10. Three-dimensional broadband tunable terahertz metamaterials

    DEFF Research Database (Denmark)

    Fan, Kebin; Strikwerda, Andrew; Zhang, Xin

    2013-01-01

    We present optically tunable magnetic three-dimensional (3D) metamaterials at terahertz (THz) frequencies which exhibit a tuning range of ~30% of the resonance frequency. This is accomplished by fabricating 3D array structures consisting of double-split-ring resonators (DSRRs) on silicon on sapph...... as verified through electromagnetic simulations and parameter retrieval. Our approach extends dynamic metamaterial tuning to magnetic control, and may find applications in switching and modulation, polarization control, or tunable perfect absorbers....

  11. Electrically Tunable Plasmonic Resonances with Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Ni, Xingjie

    2012-01-01

    Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance.......Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance....

  12. Tunable Multifunction Filter Using Current Conveyor

    OpenAIRE

    Kumar, Manish; Srivastava, M. C.; Kumar, Umesh

    2010-01-01

    The paper presents a current tunable multifunction filter using current conveyor. The proposed circuit can be realized as on chip tunable low pass, high pass, band pass and elliptical notch filter. The circuit employs two current conveyors, one OTA, four resistors and two grounded capacitors, ideal for integration. It has only one output terminal and the number of input terminals may be used. Further, there is no requirement for component matching in the circuit. The resonance frequency ({\\om...

  13. Probing deformation substructure by synchrotron X-ray diffraction and dislocation dynamics modelling.

    Science.gov (United States)

    Korsunsky, Alexander M; Hofmann, Felix; Song, Xu; Eve, Sophie; Collins, Steve P

    2010-09-01

    Materials characterization at the nano-scale is motivated by the desire to resolve the structural aspects and deformation behavior at length scales relevant to those mechanisms that define the novel and unusual properties of nano-structured materials. A range of novel techniques has recently become accessible with the help of synchrotron X-ray beams that can be focused down to spot sizes of less than a few microns on the sample. The unique combination of tunability (energy selection), parallelism and brightness of synchrotron X-ray beams allows their use for high resolution diffraction (determination of crystal structure and transformations, analysis of dislocation sub-structures, orientation and texture analysis, strain mapping); small angle X-ray scattering (analysis of nano-scale voids and defects; orientation analysis) and imaging (radiography and tomography). After a brief review of the state-of-the-art capabilities for monochromatic and white beam synchrotron diffraction, we consider the usefulness of these techniques for the task of bridging the gap between experiment and modeling. Namely, we discuss how the experiments can be configured to provide information relevant to the validation and improvement of modeling approaches, and also how the results of various simulations can be post-processed to improve the possibility of (more or less) direct comparison with experiments. Using the example of some recent experiments carried out on beamline 116 at Diamond Light Source near Oxford, we discuss how such experimental results can be interpreted in view and in conjunction with numerical deformation models, particularly those incorporating dislocation effects, e.g., finite-element based pseudo-continuum strain gradient formulations, and discrete dislocation simulations. Post-processing of FE and discrete dislocation simulations is described, illustrating the kind of information that can be extracted from comparisons between modeling and experimental data.

  14. Synchrotron radiation therapy of malignant brain gliomas loaded with an iodinated contrast agent

    International Nuclear Information System (INIS)

    Adam, J.-F.; Elleaume, H.; Joubert, A.; Biston, M.-C.; Charvet, A.-M.; Balosso, J.; Le Bas, J.-F.; Esteve, F.

    2003-01-01

    In conventional radiotherapy, treatment of brain tumors remains a delicate challenge, because the damages to the surrounding normal brain tissue limit the amount of radiation that can be delivered. One strategy to overcome this limitation is to infuse an iodinated contrast agent to the patient during the irradiation, which accumulates in the tumor, through the broken blood brain barrier; and to irradiate with kilovoltage X-rays, in tomographic mode, the tumor being located at the center of rotation and the beam size adjusted to the tumor dimensions. The dose enhancement results from the photoelectric effect on the iodine and from the irradiation geometry. Synchrotron beams, providing high intensity, tunable monochromatic X-rays, are ideal for this treatment. The purpose of this study is to demonstrate in vivo the efficiency of this novel synchrotron radiotherapy modality. Intracranial implantations of 10 5 F98 glioma cells were performed on 17 Fisher 344 rats. 6 rats were untreated controls, 5 received radiotherapy alone (10 Gy in the tumor, single fraction, tomographic irradiation) and 6 the same treatment under a continuous infusion of iodinated contrast agent (2.7 ± 1.05 mg/ml mean tumoral iodine concentration). The beam energy was set at 50 keV. Mean survival times (mean ± SD) were 12.3 ± 0.8, 15.4 ± 2.7 and 18.2 ± 1.3 days, untreated controls, irradiated without iodine, irradiated with iodine, respectively. The median survival times were 12.5, 15 and 18 days respectively, which corresponds to increase life spans of 20% and 44% for the rats irradiated without or with iodine respectively. The rats, which receive contrast agent before therapy survived significantly longer than the ones, which received radiotherapy alone (p=0.04). These preliminary results are encouraging and deserve further investigations. Synchrotron radiation could be a powerful tool for brain tumor radiation therapy

  15. V.U.V. plasma spectroscopy diagnostic of electron cyclotron resonance multicharged ion sources; Diagnostic de plasmas crees dans des sources d'ions multicharges a resonance cyclotronique electronique par spectroscopie V.U.V

    Energy Technology Data Exchange (ETDEWEB)

    Berreby, R

    1997-12-15

    To characterize the multicharged ions within the plasma of an E.C.R. ion source, the V.U.V. spectroscopy is used as a non invasive diagnostic of excited matter. In E.C.R.I. S. (electron cyclotron resonance ion source) electrons are heated and magnetically confined within the mirror machine to overcome the successive ionization potentials of the desired elements. As the electrons bounce inside the magnetic configuration in their gyration movement, they interact with the microwaves injected into the source at the resonance frequency. To enhance the performances in high charge states and extracted currents delivered by E.C.R.I.S., the fundamental parameters of the plasma created in these machines must be known. The goal of spectroscopic diagnostics in the V.U.V. range installed on the sources is to determine electron density and temperature on one hand, and the ionic densities and confinement time on the other hand. We used microchannel plates as detector on a 3 meter grazing incidence spectrometer equipped with a 600 lines/mm holographic grating. The calibration of the whole grating with detector was performed by two different methods. These are the branching ratio and charge exchange methods. Identification of lines emitted by a plasma, which gather the whole charge states of ions is necessary to make an exhaustive study of the plasma state. And finally, the determination of plasma parameters like electron density and temperature and ion densities and confinement times that uses theoretical models were the aim of this work. (author)

  16. Synchrotron-based intra-venous K-edge digital subtraction angiography in a pig model: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Schueltke, Elisabeth [Departments of Surgery, University of Saskatchewan, Saskatoon, SK (Canada); Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK (Canada); Department of Neurological Sciences, Walton Medical Centre, University of Liverpool, Liverpool L97 LJ (United Kingdom)], E-mail: e.schultke@usask.ca; Fiedler, Stefan [European Molecular Biology Laboratory (EMBL), Nottkestrasse 85, 22603 Hamburg (Germany); Nemoz, Christian [European Synchrotron Radiation Facility (ESRF), 6 rue Horowitz, 38043 Grenoble (France); Ogieglo, Lissa [Departments of Surgery, University of Saskatchewan, Saskatoon, SK (Canada); Kelly, Michael E. [Departments of Surgery, University of Saskatchewan, Saskatoon, SK (Canada); Department of Neurosurgery, Section of Cerebrovascular and Endovascular Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH (United States); Crawford, Paul [Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herfordshire AL9 7TA (United Kingdom); Esteve, Francois [INSERM U836-ESRF, 6 rue Horowitz, 38043 Grenoble (France); Brochard, Thierry; Renier, Michel; Requardt, Herwig; Le Duc, Geraldine [European Synchrotron Radiation Facility (ESRF), 6 rue Horowitz, 38043 Grenoble (France); Juurlink, Bernhard [Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK (Canada); Meguro, Kotoo [Departments of Surgery, University of Saskatchewan, Saskatoon, SK (Canada)

    2010-03-15

    Background: K-edge digital subtraction angiography (KEDSA) combined with the tunability of synchrotron beam yields an imaging technique that is highly sensitive to low concentrations of contrast agents. Thus, contrast agent can be administered intravenously, obviating the need for insertion of a guided catheter to deliver a bolus of contrast agent close to the target tissue. With the high-resolution detectors used at synchrotron facilities, images can be acquired at high spatial resolution. Thus, the KEDSA appears particularly suited for studies of neurovascular pathology in animal models, where the vascular diameters are significantly smaller than in human patients. Materials and methods: This feasibility study was designed to test the suitability of KEDSA after intravenous injection of iodine-based contrast agent for use in a pig model. Four adult male pigs were used for our experiments. Neurovascular angiographic images were acquired using KEDSA with a solid state Germanium (Ge) detector at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Results: After intravenous injection of 0.9 ml/kg iodinated contrast agent (Xenetix), the peak iodine concentrations in the internal carotid and middle cerebral arteries reached 35 mg/ml. KEDSA images in radiography mode allowed the visualization of intracranial arteries of less than 1.5 mm diameter.

  17. Diagnostics of reactive pulsed plasmas by UV and VUV absorption spectroscopy and by modulated beam Mass spectrometry

    Science.gov (United States)

    Cunge, Gilles

    2011-10-01

    Pulsed plasmas are promising for etching applications in the microelectronic industry. However, many new phenomena are involved when a high density discharge is pulsed. To better understand these processes it is necessary to probe the radicals' kinetics with a microsecond resolution. We have developed several diagnostics to reach this goal including broad band absorption spectroscopy with UV LEDs to detect small polyatomic radicals and with a deuterium VUV source to detect larger closed shell molecules and the modulated mass spectrometry to monitor atomic species. We will discuss the impact of the plasma pulsing frequency and duty cycle on the radical densities in Cl2 based plasmas, and the consequences on plasma processes. Work done in collaboration with Paul Bodart, Melisa Brihoum, Maxime Darnon, Erwin Pargon, Olivier Joubert, and Nader Sadeghi, CNRS/LTM.

  18. X-ray and VUV observations of Mo23+-Mo33+ brightness profiles from Alcator C-Mod plasmas

    International Nuclear Information System (INIS)

    Rice, J.E.; Terry, J.L.; Graf, M.A.; Marmar, E.S.; Hubbard, A.E.; Finkenthal, M.; May, M.J.

    1996-01-01

    Brightness profiles of x-ray and VUV lines from eight molybdenum charge states between Mo 23+ and Mo 33+ have been measured in Alcator C-Mod plasmas. These spatial profiles agree very well with those predicted by a model which includes ionization, recombination, excitation and transport. Comparison with the profiles of many different charge states provides severe constraints upon the rates used in the model. The charge state density profiles are calculated using measured impurity transport coefficients, measured electron density and temperature profiles and newly calculated ionization and recombination rate coefficients. These new rate coefficients include direct collisional ionization, excitation-autoionization, dielectronic and radiative recombination. Excitation-autoionization is shown to be an important process, since the excellent agreement between the measurements and predictions is obtained only with its inclusions. Fits to newly calculated excitation rate coefficients for the transitions are also presented. (author)

  19. 50 years of synchrotrons. Early synchrotrons in Britain, and early work for CERN. - The CERN synchrotrons. Lectures

    International Nuclear Information System (INIS)

    Lawson, J.; Brianti, G.

    1997-01-01

    In the first report, 'Early synchrotrons in Britain, and early work for CERN', John Lawson gives an extended account of the material presented at the John Adams lecture, and at the same time a revised and shortened version of RAL report 97-011, which contains fuller archival references and notes. During the period covered by this report there was extensive work in Russia, where the principle of phase stability had been discovered in 1944 by Veksler. Unfortunately, all experimental work was kept secret until Veksler's talk at the first 'Atoms for Peace' conference at Geneva in August 1955. In the second lecture, 'The CERN Synchrotrons', Giorgio Brianti outlines the history of alternating-gradient synchrotrons from 1953/54 until today. In preparing this lecture he was confronted with a vast amount of material, while the time at his disposal was not even one minute per year, implying a time compression factor close to one million. Therefore, he had to exercise drastic choices, which led him to concentrate on CERN hadron synchrotrons and colliders and leave aside the Large Electron-Positron storage ring (LEP). Indeed, LEP was the subject of the John Adams Memorial Lecture in 1990, and it may be treated again in the future in connection with its energy upgrade. Even with these severe limitations, it was impossible to do justice to the number and variety of events and to the ingenuity of the people who have carved the history of CERN and of particle physics on the magnets, radiofrequency cavities, vacuum etc., and on the record performance of our machines. (orig./WL)

  20. Study of the origin of life using synchrotron radiation

    International Nuclear Information System (INIS)

    Nakagawa, Kazumichi; Tanaka, Masahito; Koketsu, Toshiyuki; Yamada, Toru; Onuki, Hideo

    2000-01-01

    Optical absorption spectra and CD (circular dichroism) spectra of amino acids were measured in the VUV region. Using these basic data, we made irradiation experiments. The excitation of n→π* transition near 200 nm of the L-aspartic acid, produced L-alanine and β-alanine. We succeeded to find L-alanyl-L- alanine(L-alanine dimer) for the case of irradiation to solid phase of L-alanine. (author)

  1. SYNCHROTRON EMISSION FROM THE GALACTIC HI LAYER

    Directory of Open Access Journals (Sweden)

    Yonggi Kim

    2007-03-01

    Full Text Available The relationship between the Galactic magnetic field strength and the gas density has been revisited. A synchrotron continuum emission data at 408 MHz and HI column density provide a good data for such study. But it is difficult to separate the synchrotron emission from the observed 408MHz radio emission, because the 408MHz radio emission has the component from the HI layer, as well as many components from other origins. We have tried to substract the component which is probably not related with HI layer, and present the results. We show that the method presented here is a more refined method than that of Brown & Chang (1983, hearafter BC83 to find the above mentioned relationship, and discuss the existence of such relationship in our Galaxy.

  2. Applications of Indus-1 synchrotron radiation source

    International Nuclear Information System (INIS)

    Nandedkar, R.V.

    2003-01-01

    Indus-1 is a 450 MeV electron storage ring. This is a soft X-ray and Vacuum Ultra Violet radiation source with the critical wavelength being 61 A. In this source, the first beam was stored in mid-1999 and was then made available, after initial storage and beam cleaning of the vacuum components, for beamline installation in the early 2000. Two beamlines are commissioned and are working. Other beamlines are in the advanced stage of commissioning. For Indus-1, the injection system consists of a 20 MeV classical microtron as a preinjector and a booster synchrotron that can go up to 700 MeV. For Indus-1, the injection into the storage ring is at full 450 MeV from this booster synchrotron

  3. The relativistic foundations of synchrotron radiation.

    Science.gov (United States)

    Margaritondo, Giorgio; Rafelski, Johann

    2017-07-01

    Special relativity (SR) determines the properties of synchrotron radiation, but the corresponding mechanisms are frequently misunderstood. Time dilation is often invoked among the causes, whereas its role would violate the principles of SR. Here it is shown that the correct explanation of the synchrotron radiation properties is provided by a combination of the Doppler shift, not dependent on time dilation effects, contrary to a common belief, and of the Lorentz transformation into the particle reference frame of the electromagnetic field of the emission-inducing device, also with no contribution from time dilation. Concluding, the reader is reminded that much, if not all, of our argument has been available since the inception of SR, a research discipline of its own standing.

  4. ANKA - new horizons with synchrotron radiation

    International Nuclear Information System (INIS)

    Hagelstein, M.; Czolk, R.

    2001-01-01

    ANKA GmbH operates a state-of-the-art electron storage ring (2.5 GeV energy, 400 mA maximum current) for the production of high-intensity synchrotron radiation. The produced 'superlight' ranges from the hard X-ray to the infrared region of the electromagnetic spectrum. To use the light for microfabrication and analysis a number of modern, high quality production and experimental facilities exist on this circular (diameter about 35 m) synchrotron radiation sources. The experimental facilities are consolidated by a young, experienced and highly motivated team of experts. For the patterning of polymers by deep X-ray lithography three end-stations (so-called beamlines) are available. For analytical tasks five beamlines are established where different experiments can be made based on X-ray methods such as X-ray absorption, diffraction and fluorescence spectroscopy as well as IR-spectroscopy. (orig.)

  5. The 400 GeV proton synchrotron

    International Nuclear Information System (INIS)

    1976-05-01

    A general account is given of the 400-GeV proton synchrotron, known as Super Proton Synchrotron (SPS), of the European Organization for Nuclear Research (CERN) at Geneva. A brief chapter on the history of the project covers the steps leading to the earlier plan for a 300-GeV accelerator at a new CERN laboratory elsewhere in Europe, abandoned in 1971 in favour of the present machine, and the progress of construction of the latter. The general features of the SPS design are outlined, illustrated by an aerial view of the CERN site, a plan of the SPS, and interior views of the SPS ring tunnel and main control room. (WSN)

  6. Lattice Design of a Medical Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Ji Ho; Cho, Yong Sub; Kwon, Hyeok Jung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Yong Yung [BNL, New York (United States)

    2010-05-15

    The proton therapy is a fast-growing method for a cancer treatment because it can concentrate proton beams into cancer cells and minimize damage on normal cells by using a Bragg peak. The design study on the synchrotron for the proton therapy is in progress as an R and D for using PEFP (proton engineering frontier project) accelerator technology. The injection energy is 3 MeV which is provided by an RFQ (radio frequency quadrupole). The maximum extraction energy is 250 MeV for treatment of deepest tumors in human body. It includes a slow extraction method through the third order resonance and a single turn extraction option. This brief report summarized the lattice design of the synchrotron

  7. Calculation of coherent synchrotron radiation using mesh

    Directory of Open Access Journals (Sweden)

    T. Agoh

    2004-05-01

    Full Text Available We develop a new method to simulate coherent synchrotron radiation numerically. It is based on the mesh calculation of the electromagnetic field in the frequency domain. We make an approximation in the Maxwell equation which allows a mesh size much larger than the relevant wavelength so that the computing time is tolerable. Using the equation, we can perform a mesh calculation of coherent synchrotron radiation in transient states with shielding effects by the vacuum chamber. The simulation results obtained by this method are compared with analytic solutions. Though, for the comparison with theories, we adopt simplifications such as longitudinal Gaussian distribution, zero-width transverse distribution, horizontal uniform bend, and a vacuum chamber with rectangular cross section, the method is applicable to general cases.

  8. Synchrotron radiation sources in the Soviet Union

    International Nuclear Information System (INIS)

    Kapitza, S.P.

    1987-01-01

    Synchrotron radiation (SR) is now recognized to be an important instrument for experimental work in many fields of science. Recently the application of SR in medicine and industry, especially as a light source for microelectronics production have been demonstrated. Thus the development of SR sources has now grown to become a significant and independent dimension for accelerator research and technology. This article describes SR work in the Soviet Union

  9. Characteristics of Injected Beam at HIMAC Synchrotron

    CERN Document Server

    Uesugi, Takehiro; Noda, Koji; Shibuya, Shinji

    2005-01-01

    At the HIMAC synchrotron, we have carried out the tune survey with the lifetime measurement in order to obtain the high intensity. Under the relatively high intensity, it was observed that a part of the circulating beam was lost due to the coherent oscillation in both the horizontal and the vertical direction. Taking account of the tune shift and spreads, the working point was optimized so as to avoid resonance line. We will describe the experimental result.

  10. Studying Magnetohydrodynamic Turbulence with Synchrotron Polarization Dispersion

    OpenAIRE

    Zhang, Jian-Fu; Lazarian, Alex; Lee, Hyeseung; Cho, Jungyeon

    2016-01-01

    We test a new technique of studying magnetohydrodynamic (MHD) turbulence suggested by Lazarian \\& Pogosyan, using synthetic synchrotron polarization observations. This paper focuses on a one-point statistics, which is termed the polarization frequency analysis, that is characterized by the variance of polarized emission as a function of the square of wavelengths along a single line of sight. We adopt a ratio $\\eta$ of the standard deviation of the line-of-sight turbulent magnetic field to the...

  11. The Australian synchrotron - a progress report

    International Nuclear Information System (INIS)

    Boldeman, J.; Jackson, A.; Seaborne, G.; Hobbs, R.; Garrett, R.

    2003-01-01

    This paper summarises progress with the development of the Australian Synchrotron. The facility is based on the Boomerang Storage Ring which has a DBA structure with 14 superperiods. The design objective was to achieve a low emittance in a relatively compact circumference that had an excellent dynamic aperture and was obust with respect to potential construction aberrations. The potential suite of beamline and instrument stations is discussed and some examples are given

  12. Tabletop synchrotron and its unique features

    International Nuclear Information System (INIS)

    Yamada, Hironari

    2002-01-01

    Two synchrotrons, AURORA and MIRRORCLE, were built in Ritsumeikan University. MIRRORCLE-20 is the smallest normal conduction synchrotron (15 cm orbit radius and 1.2 m outer diameter) in the world. It uses 2/3 resonance method for electron beam incidence but is not optimized for X-ray generation. MIRRORCLE-6 shall be optimized for X-ray generation. X-ray generated by MIRRORCLE shows very flat white light, rich in hard X-ray, pulse with width changeable from a few μs to a few ms , wide radiation angle of 25 mrad at MIRRORCLE-20 and 80 mrad at MIRRORCLE-8 and high coherence. The feature such as pulsed light and high coherence is expected to new application which photon radiation cannot practice. Imaging experiments by MIRRORCLE were carried out by Cu plate, Al plate, Teflon and acryl plate. We took a photograph of insect, electric lamp, connector, and cyclotron. New X-ray generation mechanism, X-ray strength, development of tabletop synchrotron and features of X-ray beam are explained. (S.Y.)

  13. Photoemission studies using laboratory and synchrotron sources

    International Nuclear Information System (INIS)

    Phase, D.M.

    2012-01-01

    Synchrotron radiation sources, providing intense, polarized and stable beams of ultra violet soft and hard X-ray photons, are having great impact on physics, chemistry, biology materials science and other areas research. In particular synchrotron radiation has revolutionized photoelectron spectroscopy by enhancing its capabilities for investigating the electronic properties of solids. The first Indian synchrotron storage ring, Indus- 1 is in operation at RRCAT, Indore. The UGC-DAE CSR with the help of university scientist had designed and developed an angle integrated photoelectron spectroscopy (PES) beamline on this 450 MeV storage ring. A storage ring of this kind is most suitable for investigation in the energy range from few electron volts to around five hundred electron volts. In this lecture we will describe the details of PES beamline and its experimental station. Till date the different university users carried out photoemission measurements on variety of samples. Some of the spectra recorded by users will be presented in order to show the capability of this beamline. In the later part we will report a review of our recent research work carried out on dilute magnetic thin films using this beamline. (author)

  14. Ultrafast molecular dynamics illuminated with synchrotron radiation

    International Nuclear Information System (INIS)

    Bozek, John D.; Miron, Catalin

    2015-01-01

    Highlights: • Ultrafast molecular dynamics probed with synchrotron radiation. • Core-excitation as probe of ultrafast dynamics through core-hole lifetime. • Review of experimental and theoretical methods in ultrafast dynamics using core-level excitation. - Abstract: Synchrotron radiation is a powerful tool for studying molecular dynamics in small molecules in spite of the absence of natural matching between the X-ray pulse duration and the time scale of nuclear motion. Promoting core level electrons to unoccupied molecular orbitals simultaneously initiates two ultrafast processes, nuclear dynamics on the potential energy surfaces of the highly excited neutral intermediate state of the molecule on the one hand and an ultrafast electronic decay of the intermediate excited state to a cationic final state, characterized by a core hole lifetime. The similar time scales of these processes enable core excited pump-probe-type experiments to be performed with long duration X-ray pulses from a synchrotron source. Recent results obtained at the PLIEADES beamline concerning ultrafast dissociation of core excited states and molecular potential energy curve mapping facilitated by changes in the geometry of the short-lived intermediate core excited state are reviewed. High brightness X-ray beams combined with state-of-the art electron and ion-electron coincidence spectrometers and highly sophisticated theoretical methods are required to conduct these experiments and to achieve a full understanding of the experimental results.

  15. 50 Years of synchrotrons Adams' Memorial lecture

    CERN Document Server

    Lawson, J D; CERN. Geneva

    1996-01-01

    Fifty years ago Frank Goward of the Atomic Energy Research Establishment Group at Malvern converted a small American betatron to make the worldÕs first synchrotron. At the same time Marcus Oliphant was planning to build at Birmingham a large proton machine with a ring magnet and variable magnetic field. Ideas for this had come to him during night-shifts tending the electromagnetic separators at Oak Ridge during the war. Some seven years later, in 1953, a group gathered together in Geneva to build the PS. A major contributor to the design work which had made this possible was John Adams. An account of some of the achievements in these eventful years will be presented. CERN has built nine synchrotrons/colliders and two temporary test rings. Eight machines are still running. The review will start with the PS, the first proton synchrotron based on the alternating gradient principle invented in 1952 at BNL. The design work of the PS team, under the enlightened leadership of J.B. Adams, and the construction of the...

  16. Tabletop synchrotron and its unique features

    CERN Document Server

    Yamada, H

    2002-01-01

    Two synchrotrons, AURORA and MIRRORCLE, were built in Ritsumeikan University. MIRRORCLE-20 is the smallest normal conduction synchrotron (15 cm orbit radius and 1.2 m outer diameter) in the world. It uses 2/3 resonance method for electron beam incidence but is not optimized for X-ray generation. MIRRORCLE-6 shall be optimized for X-ray generation. X-ray generated by MIRRORCLE shows very flat white light, rich in hard X-ray, pulse with width changeable from a few mu s to a few ms , wide radiation angle of 25 mrad at MIRRORCLE-20 and 80 mrad at MIRRORCLE-8 and high coherence. The feature such as pulsed light and high coherence is expected to new application which photon radiation cannot practice. Imaging experiments by MIRRORCLE were carried out by Cu plate, Al plate, Teflon and acryl plate. We took a photograph of insect, electric lamp, connector, and cyclotron. New X-ray generation mechanism, X-ray strength, development of tabletop synchrotron and features of X-ray beam are explained. (S.Y.)

  17. Synchrotron-radiation experiments with recoil ions

    International Nuclear Information System (INIS)

    Levin, J.C.

    1989-01-01

    Studies of atoms, ions and molecules with synchrotron radiation have generally focused on measurements of properties of the electrons ejected during, or after, the photoionization process. Much can also be learned, however, about the atomic or molecular relaxation process by studies of the residual ions or molecular fragments following inner-shell photoionization. Measurements are reported of mean kinetic energies of highly charged argon, krypton, and xenon recoil ions produced by vacancy cascades following inner-shell photoionization using white and monochromatic synchrotron x radiation. Energies are much lower than for the same charge-state ions produced by charged-particle impact. The results may be applicable to design of future angle-resolved ion-atom collision experiments. Photoion charge distributions are presented and compared with other measurements and calculations. Related experiments with synchrotron-radiation produced recoil ion, including photoionization of stored ions and measurement of shakeoff in near-threshold excitation, are briefly discussed. 24 refs., 6 figs., 1 tab

  18. MICROANALYSIS OF MATERIALS USING SYNCHROTRON RADIATION.

    Energy Technology Data Exchange (ETDEWEB)

    JONES,K.W.; FENG,H.

    2000-12-01

    High intensity synchrotron radiation produces photons with wavelengths that extend from the infrared to hard x rays with energies of hundreds of keV with uniquely high photon intensities that can be used to determine the composition and properties of materials using a variety of techniques. Most of these techniques represent extensions of earlier work performed with ordinary tube-type x-ray sources. The properties of the synchrotron source such as the continuous range of energy, high degree of photon polarization, pulsed beams, and photon flux many orders of magnitude higher than from x-ray tubes have made possible major advances in the possible chemical applications. We describe here ways that materials analyses can be made using the high intensity beams for measurements with small beam sizes and/or high detection sensitivity. The relevant characteristics of synchrotron x-ray sources are briefly summarized to give an idea of the x-ray parameters to be exploited. The experimental techniques considered include x-ray fluorescence, absorption, and diffraction. Examples of typical experimental apparatus used in these experiments are considered together with descriptions of actual applications.

  19. VUV spectroscopy of Tm3+ and Mn2+ doped LiSrAlF6

    International Nuclear Information System (INIS)

    True, M.; Kirm, M.; Negodine, E.; Vielhauer, S.; Zimmerer, G.

    2004-01-01

    LiSrAlF 6 (LiSAF) crystals doped with either Tm 3+ or Mn 2+ were obtained by solid-state reaction and investigated spectroscopically using synchrotron radiation in the vacuum-ultra-violet and ultra-violet spectral regions. In the Tm 3+ doped LiSAF crystals, the slow spin-forbidden 5d-4f emission peaking at 166 nm with a lifetime of at least 1 μs was observed. The respective excitation spectrum consists of several bands in the range of 160-110 nm arising due to the 4f-5d absorption. The f-f emissions of Tm 3+ are well excited in the range of 135-110 nm, but not under excitation into the lower lying d-bands. The excitation mechanisms of different emissions will be discussed including the F - to Tm 3+ charge transfer excitation peaking at 127 nm in LiSAF. The characteristic broad 4 T 1 → 6 A 1 emission band of Mn 2+ peaking at 508 (504) nm was observed in LiSAF:Mn 2+ crystal at 10 (300) K. Three intense excitation bands, tentatively ascribed to the 3d-4s transitions of Mn 2+ , were revealed in the range of 170-110 nm

  20. Narrowband tunable laser for uranium-233 cleanup process

    International Nuclear Information System (INIS)

    Singh, Sunita; Sridhar, G.; Rawat, V.S.; Kawde, Nitin; Sinha, A.K.; Bhatt, S.; Gantayet, L.M.

    2009-01-01

    Design, development and technology demonstration of proto type Single Longitudinal Mode pulsed tunable laser is reported in this work. The tunable laser has a narrow bandwidth less than 400 MHz required for isotopic clean up of 233 U. (author)

  1. National Synchrotron Light Source: vacuum system for National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Schuchman, J.C.; Godel, J.B.; Jordan, W.; Oversluizen, T.

    1978-01-01

    The National Synchrotron Light Source (NSLS), a 24 million dollar project under construction at Brookhaven National Laboratory (BNL), is a research facility dedicated to the production of synchrotron radiation. Synchrotron radiation is that radiation produced by the acceleration of charged particles at near the speed of light. This facility will provide a continuous spectrum of radiation from the vacuum ultraviolet to the hard x-ray range. The radiation will be highly intense, 100% polarized, extremely well collimated and will have a pulsed time structure. The radiation will be produced in two electron storage rings at energies of 700 MeV and 2.5 GeV, respectively. A maximum of one ampere at 2 GeV, or one-half ampere at 2.5 GeV, of electron beam will be stored

  2. Highly Tunable Narrow Bandpass MEMS Filter

    KAUST Repository

    Hafiz, Md Abdullah Al

    2017-07-07

    We demonstrate a proof-of-concept highly tunable narrow bandpass filter based on electrothermally and electrostatically actuated microelectromechanical-system (MEMS) resonators. The device consists of two mechanically uncoupled clamped-clamped arch resonators, designed such that their resonance frequencies are independently tuned to obtain the desired narrow passband. Through the electrothermal and electrostatic actuation, the stiffness of the structures is highly tunable. We experimentally demonstrate significant percentage tuning (~125%) of the filter center frequency by varying the applied electrothermal voltages to the resonating structures, while maintaining a narrow passband of 550 ± 50 Hz, a stopband rejection of >17 dB, and a passband ripple ≤ 2.5 dB. An analytical model based on the Euler-Bernoulli beam theory is used to confirm the behavior of the filter, and the origin of the high tunability using electrothermal actuation is discussed.

  3. Adaptive Tunable Laser Spectrometer for Space Applications

    Science.gov (United States)

    Flesch, Gregory; Keymeulen, Didier

    2010-01-01

    An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.

  4. Perovskite Superlattices as Tunable Microwave Devices

    Science.gov (United States)

    Christen, H. M.; Harshavardhan, K. S.

    2003-01-01

    Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.

  5. Relativistic Turbulence with Strong Synchrotron and Synchrotron-Self-Compton Cooling

    Science.gov (United States)

    Uzdensky, D. A.

    2018-03-01

    Many relativistic plasma environments in high-energy astrophysics, including pulsar wind nebulae, hot accretion flows onto black holes, relativistic jets in active galactic nuclei and gamma-ray bursts, and giant radio lobes, are naturally turbulent. The plasma in these environments is often so hot that synchrotron and inverse-Compton (IC) radiative cooling becomes important. In this paper we investigate the general thermodynamic and radiative properties (and hence the observational appearance) of an optically thin relativistically hot plasma stirred by driven magnetohydrodynamic (MHD) turbulence and cooled by radiation. We find that if the system reaches a statistical equilibrium where turbulent heating is balanced by radiative cooling, the effective electron temperature tends to attain a universal value θ = kT_e/m_e c^2 ˜ 1/√{τ_T}, where τT = neσTL ≪ 1 is the system's Thomson optical depth, essentially independent of the strength of turbulent driving and hence of the magnetic field. This is because both MHD turbulent dissipation and synchrotron cooling are proportional to the magnetic energy density. We also find that synchrotron self-Compton (SSC) cooling and perhaps a few higher-order IC components are automatically comparable to synchrotron in this regime. The overall broadband radiation spectrum then consists of several distinct components (synchrotron, SSC, etc.), well separated in photon energy (by a factor ˜ τ_T^{-1}) and roughly equal in power. The number of IC peaks is checked by Klein-Nishina effects and depends logarithmically on τT and the magnetic field. We also examine the limitations due to synchrotron self-absorption, explore applications to Crab PWN and blazar jets, and discuss links to radiative magnetic reconnection.

  6. Conversion of VUV to visible in K{sub 5}Li{sub 2}LnF{sub 10} containing rare-earth ions (Ln=Pr-Gd)

    Energy Technology Data Exchange (ETDEWEB)

    Solarz, P.; Dominiak-Dzik, G.; Ryba-Romanowski, W

    2004-01-14

    Potential of single crystals of K{sub 5}Li{sub 2}LnF{sub 10} for application as VUV excited phosphors has been examined. The crystals can be doped by rare-earth ions (Pr-Gd) with concentrations up to 100 at.% keeping a minimal distance between two of the nearest rare-earth ions superior to 6.5 Angst. For this reason the efficiency of self-quenching of their luminescence is greatly reduced. Luminescence spectra and excitation spectra in the 50-250 nm spectral region have been recorded at room temperature. Intense visible and UV emission excited in the VUV region has been observed in crystals containing Nd, Eu and Gd. Slightly weaker emission in crystals containing praseodymium and markedly weaker emission in crystals containing samarium has been recorded and attributed to enhanced selfquenching of luminescence. Tentative assignment of spectra has been proposed.

  7. Improved EDGE2D-EIRENE simulations of JET ITER-like wall L-mode discharges utilising poloidal VUV/visible spectral emission profiles

    OpenAIRE

    Lawson, K.D.; Groth, M.; Belo, P.; Brezinsek, S.; Corrigan, G.; Czarnecka, A.; Delabie, E.; Drewelow, P.; Harting, D.; Książek, I.; Maggi, C.F.; Marchetto, C.; Meigs, A.G.; Menmuir, S.; Stamp, M.F.

    2015-01-01

    A discrepancy in the divertor radiated powers between EDGE2D-EIRENE simulations, both with and without drifts, and JET-ILW experiments employing a set of NBI-heated L-mode discharges with step-wise density variation is investigated. Results from a VUV/visible poloidally scanning spectrometer are used together with bolometric measurements to determine the radiated power and its composition. The analysis shows the importance of D line radiation in contributing to the divertor radiated power, wh...

  8. Tunable high-gradient permanent magnet quadrupoles

    CERN Document Server

    Shepherd, B J A; Marks, N; Collomb, N A; Stokes, D G; Modena, M; Struik, M; Bartalesi, A

    2014-01-01

    A novel type of highly tunable permanent magnet (PM) based quadrupole has been designed by the ZEPTO collaboration. A prototype of the design (ZEPTO-Q1), intended to match the specification for the CLIC Drive Beam Decelerator, was built and magnetically measured at Daresbury Laboratory and CERN. The prototype utilises two pairs of PMs which move in opposite directions along a single vertical axis to produce a quadrupole gradient variable between 15 and 60 T/m. The prototype meets CLIC's challenging specification in terms of the strength and tunability of the magnet.

  9. Tunable Optofluidic Third Order DFB Dye Laser

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2007-01-01

    We present a low-threshold polymer-based nanofluidic dye laser. By employing a third order DFB laser resonator, we demonstrate a threshold fluence of ~7 muJ/mm2 and a tunability of 45 nm using a single laser dye......We present a low-threshold polymer-based nanofluidic dye laser. By employing a third order DFB laser resonator, we demonstrate a threshold fluence of ~7 muJ/mm2 and a tunability of 45 nm using a single laser dye...

  10. Techniques for materials research with synchrotron radiation x-rays

    International Nuclear Information System (INIS)

    Bowen, D.K.

    1983-01-01

    A brief introductory survey is presented of the properties and generation of synchrotron radiation and the main techniques developed so far for its application to materials problems. Headings are:synchrotron radiation; X-ray techniques in synchrotron radiation (powder diffraction; X-ray scattering; EXAFS (Extended X-ray Absorption Fine Structure); X-ray fluorescent analysis; microradiography; white radiation topography; double crystal topography); future developments. (U.K.)

  11. Impact of synchrotron radiation on macromolecular crystallography: a personal view

    Science.gov (United States)

    Dauter, Zbigniew; Jaskolski, Mariusz; Wlodawer, Alexander

    2010-01-01

    The introduction of synchrotron radiation sources almost four decades ago has led to a revolutionary change in the way that diffraction data from macromolecular crystals are being collected. Here a brief history of the development of methodologies that took advantage of the availability of synchrotron sources are presented, and some personal experiences with the utilization of synchrotrons in the early days are recalled. PMID:20567074

  12. Development of a compact synchrotron for proton beam therapy

    International Nuclear Information System (INIS)

    Ebina, Futaro; Umezawa, Masumi; Nishiuchi, Hideaki; Aoki, Takamichi; Hiramoto, Kazuo; Matsuda, Koji; Umegaki, Kikuo; Furusaka, Michihiro

    2016-01-01

    This research aims to develop a compact synchrotron dedicated for proton beam therapy using a scanning irradiation method. The effective length and magnetic uniformity of the bending magnets in the synchrotron were analyzed by 3D static magnetic field calculations. The calculation results indicate that the shape of the bending magnet satisfies the specification for beam stability. A push-pull multi-feed driven technique allows shortening the length of the FINEMET RF acceleration cavity for the synchrotron from 600 mm to 450 mm. The circumference of the synchrotron is 18 m, which is the world's most compact size for proton beam therapy. (author)

  13. Planning study for advanced national synchrotron-radiation facilities

    International Nuclear Information System (INIS)

    1984-01-01

    A new generation of synchrotron-radiation sources based on insertion devices offers gains in photon-beam brilliance as large as the gains that present-day synchrotron sources provided over conventional sources. This revolution in synchrotron capability and its impact on science and technology will be as significant as the original introduction of synchrotron radiation. This report recommends that insertion-device technology be pursued as our highest priority, both through the full development of insertion-device potential on existing machines and through the building of new facilities

  14. Synchrotron radiation: earth, environmental and materials sciences applications

    International Nuclear Information System (INIS)

    Henderson, G.; Baker, D.R.

    2002-01-01

    Mineralogical Association of Canada Short Course 30 called Synchrotron Radiation: Earth, Environmental and Materials Sciences Applications was held in Saskatoon, Saskatchewan in 2002. This short course attempts to introduce to the general earth science community some of the basics of synchrotron radiation-based research. It is not intended as a review of all aspects of every synchrotron-based technique, although it does include the important literature into which knowledge of more specific areas can be gained. Instead, it covers the basics of synchrotron research at a level suitable for those interested in beginning to use synchrotron radiation in their research. Chapter 1 covers the physics of synchrotron radiation and synchrotron storage rings in general. Chapter 2 details what the Canadian Light Source is, what it will be capable of, and the types of experiments that will be able to be performed on the beamlines. Chapter 3 covers the basics of synchrotron-based diffraction studies including both powder and single crystal studies. Chapter 4 introduces the novice user to X-ray absorption spectroscopy (EXAFS/XANES) and includes details on how to correctly reduce the data. Chapter 5 outlines the capabilities of the X-ray microprobe for chemical analyses, micro-EXAFS/XANES and imaging of geological samples. Chapter 6 gives a detailed overview of synchrotron-based X-ray photoelectron spectroscopy with application to mineralogical and geochemical studies. Finally, chapter 7 introduces the types of experiments within the geological community that are commonly performed on amorphous materials

  15. A tunable electromechanical Helmholtz resonator

    Science.gov (United States)

    Liu, Fei

    Acoustic liners are used in turbofan engine nacelles for the suppression of engine noise. For a given engine, there are different optimum impedance distributions associated with take-off, cut-back, and approach flight conditions. The impedance of conventional acoustic liners is fixed for a given geometry, and conventional active liner approaches are impractical. This project addresses the need for a tunable impedance through the development of an electromechanical Helmholtz resonator (EMHR). The device consists of a Helmholtz resonator with the standard rigid backplate replaced by a compliant piezoelectric composite. Analytical models (i.e., a lumped element model (LEM) and a transfer matrix (TM) representation of the EMHR) are developed to predict the acoustic behavior of the EMHR. The EMHR is experimentally investigated using the standard two-microphone method (TMM). The measurement results validate both the LEM and the TM of the EMHR. Good agreement between predicted and measured impedance is obtained. Short- and open-circuit loads define the limits of the tuning range using resistive and capacitive loads. There is approximately a 9% tuning limit under these conditions for the non-optimized resonator configuration studied. Inductive shunt loads result in a 3 degree-of-freedom (DOF) system and an enhanced tuning range of over 47% that is not restricted by the short- and open-circuit limits. Damping coefficient measurements for a piezoelectric backplate in a vacuum chamber are performed and indicate that the damping is dominated by structural damping losses. A Pareto optimization design based on models of the EMHR is performed with non-inductive loads. The EMHR with non-inductive loads has 2DOF and two resonant frequencies. The tuning ranges of the two resonant frequencies of the EMHR with non-inductive loads cannot be optimized simultaneously, so a trade-off (Pareto solution) must be reached. The Pareto solution shows how design trade-offs can be used to satisfy

  16. Bystander Effects During Synchrotron Imaging Procedures?

    Science.gov (United States)

    Schültke, Elisabeth; Bewer, Brian; Wysokinski, Tomasz; Chapman, Dean; Nikkhah, Guido

    2010-07-01

    Using monochromatic beam and synchrotron phase-contrast technique at the biomedical beamline of the Italian synchrotron facility Elettra (SYRMEP), we have shown in a small animal model of malignant brain tumor that it is possible to obtain high-resolution images of very small tumors when they have developed from implanted tumor cells loaded with colloidal gold nanoparticles (GNP). All previous experiments were conducted in post-mortem samples. We have now designed a cell culture experiment to investigate the effects of synchrotron radiation with an energy and dose profile similar to that expected in our first in vivo imaging studies according to the protocol developed at SYRMEP. Materials and Methods: Culture flasks containing either gold-loaded or naïve C6 glioma cells were exposed to a dose of 0.5 Gy at 24 keV. The irradiated medium was aspirated and replaced with fresh growth medium. Twenty-four hours later this non-irradiated medium exposed to irradiated cells was aspirated, then added to non-irradiated C6 cells in order to investigate whether bystander effects are seen under the conditions of our image acquisition protocol. The irradiated medium was added to a number of other non-irradiated cell cultures. Cell counts were followed until 72 hrs after irradiation. Western blots were conducted with H2AX antibodies. This experiment was one of the first biomedical experiments conducted at BMIT, the new biomedical imaging and therapy beamline of the Canadian Light Source. Results: No significant differences in proliferation were seen between cells that were directly irradiated, exposed to irradiated medium or exposed to the non-irradiated 24-hr-medium from the irradiated cells. However, there was a tendency towards a higher number of double strand breaks in previously irradiated cells when they were exposed to non-irradiated medium that had been in contact with irradiated cells for 24 hrs.

  17. Emittance growth from transient coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Bohn, C.L.; Li, R.; Bisognano, J.J.

    1996-01-01

    If the energies of individual particles in a bunch change as the bunch traverses a bending system, even if it is achromatic, betatron oscillations can be excited. Consequently, the transverse emittance of the bunch will grow as it moves downstream. Short bunches may be particularly susceptible to emission of coherent synchrotron radiation which can act back on the particles to change their energies and trajectories. Because a bend spans a well-defined length and angle, the bunch-excited wakefield and its effect back on the bunch are inherently transient. We outline a recently developed theory of this effect and apply it to example bending systems

  18. Glancing angle synchrotron X-ray diffraction

    International Nuclear Information System (INIS)

    Cernik, R.J.

    1996-01-01

    This paper describes in basic detail some of the techniques that can be used to study thin films and surfaces. These are all in the X-ray region and cover reflectivity, diffraction form polycrystalline films, textured films and single crystal films. Other effects such as fluorescence and diffuse scattering are mentioned but not discussed in detail. Two examples of the reflectivity from multilayers and the diffraction from iron oxide films are discussed. The advantages of the synchrotron for these studies is stressed and the experimental geometries that can be employed are described i detail. A brief bibliography is provided at the end to accompany this part of the 1996 Frascati school

  19. Synchrotron radiation facilities in the USA

    International Nuclear Information System (INIS)

    Decker, G.

    1996-01-01

    With the successful commissioning and achievement of significant milestones at both the 7-GeV Advanced Photon Source (APS) and the 1.5- GeV Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory, synchrotron radiation research capability in the United States holds the promise of many important discoveries in the decade to come. An overview of current accelerator commissioning performance at the American third-generation light sources, state-of-the-art developments at first- and second-generation sources, and a preview of fourth-generation source progress is presented

  20. An overview of synchrotron radiation utilization

    International Nuclear Information System (INIS)

    Bienenstock, A.

    1991-01-01

    Over the past decade and a half, the availability of synchrotron radiation has become a very important asset for chemical engineering research. As more experimental stations and brighter radiation become available, its use will spread even further. Its value arises presently from the very considerable capabilities it makes possible in the following areas: structure determination; electronic state determination; chemical analysis; imaging; spectroscopy; x-ray lithography. The first four of these areas are discussed in this article. All six are pursued in more detail in the papers which follow

  1. Scanning photoemission microscopy with synchrotron radiation

    Science.gov (United States)

    Ade, Harald W.

    1992-08-01

    Progress in photoemission spectro-microscopy at various synchrotron radiation facilities is reviewed. Microprobe devices such as MAXIMUM at the SRC in Wisconsin, the X1-SPEM at the NSLS at BNL, as well as the ellipsoidal ring mirror microscope at DESY in Hamburg, recorded first images during the last few years. The present status of these devices which achieve their lateral resolution by focusing X-rays to a small spot is the primary focus of this paper, but work representing other approaches to spectro-microscopy is also discussed.

  2. Glancing angle synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cernik, R.J. [Daresbury Lab., Warrington, WA (United States)

    1996-09-01

    This paper describes in basic detail some of the techniques that can be used to study thin films and surfaces. These are all in the X-ray region and cover reflectivity, diffraction form polycrystalline films, textured films and single crystal films. Other effects such as fluorescence and diffuse scattering are mentioned but not discussed in detail. Two examples of the reflectivity from multilayers and the diffraction from iron oxide films are discussed. The advantages of the synchrotron for these studies is stressed and the experimental geometries that can be employed are described i detail. A brief bibliography is provided at the end to accompany this part of the 1996 Frascati school.

  3. Frequency tunable surface magneto elastic waves

    NARCIS (Netherlands)

    Janusonis, J.; Chang, C. L.; van Loosdrecht, P. H. M.; Tobey, R. I.

    2015-01-01

    We use the transient grating technique to generate narrow-band, widely tunable, in-plane surface magnetoelastic waves in a nickel film. We monitor both the structural deformation of the acoustic wave and the accompanying magnetic precession and witness their intimate coupling in the time domain.

  4. Tunable structures and modulators for THz light

    Czech Academy of Sciences Publication Activity Database

    Kužel, Petr; Kadlec, Filip

    2008-01-01

    Roč. 9, - (2008), 197-214 ISSN 1631-0705 R&D Projects: GA AV ČR KJB100100512; GA MŠk LC512 Institutional research plan: CEZ:AV0Z10100520 Keywords : terahertz radiation * tunable devices * photonic crystals * strontium titanate * gallium arsenide Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.164, year: 2008

  5. Tunable metamaterials fabricated by fiber drawing

    DEFF Research Database (Denmark)

    Fleming, Simon; Stefani, Alessio; Tang, Xiaoli

    2017-01-01

    We demonstrate a practical scalable approach to the fabrication of tunable metamaterials. Designed for terahertz (THz) wavelengths, the metamaterial is comprised of polyurethane filled with an array of indium wires using the well-established fiber drawing technique. Modification of the dimensions...

  6. Absolute Distance Measurements with Tunable Semiconductor Laser

    Czech Academy of Sciences Publication Activity Database

    Mikel, Břetislav; Číp, Ondřej; Lazar, Josef

    T118, - (2005), s. 41-44 ISSN 0031-8949 R&D Projects: GA AV ČR(CZ) IAB2065001 Keywords : tunable laser * absolute interferometer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.661, year: 2004

  7. 130-nm tunable grating-mirror VCSEL

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2014-01-01

    We have reported that a combination of the high-index-contrast grating (HCG) mirror as movable mirror and the extended cavity configuration with an antireflection layer can provide a tuning wavelength range of 100 nm for tunable VCSELs. Here, we report that using the air-coupled cavity...

  8. Tunability of optofluidic distributed feedback dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2007-01-01

    We investigate the tunability of optofluidic distributed feedback (DFB) dye lasers. The lasers rely on light-confinement in a nano-structured polymer film where an array of nanofluidic channels constitutes a third order Bragg grating DFB laser resonator with a central phase-shift. The lasers...

  9. Tunable Water-based Microwave Metasurface

    DEFF Research Database (Denmark)

    Kapitanova, Polina; Odit, Mikhail; Dobrykh, Dmitry

    2017-01-01

    A water-based dynamically tunable microwave metasurface is developed and experimentally investigated. A simple approach to tune the metasurface properties by changing the shape of water-based unit cells by gravitation force is proposed. The transmission spectra of the metasurface for linear...... angle. The proposed approach can be used to design cheap metasurfaces for electromagnetic wave control in the microwave frequency range....

  10. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes

    Science.gov (United States)

    Klug, Jeffrey A.; Weimer, Matthew S.; Emery, Jonathan D.; Yanguas-Gil, Angel; Seifert, Sönke; Schlepütz, Christian M.; Martinson, Alex B. F.; Elam, Jeffrey W.; Hock, Adam S.; Proslier, Thomas

    2015-11-01

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er2O3 ALD on amorphous ALD alumina and single crystalline sapphire.

  11. Results of a Direct Search Using Synchrotron Radiation for the Low-Energy (229)Th Nuclear Isomeric Transition.

    Science.gov (United States)

    Jeet, Justin; Schneider, Christian; Sullivan, Scott T; Rellergert, Wade G; Mirzadeh, Saed; Cassanho, A; Jenssen, H P; Tkalya, Eugene V; Hudson, Eric R

    2015-06-26

    We report the results of a direct search for the (229)Th (I(π)=3/2(+)←5/2(+)) nuclear isomeric transition, performed by exposing (229)Th-doped LiSrAlF(6) crystals to tunable vacuum-ultraviolet synchrotron radiation and observing any resulting fluorescence. We also use existing nuclear physics data to establish a range of possible transition strengths for the isomeric transition. We find no evidence for the thorium nuclear transition between 7.3 eV and 8.8 eV with transition lifetime (1-2) s≲τ≲(2000-5600)  s. This measurement excludes roughly half of the favored transition search area and can be used to direct future searches.

  12. Photodissociation of acrylonitrile at 193 nm: A photofragment translational spectroscopy study using synchrotron radiation for product photoionization

    International Nuclear Information System (INIS)

    Blank, D.A.; Suits, A.G.; Lee, Y.T.; North, S.W.; Hall, G.E.

    1998-01-01

    We have investigated the photodissociation of acrylonitrile (H 2 CCHCN) at 193 nm using the technique of photofragment translational spectroscopy. The experiments were performed at the Chemical Dynamics Beamline at the Advanced Light Source and used tunable vacuum ultraviolet synchrotron radiation for product photoionization. We have identified four primary dissociation channels including atomic and molecular hydrogen elimination, HCN elimination, and CN elimination. There is significant evidence that all of the dissociation channels occur on the ground electronic surface following internal conversion from the initially optically prepared state. The product translational energy distributions reflect near statistical simple bond rupture for the radical dissociation channels, while substantial recombination barriers mediate the translational energy release for the two molecular elimination channels. Photoionization onsets have provided additional insight into the chemical identities of the products and their internal energy content. copyright 1998 American Institute of Physics

  13. Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors

    Science.gov (United States)

    Haridasan, Vrinda

    Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband

  14. Undulators as sources of synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Krinsky, S.

    1983-01-01

    At the present time the first generation of facilities having electron storage rings designed for and dedicated to synchrotron radiation research are beginning operations in the US, Europe and Japan. The use of wigglers and undulators as enhanced sources of synchrotron radiation plays an important role at all these facilities. Moreover, recently there has been much activity in the design of the next generation machines, which will place even greater, and perhaps exclusive, emphasis on the use of wigglers and undulators. The operation of these insertion devices has been made even more attractive by advances in the design and construction of permanent magnet wigglers and undulators. This reliable and economical technology eliminates the need for more complex superconducting magnets, except to achieve very high magnetic fields for the production of hard photons from relatively low energy rings. We review the spectral properties of the radiation, emphasizing the complementary aspects of time- and frequency-domain analyses. We next study the brightness of the undulator source. Finally, we consider some limitations associated with operating an undulator in a storage ring.

  15. Ferroelectrics under the Synchrotron Light: A Review

    Directory of Open Access Journals (Sweden)

    Luis E. Fuentes-Cobas

    2015-12-01

    Full Text Available Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO3 perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr appear as promising candidates. Understanding the structure–function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS and X-ray absorption fine structure (XAFS experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described.

  16. Ferroelectrics under the Synchrotron Light: A Review

    Science.gov (United States)

    Fuentes-Cobas, Luis E.; Montero-Cabrera, María E.; Pardo, Lorena; Fuentes-Montero, Luis

    2015-01-01

    Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO3 perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure–function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described. PMID:28787814

  17. Synchrotrons for hadron therapy: Part I

    CERN Document Server

    Badano, L; Bryant, P; Crescenti, M; Holy, P; Knaus, P; Maier, A; Pullia, M; Rossi, S

    1999-01-01

    The treatment of cancer with accelerator beams has a long history with betatrons, linacs, cyclotrons and now synchrotrons being exploited for this purpose. Treatment techniques can be broadly divided into the use of spread-out beams and scanned 'pencil' beams. The Bragg-peak behaviour of hadrons makes them ideal candidates for the latter. The combination of precisely focused 'pencil' beams with controllable penetration (Bragg peak) and high, radio-biological efficiency (light ions) opens the way to treating the more awkward tumours that are radio-resistant, complex in shape and lodged against critical organs. To accelerate light ions (probably carbon) with pulse-to-pulse energy variation, a synchrotron is the natural choice. The beam scanning system is controlled via an on-line measurement of the particle flux entering the patient and, for this reason, the beam spill must be extended in time (seconds) by a slow-extraction scheme. The quality of the dose intensity profile ultimately depends on the uniformity o...

  18. Performances of BNL high-intensity synchrotrons

    International Nuclear Information System (INIS)

    Weng, W.T.

    1998-03-01

    The AGS proton synchrotron was completed in 1960 with initial intensity in the 10 to the 10th power proton per pulse (ppp) range. Over the years, through many upgrades and improvements, the AGS now reached an intensity record of 6.3 x 10 13 ppp, the highest world intensity record for a proton synchrotron on a single pulse basis. At the same time, the Booster reached 2.2 x 10 13 ppp surpassing the design goal of 1.5 x 10 13 ppp due to the introduction of second harmonic cavity during injection. The intensity limitation caused by space charge tune spread and its relationship to injection energy at 50 MeV, 200 MeV, and 1,500 MeV will be presented as well as many critical accelerator manipulations. BNL currently participates in the design of an accumulator ring for the SNS project at Oak Ridge. The status on the issues of halo formation, beam losses and collimation are also presented

  19. Mapping prehistoric ghosts in the synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, N.P.; Wogelius, R.A. [University of Manchester, School of Earth, Atmospheric, and Environmental Sciences, Manchester (United Kingdom); University of Manchester, Williamson Research Centre for Molecular Environmental Science, Manchester (United Kingdom); Bergmann, U. [SLAC National Accelerator Laboratory, Linac Coherent Light Source, Menlo Park, CA (United States); Larson, P. [Black Hills Institute of Geological Research, Inc., Hill City, SD (United States); Sellers, W.I. [University of Manchester, Faculty of Life Sciences, Manchester (United Kingdom); Manning, P.L. [University of Manchester, School of Earth, Atmospheric, and Environmental Sciences, Manchester (United Kingdom); University of Manchester, Williamson Research Centre for Molecular Environmental Science, Manchester (United Kingdom); University of Pennsylvania, Department of Earth and Environmental Science, Philadelphia, PA (United States)

    2013-04-15

    The detailed chemical analysis of fossils has the potential to reveal great insight to the composition, preservation and biochemistry of ancient life. Such analyses would ideally identify, quantify, and spatially resolve the chemical composition of preserved bone and soft tissue structures, but also the embedding matrix. Mapping the chemistry of a fossil in situ can place constraints on mass transfer between the enclosing matrix and the preserved organism(s), and therefore aid in distinguishing taphonomic processes from original chemical zonation remnant within the fossils themselves. Conventional analytical methods, such as scanning electron microscopy (SEM) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) have serious limitations in this case, primarily, an inability to provide large (i.e., decimeter) scale chemical maps. Additionally, vacuum chamber size and the need for destructive sampling preclude analysis of large and precious fossil specimens. However, the recent development of Synchrotron Rapid Scanning X-ray Fluorescence (SRS-XRF) at the Stanford Synchrotron Radiation Lightsource (SSRL) allows the non-destructive chemical analysis and imaging of major, minor, and trace element concentrations of large paleontological and archeological specimens in rapid scanning times. Here we present elemental maps of a fossil reptile produced using the new SRS-XRF method. Our results unequivocally show that preserved biological structures are not simply impressions or carbonized remains, but possess a remnant of the original organismal biochemistry. We show that SRS-XRF is a powerful new tool for the study of paleontological and archaeological samples. (orig.)

  20. Mapping prehistoric ghosts in the synchrotron

    Science.gov (United States)

    Edwards, N. P.; Wogelius, R. A.; Bergmann, U.; Larson, P.; Sellers, W. I.; Manning, P. L.

    2013-04-01

    The detailed chemical analysis of fossils has the potential to reveal great insight to the composition, preservation and biochemistry of ancient life. Such analyses would ideally identify, quantify, and spatially resolve the chemical composition of preserved bone and soft tissue structures, but also the embedding matrix. Mapping the chemistry of a fossil in situ can place constraints on mass transfer between the enclosing matrix and the preserved organism(s), and therefore aid in distinguishing taphonomic processes from original chemical zonation remnant within the fossils themselves. Conventional analytical methods, such as scanning electron microscopy (SEM) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) have serious limitations in this case, primarily, an inability to provide large (i.e., decimeter) scale chemical maps. Additionally, vacuum chamber size and the need for destructive sampling preclude analysis of large and precious fossil specimens. However, the recent development of Synchrotron Rapid Scanning X-ray Fluorescence (SRS-XRF) at the Stanford Synchrotron Radiation Lightsource (SSRL) allows the non-destructive chemical analysis and imaging of major, minor, and trace element concentrations of large paleontological and archeological specimens in rapid scanning times. Here we present elemental maps of a fossil reptile produced using the new SRS-XRF method. Our results unequivocally show that preserved biological structures are not simply impressions or carbonized remains, but possess a remnant of the original organismal biochemistry. We show that SRS-XRF is a powerful new tool for the study of paleontological and archaeological samples.

  1. Infrared synchrotron radiation instrumentation and applications

    Science.gov (United States)

    Hirschmugl, Carol

    1992-08-01

    Infrared synchrotron radiation (IRSR) is a blossoming field which has three working beamlines, U41R at the National Synchrotron Light Source, Brookhaven National Laboratory, USA, and two at the Institute of Molecular Sciences in Okasaki, Japan, with extensive research projects. There are also several new beamlines in the planning and development stages, both in the United States and abroad. IRSR offers a unique way to access the far infrared (30 μm to ˜ 1mm), which is a notoriously difficult region to work in. In particular, experiments that demand high brightness are well suited to IRSR just as they are in the X-ray region. The central issue in all of the experiments to date has been good signal to noise, which has been the focus of the instrumentation improvements at the U41R beamline. A commercial Fourier transform instrument was the chosen spectrometer. Then modifications were made in order to expand the usable region of the existing experiments, in both the far and near infrared. As an example of the performance of this beamline, I will focus on the reflection absorption spectroscopy results for adsorbates on clean surfaces in ultrahigh vacuum.

  2. Beam halo collimation in heavy ion synchrotrons

    Directory of Open Access Journals (Sweden)

    I. Strašík

    2015-08-01

    Full Text Available This paper presents a systematic study of the halo collimation of ion beams from proton up to uranium in synchrotrons. The projected Facility for Antiproton and Ion Research synchrotron SIS100 is used as a reference case. The concepts are separated into fully stripped (e.g., ^{238}U^{92+} and partially stripped (e.g., ^{238}U^{28+} ion collimation. An application of the two-stage betatron collimation system, well established for proton accelerators, is intended also for fully stripped ions. The two-stage system consists of a primary collimator (a scattering foil and secondary collimators (bulky absorbers. Interaction of the particles with the primary collimator (scattering, momentum losses, and nuclear interactions was simulated by using fluka. Particle-tracking simulations were performed by using mad-x. Finally, the dependence of the collimation efficiency on the primary ion species was determined. The influence of the collimation system adjustment, lattice imperfections, and beam parameters was estimated. The concept for the collimation of partially stripped ions employs a thin stripping foil in order to change their charge state. These ions are subsequently deflected towards a dump location using a beam optical element. The charge state distribution after the stripping foil was obtained from global. The ions were tracked by using mad–x.

  3. Berkeley Lab's ALS generates femtosecond synchrotron radiation

    CERN Document Server

    Robinson, A L

    2000-01-01

    A team at Berkeley's Advanced Light Source has shown how a laser time-slicing technique provides a path to experiments with ultrafast time resolution. A Lawrence Berkeley National Laboratory team has succeeded in generating 300 fs pulses of synchrotron radiation at the ALS synchrotron radiation machine. The team's members come from the Materials Sciences Division (MSD), the Center for Beam Physics in the Accelerator and Fusion Research Division and the Advanced Light Source (ALS). Although this proof-of principle experiment made use of visible light on a borrowed beamline, the laser "time-slicing" technique at the heart of the demonstration will soon be applied in a new bend magnet beamline that was designed specially for the production of femtosecond pulses of X-rays to study long-range and local order in condensed matter with ultrafast time resolution. An undulator beamline based on the same technique has been proposed that will dramatically increase the flux and brightness. The use of X-rays to study the c...

  4. Analytical fits to the synchrotron functions

    Science.gov (United States)

    Fouka, Mourad; Ouichaoui, Saad

    2013-06-01

    Accurate fitting formulae to the synchrotron function, F(x), and its complementary function, G(x), are performed and presented. The corresponding relative errors are less than 0.26% and 0.035% for F(x) and G(x), respectively. To this end we have, first, fitted the modified Bessel functions, K5/3(x) and K2/3(x). For all the fitted functions, the general fit expression is the same, and is based on the well known asymptotic forms for low and large values of x for each function. It consists of multiplying each asymptotic form by a function that tends to unity or zero for low and large values of x. Simple formulae are suggested in this paper, depending on adjustable parameters. The latter have been determined by adopting the Levenberg-Marquardt algorithm. The proposed formulae should be of great utility and simplicity for computing spectral powers and the degree of polarization for synchrotron radiation, both for laboratory and astrophysical applications.

  5. Synchrotrons for hadron therapy, part 1

    CERN Document Server

    Badano, L; Bryant, P J; Crescenti, M; Holy, P; Knaus, P; Maier, A T; Pullia, M; Rossi, S

    1999-01-01

    The treatment of cancer with accelerator beams has a long history with linacs, cyclotrons and now synchrotrons being exploited for this purpose. Treatment techniques can be broadly divided into the use of spread-out beams and scanned 'pencil' beams. The Bragg-peak behaviour of hadrons makes them ideal candidates for the latter. The combination of precisely focused 'pencil' beams with controllable penetration (Bragg peak) and high, radio-biological efficiency (light ions) opens the way to treating the more awkward tumours that are radio-resistant, complex in shape and lodged against critical organs. To accelerate light ions (probably carbon) with pulse-to-pulse energy variation, a synchrotron is the natural choice. The beam scanning system is controlled via an on-line measurement of the particle flux entering the patient and, for this reason, the beam spill must be extended in time (seconds) by a slow-extraction scheme. The quality of the dose intensity profile ultimately depends on the uniformity of the beam ...

  6. Electric-discharge source of steady-state UV-VUV radiation from iodine atoms and iodine-containing molecules

    Science.gov (United States)

    Shuaibov, A. K.; Grabovaya, I. A.

    2005-07-01

    This paper presents the results of an investigation of the optical characteristics of a compact electric-discharge UV-VUV radiator based on mixtures of inert gases with iodine vapor in which the pressure of the working mixture is 250-2000 Pa. The output characteristics of the lamp were optimized as a function of the partial pressure of the inert gases and the glow-discharge current. It is established that the lamp's total radiation power in the 206-350-nm spectral region reaches 6-7 W at an efficiency of 15-20%. The operating life of the lamp in the gasostat regime was 500 h. About half the power of the UV glow-discharge radiation in this case is represented in the form of a spectral line of the iodine atom (lambda=206.2nm), while the other half is in the form of vibronic bands of iodine molecules and xenon iodide. The lamp can be recommended for use in photochemistry, medicine, and biophysics.

  7. Design of a multi-axis cryogenic sample manipulator for soft X-ray and VUV spectroscopy

    Science.gov (United States)

    Wang, D. J.; Chiu, C. C.; Cheng, C. M.

    2013-03-01

    We have designed and constructed several manipulators for cryogenic samples and soft X-ray and VUV spectra. These manipulators are compatible with ultrahigh vacuum and up to six axis motions - three translational and three angular motions. Three translational and the polar angular motions are implemented with commercial stages. The azimuthal (in the beam direction) and tilting motions are driven with separate gear trains and connected to stepping motors on the top flange (100 CF). The azimuthal angular range is about ±180°, and the tilting range is from 75° to -25° the resolution is better than 0.1°. The sample position is designed to be situated at the center of the polar and azimuthal rotation axes. The tilting axis is designed with an offset to decrease the spatial interference with the analyzer for photoemission spectra. The sample is attached to the sample holder and transferred to the cryogenic stage via a load-lock system. The sample holder is cooled with a continuous-flow cryostat (Janis ST-400) via flexible copper braids. With liquids helium and nitrogen for the cryostat, the lowest temperature of the sample holder attains 9.15 K and 82.4 K, respectively. During tests, the rate of consumption of liquid helium is less than 0.8 L/h.

  8. Cavity simulator and controller for VUV free electron laser SIMCON 2.1, part II: functional blocks

    Science.gov (United States)

    Pozniak, Krzysztof T.; Czarski, Tomasz; Koprek, Waldemar; Romaniuk, Ryszard S.

    2006-02-01

    The paper describes integrated system of hardware controller and simulator of the resonant superconducting, narrowband niobium cavity, originally considered for the TTF and TESLA in DESY, Hamburg (now predicted for the VUV and X-Ray FEL). The controller bases on a programmable circuit Xilinx VirtexII V3000 embedded on a PCB XtremeDSP Development Kit by Nallatech. The FPGA circuit configuration was done in the VHDL language. The internal hardware multiplication components, present in Virtex II chips, were used, to improve the floating point calculation efficiency. The implementation was achieved of a device working in the real time, according to the demands of the LLRF control system for the TESLA Test Facility. The device under consideration will be referred to as superconducting cavity (SCCav) SIMCON throughout this work. The following components are described here in detail: functional layer, parameter programming, foundations of control of particular blocks and monitoring of the real time processes. This note is accompanied by the one describing the DOOCS interface for the described hardware system. The interface was prepared in DOOCS and in Windows. The hardware and software of SIMCON was tested in CHECIA. The results were presented. While giving all necessary technical details required to understand the work of the integrated hardware controller and simulator and to enable its practical copying, this document is a unity with other TESLA technical notes published by the same team on the subject. Modeling was omitted, as it is addressed in detail in the quoted references.

  9. Cavity simulator and controller for VUV free electron laser SIMCON 2.1, part I: algorithms and SIMCON system

    Science.gov (United States)

    Pozniak, Krzysztof T.; Czarski, Tomasz; Koprek, Waldemar; Romaniuk, Ryszard S.

    2006-02-01

    The paper describes integrated system of hardware controller and simulator of the resonant superconducting, narrowband niobium cavity, originally considered for the TTF and TESLA in DESY, Hamburg (now predicted for the VUV and X-Ray FEL). The controller bases on a programmable circuit Xilinx VirtexII V3000 embedded on a PCB XtremeDSP Development Kit by Nallatech. The FPGA circuit configuration was done in the VHDL language. The internal hardware multiplication components, present in Virtex II chips, were used, to improve the floating point calculation efficiency. The implementation was achieved of a device working in the real time, according to the demands of the LLRF control system for the TESLA Test Facility. The device under consideration will be referred to as superconducting cavity (SCCav) SIMCON throughout this work. The following components are described here in detail: functional layer, parameter programming, foundations of control of particular blocks and monitoring of the real time processes. This note is accompanied by the one describing the DOOCS interface for the described hardware system. The interface was prepared in DOOCS and in Windows. The hardware and software of SIMCON was tested in CHECIA. The results were presented. While giving all necessary technical details required to understand the work of the integrated hardware controller and simulator and to enable its practical copying, this document is a unity with other TESLA technical notes published by the same team on the subject. Modeling was omitted, as it is addressed in detail in the quoted references.

  10. Low frequency interference between short synchrotron radiation sources

    Directory of Open Access Journals (Sweden)

    F. Méot

    2001-06-01

    Full Text Available A recently developed analytical formalism describing low frequency far-field synchrotron radiation (SR is applied to the calculation of spectral angular radiation densities from interfering short sources (edge, short magnet. This is illustrated by analytical calculation of synchrotron radiation from various assemblies of short dipoles, including an “isolated” highest density infrared SR source.

  11. Synchrotron Emission on the Largest Scales: Radio Detection of the ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Abstract. Shocks and turbulence generated during large-scale structure formation are predicted to produce large-scale, low surface-brightness synchrotron emission. On the largest scales, this emission is globally correlated with the thermal baryon distribution, and constitutes the `synchrotron cosmic-web'.

  12. A synchrotron radiation facility for x-ray astronomy

    DEFF Research Database (Denmark)

    Hall, C.J.; Lewis, R.A.; Christensen, Finn Erland

    1997-01-01

    A proposal for an x-ray optics test facility based at a synchrotron radiation source is presented. The facility would incorporate a clean preparation area, and a large evacuable test area. The advantages of using a synchrotron as the source of the test radiation are discussed. These include the a...

  13. The Scale Invariant Synchrotron Jet of Flat Spectrum Radio Quasars

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The results are in good agreement with theoretical expectations of Heinz & Sunyaev (2003). Therefore, the jet synchrotron is shown to be scale independent, regardless of the accretion modes. Results in this article thus lend support to the scale invariant model of the jet synchrotron throughout the mass ...

  14. Synchrotron radiation X-ray microfluorescence techniques

    Indian Academy of Sciences (India)

    Synchrotron X-ray imaging systems with fluorescence techniques was developed for biomedical researches in Brazilian Synchrotron Laboratory. An X-ray fluorescence microtomography system was implemented to analyse human prostate and breast samples and an X-ray microfluorescence system was implemented to ...

  15. Synchrotron radiation in art and archaeology SRA 2005

    International Nuclear Information System (INIS)

    Pollard, A.M.; Janssens, K.; Artioli, G.; Young, M.L.; Casadio, F.; Schnepp, S.; Marvin, J.; Dunand, D.C.; Almer, J.; Fezzaa, K.; Lee, W.K.; Haeffner, D.R.; Reguer, S.; Dillmann, Ph.; Mirambet, F.; Susini, J.; Lagarde, P.; Pradell, T.; Molera, J.; Brunetti, B.; D'acapito, F.; Maurizio, C.; Mazzoldi, P.; Padovani, S.; Sgamellotti, A.; Garges, F.; Etcheverry, M.P.; Flank, A.M.; Lagarde, P.; Marcus, M.A.; Scheidegger, A.M.; Grolimund, D.; Pallot-Frossard, I.; Smith, A.D.; Jones, M.; Gliozzo, E.; Memmi-Turbanti, I.; Molera, J.; Vendrell, M.; Mcconachie, G.; Skinner, T.; Kirkman, I.W.; Pantos, E.; Wallert, A.; Kanngiesser, B.; Hahn, O.; Wilke, M.; NekaT, B.; Malzer, W.; Erko, A.; Chalmin, E.; Vignaud, C.; Farges, F.; Susini, J.; Menu, M.; Sandstrom, M.; Cotte, M.; Kennedy, C.J.; Wess, T.J.; Muller, M.; Murphy, B.; Roberts, M.A.; Burghammer, M.; Riekel, C.; Gunneweg, J.; Pantos, E.; Dik, J.; Tafforeau, P.; Boistel, R.; Boller, E.; Bravin, A.; Brunet, M.; Chaimanee, Y.; Cloetens, P.; Feist, M.; Hoszowska, J.; Jaeger, J.J.; Kay, R.F.; Lazzari, V.; Marivaux, L.; Nel, A.; Nemoz, C.; Thibault, X.; Vignaud, P.; Zabler, S.; Sciau, P.; Goudeau, P.; Tamura, N.; Doormee, E.; Kockelmann, W.; Adriaens, A.; Ryck, I. de; Leyssens, K.; Hochleitner, B.; Schreiner, M.; Drakopoulos, M.; Snigireva, I.; Snigirev, A.; Sanchez Del Rio, M.; Martinetto, P.; Dooryhee, E.; Suarez, M.; Sodo, A.; Reyes-Valerio, C.; Haro Poniatowski, E.; Picquart, M.; Lima, E.; Reguera, E.; Gunneweg, J.; Reiche, I.; Berger, A.; Bevers, H.; Duval, A.

    2005-01-01

    Materials - bones, artifacts, artwork,.... - lie at the heart of both archaeology and art conservation. Synchrotron radiation techniques provide powerful ways to interrogate these records of our physical and cultural past. In this workshop we will discuss and explore the current and potential applications of synchrotron radiation science to problems in archaeology and art conservation. This document gathers the abstracts of the presentations

  16. Synchrotron radiation X-ray microfluorescence techniques and ...

    Indian Academy of Sciences (India)

    Synchrotron X-ray imaging systems with fluorescence techniques was developed for biomedical researches in Brazilian Synchrotron Laboratory. An X-ray fluorescence microtomography system was implemented to analyse human prostate and breast samples and an X-ray microfluorescence system was implemented to ...

  17. Enhancing the accelerated beam current in the booster synchrotron ...

    Indian Academy of Sciences (India)

    Based on these measured beam parameters, beam optics of a transport line was optimized and its results are alsodiscussed in this paper. This beam transport line is used to transport the electron beam from the 20MeV microtron to the booster synchrotron. The booster synchrotron works as a main injector for Indus-1 and ...

  18. First turn simulations in the cooler synchrotron COSY

    International Nuclear Information System (INIS)

    Dinev, D.

    1991-07-01

    This paper is devoted to the first turn correction and related problems in particle accelerators of synchrotron type. The paper consists of two parts. The first part is a survey of the existing methods for first turn steering. The second part is entirely devoted to the first turn in the cooler synchrotron COSY which is under assembling in KFA-Julich, Germany. (orig.)

  19. Synchrotron radiation in art and archaeology SRA 2005

    Energy Technology Data Exchange (ETDEWEB)

    Pollard, A.M.; Janssens, K.; Artioli, G.; Young, M.L.; Casadio, F.; Schnepp, S.; Marvin, J.; Dunand, D.C.; Almer, J.; Fezzaa, K.; Lee, W.K.; Haeffner, D.R.; Reguer, S.; Dillmann, Ph.; Mirambet, F.; Susini, J.; Lagarde, P.; Pradell, T.; Molera, J.; Brunetti, B.; D' acapito, F.; Maurizio, C.; Mazzoldi, P.; Padovani, S.; Sgamellotti, A.; Garges, F.; Etcheverry, M.P.; Flank, A.M.; Lagarde, P.; Marcus, M.A.; Scheidegger, A.M.; Grolimund, D.; Pallot-Frossard, I.; Smith, A.D.; Jones, M.; Gliozzo, E.; Memmi-Turbanti, I.; Molera, J.; Vendrell, M.; Mcconachie, G.; Skinner, T.; Kirkman, I.W.; Pantos, E.; Wallert, A.; Kanngiesser, B.; Hahn, O.; Wilke, M.; NekaT, B.; Malzer, W.; Erko, A.; Chalmin, E.; Vignaud, C.; Farges, F.; Susini, J.; Menu, M.; Sandstrom, M.; Cotte, M.; Kennedy, C.J.; Wess, T.J.; Muller, M.; Murphy, B.; Roberts, M.A.; Burghammer, M.; Riekel, C.; Gunneweg, J.; Pantos, E.; Dik, J.; Tafforeau, P.; Boistel, R.; Boller, E.; Bravin, A.; Brunet, M.; Chaimanee, Y.; Cloetens, P.; Feist, M.; Hoszowska, J.; Jaeger, J.J.; Kay, R.F.; Lazzari, V.; Marivaux, L.; Nel, A.; Nemoz, C.; Thibault, X.; Vignaud, P.; Zabler, S.; Sciau, P.; Goudeau, P.; Tamura, N.; Doormee, E.; Kockelmann, W.; Adriaens, A.; Ryck, I. de; Leyssens, K.; Hochleitner, B.; Schreiner, M.; Drakopoulos, M.; Snigireva, I.; Snigirev, A.; Sanchez Del Rio, M.; Martinetto, P.; Dooryhee, E.; Suarez, M.; Sodo, A.; Reyes-Valerio, C.; Haro Poniatowski, E.; Picquart, M.; Lima, E.; Reguera, E.; Gunneweg, J.; Reiche, I.; Berger, A.; Bevers, H.; Duval, A

    2005-07-01

    Materials - bones, artifacts, artwork,.... - lie at the heart of both archaeology and art conservation. Synchrotron radiation techniques provide powerful ways to interrogate these records of our physical and cultural past. In this workshop we will discuss and explore the current and potential applications of synchrotron radiation science to problems in archaeology and art conservation. This document gathers the abstracts of the presentations.

  20. NSLS 2002 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2002)

    International Nuclear Information System (INIS)

    MILLER, L.

    2003-01-01

    The year 2002 has been another highly productive year at the NSLS and an impressive array of highlights from this scientific activity is included in this Activity Report. They have taken significant steps this past year toward better supporting beamlines and users. The number of user science support staff has been increased by about ten positions. They have also worked with their users, DOE, and the other DOE synchrotron facilities to develop a new, more flexible user access policy. Doing things safely remains a top priority, and they are reviewing their training and safety requirements to ensure they are thorough and everyone fully understands the necessity of abiding by them. A major development this past year was approval from DOE for BNL to begin the conceptual design of the Center for Functional Nanomaterials (CFN). The CFN will have a dramatic impact on nanoscience in the Northeast, facilitating the synthesis, characterization and scientific exploration of new classes of novel nanostructured materials. It will be located adjacent to the NSLS and a number of NSLS beamlines will be optimized to serve the needs of the nanoscience community. The NSLS and CFN user programs will be coordinated to facilitate easy access to both in a single visit. The VUV and X-Ray rings operated with excellent reliability as a result of continued attention to aging critical systems. The DUV-FEL achieved several important milestones this year, including production of Self-Amplified Spontaneous Emission (SASE) laser light at 400 nm and 266 nm, laser seeded saturation at 266 nm, and the first observation of High Gain Harmonic Generation (HGHG) light at 266 nm, with a third harmonic at 89 nm. Light from the DUV-FEL is now enabling user science experiments in ion pair imaging and they look forward to an expanding user program and a continued series of pioneering accelerator physics studies. In 2002, they continued to work with their user community to develop a plan to upgrade the

  1. Combustion synthesis and optical properties of Oxy-borate phosphors YCa4O(BO3)3:RE3+ (RE = Eu3+, Tb3+) under UV, VUV excitation

    International Nuclear Information System (INIS)

    Ingle, J.T.; Gawande, A.B.; Sonekar, R.P.; Omanwar, S.K.; Wang, Yuhua; Zhao, Lei

    2014-01-01

    Graphical abstract: VUV Photoluminescence of YCa 4 O(BO 3 ) 3 : Eu 3+ and YCa 4 O(BO 3 ) 3 : Tb 3+ for PDPs applications. Highlights: • Inorganic Oxy-borate phosphors YCa 4 O(BO 3 ) 3 :Eu 3+ ,Tb 3+ was synthesized by novel solution combustion synthesis. • This single host produces efficient and intense Red and Green color for display applications. • Good agreement with CIE co-ordinates as prescribes by NTCL, for flat panel, PDP display color. • Synthesized materials were characterized using powder XRD, FE-SEM, UV and VUV Spectophotometer. -- Abstract: The inorganic Oxy-borate host phosphors YCa 4 O(BO 3 ) 3 :RE 3+ (RE = Eu 3+ ,Tb 3+ ) were synthesized by a novel solution combustion technique. The synthesis is based on the exothermic reaction between the fuel (Urea) and Oxidizer (Ammonium nitrate). The heat generated in reaction is use for auto combustion of precursors. The structures of the prepared samples were confirmed by powder XRD technique. The photoluminescence properties of the powder samples were investigated under UV and VUV excitation; “The phosphor YCa 4 O(BO 3 ) 3 :Eu 3+ and YCa 4 O(BO 3 ) 3 :Tb 3+ shows strong absorption in UV and VUV region and exhibits intense red and green emission upon excited by 254 nm UV and 147 nm VUV radiation”

  2. Research Activities Using Indus-1 Synchrotron Radiation Source

    International Nuclear Information System (INIS)

    Lodha, G. S.; Deb, S. K.

    2010-01-01

    Indus-1 is an efficient SR source in the soft x-ray / vacuum ultra violet region of the electromagnetic spectrum. For Indus-1, the higher order energy contamination in soft x-ray region, heat load and radiation safety problems are also significantly low. At present, soft x-ray-VUV reflectivity, angle integrated and angle resolved photo electron spectroscopy (ARPES), photo physics and high resolution vacuum ultra violet spectroscopy, beamlines are operational. The paper presents some of the recent studies carried out using In-dus-1.

  3. MEMS for Tunable Photonic Metamaterial Applications

    Science.gov (United States)

    Stark, Thomas

    Photonic metamaterials are materials whose optical properties are derived from artificially-structured sub-wavelength unit cells, rather than from the bulk properties of the constituent materials. Examples of metamaterials include plasmonic materials, negative index materials, and electromagnetic cloaks. While advances in simulation tools and nanofabrication methods have allowed this field to grow over the past several decades, many challenges still exist. This thesis addresses two of these challenges: fabrication of photonic metamaterials with tunable responses and high-throughput nanofabrication methods for these materials. The design, fabrication, and optical characterization of a microelectromechanical systems (MEMS) tunable plasmonic spectrometer are presented. An array of holes in a gold film, with plasmon resonance in the mid-infrared, is suspended above a gold reflector, forming a Fabry-Perot interferometer of tunable length. The spectra exhibit the convolution of extraordinary optical transmission through the holes and Fabry-Perot resonances. Using MEMS, the interferometer length is modulated from 1.7 mum to 21.67 mum , thereby tuning the free spectral range from about 2900 wavenumbers to 230.7 wavenumbers and shifting the reflection minima and maxima across the infrared. Due to its broad spectral tunability in the fingerprint region of the mid-infrared, this device shows promise as a tunable biological sensing device. To address the issue of high-throughput, high-resolution fabrication of optical metamaterials, atomic calligraphy, a MEMS-based dynamic stencil lithography technique for resist-free fabrication of photonic metamaterials on unconventional substrates, has been developed. The MEMS consists of a moveable stencil, which can be actuated with nanometer precision using electrostatic comb drive actuators. A fabrication method and flip chip method have been developed, enabling evaporation of metals through the device handle for fabrication on an

  4. Excitation of nuclear states by synchrotron radiation

    International Nuclear Information System (INIS)

    Olariu, Albert

    2003-01-01

    We study the excitation of nuclear states by gamma ray beams of energy up to 200 keV produced as synchrotron radiation. We consider the possibility to populate an excited state |i> in two steps, from the ground state |g> to an intermediary state |n> which decays by gamma emission or internal conversion to a lower state |i>. The aim of this study is to establish that the probability P 2 of the two-step transition |g> → |n> → |i> should be greater than the probability P 1 of the direct transition |g> → |i>. The probabilities P 1 and P 2 correspond to a radiation pulse of duration equal to the half-time of the state |i>. We have written a computer program in C++ which computes the probability P 2 , the ratio P 2 /P 1 and the rate C 2 of the two-step transitions for any nuclei and different configurations of states. The program uses a database which contains information on the energy levels, half-lives, spins and parities of nuclear states and on the relative intensities of the nuclear transitions. If the half-lives or the relative intensities are not known the program uses the Weisskopf estimates for the transition half-lives. An interpolation program of internal conversion coefficients has also been used. We listed the values obtained for P 2 , P 2 /P 1 and C 2 in a number of cases in which P 2 is significant from the 2900 considered cases. The states |i> and |n> have the energies E i and E n , the corresponding half-lives being t i and t n . The spectral density of the synchrotron radiation has been considered to be 10 12 photons cm -2 s -1 eV -1 . We listed only the cases for which the relative intensities of the transitions from levels |n> and |i> to lower states are known. The calculations carried out in this study allowed us to identify nuclei for which P 2 has relatively great values. In the listed cases P 2 /P 1 >>1, so that the two-step excitation by synchrotron radiation is more efficient than the direct excitation |g> → |i>. For a sample having 10

  5. Synchrotron radiation facilities for chemical applications

    International Nuclear Information System (INIS)

    Hatano, Yoshihiko

    1995-01-01

    Synchrotron radiation (SR) research is of great importance in understanding radiation chemistry, physics, and biology. It is also clearly recognized in the international chemical community that chemical applications of SR are greatly advanced and divided into 1) Molecular Spectroscopy and Dynamics Studies-Gases, Surfaces, and Condensed Matter- , 2) Radiation Chemistry and Photochemistry, 3) X-ray Structural and XAFS Studies-Crystals, Surfaces, and Liquids- , 4) Analytical Chemistry, and 5) Synthesis or R and D of New Materials. In this paper, a survey is given of recent advances in the application of SR to the chemistry of excitation and ionization of molecules, i.e., SR chemistry, in the wavelength region between near-ultraviolet and hard X-rays. The topics will be chosen from those obtained at some leading SR facilities. (J.P.N.)

  6. Plane grating monochromators for synchrotron radiation

    International Nuclear Information System (INIS)

    Howells, M.R.

    1979-01-01

    The general background and theoretical basis of plane grating monochromators (PGM's) is reviewed and the particular case of grazing incidence PGM's suitable for use with synchrotron radiation is considered in detail. The theory of reflection filtering is described and the problem of the finite source distance is shown to be of special importance with high brightness storage rings. The design philosophy of previous instruments is discussed and a new scheme proposed, aimed at dealing with the problem of the finite source distance. This scheme, involving a parabolic collimating mirror fabricated by diamond turning, is considered in the context of Wolter-type telescopes and microscopes. Some practical details concerning an instrument presently under construction using the new design are presented

  7. A guide to synchrotron radiation science

    CERN Document Server

    Sato, Shigeru; Munro, Ian; Lodha, G S

    2015-01-01

    Synchrotron Radiation (SR), as a light source is now in use around the world to provide brilliant radiation from the infrared into the soft and hard X-ray regions. It is an indispensible and essential tool to establish the physic-chemical characteristics of materials and surfaces from an atomic and molecular view point. It is being applied to topics which range from mineralogy to protein crystallography, embracing research in areas from the physical to the life sciences. This new guide is a concise yet comprehensive and easily readable introduction to an expanding area of science. It presents in a readily assimilable form the basic concepts of SR science from its generation principles, through source design and operation to the principles of instruments for SR exploitation followed by a survey of its actual applications in selected research fields, including spectroscopy, diffractometry, microanalysis and chemical processing.

  8. Synchrotron radiation total reflection for rainwater analysis

    International Nuclear Information System (INIS)

    Simabuco, Silvana M.; Matsumoto, Edson

    1999-01-01

    Total reflection X-ray fluorescence analysis excited with synchrotron radiation (SR-TXRF) has been used for rainwater trace element analysis. The samples were collected in four different sites at Campinas City, SP. Standard solutions with gallium as internal standard were prepared for the calibration system. Rainwater samples of 10 μl were putted onto Perspex reflector disk, dried on vacuum and analyzed for 100 s measuring time. The detection limits obtained for K-shell varied from 29 ng.ml -1 for sulfur to 1.3 ng.ml -1 for zinc and copper, while for L-shell the values were 4.5 ng.ml -1 for mercury and 7.0 ng.ml -1 for lead. (author)

  9. CVD diamond windows for infrared synchrotron applications

    International Nuclear Information System (INIS)

    Sussmann, R.S.; Pickles, C.S.J.; Brandon, J.R.; Wort, C.J.H.; Coe, S.E.; Wasenczuk, A.; Dodge, C.N.; Beale, A.C.; Krehan, A.J.; Dore, P.; Nucara, A.; Calvani, P.

    1998-01-01

    This paper describes the attributes that make diamond a unique material for infrared synchrotron beam experiments. New developments in diamond synthesised by Chemical Vapour Deposition (CVD) promise to extend the range of applications which have been hitherto limited by the availability and cost of large-size single-crystal diamond. Polycrystalline CVD diamond components such as large (100 mm) diameter windows with extremely good transparency over a wide spectral range are now commercially available. Properties of CVD diamond of relevance to optical applications, such as mechanical strength, thermal conductivity and absolute bulk absorption, are discussed. It is shown that although some of the properties of CVD diamond (similar to other polycrystalline industrial ceramics) are affected by the grain structure, currently produced CVD diamond optical components have the quality and performance required for numerous demanding applications

  10. 3D Detectors for Synchrotron Applications

    CERN Document Server

    Pennicard, D

    2009-01-01

    3D detectors are a novel variety of photodiode radiation detector, invented by Parker, Kenney and Segal (1997). Instead of having n- and p-type contacts on the front and back surfaces of a silicon substrate, like a standard photodiode, they have columns of doped material passing through the thickness of the silicon. This structure means that the detector can combine a reasonable substrate thickness with a very small electrode spacing, resulting in a low depletion voltage, fast charge collection and low charge sharing. These detectors have a couple of promising applications. Their fast charge collection and low depletion voltage should make them very radiation-tolerant. So, they could be used for future particle physics experiments at the Super Large Hadron Collider (SLHC), where high levels of radiation damage are expected. Also, their low charge sharing means they could potentially improve X-ray diffraction measurements at synchrotrons such as Diamond Light Source. This would allow these experiments, for exa...

  11. Silicon Pixel Detectors for Synchrotron Applications

    CERN Document Server

    Stewart, Graeme Douglas

    Recent advances in particle accelerators have increased the demands being placed on detectors. Novel detector designs are being implemented in many different areas including, for example, high luminosity experiments at the LHC or at next generation synchrotrons. The purpose of this thesis was to characterise some of these novel detectors. The first of the new detector types is called a 3D detector. This design was first proposed by Parker, Kenney and Segal (1997). In this design, doped electrodes are created that extend through the silicon substrate. When compared to a traditional photodiode with electrodes on the opposing surfaces, the 3D design can combine a reasonable detector thickness with a small electrode spacing resulting in fast charge collection and limited charge sharing. The small electrode spacing leads to the detectors having lower depletion voltages. This, combined with the fast collection time, makes 3D detectors a candidate for radiation hard applications. These applications include the upgra...

  12. Helical magnetized wiggler for synchrotron radiation laser

    CERN Document Server

    Wang Mei; Hirshfield, J L

    1999-01-01

    A helical magnetized iron wiggler has been built for a novel infrared synchrotron radiation laser (SRL) experiment. The wiggler consists of four periods of helical iron structure immersed in a solenoid field. This wiggler is to impart transverse velocity to a prebunched 6 MeV electron beam, and thus to obtain a desired high orbit pitch ratio for the SRL. Field tapering at beam entrance is considered and tested on a similar wiggler. Analytic and simulated characteristics of wigglers of this type are discussed and the performance of the fabricated wigglers is demonstrated experimentally. A 4.7 kG peak field was measured for a 6.4 mm air gap and a 5.4 cm wiggler period at a 20 kG solenoid field. The measured helical fields compare favorably with the analytical solution. This type of helical iron wigglers has the potential to be scaled to small periods with strong field amplitude.

  13. Helical magnetized wiggler for synchrotron radiation laser

    International Nuclear Information System (INIS)

    Wang Mei; Park, S.Y.; Hirshfield, J.L.

    1999-01-01

    A helical magnetized iron wiggler has been built for a novel infrared synchrotron radiation laser (SRL) experiment. The wiggler consists of four periods of helical iron structure immersed in a solenoid field. This wiggler is to impart transverse velocity to a prebunched 6 MeV electron beam, and thus to obtain a desired high orbit pitch ratio for the SRL. Field tapering at beam entrance is considered and tested on a similar wiggler. Analytic and simulated characteristics of wigglers of this type are discussed and the performance of the fabricated wigglers is demonstrated experimentally. A 4.7 kG peak field was measured for a 6.4 mm air gap and a 5.4 cm wiggler period at a 20 kG solenoid field. The measured helical fields compare favorably with the analytical solution. This type of helical iron wigglers has the potential to be scaled to small periods with strong field amplitude

  14. Shielding and synchrotron radiation in toroidal waveguide

    Directory of Open Access Journals (Sweden)

    G. V. Stupakov

    2003-03-01

    Full Text Available We develop a new approach to the calculation of the synchrotron radiation in a toroidal vacuum chamber. Using a small parameter ϵ=sqrt[a/R], where a is the characteristic size of the cross section of the toroid and R is the bending radius, we simplify Maxwell’s equations assuming that the characteristic frequency of the modes ω∼c/aϵ and neglect terms of higher order in ϵ. For a rectangular cross section of the waveguide, we find an analytical solution of the equations and analyze their asymptotics at very high frequency. We then obtain an equation which gives radiation into each synchronous mode. We demonstrate the flexibility of the new method by calculating the frequencies and the loss factors for the lowest modes in square and round waveguides.

  15. Quadrupole magnet for a rapid cycling synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Witte, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.

  16. Synchrotron radiation in solid state chemistry

    International Nuclear Information System (INIS)

    Ghigna, Paolo; Pin, Sonia; Spinolo, Giorgio; Newton, Mark A.; Chiara Tarantino, Serena; Zema, Michele

    2011-01-01

    An approach towards the reactivity in the solid state is proposed, primarily based on recognizing the crucial role played by the interfacial free energy and by the topotactical relationship between the two reactants, which in turn control formation of the new phase and its spatial and orientational relationships with respect to the parent phases. Using one of the reactants in the form of film, the ratio between bulk and interfacial free energy can be changed, and the effect of interfacial free energy is maximized. The role of Synchrotron Radiation in such an approach is exemplified by using a new developed technique for μ-XANES mapping with nanometric resolution for studying the reactivity of thin films of NiO onto differently oriented Al 2 O 3 single crystals. The result obtained allowed us to speculate about the rate determining step of the NiO+Al 2 O 3 →NiAl 2 O 4 interfacial reaction.

  17. Exploring actinide materials through synchrotron radiation techniques.

    Science.gov (United States)

    Shi, Wei-Qun; Yuan, Li-Yong; Wang, Cong-Zhi; Wang, Lin; Mei, Lei; Xiao, Cheng-Liang; Zhang, Li; Li, Zi-Jie; Zhao, Yu-Liang; Chai, Zhi-Fang

    2014-12-10

    Synchrotron radiation (SR) based techniques have been utilized with increasing frequency in the past decade to explore the brilliant and challenging sciences of actinide-based materials. This trend is partially driven by the basic needs for multi-scale actinide speciation and bonding information and also the realistic needs for nuclear energy research. In this review, recent research progresses on actinide related materials by means of various SR techniques were selectively highlighted and summarized, with the emphasis on X-ray absorption spectroscopy, X-ray diffraction and scattering spectroscopy, which are powerful tools to characterize actinide materials. In addition, advanced SR techniques for exploring future advanced nuclear fuel cycles dealing with actinides are illustrated as well. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Channels in cell membranes and synchrotron radiation

    International Nuclear Information System (INIS)

    Yan Xiaohui; Tian Liang; Zhang Xinyi

    2004-01-01

    For long time a lot of scientists have devoted to study how matter, such as water molecules and K + , Na + , Ca 2+ , Cl - ions, move through cell membranes and complete the matter exchange between the inside and outside of cells. Peter Agre discovered and characterized the first water channel protein in 1988 and Roderick MacKinnon elucidated the structural and mechanistic basis for ion channel function in 1998. These achievements have made it possible for us to 'see' these exquisitely designed molecular machines in action at the atomic level. The Nobel Prize in Chemistry for 2003 is shared between these two scientists. In determining the high resolution 3D structure of these channels, the synchrotron X-ray diffraction plays an important role

  19. Microfabrication of crosslinked PTFE by synchrotron radiation

    International Nuclear Information System (INIS)

    Sato, Yasunori; Yamaguchi, Daichi; Oshima, Akihiro; Washio, Masakazu; Katoh, Takanori; Aoki, Yasushi; Ikeda, Shigetoshi; Tanaka, Shigeru

    2003-01-01

    Microfabrication of crosslinked polytetrafluoroethylene (PTFE) using synchrotron radiation (SR) has been demonstrated for production of micro-components applicable to radiation fields. The method of microfabrication was readily capable of obtaining a microstructure with aspect-ratio of 25 made of crosslinked PTFE. The etching rate of crosslinked PTFE was higher than that of non-crosslinked PTFE. The results show that the etching rate of crosslinked PTFE depends only on the degree of crosslinking. The effect of molecular motion on etching process was discussed from temperature dependence on etching rate. Moreover, in order to examine whether any change of chemical structures and crystallinity would be induced by SR-irradiation on PTFE, SR-irradiated PTFE was measured by NMR spectroscopy and DSC analysis. The results showed that the crosslinking reaction of PTFE would be induced by SR-irradiation in the solid state. (author)

  20. Synchrotron and neutron techniques in biological crystallography.

    Science.gov (United States)

    Blakeley, M P; Cianci, M; Helliwell, J R; Rizkallah, P J

    2004-10-20

    Synchrotron radiation (SR) techniques are continuously pushing the frontiers of wavelength range usage, smaller crystal sample size, larger protein molecular weight and complexity, as well as better diffraction resolution. The new research specialism of probing functional states directly in crystals, via time-resolved Laue and freeze trapping structural studies, has been developed, with a range of examples, based on research stretching over some 20 years. Overall, SR X-ray biological crystallography is complemented by neutron protein crystallographic studies aimed at cases where much more complete hydrogen details are needed involving synergistic developments between SR and neutron Laue methods. A big new potential exists in harnessing genome databases for targeting of new proteins for structural study. Structural examples in this tutorial review illustrate new chemistry learnt from biological macromolecules.

  1. Optical substrate materials for synchrotron radiation beamlines

    International Nuclear Information System (INIS)

    Howells, M.R.; Paquin, R.A.

    1997-06-01

    The authors consider the materials choices available for making optical substrates for synchrotron radiation beam lines. They find that currently the optical surfaces can only be polished to the required finish in fused silica and other glasses, silicon, CVD silicon carbide, electroless nickel and 17-4 PH stainless steel. Substrates must therefore be made of one of these materials or of a metal that can be coated with electroless nickel. In the context of material choices for mirrors they explore the issues of dimensional stability, polishing, bending, cooling, and manufacturing strategy. They conclude that metals are best from an engineering and cost standpoint while the ceramics are best from a polishing standpoint. They then give discussions of specific materials as follows: silicon carbide, silicon, electroless nickel, Glidcop trademark, aluminum, precipitation-hardening stainless steel, mild steel, invar and superinvar. Finally they summarize conclusions and propose ideas for further research

  2. Optical substrate materials for synchrotron radiation beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Howells, M.R. [Lawrence Berkeley National Lab., CA (United States). Advanced Light Source; Paquin, R.A. [Univ. of Arizona, Tucson, AZ (United States). Optical Sciences Center

    1997-06-01

    The authors consider the materials choices available for making optical substrates for synchrotron radiation beam lines. They find that currently the optical surfaces can only be polished to the required finish in fused silica and other glasses, silicon, CVD silicon carbide, electroless nickel and 17-4 PH stainless steel. Substrates must therefore be made of one of these materials or of a metal that can be coated with electroless nickel. In the context of material choices for mirrors they explore the issues of dimensional stability, polishing, bending, cooling, and manufacturing strategy. They conclude that metals are best from an engineering and cost standpoint while the ceramics are best from a polishing standpoint. They then give discussions of specific materials as follows: silicon carbide, silicon, electroless nickel, Glidcop{trademark}, aluminum, precipitation-hardening stainless steel, mild steel, invar and superinvar. Finally they summarize conclusions and propose ideas for further research.

  3. Synchrotron Radiation Total Reflection X-ray Fluorescence Spectroscopy for Microcontamination Analysis on Silicon Wafer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Takaura, Norikatsu

    1997-10-01

    As dimensions in state-of-the-art CMOS devices shrink to less than 0.1 pm, even low levels of impurities on wafer surfaces can cause device degradation. Conventionally, metal contamination on wafer surfaces is measured using Total Reflection X-Ray Fluorescence Spectroscopy (TXRF). However, commercially available TXRF systems do not have the necessary sensitivity for measuring the lower levels of contamination required to develop new CMOS technologies. In an attempt to improve the sensitivity of TXRF, this research investigates Synchrotron Radiation TXRF (SR TXRF). The advantages of SR TXRF over conventional TXRF are higher incident photon flux, energy tunability, and linear polarization. We made use of these advantages to develop an optimized SR TXRF system at the Stanford Synchrotron Radiation Laboratory (SSRL). The results of measurements show that the Minimum Detection Limits (MDLs) of SR TXRF for 3-d transition metals are typically at a level-of 3x10{sup 8} atoms/cm{sup 2}, which is better than conventional TXRF by about a factor of 20. However, to use our SR TXRF system for practical applications, it was necessary to modify a commercially available Si (Li) detector which generates parasitic fluorescence signals. With the modified detector, we could achieve true MDLs of 3x10{sup 8} atoms/cm{sup 2} for 3-d transition metals. In addition, the analysis of Al on Si wafers is described. Al analysis is difficult because strong Si signals overlap the Al signals. In this work, the Si signals are greatly reduced by tuning the incident beam energy below the Si K edge. The results of our measurements show that the sensitivity for Al is limited by x-ray Raman scattering. Furthermore, we show the results of theoretical modeling of SR TXRF backgrounds consisting of the bremsstrahlung generated by photoelectrons, Compton scattering, and Raman scattering. To model these backgrounds, we extended conventional theoretical models by taking into account several aspects particular

  4. Tunable Sparse Network Coding for Multicast Networks

    DEFF Research Database (Denmark)

    Feizi, Soheil; Roetter, Daniel Enrique Lucani; Sørensen, Chres Wiant

    2014-01-01

    This paper shows the potential and key enabling mechanisms for tunable sparse network coding, a scheme in which the density of network coded packets varies during a transmission session. At the beginning of a transmission session, sparsely coded packets are transmitted, which benefits decoding...... complexity. At the end of a transmission, when receivers have accumulated degrees of freedom, coding density is increased. We propose a family of tunable sparse network codes (TSNCs) for multicast erasure networks with a controllable trade-off between completion time performance to decoding complexity....... Coding density tuning can be performed by designing time-dependent coding matrices. In multicast networks, this tuning can be performed within the network by designing time-dependent pre- coding and network coding matrices with mild conditions on the network structure for specific densities. We present...

  5. Cutting and Folding for Tunable Materials Properties

    Science.gov (United States)

    Damasceno, Pablo; Dodd, Paul; Shyu, Terry; Shlian, Matthew; Shtein, Max; Kotov, Nicholas; Glotzer, Sharon

    2014-03-01

    Despite the small set of building blocks used for their assembly, naturally occurring materials such as proteins show remarkable diversity in their mechanical properties ranging from something resembling rubber-low stiffness, high resilience and extensibility-to silk-high stiffness and strength. Moreover, their self-folding properties inspire the design of structures capable of tunable reconfiguration. Motivated by such versatility, we report on simulations and experiments for the design of nanocomposites sheets whose mechanical properties can be made tunable via ``secondary structures'' patterning. Our simulations reveal the main cutting features needed to obtain desired material extensibility. Additionally, we study how similar sheets could self-fold into their desired ``native'' structure via stochastic forces. Our results open the possibilities for manufacture of flexible and reconfigurable materials with targeted strength and extensibility. Research supported by the National Science Foundation, Emerging Frontiers in Research and Innovation Award # EFRI-1240264.

  6. Optically tunable chirped fiber Bragg grating.

    Science.gov (United States)

    Li, Zhen; Chen, Zhe; Hsiao, V K S; Tang, Jie-Yuan; Zhao, Fuli; Jiang, Shao-Ji

    2012-05-07

    This work presents an optically tunable chirped fiber Bragg grating (CFBG). The CFBG is obtained by a side-polished fiber Bragg grating (SPFBG) whose thickness of the residual cladding layer in the polished area (D(RC)) varies with position along the length of the grating, which is coated with a photoresponsive liquid crystal (LC) overlay. The reflection spectrum of the CFBG is tuned by refractive index (RI) modulation, which comes from the phase transition of the overlaid photoresponsive LC under ultraviolet (UV) light irradiation. The broadening in the reflection spectrum and corresponding shift in the central wavelength are observed with UV light irradiation density of 0.64mW/mm. During the phase transition of the photoresponsive LC, the RI increase of the overlaid LC leads to the change of the CFBG reflection spectrum and the change is reversible and repeatable. The optically tunable CFBGs have potential use in optical DWDM system and an all-fiber telecommunication system.

  7. Computer control of pulsed tunable dye lasers

    International Nuclear Information System (INIS)

    Thattey, S.S.; Dongare, A.S.; Suri, B.M.; Nair, L.G.

    1992-01-01

    Pulsed tunable dye lasers are being used extensively for spectroscopic and photo-chemical experiments, and a system for acquisition and spectral analysis of a volume of data generated will be quite useful. The development of a system for wavelength tuning and control of tunable dye lasers and an acquisition system for spectral data generated in experiments with these lasers are described. With this system, it is possible to control the tuning of three lasers, and acquire data in four channels, simultaneously. It is possible to arrive at the desired dye laser wavelength with a reproducibility of ± 0.012 cm -1 , which is within the absorption width (atomic interaction) caused by pulsed dye lasers of linewidth 0.08 cm -1 . The spectroscopic data generated can be analyzed for spectral identification within absolute accuracy ± 0.012 cm -1 . (author). 6 refs., 11 figs

  8. Liquid metal cooling of synchrotron optics

    International Nuclear Information System (INIS)

    Smither, R.K.

    1993-01-01

    The installation of insertion devices at existing synchrotron facilities around the world has stimulated the development of new ways to cool the optical elements in the associated x-ray beamlines. Argonne has been a leader in the development of liquid metal cooling for high heat load x-ray optics for the next generation of synchrotron facilities. The high thermal conductivity, high volume specific heat, low kinematic viscosity, and large working temperature range make liquid metals a very efficient heat transfer fluid. A wide range of liquid metals were considered in the initial phase of this work. The most promising liquid metal cooling fluid identified to date is liquid gallium, which appears to have all the desired properties and the fewest number of undesired features of the liquid metals examined. Besides the special features of liquid metals that make them good heat transfer fluids, the very low vapor pressure over a large working temperature range make liquid gallium an ideal cooling fluid for use in a high vacuum environment. A leak of the liquid gallium into the high vacuum and even into very high vacuum areas will not result in any detectable vapor pressure and may even improve the vacuum environment as the liquid gallium combines with any water vapor or oxygen present in the system. The practical use of a liquid metal for cooling silicon crystals and other high heat load applications depends on having a convenient and efficient delivery system. The requirements for a typical cooling system for a silicon crystal used in a monochromator are pumping speeds of 2 to 5 gpm (120 cc per sec to 600 cc per sec) at pressures up to 100 psi. No liquid metal pump with these capabilities was available commercially when this project was started, so it was necessary to develop a suitable pump in house

  9. European synchrotron radiation facility at Risoe

    International Nuclear Information System (INIS)

    1981-07-01

    The results of the feasibility study on a potential European Synchrotron Radiation Facility site at Risoe, Denmark, can be summarized as follows: The site is located in a geologically stable area. The ground is fairly flat, free from vibrations and earth movements, and the foundation properties are considered generally good. The study is based upon the machine concept and main geometry as presented in the ESF feasibility study of May 1979. However, the proposed site could accomodate a larger machine (e.g. 900 m of circumference) or a multi-facility centre. The site is located in the vicinity of Risoe National Laboratory, a R and D establishment with 850 employees and a well-developed technical and scientific infrastructure, which can provide support to the ESRF during the plant construction and operation. In particular the possible combination of synchrotron radiation with the existing neutron scattering facilities in DR 3 is emphasized. The site is located 35 km west of Copenhagen with easy access to the scientific, technological and industrial organizations in the metropolitan area. The regional infrastructure ensures easy and fast communication between the ESRF and locations in the host country as well as abroad. The site is located 35 minutes drive from Copenhagen International Airport and on a main communication route out of Copenhagen. The estimated time duration for the design, construction and commissioning of ESRF phase 1 - taking into account national regulatory procedures - is consistent with that of the ESF feasibility study, i.e. approx. 6 years. The estimated captal costs associated with site-specific structures are consistent with those of the ESF feasibility study, taking into account price increase between 1979 and 1981. It should be emphasized that the study is based upon technical and scientific assessments only, and does not reflect any official position or approval from appropriate authorities. (author)

  10. XPEEM spectro-microscopy using synchrotron radiation; La spectromicroscopie XPEEM avec le rayonnement synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, N. [CEA Saclay (DSM/IRAMIS/SPCSI), 91 - Gif-sur-Yvette (France); Renault, O. [CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), Minatec, 38 (France)

    2009-07-01

    Synchrotron radiation offers new dimensions to photoelectron spectroscopy. Third generation synchrotron radiation sources offer optimization of the photoionization cross-sections and surface sensitivity, as well as the availability of high brilliance photon beams. Angularly resolved photoelectron spectroscopy (ARPES) can do band mapping of single crystal electronic structure. X-ray photoelectron spectroscopy (XPS) probes the chemical environment of constituent atoms. With respect to ARPES and XPS, photoelectron emission microscopy (PEEM) conserves the spatial origin of the photoelectrons thanks to electron optics which collect, focus and enlarges the photoelectric signal. The ultimate spatial resolution is determined by electron diffraction and the chromatic and spherical aberrations. Synchrotron radiation is therefore well adapted to finding the necessary compromise between aberration minimization using apertures and the microscope transmission for full spectroscopic PEEM. We present the perspectives for spectral reconstruction of submicron zones of samples having chemical, elemental or electronic inhomogeneities with a spatial resolution between 50 and 100 nm. Several examples will illustrate the potential of the technique: molecular grafting; chemical imaging of single nano-wires and polycrystalline structures. (authors)

  11. Construction of tunable peptide nucleic acid junctions.

    Science.gov (United States)

    Duan, Tanghui; He, Liu; Tokura, Yu; Liu, Xin; Wu, Yuzhou; Shi, Zhengshuang

    2018-03-15

    We report here the construction of 3-way and 4-way peptide nucleic acid (PNA) junctions as basic structural units for PNA nanostructuring. The incorporation of amino acid residues into PNA chains makes PNA nanostructures with more structural complexity and architectural flexibility possible, as exemplified by building 3-way PNA junctions with tunable nanopores. Given that PNA nanostructures have good thermal and enzymatic stabilities, they are expected to have broad potential applications in biosensing, drug delivery and bioengineering.

  12. Tunable terahertz metamaterials with negative permeability

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Kužel, Petr; Kadlec, Filip; Kadlec, Christelle; Yahiaoui, R.; Mounaix, P.

    2009-01-01

    Roč. 79, č. 24 (2009), 241108/1-241108/4 ISSN 1098-0121 R&D Projects: GA AV ČR(CZ) IAA100100907; GA MŠk LC512; GA MŠk MEB020742 Institutional research plan: CEZ:AV0Z10100520 Keywords : tunable metamaterial * effective magnetic permeability * incipient ferroelectrics * strontium titanate * terahertz spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009

  13. Flow of Tunable Elastic Microcapsules through Constrictions

    OpenAIRE

    do Nascimento, D?bora F.; Avenda?o, Jorge A.; Mehl, Ana; Moura, Maria J. B.; Carvalho, Marcio S.; Duncanson, Wynter J.

    2017-01-01

    We design and fabricate elastically tunable monodisperse microcapsules using microfluidics and cross-linkable polydimethylsiloxane (PDMS). The overall stiffness of the microcapsules is governed by both the thickness and cross-link ratio of the polymer shell. Flowing suspensions of microcapsules through constricted spaces leads to transient blockage of fluid flow, thus altering the flow behavior. The ability to tune microcapsule mechanical properties enables the design of elastic microcapsules...

  14. Electronically Tunable Resistorless Mixed Mode Biquad Filters

    OpenAIRE

    Yesil, A.; Kacar, F.

    2013-01-01

    This paper presents a new realization of elec¬tronically tunable mixed mode (including transadmittance- and voltage-modes) biquad filter with single input, three outputs or three inputs, single output using voltage differ-encing transconductance amplifier (VDTA), a recently introduced active element. It can simultaneously realize standard filtering signals: low-pass, band-pass and high-pass or by selecting input terminals, it can realize all five different filtering signals: low-pass, band-pa...

  15. LTCC Phase Shifters Based on Tunable Ferroelectric Composite Thick Films

    Science.gov (United States)

    Nikfalazar, M.; Kohler, C.; Heunisch, A.; Wiens, A.; Zheng, Y.; Schulz, B.; Mikolajek, M.; Sohrabi, M.; Rabe, T.; Binder, J. R.; Jakoby, R.

    2015-11-01

    This paper presents, the investigation of tunable components based on LTCC technology, implementing ferroelectric tunable thick-film dielectric. The tunable loaded line phase shifters are fabricated with metal-insulator-metal (MIM) varactors to demonstrate the capabilities of this method for packaging of the tunable components. The MIM varactors consist of one tunable dielectric paste layer that is printed between two silver layers. The tunable ferroelectric paste is optimized for LTCC sintering temperature around 850°C. The phase shifters are fabricated in two different process. They were achieved a figure of merit of 24°/dB (phase shift 192°) at 3 GHz and 18°/dB (phase shift 98°) at 4.4 GHz by using seven unit cells that each unit cell consisting of two MIM varactors.

  16. Quantitative nanometer-scale mapping of dielectric tunability

    Energy Technology Data Exchange (ETDEWEB)

    Tselev, Alexander [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Klein, Andreas [Technische Univ. Darmstadt (Germany); Gassmann, Juergen [Technische Univ. Darmstadt (Germany); Jesse, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Qian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kalinin, Sergei V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wisinger, Nina Balke [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-21

    Two scanning probe microscopy techniques—near-field scanning microwave microscopy (SMM) and piezoresponse force microscopy (PFM)—are used to characterize and image tunability in a thin (Ba,Sr)TiO3 film with nanometer scale spatial resolution. While sMIM allows direct probing of tunability by measurement of the change in the dielectric constant, in PFM, tunability can be extracted via electrostrictive response. The near-field microwave imaging and PFM provide similar information about dielectric tunability with PFM capable to deliver quantitative information on tunability with a higher spatial resolution close to 15 nm. This is the first time that information about the dielectric tunability is available on such length scales.

  17. Advances and synergy of high pressure sciences at synchrotron sources

    International Nuclear Information System (INIS)

    Liu, H.; Ehm, L.; Duffy, T.; Crichton, W.; Aoki, K.

    2009-01-01

    Introductory overview to the special issue papers on high-pressure sciences and synchrotron radiation. High-pressure research in geosciences, materials science and condensed matter physics at synchrotron sources is experiencing growth and development through synergistic efforts around the world. A series of high-pressure science workshops were organized in 2008 to highlight these developments. One of these workshops, on 'Advances in high-pressure science using synchrotron X-rays', was held at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, USA, on 4 October 2008. This workshop was organized in honour of Drs Jingzhu Hu and Quanzhong Guo in celebration of their retirement after up to 18 years of dedicated service to the high-pressure community as beamline scientists at X17 of NSLS. Following this celebration of the often unheralded role of the beamline scientist, a special issue of the Journal of Synchrotron Radiation on Advances and Synergy of High-Pressure Sciences at Synchrotron Sources was proposed, and we were pleased to invite contributions from colleagues who participated in the workshop as well as others who are making similar efforts at synchrotron sources worldwide.

  18. A Continuously Tunable Erbium-Doped Fibre Laser Using Tunable Fibre Bragg Gratings and Optical Circulator

    International Nuclear Information System (INIS)

    Peng, Liu; Feng-Ping, Yan; Jian, Li; Lin, Wang; Ti-Gang, Ning; Tao-Rong, Gong; Shui-Sheng, Jian

    2008-01-01

    A continuously tunable erbium-doped fibre laser (TEDFL) based on tunable fibre Bragger grating (TFBG) and a three-port optical circulator (OC) is proposed and demonstrated. The OC acts as a 100%-reflective mirror. A strain-induced uniform fibre Bragger grating (FBG) which functions as a partial-reflecting mirror is implemented in the linear cavity. By applying axial strain onto the TFBG, a continuously tunable lasing output can be realized. The wavelength tuning range covers approximately 7.00nm in C band (from 1543.6161 to 1550.3307nm). The side mode suppression ratio (SMSR) is better than 50 dB, and the 3 dB bandwidth of the laser is less than 0.01 nm. Moreover, an array waveguide grating (AWG) is inserted into the cavity for wavelength preselecting, and a 50 km transmission experiment was performed using our TEDFL at a 10Gb/s modulation rate

  19. Optical transmittance investigation of 1-keV ion-irradiated sapphire crystals as potential VUV to NIR window materials of fusion reactors

    Directory of Open Access Journals (Sweden)

    Keisuke Iwano

    2016-10-01

    Full Text Available We investigate the optical transmittances of ion-irradiated sapphire crystals as potential vacuum ultraviolet (VUV to near-infrared (NIR window materials of fusion reactors. Under potential conditions in fusion reactors, sapphire crystals are irradiated with hydrogen (H, deuterium (D, and helium (He ions with 1-keV energy and ∼ 1020-m-2 s-1 flux. Ion irradiation decreases the transmittances from 140 to 260 nm but hardly affects the transmittances from 300 to 1500 nm. H-ion and D-ion irradiation causes optical absorptions near 210 and 260 nm associated with an F-center and an F+-center, respectively. These F-type centers are classified as Schottky defects that can be removed through annealing above 1000 K. In contrast, He-ion irradiation does not cause optical absorptions above 200 nm because He-ions cannot be incorporated in the crystal lattice due to the large ionic radius of He-ions. Moreover, the significant decrease in transmittance of the ion-irradiated sapphire crystals from 140 to 180 nm is related to the light scattering on the crystal surface. Similar to diamond polishing, ion irradiation modifies the crystal surface thereby affecting the optical properties especially at shorter wavelengths. Although the transmittances in the VUV wavelengths decrease after ion irradiation, the transmittances can be improved through annealing above 1000 K. With an optical transmittance in the VUV region that can recover through simple annealing and with a high transparency from the ultraviolet (UV to the NIR region, sapphire crystals can therefore be used as good optical windows inside modern fusion power reactors in terms of light particle loadings of hydrogen isotopes and helium.

  20. Scanning tunneling microscope combined with synchrotron-radiation for elemental analysis

    International Nuclear Information System (INIS)

    Okuda, T.; Eguchi, T.; Matsushima, T.; Hamada, M.; Ma, X.-D.; Kataoka, A.; Harasawa, A.; Kinoshita, T.; Hasegawa, Y.

    2004-01-01

    Full text: We present a newly developed synchrotron-radiation-illuminated scanning-tunneling-microscope (SR-STM) at BL-19A in Photon Factory (KEK, Japan). Combining the energy tunability of SR light with the high-spatial resolution of STM, we aim to develop an element-specific microscope. That is, by detecting the photoelectrons from the specific core-levels excited by SR light with STM tip, we expect an elemental mapping of the surface with high spatial resolution. Figure shows an STM image of the Si(111) 7 x 7 surface by the SR- STM in a constant current mode (V sample = - 1.2 V, I t =240 pA) with and without SR light illuminating with the photon energy ranging from hv = 93 to 105 eV. As shown in the figure, atomically resolved imaging is attained even under the light illumination. The cross-sectional profile of the STM image is shown in the right of the figure. Light shade indicates the SR illumination during scanning over the area. When the surface is illuminated by the SR light, the tip height is obviously raised. Moreover, a sharp increase of the tip height is observed above the Si L adsorption edge ( ∼ 101 eV). These results demonstrate the possibility of elemental identification using this technique. The spatial resolution of the elemental mapping is approximately micron order at present. In order to improve it, we are now testing a tip-coating and some other trial techniques