WorldWideScience

Sample records for tunable porosity optimized

  1. Optimization and Development of Swellable Controlled Porosity ...

    African Journals Online (AJOL)

    Purpose: To develop swellable controlled porosity osmotic pump tablet of theophylline and to define the formulation and process variables responsible for drug release by applying statistical optimization technique. Methods: Formulations were prepared based on Taguchi Orthogonal Array design and Fraction Factorial ...

  2. Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former

    Czech Academy of Sciences Publication Activity Database

    Medřický, J.; Curry, N.; Pala, Zdeněk; Vilémová, Monika; Chráska, Tomáš; Johansson, J.; Markocsan, N.

    2015-01-01

    Roč. 24, č. 4 (2015), s. 622-628 ISSN 1059-9630 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : gas turbines * high temperature application * porosity of coatings * stabilized zirconia * thermal barrier coatings (TBCs) Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.568, year: 2015

  3. Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former

    Science.gov (United States)

    Medřický, Jan; Curry, Nicholas; Pala, Zdenek; Vilemova, Monika; Chraska, Tomas; Johansson, Jimmy; Markocsan, Nicolaie

    2015-04-01

    Yttria-stabilized zirconia thermal barrier coatings are extensively used in turbine industry; however, increasing performance requirements have begun to make conventional air plasma sprayed coatings insufficient for future needs. Since the thermal conductivity of bulk material cannot be lowered easily; the design of highly porous coatings may be the most efficient way to achieve coatings with low thermal conductivity. Thus the approach of fabrication of coatings with a high porosity level based on plasma spraying of ceramic particles of dysprosia-stabilized zirconia mixed with polymer particles, has been tested. Both polymer and ceramic particles melt in plasma and after impact onto a substrate they form a coating. When the coating is subjected to heat treatment, polymer burns out and a complex structure of pores and cracks is formed. In order to obtain desired porosity level and microstructural features in coatings; a design of experiments, based on changes in spray distance, powder feeding rate, and plasma-forming atmosphere, was performed. Acquired coatings were evaluated for thermal conductivity and thermo-cyclic fatigue, and their morphology was assessed using scanning electron microscopy. It was shown that porosity level can be controlled by appropriate changes in spraying parameters.

  4. Optimal design of tunable phononic bandgap plates under equibiaxial stretch

    International Nuclear Information System (INIS)

    Hedayatrasa, Saeid; Abhary, Kazem; Uddin, M S; Guest, James K

    2016-01-01

    Design and application of phononic crystal (PhCr) acoustic metamaterials has been a topic with tremendous growth of interest in the last decade due to their promising capabilities to manipulate acoustic and elastodynamic waves. Phononic controllability of waves through a particular PhCr is limited only to the spectrums located within its fixed bandgap frequency. Hence the ability to tune a PhCr is desired to add functionality over its variable bandgap frequency or for switchability. Deformation induced bandgap tunability of elastomeric PhCr solids and plates with prescribed topology have been studied by other researchers. Principally the internal stress state and distorted geometry of a deformed phononic crystal plate (PhP) changes its effective stiffness and leads to deformation induced tunability of resultant modal band structure. Thus the microstructural topology of a PhP can be altered so that specific tunability features are met through prescribed deformation. In the present study novel tunable PhPs of this kind with optimized bandgap efficiency-tunability of guided waves are computationally explored and evaluated. Low loss transmission of guided waves throughout thin walled structures makes them ideal for fabrication of low loss ultrasound devices and structural health monitoring purposes. Various tunability targets are defined to enhance or degrade complete bandgaps of plate waves through macroscopic tensile deformation. Elastomeric hyperelastic material is considered which enables recoverable micromechanical deformation under tuning finite stretch. Phononic tunability through stable deformation of phononic lattice is specifically required and so any topology showing buckling instability under assumed deformation is disregarded. Nondominated sorting genetic algorithm (GA) NSGA-II is adopted for evolutionary multiobjective topology optimization of hypothesized tunable PhP with square symmetric unit-cell and relevant topologies are analyzed through finite

  5. Optimization of Structural Topology in the High-Porosity Regime

    National Research Council Canada - National Science Library

    Kohn, Robert

    2004-01-01

    ...." Moreover there is a simple formula for the Hooke's law of a single-scale laminate. It reduces the task of structural optimization for minimum weight and maximal stiffness to a convex optimization specifically, a problem of semidefinite programming...

  6. Porosity and mechanically optimized PLGA based in situ hardening systems.

    Science.gov (United States)

    Schloegl, W; Marschall, V; Witting, M Y; Volkmer, E; Drosse, I; Leicht, U; Schieker, M; Wiggenhorn, M; Schaubhut, F; Zahler, S; Friess, W

    2012-11-01

    Goal of the present study was to develop and to characterize in situ-hardening, porous PLGA-based systems for their future application as bone grafting materials. Therefore, we investigated the precipitation behavior of formulations containing PLGA and a water-miscible solvent, DMSO, PEG 400, and NMP. To increase porosity, a pore forming agent (NaCMC) was added and to enhance mechanical properties of the system, an inorganic filler (α-TCP) was incorporated. The behavior upon contact with water and the influence of the prior addition of aqueous media on the morphology of the corresponding hardened implants were investigated. We proved cell-compatibility by live/dead assays for the hardened porous polymer/ceramic-composite scaffolds. The IsHS formulations can therefore be used to manufacture hardened scaffolds ex vivo by using molds with the desired shape and size. Cells were further successfully incorporated into the IsHS by precultivating the cells on the α-TCP-powder prior to their admixing to the formulation. However, cell viability could not be maintained due to toxicity of the tested solvents. But, the results demonstrate that in vivo cells should well penetrate, adhere, and proliferate in the hardened scaffolds. Consequently, we consider the in situ hardening system being an excellent candidate as a filling material for non-weight-bearing orthopedic indications, as the resulting properties of the hardened implant fulfill indication-specific needs like mechanical stability, elasticity, and porosity. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Autonomous Optimization of a Solidification Pattern and Its Effect on Porosity and Segregation in Steel Castings

    DEFF Research Database (Denmark)

    Kotas, Petr; Tutum, Cem Celal; Hattel, Jesper Henri

    2011-01-01

    The present paper considers optimization of a solidification pattern of a gravity sand-cast steel part. That is, the choice of proper riser and chill designs has been investigated using genetic algorithms while simultaneously considering their impact on centerline porosity and macrosegregation...... distribution. This was accomplished by coupling a casting simulation software package with an optimization module. The casting process of the original casting design was simulated using a transient 3D thermal model incorporated in a commercial simulation software package to determine potential flaws...... and inadequacies. After this initial assessment, a new geometrical model was suggested with the redesigned gating system and rearranged chills to obtain better filling and solidification patterns. Based on the improved model, relevant optimization targets and constraints were defined. One multi...

  8. Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, John E.; Gogotsi, Yury; Yildirim, Taner

    2010-01-07

    On-board hydrogen storage is a key requirement for fuel cell-powered cars and trucks. Porous carbon-based materials can in principle adsorb more hydrogen per unit weight at room temperature than liquid hydrogen at -176 oC. Achieving this goal requires interconnected pores with very high internal surface area, and binding energies between hydrogen and carbon significantly enhanced relative to H2 on graphite. In this project a systematic study of carbide-derived carbons, a novel form of porous carbon, was carried out to discover a high-performance hydrogen sorption material to meet the goal. In the event we were unable to improve on the state of the art in terms of stored hydrogen per unit weight, having encountered the same fundamental limit of all porous carbons: the very weak interaction between H2 and the carbon surface. On the other hand we did discover several strategies to improve storage capacity on a volume basis, which should be applicable to other forms of porous carbon. Further discoveries with potentially broader impacts include • Proof that storage performance is not directly related to pore surface area, as had been previously claimed. Small pores (< 1.5 nm) are much more effective in storing hydrogen than larger ones, such that many materials with large total surface areas are sub-par performers. • Established that the distribution of pore sizes can be controlled during CDC synthesis, which opens the possibility of developing high performance materials within a common family while targeting widely disparate applications. Examples being actively pursued with other funding sources include methane storage, electrode materials for batteries and supercapacitors with record high specific capacitance, and perm-selective membranes which bind cytokines for control of infections and possibly hemodialysis filters.

  9. Synthetic Geopolymers for Controlled Delivery of Oxycodone: Adjustable and Nanostructured Porosity Enables Tunable and Sustained Drug Release

    Science.gov (United States)

    Forsgren, Johan; Pedersen, Christian; Strømme, Maria; Engqvist, Håkan

    2011-01-01

    In this article we for the first time present a fully synthetic mesoporous geopolymer drug carrier for controlled release of opioids. Nanoparticulate precursor powders with different Al/Si-ratios were synthesized by a sol-gel route and used in the preparation of different geopolymers, which could be structurally tailored by adjusting the Al/Si-ratio and the curing temperatures. In particular, it was shown that the pore sizes of the geopolymers decreased with increasing Al/Si ratio and that completely mesoporous geopolymers could be produced from precursor particles with the Al/Si ratio 2∶1. The mesoporosity was shown to be associated with a sustained and linear in vitro release profile of the opioid oxycodone. A clinically relevant release period of about 12 h was obtained by adjusting the size of the pellets. The easily fabricated and tunable geopolymers presented in this study constitute a novel approach in the development of controlled release formulations, not only for opioids, but whenever the clinical indication is best treated with a constant supply of drugs and when the mechanical stability of the delivery vehicle is crucial. PMID:21423616

  10. Synthetic geopolymers for controlled delivery of oxycodone: adjustable and nanostructured porosity enables tunable and sustained drug release.

    Directory of Open Access Journals (Sweden)

    Johan Forsgren

    2011-03-01

    Full Text Available In this article we for the first time present a fully synthetic mesoporous geopolymer drug carrier for controlled release of opioids. Nanoparticulate precursor powders with different Al/Si-ratios were synthesized by a sol-gel route and used in the preparation of different geopolymers, which could be structurally tailored by adjusting the Al/Si-ratio and the curing temperatures. In particular, it was shown that the pore sizes of the geopolymers decreased with increasing Al/Si ratio and that completely mesoporous geopolymers could be produced from precursor particles with the Al/Si ratio 2:1. The mesoporosity was shown to be associated with a sustained and linear in vitro release profile of the opioid oxycodone. A clinically relevant release period of about 12 h was obtained by adjusting the size of the pellets. The easily fabricated and tunable geopolymers presented in this study constitute a novel approach in the development of controlled release formulations, not only for opioids, but whenever the clinical indication is best treated with a constant supply of drugs and when the mechanical stability of the delivery vehicle is crucial.

  11. A technique of optimization of microfiltration using a tunable platform

    International Nuclear Information System (INIS)

    Alvankarian, Jafar; Yeop Majlis, Burhanuddin

    2015-01-01

    The optimum efficiency of size-based filtration in microfluidic devices is highly dependent on characteristics of design, deformability of microparticles/cells, and fluid flow. The effects of filter pores and flow rate, which are the two major determining and related factors of characterization in the separation of particles and cells are investigated in this work. An elastomeric microfluidic device consisting of parallel arrays of pillars with mechanically tunable spacings is employed as an adjustable microfiltration platform. The tunable filtration system is used for finding the best conditions of separation of solid microbeads or deformable blood cells in a crossflow pillar-based method. It is demonstrated that increasing flow rate in the range of 1.0–80.0 µl min −1 has an adverse effect on the device performance in terms of decreased separation efficiency of deformable blood cells. However, by tuning the gap size in the range of 2.5–7.5 µm, the selectivity of the separation is controlled from about 5.0 to 95.0% for white blood cells (WBCs) and 40.0 to 95.0% for red blood cells (RBCs). Finally, the best range of trapping and passing efficiencies of ∼70–80.0% simultaneously for WBCs and RBCs in whole blood sample is achieved at optimum gap size of ∼3.5–4.0 µm. (paper)

  12. A Stepwise Optimal Design of a Dynamic Vibration Absorber with Tunable Resonant Frequency

    Directory of Open Access Journals (Sweden)

    Jiejian DI

    2014-08-01

    Full Text Available A new kind of dynamic vibration absorber (DVA with tunable resonant frequency is presented. The kinematics differential equation about it is built and the stepwise optimization is performed. Firstly, four main system parameters involving the ratios of mass m, natural frequency f, vibration frequency g and damping z are solved by small-step-search method to obtain optimal steady state amplitude. Secondly, the sizing optimization of the dynamic vibration absorber is proceeded to search an optimal damping effect based on the optimal parameters (g, m, z, f. And such the damping effect is simulated in a flat structure, and the results show that the working frequency band and damping effect of the DVA after optimization won 20 % of the effect of ascension compared with that before optimization.

  13. Highly optimized tunable Er3+-doped single longitudinal mode fiber ring laser, experiment and model

    DEFF Research Database (Denmark)

    Poulsen, Christian; Sejka, Milan

    1993-01-01

    A continuous wave (CW) tunable diode-pumped Er3+-doped fiber ring laser, pumped by diode laser at wavelengths around 1480 nm, is discussed. Wavelength tuning range of 42 nm, maximum slope efficiency of 48% and output power of 14.4 mW have been achieved. Single longitudinal mode lasing with a line...... with a linewidth of 6 kHz has been measured. A fast model of erbium-doped fiber laser was developed and used to optimize output parameters of the laser......A continuous wave (CW) tunable diode-pumped Er3+-doped fiber ring laser, pumped by diode laser at wavelengths around 1480 nm, is discussed. Wavelength tuning range of 42 nm, maximum slope efficiency of 48% and output power of 14.4 mW have been achieved. Single longitudinal mode lasing...

  14. High Quality Liquid Crystal Tunable Lenses and Optimization with Floating Electrodes

    Science.gov (United States)

    Li, Liwei

    2013-01-01

    In addition to the display application, Liquid Crystals (LC) can be very useful in other applications such as beam steering, tunable lenses, etc. Electro-optical LC tunable lenses have been considered as an alternative to conventional glass lenses because of their ability to change their focal length with the application of a control voltage, as…

  15. Optimizing human embryonic stem cells differentiation efficiency by screening size-tunable homogenous embryoid bodies.

    Science.gov (United States)

    Moon, Sung-Hwan; Ju, Jongil; Park, Soon-Jung; Bae, Daekyeong; Chung, Hyung-Min; Lee, Sang-Hoon

    2014-07-01

    Human embryonic stem cells (hESCs) are generally induced to differentiate by forming spherical structures termed embryoid bodies (EBs) in the presence of soluble growth factors. hEBs are generated by suspending small clumps of hESC colonies; however, the resulting hEBs are heterogeneous because this method lacks the ability to control the number of cells in individual EBs. This heterogeneity affects factors that influence differentiation such as cell-cell contact and the diffusion of soluble factors, and consequently, the differentiation capacity of each EB varies. Here, we fabricated size-tunable concave microwells to control the physical environment, thereby regulating the size of EBs formed from single hESCs. Defined numbers of single hESCs were forced to aggregate and generate uniformly sized EBs with high fidelity, and the size of the EBs was controlled using concave microwells of different diameters. Differentiation patterns in H9- and CHA15-hESCs were affected by EB size in both the absence and presence of growth factors. By screening EB size in the presence of various BMP4 concentrations, a two-fold increase in endothelial cell differentiation was achieved. Because each hESC line has unique characteristics, the findings of this study demonstrate that concave microwells could be used to screen different EB sizes and growth factor concentrations to optimize differentiation for each hESC line. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Hierarchical heteroaggregation of binary metal-organic gels with tunable porosity and mixed valence metal sites for removal of dyes in water.

    Science.gov (United States)

    Mahmood, Asif; Xia, Wei; Mahmood, Nasir; Wang, Qingfei; Zou, Ruqiang

    2015-05-27

    Hierarchical heteronuclear metal-organic gels (MOGs) based on iron (Fe) and aluminium (Al) metal-organic framework (MOF) backbones bridged by tri-carboxylate ligands have firstly been synthesized by simple solvothermal method. Monometallic MOGs based on Fe or Al give homogenous monoliths, which have been tuned by introduction of heterogeneity in the system (mismatched growth). The developed gels demonstrate that surface areas, pore volumes and pore sizes can be readily tuned by optimizing heterogeneity. The work also elaborates effect of heterogeneity on size of MOG particles which increase substantially with increasing heterogeneity as well as obtaining mixed valence sites in the gels. High surface areas (1861 m(2)/g) and pore volumes (9.737 cc/g) were obtained for heterogeneous gels ((0.5)Fe-(0.5)Al). The large uptakes of dye molecules (290 mg/g rhodamine B and 265 mg/g methyl orange) with fast sorption kinetics in both neutral and acidic mediums show good stability and accessibility of MOG channels (micro and meso-/macropores), further demonstrating their potential applications in catalysis and sorption of large molecules.

  17. Design, Simulation, and Optimization of a Frequency-Tunable Vibration Energy Harvester That Uses a Magnetorheological Elastomer

    Directory of Open Access Journals (Sweden)

    Wan Sun

    2015-01-01

    Full Text Available This study focuses on the design, simulation, and load power optimization for the development of a novel frequency-tunable electromagnetic vibrational energy harvester. The unique characteristic of a magnetorheological elastomer (MRE is utilized, that the shear modulus can be varied by changing the strength of an applied magnetic field. The electromagnetic energy harvester is fabricated, the external electric circuit is connected, and the performance is evaluated through a series of experiments. The resonant frequencies and the parasitic damping constant are measured experimentally for different tuning magnet gap distances, which validate the application of the MRE to the development of a frequency-tunable energy harvesting system. The harvested energy of the system is measured by the voltage across the load resistor. The maximum load power is attained by optimizing the external circuit connected to the coil system. The analysis results are presented for harvesting the maximum load power in terms of the coil parameters and external circuit resistance. The optimality of the load resistance is validated by comparing the analytical results with experimental results. The optimal load resistances under various resonance frequencies are also found for the design and composition of the optimal energy harvesting circuit of the energy harvester system.

  18. Well Test Analysis of Naturally Fractured Vuggy Reservoirs with an Analytical Triple Porosity – Double Permeability Model and a Global Optimization Method

    Directory of Open Access Journals (Sweden)

    Gómez Susana

    2014-07-01

    Full Text Available The aim of this work is to study the automatic characterization of Naturally Fractured Vuggy Reservoirs via well test analysis, using a triple porosity-dual permeability model. The inter-porosity flow parameters, the storativity ratios, as well as the permeability ratio, the wellbore storage effect, the skin and the total permeability will be identified as parameters of the model. In this work, we will perform the well test interpretation in Laplace space, using numerical algorithms to transfer the discrete real data given in fully dimensional time to Laplace space. The well test interpretation problem in Laplace space has been posed as a nonlinear least squares optimization problem with box constraints and a linear inequality constraint, which is usually solved using local Newton type methods with a trust region. However, local methods as the one used in our work called TRON or the well-known Levenberg-Marquardt method, are often not able to find an optimal solution with a good fit of the data. Also well test analysis with the triple porosity-double permeability model, like most inverse problems, can yield multiple solutions with good match to the data. To deal with these specific characteristics, we will use a global optimization algorithm called the Tunneling Method (TM. In the design of the algorithm, we take into account issues of the problem like the fact that the parameter estimation has to be done with high precision, the presence of noise in the measurements and the need to solve the problem computationally fast. We demonstrate that the use of the TM in this study, showed to be an efficient and robust alternative to solve the well test characterization, as several optimal solutions, with very good match to the data were obtained.

  19. Carbon nanostructures modified LiFePO4 cathodes for lithium ion battery applications: optimized porosity and composition

    Science.gov (United States)

    Mahmoud, Lama; Singh Lalia, Boor; Hashaikeh, Raed

    2016-12-01

    Lithium iron phosphate (LiFePO4) battery cathode was fabricated without using any metallic current collector and polymeric binder. Carbon nanostructures (CNS) were used as microbinders for LiFePO4 particles and at the same time as a 3D current collector. A facile and cost effective method of fabricating composite cathodes of CNS and LiFePO4 was developed. Thick electrodes with high loading of active material (20-25 mg cm-2) were obtained that are almost 2-3 folds higher than commercial electrodes. SEM images confirm that the 3D CNS conductive network encapsulated the LiFePO4 particles homogenously facilitating the charge transfer at the electrode-CNS interface. The composition, scan rate and porosity of the paper-like cathode were sequentially varied and their influence was systematically monitored by means of linear sweep cyclic voltammetry and AC electrochemical impedance spectroscopy. Addition of CNS improved the electrode’s bulk electronic conductivity, mechanical integrity, surface area and double layer capacitance, yet compromised the charge transfer resistance at the electrode-electrolyte interface. Based on a range of the tested binder-free electrodes, this study proposes that electrodes with 20 wt% CNS having 49 ± 2.5% porosity had realized best improvements of two folds and four folds in the electronic conductivity and diffusion coefficient, respectively.

  20. Parameter optimization analysis to minimize the polarization error in a localized thermal tunable fiber ring resonator gyro.

    Science.gov (United States)

    Bobbili, Prasada Rao; Nayak, Jagannath; Pinnoji, Prerana Dabral; Rama Koti Reddy, D V

    2016-03-10

    The accuracy of the resonant frequency servo loop is a major concern for the high-performance operation of a resonant fiber optic gyro. For instance, a bias error as large as tens or even hundreds of degrees/hour has been observed at the demodulated output of the resonant frequency servo loop. The traditional frequency servo mechanism is not an efficient tool to address this problem. In our previous work, we proposed a novel method to minimize the laser frequency noise to the level of the shot noise by refractive index modulation by a thermally tunable resonator. In this paper, we performed the parameter optimization for the resonator coil, multifunction integrated-optics chip, and couplers by the transition matrix using the Jones matrix methodology to minimize the polarization error. With the optimized parameter values, we achieved the bias value of the resonator fiber optic gyro to 1.924°/h.

  1. Tunable synthetic approaches for the optimization of nanostructured fuel cell catalysts: An overview

    Directory of Open Access Journals (Sweden)

    Bönnemann H.

    2004-01-01

    Full Text Available Highly active nanostructured pluri-metal catalysts for fuel cell applications can be obtained by designing synthetic protocol where the particle size, metal composition and morphology can be readily tailored. Tunable synthesis relates to combining the various synthetic methodologies available for generating nanostructured metal catalysts with desired catalytic properties. Herein, we discuss some of these synthetic methodologies which were developed to combine the advantages of each pathway in generating efficient fuel cell catalysts and to learn how the composition and morphology of the metals be fine tuned.

  2. Tunable conductivity in mesoporous germanium

    Science.gov (United States)

    Beattie, Meghan N.; Bioud, Youcef A.; Hobson, David G.; Boucherif, Abderraouf; Valdivia, Christopher E.; Drouin, Dominique; Arès, Richard; Hinzer, Karin

    2018-05-01

    Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10‑3) Ω‑1 cm‑1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10‑3 Ω‑1 cm‑1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.

  3. Ultra-thin and strong formvar-based membranes with controlled porosity for micro- and nano-scale systems

    Science.gov (United States)

    Auchter, Eric; Marquez, Justin; Stevens, Garrison; Silva, Rebecca; Mcculloch, Quinn; Guengerich, Quintessa; Blair, Andrew; Litchfield, Sebastian; Li, Nan; Sheehan, Chris; Chamberlin, Rebecca; Yarbro, Stephen L.; Dervishi, Enkeleda

    2018-05-01

    We present a methodology for developing ultra-thin and strong formvar-based membranes with controlled morphologies. Formvar is a thin hydrophilic and oleophilic polymer inert to most chemicals and resistant to radiation. The formvar-based membranes are viable materials as support structures in micro- and macro-scale systems depending on thinness and porosity control. Tunable sub-micron thick porous membranes with 20%–65% porosity were synthesized by controlling the ratios of formvar, glycerol, and chloroform. This synthesis process does not require complex separation or handling methods and allows for the production of strong, thin, and porous formvar-based membranes. An expansive array of these membrane characterizations including chemical compatibility, mechanical responses, wettability, as well as the mathematical simulations as a function of porosity has been presented. The wide range of chemical compatibility allows for membrane applications in various environments, where other polymers would not be suitable. Our formvar-based membranes were found to have an elastic modulus of 7.8 GPa, a surface free energy of 50 mN m‑1 and an average thickness of 125 nm. Stochastic model simulations indicate that formvar with the porosity of ∼50% is the optimal membrane formulation, allowing the most material transfer across the membrane while also withstanding the highest simulated pressure loadings before tearing. Development of novel, resilient and versatile membranes with controlled porosity offers a wide range of exciting applications in the fields of nanoscience, microfluidics, and MEMS.

  4. Tunable Synthesis of Yolk-Shell Porous Silicon@Carbon for Optimizing Si/C-Based Anode of Lithium-Ion Batteries.

    Science.gov (United States)

    Guo, Sichang; Hu, Xiang; Hou, Yang; Wen, Zhenhai

    2017-12-06

    Significant "breathing effect" calls for exploring efficient strategies to address the intrinsic issues of silicon anode of lithium-ion batteries (LIBs). We here report a controllable synthetic route to fabricate the silicon-carbon hybrids, in which porous silicon nanoparticles (p-SiNPs) are loaded in void carbon spheres by forming the yolk-shell p-SiNPs@hollow carbon (HC) nanohybrids tunable. A set of controlled experiments accompanying with systematic characterizations demonstrate that the void space and mass loading of Si can be adjusted in an effective way so that the nanostructure can be optimized with achieving improved electrochemical performance as anode of lithium-ion batteries (LIBs). The optimized p-SiNPs@HC nanohybrids show excellent performance as anode for Li-ion battery, delivering a capacity of more than 1400 mA h g -1 after 100 cycles at 0.2 A g -1 and 720 mA h g -1 at a high current density of 4 A g -1 . The present work may provide us with an attractive and promising strategy for advancing Si-based anode materials due to advantages of tunable structure of silicon-carbon nanohybrids for optimizing electrochemical performance.

  5. Plant fibre composites - porosity and volumetric interaction

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2007-01-01

    the combination of a high fibre volume fraction, a low porosity and a high composite density is optimal. Experimental data from the literature on volumetric composition and density of four types of plant fibre composites are used to validate the model. It is demonstrated that the model provides a concept......Plant fibre composites contain typically a relative large amount of porosity, which considerably influences properties and performance of the composites. The large porosity must be integrated in the conversion of weight fractions into volume fractions of the fibre and matrix parts. A model...... is presented to predict the porosity as a function of the fibre weight fractions, and to calculate the related fibre and matrix volume fractions, as well as the density of the composite. The model predicts two cases of composite volumetric interaction separated by a transition fibre weight fraction, at which...

  6. Casting Porosity-Free Grain Refined Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schwam, David [Case Western Reserve University

    2013-08-12

    The objective of this project was to identify the root causes for micro-porosity in magnesium alloy castings and recommend remedies that can be implemented in production. The findings confirm the key role played by utilizing optimal gating and risering practices in minimizing porosity in magnesium castings. 

  7. Ultrasonic Porosity Estimation of Low-Porosity Ceramic Samples

    International Nuclear Information System (INIS)

    Eskelinen, J.; Hoffren, H.; Kohout, T.; Pesonen, L. J.; Haeggstroem, E.

    2007-01-01

    We report on efforts to extend the applicability of an airborne ultrasonic pulse-reflection (UPR) method towards lower porosities. UPR is a method that has been used successfully to estimate porosity and tortuosity of high porosity foams. UPR measures acoustical reflectivity of a target surface at two or more incidence angles. We used ceramic samples to evaluate the feasibility of extending the UPR range into low porosities (<35%). The validity of UPR estimates depends on pore size distribution and probing frequency as predicted by the theoretical boundary conditions of the used equivalent fluid model under the high-frequency approximation

  8. Sparsity-optimized separation of body waves and ground-roll by constructing dictionaries using tunable Q-factor wavelet transforms with different Q-factors

    Science.gov (United States)

    Chen, Xin; Chen, Wenchao; Wang, Xiaokai; Wang, Wei

    2017-10-01

    Low-frequency oscillatory ground-roll is regarded as one of the main regular interference waves, which obscures primary reflections in land seismic data. Suppressing the ground-roll can reasonably improve the signal-to-noise ratio of seismic data. Conventional suppression methods, such as high-pass and various f-k filtering, usually cause waveform distortions and loss of body wave information because of their simple cut-off operation. In this study, a sparsity-optimized separation of body waves and ground-roll, which is based on morphological component analysis theory, is realized by constructing dictionaries using tunable Q-factor wavelet transforms with different Q-factors. Our separation model is grounded on the fact that the input seismic data are composed of low-oscillatory body waves and high-oscillatory ground-roll. Two different waveform dictionaries using a low Q-factor and a high Q-factor, respectively, are confirmed as able to sparsely represent each component based on their diverse morphologies. Thus, seismic data including body waves and ground-roll can be nonlinearly decomposed into low-oscillatory and high-oscillatory components. This is a new noise attenuation approach according to the oscillatory behaviour of the signal rather than the scale or frequency. We illustrate the method using both synthetic and field shot data. Compared with results from conventional high-pass and f-k filtering, the results of the proposed method prove this method to be effective and advantageous in preserving the waveform and bandwidth of reflections.

  9. Optimization and Development of Swellable Controlled Porosity ...

    African Journals Online (AJOL)

    Erah

    pore former in the tablet core and the membrane, respectively. SEM showed the formation of pores in ... tablet was facilitated by coating the core tablet with pore forming agent, thus eliminating the need for the more expensive laser drilling. ... water depends on the osmotic pressure generated by the core components and the.

  10. Porosity of Lead Agglomerate as Function of CaO and SiO2 Proportion

    OpenAIRE

    , A. Haxhiaj; , A. Terziqi; , E. Haxhiaj

    2016-01-01

    Agglomerate porosity is correlated with strength of its pieces and it is main parameter for reductive melting process in Water-jacket furnace. Treatment is oriented toward achieving porosity and optimal strength. The paper deals with the process in te-mperature about 9000C and with less than 10% composition CaO in rapport with lead. In order to achieve optimal results of agglomerate porosity and quality, it is necessary during the roasting process of lead concentration to correlate the conten...

  11. Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors

    Science.gov (United States)

    Haridasan, Vrinda

    Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband

  12. Pulsed neutron porosity logging system

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1978-01-01

    An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector, and a fast neutron detector is moved through a borehole. Repetitive bursts of neutrons irradiate the earth formations and, during the bursts, the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. The fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity

  13. Emulsion Inks for 3D Printing of High Porosity Materials.

    Science.gov (United States)

    Sears, Nicholas A; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth M

    2016-08-01

    Photocurable emulsion inks for use with solid freeform fabrication (SFF) to generate constructs with hierarchical porosity are presented. A high internal phase emulsion (HIPE) templating technique was utilized to prepare water-in-oil emulsions from a hydrophobic photopolymer, surfactant, and water. These HIPEs displayed strong shear thinning behavior that permitted layer-by-layer deposition into complex shapes and adequately high viscosity at low shear for shape retention after extrusion. Each layer was actively polymerized with an ultraviolet cure-on-dispense (CoD) technique and compositions with sufficient viscosity were able to produce tall, complex scaffolds with an internal lattice structure and microscale porosity. Evaluation of the rheological and cure properties indicated that the viscosity and cure rate both played an important role in print fidelity. These 3D printed polyHIPE constructs benefit from the tunable pore structure of emulsion templated material and the designed architecture of 3D printing. As such, these emulsion inks can be used to create ultra high porosity constructs with complex geometries and internal lattice structures not possible with traditional manufacturing techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Injectable PolyHIPEs as High Porosity Bone Grafts

    Science.gov (United States)

    Moglia, Robert S.; Holm, Jennifer L.; Sears, Nicholas A.; Wilson, Caitlin J.; Harrison, Dawn M.; Cosgriff-Hernandez, Elizabeth

    2011-01-01

    Polymerization of high internal phase emulsions (polyHIPEs) is a relatively new method for the production of high porosity scaffolds. The tunable architecture of these polyHIPE foams make them attractive candidates for tissue engineered bone grafts. Previously studied polyHIPE systems require either toxic diluents or high cure temperatures which prohibit their use as an injectable bone graft. In contrast, we have developed an injectable polyHIPE that cures at physiological temperatures to a rigid, high-porosity foam. First, a biodegradable macromer, propylene fumarate dimethacrylate (PFDMA), was synthesized that has appropriate viscosity and hydrophobicity for emulsification. The process of surfactant selection is detailed with particular focus on the key structural features of both polymer (log P values, hydrogen bond acceptor sites) and surfactant (HLB values, hydrogen bond donor sites) that enable stable HIPE formation. Incubation of HIPEs at 37°C was used to initiate radical crosslinking of the unsaturated double bond of the methacrylate groups to polymerize the continuous phase and lock in the emulsion geometry. The resulting polyHIPEs exhibited ~75% porosity, pore sizes ranging from 4 to 29 μm, and an average compressive modulus and strength of 33 and 5 MPa, respectively. These findings highlight the great potential of these scaffolds as injectable, tissue engineered bone grafts. PMID:21861465

  15. Injectable polyHIPEs as high-porosity bone grafts.

    Science.gov (United States)

    Moglia, Robert S; Holm, Jennifer L; Sears, Nicholas A; Wilson, Caitlin J; Harrison, Dawn M; Cosgriff-Hernandez, Elizabeth

    2011-10-10

    Polymerization of high internal phase emulsions (polyHIPEs) is a relatively new method for the production of high-porosity scaffolds. The tunable architecture of these polyHIPE foams makes them attractive candidates for tissue engineered bone grafts. Previously studied polyHIPE systems require either toxic diluents or high cure temperatures which prohibit their use as an injectable bone graft. In contrast, we have developed an injectable polyHIPE that cures at physiological temperatures to a rigid, high-porosity foam. First, a biodegradable macromer, propylene fumarate dimethacrylate (PFDMA), was synthesized that has appropriate viscosity and hydrophobicity for emulsification. The process of surfactant selection is detailed with particular focus on the key structural features of both polymer (logP values, hydrogen bond acceptor sites) and surfactant (HLB values, hydrogen bond donor sites) that enable stable HIPE formation. Incubation of HIPEs at 37 °C was used to initiate radical cross-linking of the unsaturated double bond of the methacrylate groups to polymerize the continuous phase and lock in the emulsion geometry. The resulting polyHIPEs exhibited ~75% porosity, pore sizes ranging from 4 to 29 μm, and an average compressive modulus and strength of 33 and 5 MPa, respectively. These findings highlight the great potential of these scaffolds as injectable, tissue engineered bone grafts.

  16. LTCC Phase Shifters Based on Tunable Ferroelectric Composite Thick Films

    Science.gov (United States)

    Nikfalazar, M.; Kohler, C.; Heunisch, A.; Wiens, A.; Zheng, Y.; Schulz, B.; Mikolajek, M.; Sohrabi, M.; Rabe, T.; Binder, J. R.; Jakoby, R.

    2015-11-01

    This paper presents, the investigation of tunable components based on LTCC technology, implementing ferroelectric tunable thick-film dielectric. The tunable loaded line phase shifters are fabricated with metal-insulator-metal (MIM) varactors to demonstrate the capabilities of this method for packaging of the tunable components. The MIM varactors consist of one tunable dielectric paste layer that is printed between two silver layers. The tunable ferroelectric paste is optimized for LTCC sintering temperature around 850°C. The phase shifters are fabricated in two different process. They were achieved a figure of merit of 24°/dB (phase shift 192°) at 3 GHz and 18°/dB (phase shift 98°) at 4.4 GHz by using seven unit cells that each unit cell consisting of two MIM varactors.

  17. Tunable and Memory Metamaterials

    Science.gov (United States)

    2015-12-02

    AFRL-AFOSR-VA-TR-2015-0402 TUNABLE AND MEMORY METAMATERIALS Dimitri Basov UNIVERSITY OF CALIFORNIA SAN DIEGO Final Report 12/02/2015 DISTRIBUTION A...DATES COVERED (From - To) 15-08-2010 to 14-08-2015 4. TITLE AND SUBTITLE TUNABLE AND MEMORY METAMATERIALS 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550...common limitations of infrared metamaterials in order to achieve low electromagnetic losses and broad tunability of the electromagnetic response. One

  18. Tunable laser applications

    CERN Document Server

    Duarte, FJ

    2008-01-01

    Introduction F. J. Duarte Spectroscopic Applications of Tunable Optical Parametric Oscillators B. J. Orr, R. T. White, and Y. He Solid-State Dye Lasers Costela, I. García-Moreno, and R. Sastre Tunable Lasers Based on Dye-Doped Polymer Gain Media Incorporating Homogeneous Distributions of Functional Nanoparticles F. J. Duarte and R. O. James Broadly Tunable External-Cavity Semiconductor Lasers F. J. Duarte Tunable Fiber Lasers T. M. Shay and F. J. Duarte Fiber Laser Overview and Medical Applications

  19. MEMS Tunable Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    Addressing low frequency bands is challenging on small platforms. Tunability is a promising solution to cover the bandwidth required for 4G mobile communication. The work presents two designs and shows that for comparable efficiency and bandwidth, the tunable antenna occupies half the volume requ...

  20. Brazilian urban porosity : Treat or threat?

    NARCIS (Netherlands)

    Moreno Pessoa, I.; Tasan-Kok, M.T.; Korthals Altes, W.K.

    2016-01-01

    Urban areas have spatial discontinuities, such as disconnected neighbourhoods, brownfield areas and leftover places. They can be captured by the metaphor of urban porosity. This paper aims to highlight the potential social consequences of urban porosity by creating a ‘porosity index’. The authors

  1. The steady aerodynamics of aerofoils with porosity gradients.

    Science.gov (United States)

    Hajian, Rozhin; Jaworski, Justin W

    2017-09-01

    This theoretical study determines the aerodynamic loads on an aerofoil with a prescribed porosity distribution in a steady incompressible flow. A Darcy porosity condition on the aerofoil surface furnishes a Fredholm integral equation for the pressure distribution, which is solved exactly and generally as a Riemann-Hilbert problem provided that the porosity distribution is Hölder-continuous. The Hölder condition includes as a subset any continuously differentiable porosity distributions that may be of practical interest. This formal restriction on the analysis is examined by a class of differentiable porosity distributions that approach a piecewise, discontinuous function in a certain parametric limit. The Hölder-continuous solution is verified in this limit against analytical results for partially porous aerofoils in the literature. Finally, a comparison made between the new theoretical predictions and experimental measurements of SD7003 aerofoils presented in the literature. Results from this analysis may be integrated into a theoretical framework to optimize turbulence noise suppression with minimal impact to aerodynamic performance.

  2. Tunable Handset Antenna

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Foroozanfard, Ehsan; Morris, Art

    2017-01-01

    With the future LTE auction for TV white spaces at 600 MHz, there is a strong need for efficient handset antennas operating at very low frequencies. This paper shows a tunable antenna covering the LTE bands from 600 MHz to 2.6 GHz. The antenna uses state-of-the-art MEMS tunable capacitors in order...... to reconfigure its operating frequency. In this work, the design mitigates the tuning loss with a tunable extended ground plane. The resulting dual-resonant antenna exhibits a peak total efficiency of -3.9 dB at 600 MHz....

  3. Reflectance analysis of porosity gradient in nanostructured silicon layers

    Science.gov (United States)

    Jurečka, Stanislav; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru

    2017-12-01

    In this work we study optical properties of nanostructured layers formed on silicon surface. Nanostructured layers on Si are formed in order to reach high suppression of the light reflectance. Low spectral reflectance is important for improvement of the conversion efficiency of solar cells and for other optoelectronic applications. Effective method of forming nanostructured layers with ultralow reflectance in a broad interval of wavelengths is in our approach based on metal assisted etching of Si. Si surface immersed in HF and H2O2 solution is etched in contact with the Pt mesh roller and the structure of the mesh is transferred on the etched surface. During this etching procedure the layer density evolves gradually and the spectral reflectance decreases exponentially with the depth in porous layer. We analyzed properties of the layer porosity by incorporating the porosity gradient into construction of the layer spectral reflectance theoretical model. Analyzed layer is splitted into 20 sublayers in our approach. Complex dielectric function in each sublayer is computed by using Bruggeman effective media theory and the theoretical spectral reflectance of modelled multilayer system is computed by using Abeles matrix formalism. Porosity gradient is extracted from the theoretical reflectance model optimized in comparison to the experimental values. Resulting values of the structure porosity development provide important information for optimization of the technological treatment operations.

  4. Tunable Optical Polymer Systems

    National Research Council Canada - National Science Library

    Jenekhe, S. A; Bard, Allen J; Chen, S. H; Hammond, P. T; Rothberg, L. J

    2004-01-01

    This multidisciplinary university research initiative (MURI) program investigated tunable optical polymer systems suitable for large-area color-switchable coatings and devices, displays, sensors, and other electronic applications...

  5. Tunable micro-optics

    CERN Document Server

    Duppé, Claudia

    2015-01-01

    Presenting state-of-the-art research into the dynamic field of tunable micro-optics, this is the first book to provide a comprehensive survey covering a varied range of topics including novel materials, actuation concepts and new imaging systems in optics. Internationally renowned researchers present a diverse range of chapters on cutting-edge materials, devices and subsystems, including soft matter, artificial muscles, tunable lenses and apertures, photonic crystals, and complete tunable imagers. Special contributions also provide in-depth treatment of micro-optical characterisation, scanners, and the use of natural eye models as inspiration for new concepts in advanced optics. With applications extending from medical diagnosis to fibre telecommunications, Tunable Micro-optics equips readers with a solid understanding of the broader technical context through its interdisciplinary approach to the realisation of new types of optical systems. This is an essential resource for engineers in industry and academia,...

  6. Porosity determination of thermal barrier coatings

    Science.gov (United States)

    Van Roode, Mark; Beardsley, Brad

    1988-01-01

    Coating porosity is believed to be a critical factor for the thermal conductivity of thermal barrier coatings (TBCs). A number of different techniques have been used to determine the porosities of thermal barrier coatings for diesel applications as part of a NASA/DOE sponsored study. A comparison is made between methods based on water immersion, optical microscopy, eddy current thickness measurements, and Archimedes principle for TBC porosity determination.

  7. High density, low open porosity magnesia ceramics

    International Nuclear Information System (INIS)

    Alecu, I.D.; Stead, R.J.

    1998-01-01

    Many modern high-tech applications require magnesia ceramic components with high bulk densities and very low apparent porosities. Quite commonly, bulk densities above 3500 kg.m -3 and open porosities close to zero are specified for such applications of magnesia ceramics. The paper presents the recent achievements of Rojan Advanced Ceramics in the field of high density, very low open porosity magnesia ceramic materials and special products, including labware and planar components. Copyright (1998) Australasian Ceramic Society

  8. On the field determination of effective porosity

    International Nuclear Information System (INIS)

    Javandel, I.

    1989-03-01

    Effective porosity of geologic materials is a very important parameter for estimating groundwater travel time and modeling contaminant transport in hydrologic systems. Determination of a representative effective porosity for nonideal systems is a problem still challenging hydrogeologists. In this paper, some of the conventional field geophysical and hydrological methods for estimating effective porosity of geologic materials are reviewed. The limitations and uncertainties associated with each method are discussed. 30 refs., 8 figs

  9. Ultrasonic Characterization of Water Saturated Double Porosity Media

    Science.gov (United States)

    Bai, Ruonan; Tinel, Alain; Alem, Abdellah; Franklin, Hervé; Wang, Huaqing

    Wave propagation through a multilayered structure consisting of a water saturated double porosity medium in an aluminum rectangular box immersed in water is studied. By assuming a plane incident wave from water onto the structure, the reflection and transmission coefficients are derived by application of the boundary conditions at each interface. Numerical computations are done for two particular double porosity media, ROBU® and Tobermorite 11 Å, that are assumed to obey Berryman's extension of Biot's theory [Berryman 1995, 2000]. The influence of the thickness of double porosity medium is investigated. To compare experiments to computations, two comparison coefficients Cnum and Cexp are introduced. The theoretical one Cnum is defined as the ratio of the transmission coefficient of the structure to the transmission coefficient of the box filled exclusively with water. The experimental comparison coefficient Cexp is defined as the ratio of the Fourier transforms of the transmitted signals by the box filled with the double porous medium to that of the transmitted signals by the box filled with water. A method of minimization based on a gradient descent algorithm is used to optimize some of the parameters of the double porosity media such as the bulk moduli.

  10. Influence of the porosity on the

    NARCIS (Netherlands)

    Jong, P. de; Dijk, W. van; Rooij, M. de

    2011-01-01

    The composition of 23 concrete mixtures was varied in five separate series to evaluate the influence of porosity on the 222Rn exhalation rate. In each series, a range in porosities is obtained by varying (1) the amount of cement, (2) type of cement (Portland or blast furnace slag cement),

  11. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  12. A functionally gradient variational porosity architecture for hollowed scaffolds fabrication.

    Science.gov (United States)

    Khoda, A K M; Ozbolat, Ibrahim T; Koc, Bahattin

    2011-09-01

    This paper presents a novel continuous tool-path planning methodology for hollowed scaffold fabrication in tissue engineering. A new functionally gradient porous architecture is proposed with a continuous material deposition planning scheme. A controllable variational pore size and hence the porosity have been achieved with a combination of two geometrically oriented consecutive layers. The desired porosity has been achieved with consecutive layers by geometrically partitioning each layer into sub-regions based on the area and the tissue scaffold design constraints. A continuous, interconnected and optimized tool-path for layers has been generated for a three-dimensional biomaterial deposition/printing process. A zigzag pattern tool-path has been proposed for an accumulated sub-region layer, and a concentric spiral-like optimal tool-path pattern has been generated for the successive layer to ensure continuity along the structure. Three-dimensional layers, formed by the proposed tool-path plan, vary the pore size and the porosity based on the biological and mechanical requirements. Several examples demonstrate the proposed methodology along with illustrative results. Also a comparative study between the proposed design and conventional Cartesian coordinate scaffolds has been performed. The results demonstrate a significant reduction in design error with the proposed method. Moreover, sample examples have been fabricated using a micro-nozzle biomaterial deposition system, and characterized for validation.

  13. Porosity Prediction of Plain Weft Knitted Fabrics

    Directory of Open Access Journals (Sweden)

    Muhammad Owais Raza Siddiqui

    2014-12-01

    Full Text Available Wearing comfort of clothing is dependent on air permeability, moisture absorbency and wicking properties of fabric, which are related to the porosity of fabric. In this work, a plug-in is developed using Python script and incorporated in Abaqus/CAE for the prediction of porosity of plain weft knitted fabrics. The Plug-in is able to automatically generate 3D solid and multifilament weft knitted fabric models and accurately determine the porosity of fabrics in two steps. In this work, plain weft knitted fabrics made of monofilament, multifilament and spun yarn made of staple fibers were used to evaluate the effectiveness of the developed plug-in. In the case of staple fiber yarn, intra yarn porosity was considered in the calculation of porosity. The first step is to develop a 3D geometrical model of plain weft knitted fabric and the second step is to calculate the porosity of the fabric by using the geometrical parameter of 3D weft knitted fabric model generated in step one. The predicted porosity of plain weft knitted fabric is extracted in the second step and is displayed in the message area. The predicted results obtained from the plug-in have been compared with the experimental results obtained from previously developed models; they agreed well.

  14. Two detector pulse neutron logging porosity technique

    International Nuclear Information System (INIS)

    Schwartz, R.J.

    1971-01-01

    An illustrative embodiment of the invention discloses a technique for reducing the influence of borehole characteristics on earth formation porosity measurements. Measurements of this sort are accomplished with a borehole logging tool and comprises two neutron detectors spaced at different distances from a pulsed neutron generator. The thermal neutron decay time of the short-spaced detector identifies that portion of the time-dependent population that is most indicative of the formation porosity. Both detectors then register the portion of the neutron distribution so identified to produce two signals from which a ratio is computed that is related to the porosity of the formation. (auth)

  15. High density, low open porosity magnesia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Alecu, I.D.; Stead, R.J. [Rojan Advanced Ceramics Pty Ltd, Osborne Park, WA (Australia)

    1998-12-31

    Many modern high-tech applications require magnesia ceramic components with high bulk densities and very low apparent porosities. Quite commonly, bulk densities above 3500 kg.m{sup -3} and open porosities close to zero are specified for such applications of magnesia ceramics. The paper presents the recent achievements of Rojan Advanced Ceramics in the field of high density, very low open porosity magnesia ceramic materials and special products, including labware and planar components. Copyright (1998) Australasian Ceramic Society 4 refs., 2 tabs., 1 fig.

  16. Tunability enhanced electromagnetic wiggler

    Science.gov (United States)

    Schlueter, R.D.; Deis, G.A.

    1992-03-24

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.

  17. Nanocomposite scaffolds with tunable mechanical and degradation capabilities: co-delivery of bioactive agents for bone tissue engineering.

    Science.gov (United States)

    Cattalini, Juan P; Roether, Judith; Hoppe, Alexander; Pishbin, Fatemeh; Haro Durand, Luis; Gorustovich, Alejandro; Boccaccini, Aldo R; Lucangioli, Silvia; Mouriño, Viviana

    2016-10-21

    Novel multifunctional nanocomposite scaffolds made of nanobioactive glass and alginate crosslinked with therapeutic ions such as calcium and copper were developed for delivering therapeutic agents, in a highly controlled and sustainable manner, for bone tissue engineering. Alendronate, a well-known antiresorptive agent, was formulated into microspheres under optimized conditions and effectively loaded within the novel multifunctional scaffolds with a high encapsulation percentage. The size of the cation used for the alginate crosslinking impacted directly on porosity and viscoelastic properties, and thus, on the degradation rate and the release profile of copper, calcium and alendronate. According to this, even though highly porous structures were created with suitable pore sizes for cell ingrowth and vascularization in both cases, copper-crosslinked scaffolds showed higher values of porosity, elastic modulus, degradation rate and the amount of copper and alendronate released, when compared with calcium-crosslinked scaffolds. In addition, in all cases, the scaffolds showed bioactivity and mechanical properties close to the endogenous trabecular bone tissue in terms of viscoelasticity. Furthermore, the scaffolds showed osteogenic and angiogenic properties on bone and endothelial cells, respectively, and the extracts of the biomaterials used promoted the formation of blood vessels in an ex vivo model. These new bioactive nanocomposite scaffolds represent an exciting new class of therapeutic cell delivery carrier with tunable mechanical and degradation properties; potentially useful in the controlled and sustainable delivery of therapeutic agents with active roles in bone formation and angiogenesis, as well as in the support of cell proliferation and osteogenesis for bone tissue engineering.

  18. Evolution of porosity in geotechnical composites.

    Science.gov (United States)

    Tyrologou, Pavlos; Dudeney, Alvan William L; Grattoni, Carlos A

    2005-07-01

    Nuclear magnetic resonance (NMR) (H1) transverse relaxation measurements were carried out on 37x70-mm cylindrical mineral/organic composites to determine and monitor the porosity evolution. Porosity is related, in principle, to the stability of such materials in geotechnical applications, for example, engineering foundations. The specimens represented novel formulations of mixed "wastes" containing coarse screened mineral, digested sewage sludge, quicklime, and pulverized fuel ash mixed and compacted together to form mechanically competent material. The measurements on a selected formulation indicated initially low porosity (<12%) that becomes lower over 6 months ( approximately 8%) due to pozzolanic reactions occurring. A relaxation time cutoff of 1.5 ms between "bound" and 'mobile' pore water much lower than sandstones (33 ms) was observed. The results confirmed that the NMR method allows a more reliable assessment of porosity and pore-size evolution.

  19. The tunable pReX expression vector enables optimizing the T7-based production of membrane and secretory proteins in E. coli.

    Science.gov (United States)

    Kuipers, Grietje; Karyolaimos, Alexandros; Zhang, Zhe; Ismail, Nurzian; Trinco, Gianluca; Vikström, David; Slotboom, Dirk Jan; de Gier, Jan-Willem

    2017-12-16

    To optimize the production of membrane and secretory proteins in Escherichia coli, it is critical to harmonize the expression rates of the genes encoding these proteins with the capacity of their biogenesis machineries. Therefore, we engineered the Lemo21(DE3) strain, which is derived from the T7 RNA polymerase-based BL21(DE3) protein production strain. In Lemo21(DE3), the T7 RNA polymerase activity can be modulated by the controlled co-production of its natural inhibitor T7 lysozyme. This setup enables to precisely tune target gene expression rates in Lemo21(DE3). The t7lys gene is expressed from the pLemo plasmid using the titratable rhamnose promoter. A disadvantage of the Lemo21(DE3) setup is that the system is based on two plasmids, a T7 expression vector and pLemo. The aim of this study was to simplify the Lemo21(DE3) setup by incorporating the key elements of pLemo in a standard T7-based expression vector. By incorporating the gene encoding the T7 lysozyme under control of the rhamnose promoter in a standard T7-based expression vector, pReX was created (ReX stands for Regulated gene eXpression). For two model membrane proteins and a model secretory protein we show that the optimized production yields obtained with the pReX expression vector in BL21(DE3) are similar to the ones obtained with Lemo21(DE3) using a standard T7 expression vector. For another secretory protein, a c-type cytochrome, we show that pReX, in contrast to Lemo21(DE3), enables the use of a helper plasmid that is required for the maturation and hence the production of this heme c protein. Here, we created pReX, a T7-based expression vector that contains the gene encoding the T7 lysozyme under control of the rhamnose promoter. pReX enables regulated T7-based target gene expression using only one plasmid. We show that with pReX the production of membrane and secretory proteins can be readily optimized. Importantly, pReX facilitates the use of helper plasmids. Furthermore, the use of pReX is

  20. Fabrication of dual porosity electrode structure

    Science.gov (United States)

    Smith, J.L.; Kucera, E.H.

    1991-02-12

    A substantially entirely fibrous ceramic is described which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers. 3 figures.

  1. Ultrasonic maps of porosity in aluminum castings

    International Nuclear Information System (INIS)

    Ghaffari, Bita; Potter, Timothy J.; Mozurkewich, George

    2002-01-01

    The use of cast aluminum in the automotive industry has grown dramatically in recent years, leading to increased need for quantitative characterization of microporosity. As previously reported in the literature, the attenuation of ultrasound can be used to measure the porosity volume fraction and the mean pore size. An immersion ultrasound system has been built utilizing this technique to scan castings with high spatial resolution. Maps of attenuation are shown to locate areas of varying porosity readily and reliably

  2. Optimization of the Close-to-Carrier Phase Noise in a CMOS-MEMS Oscillator Using a Phase Tunable Sustaining-Amplifier.

    Science.gov (United States)

    Sobreviela, Guillermo; Riverola, Martin; Torres, Francesc; Uranga, Arantxa; Barniol, Nuria

    2017-05-01

    In this paper, the phase noise of a 24-MHz complimentary metal-oxide-semiconductor microelectromechanical systems (CMOS-MEMS) oscillator with zero-level vacuum package is studied. We characterize and analyze the nonlinear regime of each one of the modules that compose the oscillator (CMOS sustaining-amplifier and MEMS resonator). As we show, the presented resonator exhibits a high nonlinear behavior. Such a fact is exploited as a mechanism to stabilize the oscillation amplitude, allowing us to maintain the sustaining-amplifier working in the linear regime. Consequently, the nonlinear resonator becomes the main close-to-carrier phase noise source. The sustaining amplifier, which functions as a phase shifter, was developed such that MEMS operation point optimization could be achieved without an increase in circuitry modules. Therefore, the system saves on area and power, and is able to improve the phase noise 26 dBc/Hz (at 1-kHz carrier frequency offset).

  3. Highly tunable large core single-mode liquid crystal photonic bandgap fiber

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper; Bjarklev, Anders Overgaard

    2006-01-01

    We demonstrate a highly tunable photonic bandgap fiber, which has a large-core diameter of 25 mu m and an effective mode area of 440 mu m(2). The tunability is achieved by infiltrating the air holes of a photonic crystal fiber with an optimized liquid-crystal mixture having a large temperature...

  4. Tunable surface plasmon devices

    Science.gov (United States)

    Shaner, Eric A [Rio Rancho, NM; Wasserman, Daniel [Lowell, MA

    2011-08-30

    A tunable extraordinary optical transmission (EOT) device wherein the tunability derives from controlled variation of the dielectric constant of a semiconducting material (semiconductor) in evanescent-field contact with a metallic array of sub-wavelength apertures. The surface plasmon resonance wavelength can be changed by changing the dielectric constant of the dielectric material. In embodiments of this invention, the dielectric material is a semiconducting material. The dielectric constant of the semiconducting material in the metal/semiconductor interfacial region is controllably adjusted by adjusting one or more of the semiconductor plasma frequency, the concentration and effective mass of free carriers, and the background high-frequency dielectric constant in the interfacial region. Thermal heating and/or voltage-gated carrier-concentration changes may be used to variably adjust the value of the semiconductor dielectric constant.

  5. Tunable laser optics

    CERN Document Server

    Duarte, FJ

    2015-01-01

    This Second Edition of a bestselling book describes the optics and optical principles needed to build lasers. It also highlights the optics instrumentation necessary to characterize laser emissions and focuses on laser-based optical instrumentation. The book emphasizes practical and utilitarian aspects of relevant optics including the essential theory. This revised, expanded, and improved edition contains new material on tunable lasers and discusses relevant topics in quantum optics.

  6. Tunable high pressure lasers

    Science.gov (United States)

    Hess, R. V.

    1976-01-01

    Atmospheric transmission of high energy CO2 lasers is considerably improved by high pressure operation which, due to pressure broadening, permits tuning the laser lines off atmospheric absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers and for vertical transmission through the entire atmosphere. Applications of tunable high pressure CO2 lasers to energy transmission and to remote sensing are discussed along with initial efforts in tuning high pressure CO2 lasers.

  7. Quantifying porosity, compressibility and permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Frykman, Peter

    The Fjerritslev Formation in the Norwegian-Danish Basin forms the main seal to Upper Triassic-Lower Jurassic sandstone reservoirs. In order to estimate rock properties Jurassic shale samples from deep onshore wells in Danish basin were studied. Mineralogical analysis based on X-ray diffractometry...... (NMR) show that, the MICP porosity is 9-10% points lower than HPMI and NMR porosity. Compressibility result shows that deep shale is stiffer in situ than normally assumed in geotechnical modelling and that static compressibility corresponds with dynamic one only at the begining of unloading stress...

  8. Depolarized haze of nano-porous AAO film via porosity and aspect control

    Science.gov (United States)

    Tseng, Chun-Wei; Lin, Yung-Hsiang; Cheng, Chih-Hsien; Lin, Gong-Ru

    2018-01-01

    Multiple scattering induced haze and depolarization effects of nano-porous AAO films controlled by detuning the porosity and aspect ratio of the nano holes are investigated. The nano-porous AAO film with its porosity increasing from 12.6% to 19.3% enhances the scattering of the incident laser beam with its maximal scattering angle enlarged from 5° to 8° under TM-mode incidence and from 6° to 10° under TE-mode incidence. Because of multiple scattering within the porous holes of the AAO, the depolarization on the reflected beam by transferring its electric field from horizontal to the vertical such that the polarization ratio is degraded with a randomized haze. The porosity of AAO surface broadens from 12.6% to 19.3% when increasing the bias voltage from 40 to 60 V during the second-step of the electro-chemical anodization process, which essentially adjusts the polarization ratio under TM-mode and TE-mode incidences raise from 0.31 to 0.35 and from 0.32 to 0.48, respectively. The depolarized haze of the nano-porous AAO film is correlated with its porosity and aspect ratio controlled by the pore size and etched depth of the AAO. Under TM-mode incidence, the simulated polarization ratio increases from 0.35 to 0.38, which correlates well with experimental results. In contrast, the experiment result slightly deviates from the theoretical prediction as the TE-mode field interacts more surface area than the TM-mode field does. Such a nano-porous AAO exhibits tunable depolarized haze via the control porosity and aspect ratio, which is particularly suitable to serve as the catalytic buffer for synthesizing the hydrophobic and hazed solar energy converters.

  9. Controlled porosity solubility modulated osmotic pump tablets of gliclazide.

    Science.gov (United States)

    Banerjee, Arti; Verma, P R P; Gore, Subhash

    2015-06-01

    A system that can deliver drug at a controlled rate is very important for the treatment of various chronic diseases such as diabetes, asthma, and heart disease. Poorly water-soluble drug with pH-dependent solubility such as gliclazide (GLZ) offers challenges in the controlled-release formulation because of low dissolution rate and poor bioavailability. Solid dispersion (SD) of GLZ consisted of hydroxypropyl cellulose (HPC-SSL) as a polymeric solubilizer was manufactured by hot melt extrusion (HME) technology. Then, controlled porosity osmotic pump (CPOP) tablet of gliclazide was designed to deliver drug in a controlled manner up to 16 h. The developed formulation was optimized for type and level of pore former and coating weight gain. The optimized formulation was found to exhibit zero order kinetics independent of pH and agitation speed but depends on osmotic pressure of dissolution media indicated that mechanism of drug release was osmotic pressure. The in vivo performance prediction of developed formulation using convolution approach revealed that the developed formulation was superior to the existing marketed extended-release formulation in terms of attaining steady state plasma levels and indicated adequate exposure in translating hypoglycemic response. The prototype solubilization method combined with controlled porosity osmotic pump based technique could provide a unique way to increase dissolution rate and bioavailability of many poorly water-soluble, narrow therapeutic index drugs used in diabetes, cardiovascular diseases, etc.

  10. Fabrication of Hybrid Organic-Inorganic Materials with Tunable Porosity for Catalytic Application

    Czech Academy of Sciences Publication Activity Database

    Opanasenko, Maksym; Montanari, E.; Shamzhy, Mariya

    2015-01-01

    Roč. 80, č. 3 (2015), s. 599-605 ISSN 2192-6506 R&D Projects: GA ČR GP13-17593P Institutional support: RVO:61388955 Keywords : heterogeneous catalysis * mesoporous materials * organic-inorganic hybrid Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.836, year: 2015

  11. Tunable X-ray source

    Science.gov (United States)

    Boyce, James R [Williamsburg, VA

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  12. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...

  13. Tunable resistance coatings

    Science.gov (United States)

    Elam, Jeffrey W.; Mane, Anil U.

    2015-08-11

    A method and article of manufacture of intermixed tunable resistance composite materials containing at least one of W:Al.sub.2O.sub.3, Mo:Al.sub.2O.sub.3 or M:Al.sub.2O.sub.3 where M is a conducting compound containing either W or Mo. A conducting material and an insulating material are deposited by such methods as ALD or CVD to construct composites with intermixed materials which do not have structure or properties like their bulk counterparts.

  14. MEMS Tunable nanostructured photodetector

    DEFF Research Database (Denmark)

    Learkthanakhachon, Supannee

    This thesis was prepared at the department of Photonics Engineering, the Technical University of Denmark in fulfilment of the requirements for acquiring a Philosophiae doctor (Ph.D.) in Photonics Engineering. The thesis deals with the design and fabrication of tunable resonant......-cavity-enhanced photodetector using dielectric subwavelength gratings as reflectors operating at 1550 nm optical communication wavelength. The main work in this thesis divided equally into device design and process development. The properties of dielectric subwavelength grating are described. The main result of the thesis...

  15. Tunable multiwalled nanotube resonator

    Science.gov (United States)

    Jensen, Kenneth J; Girit, Caglar O; Mickelson, William E; Zettl, Alexander K; Grossman, Jeffrey C

    2013-11-05

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  16. Tunable Nitride Josephson Junctions.

    Energy Technology Data Exchange (ETDEWEB)

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lewis, Rupert M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfley, Steven L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolak, Matthaeus [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We have developed an ambient temperature, SiO2/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the TaxN barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlOx barriers for low - power, high - performance computing.

  17. Integrated tunable CMOS laser.

    Science.gov (United States)

    Creazzo, Timothy; Marchena, Elton; Krasulick, Stephen B; Yu, Paul K L; Van Orden, Derek; Spann, John Y; Blivin, Christopher C; He, Lina; Cai, Hong; Dallesasse, John M; Stone, Robert J; Mizrahi, Amit

    2013-11-18

    An integrated tunable CMOS laser for silicon photonics, operating at the C-band, and fabricated in a commercial CMOS foundry is presented. The III-V gain medium section is embedded in the silicon chip, and is hermetically sealed. The gain section is metal bonded to the silicon substrate creating low thermal resistance into the substrate and avoiding lattice mismatch problems. Optical characterization shows high performance in terms of side mode suppression ratio, relative intensity noise, and linewidth that is narrow enough for coherent communications.

  18. Tunable Laser for High-Performance, Low-Cost Distributed Sensing Platform, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort will establish technical feasibility of an approach to optimizing a low-cost, fast-sweeping tunable laser for distributed sensing. Multiple...

  19. Magnetic nanoparticles for tunable microwave metamaterials

    KAUST Repository

    Noginova, Natalia

    2012-09-24

    Commonly, metamaterials are electrically engineered systems with optimized spatial arrangement of subwavelength sized metal and dielectric components. We explore alternative methods based on use of magnetic inclusions, such as magnetic nanoparticles, which can allow permeability of a composite to be tuned from negative to positive at the range of magnetic resonance. To better understand effects of particle size and magnetization dynamics, we performed electron magnetic resonance study on several varieties of magnetic nanoparticles and determined potential of nanoparticle use as building blocks for tunable microwave metamaterials. © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  20. Porosity estimation by semi-supervised learning with sparsely available labeled samples

    Science.gov (United States)

    Lima, Luiz Alberto; Görnitz, Nico; Varella, Luiz Eduardo; Vellasco, Marley; Müller, Klaus-Robert; Nakajima, Shinichi

    2017-09-01

    This paper addresses the porosity estimation problem from seismic impedance volumes and porosity samples located in a small group of exploratory wells. Regression methods, trained on the impedance as inputs and the porosity as output labels, generally suffer from extremely expensive (and hence sparsely available) porosity samples. To optimally make use of the valuable porosity data, a semi-supervised machine learning method was proposed, Transductive Conditional Random Field Regression (TCRFR), showing good performance (Görnitz et al., 2017). TCRFR, however, still requires more labeled data than those usually available, which creates a gap when applying the method to the porosity estimation problem in realistic situations. In this paper, we aim to fill this gap by introducing two graph-based preprocessing techniques, which adapt the original TCRFR for extremely weakly supervised scenarios. Our new method outperforms the previous automatic estimation methods on synthetic data and provides a comparable result to the manual labored, time-consuming geostatistics approach on real data, proving its potential as a practical industrial tool.

  1. Tunable Topological Phononic Crystals

    KAUST Repository

    Chen, Zeguo

    2016-05-27

    Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.

  2. Electrothermally Tunable Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2017-03-18

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated microelectromechanical arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. An electrothermal voltage is applied between the anchors of the beam generating a current that controls the axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to an increase in its curvature, thereby increasing its resonance frequencies. We show here that the first resonance frequency can increase monotonically up to twice its initial value. We show also that after some electrothermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators. Analytical results based on the nonlinear Euler Bernoulli beam theory are generated and compared with the experimental data and the results of a multi-physics finite-element model. A good agreement is found among all the results. [2016-0291

  3. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    International Nuclear Information System (INIS)

    Mora, M.B. de la; Bornacelli, J.; Nava, R.; Zanella, R.; Reyes-Esqueda, J.A.

    2014-01-01

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material

  4. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    Energy Technology Data Exchange (ETDEWEB)

    Mora, M.B. de la; Bornacelli, J. [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Nava, R. [Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos 62580 (Mexico); Zanella, R. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Reyes-Esqueda, J.A., E-mail: betarina@gmail.com [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico)

    2014-02-15

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material.

  5. A tunable electromechanical Helmholtz resonator

    Science.gov (United States)

    Liu, Fei

    Acoustic liners are used in turbofan engine nacelles for the suppression of engine noise. For a given engine, there are different optimum impedance distributions associated with take-off, cut-back, and approach flight conditions. The impedance of conventional acoustic liners is fixed for a given geometry, and conventional active liner approaches are impractical. This project addresses the need for a tunable impedance through the development of an electromechanical Helmholtz resonator (EMHR). The device consists of a Helmholtz resonator with the standard rigid backplate replaced by a compliant piezoelectric composite. Analytical models (i.e., a lumped element model (LEM) and a transfer matrix (TM) representation of the EMHR) are developed to predict the acoustic behavior of the EMHR. The EMHR is experimentally investigated using the standard two-microphone method (TMM). The measurement results validate both the LEM and the TM of the EMHR. Good agreement between predicted and measured impedance is obtained. Short- and open-circuit loads define the limits of the tuning range using resistive and capacitive loads. There is approximately a 9% tuning limit under these conditions for the non-optimized resonator configuration studied. Inductive shunt loads result in a 3 degree-of-freedom (DOF) system and an enhanced tuning range of over 47% that is not restricted by the short- and open-circuit limits. Damping coefficient measurements for a piezoelectric backplate in a vacuum chamber are performed and indicate that the damping is dominated by structural damping losses. A Pareto optimization design based on models of the EMHR is performed with non-inductive loads. The EMHR with non-inductive loads has 2DOF and two resonant frequencies. The tuning ranges of the two resonant frequencies of the EMHR with non-inductive loads cannot be optimized simultaneously, so a trade-off (Pareto solution) must be reached. The Pareto solution shows how design trade-offs can be used to satisfy

  6. Investigation on the Accuracy of CT Porosity Analysis of Additive Manufactured Metallic Parts

    NARCIS (Netherlands)

    Zanini, Filippo; Hermanek, Petr; Rathore, Jitendra; Wits, Wessel W; Carmignato, Simone

    2015-01-01

    Additive manufacturing (AM) is emerging as an important manufacturing sector, due to its almost unlimited design freedom, the capability to produce personalized parts and the efficient material use. A reliable knowledge about material porosity of manufactured parts is crucial for optimizing AM

  7. Self-supported ceramic substrates with directional porosity by mold freeze casting

    DEFF Research Database (Denmark)

    Gurauskis, Jonas; Graves, Christopher R.; Moreno, R.

    2016-01-01

    in a mold and applying directional freeze casting. Use of optimized suspension, cryoprotector additive and mold proved to deliver defect free ceramic films with high dimensional control. Microstructure analysis demonstrated the formation of desirable aligned porosity at macro-structural scale and resulted...

  8. Mid-infrared tunable metamaterials

    Science.gov (United States)

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A; Passmore, Brandon Scott; Jun, Young Chul

    2015-04-28

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  9. Mid-infrared tunable metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A.; Passmore, Brandon Scott

    2017-07-11

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  10. Tunable grating with active feedback

    Science.gov (United States)

    Rosset, Samuel; O'Brien, Benjamin M.; Gisby, Todd; Xu, Daniel; Shea, Herbert R.; Anderson, Iain A.

    2013-04-01

    We report on the use of capacitive self-sensing to operate a DEA-based tunable grating in closed-loop mode. Due to their large strain capabilities, DEAs are key candidates for tunable optics applications. However, the viscoelasticity of elastomers is detrimental for applications that require long-term stability, such as tunable gratings and lenses. We show that capacitive sensing of the electrode strain can be used to suppress the strain drift and increase the response speed of silicone-based actuators. On the other hand, VHB actuators exhibit a time-dependent permittivity, which causes a drift between the device capacitance and its strain.

  11. Electrothermally Tunable Bridge Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2016-12-05

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator compressed by a force due to electrothermal actuation. We demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally, by passing a DC current through it. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and to simulation results of a multi-physics finite-element model. A good agreement is found among all the results.

  12. Soil plasticity with a different porosity

    Directory of Open Access Journals (Sweden)

    Klovanych Sergii

    2017-01-01

    Full Text Available The model of soils with different porosity in the framework of the associated theory of plasticity is presented The single analytical function describes the loading surface in the stress space. The deformational hardening/softening and the phenomenon of dilatancy during plastic flow are incorporated in the model. The triaxial compression tests are simulated and compared with the experimental results for different values of the void ratio and initial hydrostatic stresses.

  13. Porous, microspheroidal, nuclear fuels having internal porosity

    International Nuclear Information System (INIS)

    Googin, J.M.; Schmitt, C.R.

    1975-01-01

    A process is described for the preparation of microspheroidal particles comprising absorbing uranium cations from a uranyl aqueous solution onto small spherical ion exchange resin particles, drying the uranium-loaded resin, and then carbonizing the dried resin to form a porous carbon spheroid having closed porosity with an oxide or carbide or uranium uniformly dispersed within its volume. The same general technique can be used to form microspheres of the oxides or carbides of other actinide metals. (U.S.)

  14. Reducing the open porosity of pyroboroncarbon articles

    Science.gov (United States)

    Martyushov, G. G.; Zakharevich, A. M.; Pichkhidze, S. Ya.; Koshuro, V. A.

    2016-02-01

    It is established that a decrease in the open porosity of pyroboroncarbon, a pyrolytic glassy composite material of interest for manufacturing prosthetic heart valves (PHVs), can be achieved via impregnation of articles with an alcohol solution of 3-aminopropyltriethoxysilane and subsequent thermal treatment. The maximum roughness height and linear size of open pores on the surface of PHV parts made of pyroboroncarbon can additionally be reduced by final mechanical processing of a silicon oxide film formed on the surface.

  15. Frost heave modelling using porosity rate function

    Science.gov (United States)

    Michalowski, Radoslaw L.; Zhu, Ming

    2006-07-01

    Frost-susceptible soils are characterized by their sensitivity to freezing that is manifested in heaving of the ground surface. While significant contributions to explaining the nature of frost heave in soils were published in late 1920s, modelling efforts did not start until decades later. Several models describing the heaving process have been developed in the past, but none of them has been generally accepted as a tool in engineering applications. The approach explored in this paper is based on the concept of the porosity rate function dependent on two primary material parameters: the maximum rate, and the temperature at which the maximum rate occurs. The porosity rate is indicative of ice growth, and this growth is also dependent on the temperature gradient and the stress state in the freezing soil. The advantage of this approach over earlier models stems from a formulation consistent with continuum mechanics that makes it possible to generalize the model to arbitrary three-dimensional processes, and use the standard numerical techniques in solving boundary value problems. The physical premise for the model is discussed first, and the development of the constitutive model is outlined. The model is implemented in a 2-D finite element code, and the porosity rate function is calibrated and validated. Effectiveness of the model is then illustrated in an example of freezing of a vertical cut in frost-susceptible soil.

  16. Mathematical aspects of multi-porosity continua

    CERN Document Server

    Straughan, Brian

    2017-01-01

    This book is devoted to describing theories for porous media where such pores have an inbuilt macro structure and a micro structure. For example, a double porosity material has pores on a macro scale, but additionally there are cracks or fissures in the solid skeleton. The actual body is allowed to deform and thus the underlying theory is one of elasticity. Various different descriptions are reviewed. Chapter 1 introduces the classical linear theory of elastodynamics together with uniqueness and continuous dependence results. Chapters 2 and 3 review developments of theories for double and triple porosity using a pressure-displacement structure and also using voids-displacement. Chapter 4 compares various aspects of the pressure-displacement and voids-displacement theories via uniqueness studies and wave motion analysis. Mathematical analyses of double and triple porosity materials are included concentrating on uniqueness and stability studies in chapters 5 to 7. In chapters 8 and 9 the emphasis is on wa...

  17. Optimization

    CERN Document Server

    Pearce, Charles

    2009-01-01

    Focuses on mathematical structure, and on real-world applications. This book includes developments in several optimization-related topics such as decision theory, linear programming, turnpike theory, duality theory, convex analysis, and queuing theory.

  18. Electrostatically Tunable Nanomechanical Shallow Arches

    KAUST Repository

    Kazmi, Syed N. R.

    2017-11-03

    We report an analytical and experimental study on the tunability of in-plane doubly-clamped nanomechanical arches under varied DC bias conditions at room temperature. For this purpose, silicon based shallow arches are fabricated using standard e-beam lithography and surface nanomachining of a highly conductive device layer on a silicon-on-insulator (SOI) wafer. The experimental results show good agreement with the analytical results with a maximum tunability of 108.14% for 180 nm thick arch with a transduction gap of 1 μm between the beam and the driving/sensing electrodes. The high tunability of shallow arches paves the ways for highly tunable band pass filtering applications in high frequency range.

  19. Porosity determination on pyrocarbon using automatic quantitative image analysis

    International Nuclear Information System (INIS)

    Koizlik, K.; Uhlenbruck, U.; Delle, W.; Nickel, H.

    Methods of porosity determination are reviewed and applied to the measurement of the porosity of pyrocarbon. Specifically, the mathematical basis of stereology and the procedures involved in quantitative image analysis are detailed

  20. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2016-01-01

    On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range.......On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range....

  1. Pneumatically tunable optofluidic dye laser

    OpenAIRE

    Song, W.; Psaltis, D.

    2010-01-01

    We presented a tunable optofluidic dye laser with integrated elastomeric air-gap etalon controlled by air pressure. The chip was fabricated with polydimethylsiloxane (PDMS) via replica molding. It comprises a liquid waveguide and microscale air-gap mirrors providing the feedback. The lasing wavelength is chosen by the interference between two parallel PDMS-air interfaces inside the internal tunable air-gap etalon, of which pneumatic tuning can be realized by inflating the air-gap etalon with ...

  2. Influence of Chemical Composition on Porosity in Aluminium Alloys

    OpenAIRE

    Kucharčík L.; Brůna M.; Sládek A.

    2014-01-01

    Porosity is one of the major defects in aluminum castings, which results is a decrease of a mechanical properties. Porosity in aluminum alloys is caused by solidification shrinkage and gas segregation. The final amount of porosity in aluminium castings is mostly influenced by several factors, as amount of hydrogen in molten aluminium alloy, cooling rate, melt temperature, mold material, or solidification interval. This article deals with effect of chemical composition on porosity in Al-Si alu...

  3. Spectral and Radiometric Calibration Using Tunable Lasers

    Science.gov (United States)

    McCorkel, Joel (Inventor)

    2017-01-01

    A tunable laser system includes a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, and a controller operable to simultaneously control parameters of at least the tunable laser, the first optical parametric oscillator, and the adjustable laser cavity to produce a range of wavelengths emitted from the tunable laser system. A method of operating a tunable laser system includes using a controller to simultaneously control parameters of a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, and a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, to produce a range of wavelengths emitted from the tunable laser system.

  4. 3D-printing porosity: A new approach to creating elevated porosity materials and structures.

    Science.gov (United States)

    Jakus, A E; Geisendorfer, N R; Lewis, P L; Shah, R N

    2018-03-27

    We introduce a new process that enables the ability to 3D-print high porosity materials and structures by combining the newly introduced 3D-Painting process with traditional salt-leaching. The synthesis and resulting properties of three 3D-printable inks comprised of varying volume ratios (25:75, 50:50, 70:30) of CuSO 4 salt and polylactide-co-glycolide (PLGA), as well as their as-printed and salt-leached counterparts, are discussed. The resulting materials are comprised entirely of PLGA (F-PLGA), but exhibit porosities proportional to the original CuSO 4 content. The three distinct F-PLGA materials exhibit average porosities of 66.6-94.4%, elastic moduli of 112.6-2.7 MPa, and absorbency of 195.7-742.2%. Studies with adult human mesenchymal stem cells (hMSCs) demonstrated that elevated porosity substantially promotes cell adhesion, viability, and proliferation. F-PLGA can also act as carriers for weak, naturally or synthetically-derived hydrogels. Finally, we show that this process can be extended to other materials including graphene, metals, and ceramics. Porosity plays an essential role in the performance and function of biomaterials, tissue engineering, and clinical medicine. For the same material chemistry, the level of porosity can dictate if it is cell, tissue, or organ friendly; with low porosity materials being far less favorable than high porosity materials. Despite its importance, it has been difficult to create three-dimensionally printed structures that are comprised of materials that have extremely high levels of internal porosity yet are surgically friendly (able to handle and utilize during surgical operations). In this work, we extend a new materials-centric approach to 3D-printing, 3D-Painting, to 3D-printing structures made almost entirely out of water-soluble salt. The structures are then washed in a specific way that not only extracts the salt but causes the structures to increase in size. With the salt removed, the resulting medical polymer

  5. Compaction and Porosity Based Pore Pressure Prediction in the ...

    African Journals Online (AJOL)

    2: A reversal in the trend (well 3; 5450-9658ft, r = -0.89) indicated by an increase in porosity as a result of overpressure. A number of factors such as compaction, fluid content and pore pressure affect the porosity-depth trends of the Agbada Formation. A decrease in porosity with depth generally holds true for shales (well 1: ...

  6. Estimation of the porosity of wind breaks by using GIS-based ortho-image analysis

    Science.gov (United States)

    Mohammadian Behbahani, Ali; Hikel, Harald; Fister, Wolfgang; Heckrath, Goswin; Kuhn, Nikolaus J.

    2013-04-01

    The optimal design of windbreaks is very important to reduce wind erosion on farmlands and to combat soil degradation. Main parameters that must be considered when designing windbreaks are: height, width, orientation, porosity (density), distance between barrier rows, and length. There are two types of windbreaks, living (natural) and non-living (artificial). For tree shelterbelts (living windbreak) some of these parameters are related to inherent characteristics of the plants. For example, the height of a windbreak depends on the type of the plant, its growing conditions and the age of the plant. Porosity of windbreaks is considered to be one of the most important factors that controls wind erosion. It is expressed as the ratio between pore space and the space occupied by tree stems, branches, twigs and leaves. For the assessment of porosity it is necessary to convert the three-dimensional plant structure to a two-dimensional model of its shape or plant silhouette, because a direct measurement in the field is very inefficient, time consuming, and therefore impractical. To solve this issue, different approaches have been introduced to estimate the porosity of wind breaks, e.g. optical or aerodynamic porosity. In this study, the porosity of wind break networks was assessed for agricultural land in north Jutland, Denmark. The objective of this study was to develop a GIS-based Ortho-Image Analysis (OIA) method to estimate the porosity of windbreaks. The images of the windbreaks have three visible (RGB) bands and were taken in autumn 2012. The pixel size of 0.5 m is sufficient to visually distinguish the tree rows from their surrounding background. The identification of trees was done using grayscale images, where the dark trees strongly contrast to the bright sky in the background. The preliminary results indicate that the GIS based Ortho-Image analysis can be used as a quick, accurate, and reliable method to estimate the porosity of wind break networks. It can

  7. Longhi Games, Internal Reservoirs, and Cumulate Porosity

    Science.gov (United States)

    Morse, S. A.

    2009-05-01

    Fe in plagioclase at an early age, T-rollers (or not) on the Di-Trid boundary in Fo-Di-Sil, the mantle solidus, origins of anorthosites, esoteric uses of Schreinemakers rules and many more topics are all fresh and pleasant memories of John Longhi's prolific and creative work. The Fram-Longhi experimental effect of pressure on plagioclase partitioning with liquid in mafic rocks became essential to an understanding of multiphase Rayleigh fractionation of plagioclase in big layered intrusions. Only by using the pressure effect could I find a good equation through the data for the Kiglapait intrusion, and that result among others required the existence with probability 1.0 of an internal reservoir (Morse, JPet 2008). Knowledge of cumulate porosity is a crucial key to the understanding of layered igneous rocks. We seek both the initial (inverse packing fraction) and residual porosity to find the time and process path from sedimentation to solidification. In the Kiglapait Lower Zone we have a robust estimate of mean residual porosity from the modes of the excluded phases augite, oxides, sulfide, and apatite. To this we apply the maximum variance of plagioclase composition (the An range) to find an algorithm that extends through the Upper Zone and to other intrusions. Of great importance is that all these measurements were made in grain mounts concentrated from typically about 200 g of core or hand specimen, hence the represented sample volume is thousands of times greater than for a thin section. The resulting distribution and scatter of the An range is novel and remarkable. It is V-shaped in the logarithmic representation of stratigraphic height, running from about 20 mole % at both ends (base to top of the Layered Series) to near-zero at 99 PCS. The intercept of the porosity-An range relation gives An range = 3.5 % at zero residual porosity. Petrographic analysis reveals that for PCS less than 95 and greater than 99.9, the An range is intrinsic, i.e. pre-cumulus, for

  8. Experimental Investigation of Closed Porosity of Inorganic Solidified Foam Designed to Prevent Coal Fires

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2015-01-01

    Full Text Available In order to overcome the deficiency of the existing fire control technology and control coal spontaneous combustion by sealing air leakages in coal mines, inorganic solidified foam (ISF with high closed porosity was developed. The effect of sodium dodecyl sulfate (SDS concentration on the porosity of the foams was investigated. The results showed that the optimized closed porosity of the solidified foam was 38.65 wt.% for an SDS concentration of approximately 7.4×10-3 mol/L. Based on observations of the microstructure of the pore walls after solidification, it was inferred that an equilibrium between the hydration process and the drainage process existed. Therefore, the ISF was improved using three different systems. Gelatin can increase the viscosity of the continuous phase to form a viscoelastic film around the air cells, and the SDS + gelatin system can create a mixed surfactant layer at gas/liquid interfaces. The accelerator (AC accelerates the hydration process and coagulation of the pore walls before the end of drainage. The mixed SDS + gelatin + AC systems produced an ISF with a total porosity of 79.89% and a closed porosity of 66.89%, which verified the proposed stabilization mechanism.

  9. Titanium-Phosphonate-Based Metal-Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution

    KAUST Repository

    Li, Hui

    2018-02-01

    Photocatalytic hydrogen production is crucial for solar-to-chemical conversion process, wherein high-efficiency photocatalysts lie in the heart of this area. Herein a new photocatalyst of hierarchically mesoporous titanium-phosphonate-based metal-organic frameworks, featuring well-structured spheres, periodic mesostructure and large secondary mesoporosity, are rationally designed with the complex of polyelectrolyte and cathodic surfactant serving as the template. The well-structured hierarchical porosity and homogeneously incorporated phosphonate groups can favor the mass transfer and strong optical absorption during the photocatalytic reactions. Correspondingly, the titanium phosphonates exhibit significantly improved photocatalytic hydrogen evolution rate along with impressive stability. This work can provide more insights into designing advanced photocatalysts for energy conversion and render a tunable platform in photoelectrochemical field.

  10. Plant fibre composites - porosity and stiffness

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2009-01-01

    of the composites with their mechanical properties. The fibre weight fraction is used as an independent parameter to calculate the complete volumetric composition. A maximum obtainable stiffness of the composites is calculated at a certain transition fibre weight fraction, which is characterised by a best possible...... combination of high fibre volume fraction and low porosity. The model is validated with experimental data from the literature on several types of composites. A stiffness diagram is presented to demonstrate that the calculations can be used for tailoring and design of composites with a given profile...... of properties. (C) 2009 Elsevier Ltd. All rights reserved....

  11. Quantifying porosity, compressibility and permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Frykman, Peter

    (XRD) of shale samples show about 50% silt and high content of kaolinite in the clay fraction when compared with offshore samples from the Central Graben. Porosity measurements from helium porosimetry-mercury immersion (HPMI), mercury injection capillary pressure (MICP) and nuclear magnetic resonance...... strain data. We found that Kozeny's modelled permeability fall in the same order of magnitude with measured permeability for shale rich in kaolinite but overestimates permeability by two to three orders of magnitudes for shale with high content of smectite. The empirical Yang and Aplin model gives good...

  12. 3D Membrane Imaging and Porosity Visualization

    KAUST Repository

    Sundaramoorthi, Ganesh

    2016-03-03

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore size in different layers orthogonal and parallel to the membrane surface. The 3D-reconstruction enabled additionally the visualization of pore interconnectivity in different parts of the membrane. The method was demonstrated for a block copolymer porous membrane and can be extended to other membranes with application in ultrafiltration, supports for forward osmosis, etc, offering a complete view of the transport paths in the membrane.

  13. Poroelasticity of high porosity chalk under depletion

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling; Fabricius, Ida Lykke

    2013-01-01

    levels of pore pressure. The chalk is oil-saturated Lixhe chalk from a quarry near Liège, Belgium, with a general porosity of 45%. Additionally, we compare the theoretical lateral stress to the experimentally determined lateral stress at the onset of pore collapse. The static Biot coefficient based....... An explanation to this behaviour is pore pressure build up.......The theory of poroelasticity for the elastic region below pore collapse by means of three different loading paths gives the possibility to compare the static and dynami-cally determined Biot coefficient for a set of experimental data with uniaxial loading on outcrop chalk performed with different...

  14. Magnetostatic wave tunable resonators

    Science.gov (United States)

    Castera, J.-P.; Hartemann, P.

    1983-06-01

    Theoretical principles and techniques for the implementation of magnetostatic surface wave and volume wave resonators in high frequency oscillators are discussed. Magnetostatic waves are magnetic waves that propagate in materials exposed to a polarized magnetic field. The propagation speed ranges from 3-300 km/sec for wavelengths between 1 micron and 10 mm, in the presence of lags from 10-1000 nsec/ cm. Tunable resonators in the 1-20 GHz frequency range have been manufactured with YIG using liquid phase epitaxy for deposition on gadolinium and gallium substrates. Distributed-mirror Fabry-Perot cavity resonators are described and performance tests results are reported, including losses of 8 dB, a quality coefficient under voltage of 450, and frequency rejection outside of resonance better than 10 dB. However, saturation occurs at low power levels at frequencies lower than 4.2 GHz, a feature overcome with forward volume magnetostatic wave generators, which have a quality factor of 500, an insertion loss of 22 dB, and rejection around 15 dB.

  15. On the porosity of barrier layers

    Directory of Open Access Journals (Sweden)

    J. Mignot

    2009-09-01

    Full Text Available Barrier layers are defined as the layer between the pycnocline and the thermocline when the latter are different as a result of salinity stratification. We present a revisited 2-degree resolution global climatology of monthly mean oceanic Barrier Layer (BL thickness first proposed by de Boyer Montégut et al. (2007. In addition to using an extended data set, we present a modified computation method that addresses the observed porosity of BLs. We name porosity the fact that barrier layers distribution can, in some areas, be very uneven regarding the space and time scales that are considered. This implies an intermittent alteration of air-sea exchanges by the BL. Therefore, it may have important consequences for the climatic impact of BLs. Differences between the two computation methods are small for robust BLs that are formed by large-scale processes. However, the former approach can significantly underestimate the thickness of short and/or localized barrier layers. This is especially the case for barrier layers formed by mesoscale mechanisms (under the intertropical convergence zone for example and along western boundary currents and equatorward of the sea surface salinity subtropical maxima. Complete characterisation of regional BL dynamics therefore requires a description of the robustness of BL distribution to assess the overall impact of BLs on the process of heat exchange between the ocean interior and the atmosphere.

  16. Characterization of porosity via secondary reactions

    Energy Technology Data Exchange (ETDEWEB)

    Calo, J.M.

    1992-01-01

    The new TPD-MS/TGA system has been constructed and successfully tested. This system is constructed around a new Cahn D-200 digital recording microbalance, which was purchased for this purpose. The TPD reactor is the hangdown'' tube for the microbalance. The system can operate at pressures from vacuum to atmospheric. Control and data logging of this new experimental system are performed using a Macintosh II microcomputer with a GW Instruments 625 Jr. interface. All the control software has been written and tested. A new furnace with low thermal capacitance'' was constructed for this system which allows linear heating rates to 1100{degree}C at rates as high as 20OK/min. This system will become a principal apparatus for obtaining some of the data required for the development of porosity characterization techniques via TPD. Software has been written for the analysis of small angle scattering (SAS) data, obtained with either X-rays (SAXS) or neutrons (SANS), which will be used in addition to gas adsorption techniques to characterize porosity for comparison with secondary reaction data.

  17. Tunable Multiband Microwave Photonic Filters

    Directory of Open Access Journals (Sweden)

    Mable P. Fok

    2017-11-01

    Full Text Available The increasing demand for multifunctional devices, the use of cognitive wireless technology to solve the frequency resource shortage problem, as well as the capabilities and operational flexibility necessary to meet ever-changing environment result in an urgent need of multiband wireless communications. Spectral filter is an essential part of any communication systems, and in the case of multiband wireless communications, tunable multiband RF filters are required for channel selection, noise/interference removal, and RF signal processing. Unfortunately, it is difficult for RF electronics to achieve both tunable and multiband spectral filtering. Recent advancements of microwave photonics have proven itself to be a promising candidate to solve various challenges in RF electronics including spectral filtering, however, the development of multiband microwave photonic filtering still faces lots of difficulties, due to the limited scalability and tunability of existing microwave photonic schemes. In this review paper, we first discuss the challenges that were facing by multiband microwave photonic filter, then we review recent techniques that have been developed to tackle the challenge and lead to promising developments of tunable microwave photonic multiband filters. The successful design and implementation of tunable microwave photonic multiband filter facilitate the vision of dynamic multiband wireless communications and radio frequency signal processing for commercial, defense, and civilian applications.

  18. Guided and magnetic self-assembly of tunable magnetoceptive gels.

    Science.gov (United States)

    Tasoglu, S; Yu, C H; Gungordu, H I; Guven, S; Vural, T; Demirci, U

    2014-09-01

    Self-assembly of components into complex functional patterns at microscale is common in nature, and used increasingly in numerous disciplines such as optoelectronics, microfabrication, sensors, tissue engineering and computation. Here, we describe the use of stable radicals to guide the self-assembly of magnetically tunable gels, which we call 'magnetoceptive' materials at the scale of hundreds of microns to a millimeter, each can be programmed by shape and composition, into heterogeneous complex structures. Using paramagnetism of free radicals as a driving mechanism, complex heterogeneous structures are built in the magnetic field generated by permanent magnets. The overall magnetic signature of final structure is erased via an antioxidant vitamin E, subsequent to guided self-assembly. We demonstrate unique capabilities of radicals and antioxidants in fabrication of soft systems with heterogeneity in material properties, such as porosity, elastic modulus and mass density; then in bottom-up tissue engineering and finally, levitational and selective assembly of microcomponents.

  19. Fabrication of slag-glass composite with controlled porosity

    Directory of Open Access Journals (Sweden)

    Ranko Adziski

    2008-06-01

    Full Text Available The preparation and performance of porous ceramics made from waste materials were investigated. Slag from thermal electrical plant Kakanj (Bosnia and Herzegovina with defined granulations: (0.500÷0.250 mm; (0.250÷0.125 mm; (0.125÷0.063 mm; (0.063÷0.045 mm and 20/10 wt.% of the waste TV screen glass with a granulation <0.063 mm were used for obtaining slag-glass composites with controlled porosity. The one produced from the slag powder fraction (0.125÷0.063 mm and 20 wt.% TV screen glass, sintered at 950°C/2h, was considered as the optimal. This system possesses open porosity of 26.8±1.0%, and interconnected pores with the size of 250–400 μm. The values of E-modulus and bending strength of this composite were 10.6±0.6 GPa and 45.7±0.7 MPa, respectively. The coefficient of thermal expansion was 8.47·10-6/°C. The mass loss in 0.1M HCl solution after 30 days was 1.2 wt.%. The permeability and the form coefficient of the porous composite were K0=0.12 Da and C0=4.53·105 m-1, respectively. The porous composite shows great potential to be used as filters, diffusers for water aeration, dust collectors, acoustic absorbers, etc.

  20. Tunable features of magnetoelectric transformers.

    Science.gov (United States)

    Dong, Shuxiang; Zhai, Junyi; Priya, Shashank; Li, Jie-Fang; Viehland, Dwight

    2009-06-01

    We have found that magnetostrictive FeBSiC alloy ribbons laminated with piezoelectric Pb(Zr,Ti)O(3) fiber can act as a tunable transformer when driven under resonant conditions. These composites were also found to exhibit the strongest resonant magnetoelectric voltage coefficient of 750 V/cm-Oe. The tunable features were achieved by applying small dc magnetic biases of -5 transformer features can be attributed to large changes in the piezomagnetic coefficient and permeability of the magnetostrictive phase under H(dc).

  1. Acoustical properties of double porosity granular materials.

    Science.gov (United States)

    Venegas, Rodolfo; Umnova, Olga

    2011-11-01

    Granular materials have been conventionally used for acoustic treatment due to their sound absorptive and sound insulating properties. An emerging field is the study of the acoustical properties of multiscale porous materials. An example of these is a granular material in which the particles are porous. In this paper, analytical and hybrid analytical-numerical models describing the acoustical properties of these materials are introduced. Image processing techniques have been employed to estimate characteristic dimensions of the materials. The model predictions are compared with measurements on expanded perlite and activated carbon showing satisfactory agreement. It is concluded that a double porosity granular material exhibits greater low-frequency sound absorption at reduced weight compared to a solid-grain granular material with similar mesoscopic characteristics.

  2. Sintered ceramics having controlled density and porosity

    International Nuclear Information System (INIS)

    Brassfield, H.C.; DeHollander, W.R.; Nivas, Y.

    1980-01-01

    A new method was developed for sintering ceramic uranium dioxide powders, in which ammonium oxalate is admixed with the powder prior to being pressed into a cylindrical green body, so that the end-point density of the final nuclear-reactor fuel product can be controlled. When the green body is heated, the ammonium oxalate decomposes and leaves discrete porosity in the sintered body, which corresponds to the ammonium oxalate regions in the green body. Thus the end-point density of the sintered body is a function of the amount of ammonium oxalate added. The final density of the sintered product is about 90-97% of the theoretical. The addition of ammonium oxalate also allows control of the pore size and distribution throughout the fuel. The process leaves substantially no impurities in the sintered strucuture. (DN)

  3. Porosity and liquid absorption of cement paste

    DEFF Research Database (Denmark)

    Krus, M.; Hansen, Kurt Kielsgaard; Kunzel, H. M.

    1997-01-01

    are not accessible to the smaller helium atoms. Considering the results of dilatation tests both before and after water and hexane saturation, it seems possible that a contraction of capillary pores due to moisture-related swelling of the cement gel leads to the non-linear water absorption over the square root......The moisture behaviour of building materials exposed to the natural climate is largely dependent on their water absorption. In contrast to most building stones, cementitious materials like concrete do not exhibit a water absorption that is proportional to the square root of time. There must...... be a slowing-down effect which is related to water because the absorption of organic liquids, such as hexane, is quite normal. Measurements of the porosity of hardened cement paste determined by helium pycnometry and water saturation show that water molecules can enter spaces in the microstructure which...

  4. Evaluation of concrete mechanical strength through porosity

    Directory of Open Access Journals (Sweden)

    Olivares, M.

    2004-03-01

    Full Text Available The increasing on voids or pores in any material - if the rest of characteristics remains equal -always causes a decrease in their mechanical strength since the ratio volume/resistant mass is lower Following all these fact a well known conclusion rises: there is a relationship between compacity/porosity and mechanical strengths. The purpose of this research is to establish a new possible correlation between both concrete properties with independence of the proportions, type of cement, size of grain, age, use. etc. So it can be concluded that the results of this research allow the engineer or architect in charge of a restoration or reparation to determine the compression strength of a concrete element. A first step is to determine the porosity through a rather short number of tests. Subsequently, compression strength will be obtained applying just a mathematical formula.

    El aumento de huecos o poros de cualquier material, lo mismo que en otras circunstancias, redunda siempre en una merma de sus resistencias mecánicas, al haber menor volumen-masa resistente. En consecuencia, puede deducirse, que hay una relación entre la compacidad/porosidad y las resistencias mecánicas. En el presente trabajo se estudia una posible correlación entre ambas propiedades del hormigón con independencia de su dosificación, tipo de cemento, granulometría, edad, uso, etc. Las conclusiones obtenidas en la presente investigación permiten al técnico, encargado de una restauración o rehabilitación, determinar la resistencia a compresión de un elemento de hormigón, una vez hallada, de una forma sencilla, la porosidad de una muestra no muy voluminosa, mediante la aplicación de una simple fórmula matemática.

  5. Porosity Assessment for Different Diameters of Coir Lignocellulosic Fibers

    Science.gov (United States)

    da Luz, Fernanda Santos; Paciornik, Sidnei; Monteiro, Sergio Neves; da Silva, Luiz Carlos; Tommasini, Flávio James; Candido, Verônica Scarpini

    2017-10-01

    The application of natural lignocellulosic fibers (LCFs) in engineering composites has increased interest in their properties and structural characteristics. In particular, the inherent porosity of an LCF markedly affects its density and the adhesion to polymer matrices. For the first time, both open and closed porosities of a natural LCF, for different diameter ranges, were assessed. Fibers extracted from the mesocarp of the coconut fruit were investigated by nondestructive methods of density measurements and x-ray microtomography (microCT). It was found that, for all diameter ranges, the closed porosity is significantly higher than the open porosity. The total porosity increases with diameter to around 60% for coir fibers with more than 503 μm in diameter. The amount and characteristics of these open and closed porosities were revealed by t test and Weibull statistics as well as by microCT.

  6. Porosity effects in flame length of the porous burners

    Directory of Open Access Journals (Sweden)

    Fatemeh Bahadori

    2014-10-01

    Full Text Available Furnaces are the devices for providing heat to the industrial systems like boilers, gas turbines and etc. The main challenge of furnaces is emission of huge air pollutants. However, porous burners produce less contaminant compared to others. The quality of the combustion process in the porous burners depends on the length of flame in the porous medium. In this paper, the computational fluid dynamic (CFD is used to investigate the porosity effects on the flame length of the combustion process in porous burner. The simulation results demonstrate that increasing the porosity increases the flame length and the combustion zone extends forward. So, combustion quality increases and production of carbon monoxide decrease. It is possible to conclude that temperature distribution in low porosity burner is lower and more uniform than high porosity one. Therefore, by increasing the porosity of the burner, the production of nitrogen oxides increases. So, using an intermediate porosity in the burner appears to be reasonable.

  7. A study of the porosity of gas filtration cakes

    Directory of Open Access Journals (Sweden)

    L. X. Ito

    2009-06-01

    Full Text Available The purpose of this work was to determine the porosity of gas filtration cakes composed of powdery organic and inorganic materials, employing a technique whereby an optical microscope generates images of the powdery layer deposited on the surface of the filtering medium. To this end, experimental cake filtration porosity data were obtained as a function of the surface filtration velocity. The images generated by the optical microscope were analyzed by using an image analyzing program that supplied the cake porosity values. The results revealed that porosity decreases as surface filtration velocity increases. The average porosity of corn starch was higher than that of tapioca powder and phosphate concentrate, possibly due to the shape of the particles, differences in the physicochemical characteristics of the materials, and grain distribution. Based on the relation of the experimental average porosity data and the filtration velocity, an empirical correlation was found that better fit these parameters.

  8. Tunable electro-optic filter stack

    Energy Technology Data Exchange (ETDEWEB)

    Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa

    2017-09-05

    A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.

  9. compaction and porosity based pore pressure prediction in the

    African Journals Online (AJOL)

    Home

    A number of factors such as compaction, fluid content and pore pressure affect the porosity-depth trends of the Agbada Formation. A decrease in porosity with depth generally holds true for shales (well. 1: r2 = 0.74 and well 2: r2 = 0.81) except for an increase in porosity (r2 = -0.596) observed in well 3. Compaction factor is.

  10. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2015-01-01

    A chip scale tunable laser in the visible spectral band is realized by generating a periodic droplet array inside a microfluidic channel. Combined with a gain medium within the droplets, the periodic structure provides the optical feedback of the laser. By controlling the pressure applied to two...

  11. A CFD Approach for Prediction of Unintended Porosities in Aluminum Syntactic Foam: A Preliminary Study

    DEFF Research Database (Denmark)

    Li, Shizhao; Spangenberg, Jon; Hattel, Jesper Henri

    2013-01-01

    Aluminum Syntactic Foam (ASF) is a material with great potential in applications related to lightweight structures and structural damping. However, experimental investigations in literature report that the infiltration process to fabricate ASF often results in incomplete infiltration. Published...... calculates the pressure, velocity and free surface of the aluminum. The results of the numerical model illustrate that this method has great potential of predicting unintended porosities in ASF and thereby optimizing the parameters involved in the infiltration process....

  12. Tunability of the circadian action of tetrachromatic solid-state light sources

    International Nuclear Information System (INIS)

    Žukauskas, A.; Vaicekauskas, R.

    2015-01-01

    An approach to the optimization of the spectral power distribution of solid-state light sources with the tunable non-image forming photobiological effect on the human circadian rhythm is proposed. For tetrachromatic clusters of model narrow-band (direct-emission) light-emitting diodes (LEDs), the limiting tunability of the circadian action factor (CAF), which is the ratio of the circadian efficacy to luminous efficacy of radiation, was established as a function of constraining color fidelity and luminous efficacy of radiation. For constant correlated color temperatures (CCTs), the CAF of the LED clusters can be tuned above and below that of the corresponding blackbody radiators, whereas for variable CCT, the clusters can have circadian tunability covering that of a temperature-tunable blackbody radiator

  13. Effect of Travel Speed and Beam Focus on Porosity in Alloy 690 Laser Welds

    Science.gov (United States)

    Tucker, Julie D.; Nolan, Terrance K.; Martin, Anthony J.; Young, George A.

    2012-12-01

    Advances in laser welding technology, including fiber optic delivery and high power density, are increasing the applicability of this joining technique. The inherent benefits of laser welding include small heat-affected zones, minimal distortion, and limited susceptibility to cracking. These advantages are of special interest to next-generation nuclear power systems where welding solute-rich alloys is expected to increase. Alloy 690 (A690) is an advanced corrosion-resistant structural material used in many replacement components and in construction of new commercial power plants. However, the application of A690 is hindered by its difficult weldability using conventional arc welding, and laser welding is a promising alternate. This work studies the effects of travel speed and beam focus on porosity formation in partial penetration, autogenous A690 laser welds. Porosity has been characterized by light optical microscopy and x-ray computed tomography to quantify its percent volume in the welds. This work describes the tradeoff between weld penetration and defect density as a function of beam defocus and travel speed. Additionally, the role of shield gas in porosity formation is discussed to provide a mitigation strategy for A690 laser welding. A process map is provided that shows the optimal combinations of travel speed and beam defocus to minimize porosity and maximize weld penetration at a laser power of 4 kW.

  14. Porosity and Health: Perspective of Traditional Persian Medicine.

    Science.gov (United States)

    Tafazoli, Vahid; Nimrouzi, Majid; Daneshfard, Babak

    2016-05-01

    The authors of this manuscript aimed to show the importance of porosity and condensation in health according to traditional Persian medicine (TPM) with consideration of new evidence in conventional medicine. Cardinal traditional medical and pharmacological texts were searched for the traditional terms of takhalkhol (porosity) and takassof (condensity) focused on preventive methods. The findings were classified and compared with new medical findings. According to traditional Persian medicine, porosity and condensity are the two crucial items that contribute to human health. Somatotype is a taxonomy based on embryonic development, which may be considered in parallel with porosity and condensation. However, these terms are not completely the same. There are many causes for acquired porosity comprising hot weather, too much intercourse, rage, starvation, and heavy exercises. In general, porosity increases the risk of diseases as it makes the body organs vulnerable to external hot and cold weather. On the other hand, the porose organs are more susceptible to accumulation of morbid matters because the cellular wastes cannot be evacuated in the normal way. There are some common points between traditional and conventional medicine in the context of porosity and condensity. The relation between diet and somatotype is an example. Condensity and porosity are the two basic items cited in the TPM resources and contribute to health maintenance and disease prevention of body organs. Creating a balance between these two states in different body organs, strongly contributes to disease prevention, treatment and diminishing chronic diseases period. Choosing proper modality including diet, drug therapy, and manual therapy depends on the amount porosity and stiffness of the considered organ and the preferred porosity of the affected organ keeping in a normal healthy state.

  15. Porosity effects during a severe accident

    International Nuclear Information System (INIS)

    Cazares R, R. I.; Espinosa P, G.; Vazquez R, A.

    2015-09-01

    The aim of this work is to study the behaviour of porosity effects on the temporal evolution of the distributions of hydrogen concentration and temperature profiles in a fuel assembly where a stream of steam is flowing. The analysis considers the fuel element without mitigation effects. The mass transfer phenomenon considers that the hydrogen generated diffuses in the steam by convection and diffusion. Oxidation of the cladding, rods and other components in the core constructed in zirconium base alloy by steam is a critical issue in LWR accident producing severe core damage. The oxygen consumed by the zirconium is supplied by the up flow of steam from the water pool below the uncovered core, supplemented in the case of PWR by gas recirculation from the cooler outer regions of the core to hotter zones. Fuel rod cladding oxidation is then one of the key phenomena influencing the core behavior under high-temperature accident conditions. The chemical reaction of oxidation is highly exothermic, which determines the hydrogen rate generation and the cladding brittleness and degradation. The heat transfer process in the fuel assembly is considered with a reduced order model. The Boussinesq approximation was applied in the momentum equations for multicomponent flow analysis that considers natural convection due to buoyancy forces, which is related with thermal and hydrogen concentration effects. The numerical simulation was carried out in an averaging channel that represents a core reactor with the fuel rod with its gap and cladding and cooling steam of a BWR. (Author)

  16. Porosity effects during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Cazares R, R. I. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Posgrado en Energia y Medio Ambiente, San Rafael Atlixco 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Espinosa P, G.; Vazquez R, A., E-mail: ricardo-cazares@hotmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, San Rafael Atlixco 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)

    2015-09-15

    The aim of this work is to study the behaviour of porosity effects on the temporal evolution of the distributions of hydrogen concentration and temperature profiles in a fuel assembly where a stream of steam is flowing. The analysis considers the fuel element without mitigation effects. The mass transfer phenomenon considers that the hydrogen generated diffuses in the steam by convection and diffusion. Oxidation of the cladding, rods and other components in the core constructed in zirconium base alloy by steam is a critical issue in LWR accident producing severe core damage. The oxygen consumed by the zirconium is supplied by the up flow of steam from the water pool below the uncovered core, supplemented in the case of PWR by gas recirculation from the cooler outer regions of the core to hotter zones. Fuel rod cladding oxidation is then one of the key phenomena influencing the core behavior under high-temperature accident conditions. The chemical reaction of oxidation is highly exothermic, which determines the hydrogen rate generation and the cladding brittleness and degradation. The heat transfer process in the fuel assembly is considered with a reduced order model. The Boussinesq approximation was applied in the momentum equations for multicomponent flow analysis that considers natural convection due to buoyancy forces, which is related with thermal and hydrogen concentration effects. The numerical simulation was carried out in an averaging channel that represents a core reactor with the fuel rod with its gap and cladding and cooling steam of a BWR. (Author)

  17. Chalk porosity and sonic velocity versus burial depth

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke; Gommesen, Lars; Krogsbøll, Anette Susanne

    2008-01-01

    that porosity and sonic velocity follow the most consistent depth trends when fluid pressure and pore-volume compressibility are considered. Quartz content up to 10% has no marked effect, but more than 5% clay causes lower porosity and velocity. The mineralogical effect differs between P-wave and shear velocity...

  18. Influence of porosity on mechanical properties of tetragonal stabilized zirconia

    DEFF Research Database (Denmark)

    Boccaccini, Dino; Frandsen, Henrik Lund; Soprani, Stefano

    2018-01-01

    to characterize Young's modulus and Weibull strength. The variation of fracture toughness with porosity was investigated and modelled using the results from fracture mechanical testing. A distinct R-curve behaviour was observed in dense 3YSZ specimens, in samples with a porosity around 15% and in some...

  19. Porosity prediction from seismic inversion, Lavrans Field, Halten Terrace

    Energy Technology Data Exchange (ETDEWEB)

    Dolberg, David M.

    1998-12-31

    This presentation relates to porosity prediction from seismic inversion. The porosity prediction concerns the Lavrans Field of the Halten Terrace on the Norwegian continental shelf. The main themes discussed here cover seismic inversion, rock physics, statistical analysis - verification of well trends, upscaling/sculpting, and implementation. 2 refs., 6 figs.

  20. Recovery of Porosity and Permeability for High Plasticity Clays

    DEFF Research Database (Denmark)

    Krogsbøll, Anette; Foged, Niels Nielsen

    Clays, which have been loaded to a high stress level, will under certain conditions keep low porosity and permeability due to the high degree of compression. In some situations it seems that porosity and permeability will recover to a very high extent when the clay is unloaded. This seems...

  1. Mechanistic Effects of Porosity on Structural Composite Materials

    Science.gov (United States)

    Siver, Andrew

    As fiber reinforced composites continue to gain popularity as primary structures in aerospace, automotive, and powersports industries, quality control becomes an extremely important aspect of materials and mechanical engineering. The ability to recognize and control manufacturing induced defects can greatly reduce the likelihood of unexpected catastrophic failure. Porosity is the result of trapped volatiles or air bubbles during the layup process and can significantly compromise the strength of fiber reinforced composites. A comprehensive study was performed on an AS4C-UF3352 TCR carbon fiber-epoxy prepreg system to determine the effect of porosity on flexural, shear, low-velocity impact, and damage residual strength properties. Autoclave cure pressure was controlled to induce varying levels of porosity to construct six laminates with porosity concentrations between 0-40%. Porosity concentrations were measured using several destructive and nondestructive techniques including resin burnoff, sectioning and optical analysis, and X-ray computed tomography (CT) scanning. Ultrasonic transmission, thermography, and CT scanning provided nondestructive imaging to evaluate impact damage. A bilinear relationship accurately characterizes the change in mechanical properties with increasing porosity. Strength properties are relatively unaffected when porosity concentrations are below approximately 2.25% and decrease linearly by up to 40% in high porosity specimens.

  2. Porosity variabilities along a forest – grassland mosaic in Ibeku ...

    African Journals Online (AJOL)

    Variation existed in the porosity characteristics of pedons located on forestland and grassland. Percent coefficient of variation (CV) was greater in forest soils for both bulk density and porosity (% CV = 29.99 and 13.2) than as found in grassland soils (% CV = 2.6 and. 4.1). These results were explained by wide variations in ...

  3. The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams

    International Nuclear Information System (INIS)

    Sundarram, Sriharsha S.; Li, Wei

    2014-01-01

    The effect of pore size and porosity on the performance of phase change material (PCM) infiltrated metal foams, especially when the pore size reduces to less than 100 μm, is investigated in this study. A three dimensional finite element model was developed to consider both the metal and PCM domains, with heat exchange between them. The pore size and porosity effects were studied along with other system variables including heat generation and dissipation of the PCM-based thermal management system. It is shown that both porosity and pore size have strong effects on the heating of PCM. At a fixed porosity, a smaller pore size results in a lower temperature at the heat source for a longer period of time. The effects of pore size and porosity were more pronounced at high heat generation and low convective cooling conditions, representing the situation of portable electronics. There is an optimal porosity for the PCM-metal foam system; however, the optimal value only occurs at high cooling conditions. The net effective thermal conductivity of a PCM-microcellular metal foam system could be doubled by reducing the pore size from 100 μm to 25 μm. - Highlights: •Pore size and porosity of phase change material-microcellular metal foam were investigated. •A smaller pore size results in a lower temperature at the heat source for a longer period of time. •The effects were more pronounced at high heating and low cooling conditions. •Net thermal conductivity doubled by reducing the pore size from 100 μm to 25 μm

  4. Tunable excitons in bilayer graphene

    Science.gov (United States)

    Ju, Long; Wang, Lei; Cao, Ting; Taniguchi, Takashi; Watanabe, Kenji; Louie, Steven G.; Rana, Farhan; Park, Jiwoong; Hone, James; Wang, Feng; McEuen, Paul L.

    2017-11-01

    Excitons, the bound states of an electron and a hole in a solid material, play a key role in the optical properties of insulators and semiconductors. Here, we report the observation of excitons in bilayer graphene (BLG) using photocurrent spectroscopy of high-quality BLG encapsulated in hexagonal boron nitride. We observed two prominent excitonic resonances with narrow line widths that are tunable from the mid-infrared to the terahertz range. These excitons obey optical selection rules distinct from those in conventional semiconductors and feature an electron pseudospin winding number of 2. An external magnetic field induces a large splitting of the valley excitons, corresponding to a g-factor of about 20. These findings open up opportunities to explore exciton physics with pseudospin texture in electrically tunable graphene systems​.

  5. Tunable Meta-Liquid Crystals.

    Science.gov (United States)

    Liu, Mingkai; Fan, Kebin; Padilla, Willie; Powell, David A; Zhang, Xin; Shadrivov, Ilya V

    2016-02-24

    Meta-liquid crystals, a novel form of tunable 3D metamaterials, are proposed and experimentally demonstrated in the terahertz frequency regime. A morphology change under a bias electric field and a strong modulation of the transmission are observed. In comparison to conventional liquid crystals, there is considerable freedom to prescribe the electromagnetic properties through the judicious design of the meta-atom geometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Additive manufacturing of tunable lenses

    Science.gov (United States)

    Schlichting, Katja; Novak, Tobias; Heinrich, Andreas

    2017-02-01

    Individual additive manufacturing of optical systems based on 3D Printing offers varied possibilities in design and usage. In addition to the additive manufacturing procedure, the usage of tunable lenses allows further advantages for intelligent optical systems. Our goal is to bring the advantages of additive manufacturing together with the huge potential of tunable lenses. We produced tunable lenses as a bundle without any further processing steps, like polishing. The lenses were designed and directly printed with a 3D Printer as a package. The design contains the membrane as an optical part as well as the mechanical parts of the lens, like the attachments for the sleeves which contain the oil. The dynamic optical lenses were filled with an oil. The focal length of the lenses changes due to a change of the radius of curvature. This change is caused by changing the pressure in the inside of the lens. In addition to that, we designed lenses with special structures to obtain different areas with an individual optical power. We want to discuss the huge potential of this technology for several applications. Further, an appropriate controlling system is needed. Wéll show the possibilities to control and regulate the optical power of the lenses. The lenses could be used for illumination tasks, and in the future, for individual measurement tasks. The main advantage is the individuality and the possibility to create an individual design which completely fulfills the requirements for any specific application.

  7. Highly Tunable Electrostatic Nanomechanical Resonators

    KAUST Repository

    Kazmi, Syed Naveed Riaz

    2017-11-24

    There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 $mu$m separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler-Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow band-pass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

  8. Highly tunable NEMS shallow arches

    KAUST Repository

    Kazmi, Syed N. R.

    2017-11-30

    We report highly tunable nanoelectromechanical systems NEMS shallow arches under dc excitation voltages. Silicon based in-plane doubly clamped bridges, slightly curved as shallow arches, are fabricated using standard electron beam lithography and surface nanomachining of a highly conductive device layer on a silicon-on-insulator wafer. By designing the structures to have gap to thickness ratio of more than four, the mid-plane stretching of the nano arches is maximized such that an increase in the dc bias voltage will result into continuous increase in the resonance frequency of the resonators to wide ranges. This is confirmed analytically based on a nonlinear beam model. The experimental results are found to be in good agreement with that of the results from developed analytical model. A maximum tunability of 108.14% for a 180 nm thick arch with an initially designed gap of 1 μm between the beam and the driving/sensing electrodes is achieved. Furthermore, a tunable narrow bandpass filter is demonstrated, which opens up opportunities for designing such structures as filtering elements in high frequency ranges.

  9. Data Qualification Report: Calculated Porosity and Porosity-Derived Values for Lithostratigraphic Units for use on the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    P. Sanchez

    2001-05-30

    The qualification is being completed in accordance with the Data Qualification Plan DQP-NBS-GS-000006, Rev. 00 (CRWMS M&O 2001). The purpose of this data qualification activity is to evaluate for qualification the unqualified developed input and porosity output included in Data Tracking Number (DTN) M09910POROCALC.000. The main output of the analyses documented in DTN M09910POROCALC.000 is the calculated total porosity and effective porosity for 40 Yucca Mountain Project boreholes. The porosity data are used as input to Analysis Model Report (AMR) 10040, ''Rock Properties Model'' (MDL-NBS-GS-000004, Rev. 00), Interim Change Notice [ICN] 02 (CRWMS M&O 2000b). The output from the rock properties model is used as input to numerical physical-process modeling within the context of a relationship developed in the AMR between hydraulic conductivity, bound water and zeolitic zones for use in the unsaturated zone model. In accordance with procedure AP-3.15Q, the porosity output is not used in the direct calculation of Principal Factors for post-closure safety or disruptive events. The original source for DTN M09910POROCALC.000 is a Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) report, ''Combined Porosity from Geophysical Logs'' (CRWMS M&O 1999a and hereafter referred to as Rael 1999). That report recalculated porosity results for both the historical boreholes covered in Nelson (1996), and the modern boreholes reported in CRWMS M&O (1996a,b). The porosity computations in Rael (1999) are based on density-porosity mathematical relationships requiring various input parameters, including bulk density, matrix density and air and/or fluid density and volumetric water content. The main output is computed total porosity and effective porosity reported on a foot-by-foot basis for each borehole, although volumetric water content is derived from neutron data as an interim output. This qualification

  10. Three dimensional fracture aperture and porosity distribution using computerized tomography

    Science.gov (United States)

    Wenning, Q.; Madonna, C.; Joss, L.; Pini, R.

    2017-12-01

    A wide range of geologic processes and geo-engineered applications are governed by coupled hydromechanical properties in the subsurface. In geothermal energy reservoirs, quantifying the rate of heat transfer is directly linked with the transport properties of fractures, underscoring the importance of fracture aperture characterization for achieving optimal heat production. In this context, coupled core-flooding experiments with non-invasive imaging techniques (e.g., X-Ray Computed Tomography - X-Ray CT) provide a powerful method to make observations of these properties under representative geologic conditions. This study focuses on quantifying fracture aperture distribution in a fractured westerly granite core by using a recently developed calibration-free method [Huo et al., 2016]. Porosity is also estimated with the X-ray saturation technique using helium and krypton gases as saturating fluids, chosen for their high transmissibility and high CT contrast [e.g., Vega et al., 2014]. The westerly granite sample (diameter: 5 cm, length: 10 cm) with a single through-going rough-walled fracture was mounted in a high-pressure aluminum core-holder and placed inside a medical CT scanner for imaging. During scanning the pore fluid pressure was undrained and constant, and the confining pressure was regulated to have the desired effective pressure (0.5, 5, 7 and 10 MPa) under loading and unloading conditions. 3D reconstructions of the sample have been prepared in terms of fracture aperture and porosity at a maximum resolution of (0.24×0.24×1) mm3. Fracture aperture maps obtained independently using helium and krypton for the whole core depict a similar heterogeneous aperture field, which is also dependent on confining pressure. Estimates of the average hydraulic aperture from CT scans are in quantitative agreement with results from fluid flow experiments. However, the latter lack of the level of observational detail achieved through imaging, which further evidence the

  11. Lightweight Tunable Infrared Filter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Michigan Aerospace Corporation has developed spaceflight qualified compact tunable Fabry-Perot interferometers for a number of applications, from ranging direct...

  12. Liquid Tunable Microlenses based on MEMS techniques

    Science.gov (United States)

    Zeng, Xuefeng; Jiang, Hongrui

    2013-01-01

    The recent rapid development in microlens technology has provided many opportunities for miniaturized optical systems, and has found a wide range of applications. Of these microlenses, tunable-focus microlenses are of special interest as their focal lengths can be tuned using micro-scale actuators integrated with the lens structure. Realization of such tunable microlens generally relies on the microelectromechanical system (MEMS) technologies. Here, we review the recent progress in tunable liquid microlenses. The underlying physics relevant to these microlenses are first discussed, followed by description of three main categories of tunable microlenses involving MEMS techniques, mechanically driven, electrically driven, and those integrated within microfluidic systems. PMID:24163480

  13. Recovery of Porosity and Permeability for High Plasticity Clays

    DEFF Research Database (Denmark)

    Krogsbøll, Anette; Foged, Niels Nielsen

    Clays, which have been loaded to a high stress level, will under certain conditions keep low porosity and permeability due to the high degree of compression. In some situations it seems that porosity and permeability will recover to a very high extent when the clay is unloaded. This seems...... to be the case for high plasticity clays that are uncemented, and with a high content of clay minerals, especially smectite. Oedometer tests on samples from the Paleogene period show that 80% or more of the compaction will recover when unloaded, and if unloaded to a stress lower than in situ stress level...... the clay will expand to an even higher porosity....

  14. Carbonate porosity: some remarks; Porosidade em reservatorios carbonaticos: algumas consideracoes

    Energy Technology Data Exchange (ETDEWEB)

    Spadini, Adali Ricardo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao]. E-mail: spadini@petrobras.com.br; Marcal, Rosely de Araujo [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2005-05-01

    Carbonate rocks are the major reservoirs of the largest super-giants fields in the world, including the Ghawar Field in Saudi Arabia, where the producing oil reservoir is the late Jurassic Arab-D limestone with five million barrels per day. Despite the great susceptibility to early diagenesis, that can dramatically modify the porous media, porosity values of carbonates remain essentially the same as that of deposition before burial. Porosity loss is essentially a subsurface process with a drastic reduction below 2500 m of burial depth. The occurrence of good reservoirs deeply buried, sometimes below 4,000 m, indicate that porosity can be preserved in subsurface in response to a series of mechanisms such as early oil emplacement, framework rigidity, abnormal pore pressure, among others. Percolation of geothermal fluids is a process considered to be responsible for generation of porosity in subsurface resulting in some good reservoir rocks. In Campos Basin, areas with burial around 2000 m, petrophysical data show a cyclic distribution that coincides with the shoaling upward cycles typical of the Albian carbonates. The greatest permeabilities coincide with the grain stones of the top of the cycles while the peloidal/oncolite wackestones/pack stones at the base show low values, reflecting the depositional texture. These relationships indicate that preservation of depositional porosity was very effective. The preservation of high porosity values for all the facies are related to early oil entrance in the reservoirs. In some cases, the presence of porosities of almost 30% in fine-grained peloidal carbonates, 3000 m of burial, without any clear effective preservation mechanism, suggest that corrosive subsurface brines have played an important role in porosity evolution. In Santos Basin, where reservoirs are deeply buried, only the grain stones have preserved porosity. The associated low energy facies has virtually no porosity. In this case, the depositional texture

  15. Porosity model for simultaneous radionuclide transfer in compact clay

    International Nuclear Information System (INIS)

    Grambow, B.; Ribet, S.; Landesman, C.; Altman, S.

    2010-01-01

    Document available in extended abstract form only. Both, a mono and a dual porosity model have been developed to describe diffusion in bentonite as function of compaction, which give similar results for the diffusion coefficients. There are little advantages but more computation time for the dual porosity model compared to the mono-porosity model. A significant change in paradigm has been proposed to describe diffusion accessible porosity in bentonite: Only a single micro-porosity value is considered for anions, cations and neutral species. Hydration water in the interlayers is considered as part of the solid phase and is not considered as a constitutive part of overall porosity. Since hydration water takes part of the solid phase, it is now possible to explicitly account for retention of HTO by formulating exchange between HTO and water in the interlayers. In the adaptation of the model to experimental data, a single fit constant, the geometric factor G = 7 was used, common to all ions and neutral species and for densities between 0.2 and 1.8 kg.dm -3 . The only input parameters to describe the effect of dry density on diffusion coefficients are the micro porosity (total porosity minus interlayer porosity) and the hydration numbers of exchanging cations in the interlayers, both of which can be measured by independent means (DRX, water sorption isotherms). The modelling of simultaneous mass transfer of HTO, Cs, Br and Ni has been undertaken. From the results apparent diffusion coefficients were obtained. Effective diffusion coefficients can of course only be compared to literature data if the the same porosity hypothesis is used for Da-De conversion as used in literature (total porosity for anions and HTO, micro-porosity for anions). Then, the calculated apparent diffusion coefficients for HTO match closely the measured values in the mentioned density range. Considering large experimental data uncertainty the agreement between anion diffusion data and calculations

  16. Digital Rock Physics Aplications: Visualisation Complex Pore and Porosity-Permeability Estimations of the Porous Sandstone Reservoir

    Science.gov (United States)

    Handoyo; Fatkhan; Del, Fourier

    2018-03-01

    Reservoir rock containing oil and gas generally has high porosity and permeability. High porosity is expected to accommodate hydrocarbon fluid in large quantities and high permeability is associated with the rock’s ability to let hydrocarbon fluid flow optimally. Porosity and permeability measurement of a rock sample is usually performed in the laboratory. We estimate the porosity and permeability of sandstones digitally by using digital images from μCT-Scan. Advantages of the method are non-destructive and can be applied for small rock pieces also easily to construct the model. The porosity values are calculated by comparing the digital image of the pore volume to the total volume of the sandstones; while the permeability values are calculated using the Lattice Boltzmann calculations utilizing the nature of the law of conservation of mass and conservation of momentum of a particle. To determine variations of the porosity and permeability, the main sandstone samples with a dimension of 300 × 300 × 300 pixels are made into eight sub-cubes with a size of 150 × 150 × 150 pixels. Results of digital image modeling fluid flow velocity are visualized as normal velocity (streamline). Variations in value sandstone porosity vary between 0.30 to 0.38 and permeability variations in the range of 4000 mD to 6200 mD. The results of calculations show that the sandstone sample in this research is highly porous and permeable. The method combined with rock physics can be powerful tools for determining rock properties from small rock fragments.

  17. Porosity-dependent fractal nature of the porous silicon surface

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, N.; Dariani, R. S., E-mail: dariani@alzahra.ac.ir [Department of Physics, Alzahra University, Tehran, 1993893973 (Iran, Islamic Republic of)

    2015-07-15

    Porous silicon films with porosity ranging from 42% to 77% were fabricated by electrochemical anodization under different current density. We used atomic force microscopy and dynamic scaling theory for deriving the surface roughness profile and processing the topography of the porous silicon layers, respectively. We first compared the topography of bare silicon surface with porous silicon and then studied the effect of the porosity of porous silicon films on their scaling behavior by using their self-affinity nature. Our work demonstrated that silicon compared to the porous silicon films has the highest Hurst parameter, indicating that the formation of porous layer due to the anodization etching of silicon surface leads to an increase of its roughness. Fractal analysis revealed that the evolution of the nanocrystallites’ fractal dimension along with porosity. Also, we found that both interface width and Hurst parameter are affected by the increase of porosity.

  18. Porosity measurement of amorphous materials by gamma ray transmission

    International Nuclear Information System (INIS)

    Poettker, Walmir Eno

    2000-01-01

    In this work it is presented the measurement of the total porosity of TRe soil, Sandstone Berea rocks and porous ceramics samples. For the determination of the total porosity, the Arquimedes method (conventional) and the gamma ray transmission methodology were employed. The porosity measurement using the gamma methodology has a significant advantage respect to the conventional method due to the fast and non-destructive determination, and also for supplying results with a greater characterization in small scales, in relation to the heterogeneity of the porosity. The conventional methodology presents good results only for homogeneous samples. The experimental set up for the gamma ray transmission technique consisted of a 241 Am source (59,53 keV), a NaI (Tl) scintillation detector, collimators, a XYZ, micrometric table and standard gamma spectrometry electronics connected to a multichannel analyser. (author)

  19. Porosity and Mechanical Strength of an Autoclaved Clayey Cellular Concrete

    Directory of Open Access Journals (Sweden)

    P. O. Guglielmi

    2010-01-01

    Full Text Available This paper investigates the porosity and the mechanical strength of an Autoclaved Clayey Cellular Concrete (ACCC with the binder produced with 75 wt% kaolinite clay and 25 wt% Portland cement. Aluminum powder was used as foaming agent, from 0.2 wt% to 0.8 wt%, producing specimens with different porosities. The results show that the specimens with higher content of aluminum presented pore coalescence, which can explain the lower porosity of these samples. The porosities obtained with the aluminum contents used in the study were high (approximately 80%, what accounts for the low mechanical strength of the investigated cellular concretes (maximum of 0.62 MPa. Nevertheless, comparing the results obtained in this study to the ones for low temperature clayey aerated concrete with similar compositions, it can be observed that autoclaving is effective for increasing the material mechanical strength.

  20. Influence of Chemical Composition on Porosity in Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Kucharčík L.

    2014-06-01

    Full Text Available Porosity is one of the major defects in aluminum castings, which results is a decrease of a mechanical properties. Porosity in aluminum alloys is caused by solidification shrinkage and gas segregation. The final amount of porosity in aluminium castings is mostly influenced by several factors, as amount of hydrogen in molten aluminium alloy, cooling rate, melt temperature, mold material, or solidification interval. This article deals with effect of chemical composition on porosity in Al-Si aluminum alloys. For experiment was used Pure aluminum and four alloys: AlSi6Cu4, AlSi7Mg0, 3, AlSi9Cu1, AlSi10MgCu1.

  1. Support vector regression for porosity prediction in a heterogeneous reservoir: A comparative study

    Science.gov (United States)

    Al-Anazi, A. F.; Gates, I. D.

    2010-12-01

    In wells with limited log and core data, porosity, a fundamental and essential property to characterize reservoirs, is challenging to estimate by conventional statistical methods from offset well log and core data in heterogeneous formations. Beyond simple regression, neural networks have been used to develop more accurate porosity correlations. Unfortunately, neural network-based correlations have limited generalization ability and global correlations for a field are usually less accurate compared to local correlations for a sub-region of the reservoir. In this paper, support vector machines are explored as an intelligent technique to correlate porosity to well log data. Recently, support vector regression (SVR), based on the statistical learning theory, have been proposed as a new intelligence technique for both prediction and classification tasks. The underlying formulation of support vector machines embodies the structural risk minimization (SRM) principle which has been shown to be superior to the traditional empirical risk minimization (ERM) principle employed by conventional neural networks and classical statistical methods. This new formulation uses margin-based loss functions to control model complexity independently of the dimensionality of the input space, and kernel functions to project the estimation problem to a higher dimensional space, which enables the solution of more complex nonlinear problem optimization methods to exist for a globally optimal solution. SRM minimizes an upper bound on the expected risk using a margin-based loss function ( ɛ-insensitivity loss function for regression) in contrast to ERM which minimizes the error on the training data. Unlike classical learning methods, SRM, indexed by margin-based loss function, can also control model complexity independent of dimensionality. The SRM inductive principle is designed for statistical estimation with finite data where the ERM inductive principle provides the optimal solution (the

  2. Porosity evolution of upper Miocene reefs, Almeria Province, southern Spain

    Science.gov (United States)

    Armstrong, A.K.; Snavely, P.D.; Addicott, W.O.

    1980-01-01

    Sea cliffs 40 km east of Almeria, southeastern Spain, expose upper Miocene reefs and patch reefs of the Plomo formation. These reefs are formed of scleractinian corals, calcareous algae, and mollusks. The reef cores are as much as 65 m thick and several hundred meters wide. Fore-reef talus beds extend 1,300 m across and are 40 m thick. The reefs and reef breccias are composed of calcific dolomite. They lie on volcanic rocks that have a K-Ar date of 11.5 m.y. and in turn are overlain by the upper Miocene Vicar Formation. In the reef cores and fore-reef breccia beds, porosity is both primary and postdepositional. Primary porosity is of three types: (a) boring clam holes in the scleractinian coral heads, cemented reef rocks, and breccias; (b) intraparticle porosity within the corals, Halimeda plates, and vermetid worm tubes; and (c) interparticle porosity between bioclastic fragments and in the reef breccia. Postdepositional moldic porosity was formed by the solution of aragonitic material such as molluscan and coral fragments. The Plomo reef carbonate rocks have high porosity and permeability, and retain a great amount of depositional porosity. Pores range in size from a few micrometers to 30 cm. The extensive intercrystalline porosity and high permeability resulted from dolomitization of micritic matrix. Dolomite rhombs are between 10 and 30 μ across. More moldic porosity was formed by the dissolution of the calclte bioclasts. Some porosity reduction has occurred by incomplete and partial sparry calcite infilling of interparticular, moldic, and intercrystalline voids. The high porosity and permeability of these reefs make them important targets for petroleum exploration in the western Mediterranean off southern Spain. In these offshore areas in the subsurface the volcanic ridge and the Plomo reef complex are locally onlapped or overlapped by 350 m or more of Miocene(?) and Pliocene fine-grained sedimentary rocks. The possibility exists that the buried Plomo reef

  3. Properties of Bulk Sintered Silver As a Function of Porosity

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Vuono, Daniel J [ORNL; Wang, Hsin [ORNL; Ferber, Mattison K [ORNL; Liang, Zhenxian [ORNL

    2012-06-01

    This report summarizes a study where various properties of bulk-sintered silver were investigated over a range of porosity. This work was conducted within the National Transportation Research Center's Power Device Packaging project that is part of the DOE Vehicle Technologies Advanced Power Electronics and Electric Motors Program. Sintered silver, as an interconnect material in power electronics, inherently has porosity in its produced structure because of the way it is made. Therefore, interest existed in this study to examine if that porosity affected electrical properties, thermal properties, and mechanical properties because any dependencies could affect the intended function (e.g., thermal transfer, mechanical stress relief, etc.) or reliability of that interconnect layer and alter how its performance is modeled. Disks of bulk-sintered silver were fabricated using different starting silver pastes and different sintering conditions to promote different amounts of porosity. Test coupons were harvested out of the disks to measure electrical resistivity and electrical conductivity, thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and yield stress. The authors fully recognize that the microstructure of processed bulk silver coupons may indeed not be identical to the microstructure produced in thin (20-50 microns) layers of sintered silver. However, measuring these same properties with such a thin actual structure is very difficult, requires very specialized specimen preparation and unique testing instrumentation, is expensive, and has experimental shortfalls of its own, so the authors concluded that the herein measured responses using processed bulk sintered silver coupons would be sufficient to determine acceptable values of those properties. Almost all the investigated properties of bulk sintered silver changed with porosity content within a range of 3-38% porosity. Electrical resistivity, electrical conductivity

  4. Determining the mechanical properties of high porosity nickel

    International Nuclear Information System (INIS)

    Frappier, J.C.; Poirier, J.

    1975-01-01

    The following tests were carried out on high porosity (40 to 70%) sintered nickel: tensile tests, compression tests, diametral crushing tests, using strain gauges and extensometers. Results were obtained on the relationship elastic properties - porosity, Poisson coefficient in relation to deformation, variations of yield strength, and breaking stress. these various properties were also studied in relation to the sintering methods and the properties of the powders used [fr

  5. Artificial Oxide Heterostructures with Tunable Band Gap

    Science.gov (United States)

    2016-12-20

    tunable band gap and band structures in epitaxial grown CaMnO3. The efforts have been devoted to (1) the thin film growth; (2) the tunable optical...plan to pursue a claim for personal or organizational intellectual property? Changes in research objectives (if any): Change in AFOSR Program Officer

  6. Tunable synthesis of copper nanotubes

    International Nuclear Information System (INIS)

    Kaniukov, E; Yakimchuk, D; Kozlovsky, A; Shlimas, D; Zdorovets, M; Kadyrzhanov, K

    2016-01-01

    Simple method of tunable synthesis of copper nanotubes based on template synthesis was developed. A comprehensive study of the structural, morphological and electrical characteristics of the obtained nanostructures was carried out. Characterization of structural features was made by methods of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffractometry analysis. Evaluation of wall thickness is made by methods of gas permeability. Electrical conductivity of nanotubes was define in the study of their current-voltage characteristics. The possibility to control of copper nanotubes physical properties by variation of the deposition parameters was shown. (paper)

  7. POROSITY EVALUATION OF FLAME-SPRAYED AND HEAT-TREATED NICKEL-BASED COATINGS USING IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Zoran Bergant

    2011-03-01

    Full Text Available Flame sprayed coatings are susceptible to the formation of inter-connected elongated porosity due to the lack of fusion between sprayed particles or the expansion of gases generated during the spraying process. The partial remelting of self-fluxing Ni-Cr-B-Si coating after spraying is an efficient method to reduce porosity and to improve coating microstructural and mechanical properties. The paper describes the image preprocessing procedure for noise removal which separates the pores from the background and the noise. The optimal temperature and time of a furnace heat treatment of Ni-Cr-B-Si coated specimens was determined by using a three-level factorial experiment. The purpose was to obtain the lowest possible porosity. Equivalent diameter, elongation, and major axis angle were analyzed and compared using probability density functions. The experiment shows zero-percent porosity cannot be obtained with a partial remelting of flame-sprayed Ni-Cr-B-Si coatings; however, porosity can be greatly reduced. This method of coating post-processing not only favours pore size and shape but also eliminates the undesired network of interconnected elongated pores.

  8. Can porosity affect the hyperspectral signature of sandy landscapes?

    Science.gov (United States)

    Baranoski, Gladimir V. G.; Kimmel, Bradley W.

    2017-10-01

    Porosity is a fundamental property of sand deposits found in a wide range of landscapes, from beaches to dune fields. As a primary determinant of the density and permeability of sediments, it represents a central element in geophysical studies involving basin modeling and coastal erosion as well as geoaccoustics and geochemical investigations aiming at the understanding of sediment transport and water diffusion properties of sandy landscapes. These applications highlight the importance of obtaining reliable porosity estimations, which remains an elusive task, notably through remote sensing. In this work, we aim to contribute to the strengthening of the knowledge basis required for the development of new technologies for the remote monitoring of environmentally-triggered changes in sandy landscapes. Accordingly, we employ an in silico investigation approach to assess the effects of porosity variations on the reflectance of sandy landscapes in the visible and near-infrared spectral domains. More specifically, we perform predictive computer simulations using SPLITS, a hyperspectral light transport model for particulate materials that takes into account actual sand characterization data. To the best of our knowledge, this work represents the first comprehensive investigation relating porosity to the reflectance responses of sandy landscapes. Our findings indicate that the putative dependence of these responses on porosity may be considerably less pronounced than its dependence on other properties such as grain size and shape. Hence, future initiatives for the remote quantification of porosity will likely require reflectance sensors with a high degree of sensitivity.

  9. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control.

    Science.gov (United States)

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented.

  10. Quantifying multiscale porosity and fracture aperture distribution in granite cores using computed tomography

    Science.gov (United States)

    Wenning, Quinn; Madonna, Claudio; Joss, Lisa; Pini, Ronny

    2017-04-01

    Knowledge of porosity and fracture (aperture) distribution is key towards a sound description of fluid transport in low-permeability rocks. In the context of geothermal energy development, the ability to quantify the transport properties of fractures is needed to in turn quantify the rate of heat transfer, and, accordingly, to optimize the engineering design of the operation. In this context, core-flooding experiments coupled with non-invasive imaging techniques (e.g., X-Ray Computed Tomography - X-Ray CT) represent a powerful tool for making direct observations of these properties under representative geologic conditions. This study focuses on quantifying porosity and fracture aperture distribution in a fractured westerly granite core by using two recently developed experimental protocols. The latter include the use of a highly attenuating gas [Vega et al., 2014] and the application of the so-called missing CT attenuation method [Huo et al., 2016] to produce multidimensional maps of the pore space and of the fractures. Prior to the imaging experiments, the westerly granite core (diameter: 5 cm, length: 10 cm) was thermally shocked to induce micro-fractured pore space; this was followed by the application of the so-called Brazilian method to induce a macroscopic fracture along the length of the core. The sample was then mounted in a high-pressure aluminum core-holder, exposed to a confining pressure and placed inside a medical CT scanner for imaging. An initial compressive pressure cycle was performed to remove weak asperities and reduce the hysteretic behavior of the fracture with respect to effective pressure. The CT scans were acquired at room temperature and 0.5, 5, 7, and 10 MPa effective pressure under loading and unloading conditions. During scanning the pore fluid pressure was undrained and constant, and the confining pressure was regulated at the desired pressure with a high precision pump. Highly transmissible krypton and helium gases were used as

  11. Continuously tunable nucleic acid hybridization probes.

    Science.gov (United States)

    Wu, Lucia R; Wang, Juexiao Sherry; Fang, John Z; Evans, Emily R; Pinto, Alessandro; Pekker, Irena; Boykin, Richard; Ngouenet, Celine; Webster, Philippa J; Beechem, Joseph; Zhang, David Yu

    2015-12-01

    In silico-designed nucleic acid probes and primers often do not achieve favorable specificity and sensitivity tradeoffs on the first try, and iterative empirical sequence-based optimization is needed, particularly in multiplexed assays. We present a novel, on-the-fly method of tuning probe affinity and selectivity by adjusting the stoichiometry of auxiliary species, which allows for independent and decoupled adjustment of the hybridization yield for different probes in multiplexed assays. Using this method, we achieved near-continuous tuning of probe effective free energy. To demonstrate our approach, we enforced uniform capture efficiency of 31 DNA molecules (GC content, 0-100%), maximized the signal difference for 11 pairs of single-nucleotide variants and performed tunable hybrid capture of mRNA from total RNA. Using the Nanostring nCounter platform, we applied stoichiometric tuning to simultaneously adjust yields for a 24-plex assay, and we show multiplexed quantitation of RNA sequences and variants from formalin-fixed, paraffin-embedded samples.

  12. Physical properties of Martian meteorites: Porosity and density measurements

    Science.gov (United States)

    Coulson, Ian M.; Beech, Martin; Nie, Wenshuang

    Martian meteorites are fragments of the Martian crust. These samples represent igneous rocks, much like basalt. As such, many laboratory techniques designed for the study of Earth materials have been applied to these meteorites. Despite numerous studies of Martian meteorites, little data exists on their basic structural characteristics, such as porosity or density, information that is important in interpreting their origin, shock modification, and cosmic ray exposure history. Analysis of these meteorites provides both insight into the various lithologies present as well as the impact history of the planet's surface. We present new data relating to the physical characteristics of twelve Martian meteorites. Porosity was determined via a combination of scanning electron microscope (SEM) imagery/image analysis and helium pycnometry, coupled with a modified Archimedean method for bulk density measurements. Our results show a range in porosity and density values and that porosity tends to increase toward the edge of the sample. Preliminary interpretation of the data demonstrates good agreement between porosity measured at 100× and 300× magnification for the shergottite group, while others exhibit more variability. In comparison with the limited existing data for Martian meteorites we find fairly good agreement, although our porosity values typically lie at the low end of published values. Surprisingly, despite the increased data set, there is little by way of correlation between either porosity or density with parameters such as shock effect or terrestrial residency. Further data collection on additional meteorite samples is required before more definitive statements can be made concerning the validity of these observations.

  13. Tunable Squeezing Using Coupled Ring Resonators on a Silicon Nitride Chip

    Science.gov (United States)

    2018-01-16

    can be harnessed for on-chip quantum enhanced sensing protocols which require an optimal degree of squeezing. U U Tunable Squeezing Using Coupled Ring...Lipson1, 4 1School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA 2School of Applied and Engineering Physics...squeezing factor from 0.9 dB to 3.9 dB. Such wide tunability in the squeezing level can be harnessed for on-chip quantum enhanced sensing protocols

  14. Interfacial engineering of renewable metal organic framework derived honeycomb-like nanoporous aluminum hydroxide with tunable porosity.

    Science.gov (United States)

    Pan, Ye-Tang; Zhang, Lu; Zhao, Xiaomin; Wang, De-Yi

    2017-05-01

    Novel honeycomb-like mesoporous aluminum hydroxide (pATH) was synthesized via a facile one-step reaction by employing ZIF-8 as a template. This self-decomposing template was removed automatically under acidic conditions without the need for any tedious or hazardous procedures. Meanwhile, the pore size of pATH was easily modulated by tuning the dimensions of the ZIF-8 polyhedrons. Of paramount importance was the fact that the dissolved ZIF-8 in solution was regenerated upon deprotonation of the ligand under mild alkali conditions, and was reused in the preparation of pATH, thus forming a delicate synthesis cycle. The renewable template conferred cost-effective and sustainable features to the as-synthesized product. As a proof-of-concept application, the fascinating nanoporous structure enabled pATH to load more phosphorous-containing flame retardant and endowed better interaction with epoxy resin over that of commercial aluminum hydroxide. The limiting oxygen index, UL-94 vertical burning test and cone calorimeter test showed that the results of epoxy with the modified pATH rivalled those of epoxy with two times the loading amount of the commercial counterpart, while the former presented better mechanical properties. The proposed "amorphous replica method" used in this work will advance the potential for launching a vast area of research and technology development for the preparation of porous metal hydroxides for use in practical applications.

  15. Nonlinear, tunable and active metamaterials

    CERN Document Server

    Lapine, Mikhail; Kivshar, Yuri

    2015-01-01

    Metamaterials, artificial electromagnetic media achieved by structuring on the subwave-length-scale were initially suggested for the negative index and superlensing. They became a paradigm for engineering electromagnetic space and controlling propagation of waves. The research agenda is now shifting on achieving tuneable, switchable, nonlinear and sensing functionalities. The time has come to talk about the emerging research field of metadevices employing active and tunable metamaterials with unique functionalities achieved by structuring of functional matter on the subwave-length scale. This book presents the first systematic and comprehensive summary of the reviews written by the pioneers and top-class experts in the field of metamaterials. It addresses many grand challenges of the cutting edge research for creating smaller and more efficient photonic structures and devices.

  16. Evaluation of porosity in Al alloy die castings

    Directory of Open Access Journals (Sweden)

    M. Říhová

    2012-01-01

    Full Text Available Mechanical properties of an Al-alloy die casting depend significantly on its structural properties. Porosity in Al-alloy castings is one of the most frequent causes of waste castings. Gas pores are responsible for impaired mechanical-technological properties of cast materials. On the basis of a complex evaluation of experiments conducted on AlSi9Cu3 alloy samples taken from the upper engine block which was die- cast with and without local squeeze casting it can be said that castings manufactured without squeeze casting exhibit maximum porosity in the longitudinal section. The area without local squeeze casting exhibits a certain reduction in mechanical properties and porosity increased to as much as 5%. However, this still meets the norms set by SKODA AUTO a.s.

  17. UO2 fuel pellet characterization: density and porosity measurement methods

    International Nuclear Information System (INIS)

    Kopuz, B.; Bayram, Y.; Colak, L. and others

    1997-01-01

    The most commonly used fuel in nuclear power plants is UO 2 . UO 2 is a ceramic material and is produced by powder metallurgy techniques. The densities of the material produced can never reach the theoretical densities because of the production technology. The porosity allows the gas fission products, generated under power plant working conditions, to escape and therefor is required. Direct measurement of density which is an application of the Archimedes principle, is based on replacement of liquids. Replacement fluid is m-xylene. Density measurement are made by weighing the dry pellets in air, then weighing the m-xylene impregnated pellets in air and m-xylene impregnated pellets in air and m-xylene. UO 2 pellets densities, total porosities and open porosities can be calculated from the collection data

  18. Tailoring the porosity of hierarchical zeolites by carbon-templating

    DEFF Research Database (Denmark)

    Zhu, Kake; Egeblad, Kresten; Christensen, Claus H.

    2008-01-01

    We report the synthesis and characterization of a series of hierarchical porous zeolite single crystal materials with a range of porosities made available by carbon-templating using differently-sized carbon particles as templates for the additional non-micropore porosity. The materials were...... prepared by adsorption of the required zeolite synthesis gel components onto various commercially available carbon black powders followed by crystallization of the zeolite crystals in the presence of the inert carbon matrix and subsequent removal of the carbon particles embedded in the zeolite crystals...... by combustion. It is shown that the additional porosity of the hierarchical zeolites can be tailored by encapsulation of the differently-sized carbon particles during crystallization....

  19. Homogeneity vs. Heterogeneity of Porosity in Boom Clay

    International Nuclear Information System (INIS)

    Hemes, Susanne; Desbois, Guillaume; Urai, Janos L.; De Craen, Mieke; Honty, Miroslav

    2013-01-01

    Microstructural investigations on Boom Clay at nano- to micrometer scale, using BIB-SEM methods, result in porosity characterization for different mineral phases from direct observations on high resolution SE2-images of representative elementary areas (REAs). High quality, polished surfaces of cross-sections of ∼ 1 mm 2 size were produced on three different samples from the Mol-Dessel research site (Belgium). More than 33,000 pores were detected, manually segmented and analyzed with regard to their size, shape and orientation. Two main pore classes were defined: Small pores (< 500 nm (ED)) within the clay matrices of samples and =big' pores (> 500 nm (ED)) at the interfaces between clay and non-clay mineral (NCM) grains. Samples investigated show similar porosities regarding the first pore-class, but differences occur at the interfaces between clay matrix and NCM grains. These differences were interpreted to be due to differences in quantitative mineralogy (amount of non-clay mineral grains) and grain-size distributions between samples investigated. Visible porosities were measured as 15 to 17 % for samples investigated. Pore-size distributions of pores in clay are similar for all samples, showing log-normal distributions with peaks around 60 nm (ED) and more than 95 % of the pores being smaller than 500 nm (ED). Fitting pore-size distributions using power-laws with exponents between 1.56 and 1.7, assuming self-similarity of the pore space, thus pores smaller than the pore detection resolution following the same power-laws and using these power-laws for extrapolation of pore-size distributions below the limit of pore detection resolution, results in total estimated porosities between 20 and 30 %. These results are in good agreement with data known from Mercury Porosimetry investigations (35-40 % porosity) and water content porosity measurements (∼ 36 %) performed on Boom Clay. (authors)

  20. Tunable colors and white-light emission based on a microporous luminescent Zn(II)-MOF.

    Science.gov (United States)

    He, Hongming; Sun, Fuxing; Borjigin, Tsolmon; Zhao, Nian; Zhu, Guangshan

    2014-03-07

    Metal-organic frameworks (MOFs) are a rapidly growing class of hybrid materials with many multifunctional properties. The permanent porosity plays a central role in the functional properties. In particular, the luminescent MOFs with a permanent porosity have wide applications in guest species recognition and adsorption. In this contribution, we aim to develop tunable colors and white-light luminescence materials by the encapsulation of Ln(3+) species in microporous luminescent MOFs. A semi-rigid trivalent carboxylic acid 1,3,5-tri(4-carboxyphenoxy)benzene (H3TCPB) was selected as the organic building block, not only because it is suitable to construct microporous frameworks, but also by reason of its blue luminescent emission. Under solvothermal reactions, a microporous MOF material, [Zn3(TCPB)2(H2O)2]·2H2O·4DMF (JUC-113, JUC = Jilin University, China), was synthesized, which has a permanent porosity and emits blue light. According to three-primary colors, the guest luminescent species should be Tb(3+) and Eu(3+) owing to their distinctive colors (Tb(3+), green; Eu(3+), red). In addition, the luminescent properties of JUC-113 can be easily tuned by different combinations of the encapsulation amount of Tb(3+) and Eu(3+), obtaining white-light emission materials.

  1. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering.

    Science.gov (United States)

    Vikingsson, L; Claessens, B; Gómez-Tejedor, J A; Gallego Ferrer, G; Gómez Ribelles, J L

    2015-08-01

    In tissue engineering the design and optimization of biodegradable polymeric scaffolds with a 3D-structure is an important field. The porous scaffold provide the cells with an adequate biomechanical environment that allows mechanotransduction signals for cell differentiation and the scaffolds also protect the cells from initial compressive loading. The scaffold have interconnected macro-pores that host the cells and newly formed tissue, while the pore walls should be micro-porous to transport nutrients and waste products. Polycaprolactone (PCL) scaffolds with a double micro- and macro-pore architecture have been proposed for cartilage regeneration. This work explores the influence of the micro-porosity of the pore walls on water permeability and scaffold compliance. A Poly(Vinyl Alcohol) with tailored mechanical properties has been used to simulate the growing cartilage tissue inside the scaffold pores. Unconfined and confined compression tests were performed to characterize both the water permeability and the mechanical response of scaffolds with varying size of micro-porosity while volume fraction of the macro-pores remains constant. The stress relaxation tests show that the stress response of the scaffold/hydrogel construct is a synergic effect determined by the performance of the both components. This is interesting since it suggests that the in vivo outcome of the scaffold is not only dependent upon the material architecture but also the growing tissue inside the scaffold׳s pores. On the other hand, confined compression results show that compliance of the scaffold is mainly controlled by the micro-porosity of the scaffold and less by hydrogel density in the scaffold pores. These conclusions bring together valuable information for customizing the optimal scaffold and to predict the in vivo mechanical behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Evaluation of Rock Porosity Measurement Accuracy with a Helium Porosimeter

    Directory of Open Access Journals (Sweden)

    Rychlicki Stanis³aw

    2004-09-01

    Full Text Available Results of an interlaboratory experiment, lying in determining the accuracy (trueness and precision of rock porosity measurements with a helium porosimeter, are presented in the paper, taking into account foundations of metrology, theory of uncertainty and measurement errors. The experiments were carried out in three different petrophysical laboratories related with oil mining in a different span of time. The research material was composed of 20 rock samples of varying porosity coefficient, ranging from about 1 to about 23%.In the course of the analysis, the measurement accuracy was assessed in the conditions of repeatability and reconstructibility of experiments, taking into account interlaboratory and intralaboratory variability of the results.

  3. Low porosity portland cement pastes based on furan polymers

    International Nuclear Information System (INIS)

    Darweesh, H.H.M.

    2005-01-01

    The effect of three different types of Furan polymers on the porosity, mechanical properties, mechanism of hydration and microstructure of Ordinary Portland cement (OPC) pastes was investigated. The results showed that mixing the OPC with Furan polymers, the standard water of consistency of the different cement pastes decreases and therefore the setting times (initial and final) are shortened. The total porosity of the hardened cement pastes decreased, while the mechanical properties improved and enhanced at all curing ages of hydration compared with those of the pure OPC pastes. The hydration process with Furan polymers proceeded according to the following decreasing order: F.ac. > F.ph. > F.alc. > OPC

  4. Procedure for Uranium-Molybdenum Density Measurements and Porosity Determination

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-13

    The purpose of this document is to provide guidelines for preparing uranium-molybdenum (U-Mo) specimens, performing density measurements, and computing sample porosity. Typical specimens (solids) will be sheared to small rectangular foils, disks, or pieces of metal. A mass balance, solid density determination kit, and a liquid of known density will be used to determine the density of U-Mo specimens using the Archimedes principle. A standard test weight of known density would be used to verify proper operation of the system. By measuring the density of a U-Mo sample, it is possible to determine its porosity.

  5. Cold spray NDE for porosity and other process anomalies

    Science.gov (United States)

    Glass, S. W.; Larche, M. R.; Prowant, M. S.; Suter, J. D.; Lareau, J. P.; Jiang, X.; Ross, K. A.

    2018-04-01

    This paper describes a technology review of nondestructive evaluation (NDE) methods that can be applied to cold spray coatings. Cold spray is a process for depositing metal powder at high velocity so that it bonds to the substrate metal without significant heating that would be likely to cause additional residual tensile stresses. Coatings in the range from millimeters to centimeters are possible at relatively high deposition rates. Cold spray coatings that may be used for hydroelectric components that are subject to erosion, corrosion, wear, and cavitation damage are of interest. The topic of cold spray NDE is treated generally, however, but may be considered applicable to virtually any cold spray application except where there are constraints of the hydroelectric component application that bear special consideration. Optical profilometry, eddy current, ultrasound, and hardness tests are shown for one set of good, fair, and poor nickel-chrome (NiCr) on 304 stainless steel (304SS) cold spray samples to demonstrate inspection possibilities. The primary indicator of cold spray quality is the cold spray porosity that is most directly measured with witness-sample destructive examinations (DE)—mostly photo-micrographs. These DE-generated porosity values are correlated with optical profilometry, eddy current, ultrasound, and hardness test NDE methods to infer the porosity and other information of interest. These parameters of interest primarily include: • Porosity primarily caused by improper process conditions (temperature, gas velocity, spray standoff, spray angle, powder size, condition, surface cleanliness, surface oxide, etc.) • Presence/absence of the cold spray coating including possible over-sprayed voids • Coating thicknessOptical profilometry measurements of surface roughness trended with porosity plus, if compared with a reference measurement or reference drawing, would provide information on the coating thickness. Ultrasound could provide similar

  6. Electro-Optic Tunable Laser Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop a compact, rugged, rapidly and widely tunable laser based on a quantum cascade diode laser at...

  7. SIMULATION OF POROSITY AND PTFE CONTENT IN GAS DIFFUSION LAYER ON PROTON EXCHANGE MEMBRANE FUEL CELL PERFORMANCE

    Directory of Open Access Journals (Sweden)

    NUR H. MASLAN

    2016-01-01

    Full Text Available Numerous research and development activities have been conducted to optimize the operating parameters of a proton exchange membrane fuel cell (PEMFC by experiments and simulations. This study explains the development of a 3D model by using ANSYS FLUENT 14.5 to determine the optimum PEMFC parameters, namely, porosity and polytetrafluoroethylene (PTFE content, in the gas diffusion layer (GDL. A 3D model was developed to analyze the properties and effects of GDL. Simulation results showed that the increase in GDL porosity significantly improved the performance of PEMFC in generating electrical power. However, the performance of PEMFC decreased with increasing PTFE content in GDL. Thus, the PTFE content in the GDL must be optimized and the optimum PTFE content should be 5 wt%. The model developed in this simulation showed good capability in simulating the PEMFC parameters to assist the development process of PEMFC design.

  8. Tunable Beam Diffraction in Infiltrated Microstructured Fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.

    We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites.......We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites....

  9. Liquid crystal tunable photonic crystal dye laser

    DEFF Research Database (Denmark)

    Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron

    2010-01-01

    We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium.......We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium....

  10. Three-dimensional broadband tunable terahertz metamaterials

    DEFF Research Database (Denmark)

    Fan, Kebin; Strikwerda, Andrew; Zhang, Xin

    2013-01-01

    We present optically tunable magnetic three-dimensional (3D) metamaterials at terahertz (THz) frequencies which exhibit a tuning range of ~30% of the resonance frequency. This is accomplished by fabricating 3D array structures consisting of double-split-ring resonators (DSRRs) on silicon on sapph...... as verified through electromagnetic simulations and parameter retrieval. Our approach extends dynamic metamaterial tuning to magnetic control, and may find applications in switching and modulation, polarization control, or tunable perfect absorbers....

  11. Electrically Tunable Plasmonic Resonances with Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Ni, Xingjie

    2012-01-01

    Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance.......Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance....

  12. Tunable Multifunction Filter Using Current Conveyor

    OpenAIRE

    Kumar, Manish; Srivastava, M. C.; Kumar, Umesh

    2010-01-01

    The paper presents a current tunable multifunction filter using current conveyor. The proposed circuit can be realized as on chip tunable low pass, high pass, band pass and elliptical notch filter. The circuit employs two current conveyors, one OTA, four resistors and two grounded capacitors, ideal for integration. It has only one output terminal and the number of input terminals may be used. Further, there is no requirement for component matching in the circuit. The resonance frequency ({\\om...

  13. Effects of sintering temperature on the density and porosity

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... used as a model system for the investigation of ce- ramic sintering behavior [1, 2]. However, the system ... cially available metal foams are based on aluminium, copper, nickel and metal alloys [4]. ... Zhao et al [9] reported that the porosity of the as- manufactured foam is determined by the density of.

  14. Porosity of free boundaries in the obstacle problem for quasilinear ...

    Indian Academy of Sciences (India)

    (Math. Sci.) Vol. 123, No. 3, August 2013, pp. 373–382. c Indian Academy of Sciences. Porosity of free boundaries in the obstacle problem for quasilinear elliptic equations. JUN ZHENG1,∗. , ZHIHUA ZHANG2 and PEIHAO ZHAO3. 1Basic Course Department, Emei Campus, Southwest Jiaotong University, Leshan,. Sichuan ...

  15. Initial porosity of random packing : Computer simulation of grain rearrangement

    NARCIS (Netherlands)

    Alberts, L.J.H.

    2005-01-01

    The initial porosity of clastic sediments is poorly defined. In spite of this, it is an important parameter in many models that describe the diagenetic processes taking place during the burial of sediments and which are responsible for the transition from sand to sandstone. Diagenetic models are of

  16. The porosity in a fluidized bed heat transfer model

    NARCIS (Netherlands)

    Visser, G; Visser, G.; Valk, M.

    1993-01-01

    A mathematical model of heat transfer between a fluidized bed and an immersed surface and a model of gas flow and porosity, both recently published, were combined and further modified in the area of low velocities where the particle convective component of heat transfer is low or neglectable.

  17. A dual porosity model of nutrient uptake by root hairs

    KAUST Repository

    Zygalakis, K. C.

    2011-08-09

    Summary: • The importance of root hairs in the uptake of sparingly soluble nutrients is understood qualitatively, but not quantitatively, and this limits efforts to breed plants tolerant of nutrient-deficient soils. • Here, we develop a mathematical model of nutrient uptake by root hairs allowing for hair geometry and the details of nutrient transport through soil, including diffusion within and between soil particles. We give illustrative results for phosphate uptake. • Compared with conventional \\'single porosity\\' models, this \\'dual porosity\\' model predicts greater root uptake because more nutrient is available by slow release from within soil particles. Also the effect of soil moisture is less important with the dual porosity model because the effective volume available for diffusion in the soil is larger, and the predicted effects of hair length and density are different. • Consistent with experimental observations, with the dual porosity model, increases in hair length give greater increases in uptake than increases in hair density per unit main root length. The effect of hair density is less in dry soil because the minimum concentration in solution for net influx is reached more rapidly. The effect of hair length is much less sensitive to soil moisture. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  18. Porosity and ion diffusivity of latex-modified cement

    International Nuclear Information System (INIS)

    Nishi, Takashi; Kuriyama, Osamu; Matsuda, Masami; Chino, Koichi; Kikuchi, Makoto

    1990-01-01

    Latex-modified portland cement, which would be expected to have low permeability and ion diffusivity, was studied for possible application as a solidification agent for radioactive wastes generated from nuclear power plants. In order to predict the leaching ratio of radionuclides from the cementitious waste forms, the effect of water and latex content in the fresh cement paste on total porosity and ion diffusivity of hardened paste was quantitatively estimated. Total porosity of hardened cement paste decreased with the reduction of water content in the fresh paste and it was also reduced by latex addition. This latter effect could be attributed to the latex emulsion forming a water-proof film and filling the capillary pores. Also Cs ions diffusivity, which is the ratio of the diffusion coefficient in pore water to that in bulk water, showed an exponential correlation with total porosity for both cement materials. An empirical equation, expressing ion diffusivity as a function of total porosity, was derived from the consideration that the water constrictivity in this porous medium could cause an increase of the apparent viscosity of pore water. These results suggested a possibility that the transport behavior of radionuclides through the cementitious matrix could be estimated from the mixing parameters of the original cement pastes

  19. Tuning porosity via control of interpenetration in a zinc isonicotinate ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 5. Tuning porosity via control of interpenetration in a zinc isonicotinate metal organic framework. Shyamapada Nandi Ramanathan Vaidhyanathan. Special issue on Chemical Crystallography Volume 126 Issue 5 September 2014 pp 1393-1398 ...

  20. Effects of Sintering Temperature on the Density And Porosity of ...

    African Journals Online (AJOL)

    Effects of sintering temperature on the density and porosity of sodium chloride preforms for alu- minium foam manufacturing have been investigated. Cold pressed salt preforms were sintered at 30, 760 and 790 and di erent times ranging between 6- 18 hours in a carbolite furnace at a heating rate of 5/minute. The Results of ...

  1. Estimation of porosity and hydraulic conductivity of shallow ...

    African Journals Online (AJOL)

    In this study, two theoretical methods based respectively on Archie-Kozeny equations and Ohm's-Darcy's laws were used to determine porosity and hydraulic conductivity of shallow aquifer in Yenagoa, Southern Nigeria. Fourteen Vertical Electrical Soundings (VES) using the Schlumberger configuration were carried out ...

  2. Tuning porosity via control of interpenetration in a zinc isonicotinate ...

    Indian Academy of Sciences (India)

    In addition, the thermal decomposition of 1 in an oxygen-deficient medium has been shown to yield significantly porous carbon embedded with ZnO nanoparticles. Keywords. Metal organic framework; zinc; isonicotinate; unusual three-fold interpenetration; post- combustion porosity. 1. Introduction. Owing to their crystalline ...

  3. Tuning porosity via control of interpenetration in a zinc isonicotinate ...

    Indian Academy of Sciences (India)

    Abstract. Metal organic frameworks (MOFs) are a class of porous solids formed by linking metal centres or metal clusters by suitable organic ligands capable of generating porosity in the microporous and mesoporous regimes. They have been investigated extensively for their gas storage applications in the last two decades.

  4. Effect of shelter porosity on downwind flow characteristics

    Czech Academy of Sciences Publication Activity Database

    Nosek, Štěpán; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk; Chaloupecká, Hana; Jakubcová, Michala

    2016-01-01

    Roč. 114, March (2016), 02084-02084 ISSN 2100-014X. [Experimental Fluid Mechanics 2015 /10./. Praha, 17.11.2015-20.11.2015] R&D Projects: GA ČR GA15-18964S Institutional support: RVO:61388998 Keywords : atmospehric boundary layer * porosity * coherent structures * wind tunnel Subject RIV: BK - Fluid Dynamics

  5. Porosity and compaction trend in Okan field (Western Niger Delta ...

    African Journals Online (AJOL)

    Porosity values are in the range of 15 and 25% and this is good enough to enhance hydrocarbon accumulation in the area. Sedimentation pattern is normal in most parts of the field except for a local zone of overpressure observed at a depth of 8300 ft. in the northeastern section of the field. The main hydrocarbon trap ...

  6. Mechanisms and mechanics of porosity formation in ductile iron castings

    Directory of Open Access Journals (Sweden)

    M. Perzyk

    2007-12-01

    Full Text Available Shrinkage defects in ductile iron castings can be of two basic types: shrinkage cavities associated with the liquid contraction prior to the expansion period of the iron as well as the porosity, which may appear even if the liquid shrinkage is fully compensated. In the present paper two possible mechanisms of the porosity are presented and analyzed. The first one is the Karsay’s mechanism based on the secondary shrinkage concept. The second one is the mechanism acting during the expansion period of the iron, first suggested by Ohnaka and co-authors and essentially modified by the present authors. The mechanical interactions between casting and mould are determined for the both mechanisms. Their analysis leads to the conclusion, that porosity forms during expansion period of the melt. The direct cause is the negative pressure which appears in the central part of the casting due to the differences in expansion coefficients of the fast cooling surface layer and slow cooling inner region. Observations concerning feeding behavior of ductile iron castings, based on this mechanism, agree well with industrial practice. The secondary shrinkage is not only needless to induce the porosity, but the corresponding mechanism of its occurrence, proposed by Karsay, does not seem to be valid.

  7. A Novel Porosity Model for Use in Hydrocode Simulations

    Science.gov (United States)

    Wuennemann, K.; Collins, G. S.; Melosh, H. J.

    2005-01-01

    Introduction: Numerical modeling of impact cratering has reached a high degree of sophistication; however, the treatment of porous materials still poses a large problem in hydrocode calculations. Porosity plays only a minor role in the formation of large craters on most planetary objects, but impacts on comets are believed to be highly affected by the presence of porosity, which may be as much as 80%. The upcoming Deep Impact Mission (launched January 2005) will provide more detailed data about the composition of a comet (Tempel 1) by shooting a approx.370 kg projectile onto the surface of its nucleus. The numerical simulations of such impact events requires an appropriate model for how pore space in the comet is crushed out during the violent initial stage of the impact event. Most hydro-codes compute the pressure explicitly using an "equation of state" (EOS) for each material, which relates changes in density and internal energy to changes in pressure. The added complication introduced by porosity is that changes in a material s density are due to both the closing of pore space (compaction) and compression of the matrix. The amount of resistance to volume change and the amount of irreversible work done during these two processes is very different; it is far easier to compact a porous material sample than to compress a non-porous sample of the same material. As an alternative to existing porosity models, like the Pdot(alpha) model [1], we present a novel approach for dealing with the compaction of porosity in hydrocode calculations.

  8. Analysis and demonstration of single-passband response and tuning characteristics in a chirped ladder interferometric filter for a widely tunable laser diode.

    Science.gov (United States)

    Jeong, Seok-Hwan; Matsuo, Shinji; Yoshikuni, Yuzo; Segawa, Toru; Ohiso, Yoshitaka; Suzuki, Hiroyuki

    2005-10-01

    We have designed and demonstrated a chirped ladder-type tunable filter and discussed its potential application for a tunable diode laser. A ladder interferometric filter normally has a periodic passband, which makes it impossible to stabilize laser oscillation frequency. To overcome this drawback, we have designed, fabricated, and characterized a novel chirped tunable ladder filter. We have successfully demonstrated a single-passband response in the fabricated device. Furthermore, a tuning operation of more than 30 nm was achieved by introducing a current injection structure and optimizing electrode lengths at each single-stage ladder interferometer.

  9. Narrowband tunable laser for uranium-233 cleanup process

    International Nuclear Information System (INIS)

    Singh, Sunita; Sridhar, G.; Rawat, V.S.; Kawde, Nitin; Sinha, A.K.; Bhatt, S.; Gantayet, L.M.

    2009-01-01

    Design, development and technology demonstration of proto type Single Longitudinal Mode pulsed tunable laser is reported in this work. The tunable laser has a narrow bandwidth less than 400 MHz required for isotopic clean up of 233 U. (author)

  10. Electrically tunable polarizer based on 2D orthorhombic ferrovalley materials

    Science.gov (United States)

    Shen, Xin-Wei; Tong, Wen-Yi; Gong, Shi-Jing; Duan, Chun-Gang

    2018-03-01

    The concept of ferrovalley materials has been proposed very recently. The existence of spontaneous valley polarization, resulting from ferromagnetism, in such hexagonal 2D materials makes nonvolatile valleytronic applications realizable. Here, we introduce a new member of ferrovalley family with orthorhombic lattice, i.e. monolayer group-IV monochalcogenides (GIVMs), in which the intrinsic valley polarization originates from ferroelectricity, instead of ferromagnetism. Combining the group theory analysis and first-principles calculations, we demonstrate that, different from the valley-selective circular dichroism in hexagonal lattice, linearly polarized optical selectivity for valleys exists in the new type of ferrovalley materials. On account of the distinctive property, a prototype of electrically tunable polarizer is realized. In the ferrovalley-based polarizer, a laser beam can be optionally polarized in x- or y-direction, depending on the ferrovalley state controlled by external electric fields. Such a device can be further optimized to emit circularly polarized radiation with specific chirality and to realize the tunability for operating wavelength. Therefore, we show that 2D orthorhombic ferrovalley materials are the promising candidates to provide an advantageous platform to realize the polarizer driven by electric means, which is of great importance in extending the practical applications of valleytronics.

  11. Comparison of porosity measurement techniques for porous titanium scaffolds evaluation

    International Nuclear Information System (INIS)

    Oliveira, M.V.; Ribeiro, A.A.; Moreira, A.C.; Moraes, A.M.C.; Appoloni, C.R.; Pereira, L.C.

    2009-01-01

    Porous titanium has been used for grafts and implant coatings as it allows the mechanical interlocking of the pores and bone. Evaluation of porous scaffolds for bone regeneration is essential for their manufacture. Porosity, pore size, pore shape and pore homogeneity are parameters that influence strongly the mechanical strength and biological functionality. In this study, porous titanium samples were manufactured by powder metallurgy by using pure titanium powders mixed with a pore former. The quantification of the porosity parameters was assessed in this work by geometric method and gamma-ray transmission, the non-destructive techniques and metallographic images processing, a destructive technique. Qualitative evaluation of pore morphology and surface topography were performed by scanning electron microscopy and optical microscopy. The results obtained and the effectiveness of the techniques used were compared in order to select those most suitable for characterization of porous titanium scaffolds. (author)

  12. Carbon composition with hierarchical porosity, and methods of preparation

    Science.gov (United States)

    Mayes, Richard T; Dai, Sheng

    2014-10-21

    A method for fabricating a porous carbon material possessing a hierarchical porosity, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic component, (iii) a dione component in which carbonyl groups are adjacent, and (iv) an acidic component, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a carbon material possessing a hierarchical porosity comprised of mesopores and macropores. Also described are the resulting hierarchical porous carbon material, a capacitive deionization device in which the porous carbon material is incorporated, as well as methods for desalinating water by use of said capacitive deionization device.

  13. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1979-01-01

    A simultaneous pulsed neutron porosity and thermal neutron capture cross section logging system is provided for radiological well logging of subsurface earth formations. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector, and a combination gamma ray and fast neutron detector is moved through a borehole. Repetitive bursts of neutrons irradiate the earth formations; and, during the bursts, the fast neutron and epithermal neutron populations are sampled. During the interval between bursts the thermal neutron capture gamma ray population is sampled in two or more time intervals. The fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity phi. The capture gamma ray measurements are combined to provide a simultaneous determination of the thermal neutron capture cross section Σ

  14. Three frequency modulated combination thermal neutron lifetime log and porosity

    International Nuclear Information System (INIS)

    Paap, H.J.; Arnold, D.M.; Smith, M.P.

    1976-01-01

    Methods are disclosed for measuring simultaneously the thermal neutron lifetime of the borehole fluid and earth formations in the vicinity of a well borehole, together with the formation porosity. A harmonically intensity modulated source of fast neutrons is used to irradiate the earth formations with fast neutrons at three different modulation frequencies. Intensity modulated clouds of thermal neutrons at each of the three modulation frequencies are detected by dual spaced detectors and the relative phase shift of the thermal neutrons with respect to the fast neutrons is determined at each of the three modulation frequencies at each detector. These measurements are then combined to determine simultaneously the thermal neutron decay time of the borehole fluid, the thermal neutron decay time of surrounding earth formation media and the porosity of the formation media

  15. Earth formation porosity log using measurement of neutron energy spectrum

    International Nuclear Information System (INIS)

    1981-01-01

    Methods and apparatus are described for measuring the porosity of subsurface earth formations in the vicinity of a well borehole by means of neutron well logging techniques. All the commercial techniques for measuring porosity currently available are not as accurate as desirable due to variations in the borehole wall diameter, in the borehole fluids (e.g. with chlorine content) in the casings of the borehole etc. This invention seeks to improve accuracy by using a measurement of the epithermal neutron population at one detector and the fast neutron population at a second detector, spaced approximately the same distance from a neutron source. The latter can be detected either by a fast neutron detector or indirectly by an inelastic gamma ray detector. Background correction can be made, and special detectors used, to discriminate against the detection of thermal neutrons or their resultant capture gamma rays. These fluctuations affect the measurement of thermal neutron populations. (U.K.)

  16. Elastic Equilibrium of Porous Cosserat Media with Double Porosity

    Directory of Open Access Journals (Sweden)

    Roman Janjgava

    2016-01-01

    Full Text Available The static equilibrium of porous elastic materials with double porosity is considered in the case of an elastic Cosserat medium. The corresponding three-dimensional system of differential equations is derived. Detailed consideration is given to the case of plane deformation. A two-dimensional system of equations of plane deformation is written in the complex form and its general solution is represented by means of three analytic functions of a complex variable and two solutions of Helmholtz equations. The constructed general solution enables one to solve analytically a sufficiently wide class of plane boundary value problems of the elastic equilibrium of porous Cosserat media with double porosity. A concrete boundary value problem for a concentric ring is solved.

  17. Microstructure, porosity and mineralogy around fractures in Olkiluoto bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Kuva, J. (ed.); Myllys, M.; Timonen, J. [Jyvaeskylae Univ. (Finland); Kelokaski, M.; Ikonen, J.; Siitari-Kauppi, M. [Helsinki Univ. (Finland); Lindberg, A. [Geological Survey of Finland, Espoo (Finland); Aaltonen, I.

    2012-01-15

    3D distributions of minerals and porosities were determined for samples that included waterconducting fractures. The analysis of these samples was performed using conventional petrography methods, electron microscopy, C-14-PMMA porosity analysis and X-ray tomography. While X-ray tomography proved to be a very useful method when determining the inner structure of the samples, combining tomography results with those obtained by other methods turned out to be difficult without very careful sample preparation design. It seems that the properties of rock around a water-conducting fracture depend on so many uncorrelated factors that no clear pattern emerged even for rock samples with a given type of fracture. We can conclude, however, that a combination of different analysis methods can be useful and used to infer novel structural information about alteration zones adjacent to fracture surfaces. (orig.)

  18. Method of making microspheroidal nuclear fuels having closed porosity

    International Nuclear Information System (INIS)

    Googin, J.M.; Schmitt, C.R.

    1975-01-01

    A process is described for the preparation of microspheroidal particles comprising absorbing uranium cations from a uranyl aqueous solution onto small spherical ion exchange resin particles, drying the uranium-loaded resin, and then carbonizing the dried resin to form a porous carbon spheroid having closed porosity with an oxide or carbide of uranium uniformly dispersed within its volume. The same general technique can be used to form microspheres of the oxides or carbides of other actinide metals. (U.S.)

  19. Understanding age-induced cortical porosity in women

    DEFF Research Database (Denmark)

    Andreasen, Christina Møller; Delaisse, Jean-Marie; van der Eerden, Bram C J

    2018-01-01

    of a histomorphometric analysis of sections of iliac bone specimens from 35 women (age 16-78 years). Firstly, the study shows that the aging-induced cortical porosity reflects an increased pore size rather than an increased pore density. Secondly, it establishes a novel histomorphometric classification of the pores...... initiation of the subsequent bone formation. This article is protected by copyright. All rights reserved....

  20. Gas porosity in metals and alloys irradiated by helium ions

    International Nuclear Information System (INIS)

    Kalin, B.A.; Korshunov, S.N.; Chernov, I.I.

    1987-01-01

    Experimental studies of the development of gas porosity in metals and alloys during irradiation with helium ions up to high doses and during post-irradiation annealings, are reviewed. The main theoretical problems of the mechanisms of bubble formation and growth, the regularities and peculiarities of bubble development in a thin near-the surface layer during the introduction of helium with the energy of tens of kiloelectron volt, are considered

  1. Highly Tunable Narrow Bandpass MEMS Filter

    KAUST Repository

    Hafiz, Md Abdullah Al

    2017-07-07

    We demonstrate a proof-of-concept highly tunable narrow bandpass filter based on electrothermally and electrostatically actuated microelectromechanical-system (MEMS) resonators. The device consists of two mechanically uncoupled clamped-clamped arch resonators, designed such that their resonance frequencies are independently tuned to obtain the desired narrow passband. Through the electrothermal and electrostatic actuation, the stiffness of the structures is highly tunable. We experimentally demonstrate significant percentage tuning (~125%) of the filter center frequency by varying the applied electrothermal voltages to the resonating structures, while maintaining a narrow passband of 550 ± 50 Hz, a stopband rejection of >17 dB, and a passband ripple ≤ 2.5 dB. An analytical model based on the Euler-Bernoulli beam theory is used to confirm the behavior of the filter, and the origin of the high tunability using electrothermal actuation is discussed.

  2. Adaptive Tunable Laser Spectrometer for Space Applications

    Science.gov (United States)

    Flesch, Gregory; Keymeulen, Didier

    2010-01-01

    An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.

  3. Perovskite Superlattices as Tunable Microwave Devices

    Science.gov (United States)

    Christen, H. M.; Harshavardhan, K. S.

    2003-01-01

    Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.

  4. A new powder morphology for making high-porosity nickel structures

    International Nuclear Information System (INIS)

    Cormier, Elena; Yang, Quan Min; Charles, Doug; Wasmund, Eric Bain; Renny, Les V.

    2007-01-01

    Nickel powders with a special branched chain microstructure such as CVRD Inco Limited's Type 255 trademark have been used for more than 50 years as the basis for making porous metal monoliths for applications such as the electrical backbone of nickel electrode batteries by the sinter/slurry process. The classic trade-off when making these structures is that the strength and porosity are inversely correlated. A number of adaptations to the sinter/slurry making process have been proposed to address this problem. The current approach proposes another solution, optimization of the particle microstructure. The strength and porosity relationship of battery plaques made from Type 255 trademark is compared with plaques made with the new powder and it is statistically verified that plaques made from the new powder have an improved combination of structural properties. A comparison of the rheological characteristics of metal powder slurries suggests ways that the new powder can be incorporated into existing processes. Finally, it is shown that properties such as the slurry apparent viscosity can be used as the basis for measuring and predicting the characteristics of particle microstructure that impute these benefits to the sinter/slurry process. An analysis of battery plaques made with the new powder on an industrial battery sinter/slurry production line confirms that the laboratory results are valid. (author)

  5. Design and development of controlled porosity osmotic tablet of diltiazem hydrochloride

    Directory of Open Access Journals (Sweden)

    Sadhana R Shahi

    2012-01-01

    Full Text Available The present work aims towards the design and development of extended release formulation of freely water-soluble drug diltiazem hydrochloride (DLTZ based on osmotic technology by using controlled porosity approach. DLTZ is an ideal candidate for a zero-order drug delivery system because it is freely water-soluble and has a short half-life (2-3 h. Sodium chloride (Osmogen was added to the core tablet to alter the solubility of DLTZ in an aqueous medium. Cellulose acetate (CA and sorbitol were used as semipermeable membrane and pore former, respectively. The effect of different formulation variables namely concentration of osmogen in the core tablet, % pore former, % weight gain, pH of the dissolution medium and agitation intensity on the in vitro release was studied. DLTZ release was directly proportional to % pore former and inversely proportional to % weight gain. The optimized formulation (F8 delivered DLTZ independent of pH and agitation intensity for 12 h at the upper level concentration of % pore former (25% w/w and middle level concentration of % weight gain (6% w/w. The comparative study of elementary osmotic pump (EOP and controlled porosity osmotic pump revealed that it superior than conventional EOP and also easier and cost effective to formulate.

  6. A new powder morphology for making high-porosity nickel structures

    Science.gov (United States)

    Cormier, Elena; Wasmund, Eric Bain; Renny, Les V.; Yang, Quan Min; Charles, Doug

    Nickel powders with a special branched chain microstructure such as CVRD Inco Limited's Type 255™ have been used for more than 50 years as the basis for making porous metal monoliths for applications such as the electrical backbone of nickel electrode batteries by the sinter/slurry process. The classic trade-off when making these structures is that the strength and porosity are inversely correlated. A number of adaptations to the sinter/slurry making process have been proposed to address this problem. The current approach proposes another solution, optimization of the particle microstructure. The strength and porosity relationship of battery plaques made from Type 255™ is compared with plaques made with the new powder and it is statistically verified that plaques made from the new powder have an improved combination of structural properties. A comparison of the rheological characteristics of metal powder slurries suggests ways that the new powder can be incorporated into existing processes. Finally, it is shown that properties such as the slurry apparent viscosity can be used as the basis for measuring and predicting the characteristics of particle microstructure that impute these benefits to the sinter/slurry process. An analysis of battery plaques made with the new powder on an industrial battery sinter/slurry production line confirms that the laboratory results are valid.

  7. Tuning porosity and radial mechanical properties of DNA origami nanotubes via crossover design

    Science.gov (United States)

    Ma, Zhipeng; Kawai, Kentaro; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2017-06-01

    DNA origami nanotubes are utilized as structural platforms for the fabrication of various micro/nanosystems for drug delivery, optical or biological sensing, and even nanoscale robots. Their radial structural and mechanical properties, which play a crucial role in the effective use of micro/nanosystems, have not been fully studied. In particular, the effects of crossovers, which are basic structures for rationally assembling double-stranded DNA (dsDNA) helices into a nanotube configuration, have not yet been characterized experimentally. To investigate the effects of crossovers on the porosity and the radial mechanical properties of DNA origami nanotubes, we fabricated a DNA origami nanotube with varied crossover designs along the nanotube axis. The radial geometry of the DNA origami nanotube is experimentally characterized by both atomic force microscopy (AFM) and electron cryomicroscopy (cryo-EM). Moreover, the radial mechanical properties of the DNA origami nanotube including the radial modulus are directly measured by force-distance-based AFM. These measurements reveal that the porosity and the radial modulus of DNA origami nanotubes can be tuned by adjusting the crossover design, which enables the optimal design and construction of DNA origami nanostructures for various applications.

  8. Effective Thermal Conductivity of High Porosity Open Cell Nickel Foam

    Science.gov (United States)

    Sullins, Alan D.; Daryabeigi, Kamran

    2001-01-01

    The effective thermal conductivity of high-porosity open cell nickel foam samples was measured over a wide range of temperatures and pressures using a standard steady-state technique. The samples, measuring 23.8 mm, 18.7 mm, and 13.6 mm in thickness, were constructed with layers of 1.7 mm thick foam with a porosity of 0.968. Tests were conducted with the specimens subjected to temperature differences of 100 to 1000 K across the thickness and at environmental pressures of 10(exp -4) to 750 mm Hg. All test were conducted in a gaseous nitrogen environment. A one-dimensional finite volume numerical model was developed to model combined radiation/conduction heat transfer in the foam. The radiation heat transfer was modeled using the two-flux approximation. Solid and gas conduction were modeled using standard techniques for high porosity media. A parameter estimation technique was used in conjunction with the measured and predicted thermal conductivities at pressures of 10(exp -4) and 750 mm Hg to determine the extinction coefficient, albedo of scattering, and weighting factors for modeling the conduction thermal conductivity. The measured and predicted conductivities over the intermediate pressure values differed by 13%.

  9. Impact cratering on high-porosity planetary bodies

    Science.gov (United States)

    Collins, Gareth

    2017-06-01

    Porous materials abound in the Solar System. Primordial solids accreted gently from dust into high-porosity aggregates; many asteroids appear to be loosely-bound rubble piles; and the crusts of airless planetary surfaces are heavily fractured from prolonged bombardment of asteroids. High porosity attenuates shock propagation and localizes shock heating, which has several important implications for the evolution of planetary surfaces. Most studies of impact cratering have focused on targets composed of common geologic materials, such as soils and rock, thought to be reasonable proxies for the surfaces of the terrestrial planets. However, it has become clear that those materials are not good analogues for the minor bodies of the Solar System. Here we present numerical and experimental results of impact cratering in high porosity materials that elucidate the compaction regime of planetary cratering: where crater growth is dominated by impactor penetration and compaction, while rapid shock attenuation and extensive collapse limit the volume and speed of ejected material. Understanding these effects is a crucial step in using crater populations to estimate impactor flux, date planetary surfaces and infer subsurface properties, as well as deflecting hazardous near-Earth asteroids. In collaboration with: Kevin Housen, The Boeing Co.

  10. An interlaboratory comparison of methods for measuring rock matrix porosity

    International Nuclear Information System (INIS)

    Rasilainen, K.; Hellmuth, K.H.; Kivekaes, L.; Ruskeeniemi, T.; Melamed, A.; Siitari-Kauppi, M.

    1996-09-01

    An interlaboratory comparison study was conducted for the available Finnish methods of rock matrix porosity measurements. The aim was first to compare different experimental methods for future applications, and second to obtain quality assured data for the needs of matrix diffusion modelling. Three different versions of water immersion techniques, a tracer elution method, a helium gas through-diffusion method, and a C-14-PMMA method were tested. All methods selected for this study were established experimental tools in the respective laboratories, and they had already been individually tested. Rock samples for the study were obtained from a homogeneous granitic drill core section from the natural analogue site at Palmottu. The drill core section was cut into slabs that were expected to be practically identical. The subsamples were then circulated between the different laboratories using a round robin approach. The circulation was possible because all methods were non-destructive, except the C-14-PMMA method, which was always the last method to be applied. The possible effect of drying temperature on the measured porosity was also preliminarily tested. These measurements were done in the order of increasing drying temperature. Based on the study, it can be concluded that all methods are comparable in their accuracy. The selection of methods for future applications can therefore be based on practical considerations. Drying temperature seemed to have very little effect on the measured porosity, but a more detailed study is needed for definite conclusions. (author) (4 refs.)

  11. Dissolved CO2Increases Breakthrough Porosity in Natural Porous Materials.

    Science.gov (United States)

    Yang, Y; Bruns, S; Stipp, S L S; Sørensen, H O

    2017-07-18

    When reactive fluids flow through a dissolving porous medium, conductive channels form, leading to fluid breakthrough. This phenomenon is caused by the reactive infiltration instability and is important in geologic carbon storage where the dissolution of CO 2 in flowing water increases fluid acidity. Using numerical simulations with high resolution digital models of North Sea chalk, we show that the breakthrough porosity is an important indicator of dissolution pattern. Dissolution patterns reflect the balance between the demand and supply of cumulative surface. The demand is determined by the reactive fluid composition while the supply relies on the flow field and the rock's microstructure. We tested three model scenarios and found that aqueous CO 2 dissolves porous media homogeneously, leading to large breakthrough porosity. In contrast, solutions without CO 2 develop elongated convective channels known as wormholes, with low breakthrough porosity. These different patterns are explained by the different apparent solubility of calcite in free drift systems. Our results indicate that CO 2 increases the reactive subvolume of porous media and reduces the amount of solid residual before reactive fluid can be fully channelized. Consequently, dissolved CO 2 may enhance contaminant mobilization near injection wellbores, undermine the mechanical sustainability of formation rocks and increase the likelihood of buoyance driven leakage through carbonate rich caprocks.

  12. Porosity Defect Remodeling and Tensile Analysis of Cast Steel

    Directory of Open Access Journals (Sweden)

    Linfeng Sun

    2016-02-01

    Full Text Available Tensile properties on ASTM A216 WCB cast steel with centerline porosity defect were studied with radiographic mapping and finite element remodeling technique. Non-linear elastic and plastic behaviors dependent on porosity were mathematically described by relevant equation sets. According to the ASTM E8 tensile test standard, matrix and defect specimens were machined into two categories by two types of height. After applying radiographic inspection, defect morphologies were mapped to the mid-sections of the finite element models and the porosity fraction fields had been generated with interpolation method. ABAQUS input parameters were confirmed by trial simulations to the matrix specimen and comparison with experimental outcomes. Fine agreements of the result curves between simulations and experiments could be observed, and predicted positions of the tensile fracture were found to be in accordance with the tests. Chord modulus was used to obtain the equivalent elastic stiffness because of the non-linear features. The results showed that elongation was the most influenced term to the defect cast steel, compared with elastic stiffness and yield stress. Additional visual explanations on the tensile fracture caused by void propagation were also given by the result contours at different mechanical stages, including distributions of Mises stress and plastic strain.

  13. Impact of Particle Size of Ceramic Granule Blends on Mechanical Strength and Porosity of 3D Printed Scaffolds

    Directory of Open Access Journals (Sweden)

    Sebastian Spath

    2015-07-01

    Full Text Available 3D printing is a promising method for the fabrication of scaffolds in the field of bone tissue engineering. To date, the mechanical strength of 3D printed ceramic scaffolds is not sufficient for a variety of applications in the reconstructive surgery. Mechanical strength is directly in relation with the porosity of the 3D printed scaffolds. The porosity is directly influenced by particle size and particle-size distribution of the raw material. To investigate this impact, a hydroxyapatite granule blend with a wide particle size distribution was fractioned by sieving. The specific fractions and bimodal mixtures of the sieved granule blend were used to 3D print specimens. It has been shown that an optimized arrangement of fractions with large and small particles can provide 3D printed specimens with good mechanical strength due to a higher packing density. An increase of mechanical strength can possibly expand the application area of 3D printed hydroxyapatite scaffolds.

  14. Impact of Particle Size of Ceramic Granule Blends on Mechanical Strength and Porosity of 3D Printed Scaffolds.

    Science.gov (United States)

    Spath, Sebastian; Drescher, Philipp; Seitz, Hermann

    2015-07-24

    3D printing is a promising method for the fabrication of scaffolds in the field of bone tissue engineering. To date, the mechanical strength of 3D printed ceramic scaffolds is not sufficient for a variety of applications in the reconstructive surgery. Mechanical strength is directly in relation with the porosity of the 3D printed scaffolds. The porosity is directly influenced by particle size and particle-size distribution of the raw material. To investigate this impact, a hydroxyapatite granule blend with a wide particle size distribution was fractioned by sieving. The specific fractions and bimodal mixtures of the sieved granule blend were used to 3D print specimens. It has been shown that an optimized arrangement of fractions with large and small particles can provide 3D printed specimens with good mechanical strength due to a higher packing density. An increase of mechanical strength can possibly expand the application area of 3D printed hydroxyapatite scaffolds.

  15. Tunable high-gradient permanent magnet quadrupoles

    CERN Document Server

    Shepherd, B J A; Marks, N; Collomb, N A; Stokes, D G; Modena, M; Struik, M; Bartalesi, A

    2014-01-01

    A novel type of highly tunable permanent magnet (PM) based quadrupole has been designed by the ZEPTO collaboration. A prototype of the design (ZEPTO-Q1), intended to match the specification for the CLIC Drive Beam Decelerator, was built and magnetically measured at Daresbury Laboratory and CERN. The prototype utilises two pairs of PMs which move in opposite directions along a single vertical axis to produce a quadrupole gradient variable between 15 and 60 T/m. The prototype meets CLIC's challenging specification in terms of the strength and tunability of the magnet.

  16. Tunable Optofluidic Third Order DFB Dye Laser

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2007-01-01

    We present a low-threshold polymer-based nanofluidic dye laser. By employing a third order DFB laser resonator, we demonstrate a threshold fluence of ~7 muJ/mm2 and a tunability of 45 nm using a single laser dye......We present a low-threshold polymer-based nanofluidic dye laser. By employing a third order DFB laser resonator, we demonstrate a threshold fluence of ~7 muJ/mm2 and a tunability of 45 nm using a single laser dye...

  17. Acoustic properties in travertines and their relation to porosity and pore types

    NARCIS (Netherlands)

    Soete, J.; Kleipool, L.M.; Claes, H.; Claes, S.; Hamaekers, H.; Kele, S.; Özkul, M.; Foubert, A.; Reijmer, J.J.G.; Swennen, R.

    2015-01-01

    Sonic velocities of Pleistocene travertines were measured under variable confining pressures. Combined with petrographical characteristics and petrophysical data, i.e. porosity, permeability and density, it was determined that travertine porosity, pore types and cementation control

  18. Tunable Balun Low-Noise Amplifier in 65nm CMOS Technology

    Directory of Open Access Journals (Sweden)

    J. Sturm

    2014-04-01

    Full Text Available The presented paper includes the design and implementation of a 65 nm CMOS low-noise amplifier (LNA based on inductive source degeneration. The amplifier is realized with an active balun enabling a single-ended input which is an important requirement for low-cost system on chip implementations. The LNA has a tunable bandpass characteristics from 4.7 GHz up to 5.6 GHz and a continuously tunable gain from 22 dB down to 0 dB, which enables the required flexibility for multi-standard, multi-band receiver architectures. The gain and band tuning is realized with an optimized tunable active resistor in parallel to a tunable L-C tank amplifier load. The amplifier achieves an IIP3 linearity of -8dBm and a noise figure of 2.7 dB at the highest gain and frequency setting with a low power consumption of 10 mW. The high flexibility of the proposed LNA structure together with the overall good performance makes it well suited for future multi-standard low-cost receiver front-ends.

  19. A Practical View on Tunable Sparse Network Coding

    DEFF Research Database (Denmark)

    Sørensen, Chres Wiant; Shahbaz Badr, Arash; Cabrera Guerrero, Juan Alberto

    2015-01-01

    Tunable sparse network coding (TSNC) constitutes a promising concept for trading off computational complexity and delay performance. This paper advocates for the use of judicious feedback as a key not only to make TSNC practical, but also to deliver a highly consistent and controlled delay...... performance to end devices. We propose and analyze a TSNC design that can be incorporated into both unicast and multicast data flows. An implementation of our approach is carried out in C++ and compared to random linear network coding (RLNC) and sparse versions of RLNC implemented in the fastest network...... coding library to date. Our measurements show that the processing speed of our TSNC mechanism can be increased by four-fold compared to an optimized RLNC implementation and with a minimal penalty on delay performance. Finally, we show that even a limited number of feedback packets (

  20. Tunable 3D cQED: Implementation and Characterization

    Science.gov (United States)

    Chou, Kevin; Reed, Matthew; Ofek, Nissim; Blumoff, Jacob; Vlastakis, Brian; Kirchmair, Gerhard; Nigg, Simon; Frunzio, Luigi; Girvin, Steven; Schoelkopf, Robert

    2013-03-01

    Significant progress has recently been made in improving the coherence of superconducting qubits by using the 3D cQED architecture. This current design is static, not allowing for the modulation of couplings and nonlinearities in situ. This limitation may prove to be an obstacle toward scaling this implementation into more complex systems. We present a new architecture which integrates high Q-factor 3D resonators with flux-tunable superconducting transmon qubits. In this talk, we will demonstrate full control over qubit frequency with minimal degradation to qubit and cavity lifetime. This capability allows the rapid and precise control over the system Hamiltonian to choose optimal couplings and nonlinearities as dictated by the experiment.

  1. Tunable Oleo-Furan Surfactants by Acylation of Renewable Furans

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dae Sung; Joseph, Kristeen E.; Koehle, Maura; Krumm, Christoph; Ren, Limin; Damen, Jonathan N.; Shete, Meera H.; Lee, Han Seung; Zuo, Xiaobing; Lee, Byeongdu; Fan, Wei; Vlachos, Dionisios G.; Lobo, Raul F.; Tsapatsis, Michael; Dauenhauer, Paul J.

    2016-11-23

    An important advance in fluid surface control was the amphiphilic surfactant comprised of coupled molecular structures (i.e. hydrophilic and hydrophobic) to reduce surface tension between two distinct fluid phases. However, implementation of simple surfactants has been hindered by the broad range of applications in water containing alkaline earth metals (i.e. hard water), which disrupt surfactant function and require extensive use of undesirable and expensive chelating additives. Here we show that sugar-derived furans can be linked with triglyceride-derived fatty acid chains via Friedel-Crafts acylation within single layer (SPP) zeolite catalysts. These alkylfuran surfactants independently suppress the effects of hard water while simultaneously permitting broad tunability of size, structure, and function, which can be optimized for superior capability for forming micelles and solubilizing in water.

  2. Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three-dimensional printing and microwave sintering.

    Science.gov (United States)

    Pei, Xuan; Ma, Liang; Zhang, Boqing; Sun, Jianxun; Sun, Yong; Fan, Yujiang; Gou, Zhongru; Zhou, Changchun; Zhang, Xingdong

    2017-11-14

    Hierarchical porosity, which includes micropores and macropores in scaffolds, contributes to important multiple biological functions for tissue regeneration. This paper introduces a two-step method of combining three-dimensional printing (3DP) and microwave sintering to fabricate two-level hierarchical porous scaffolds. The results showed that 3D printing made the macroporous structure well-controlled and microwave sintering generated micropores on the macropore surface. The resulting hierarchical macro/microporous hydroxyapatite scaffold induced bone formation following intramuscular implantation. Moreover, when comparing the hierarchical macro/microporous hydroxyapatite scaffold to the non-osteoinductive hydroxyapatite scaffolds (either 3D printed or H 2 O 2 foamed) subjected to muffle sintering which do not have micropores, the critical role of micropores in material-driven bone formation was shown. The findings presented herein could be useful for the further optimization of bone grafting materials for bone regeneration.

  3. Sub-pixel porosity revealed by x-ray scatter dark field imaging

    Energy Technology Data Exchange (ETDEWEB)

    Revol, V. [Photonics Division, Centre Suisse d' Electronique et Microtechnique SA, Technoparkstr. 1, 8005 Zuerich (Switzerland); Physics Institute, University of Zuerich, Winterthurerstr. 190, 8057 Zuerich (Switzerland); Jerjen, I.; Schuetz, P.; Luethi, T.; Sennhauser, U. [Swiss Federal Laboratories for Materials Science and Technology (Empa), Ueberlandstr. 129, 8600 Duebendorf (Switzerland); Kottler, C.; Kaufmann, R.; Urban, C. [Photonics Division, Centre Suisse d' Electronique et Microtechnique SA, Technoparkstr. 1, 8005 Zuerich (Switzerland); Straumann, U. [Physics Institute, University of Zuerich, Winterthurerstr. 190, 8057 Zuerich (Switzerland)

    2011-08-15

    X-ray scatter dark field imaging based on the Talbot-Lau interferometer allows for the measurement of ultra-small angle x-ray scattering. The latter is related to the variations in the electron density in the sample at the sub- and micron-scale. Therefore, information on features of the object below the detector resolution can be revealed.In this article, it is demonstrated that scatter dark field imaging is particularly adapted to the study of a material's porosity. An interferometer, optimized for x-ray energies around 50 keV, enables the investigation of aluminum welding with conventional laboratory x-ray tubes. The results show an unprecedented contrast between the pool and the aluminum workpiece. Our conclusions are confirmed due to micro-tomographic three-dimensional reconstructions of the same object with a microscopic resolution.

  4. Sub-pixel porosity revealed by x-ray scatter dark field imaging

    International Nuclear Information System (INIS)

    Revol, V.; Jerjen, I.; Schuetz, P.; Luethi, T.; Sennhauser, U.; Kottler, C.; Kaufmann, R.; Urban, C.; Straumann, U.

    2011-01-01

    X-ray scatter dark field imaging based on the Talbot-Lau interferometer allows for the measurement of ultra-small angle x-ray scattering. The latter is related to the variations in the electron density in the sample at the sub- and micron-scale. Therefore, information on features of the object below the detector resolution can be revealed.In this article, it is demonstrated that scatter dark field imaging is particularly adapted to the study of a material's porosity. An interferometer, optimized for x-ray energies around 50 keV, enables the investigation of aluminum welding with conventional laboratory x-ray tubes. The results show an unprecedented contrast between the pool and the aluminum workpiece. Our conclusions are confirmed due to micro-tomographic three-dimensional reconstructions of the same object with a microscopic resolution.

  5. Design and Fabrication of Tunable Nanoparticles for Biomedical Applications

    Science.gov (United States)

    Sun, Leming

    biomaterials, the sundew-inspired hydrogels demonstrated superior wound healing capabilities. Collectively, our studies show that sundew-inspired hydrogels contain ideal properties that promote wound healing and suggest that sundew-inspired-ADSCs combination therapy is an efficacious approach for treating wounds without eliciting noticeable toxicity or inflammation. While tremendous efforts have been spent in investigating scalable approaches for fabricating nanoparticles, less progress has been made in scalable synthesizing cyclic peptide nanoparticles and nanotubes, despite their great potential for broader biomedical applications. In Chapter 4, tunable synthesis of self-assembled cyclic peptide nanotubes and nanoparticles using three different methods, phase equilibrium, pH-driven, and pH-sensitive methods were proposed and investigated. The goal is for scalable nano-manufacturing of cyclic peptide nanoparticles and nanotubes with different sizes in large quality by controlling multiple process parameters. The dimensions of self-assembled nanostructures were found to be strongly influenced by the cyclic peptides concentration, side chains modification, pH value, reaction time, stirring intensity, and sonication time. This study proposed an overall strategy to integrate all the parameters to achieve optimal synthesis outputs. AD is associated with the accumulation of insoluble forms of amyloid-beta (Abeta) in plaques in extracellular spaces, as well as in the walls of blood vessels, and aggregation of microtubule protein tau in neurofibrillary tangles in neurons. In Chapter 5, we designed and synthesized a series of fluorescent cyclic peptide nanoparticles that can be used to detect Abeta aggregates in both the cerebrospinal fluid (CSF) and serum, which were obtained from healthy people and AD patients in different disease stages. Our experimental studies indicate that the fluorescence intensities and wavelengths generated from the interactions between the negatively charged

  6. Copper Nanowire-Based Aerogel with Tunable Pore Structure and Its Application as Flexible Pressure Sensor.

    Science.gov (United States)

    Xu, Xiaojuan; Wang, Ranran; Nie, Pu; Cheng, Yin; Lu, Xiaoyu; Shi, Liangjing; Sun, Jing

    2017-04-26

    Aerogel is a kind of material with high porosity and low density. However, the research on metal-based aerogel with good conductivity is quite limited, which hinders its usage in electronic devices, such as flexible pressure sensors. In this work, we successfully fabricate copper nanowire (CuNW) based aerogel through a one-pot method, and the dynamics for the assembly of CuNWs into hydrogel is intensively investigated. The "bubble controlled assembly" mechanism is put forward for the first time, according to which tunable pore structures and densities (4.3-7.5 mg cm -3 ) of the nanowire aerogel is achieved. Subsequently, ultralight flexible pressure sensors with tunable sensitivities (0.02 kPa -1 to 0.7 kPa -1 ) are fabricated from the Cu NWs aerogels, and the negative correlation behavior of the sensitivity to the density of the aerogel sensors is disclosed systematically. This work provides a versatile strategy for the fabrication of nanowire-based aerogels, which greatly broadens their application potential.

  7. Tunable Physical Properties of Ethylcellulose/Gelatin Composite Nanofibers by Electrospinning.

    Science.gov (United States)

    Liu, Yuyu; Deng, Lingli; Zhang, Cen; Feng, Fengqin; Zhang, Hui

    2018-02-28

    In this work, the ethylcellulose/gelatin blends at various weight ratios in water/ethanol/acetic acid solution were electrospun to fabricate nanofibers with tunable physical properties. The solution compatibility was predicted based on Hansen solubility parameters and evaluated by rheological measurements. The physical properties were characterized by scanning electron microscopy, porosity, differential scanning calorimetry, thermogravimetry, Fourier transform infrared spectroscopy, and water contact angle. Results showed that the entangled structures among ethylcellulose and gelatin chains through hydrogen bonds gave rise to a fine morphology of the composite fibers with improved thermal stability. The fibers with higher gelatin ratio (75%), possessed hydrophilic surface (water contact angle of 53.5°), and adequate water uptake ability (1234.14%), while the fibers with higher ethylcellulose proportion (75%) tended to be highly water stable with a hydrophobic surface (water contact angle of 129.7°). This work suggested that the composite ethylcellulose/gelatin nanofibers with tunable physical properties have potentials as materials for bioactive encapsulation, food packaging, and filtration applications.

  8. Frequency tunable surface magneto elastic waves

    NARCIS (Netherlands)

    Janusonis, J.; Chang, C. L.; van Loosdrecht, P. H. M.; Tobey, R. I.

    2015-01-01

    We use the transient grating technique to generate narrow-band, widely tunable, in-plane surface magnetoelastic waves in a nickel film. We monitor both the structural deformation of the acoustic wave and the accompanying magnetic precession and witness their intimate coupling in the time domain.

  9. Tunable structures and modulators for THz light

    Czech Academy of Sciences Publication Activity Database

    Kužel, Petr; Kadlec, Filip

    2008-01-01

    Roč. 9, - (2008), 197-214 ISSN 1631-0705 R&D Projects: GA AV ČR KJB100100512; GA MŠk LC512 Institutional research plan: CEZ:AV0Z10100520 Keywords : terahertz radiation * tunable devices * photonic crystals * strontium titanate * gallium arsenide Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.164, year: 2008

  10. Tunable metamaterials fabricated by fiber drawing

    DEFF Research Database (Denmark)

    Fleming, Simon; Stefani, Alessio; Tang, Xiaoli

    2017-01-01

    We demonstrate a practical scalable approach to the fabrication of tunable metamaterials. Designed for terahertz (THz) wavelengths, the metamaterial is comprised of polyurethane filled with an array of indium wires using the well-established fiber drawing technique. Modification of the dimensions...

  11. Absolute Distance Measurements with Tunable Semiconductor Laser

    Czech Academy of Sciences Publication Activity Database

    Mikel, Břetislav; Číp, Ondřej; Lazar, Josef

    T118, - (2005), s. 41-44 ISSN 0031-8949 R&D Projects: GA AV ČR(CZ) IAB2065001 Keywords : tunable laser * absolute interferometer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.661, year: 2004

  12. 130-nm tunable grating-mirror VCSEL

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2014-01-01

    We have reported that a combination of the high-index-contrast grating (HCG) mirror as movable mirror and the extended cavity configuration with an antireflection layer can provide a tuning wavelength range of 100 nm for tunable VCSELs. Here, we report that using the air-coupled cavity...

  13. Tunability of optofluidic distributed feedback dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2007-01-01

    We investigate the tunability of optofluidic distributed feedback (DFB) dye lasers. The lasers rely on light-confinement in a nano-structured polymer film where an array of nanofluidic channels constitutes a third order Bragg grating DFB laser resonator with a central phase-shift. The lasers...

  14. Tunable Water-based Microwave Metasurface

    DEFF Research Database (Denmark)

    Kapitanova, Polina; Odit, Mikhail; Dobrykh, Dmitry

    2017-01-01

    A water-based dynamically tunable microwave metasurface is developed and experimentally investigated. A simple approach to tune the metasurface properties by changing the shape of water-based unit cells by gravitation force is proposed. The transmission spectra of the metasurface for linear...... angle. The proposed approach can be used to design cheap metasurfaces for electromagnetic wave control in the microwave frequency range....

  15. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Schultz, W.E.; Smith, H.D.; Smith, M.P.

    1980-01-01

    An improved method and apparatus are described for simultaneously measuring the porosity and thermal neutron capture cross section of earth formations in situ in the vicinity of a well borehole using pulsed neutron well logging techniques. The logging tool which is moved through the borehole consists of a 14 MeV pulsed neutron source, an epithermal neutron detector and a combination gamma ray and fast neutron detector. The associated gating systems, counters and combined digital computer are sited above ground. (U.K.)

  16. Analysis of the porosity distribution of mixed oxide pins

    International Nuclear Information System (INIS)

    Lieblich, M.; Lopez, J.

    1987-01-01

    In the frame of the Joint Irradiation Program IVO-FR2-Vg7 between the Centre of Nuclear Research of Karlsruhe (KfK), the irradiation of 30 mixed-oxide fuel rods in the FR2 experimental reactor was carried out. The pins were located in 10 single-walled NaK capsules. The behaviour of the fuel during its burnup was studied, mainly, the rest-porosity and cracking distribution in the pellet, partial densification, etc. In this work 3 pins from the capsule No. 165 were analyzed. The experimental results (pore and cracking profiles) were interpreted by the fuel rod code SATURN. (Author) 20 refs

  17. Process of making porous ceramic materials with controlled porosity

    Science.gov (United States)

    Anderson, Marc A.; Ku, Qunyin

    1993-01-01

    A method of making metal oxide ceramic material is disclosed by which the porosity of the resulting material can be selectively controlled by manipulating the sol used to make the material. The method can be used to make a variety of metal oxide ceramic bodies, including membranes, but also pellets, plugs or other bodies. It has also been found that viscous sol materials can readily be shaped by extrusion into shapes typical of catalytic or adsorbent bodies used in industry, to facilitate the application of such materials for catalytic and adsorbent applications.

  18. Radioactive wastes storage rock porosity study using neutron radiography

    International Nuclear Information System (INIS)

    Peterka, F.

    1995-01-01

    Neutron radiography and neutron transmission analysis application to porosity study was mainly dealing with the building industry, the art protection and the basic research. Cooperation with the building industry has produced the solution of number of problems. Cement hydratation, concrete material, red brick sample, roofing tiles protection and epoxy resin efficiency for sand stones sculpture protection, can be cited as example. Many valuable experiences (like samples thickness, penetrating substances, detection techniques for the different experiments) were achieved. These can be used in the rockies formation studies too. Resolution is the proposal to JAERI and PNC for the cooperation, which can even be on the international basis. (J.P.N.)

  19. Biot's coefficient as an indicator of strength and porosity reduction: Calcareous sediments from Kerguelen Plateau

    DEFF Research Database (Denmark)

    Alam, Mohammad Monzurul; Borre, Mai Kirstine; Fabricius, Ida Lykke

    2010-01-01

    Chalk develops as a result of diagenesis of pelagic calcareous ooze. In a newly deposited ooze sediment, porosity ranges from 60% to 80% but porosity reduces with burial. We studied how different porosity reduction mechanisms change the strength of these deep sea carbonate-rich sediments and effect...... Biot's coefficient, β. In calcareous ooze, β is one. Mechanical compaction reduces porosity, but only leads to a minor decrease in β. Recrystallization renders particles smoother, but does not lead to reduction in β unless it gives rise to pore stiffening cementation. Pore stiffening cementation causes...... process involved in porosity reduction and strengthening of chalk during burial diagenesis....

  20. Development of a Tunable Electromechanical Acoustic Liner for Engine Nacelles

    Science.gov (United States)

    Liu, Fei; Sheplak, Mark; Cattafesta, Louis N., III

    2007-01-01

    This report describes the development of a tunable electromechanical Helmholtz resonator (EMHR) for engine nacelles using smart materials technology. This effort addresses both near-term and long-term goals for tunable electromechanical acoustic liner technology for the Quiet Aircraft Technology (QAT) Program. Analytical models, i.e. lumped element model (LEM) and transfer matrix (TM) representation of the EMHR, have been developed to predict the acoustic behavior of the EMHR. The models have been implemented in a MATLAB program and used to compare with measurement results. Moreover, the prediction performance of models is further improved with the aid of parameter extraction of the piezoelectric backplate. The EMHR has been experimentally investigated using standard two-microphone method (TMM). The measurement results validated both the LEM and TM models of the EMHR. Good agreement between predicted and measured impedance is obtained. Short- and open circuit loads define the limits of the tuning range using resistive and capacitive loads. There is approximately a 9% tuning limit under these conditions for the non-optimized resonator configuration studied. Inductive shunt loads result in a 3 degree-of-freedom DOF) system and an enhanced tuning range of over 20% that is not restricted by the short- and open-circuit limits. Damping coefficient ' measurements for piezoelectric backplates in a vacuum chamber are also performed and indicate that the damping is dominated by the structural damping losses, such as compliant boundaries, and other intrinsic loss mechanisms. Based on models of the EMHR, a Pareto optimization design of the EMHR has been performed for the EMHR with non-inductive loads. The EMHR with non-inductive loads is a 2DOF system with two resonant fiequencies. The tuning ranges of the two resonant frequencies of the EMHR with non-inductive loads cannot be optimized simultaneously; a trade-off (i.e., a Pareto solution) must be reached. The Pareto solution

  1. Tunable graphene doping by modulating the nanopore geometry on a SiO2/Si substrate

    KAUST Repository

    Lim, Namsoo

    2018-02-28

    A tunable graphene doping method utilizing a SiO2/Si substrate with nanopores (NP) was introduced. Laser interference lithography (LIL) using a He–Cd laser (λ = 325 nm) was used to prepare pore size- and pitch-controllable NP SiO2/Si substrates. Then, bottom-contact graphene field effect transistors (G-FETs) were fabricated on the NP SiO2/Si substrate to measure the transfer curves. The graphene transferred onto the NP SiO2/Si substrate showed relatively n-doped behavior compared to the graphene transferred onto a flat SiO2/Si substrate, as evidenced by the blue-shift of the 2D peak position (∼2700 cm−1) in the Raman spectra due to contact doping. As the porosity increased within the substrate, the Dirac voltage shifted to a more positive or negative value, depending on the initial doping type (p- or n-type, respectively) of the contact doping. The Dirac voltage shifts with porosity were ascribed mainly to the compensation for the reduced capacitance owing to the SiO2–air hetero-structured dielectric layer within the periodically aligned nanopores capped by the suspended graphene (electrostatic doping). The hysteresis (Dirac voltage difference during the forward and backward scans) was reduced when utilizing an NP SiO2/Si substrate with smaller pores and/or a low porosity because fewer H2O or O2 molecules could be trapped inside the smaller pores.

  2. Porosities and permeability of Paleozoic sandstones derived from Nuclear Magnetic Resonance measurements

    Science.gov (United States)

    Jorand, Rachel; Koch, Andreas; Mohnke, Oliver; Klitzsch, Norbert; Clauser, Christoph

    2010-05-01

    A major obstacle for an increased use of geothermal energy often lies in the high success risk for the development of geothermal reservoirs due to the unknown rock properties. In general, the ranges of porosity and permeability in existing compilations of rock properties are too large to be useful to constrain properties for specific sites. Usually, conservative assumptions are made about these properties, resulting in greater drilling depth and increased exploration cost. In this study, data from direct measurements on thirty-three sandstones from different borehole locations and depths enable to derive statistical values of the desired hydraulic properties for selected sandstones in the German subsurface. We used Nuclear Magnetic Resonance (NMR) measurements to estimate the porosity and the permeability of sandstones from North Rhine-Westphalia (Germany). Besides NMR standard poro-perm-measurements were performed on the samples to obtain independent data sets for comparison. Porosity was measured by Archimedes principle and pore-size distribution by mercury injection. Also permeability was determined by gas flow measurements taking into account the Klinkenberg effect. The porosities of the studied samples vary between 0 % and 16 %. NMR yields suitable porosity results whereas the porosities obtain by T1 relaxation measurements fit better to the Archimedes porosities than the porosities obtained by T2 relaxation measurements. For porosities up to 10 %, T2 relaxation measurements overestimate the porosity. Furthermore, we calculate the effective porosity using a cutoff time of 3 ms. This effective porosity agrees much better with Archimedes porosities, particularly for the low porosity samples. The gas permeability of studied sandstones varies between 10-21 m2 and 2.10-17 m2. A large number of empirical relationships between relaxation times and gas permeability have been published. We have applied several of these relationships to select the appropriate law for

  3. Carbonate reservoir characterization with lithofacies clustering and porosity prediction

    International Nuclear Information System (INIS)

    Al Moqbel, Abdulrahman; Wang, Yanghua

    2011-01-01

    One of the objectives in reservoir characterization is to quantitatively or semi-quantitatively map the spatial distribution of its heterogeneity and related properties. With the availability of 3D seismic data, artificial neural networks are capable of discovering the nonlinear relationship between seismic attributes and reservoir parameters. For a target carbonate reservoir, we adopt a two-stage approach to conduct characterization. First, we use an unsupervised neural network, the self-organizing map method, to classify the reservoir lithofacies. Then we apply a supervised neural network, the back-propagation algorithm, to quantitatively predict the porosity of the carbonate reservoir. Based on porosity maps at different time levels, we interpret the target reservoir vertically related to three depositional phases corresponding to, respectively, a lowstand system tract before sea water immersion, a highstand system tract when water covers organic deposits and a transition zone for the sea level falling. The highstand system is the most prospective zone, given the organic content deposited during this stage. The transition zone is also another prospective feature in the carbonate depositional system due to local build-ups

  4. Method and apparatus for epithermal neutron porosity well logging

    International Nuclear Information System (INIS)

    Hertzog, R.C.; Loomis, W.A.; Wraight, P.

    1991-01-01

    This patent describes a method for investigating the porosity of a subsurface earth formation surrounding a borehole. It comprises repetitively irradiating the borehole and earth formation with discrete bursts of high energy neutrons from a neutron source, which neutrons interact with nuclei of the materials in the borehole and the formation to produce therein populations of epithermal neutrons; detecting the populations of epithermal neutrons at near and far locations in the borehole spaced apart longitudinally by different distances from the neutron source; generating count signals indicative of the magnitudes of the detected epithermal neutron populations at the respective near and far locations; detecting the decay of the epithermal neutron populations following the neutron bursts at least at one location in the borehole and generating signals representative thereof; deriving from the decay signals a signal indicative of the slowing down time of epithermal neutrons in the formation of the at least one location; and deriving from the near and far count signals and the slowing down time signal a measurement signal representative of the porosity of the formation surrounding the borehole inherently compensated for the effects of tool standoff on the responses of the logging tool

  5. A review of porosity and diffusion in bentonite

    International Nuclear Information System (INIS)

    Appelo, C.A.J.

    2013-10-01

    Porosity in bentonite can be subdivided in free porewater, diffuse double layer (DDL) water, and interlayer water in montmorillonite, the most important mineral of bentonite. The proportions of these water types can be calculated from the internal and external specific surface area of montmorillonite and the width of interlayer- and DDL-water. Stacking of the TOT layers in montmorillonite in the c-direction is the master variable that determines the specific internal and external surface areas. The thickness of the water layers depends on the ionic strength and the composition of the free porewater, and on the packing density of the bentonite. When the proportions of the water types change, the diffusion of cations, anions and neutral molecules is affected in different ways since the diffusional properties vary. Diffusive fluxes are proportional with accessible porosity, chemical potential gradient, and diffusion coefficient, but not with concentration as has been proposed often in diffusion models. The equations for calculating the diffusive flux through interlayer water are derived. The potential gradient here is given by the gradient of the equivalent (or molar) fraction of the cation in the cation exchange capacity. The latter is expressed as concentration in the interlayer water. An example calculation illustrates that the flux in interlayer water can be dominant and opposite to the one in free porewater. Retardation by ion exchange is an important process in bentonite that can be modeled if the concentrations of major ions are known. Unfortunately, the analyses are almost never done in diffusion experiments.(orig.)

  6. A study of porosity of synthetic polymer nanoparticles using PALS

    Energy Technology Data Exchange (ETDEWEB)

    Pham, B; Smith, S V [Centre for Antimatter-Matter Studies, Australian Nuclear Science and Technology Organisation (ANSTO) NSW 2232 (Australia); Guagliardo, P; Williams, J; Samarin, S, E-mail: binh.pham@ansto.gov.au, E-mail: svs@ansto.gov.au [Centre for Antimatter-Matter Studies, School of Physics, University of Western Australia, WA 6009 (Australia)

    2011-01-01

    Positron annihilation lifetime spectroscopy (PALS) has been used to study the free volume in dry synthetic polymer nanoparticles of various sizes. A series of poly(styrene/divinyl benzene) particles with diameters in the range of 100 to 500 nm were synthesized and then carefully chemically treated using the sulfonation process, to increase their porosity. The particles were characterised by Scanning Electron Microscopy (SEM), light scattering and PALS. Light scattering gave larger size for the treated particles, reflecting the hydration effect and therefore the increase in porosity. PALS spectra of untreated and treated particles gave four and three life-time components, respectively. Analysis by PAScual version 1.3.0 program indicated there was a reduction in the intensity and the type of the micropores in the treated particles. The data suggest PALS is a sensitive tool for detecting changes in microporosity in particles. The conflicting results obtained for light scattering compared to PALS for chemically treated particles is difficult to resolve and suggests sample preparation of polymeric materials for PALS is the critical factor.

  7. Highly Porous 3D Fibrous Nanostructured Bioplolymer Films with Stimuli-Responsive Porosity via Phase Separation in Polymer Blend.

    Science.gov (United States)

    Tokarev, Igor; Gopishetty, Venkateshwarlu; Minko, Sergiy

    2015-06-17

    The article describes a novel polymer blend system that yields thin films with unique porous nanoscale morphologies and environmentally responsive properties. The blend consists of sodium alginate and amine end-terminated PEG, which undergoes phase separation during film deposition. The blend films can be readily converted into highly porous membranes using facile treatment with a solution containing divalent ions. The resulting membranes are primarily comprised of alginate hydrogel, whereas the PEG phase is removed from the films during exposure to the saline solution, yielding nanometer-sized pores. The alginate gel phase forms a three-dimensional nanostructure which can be best described as a filament or fibrous network. Because such network geometry is untypical of polymer blends in thin films, possible reasons for the observed phase morphology are discussed. Because of ionizable carboxyl groups, the hydrogel membranes demonstrate responsive behavior, in particular a drastic change in their porosity between a highly porous state and a state with completely closed pores in response to changes in the solution pH. The pore-size tunability can be explored in multiple applications where the regulation of material's permeability is needed.

  8. MEMS for Tunable Photonic Metamaterial Applications

    Science.gov (United States)

    Stark, Thomas

    Photonic metamaterials are materials whose optical properties are derived from artificially-structured sub-wavelength unit cells, rather than from the bulk properties of the constituent materials. Examples of metamaterials include plasmonic materials, negative index materials, and electromagnetic cloaks. While advances in simulation tools and nanofabrication methods have allowed this field to grow over the past several decades, many challenges still exist. This thesis addresses two of these challenges: fabrication of photonic metamaterials with tunable responses and high-throughput nanofabrication methods for these materials. The design, fabrication, and optical characterization of a microelectromechanical systems (MEMS) tunable plasmonic spectrometer are presented. An array of holes in a gold film, with plasmon resonance in the mid-infrared, is suspended above a gold reflector, forming a Fabry-Perot interferometer of tunable length. The spectra exhibit the convolution of extraordinary optical transmission through the holes and Fabry-Perot resonances. Using MEMS, the interferometer length is modulated from 1.7 mum to 21.67 mum , thereby tuning the free spectral range from about 2900 wavenumbers to 230.7 wavenumbers and shifting the reflection minima and maxima across the infrared. Due to its broad spectral tunability in the fingerprint region of the mid-infrared, this device shows promise as a tunable biological sensing device. To address the issue of high-throughput, high-resolution fabrication of optical metamaterials, atomic calligraphy, a MEMS-based dynamic stencil lithography technique for resist-free fabrication of photonic metamaterials on unconventional substrates, has been developed. The MEMS consists of a moveable stencil, which can be actuated with nanometer precision using electrostatic comb drive actuators. A fabrication method and flip chip method have been developed, enabling evaporation of metals through the device handle for fabrication on an

  9. A comparison of estimated and calculated effective porosity

    Science.gov (United States)

    Stephens, Daniel B.; Hsu, Kuo-Chin; Prieksat, Mark A.; Ankeny, Mark D.; Blandford, Neil; Roth, Tracy L.; Kelsey, James A.; Whitworth, Julia R.

    Effective porosity in solute-transport analyses is usually estimated rather than calculated from tracer tests in the field or laboratory. Calculated values of effective porosity in the laboratory on three different textured samples were compared to estimates derived from particle-size distributions and soil-water characteristic curves. The agreement was poor and it seems that no clear relationships exist between effective porosity calculated from laboratory tracer tests and effective porosity estimated from particle-size distributions and soil-water characteristic curves. A field tracer test in a sand-and-gravel aquifer produced a calculated effective porosity of approximately 0.17. By comparison, estimates of effective porosity from textural data, moisture retention, and published values were approximately 50-90% greater than the field calibrated value. Thus, estimation of effective porosity for chemical transport is highly dependent on the chosen transport model and is best obtained by laboratory or field tracer tests. Résumé La porosité effective dans les analyses de transport de soluté est habituellement estimée, plutôt que calculée à partir d'expériences de traçage sur le terrain ou au laboratoire. Les valeurs calculées de la porosité effective au laboratoire sur trois échantillons de textures différentes ont été comparées aux estimations provenant de distributions de taille de particules et de courbes caractéristiques sol-eau. La concordance était plutôt faible et il semble qu'il n'existe aucune relation claire entre la porosité effective calculée à partir des expériences de traçage au laboratoire et la porosité effective estimée à partir des distributions de taille de particules et de courbes caractéristiques sol-eau. Une expérience de traçage de terrain dans un aquifère de sables et de graviers a fourni une porosité effective calculée d'environ 0,17. En comparaison, les estimations de porosité effective de données de

  10. Design of a reconfigurable optical add/drop multiplexer based on tunable Fabry-Perot array

    Science.gov (United States)

    Ye, Jiansen; Wang, Xin; Li, Zhuo; Yang, Yang; Xu, Rui; Shi, Rui

    2015-08-01

    With the development of optical fiber communication, dense wavelength division multiplexing (DWDM) system is important for the rapid management of multi-wavelength in the core node of the optical transmission network. In this paper, a reconfigurable optical add-drop multiplexer (ROADM) based on the tunable Fabry-Perot (F-P) array is proposed. An optical switch with high isolation and low crosstalk is designed by using the characteristics of filtering and tuning for the F-P array. The principle, structure, and function of the tunable F-P array are introduced. The characteristics of filtering and tuning for the F-P filter are also calculated, and the factor for the isolation, crosstalk, response time and insertion loss are analyzed. A single physical channel ROADM with 16 signal channels, which operates in C-band, is designed and optimized by simulation.

  11. Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures

    Energy Technology Data Exchange (ETDEWEB)

    Ziętek, Slawomir, E-mail: zietek@agh.edu.pl; Skowroński, Witold; Stobiecki, Tomasz [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Ogrodnik, Piotr, E-mail: piotrogr@if.pw.edu.pl [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa (Poland); Stobiecki, Feliks [Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland); Dijken, Sebastiaan van [NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto (Finland); Barnaś, Józef [Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland)

    2016-08-15

    Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions for optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.

  12. A silk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs.

    Science.gov (United States)

    Wray, Lindsay S; Rnjak-Kovacina, Jelena; Mandal, Biman B; Schmidt, Daniel F; Gil, Eun Seok; Kaplan, David L

    2012-12-01

    In the field of tissue engineering and regenerative medicine there is significant unmet need for critically-sized, fully degradable biomaterial scaffold systems with tunable properties for optimizing tissue formation in vitro and tissue regeneration in vivo. To address this need, we have developed a silk-based scaffold platform that has tunable material properties, including localized and bioactive functionalization, degradation rate, and mechanical properties and that provides arrays of linear hollow channels for delivery of oxygen and nutrients throughout the scaffold bulk. The scaffolds can be assembled with dimensions that range from millimeters to centimeters, addressing the need for a critically-sized platform for tissue formation. We demonstrate that the hollow channel arrays support localized and confluent endothelialization. This new platform offers a unique and versatile tool for engineering 'tailored' scaffolds for a range of tissue engineering and regenerative medicine needs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Tunable Sparse Network Coding for Multicast Networks

    DEFF Research Database (Denmark)

    Feizi, Soheil; Roetter, Daniel Enrique Lucani; Sørensen, Chres Wiant

    2014-01-01

    This paper shows the potential and key enabling mechanisms for tunable sparse network coding, a scheme in which the density of network coded packets varies during a transmission session. At the beginning of a transmission session, sparsely coded packets are transmitted, which benefits decoding...... complexity. At the end of a transmission, when receivers have accumulated degrees of freedom, coding density is increased. We propose a family of tunable sparse network codes (TSNCs) for multicast erasure networks with a controllable trade-off between completion time performance to decoding complexity....... Coding density tuning can be performed by designing time-dependent coding matrices. In multicast networks, this tuning can be performed within the network by designing time-dependent pre- coding and network coding matrices with mild conditions on the network structure for specific densities. We present...

  14. Cutting and Folding for Tunable Materials Properties

    Science.gov (United States)

    Damasceno, Pablo; Dodd, Paul; Shyu, Terry; Shlian, Matthew; Shtein, Max; Kotov, Nicholas; Glotzer, Sharon

    2014-03-01

    Despite the small set of building blocks used for their assembly, naturally occurring materials such as proteins show remarkable diversity in their mechanical properties ranging from something resembling rubber-low stiffness, high resilience and extensibility-to silk-high stiffness and strength. Moreover, their self-folding properties inspire the design of structures capable of tunable reconfiguration. Motivated by such versatility, we report on simulations and experiments for the design of nanocomposites sheets whose mechanical properties can be made tunable via ``secondary structures'' patterning. Our simulations reveal the main cutting features needed to obtain desired material extensibility. Additionally, we study how similar sheets could self-fold into their desired ``native'' structure via stochastic forces. Our results open the possibilities for manufacture of flexible and reconfigurable materials with targeted strength and extensibility. Research supported by the National Science Foundation, Emerging Frontiers in Research and Innovation Award # EFRI-1240264.

  15. Optically tunable chirped fiber Bragg grating.

    Science.gov (United States)

    Li, Zhen; Chen, Zhe; Hsiao, V K S; Tang, Jie-Yuan; Zhao, Fuli; Jiang, Shao-Ji

    2012-05-07

    This work presents an optically tunable chirped fiber Bragg grating (CFBG). The CFBG is obtained by a side-polished fiber Bragg grating (SPFBG) whose thickness of the residual cladding layer in the polished area (D(RC)) varies with position along the length of the grating, which is coated with a photoresponsive liquid crystal (LC) overlay. The reflection spectrum of the CFBG is tuned by refractive index (RI) modulation, which comes from the phase transition of the overlaid photoresponsive LC under ultraviolet (UV) light irradiation. The broadening in the reflection spectrum and corresponding shift in the central wavelength are observed with UV light irradiation density of 0.64mW/mm. During the phase transition of the photoresponsive LC, the RI increase of the overlaid LC leads to the change of the CFBG reflection spectrum and the change is reversible and repeatable. The optically tunable CFBGs have potential use in optical DWDM system and an all-fiber telecommunication system.

  16. Computer control of pulsed tunable dye lasers

    International Nuclear Information System (INIS)

    Thattey, S.S.; Dongare, A.S.; Suri, B.M.; Nair, L.G.

    1992-01-01

    Pulsed tunable dye lasers are being used extensively for spectroscopic and photo-chemical experiments, and a system for acquisition and spectral analysis of a volume of data generated will be quite useful. The development of a system for wavelength tuning and control of tunable dye lasers and an acquisition system for spectral data generated in experiments with these lasers are described. With this system, it is possible to control the tuning of three lasers, and acquire data in four channels, simultaneously. It is possible to arrive at the desired dye laser wavelength with a reproducibility of ± 0.012 cm -1 , which is within the absorption width (atomic interaction) caused by pulsed dye lasers of linewidth 0.08 cm -1 . The spectroscopic data generated can be analyzed for spectral identification within absolute accuracy ± 0.012 cm -1 . (author). 6 refs., 11 figs

  17. A wafer-scale backplane-assisted resonating nanoantenna array SERS device created by tunable thermal dewetting nanofabrication

    Science.gov (United States)

    Chang, Te-Wei; Ranjan Gartia, Manas; Seo, Sujin; Hsiao, Austin; Logan Liu, Gang

    2014-04-01

    A tunable lithography-less nanofabrication process using a metal thin-film thermal dewetting technique has been developed to fabricate wafer-scale and uniform plasmonic substrates at low cost for optimal performance in surface enhanced Raman scattering (SERS) applications. The relationship between the tunable parameters of this process and the corresponding optical and plasmonic characteristic is investigated both experimentally and theoretically to understand the deterministic design of an optimal SERS device with a three-dimensional plasmonic nanoantenna structure. The enhancement of SERS using various nanoplasmonic particle sizes, structure lengths, lateral hot spot spacings and resonating effects are examined and demonstrated. We achieve a uniform optimal enhancement factor of 1.38 × 108 on a 4 in wafer-scale SERS substrate with a backplane-assisted resonating nanoantenna array design. Sensitive environmental nitrate sensing, vitamin detection and oligonucleotide identification are demonstrated on the high-performance SERS device.

  18. An Efficient Modelling Approach for Prediction of Porosity Severity in Composite Structures

    Science.gov (United States)

    Bedayat, Houman; Forghani, Alireza; Hickmott, Curtis; Roy, Martin; Palmieri, Frank; Grimsley, Brian; Coxon, Brian; Fernlund, Goran

    2017-01-01

    Porosity, as a manufacturing process-induced defect, highly affects the mechanical properties of cured composites. Multiple phenomena affect the formation of porosity during the cure process. Porosity sources include entrapped air, volatiles and off-gassing as well as bag and tool leaks. Porosity sinks are the mechanisms that contribute to reducing porosity, including gas transport, void shrinkage and collapse as well as resin flow into void space. Despite the significant progress in porosity research, the fundamentals of porosity in composites are not yet fully understood. The highly coupled multi-physics and multi-scale nature of porosity make it a complicated problem to predict. Experimental evidence shows that resin pressure history throughout the cure cycle plays an important role in the porosity of the cured part. Maintaining high resin pressure results in void shrinkage and collapse keeps volatiles in solution thus preventing off-gassing and bubble formation. This study summarizes the latest development of an efficient FE modeling framework to simulate the gas and resin transport mechanisms that are among the major phenomena contributing to porosity.

  19. Eggshell Porosity Provides Insight on Evolution of Nesting in Dinosaurs.

    Science.gov (United States)

    Tanaka, Kohei; Zelenitsky, Darla K; Therrien, François

    2015-01-01

    Knowledge about the types of nests built by dinosaurs can provide insight into the evolution of nesting and reproductive behaviors among archosaurs. However, the low preservation potential of their nesting materials and nesting structures means that most information can only be gleaned indirectly through comparison with extant archosaurs. Two general nest types are recognized among living archosaurs: 1) covered nests, in which eggs are incubated while fully covered by nesting material (as in crocodylians and megapodes), and 2) open nests, in which eggs are exposed in the nest and brooded (as in most birds). Previously, dinosaur nest types had been inferred by estimating the water vapor conductance (i.e., diffusive capacity) of their eggs, based on the premise that high conductance corresponds to covered nests and low conductance to open nests. However, a lack of statistical rigor and inconsistencies in this method render its application problematic and its validity questionable. As an alternative we propose a statistically rigorous approach to infer nest type based on large datasets of eggshell porosity and egg mass compiled for over 120 extant archosaur species and 29 archosaur extinct taxa/ootaxa. The presence of a strong correlation between eggshell porosity and nest type among extant archosaurs indicates that eggshell porosity can be used as a proxy for nest type, and thus discriminant analyses can help predict nest type in extinct taxa. Our results suggest that: 1) covered nests are likely the primitive condition for dinosaurs (and probably archosaurs), and 2) open nests first evolved among non-avian theropods more derived than Lourinhanosaurus and were likely widespread in non-avian maniraptorans, well before the appearance of birds. Although taphonomic evidence suggests that basal open nesters (i.e., oviraptorosaurs and troodontids) were potentially the first dinosaurs to brood their clutches, they still partially buried their eggs in sediment. Open nests

  20. Eggshell Porosity Provides Insight on Evolution of Nesting in Dinosaurs.

    Directory of Open Access Journals (Sweden)

    Kohei Tanaka

    Full Text Available Knowledge about the types of nests built by dinosaurs can provide insight into the evolution of nesting and reproductive behaviors among archosaurs. However, the low preservation potential of their nesting materials and nesting structures means that most information can only be gleaned indirectly through comparison with extant archosaurs. Two general nest types are recognized among living archosaurs: 1 covered nests, in which eggs are incubated while fully covered by nesting material (as in crocodylians and megapodes, and 2 open nests, in which eggs are exposed in the nest and brooded (as in most birds. Previously, dinosaur nest types had been inferred by estimating the water vapor conductance (i.e., diffusive capacity of their eggs, based on the premise that high conductance corresponds to covered nests and low conductance to open nests. However, a lack of statistical rigor and inconsistencies in this method render its application problematic and its validity questionable. As an alternative we propose a statistically rigorous approach to infer nest type based on large datasets of eggshell porosity and egg mass compiled for over 120 extant archosaur species and 29 archosaur extinct taxa/ootaxa. The presence of a strong correlation between eggshell porosity and nest type among extant archosaurs indicates that eggshell porosity can be used as a proxy for nest type, and thus discriminant analyses can help predict nest type in extinct taxa. Our results suggest that: 1 covered nests are likely the primitive condition for dinosaurs (and probably archosaurs, and 2 open nests first evolved among non-avian theropods more derived than Lourinhanosaurus and were likely widespread in non-avian maniraptorans, well before the appearance of birds. Although taphonomic evidence suggests that basal open nesters (i.e., oviraptorosaurs and troodontids were potentially the first dinosaurs to brood their clutches, they still partially buried their eggs in sediment

  1. Tuning Porosity and Surface Area in Mesoporous Silicon for Application in Li-Ion Battery Electrodes.

    Science.gov (United States)

    Cook, John B; Kim, Hyung-Seok; Lin, Terri C; Robbennolt, Shauna; Detsi, Eric; Dunn, Bruce S; Tolbert, Sarah H

    2017-06-07

    This work aims to improve the poor cycle lifetime of silicon-based anodes for Li-ion batteries by tuning microstructural parameters such as pore size, pore volume, and specific surface area in chemically synthesized mesoporous silicon. Here we have specifically produced two different mesoporous silicon samples from the magnesiothermic reduction of ordered mesoporous silica in either argon or forming gas. In situ X-ray diffraction studies indicate that samples made in Ar proceed through a Mg 2 Si intermediate, and this results in samples with larger pores (diameter ≈ 90 nm), modest total porosity (34%), and modest specific surface area (50 m 2 g -1 ). Reduction in forming gas, by contrast, results in direct conversion of silica to silicon, and this produces samples with smaller pores (diameter ≈ 40 nm), higher porosity (41%), and a larger specific surface area (70 m 2 g -1 ). The material with smaller pores outperforms the one with larger pores, delivering a capacity of 1121 mAh g -1 at 10 A g -1 and retains 1292 mAh g -1 at 5 A g -1 after 500 cycles. For comparison, the sample with larger pores delivers a capacity of 731 mAh g -1 at 10 A g -1 and retains 845 mAh g -1 at 5 A g -1 after 500 cycles. The dependence of capacity retention and charge storage kinetics on the nanoscale architecture clearly suggests that these microstructural parameters significantly impact the performance of mesoporous alloy type anodes. Our work is therefore expected to contribute to the design and synthesis of optimal mesoporous architectures for advanced Li-ion battery anodes.

  2. Construction of tunable peptide nucleic acid junctions.

    Science.gov (United States)

    Duan, Tanghui; He, Liu; Tokura, Yu; Liu, Xin; Wu, Yuzhou; Shi, Zhengshuang

    2018-03-15

    We report here the construction of 3-way and 4-way peptide nucleic acid (PNA) junctions as basic structural units for PNA nanostructuring. The incorporation of amino acid residues into PNA chains makes PNA nanostructures with more structural complexity and architectural flexibility possible, as exemplified by building 3-way PNA junctions with tunable nanopores. Given that PNA nanostructures have good thermal and enzymatic stabilities, they are expected to have broad potential applications in biosensing, drug delivery and bioengineering.

  3. Tunable terahertz metamaterials with negative permeability

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Kužel, Petr; Kadlec, Filip; Kadlec, Christelle; Yahiaoui, R.; Mounaix, P.

    2009-01-01

    Roč. 79, č. 24 (2009), 241108/1-241108/4 ISSN 1098-0121 R&D Projects: GA AV ČR(CZ) IAA100100907; GA MŠk LC512; GA MŠk MEB020742 Institutional research plan: CEZ:AV0Z10100520 Keywords : tunable metamaterial * effective magnetic permeability * incipient ferroelectrics * strontium titanate * terahertz spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009

  4. Flow of Tunable Elastic Microcapsules through Constrictions

    OpenAIRE

    do Nascimento, D?bora F.; Avenda?o, Jorge A.; Mehl, Ana; Moura, Maria J. B.; Carvalho, Marcio S.; Duncanson, Wynter J.

    2017-01-01

    We design and fabricate elastically tunable monodisperse microcapsules using microfluidics and cross-linkable polydimethylsiloxane (PDMS). The overall stiffness of the microcapsules is governed by both the thickness and cross-link ratio of the polymer shell. Flowing suspensions of microcapsules through constricted spaces leads to transient blockage of fluid flow, thus altering the flow behavior. The ability to tune microcapsule mechanical properties enables the design of elastic microcapsules...

  5. Electronically Tunable Resistorless Mixed Mode Biquad Filters

    OpenAIRE

    Yesil, A.; Kacar, F.

    2013-01-01

    This paper presents a new realization of elec¬tronically tunable mixed mode (including transadmittance- and voltage-modes) biquad filter with single input, three outputs or three inputs, single output using voltage differ-encing transconductance amplifier (VDTA), a recently introduced active element. It can simultaneously realize standard filtering signals: low-pass, band-pass and high-pass or by selecting input terminals, it can realize all five different filtering signals: low-pass, band-pa...

  6. Quantitative nanometer-scale mapping of dielectric tunability

    Energy Technology Data Exchange (ETDEWEB)

    Tselev, Alexander [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Klein, Andreas [Technische Univ. Darmstadt (Germany); Gassmann, Juergen [Technische Univ. Darmstadt (Germany); Jesse, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Qian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kalinin, Sergei V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wisinger, Nina Balke [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-21

    Two scanning probe microscopy techniques—near-field scanning microwave microscopy (SMM) and piezoresponse force microscopy (PFM)—are used to characterize and image tunability in a thin (Ba,Sr)TiO3 film with nanometer scale spatial resolution. While sMIM allows direct probing of tunability by measurement of the change in the dielectric constant, in PFM, tunability can be extracted via electrostrictive response. The near-field microwave imaging and PFM provide similar information about dielectric tunability with PFM capable to deliver quantitative information on tunability with a higher spatial resolution close to 15 nm. This is the first time that information about the dielectric tunability is available on such length scales.

  7. Tunable nanoparticle arrays at charged interfaces.

    Science.gov (United States)

    Srivastava, Sunita; Nykypanchuk, Dmytro; Fukuto, Masafumi; Gang, Oleg

    2014-10-28

    Structurally tunable two-dimensional (2D) arrays of nanoscale objects are important for modulating functional responses of thin films. We demonstrate that such tunable and ordered nanoparticles (NP) arrays can be assembled at charged air-water interfaces from nanoparticles coated with polyelectrolyte chains, DNA. The electrostatic attraction between the negatively charged nonhybridizing DNA-coated gold NPs and a positively charged lipid layer at the interface facilitates the formation of a 2D hexagonally closed packed (HCP) nanoparticle lattice. We observed about 4-fold change of the monolayer nanoparticle density by varying the ionic strength of the subphase. The tunable NP arrays retain their structure reasonably well when transferred to a solid support. The influence of particle's DNA corona and lipid layer composition on the salt-induced in-plane and normal structural evolution of NP arrays was studied in detail using a combination of synchrotron-based in situ surface scattering methods, grazing incidence X-ray scattering (GISAXS), and X-ray reflectivity (XRR). Comparative analysis of the interparticle distances as a function of ionic strength reveals the difference between the studied 2D nanoparticle arrays and analogous bulk polyelectrolyte star polymers systems, typically described by Daoud-Cotton model and power law scaling. The observed behavior of the 2D nanoparticle array manifests a nonuniform deformation of the nanoparticle DNA corona due to its electrostatically induced confinement at the lipid interface. The present study provides insight on the interfacial properties of the NPs coated with charged soft shells.

  8. Spark plasma sintering and porosity studies of uranium nitride

    Science.gov (United States)

    Johnson, Kyle D.; Wallenius, Janne; Jolkkonen, Mikael; Claisse, Antoine

    2016-05-01

    In this study, a number of samples of UN sintered by the SPS method have been fabricated, and highly pure samples ranging in density from 68% to 99.8%TD - corresponding to an absolute density of 14.25 g/cm3 out of a theoretical density of 14.28 g/cm3 - have been fabricated. By careful adjustment of the sintering parameters of temperature and applied pressure, the production of pellets of specific porosity may now be achieved between these ranges. The pore closure behaviour of the material has also been documented and compared to previous studies of similar materials, which demonstrates that full pore closure using these methods occurs near 97.5% of relative density.

  9. Device for investigation of the porosity of geological formations

    International Nuclear Information System (INIS)

    Tittman, J.; Hickman, W.J.

    1978-01-01

    A device for neutron well logging is described in which errors due to caked drilling mud on the walls of the hole are compensated for. This is achieved by using two neutron sources and two detectors. One of the neutron sources emits neutrons with so high energy, about 3 or 4 MeV, that their slowing down length is much greater than the thickness of the drilling mud, while the other emits neutrons with an energy of about 240 KeV (lithium-plutonium) or 25 KeV (antimony - beryllium), ie they have a very high probability of interacting with the material in the drilling mud. The detectors are adjusted to react selectively to neutrons of epithermal energy, and the difference in the signals represents the porosity, or hydrocarbon content of the geological formation. (JIW)

  10. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Smith, H.D.; Smith, M.P.; Schultz, W.E.

    1981-01-01

    A pulsed high-energy neutron source irradiates the earth formations surrounding a borehole with bursts of fast neutrons. A pair of detectors, one sensitive to epithermal neutrons and the other sensitive to fast neutrons and thermal neutron capture gamma rays, measure the fast and epithermal neutron populations at their effective distances from the source. The fast neutron measurements can be separated from thermal neutron interactions by time gating techniques and by pulse shape discrimination. The measurments of the fast and epithermal neutron populations at the two detectors may then be interpreted in terms of the earth formation porosity in accordance with predetermined relationships. Between neutron bursts capture gamma rays are detected in two or more time intervals, and these measurements are used to derive the thermal neutron capture cross section of the formation

  11. A Continuously Tunable Erbium-Doped Fibre Laser Using Tunable Fibre Bragg Gratings and Optical Circulator

    International Nuclear Information System (INIS)

    Peng, Liu; Feng-Ping, Yan; Jian, Li; Lin, Wang; Ti-Gang, Ning; Tao-Rong, Gong; Shui-Sheng, Jian

    2008-01-01

    A continuously tunable erbium-doped fibre laser (TEDFL) based on tunable fibre Bragger grating (TFBG) and a three-port optical circulator (OC) is proposed and demonstrated. The OC acts as a 100%-reflective mirror. A strain-induced uniform fibre Bragger grating (FBG) which functions as a partial-reflecting mirror is implemented in the linear cavity. By applying axial strain onto the TFBG, a continuously tunable lasing output can be realized. The wavelength tuning range covers approximately 7.00nm in C band (from 1543.6161 to 1550.3307nm). The side mode suppression ratio (SMSR) is better than 50 dB, and the 3 dB bandwidth of the laser is less than 0.01 nm. Moreover, an array waveguide grating (AWG) is inserted into the cavity for wavelength preselecting, and a 50 km transmission experiment was performed using our TEDFL at a 10Gb/s modulation rate

  12. Modeling Flow in Porous Media with Double Porosity/Permeability.

    Science.gov (United States)

    Seyed Joodat, S. H.; Nakshatrala, K. B.; Ballarini, R.

    2016-12-01

    Although several continuum models are available to study the flow of fluids in porous media with two pore-networks [1], they lack a firm theoretical basis. In this poster presentation, we will present a mathematical model with firm thermodynamic basis and a robust computational framework for studying flow in porous media that exhibit double porosity/permeability. The mathematical model will be derived by appealing to the maximization of rate of dissipation hypothesis, which ensures that the model is in accord with the second law of thermodynamics. We will also present important properties that the solutions under the model satisfy, along with an analytical solution procedure based on the Green's function method. On the computational front, a stabilized mixed finite element formulation will be derived based on the variational multi-scale formalism. The equal-order interpolation, which is computationally the most convenient, is stable under this formulation. The performance of this formulation will be demonstrated using patch tests, numerical convergence study, and representative problems. It will be shown that the pressure and velocity profiles under the double porosity/permeability model are qualitatively and quantitatively different from the corresponding ones under the classical Darcy equations. Finally, it will be illustrated that the surface pore-structure is not sufficient in characterizing the flow through a complex porous medium, which pitches a case for using advanced characterization tools like micro-CT. References [1] G. I. Barenblatt, I. P. Zheltov, and I. N. Kochina, "Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]," Journal of Applied Mathematics and Mechanics, vol. 24, pp. 1286-1303, 1960.

  13. Porosity-depth trends of carbonate deposits along the northwest shelf of Australia (IODP Expedition 356)

    Science.gov (United States)

    Lee, Eun Young; Kominz, Michelle; Reuning, Lars; Takayanagi, Hideko; Knierzinger, Wolfgang; Wagreich, Michael; Expedition 356 shipboard scientists, IODP

    2017-04-01

    The northwest shelf (NWS) of Australia extends from northern tropical to southern temperate latitudes situated offshore from the low-moderate-relief and semi-arid Australian continent. The shelf environment is dominated throughout by carbonate sedimentation with warm-water and tropical carbonate deposits, connected to the long-term northward drift of Australia bringing the NWS into tropical latitudes. IODP expedition 356 cored seven sites (U1458-U1464) covering a latitudinal range of 29°S-18°S off the NWS. This study focuses on porosity-depth trends of the Miocene - Pleistocene carbonate sediment on the NWS. The NWS is an ideal area to study regional (and furthermore general) carbonate porosity-depth relationships, because it contains a nearly continuous sequence of carbonate sediment ranging in depth from the surface to about 1,100m and in age from Pleistocene to Miocene. Porosity-depth trends of sedimentary rocks are generally controlled by a variety of factors which govern the rates of porosity loss due to mechanical compaction and of porosity loss (or gain) due to chemical processes during diagenesis. This study derives porosity data from Moisture and Density (MAD) technique conducted during IODP Expedition 356. MAD samples were collected from packstone (44%), wackestone (27%), mudstone (15%) and grainstone (7%), with the rest from floatstone, rudstone, dolostone, sandstone and other subordinate lithologies. To understand porosity-depth trends, the porosity data are arranged both exponentially and linearly, and correlated with age models and lithologic descriptions provided by IODP shipboard scientists. Porosity(%)-depth(m) trends of all the porosity data are Porosity=52e-0.0008/Depth (exponential) and Porosity=-0.03Depth+52 (linear). Porosities near surface and in the deepest parts of each well are least well represented by these trend lines. Porosity values of Pleistocene sediment are generally higher than those of Miocene - Pliocene sediment. The initial

  14. Simulating a Range of Regolith Porosities in the Lab: An Investigation into the Effects of Porosity on Spectral Measurements of Olivine

    Science.gov (United States)

    Evans, R.; Bowles, N. E.; Donaldson Hanna, K. L.

    2016-12-01

    Our current understanding of the composition of planetary bodies primarily comes from remote sensing spectroscopic observations. The interpretation of spectroscopic data requires analogue mineral spectra measured in the lab under appropriate environmental conditions.This is particularly true in the thermal infrared. At these wavelengths porosity, particle size, and near-surface environmental conditions have significant effects on the wavelength position and spectral contrast of diagnostic features. To isolate the effects due to porosity, diffuse reflectance measurements were made from 2.5 to 25 µm of a fine particulate San Carlos olivine sample (<25 µm). An experimental set-up was developed to prepare the olivine sample with a range of porosities (40% to 85%). The olivine sample, prepared with two different porosities (45% and 84%), was also measured in thermal emission from 6 to 25 µm in the University of Oxford's Simulated Lunar Environment Chamber. When measured in diffuse reflectance, we find that as the porosity increases the Christiansen feature (CF, a reflection minimum or emissivity maximum near 8 µm) shifts to longer wavelengths. In the thermal emissivity spectral measurements, we see no discernible shift in the CF position as the porosity changes. In both reflectance and emission the strength and position of the transparency feature (the spectral region from 11 to 13 µm where volume scattering dominates) behaves as expected, as the strength of the feature increases with porosity. In reflectance the relative strength of the reststrahlen bands (RB) were not observed to change systematically with porosity. In this presentation we provide details of our experimental set-up, the range of porosities simulated in the lab, and our spectroscopic results. These new measurements place important constraints for interpreting remote sensing measurements of planetary bodies.

  15. In-depth porosity control of mesoporous silicon layers by an anodization current adjustment

    Science.gov (United States)

    Lascaud, J.; Defforge, T.; Certon, D.; Valente, D.; Gautier, G.

    2017-12-01

    The formation of thick mesoporous silicon layers in P+-type substrates leads to an increase in the porosity from the surface to the interface with silicon. The adjustment of the current density during the electrochemical etching of porous silicon is an intuitive way to control the layer in-depth porosity. The duration and the current density during the anodization were varied to empirically model porosity variations with layer thickness and build a database. Current density profiles were extracted from the model in order to etch layer with in-depth control porosity. As a proof of principle, an 80 μm-thick porous silicon multilayer was synthetized with decreasing porosities from 55% to 35%. The results show that the assessment of the in-depth porosity could be significantly enhanced by taking into account the pure chemical etching of the layer in the hydrofluoric acid-based electrolyte.

  16. SEM-analysis of grain boundary porosity in three S-176 specimens

    International Nuclear Information System (INIS)

    Malen, K.; Birath, S.; Mattsson, O.

    1980-10-01

    Porosity in UO 2 -fuel has been studied in scanning electron microscope (SEM). The aim was to obtain a basis for evaluation of porosity in high burnup power reactor fuel. Three specimens have been analyzed. In the high temperature zones porosity can be seen both on grain boundaries and at grain edges. In the low temperature regions very little changes seem to have occurred during irradiation. (author)

  17. Corrosion behaviour of a sintered 316L with different porosity grades

    International Nuclear Information System (INIS)

    Soria, L.; Gomez, F.; Gallardo, J.M.; Herrera, E.J.

    1998-01-01

    AISI 316L sintered samples, with porosities ranging from 9 to 40%, and without alloying losses at the surface, have been prepared. Those samples, along with conventional (rolled) steel samples, have been subjected to electrochemical and immersion corrosion tests. According to porosity size quantitative measurements, before and after corrosion tests, two corrosion mechanisms, general and pitting, are proposed depending on the initial porosity. (Author) 17 refs

  18. Estimating permeability of carbonate rocks from porosity and v(p)/v(s)

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke; Baechle, G.; Eberli, G.P.

    2007-01-01

    We present a method for predicting permeability from sonic and density data. The method removes the porosity effect on the ratio upsilon(p)/upsilon(s), of dry rock, and it addresses the specific surface as an indirect measure of permeability. We look at ultrasonic data, porosity, and the permeabi......We present a method for predicting permeability from sonic and density data. The method removes the porosity effect on the ratio upsilon(p)/upsilon(s), of dry rock, and it addresses the specific surface as an indirect measure of permeability. We look at ultrasonic data, porosity...

  19. Contributions to the study of porosity in fly ash-based geopolymers. Relationship between degree of reaction, porosity and compressive strength

    Directory of Open Access Journals (Sweden)

    Y. Luna-Galiano

    2016-09-01

    Full Text Available The main contribution of this paper relates to the development of a systematic study involving a set of parameters which could potentially have an impact on geopolymer properties: curing temperature, type of activating solution, alkali metal in solution, incorporation of slag (Ca source and type of slag used. The microstructures, degrees of reaction, porosities and compressive strengths of geopolymers have been evaluated. Geopolymers prepared with soluble silicate presented a more compacted and closed structure, a larger amount of gel, lower porosity and greater compressive strength than those prepared with hydroxides. On the other hand, Na-geopolymers were more porous but more resistant than K-geopolymers. Although there is an inverse relation between degree of reaction and porosity, between compressive strength and porosity it is not always inversely proportional and could, in some cases, be masked by changes produced in other influencing parameters.

  20. Fault rock texture and porosity type in Triassic dolostones

    Science.gov (United States)

    Agosta, Fabrizio; Grieco, Donato; Bardi, Alessandro; Prosser, Giacomo

    2015-04-01

    Preliminary results of an ongoing project aimed at deciphering the micromechanics and porosity evolution associated to brittle deformation of Triassic dolostones are presented. Samples collected from high-angle, oblique-slip, 10's to 100's m-throw normal faults crosscutting Mesozoic carbonates of the Neo Tethys (Campanian-Lucanian Platform) are investigated by mean of field geological mapping, optical microscopy, SEM and image analyses. The goal is to characterize in detail composition, texture and porosity of cataclastic rocks in order to assess the structural architecture of dolomitic fault cores. Moreover, the present study addresses the time-space control exerted by several micro-mechanisms such as intragranular extensional fracturing, chipping and shear fracturing, which took place during grain rolling and crushing within the evolving faults, on type, amount, dimensions and distribution of micropores present within the cataclastic fault cores. Study samples are representative of well-exposed dolomitic fault cores of oblique-slip normal faults trending either NW-SE or NE-SW. The high-angle normal faults crosscut the Mesozoic carbonates of the Campanian-Lucanian Platform, which overrode the Lagonegro succession by mean of low-angle thrust faults. Fault throws are measured by considering the displaced thrust faults as key markers after large scale field mapping (1:10,000 scale) of the study areas. In the field, hand samples were selected according to their distance from main slip surfaces and, in some case, along secondary slip surfaces. Microscopy analysis of about 100 oriented fault rock samples shows that, mostly, the study cataclastic rocks are made up of dolomite and sparse, minute survivor silicate grains deriving from the Lagonegro succession. In order to quantitatively assess the main textural classes, a great attention is paid to the grain-matrix ratio, grain sphericity, grain roundness, and grain sorting. By employing an automatic box-counting technique

  1. Porosity reduction within shear deformation bands in unconsolidated Pleistocene sediments

    Science.gov (United States)

    Brandes, Christian; Tanner, David

    2016-04-01

    Deformation bands are important structural elements that occur in the upper crust and develop in porous sandstones and even in unconsolidated sands. In contrast to discrete surfaces such as faults, deformation bands represent tabular zones of continuous displacement over several centimeters (Fossen et al., 2007). We present an outcrop-based study on the internal fabric of shear deformation bands that developed in Pleistocene unconsolidated sands in northern Germany. The deformation bands formed in an extensional stress regime, have a normal sense of displacement in a range of centimeters to decimeters, and form conjugate sets that intersect at angles between 70° and 90° (Brandes & Tanner, 2012). Due to their near-surface position, they are a perfect target for the study of deformation band formation prior to burial and diagenesis. Thin section analysis show a significant pore space reduction from the host sediment to the shear deformation band. The boundary between the host sediment and the shear deformation bands can be very sharp. The grains within the deformation band are of the same grain size as the host sediment. Grain shape varies from angular to well-rounded. Many elliptic grains have a long-axis orientation parallel to the trend of the deformation band. The grains in the analysed thin sections are all intact, i.e., there is no evidence for cataclasis. We believe the shear deformation bands are created by a grain-sliding process that decreases the porosity and leads to a denser packing of the sand. This is a porosity reduction mechanism in sandstone that occurs prior to burial without cataclasis. This can have an impact on fluid-flow in unconsolidated sediments in the near-surface. References: Brandes, C. & Tanner, D.C. (2012) Three-dimensional geometry and fabric of shear deformation bands in unconsolidated Pleistocene sediments. Tectonophysics, 518-521, 84-92. Fossen, H., Schultz, R.A., Shipton, Z.K., & Mair, K. (2007) Deformation bands in sandstone: a

  2. A smart and self-sufficient frequency tunable vibration energy harvester

    Science.gov (United States)

    Eichhorn, C.; Tchagsim, R.; Wilhelm, N.; Woias, P.

    2011-10-01

    We present a piezoelectric energy-harvesting system, which is able to self-tune its resonance frequency in an energy-autonomous way, in order to extend its efficient operation over a large frequency range. The system consists of a resonant and frequency-tunable piezoelectric generator and a control unit. In predefined temporal intervals, the control unit analyzes the ambient vibration frequency, decides whether an adjustment of the generator's resonance frequency is necessary or not and delivers the appropriate voltage to a piezoelectric actuator which alters the generator's mechanical stiffness to tune its resonance frequency. The control unit has been optimized to an ultralow power consumption which means that up to 90% of the harvested energy can be fed to the powered electrical load, which could be an embedded system. With frequency-tunable generators, the application range of vibration energy harvesters can be extended to environments with a non-constant vibration frequency, like e.g. the surface of an engine with a varying number of revolutions per minute. Furthermore, the presented system opens the door to off-the-shelf solutions for environments with constant but uncommon vibration frequencies. With the smart tuning algorithm presented in this work, our system is even able to compensate typical weak points of piezoelectrically tunable harvesters, like e.g. hysteresis effects, the temperature dependence of the mechanical stiffness and aging effects.

  3. Tunable High Harmonic Generation driven by a Visible Optical Parametric Amplifier

    Directory of Open Access Journals (Sweden)

    Keathley P.

    2013-03-01

    Full Text Available We studied high-harmonic generation (HHG in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 μJ energy at 1-kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping energy, duration and beam size constant, we experimentally studied the scaling law of conversion efficiency and cut-off energy with the driver wavelength in argon and helium respectively. Our measurements show a λ−5.9±0.9 wavelength dependence of the conversion efficiency and a λ1.7±0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source and changing the gas, the high order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ~25 eV and ~100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  4. Tunable Soft X-Ray Oscillators

    International Nuclear Information System (INIS)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X.-W.; Fawley, William M.; Reinsch, Matthia; Penn, Gregory; Kim, K.-J.; Lindberg, Ryan; Zholents, Alexander

    2010-01-01

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  5. Tunable Soft X-Ray Oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W; Fawley, William M; Reinsch, Matthia; Penn, Gregory; Kim, K-J; Lindberg, Ryan; Zholents, Alexander

    2010-09-17

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  6. Development of frequency tunable gyrotrons for plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Idehara, T.; Mitsudo, S.; Sabchevski, S.; Glyavin, M. [Research Center for Development of Far-Infrared Region, Fukui Univ., Fukui (Japan); Ogawa, I. [Faculty of Engineering, Fukui Univ., Fukui (Japan); Sato, M.; Kawahata, K. [National Inst. for Fusion Science, Toki, Gifu (Japan); Brand, G.F. [School of Physics, Univ. of Sydney, NSW (Australia)

    2000-03-01

    Development of two types of frequency tunable gyrotrons are described. One is frequency step-tunable gyrotrons (Gyrotron FU Series) which cover wide range from millimeter to submillimeter wavelength region. The other is a quasi-optical gyrotron operating in 90 and 180 GHz bands. Both are applicable for plasma diagnostics as power sources. (author)

  7. Development of frequency tunable gyrotrons for plasma diagnostics

    International Nuclear Information System (INIS)

    Idehara, T.; Mitsudo, S.; Sabchevski, S.; Glyavin, M.; Ogawa, I.; Sato, M.; Kawahata, K.; Brand, G.F.

    2000-01-01

    Development of two types of frequency tunable gyrotrons are described. One is frequency step-tunable gyrotrons (Gyrotron FU Series) which cover wide range from millimeter to submillimeter wavelength region. The other is a quasi-optical gyrotron operating in 90 and 180 GHz bands. Both are applicable for plasma diagnostics as power sources. (author)

  8. A low-loss, continuously tunable microwave notch filter

    DEFF Research Database (Denmark)

    Acar, Öncel; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2016-01-01

    The development in high-end microwave transceiver systems toward the software defined radio has brought about the need for tunable frontend filters. Although the problem is being tackled by the microwave community, there still appears to be an unmet demand for practical tunable filter technologies...

  9. Water: Promising Opportunities For Tunable All-dielectric Electromagnetic Metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Kuznetsova, Svetlana M.; Zhukovsky, Sergei

    2015-01-01

    We reveal an outstanding potential of water as an inexpensive, abundant and bio-friendly high-refractive-index material for creating tunable all-dielectric photonic structures and metamaterials. Specifically, we demonstrate thermal, mechanical and gravitational tunability of magnetic and electric...

  10. Tunable optical absorption in silicene molecules

    KAUST Repository

    Mokkath, Junais Habeeb

    2016-07-13

    Two-dimensional materials with a tunable band gap that covers a wide range of the solar spectrum hold great promise for sunlight harvesting. For this reason, we investigate the structural, electronic, and optical properties of silicene molecules using time dependent density functional theory. We address the influence of the molecular size, buckling, and charge state as well as that of a dielectric environment. Unlike planar graphene molecules, silicene molecules prefer to form low-buckled structures with strong visible to ultraviolet optical response. We also identify molecular plasmons.

  11. Tunable superconducting qudit mediated by microwave photons

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Un [Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of); Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Bae, Myung-Ho; Kim, Nam [Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of); Kang, Kicheon [Department of Physics, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2015-08-15

    We have investigated the time-domain characteristics of the Autler-Townes doublet in a superconducting circuit. The transition probabilities between the ground state and the Autler-Townes doublet states are shown to be controlled in a phase-coherent manner using a well-known microwave pulse pattern technique. The experimental results are well explained by a numerical simulation based on the Markovian master equation. Our result indicates that the Autler-Townes doublet states might be useful as a tunable qudit for implementation of quantum information processing, in particular as a multivalued quantum logic element.

  12. Tunable superconducting qudit mediated by microwave photons

    Directory of Open Access Journals (Sweden)

    Sung Un Cho

    2015-08-01

    Full Text Available We have investigated the time-domain characteristics of the Autler-Townes doublet in a superconducting circuit. The transition probabilities between the ground state and the Autler-Townes doublet states are shown to be controlled in a phase-coherent manner using a well-known microwave pulse pattern technique. The experimental results are well explained by a numerical simulation based on the Markovian master equation. Our result indicates that the Autler-Townes doublet states might be useful as a tunable qudit for implementation of quantum information processing, in particular as a multivalued quantum logic element.

  13. Active microring based tunable optical power splitters

    Science.gov (United States)

    Peter, Eldhose; Thomas, Arun; Dhawan, Anuj; Sarangi, Smruti R.

    2016-01-01

    In this paper we propose a set of novel tunable optical power splitters based on active microring resonators. They work by operating ring resonators in the transient zone between full resonance and off-resonance states for a specific wavelength. We can achieve different split ratios by either varying the bias voltage, or by selectively enabling a given resonator with a specific split ratio among an array of ring resonators. We take 500 ps to tune the resonator, which is at least 10× better that competing designs. Its split ratio varies from 0.4 to 1.8 for an applied voltage range of 0-5 V.

  14. Nano electro-mechanical optoelectronic tunable VCSEL.

    Science.gov (United States)

    Huang, Michael C Y; Zhou, Ye; Chang-Hasnain, Connie J

    2007-02-05

    We report a novel electrostatic actuated nano-electromechanical optoelectronic (NEMO) tunable vertical-cavity surface-emitting laser (VCSEL) centered at 850 nm. By integrating a movable, single-layer (230 nm), high-index-contrast subwavelength grating (HCG) as the VCSEL top mirror, single mode emission (SMSR >40 dB) and continuous wavelength tuning (~2.5 nm) was obtained at room temperature under CW operation. The small footprint of HCG enables the scaling down of each of the cantilever dimensions by a factor of 10, leading to 1000 times reduction in mass, which potentially increases the mechanical resonant frequency and tuning speed.

  15. Magnetocapacitance of an electrically tunable silicene device

    KAUST Repository

    Tahir, M.

    2012-09-26

    Despite their structural similarity, the electronic properties of silicene are fundamentally different from those of well-known graphene due to the strong intrinsic spin orbit interaction and buckled structure of silicene. We address the magnetocapacitance of spin and valley polarized silicene in an external perpendicular magnetic field to clarify the interplay of the spin orbit interaction and the perpendicular electric field. We find that the band gap is electrically tunable and show that the magnetocapacitance exhibits beating at low and splitting of the Shubnikov de Haas oscillations at high magnetic field.

  16. Impact of porosity variation on diffusive transport: experimentation vs simulation

    International Nuclear Information System (INIS)

    Fatnassi, Ikram

    2015-01-01

    Reactions induced by the diffusion of reactants from different sources may alter rock confinement properties, and are therefore critical processes to assess short-term and long-term behaviour of rocks displaying a low permeability, such as argillites which are used as barriers in underground storage installation. In order to test transport-chemistry codes based on a continuous approach, the author of this research thesis reports the development and performance of simplest as possible experiments of sealing/dissolution diffusion, by using porous media of increasing complexity: compact sand, sintered glass, stoneware, chalk, until a material close to that envisaged within the frame of a storage like a Tournemire argillite. The principle of these experiments relies on the characterisation of the diffusive behaviour of an inert tracer within a porous medium submitted to dissolution reactions (attack of a carbonate matrix by an acid solution) and/or precipitation of mineral compounds (calcium oxalate, gypsum or barite) which results in an evolution of porosity and a modification of the diffusive transport of the studied tracer. At the end of the experiment, porous media and precipitates are characterised by SEM-EDS [fr

  17. Boiling radial flow in fractures of varying wall porosity

    Energy Technology Data Exchange (ETDEWEB)

    Barnitt, Robb Allan

    2000-06-01

    The focus of this report is the coupling of conductive heat transfer and boiling convective heat transfer, with boiling flow in a rock fracture. A series of experiments observed differences in boiling regimes and behavior, and attempted to quantify a boiling convection coefficient. The experimental study involved boiling radial flow in a simulated fracture, bounded by a variety of materials. Nonporous and impermeable aluminum, highly porous and permeable Berea sandstone, and minimally porous and permeable graywacke from The Geysers geothermal field. On nonporous surfaces, the heat flux was not strongly coupled to injection rate into the fracture. However, for porous surfaces, heat flux, and associated values of excess temperature and a boiling convection coefficient exhibited variation with injection rate. Nucleation was shown to occur not upon the visible surface of porous materials, but a distance below the surface, within the matrix. The depth of boiling was a function of injection rate, thermal power supplied to the fracture, and the porosity and permeability of the rock. Although matrix boiling beyond fracture wall may apply only to a finite radius around the point of injection, higher values of heat flux and a boiling convection coefficient may be realized with boiling in a porous, rather than nonporous surface bounded fracture.

  18. Liquid-liquid separation in high porosity inverse opals

    Science.gov (United States)

    Brandt, Soeren; Aizenberg, Joanna

    Oil-water mixtures pose significant industrial and environmental challenges in wastewater treatment. Submicron porosity membranes could provide the foundation of new low-cost separation techniques as local nucleation surfaces. However, membrane separation faces major roadblocks: aging of the membrane through surface fouling and pore blockage limits long-term applicability, and there is a general lack of understanding of the mechanism of separation. Inverse opals provide a structured, porous material with a reproducible, highly interconnected, bimodal pore structure that exhibits unique wetting behavior, based on which we can study the separation of oil-water mixtures in a thin, porous film using fluorescence microscopy. To understand the mechanism of liquid-liquid separation in inverse opals, we have devised an integrated microfluidic system to observe Darcy flow along the principal directions of the porous lattice. We find the pressure drop associated with surface drag to be small, and demonstrate control over the capillary pressure associated with infiltration of the porous matrix by changing the local surface chemistry. Additionally, we are able to achieve de-emulsification at low flow velocities regardless of surface chemistry. NSF - DMREF: 1533985.

  19. Integrative Chemistry: Advanced functional cellular materials bearing multiscale porosity

    Science.gov (United States)

    Depardieu, M.; Kinadjian, N.; Backov, R.

    2015-07-01

    With this mini review we show through the sol-gel and emulsion-based Integrative Chemistry how it is possible to trigger materials dimensionality and beyond their functionalities when reaching enhanced applications. In here we focus on 3D macrocellular monolithic foams bearing hierarchical porosities and applications thereof. We first depict the general background of emulsions focusing on concentrated ones, acting as soft templates for the design of PolyHIPE foams, HIPE being the acronym of High Internal Phase Emulsions while encompassing both sol-gel and polymer chemistry. Secondly we extend this approach toward the design of hybrid organic-inorganic foams, labeled Organo-Si(HIPE), where photonics and heterogeneous catalysis applications are addressed. In a third section we show how inorganic Si(HIPE) matrices can be employed as sacrificial hard templates for the generation carbonaceous foams, labeled Carbon(HIPE). These foams being conductive we show applications when employed as electrodes for Li-S battery and as hosts for Li(BH4)-based hydrogen storage.

  20. Improved tunable microstrip SQUID amplifiers for the Axion Dark Matter eXperiment

    Science.gov (United States)

    O'Kelley, Sean; Hansen, Jørn; Hilton, Gene; Mol, Jan-Michael; Clarke, John; ADMX Collaboration

    2015-04-01

    We describe a series of tunable microstrip SQUID (Superconducting QUantum Interference Device) amplifiers (MSAs) used as the photon detector in the Axion Dark Matter eXperiment (ADMX). Cooled to 100mK or lower, an optimized MSA approaches the quantum limit of detection. The axion dark matter candidate would be detected via Primakoff conversion to a microwave photon in a high-Q (~ 105) tunable microwave cavity, cooled to 1.6 K or lower, in the presence of a 7-tesla magnetic field. The MSA consists of a square loop of thin Nb film, incorporating two resistively shunted Josephson tunnel junctions biased to the voltage state, flux-coupled to a resonant microstrip. The photon frequency is determined by the unknown axion mass, so the cavity and amplifier must be tunable over a broad frequency range. MSA tunability is achieved by terminating the microstrip with a GaAs varactor diode that operates at cryogenic temperatures. This voltage-controlled capacitance enables us to vary the resonant microstrip mode from nearly λ/2 to λ/4. We demonstrate gains exceeding 20 dB, at frequencies above 900 MHz. With proper design of the microwave environment, a noise temperature of 1/2 to 1/4 of the physical temperature is demonstrated. Supported by DOE Grants DE-FG02-97ER41029, DE-FG02-96ER40956, DE- AC52-07NA27344, DE-AC03-76SF00098, NSF Grant 1067242, and the Livermore LDRD program.

  1. Effect of static porosity fluctuations on reactive transport in a porous medium

    Science.gov (United States)

    L'Heureux, Ivan

    2018-02-01

    Reaction-diffusive transport phenomena in porous media are ubiquitous in engineering applications, biological and geochemical systems. The porosity field is usually random in space, but most models consider the porosity field as a well-defined deterministic function of space and time and ignore the porosity fluctuations. They use a reaction-diffusion equation written in terms of an average porosity and average concentration fields. In this contribution, we treat explicitly the effect of spatial porosity fluctuations on the dynamics of a concentration field for the case of a one-dimensional reaction-transport system with nonlinear kinetics. Three basic assumptions are considered. (i) The porosity fluctuations are assumed to have Gaussian properties and an arbitrary variance; (ii) we assume that the noise correlation length is small compared to the relevant macroscopic length scale; (iii) and we assume that the kinetics of the reactive term in the equations for the fluctuations is a self-consistently determined constant. Elimination of the fluctuating part of the concentration field from the dynamics leads to a renormalized equation involving the average concentration field. It is shown that the noise leads to a renormalized (generally smaller) diffusion coefficient and renormalized kinetics. Within the framework of the approximations used, numerical simulations are in agreement with our theory. We show that the porosity fluctuations may have a significant effect on the transport of a reactive species, even in the case of a homogeneous average porosity.

  2. Visualization and prediction of porosity in roller compacted ribbonswith near infrared chemical imaging (NIR-CI)

    DEFF Research Database (Denmark)

    Khorasani, Milad Rouhi; Amigo Rubio, Jose Manuel; Sonnergaard, Jørn

    2015-01-01

    reference methods that ribbons compressed at a higher pressure resulted in a lower mean porosity. Using NIR-CI in combination with multivariate data analysis it was possible to visualize and predict the porosity distribution of the ribbons. This approach is considered important for process monitoring...... and control of continuously operating roller compaction line....

  3. Effect of porosity of alumina and zirconia ceramics towards pre-osteoblast response

    Directory of Open Access Journals (Sweden)

    Chrystalleni eHadjicharalambous

    2015-10-01

    Full Text Available It is acknowledged that cellular responses are highly affected by biomaterial porosity. The investigation of this effect is important for the development of implanted biomaterials that integrate with bone tissue. Zirconia and alumina ceramics exhibit outstanding mechanical properties and are among the most popular implant materials used in orthopedics, but few data exist regarding the effect of porosity on cellular responses to these materials. The present study investigates the effect of porosity on the attachment and proliferation of pre-osteoblastic cells on zirconia and alumina. For each composition, ceramics of three different porosities are fabricated by sintering, and characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray powder diffraction. Cell proliferation is quantified, and microscopy is employed to qualitatively support the proliferation results and evaluate cell morphology. Cell adhesion and metabolic activity are found comparable among low porosity zirconia and alumina. In contrast, higher porosity favors better cell spreading on zirconia and improves growth, but does not significantly affect cell response on alumina. Between the highest porosity materials, cell response on zirconia is found superior to alumina. Results show that an average pore size of ~150 µm and ~50% porosity can be considered beneficial to cellular growth on zirconia ceramics.

  4. Dual-porosity Mn2O3 cubes for highly efficient dye adsorption.

    Science.gov (United States)

    Shao, Yongjiu; Ren, Bin; Jiang, Hanmei; Zhou, Bingjie; Lv, Liping; Ren, Jingzheng; Dong, Lichun; Li, Jing; Liu, Zhenfa

    2017-07-05

    Dual-porosity materials containing both macropores and mesopores are highly desired in many fields. In this work, we prepared dual-porosity Mn 2 O 3 cube materials with large-pore mesopores, in which, macropores are made by using carbon spheres as the hard templates, while the mesopores are produced via a template-free route. The attained dual-porosity Mn 2 O 3 materials have 24nm of large-pore mesopores and 700nm of macropores. Besides, the achieved materials own cubic morphologies with particle sizes as large as 6.0μm, making them separable in the solution by a facile natural sedimentation. Dye adsorption measurements reveal that the dual-porosity materials possess a very high maximum adsorption capacity of 125.6mg/g, much larger than many reported materials. Particularly, the adsorbents can be recycled and the dye removal efficiency can be well maintained at 98% after four cycles. Adsorption isotherm and kinetics show that the Langmuir model and the pseudo-second-order kinetics model can well describe the adsorption process of Congo Red on the dual-porosity Mn 2 O 3 cube materials. In brief, the reported dual-porosity Mn 2 O 3 demonstrates a good example for controlled preparation of dual-porosity materials with large-pore mesopores, and the macropore-mesopore dual-porosity distribution is good for mass transfer in dye adsorption application. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Olive Crown Porosity Measurement Based on Radiation Transmittance: An Assessment of Pruning Effect

    Directory of Open Access Journals (Sweden)

    Francisco J. Castillo-Ruiz

    2016-05-01

    Full Text Available Crown porosity influences radiation interception, air movement through the fruit orchard, spray penetration, and harvesting operation in fruit crops. The aim of the present study was to develop an accurate and reliable methodology based on transmitted radiation measurements to assess the porosity of traditional olive trees under different pruning treatments. Transmitted radiation was employed as an indirect method to measure crown porosity in two olive orchards of the Picual and Hojiblanca cultivars. Additionally, three different pruning treatments were considered to determine if the pruning system influences crown porosity. This study evaluated the accuracy and repeatability of four algorithms in measuring crown porosity under different solar zenith angles. From a 14° to 30° solar zenith angle, the selected algorithm produced an absolute error of less than 5% and a repeatability higher than 0.9. The described method and selected algorithm proved satisfactory in field results, making it possible to measure crown porosity at different solar zenith angles. However, pruning fresh weight did not show any relationship with crown porosity due to the great differences between removed branches. A robust and accurate algorithm was selected for crown porosity measurements in traditional olive trees, making it possible to discern between different pruning treatments.

  6. Effect of porosity on the tensile properties of low ductility aluminum alloys

    Directory of Open Access Journals (Sweden)

    Gustavo Waldemar Mugica

    2004-06-01

    Full Text Available The literature contains reports of several studies correlating the porosity and mechanical properties of aluminum alloys. Most of these studies determine this correlation based on the parameter of global volumetric porosity. These reports, however, fail to separate the effects of microstructural features and porosity on alloys, though recognizing the influence of the latter on their mechanical properties. Thus, when the decrease in tensile strength due to the porosity effect is taken into account, the findings are highly contradictory. An analysis was made of the correlation between mechanical properties and global volumetric porosity and volumetric porosity in the fracture, as well as of the beta-Al5FeSi phase present in 380 aluminum alloy. Our findings indicate that mechanical properties in tension relating to global volumetric porosity lead to overestimations of the porosity effect in detriment to the mechanical properties. Moreover, the proposed models that take into account the effects of particles, both Si and beta-Al5FeSi, are unapplicable to low ductility alloys.

  7. One-step aerosol synthesis of nanoparticle agglomerate films: simulation of film porosity and thickness

    International Nuclear Information System (INIS)

    Maedler, Lutz; Lall, Anshuman A; Friedlander, Sheldon K

    2006-01-01

    A method is described for designing nanoparticle agglomerate films with desired film porosity and film thickness. Nanoparticle agglomerates generated in aerosol reactors can be directly deposited on substrates to form uniform porous films in one step, a significant advance over existing technologies. The effect of agglomerate morphology and deposition mechanism on film porosity and thickness are discussed. Film porosity was calculated for a given number and size of primary particles that compose the agglomerates, and fractal dimension. Agglomerate transport was described by the Langevin equation of motion. Deposition enhancing forces such as thermophoresis are incorporated in the model. The method was validated for single spherical particles using previous theoretical studies. An S-shape film porosity dependence on the particle Peclet number typical for spherical particles was also observed for agglomerates, but films formed from agglomerates had much higher porosities than films from spherical particles. Predicted film porosities compared well with measurements reported in the literature. Film porosities increased with the number of primary particles that compose an agglomerate and higher fractal dimension agglomerates resulted in denser films. Film thickness as a function of agglomerate deposition time was calculated from the agglomerate deposition flux in the presence of thermophoresis. The calculated film thickness was in good agreement with measured literature values. Thermophoresis can be used to reduce deposition time without affecting the film porosity

  8. Mueller matrix polarimetry on plasma sprayed thermal barrier coatings for porosity measurement.

    Science.gov (United States)

    Luo, David A; Barraza, Enrique T; Kudenov, Michael W

    2017-12-10

    Yttria-stabilized zirconia (YSZ) is the most widely used material for thermal plasma sprayed thermal barrier coatings (TBCs) used to protect gas turbine engine parts in demanding operation environments. The superior material properties of YSZ coatings are related to their internal porosity level. By quantifying the porosity level, tighter control on the spraying process can be achieved to produce reliable coatings. Currently, destructive measurement methods are widely used to measure the porosity level. In this paper, we describe a novel nondestructive approach that is applicable to classify the porosity level of plasma sprayed YSZ TBCs via Mueller matrix polarimetry. A rotating retarder Mueller matrix polarimeter was used to measure the polarization properties of the plasma sprayed YSZ coatings with different porosity levels. From these measurements, it was determined that a sample's measured depolarization ratio is dependent on the sample's surface roughness and porosity level. To this end, we correlate the depolarization ratio with the samples' surface roughness, as measured by a contact profilometer, as well as the total porosity level, in percentage measured using a micrograph and stereological analysis. With the use of this technique, a full-field and rapid measurement of porosity level can be achieved.

  9. On the relationship between multiple porosity models and continuous time random walk

    OpenAIRE

    Nordbotten, Jan Martin; Vasilyev, Leonid

    2010-01-01

    We derive a multiple porosity model based on the continuous time random walk model (CTRW). In particular, we show how the parameters of the multiple porosity models relate to the transition probability function which is at the heart of the CTRW formulation. A simple example is included to illustrate the results.

  10. A modeling and numerical algorithm for thermoporomechanics in multiple porosity media for naturally fractured reservoirs

    Science.gov (United States)

    Kim, J.; Sonnenthal, E. L.; Rutqvist, J.

    2011-12-01

    Rigorous modeling of coupling between fluid, heat, and geomechanics (thermo-poro-mechanics), in fractured porous media is one of the important and difficult topics in geothermal reservoir simulation, because the physics are highly nonlinear and strongly coupled. Coupled fluid/heat flow and geomechanics are investigated using the multiple interacting continua (MINC) method as applied to naturally fractured media. In this study, we generalize constitutive relations for the isothermal elastic dual porosity model proposed by Berryman (2002) to those for the non-isothermal elastic/elastoplastic multiple porosity model, and derive the coupling coefficients of coupled fluid/heat flow and geomechanics and constraints of the coefficients. When the off-diagonal terms of the total compressibility matrix for the flow problem are zero, the upscaled drained bulk modulus for geomechanics becomes the harmonic average of drained bulk moduli of the multiple continua. In this case, the drained elastic/elastoplastic moduli for mechanics are determined by a combination of the drained moduli and volume fractions in multiple porosity materials. We also determine a relation between local strains of all multiple porosity materials in a gridblock and the global strain of the gridblock, from which we can track local and global elastic/plastic variables. For elastoplasticity, the return mapping is performed for all multiple porosity materials in the gridblock. For numerical implementation, we employ and extend the fixed-stress sequential method of the single porosity model to coupled fluid/heat flow and geomechanics in multiple porosity systems, because it provides numerical stability and high accuracy. This sequential scheme can be easily implemented by using a porosity function and its corresponding porosity correction, making use of the existing robust flow and geomechanics simulators. We implemented the proposed modeling and numerical algorithm to the reaction transport simulator

  11. Influence of porosity formation on irradiated UO2 fuel thermal conductivity at high burnup

    Science.gov (United States)

    Roostaii, B.; Kazeminejad, H.; Khakshournia, S.

    2016-10-01

    Based on the existing low temperature high burnup gaseous swelling model for UO2 fuel, the matrix swelling terms are calculated and the formation of total volume porosity up to burnup of 120 MWd/KgU is computed. The irradiated UO2 thermal conductivity model based on the Maxwell-Eucken correlation for porosity factor is selected as a case study and the calculation of porosity evolution with burnup is carried out. It is shown that taking into account the formation of porosity with burnup compared to the case with constant porosity equal to as-fabricated value leads to a decrease in the UO2 fuel thermal conductivity up to 15% at high burnup values of 120 MWd/kgU. Results of the calculations are also compared with the available experimental data and good agreement was found. The conducted parametric study clearly demonstrated the impact of the key parameters on the results of the present investigation.

  12. Intelligent control for a drone by self-tunable fuzzy inference system

    OpenAIRE

    Zemalache, Kadda; Maaref, Hichem

    2009-01-01

    International audience; The work describes an automatically on-line Self-Tunable Fuzzy Inference System (STFIS) of a new configuration of mini-flying called XSF (X4 Stationnary Flyer) drone. A Fuzzy controller based on on-line optimization of a zero order Takagi-Sugeno fuzzy inference system (FIS) by a back propagation-like algorithm is successfully applied. It is used to minimize a cost function that is made up of a quadratic error term and a weight decay term that prevents an excessive grow...

  13. Elastic metamaterial beam with remotely tunable stiffness

    Science.gov (United States)

    Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.

    2016-02-01

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  14. 130-nm tunable grating-mirror VCSEL

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2014-01-01

    We have reported that a combination of the high-index-contrast grating (HCG) mirror as movable mirror and the extended cavity configuration with an antireflection layer can provide a tuning wavelength range of 100 nm for tunable VCSELs. Here, we report that using the air-coupled cavity configurat......We have reported that a combination of the high-index-contrast grating (HCG) mirror as movable mirror and the extended cavity configuration with an antireflection layer can provide a tuning wavelength range of 100 nm for tunable VCSELs. Here, we report that using the air-coupled cavity...... configuration instead of the extended cavity configuration can bring 130-nm tuning range around 1330-nm wavelength. The air-coupled cavity is known to reduce the quantum confinement factor in VCSELs, increasing threshold. In our air-coupled cavity HCG VCSEL case, the very short power penetration length...... in the HCG minimizes this reduction of the quantum confinement factor, not as significant as in the air-coupled cavity DBR VCSEL....

  15. Directed growth of diameter-tunable nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, Birol; Talukdar, Ishan; Flanders, Bret N [Department of Physics, Oklahoma State University, 145 Physical Sciences II, Stillwater, OK 74078 (United States)

    2007-09-12

    This study characterizes a method for controlling the nanowire diameter in the directed electrochemical nanowire assembly technique, where alternating voltages applied to electrodes in simple salt solutions induce the crystallization of metallic wires. Dendritic solidification is identified as an important component of this technique. A characteristic of dendritic solidification is that the growth velocity and tip radius are anti-correlated. This relationship is exploited here to realize diameter-tunable nanowire growth. The experimental parameter that provides this control is {omega}, the frequency of the alternating voltage. Increasing {omega} effectively steepens the metal cation concentration gradient at the wire-solution interface, thereby increasing the growth velocity of the wire. For indium wires, increasing {omega} from 0.5 to 3.5 MHz increases their growth velocity from 11 to 78 {mu}m s{sup -1} and reduces their diameter from 770 to 114 nm. Gold wires exhibit diameter-tunability that ranges from 150 nm to 45 nm. Thus, it is possible to tune the wire diameter from the microscale down to the nanoscale. Moreover, this control is a consequence of non-stationary dendritic growth, which distinguishes this process from most previously studied examples of dendritic solidification.

  16. Elastic metamaterial beam with remotely tunable stiffness

    International Nuclear Information System (INIS)

    Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.

    2016-01-01

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ∼30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves

  17. Highly Tunable Electrothermally and Electrostatically Actuated Resonators

    KAUST Repository

    Hajjaj, Amal Z.

    2016-03-30

    This paper demonstrates experimentally, theoretically, and numerically for the first time, a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator actuated electrothermally and electrostatically. Using both actuation methods, we demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally by passing a dc current through it, and electrostatically by applying a dc polarization voltage between the microbeam and the stationary electrode. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Adding a dc bias changes the qualitative nature of the tunability both before and after buckling, which adds another independent way of tuning. This reduces the dip before buckling, and can eliminate it if desired, and further increases the fundamental frequency after buckling. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared with the experimental data and simulation results of a multi-physics finite-element model. A good agreement is found among all the results. [2015-0341

  18. Tunable Mechanical Filter for Longitudinal Vibrations

    Directory of Open Access Journals (Sweden)

    S. Asiri

    2007-01-01

    Full Text Available This paper presents both theoretically and experimentally a new kind of vibration isolator called tunable mechanical filter which consists of four parallel hybrid periodic rods connected between two plates. The rods consist of an assembly of periodic cells, each cell being composed of a short rod and piezoelectric inserts. By actively controlling the piezoelectric elements, it is shown that the periodic rods can efficiently attenuate the propagation of vibration from the upper plate to the lower one within critical frequency bands and consequently minimize the effects of transmission of undesirable vibration and sound radiation. In such a filter, longitudinal waves can propagate from the vibration source in the upper plate to the lower one along the rods only within specific frequency bands called the “Pass Bands” and wave propagation is efficiently attenuated within other frequency bands called the “Stop Bands”. The spectral width of these bands can be tuned according to the nature of the external excitation. The theory governing the operation of this class of vibration isolator is presented and their tunable filtering characteristics are demonstrated experimentally as functions of their design parameters. The concept of this mechanical filter as presented can be employed in many applications to control the wave propagation and the force transmission of longitudinal vibrations both in the spectral and spatial domains in an attempt to stop/attenuate the propagation of undesirable disturbances.

  19. Highly Tunable Electrothermally Actuated Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2016-12-05

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated MEMS arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and results of a multi-physics finite-element model. A good agreement is found among all the results. The electrothermal voltage is applied between the anchors of the clamped-clamped MEMS arch beam, generating a current that passes through the MEMS arch beam and controls its axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to increase in its curvature, thereby increases the resonance frequencies of the structure. We show here that the first resonance frequency can increase up to twice its initial value. We show also that after some electro-thermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators.

  20. A review on controlled porosity osmotic pump tablets and its evaluation

    Directory of Open Access Journals (Sweden)

    Chinmaya Keshari Sahoo

    2015-12-01

    Full Text Available Conventional drug delivery system provides an immediate release of drug which does not control the release of the drug and does not maintain effective concentration at target site for a longer period of time. Hence to avoid the shortcomings there is development of various controlled drug delivery systems. Among these osmotic drug delivery system (ODDS utilizes the principle of osmotic pressure and delivers drug dose in an optimized manner to maintain drug concentration within the therapeutic window and minimizes toxic effects. ODDS releases drug at a controlled rate that is independent of the pH and thermodynamics of dissolution medium. The release of drug from ODDS follows zero order kinetics. The release of drug from osmotic system depends upon various formulation factors such as solubility, osmotic pressure of the core components, size of the delivery orifice and nature of the rate controlling membrane. Controlled porosity osmotic pump (CPOP contains drug, osmogens, excipients in core and a coating of semipermeable membrane with water soluble additives. In CPOP water soluble additives dissolve after coming in contact with water, resulting in an in situ formation of a microporous membrane. The present study gives an idea about osmosis, CPOP, components of CPOP and its evaluation.

  1. Suspension Rheology, Porosity and Mechanical Strength of Porous Hydroxyapatite Obtained by Gel-casting and Infiltration

    Science.gov (United States)

    González Ocampo, Jazmín; Escobar Jaramillo, Mateo; Escobar Sierra, Diana; Ossa Orozco, Claudia

    2016-02-01

    The gel-casting technique (GC) and infiltration of polymer foam combined with gel-casting (IG) were used to produce hydroxyapatite porous bodies. Due to the fact that the process begins with the preparation of the suspensions, it is necessary to know the rheological properties of the ceramic slurry. This is a critical factor needed to optimize the mechanical strength of the porous body obtained. Therefore, the rheological behavior of various HA slurries was assessed. 40 and 50% solids and three different monomers were evaluated. Subsequently, the compressive strength and porosity of the porous bodies obtained were evaluated. The results revealed that the chemical composition of each monomer can affect the dispersion and rheological properties of the suspension, which directly affects the mechanical properties of the porous bodies. The porous bodies obtained by the GC technique showed strengths higher than those obtained by IG compression. The control executed over the rheology of the suspension was more effective in bodies produced by GC, because IG pyrolysis of polyurethane foam also influenced the mechanical properties of the final product.

  2. Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast

    Energy Technology Data Exchange (ETDEWEB)

    Navarre-Sitchler, A.; Steefel, C.I.; Yang, L.; Tomutsa, L.; Brantley, S.L.

    2009-02-15

    Weathering of rocks as a result of exposure to water and the atmosphere can cause significant changes in their chemistry and porosity. In low-porosity rocks, such as basalts, changes in porosity, resulting from chemical weathering, are likely to modify the rock's effective diffusivity and permeability, affecting the rate of solute transport and thus potentially the rate of overall weathering to the extent that transport is the rate limiting step. Changes in total porosity as a result of mineral dissolution and precipitation have typically been used to calculate effective diffusion coefficients through Archie's law for reactive transport simulations of chemical weathering, but this approach fails to account for unconnected porosity that does not contribute to transport. In this study, we combine synchrotron X-ray microcomputed tomography ({mu}CT) and laboratory and numerical diffusion experiments to examine changes in both total and effective porosity and effective diffusion coefficients across a weathering interface in a weathered basalt clast from Costa Rica. The {mu}CT data indicate that below a critical value of {approx}9%, the porosity is largely unconnected in the basalt clast. The {mu}CT data were further used to construct a numerical pore network model to determine upscaled, effective diffusivities as a function of total porosity (ranging from 3 to 30%) for comparison with diffusivities determined in laboratory tracer experiments. By using effective porosity as the scaling parameter and accounting for critical porosity, a model is developed that accurately predicts continuum-scale effective diffusivities across the weathering interface of the basalt clast.

  3. [Evaluation of porosity in the restorations of light-cured resin composite].

    Science.gov (United States)

    Zhao, Xin-yi; Zhang, Wu; Lee, Sean; Roggenkamp, Clyde; Lu, Mei; Li, Yi-ming

    2010-01-01

    To investigate the influence of the consistency of resin composite and insertion techniques on the homogeneity of the Class I restorations. Standardized Class I cavities were prepared in polymethyl methyacrylate (PMMA) blocks and restored with three resin composites (Prodigy, Tetric EvoCeram and Tetric Ceram HB) using either a packing or an injection technique by six operators. Then the restorations were sectioned longitudinally and inspected for the presence of porosities and voids with microscope. The consistence of the three resins was tested using an area method. There is little porosity in original resin. After insertion, large numbers of porosities were observed in restorations, with Tetric EvoCeram presented much more porosities (1137.1 +/- 365.0 for packing and 566.1 +/- 206.4 for injection) than Prodigy (241.0 +/- 116.1, 195.8 +/- 28.7) and Tetric Ceram HB (193.1 +/- 35.8, 156.3 +/- 33.0). Tetric Ceram HB showed the highest consistency, followed by Tetric EvoCeram and Prodigy. No linear correlation was found between the consistency of the composite and the porosity of their restorations. For Tetric EvoCeram, the restorations inserted with packing showed significant more porosity than that with injection. Contrastively, the restorations of Prodigy or Tetric Ceram HB presented no apparent difference for the two filling techniques. The porosity in restoration was primarily created during the insertion. There was no linear correlation between the consistency of the composite and the porosity of their restorations. The porosity of composite resin is material-brand dependent. The influence of filling techniques on the porosity of restoration is depending on the composite used.

  4. Ionization Thresholds of Small Carbon Clusters: Tunable VUVExperiments and Theory

    Energy Technology Data Exchange (ETDEWEB)

    Belau, Leonid; Wheeler, Steven E.; Ticknor, Brian W.; Ahmed,Musahid; Leone, Stephen R.; Allen, Wesley D.; Schaefer III, Henry F.; Duncan, Michael A.

    2007-07-31

    Small carbon clusters (Cn, n = 2-15) are produced in amolecular beam by pulsed laser vaporization and studied with vacuumultraviolet (VUV) photoionization mass spectrometry. The required VUVradiation in the 8-12 eV range is provided by the Advanced Light Source(ALS) at the Lawrence Berkeley National Laboratory. Mass spectra atvarious ionization energies reveal the qualitative relative abundances ofthe neutral carbon clusters produced. By far the most abundant species isC3. Using the tunability of the ALS, ionization threshold spectra arerecorded for the clusters up to 15 atoms in size. The ionizationthresholds are compared to those measured previously with charge-transferbracketing methods. To interpret the ionization thresholds for differentcluster sizes, new ab initio calculations are carried out on the clustersfor n = 4-10. Geometric structures are optimized at the CCSD(T) levelwith cc-pVTZ (or cc-pVDZ) basis sets, and focal point extrapolations areapplied to both neutral and cation species to determine adiabatic andvertical ionization potentials. The comparison of computed and measuredionization potentials makes it possible to investigate the isomericstructures of the neutral clusters produced in this experiment. Themeasurements are inconclusive for the n = 4-6 species because ofunquenched excited electronic states. However, the data provide evidencefor the prominence of linear structures for the n = 7, 9, 11, 13 speciesand the presence of cyclic C10.

  5. Permanent magnetic ferrite based power-tunable metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guanqiao; Lan, Chuwen [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Gao, Rui [High Temperature Thermochemistry Laboratory, Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5 (Canada); Zhou, Ji, E-mail: zhouji@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-08-15

    Highlights: • Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated. • It is observed that resonant frequency of the array shifts upon altering the output power. • This kind of power-tunable behavior is due to the temperature rise as a result of FMR-induced heat buildup. • This work offers a practical idea to tune ferrite metamaterials besides magneto-tunability and thermal-tunability. - Abstract: Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated in this research. Scattering parameter measurements confirm a shift in resonant frequency in correlation to changes in incident electromagnetic power within microwave frequency band. The tunable phenomenon represented by a blue-shift in transmission spectra in the metamaterials array can be attributed to a decrease in saturation magnetization resulting from FMR-induced temperature elevation upon resonant conditions. This power-dependent behavior offers a simple and practical route towards dynamically fine-tunable ferrite metamaterials.

  6. Design of Hilbert transformers with tunable THz bandwidths using a reconfigurable integrated optical FIR filter

    Science.gov (United States)

    Ngo, Nam Quoc; Song, Yufeng; Lin, Bo

    2011-02-01

    We present the design and analysis of a wideband and tunable optical Hilbert transformer (OHT) using a tunable waveguide-based finite-impulse response (FIR) filter structure by using the digital filter design method and the Remez algorithm. The tunable Nth-order waveguide-based FIR filter, which simply consists of N delay lines, N tunable couplers, N tunable phase shifters and a combiner, can be tuned, by thermally adjusting the tunable couplers and tunable phase shifters, to tune the bandwidth of an OHT using silica-based planar lightwave circuit (PLC) technology. To demonstrate the effectiveness of the method, the simulation results have an excellent agreement with the theoretical predictions. The tunable OHT can function as a wideband and tunable 90° phase shifter and thus has many potential applications. The two unique features of wideband characteristic (up to ~ 2 THz) and tunable bandwidth (THz tuning range) of the proposed OHT cannot be obtained from the existing OHTs.

  7. Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors

    Science.gov (United States)

    Qiu, Zhipeng; Wang, Yesheng; Bi, Xu; Zhou, Tong; Zhou, Jin; Zhao, Jinping; Miao, Zhichao; Yi, Weiming; Fu, Peng; Zhuo, Shuping

    2018-02-01

    The development of supercapacitors with high energy density and power density is an important research topic despite many challenging issues exist. In this work, porous carbon material was prepared from corn straw biochar and used as the active electrode material for electric double-layer capacitors (EDLCs). During the KOH activation process, the ratio of KOH/biochar significantly affects the microstructure of the resultant carbon, which further influences the capacitive performance. The optimized carbon material possesses typical hierarchical porosity composed of multi-leveled pores with high surface area and pore volume up to 2790.4 m2 g-1 and 2.04 cm3 g-1, respectively. Such hierarchical micro-meso-macro porosity significantly improved the rate performance of the biochar-based carbons. The achieved maximum specific capacitance was 327 F g-1 and maintained a high value of 205 F g-1 at a ultrahigh current density of 100 A g-1. Meanwhile, the prepared EDLCs present excellent cycle stability in alkaline electrolytes for 120 000 cycles at 5 A g-1. Moreover, the biochar-based carbon could work at a high voltage of 1.6 V in neutral Na2SO4, and exhibit a high specific capacitance of 227 F g-1, thus giving an outstanding energy density of 20.2 Wh kg-1.

  8. Influence of the Porosity of the TiO2 Film on the Performance of the Perovskite Solar Cell

    Directory of Open Access Journals (Sweden)

    Xiaodan Sun

    2017-01-01

    Full Text Available The structure of mesoporous TiO2 (mp-TiO2 films is crucial to the performance of mesoporous perovskite solar cells (PSCs. In this study, we fabricated highly porous mp-TiO2 films by doping polystyrene (PS spheres in TiO2 paste. The composition of the perovskite films was effectively improved by modifying the mass fraction of the PS spheres in the TiO2 paste. Due to the high porosity of the mp-TiO2 film, PbI2 and CH3NH3I could sufficiently infiltrate into the network of the mp-TiO2 film, which ensured a more complete transformation to CH3NH3PbI3. The surface morphology of the mp-TiO2 film and the photoelectric performance of the perovskite solar cells were investigated. The results showed that an increase in the porosity of the mp-TiO2 film resulted in an improvement in the performance of the PSCs. The best device with the optimized mass fraction of 1.0 wt% PS in TiO2 paste exhibited an efficiency of 12.69%, which is 25% higher than the efficiency of the PSCs without PS spheres.

  9. Tunable Microwave Component Technologies for SatCom-Platforms

    Science.gov (United States)

    Maune, Holger; Jost, Matthias; Wiens, Alex; Weickhmann, Christian; Reese, Roland; Nikfalazar, Mohammad; Schuster, Christian; Franke, Tobias; Hu, Wenjuan; Nickel, Matthias; Kienemund, Daniel; Prasetiadi, Ananto Eka; Jakoby, Rolf

    2017-03-01

    Modern communication platforms require a huge amount of switched RF component banks especially made of different filters and antennas to cover all operating frequencies and bandwidth for the targeted services and application scenarios. In contrast, reconfigurable devices made of tunable components lead to a considerable reduction in complexity, size, weight, power consumption, and cost. This paper gives an overview of suitable technologies for tunable microwave components especially for SatCom applications. Special attention is given to tunable components based on functional materials such as barium strontium titanate (BST) and liquid crystal (LC).

  10. Co-extruded mechanically tunable multilayer elastomer laser

    Science.gov (United States)

    Crescimanno, Michael; Mao, Guilin; Andrews, James; Singer, Kenneth; Baer, Eric; Hiltner, Anne; Song, Hyunmin; Shakya, Bijayandra

    2011-04-01

    We have fabricated and studied mechanically tunable elastomer dye lasers constructed in large area sheets by a single-step layer-multiplying co-extrusion process. The laser films consist of a central dye-doped (Rhodamine-6G) elastomer layer between two 128-layer distributed Bragg reflector (DBR) films comprised of alternating elastomer layers with different refractive indices. The central gain layer is formed by folding the coextruded DBR film to enclose a dye-doped skin layer. By mechanically stretching the elastomer laser film from 0% to 19%, a tunable miniature laser source was obtained with ˜50 nm continuous tunability from red to green.

  11. Microwave photonic comb filter with ultra-fast tunability.

    Science.gov (United States)

    Jiang, H Y; Yan, L S; Pan, Y; Pan, W; Luo, B; Zou, X H; Eggleton, B J

    2015-11-01

    A microwave comb filter with ultra-fast tunability is proposed based on the fundamental delay-line microwave photonic filter. The central frequency of the passband or stopband in such a filter can be rapidly adjusted, along with the independent tunability of the free spectral range (FSR). Experimental results show that the central frequency of the transfer function is electronically tuned with a frequency difference of half of the FSR at a speed of <100  ps. Such high-speed tunability is vital for high-speed microwave switching, frequency hopping, cognitive radio, and next-generation radar systems.

  12. Changes in porosity of graphite caused by radiolytic gasification by carbon dioxide

    International Nuclear Information System (INIS)

    Murdie, Neil; Edwards, I.A.S.; Marsh, Harry

    1986-01-01

    Methods have been developed to study porosity in nuclear grade graphite. The changes induced during the radiolytic gasification of graphite in carbon dioxide have been investigated. Porosity in radiolytically gasified graphite (0-22.8% wt. loss) was examined by optical microscopy and scanning electron microscopy (SEM). Each sample was vacuum impregnated with a slow-setting resin containing a fluorescent dye. Optical microscopy was used to study pores >2 μm 2 c.s.a. A semi-automatic image analysis system linked to the optical microscope enabled pore parameter data including cross-sectional areas, perimeters, Feret's diameters and shape factors, to be collected. The results showed that radiolytic gasification produced a large increase in the number of pores 2 c.s.a. New open pores 2 c.s.a. were developed by gasification of existing open porosity into the closed porosity ( 2 c.s.a.) within the binder-coke. Open pores, 2-100 μm 2 c.s.a., which were gasified within the coarse-grained mosaics of the binder-coke. In the gasification process to 22.8% wt. loss, the apparent open pore volume increased from 6.6 to 33.8% and the apparent closed pore volumes decreased from approx. 3% to 0.1%. The increase in apparent open porosity from 6.6% (virgin) to 33.8% resulted from gasification within original open porosity and by the opening and development of closed porosity. There was no evidence for creation of porosity from within the 'bulk' graphite, it being developed from existing fine porosity. The structure of pores > 100 μm 2 c.s.a. showed no change because of the inhibition of oxidation by deposition of carbonaceous species from the CH 4 inhibitor. Such species diffuse to the pore wall and are sacrificially oxidised. (author)

  13. Tridimensional quantitative porosity characterization of three set calcium silicate-based repair cements for endodontic use.

    Science.gov (United States)

    De Souza, Erika Thuanne Gonçalves; Nunes Tameirão, Michele Dias; Roter, Juliana Marins; De Assis, Joaquim Teixeira; De Almeida Neves, Aline; De-Deus, Gustavo André

    2013-10-01

    The aim of the this study was to quantitatively evaluate in three-dimensional (3D), the porosity degree of three improved silicate-based endodontic repair cements (iRoot BP Plus®, Biodentine®, and Ceramicrete) compared to a gold-standard calcium silicate bioactive cement (Pro Root® MTA). From each tested cement, four samples were prepared by a single operator following the manufacturer's instructions in terms of proportion, time, and mixing method, using cylindrical plastic split-ring moulds. The moulds were lubricated and the mixed cements were inserted with the aid of a cement spatula. The samples were scanned using a compact micro-CT device (Skyscan 1174, Bruker micro-CT, Kontich, Belgium) and the projection images were reconstructed into cross-sectional slices (NRecon v.1.6.9, Bruker micro-CT). From the stack of images, 3D models were rendered and the porosity parameters of each tested material were obtained after threshold definition by comparison with standard porosity values of Biodentine®. No statistically significant differences in the porosity parameters among the different materials were seen. Regarding total porosity, iRoot BP Plus® showed a higher percentage of total porosity (9.58%), followed by Biodentine® (7.09%), Pro Root® MTA (6.63%), and Ceramicrete (5.91%). Regarding closed porosity, Biodentine® presented a slight increase in these numbers compared to the other sealers. No significant difference in porosity between iRoot BP Plus®, Biodentine®, and Ceramicrete were seen. In addition, no significant difference in porosity between the new calcium silicate-containing repair cements and the gold-standard MTA were found. Copyright © 2013 Wiley Periodicals, Inc.

  14. Wave propagation speeds and source term influences in single and integral porosity shallow water equations

    Directory of Open Access Journals (Sweden)

    Ilhan Özgen

    2017-10-01

    Full Text Available In urban flood modeling, so-called porosity shallow water equations (PSWEs, which conceptually account for unresolved structures, e.g., buildings, are a promising approach to addressing high CPU times associated with state-of-the-art explicit numerical methods. The PSWE can be formulated with a single porosity term, referred to as the single porosity shallow water model (SP model, which accounts for both the reduced storage in the cell and the reduced conveyance, or with two porosity terms: one accounting for the reduced storage in the cell and another accounting for the reduced conveyance. The latter form is referred to as an integral or anisotropic porosity shallow water model (AP model. The aim of this study was to analyze the differences in wave propagation speeds of the SP model and the AP model and the implications of numerical model results. First, augmented Roe-type solutions were used to assess the influence of the source terms appearing in both models. It is shown that different source terms have different influences on the stability of the models. Second, four computational test cases were presented and the numerical models were compared. It is observed in the eigenvalue-based analysis as well as in the computational test cases that the models converge if the conveyance porosity in the AP model is close to the storage porosity. If the porosity values differ significantly, the AP model yields different wave propagation speeds and numerical fluxes from those of the BP model. In this study, the ratio between the conveyance and storage porosities was determined to be the most significant parameter.

  15. Pore morphology effect in microlog for porosity prediction in a mature field

    Science.gov (United States)

    Teh, W.J.; Willhite, G.P.; Doveton, J.H.; Tsau, J.S.

    2011-01-01

    In an matured field, developed during the 1950s, no porosity logs were available from sources other than invaded zone resistivity Rxo . The microresistivity porosity is calibrated with the core porosity to yield an accurate estimate of the porosity. However, the procedure of calibrating the porosity with Rxo for a linear regression model may not be predictive without an understanding of the pore types in the reservoir interval. A thorough investigation of the pore types, based on the lithofacies description obtained from the core analysis, and its role in obtaining a good estimate of porosity is demonstrated in the Ogallah field. Therefore, the objective of this paper is to separate the porosity-microlog data into pore-type based zones with characteristic cementation exponents (m) in this multi-petrotype reservoir with a complex mixture of Arbuckle dolomite and sandstone rock. The value of m is critical in making estimates of water saturation. "Rule of thumb" values of cementation might lead to errors in water saturation on either the optimistic or the pessimistic side. The rock types in the Ogallah contain interparticle/intercrystalline, vugs and fractures distributed through the rock-facies, which influence the values of cementation factor. We use the modern typed well to shed light on the Archie's equation parameter values. Rock fabric numbers and flow zone indices have been identified for classification of dolomite and sandstone, respectively. The analysis brings out characteristic cementation factors for distinct pore types in the Arbuckle rock. The porosity predictions The analysis results also compliment the petrofacies delineation using LDA in this complicated rock layout as a quality control of the statistical application. The comparison between the predicted and core porosities shows a significant improvement over using a single m value for carbonates and sandstones which will lead to improved description of a matured field. Copyright 2011, Society of

  16. Permeability, porosity and compressive strength of self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Valcuende, M.O.

    2005-12-01

    Full Text Available Most deterioration affecting the durability of self-compacting concrete structures is mediated by water penetration in the concrete, a condition related to its porous structure. The present study analyzes these two factors. To this end, two types of concrete were prepared, a self-compacting and a traditional vibrated concrete, with different W/C ratios and different types of cement. The results of low-pressure water testing to evaluate permeability and analyses to determine compressive strength and pore size distribution showed that self-compacting concrete has lower capillary porosity than traditional concrete, which would explain its greater resistance to water penetration. Such concrete likewise reached higher strength values, except where large proportions of lime powder with low sand equivalents were used in its manufacture, when lower strength was recorded. Lastly, the depth of water penetration and compressive strength were found to be linearly correlated. That correlation was seen to depend, in turn, on the type of concrete, since for any given strength level, self-compacting concrete was less permeable than the traditional material.

    En este trabajo experimental se estudia la penetración de agua en hormigones autocompactables, analizando al mismo tiempo su estructura porosa, pues gran parte de los procesos de deterioro que afectan a la durabilidad de las estructuras están condicionados por estos dos aspectos. Para ello se han fabricado dos tipos de hormigones, uno autocompactable y otro tradicional vibrado, con diferentes relaciones A/C y distintos tipos de cemento. Tras determinar la permeabilidad al agua bajo presión, la resistencia a compresión y las distribuciones de tamaño de poro, los resultados obtenidos ponen de manifiesto que los hormigones autocompactables presentan menor porosidad capilar que los tradicionales, lo que les confiere mejores prestaciones frente a la penetración de agua. Asimismo, dichos hormigones

  17. Brittle and semibrittle creep in a low porosity carbonate rock

    Science.gov (United States)

    Nicolas, Aurélien; Fortin, Jérôme; Regnet, Jean-Baptiste; Dimanov, Alexandre; Guéguen, Yves

    2016-04-01

    The mechanical behavior of limestones at room temperature is brittle at low confining pressure and becomes semi-brittle with the increase of the confining pressure. The brittle behavior is characterized by a macroscopic dilatancy due to crack propagation, leading to a stress drop when cracks coalesce at failure. The semi-brittle behavior is characterized by diffuse deformation due to intra-crystalline plasticity (dislocation movements and twinning) and microcracking. The aim of this work is to examine the influence of pore fluid and time on the mechanical behavior. Constant strain rate triaxial deformation experiments and stress-stepping creep experiments were performed on white Tavel limestone (porosity 14.7%). Elastic wave velocity evolutions were recorded during each experiment and inverted to crack densities. Constant strain rate triaxial experiments were performed for confining pressure in the range of 5-90 MPa. For Pc≤55 MPa our results show that the behavior is brittle. In this regime, water-saturation decreases the differential stress at the onset of crack propagation and enhances macroscopic dilatancy. For Pc≥70 MPa, the behavior is semi-brittle. Inelastic compaction is due to intra-crystalline plasticity and micro-cracking. However, in this regime, our results show that water-saturation has no clear effect at the onset of inelastic compaction. Stress stepping creep experiments were performed in a range of confining pressures crossing the brittle-ductile transition. In the brittle regime, the time-dependent axial deformation is coupled with dilatancy and a decrease of elastic wave velocities, which is characteristic of crack propagation and/or nucleation. In the semi-brittle regime, the first steps are inelastic compactant because of plastic pore collapse. But, following stress steps are dilatant because of crack nucleation and/or propagation. However, our results show that the axial strain rate is always controlled by plastic phenomena, until the last

  18. Nanoscale transient porosity controls large-scale metamorphic fluid flow

    Science.gov (United States)

    Plümper, Oliver; Botan, Alexandru; Los, Catharina; Malthe-Sørenssen, Anders; Jamtveit, Bjørn

    2016-04-01

    The reaction of fluids with rocks is fundamental for Earth's dynamics as they facilitate heat/mass transfer and induce volume changes, weaknesses and instabilities in rock masses that localize deformation enabling tectonic responses to plate motion. During these fluid-rock interactions it is the ability of a rock to transmit fluid, its permeability, that controls the rates of metamorphic reactions. However, although some geological environments (e.g., sediments) are open to fluids, the majority of solid rocks (e.g., granites, elcogites, peridotites, etc.) are nearly impermeable. Surprisingly though, even in rocks that are nominally impermeable widespread fluid-rock interactions are observed leading to the question: How can fluids migrate through vast amounts of nominally impermeable rocks? Here we investigate one of the most wide-spread fluid-mediated metamorphic processes in the Earth's crust, the albitization of feldspatic rocks. We show that fluid flow and element mobilization during albitization is controlled by an interaction between grain boundary diffusion and reaction front migration through an interface-coupled dissolution-precipitation process. Using a combination of focused ion beam scanning electron microscopy (FIB-SEM)-assisted nanotomography combined with transmission electron microscopy (TEM) reveals that the porosity is dictated by pore channels with a pore diameter ranging between 10 to 100 nm. Three-dimensional visualization of the feldspar pore network reveals that the pore channels must have been connected during the replacement reaction. Analysis of the pore aspect ratios suggests that a Rayleigh-Taylor-type instability associated to surface energy minimization caused the disconnection of the pore channels. Fluid transport in nanometer-sized objects with at least one characteristic dimension below 100 nm enables the occurrence of physical phenomena that are impossible at bigger length scales. Thus, on the basis of our microstructural

  19. Tunable plasmonic lattices of silver nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Andrea; Sinsermsuksakul, Prasert; Yang, Peidong

    2008-02-18

    Silver nanocrystals are ideal building blocks for plasmonicmaterials that exhibit a wide range of unique and potentially usefuloptical phenomena. Individual nanocrystals display distinct opticalscattering spectra and can be assembled into hierarchical structures thatcouple strongly to external electromagnetic fields. This coupling, whichis mediated by surface plasmons, depends on their shape and arrangement.Here we demonstrate the bottom-up assembly of polyhedral silvernanocrystals into macroscopic two-dimensional superlattices using theLangmuir-Blodgett technique. Our ability to control interparticlespacing, density, and packing symmetry allows for tunability of theoptical response over the entire visible range. This assembly strategyoffers a new, practical approach to making novel plasmonic materials forapplication in spectroscopic sensors, sub-wavelength optics, andintegrated devices that utilize field enhancement effects.

  20. Tunable Magnetic Resonance in Microwave Spintronics Devices

    Science.gov (United States)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  1. MEMS tunable grating micro-spectrometer

    Science.gov (United States)

    Tormen, Maurizio; Lockhart, R.; Niedermann, P.; Overstolz, T.; Hoogerwerf, A.; Mayor, J.-M.; Pierer, J.; Bosshard, C.; Ischer, R.; Voirin, G.; Stanley, R. P.

    2017-11-01

    The interest in MEMS based Micro-Spectrometers is increasing due to their potential in terms of flexibility as well as cost, low mass, small volume and power savings. This interest, especially in the Near-Infrared and Mid- Infrared, ranges from planetary exploration missions to astronomy, e.g. the search for extra solar planets, as well as to many other terrestrial fields of application such as, industrial quality and surface control, chemical analysis of soil and water, detection of chemical pollutants, exhausted gas analysis, food quality control, process control in pharmaceuticals, to name a few. A compact MEMS-based Spectrometer for Near- Infrared and Mid-InfraRed operation have been conceived, designed and demonstrated. The design based on tunable MEMS blazed grating, developed in the past at CSEM [1], achieves state of the art results in terms of spectral resolution, operational wavelength range, light throughput, overall dimensions, and power consumption.

  2. Switchable and Tunable Aerodynamic Drag on Cylinders

    Science.gov (United States)

    Guttag, Mark; Lopéz Jiménez, Francisco; Upadhyaya, Priyank; Kumar, Shanmugam; Reis, Pedro

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  3. Tunable Q-Factor RF Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, Mario D. [Fermilab; Yonehara, Katsuya [Fermilab; Moretti, Alfred [Fermilab; Kazakevitch, Gregory [Fermilab

    2018-01-01

    Intense neutrino beam is a unique probe for researching beyond the standard model. Fermilab is the main institution to produce the most powerful and widespectrum neutrino beam. From that respective, a radiation robust beam diagnostic system is a critical element in order to maintain the quality of the neutrino beam. Within this context, a novel radiation-resistive beam profile monitor based on a gasfilled RF cavity is proposed. The goal of this measurement is to study a tunable Qfactor RF cavity to determine the accuracy of the RF signal as a function of the quality factor. Specifically, measurement error of the Q-factor in the RF calibration is investigated. Then, the RF system will be improved to minimize signal error.

  4. Compact microstrip bandpass filter with tunable notch

    DEFF Research Database (Denmark)

    Christensen, Silas; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    notch filter ensures an attenuation level of 19.3 dB to 27.3 dB in the frequency range from 360–480 MHz. The measured passband ripple of the combined filter is less than 0.5 dB, while the insertion loss for the simplest design is less than 1.7 dB only 10 MHz from the notch frequency. Even though......Two different designs combining a bandpass and a notch filter are developed to operate in the receiving band from 350–470 MHz. The bandpass filter is designed from a simple structure, by use of only four short circuited stubs and a half wavelength transmission line connecting the stubs. The tunable...... the wavelength on the selected substrate (εr = 3.55) is approximately 45 cm, the outer dimensions of the final filter only measure 10×10 cm2....

  5. Stakeholder acceptance analysis: Tunable hybrid plasma

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    This report resents evaluations, recommendations, and requirements concerning Tunable Hybrid Plasma (THP) derived from a three-year program of stake holder involvement. THP destroys volatile organic compounds by directing a moderate energy electron beam into a flow of air containing organic contaminants. This report is for technology developers and for those responsible for making decisions about the use of technology to remediate contamination by volatile organic compounds. Stakeholders' perspectives help those responsible for technology deployment make good decisions concerning the acceptability and applicability of THP to the remediation problems the face. In addition, this report presents data requirements for the technology's field demonstration defined by stakeholders associated with the Hanford site in Washington State, as well as detailed comments on THP from stakeholders from four other sites throughout the western United States

  6. Camphor soot: a tunable light emitter

    Science.gov (United States)

    Swapna, M. S.; Saritha Devi, H. V.; Sankararaman, S.

    2018-01-01

    The work in this paper is the first report on the green synthesis of the blue light emitter from waxy, flammable solid collected from Cinnamomum camphora by controlled combustion for photonic applications. Analysis with field emission scanning electron microscope and high-resolution transmission electron microscope provides the morphology, whereas the thermogravimetric analysis gives the thermal stability of the soot. The optical and structural characterizations are done by recording UV-Visible, Photoluminescent, and Raman Spectrum. The CIE plot and the power spectrum of the sample show a blue emission at an excitation of 350 nm at room temperature with a quantum yield of 46.15%. The dependence of luminescent behavior on temperature and excitation wavelength reveals that the material is a tunable blue emitter. This green synthesis of the blue light emitter is highly significant, when the world is in search of a simple, phosphor-free, non-toxic, cost-effective material with good quantum efficiency.

  7. Tunable Gas Sensing Gels by Cooperative Assembly.

    Science.gov (United States)

    Hussain, Abid; Semeano, Ana T S; Palma, Susana I C J; Pina, Ana S; Almeida, José; Medrado, Bárbara F; Pádua, Ana C C S; Carvalho, Ana L; Dionísio, Madalena; Li, Rosamaria W C; Gamboa, Hugo; Ulijn, Rein V; Gruber, Jonas; Roque, Ana C A

    2017-07-19

    The cooperative assembly of biopolymers and small molecules can yield functional materials with precisely tunable properties. Here, the fabrication, characterization, and use of multicomponent hybrid gels as selective gas sensors are reported. The gels are composed of liquid crystal droplets self-assembled in the presence of ionic liquids, which further coassemble with biopolymers to form stable matrices. Each individual component can be varied and acts cooperatively to tune gels' structure and function. The unique molecular environment in hybrid gels is explored for supramolecular recognition of volatile compounds. Gels with distinct compositions are used as optical and electrical gas sensors, yielding a combinatorial response conceptually mimicking olfactory biological systems, and tested to distinguish volatile organic compounds and to quantify ethanol in automotive fuel. The gel response is rapid, reversible, and reproducible. These robust, versatile, modular, pliant electro-optical soft materials possess new possibilities in sensing triggered by chemical and physical stimuli.

  8. Strain-tunable quantum dot devices

    International Nuclear Information System (INIS)

    Rastelli, A.; Trotta, R.; Zallo, E.; Atkinson, P.; Magerl, E.; Ding, F.; Plumhof, J.D.; Kumar, S.; Doerr, K.; Schmidt, O.G.

    2011-01-01

    We introduce a new class of quantum dot-based devices, in which the semiconductor structures are integrated on top of piezoelectric actuators. This combination allows on one hand to study in detail the effects produced by variable strains (up to about 0.2%) on the excitonic emission of single quantum dots and on the other to manipulate their electronic- and optical properties to achieve specific requirements. In fact, by combining strain with electric fields we are able to obtain (i) independent control of emission energy and charge-state of a QD, (II) wavelength-tunable single-QD light-emitting diodes and (III) frequency-stabilized sources of single photons at predefined wavelengths. Possible future extensions and applications of this technology will be discussed.

  9. Electronic thermometry in tunable tunnel junction

    Energy Technology Data Exchange (ETDEWEB)

    Maksymovych, Petro

    2016-03-15

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  10. Negative stiffness honeycombs as tunable elastic metamaterials

    Science.gov (United States)

    Goldsberry, Benjamin M.; Haberman, Michael R.

    2018-03-01

    Acoustic and elastic metamaterials are media with a subwavelength structure that behave as effective materials displaying atypical effective dynamic properties. These material systems are of interest because the design of their sub-wavelength structure allows for direct control of macroscopic wave dispersion. One major design limitation of most metamaterial structures is that the dynamic response cannot be altered once the microstructure is manufactured. However, the ability to modify wave propagation in the metamaterial with an external stimulus is highly desirable for numerous applications and therefore remains a significant challenge in elastic metamaterials research. In this work, a honeycomb structure composed of a doubly periodic array of curved beams, known as a negative stiffness honeycomb (NSH), is analyzed as a tunable elastic metamaterial. The nonlinear static elastic response that results from large deformations of the NSH unit cell leads to a large variation in linear elastic wave dispersion associated with infinitesimal motion superposed on the externally imposed pre-strain. A finite element model is utilized to model the static deformation and subsequent linear wave motion at the pre-strained state. Analysis of the slowness surface and group velocity demonstrates that the NSH exhibits significant tunability and a high degree of anisotropy which can be used to guide wave energy depending on static pre-strain levels. In addition, it is shown that partial band gaps exist where only longitudinal waves propagate. The NSH therefore behaves as a meta-fluid, or pentamode metamaterial, which may be of use for applications of transformation elastodynamics such as cloaking and gradient index lens devices.

  11. A novel optogenetically tunable frequency modulating oscillator.

    Directory of Open Access Journals (Sweden)

    Tarun Mahajan

    Full Text Available Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.

  12. Tunable lasers for waste management photochemistry applications

    International Nuclear Information System (INIS)

    Finch, F.T.

    1978-09-01

    A review of lasers with potential photochemical applications in waste management indicates that dye lasers, as a class, can provide tunable laser output through the visible and near-uv regions of the spectrum of most interest to photochemistry. Many variables can affect the performance of a specific dye laser, and the interactions of these variables, at the current state of the art, are complex. The recent literature on dye-laser characteristics has been reviewed and summarized, with emphasis on those parameters that most likely will affect the scaling of dye lasers in photochemical applications. Current costs are reviewed and correlated with output power. A new class of efficient uv lasers that appear to be scalable in both energy output and pulse rate, based on rare-gas halide excimers and similar molecules, is certain to find major applications in photochemistry. Because the most important developments are too recent to be adequately described in the literature or are the likely outcome of current experiments, the basic physics underlying the class of excimer lasers is described. Specific cost data are unavailable, but these new gas lasers should reflect costs similar to those of existing gas lasers, in particular, the pulsed CO 2 lasers. To complete the survey of tunable-laser characteristics, the technical characteristics of the various classes of lasers in the ir are summarized. Important developments in ir laser technology are being accelerated by isotope-separation research, but, initially at least, this portion of the spectrum is least likely to receive emphasis in waste-management-oriented photochemistry

  13. The relation among porosity, permeability, and specific surface of chalk from the Gorm field, Danish North Sea

    DEFF Research Database (Denmark)

    Jeanette, Mortensen; Engstrøm, Finn; Lind, Ida

    1998-01-01

    The origin to the difference in the relationship between permeability and porosity for Danian and Maastrichtian chalk from the Gorm field offshore Denmark has been investigated. The investigation was based on 300 sets of core data (He-expansion porosity and air permeability) from the well Gorm N-...... analytically from a simple porosity model and Poiseuilles law....

  14. A ferrite LTCC based dual purpose helical antenna providing bias for tunability

    KAUST Repository

    Ghaffar, Farhan A.

    2015-03-30

    Typically, magnetically tunable antennas utilize large external magnets or coils to provide the magneto-static bias. In this work, we present a novel concept of combining the antenna and the bias coil in one structure. A helical antenna has been optimized to act as the bias coil in a ten layer ferrite LTCC package, thus performing two functions. This not only reduces the overall size of the system by getting rid of the external bias source but also eliminates demagnetization effect (fields lost at air-to-substrate interface), which reduces the required magneto-static field strength and makes the design efficient. RF choking inductor and DC blocking capacitor have been monolithically integrated as package elements to allow the magnetostatic and microwave excitation at the same time. The design has been optimized for its low frequency and high frequency performance in two different simulators. A measured tuning range of 10% is achieved at a center frequency of 13 GHz. The design is highly suitable for low cost, compact, light-weight and tunable microwave systems. © 2002-2011 IEEE.

  15. High-Q Tunable Microwave Superconducting Strip-Line Filters

    National Research Council Canada - National Science Library

    Anderson, Dean; Rehrig, Paul; Lanagan, Mike; Furman, Eugene; Xi, Xiaoxing

    2005-01-01

    The objective of the Phase II SBIR project was to develop high Q, tunable microwave filters by using a cryogenic piezoelectric actuator to mechanically tune a high temperature superconducting (HTS) resonator...

  16. Compact Tunable High-Efficiency Entangled Photon Source, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — MagiQ proposes to develop a compact tunable high-efficiency low-power-consumption entangled photon source. The source, based on inter-Fabry-Perot-cavity Spontaneous...

  17. Eye and sensor protection from tunable laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.H.; Garrett, W.R.; DiCillo, J.J.; Phillips, R.C. (Oak Ridge National Lab., TN (United States)); Payne, M.G. (Georgia Southern Univ., Statesboro, GA (United States)); Templeton, D. (Army Tank-Automotive Command, Warren, MI (United States))

    1993-01-01

    We describe successes achieved in two different approaches to the problem of providing eye protection to personnel and sensor protection to devices in combat vehicles from perceived threats from tunable, visible laser beams.

  18. Eye and sensor protection from tunable laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.H.; Garrett, W.R.; DiCillo, J.J.; Phillips, R.C. [Oak Ridge National Lab., TN (United States); Payne, M.G. [Georgia Southern Univ., Statesboro, GA (United States); Templeton, D. [Army Tank-Automotive Command, Warren, MI (United States)

    1993-06-01

    We describe successes achieved in two different approaches to the problem of providing eye protection to personnel and sensor protection to devices in combat vehicles from perceived threats from tunable, visible laser beams.

  19. Novel Tunable Dye Laser for Lidar Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A tunable dye laser for Lidar detection will be fabricated based on the innovative dye-doped Holographic Polymer Dispersed Liquid Crystals (HPDLC) technology. The...

  20. Scaling issues in ferroelectric barium strontium titanate tunable planar capacitors.

    Science.gov (United States)

    Lam, Peter G; Haridasan, Vrinda; Feng, Zhiping; Steer, Michael B; Kingon, Angus I; Maria, Jon-Paul

    2012-02-01

    We report on the geometric limits associated with tunability of interdigitated capacitors, specifically regarding the impact of a parasitic non-tunable component that necessarily accompanies a ferroelectric surface capacitor, and can dominate the voltage-dependent response as capacitor dimensions are reduced to achieve the small capacitance values required for impedance matching in the X band. We present a case study of simple gap capacitors prepared and characterized as a function of gap width (i.e., the distance between electrodes) and gap length (i.e., the edge-to-edge gap distance). Our series of measurements reveals that for gap widths in the micrometer range, as gap lengths are reduced to meet sub-picofarad capacitance values, the non-tunable parasitic elements limit the effective tunability. These experimental measurements are supported by a companion set of microwave models that clarify the existence of parallel parasitic elements.

  1. New Temperature-Insensitive Electronically-Tunable Grounded Capacitor Simulator

    OpenAIRE

    Muhammad Taher Abuelma'atti; Muhammad Haroon Khan

    1996-01-01

    A new circuit for simulating a grounded capacitor is presented. The circuit uses one operationalamplifier (OA), three operational-transconductance amplifiers (OTAs), and one capacitor. The realized capacitor is temperature-insensitive and electronically tunable. Experimental results are included.

  2. Stirling-Cycle Cooling For Tunable Diode Laser

    Science.gov (United States)

    Durso, Santo S.; May, Randy D.; Tuchscherer, Matthew A.; Webster, Christopher R.

    1991-01-01

    Miniature Stirling-cycle cooler effective in continously cooling PbSnTe tunable diode laser to stable operating temperature near 80 K. Simplifies laboratory diode-laser spectroscopy and instruments for use aboard aircraft and balloons.

  3. Spectral and Radiometric Calibration using Tunable Lasers Project

    Data.gov (United States)

    National Aeronautics and Space Administration —  SIRCUS-based calibration relies on a set of monitoring radiometers and tunable laser sources to provide an absolute radiometric calibration that can approach...

  4. Designed synthesis of tunable amorphous carbon nanotubes (a ...

    Indian Academy of Sciences (India)

    Administrator

    Page 1. Electronic Supplementary Material. Graphical abstract. Designed synthesis of tunable amorphous carbon nanotubes (a-CNTs) by a novel route and their oxidation resistance properties by Longlong. Xu et al (pp 1397–1402).

  5. Extended Tunability in a Two-Chip VECSEL (Postprint)

    National Research Council Canada - National Science Library

    Fan, Li; Fallahi, Mahmoud; Zakharian, Aramais R; Hader, Joerg; Moloney, Jerome V; Bedford, Robert; Murray, James T; Stolz, Wolfgang; Koch, Stephan W

    2007-01-01

    We demonstrate a widely tunable vertical-external cavity surface-emitting laser (VECSEL) with a W-shaped cavity, in which two VECSEL chips serve as fold mirrors and a birefringent filter is inserted at Brewster's angle...

  6. Characterization of porosity via secondary reactions. Final technical report, 1 September 1991--30 November 1995

    Energy Technology Data Exchange (ETDEWEB)

    Calo, J.M.; Zhang, L.; Hall, P.J.; Antxustegi, M. [Brown Univ., Providence, RI (United States). Div. of Engineering

    1997-09-01

    A new approach to the study of porosity and porosity development in coal chars during gasification was investigated. This approach involves the establishment of the relationships between the amount and type of surface complexes evolved during post-activation temperature programmed desorption (TPD), and the porosity, as measured by gas adsorption and small angle neutron scattering (SANS) techniques. With this new method, the total surface area and micropore volume can be determined by the interpretation of post-activation TPD spectra. The primary conclusion of this work is that it is possible to predict total surface area and micropore volume from TPD spectra. From the extended random pore model, additional information about the micropore surface area, the nonmicroporous surface area, and the mean micropore size development as a function of reaction time (or burn-off) can also be predicted. Therefore, combining the TPD technique and the extended random pore model provides a new method for the characterization of char porosity.

  7. Ultrasonic velocities of North Sea chalk samples: influence of porosity, fluid content and texture

    DEFF Research Database (Denmark)

    Rogen, B.; Fabricius, Ida Lykke; Japsen, P.

    2005-01-01

    We have studied 56 unfractured chalk samples of the Upper Cretaceous Tor Formation of the Dan, South Arne and Gorm Fields, Danish North Sea. The samples have porosities of between 14% and 45% and calcite content of over 95%. The ultrasonic compressional- and shear-wave velocities (V-P and V......-S) for dry and water-saturated samples were measured at up to 75 bar confining hydrostatic pressure corresponding to effective stress in the reservoir. The porosity is the main control of the ultrasonic velocities and therefore of the elastic moduli. The elastic moduli are slightly higher for samples from...... a porosity-reducing effect and that samples rich in large grains have a relatively low porosity for a given P-wave modulus. The clay content in the samples is low and is mainly represented by either kaolinite or smectite; samples with smectite have a lower P-wave modulus than samples with kaolinite at equal...

  8. Porosity study of synthetic sandstones by non-destructive nuclear techniques

    Directory of Open Access Journals (Sweden)

    Leonardo Carmezini Marques

    2011-09-01

    Full Text Available In this paper nuclear techniques were used to describe the structural characteristics of ceramic samples. These samples were produced mainly with silica to simulate sandstones. Three sets of samples with different characteristics were analyzed using gamma ray transmission to obtain point by point porosity and X-ray microtomography to obtain the porosity, for 2D sections and the scanned bulk, as well as the pore size distribution. The transmission results indicated total porosity values of 28.6 (4.5% for the group of samples called ceramic I and 59.6 (2.1% for ceramic II. The samples analyzed by microtomography achieved resolutions of 1.7, 0.6 and 1.3 μm for the ceramic I, II, and III samples, respectively. This analysis indicated average porosity values of 27.9 (1.4% for ceramic I samples and 29.4 (1.2% for ceramic III samples.

  9. The effects of porosity in friction performance of brake pad using waste tire dust

    Directory of Open Access Journals (Sweden)

    İbrahim Mutlu

    2015-10-01

    Full Text Available Abstract This research is focused on the effect of porosity on the friction-wear properties of automotive brake pads. Waste Tire Dust (WTD was used as a new friction material in brake pads. Newly formulated brake pad materials with five different components have been produced by conventional techniques. In the experimental studies, the change of the friction coefficient, the temperature of the friction surface, the specific wear rate, and the hardness, density and porosity were measured. In addition, the micro-structural characterizations of brake pads are determined using Scanning Electron Microscopy (SEM. The mean coefficient of friction, porosity and specific wear are increased due to a WTD rate increases, on the other hand, hardness and density are decreased. As a result, WTD can be considered as an alternative to revalorize this kind of waste products in the brake pads and the amount of porosity of the brake pad affected the friction coefficient and wear behavior of the pad.

  10. Investigation on Porosity and Microhardness of 316L Stainless Steel Fabricated by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Shahir Mohd Yusuf

    2017-02-01

    Full Text Available This study investigates the porosity and microhardness of 316L stainless steel samples fabricated by selective laser melting (SLM. The porosity content was measured using the Archimedes method and the advanced X-ray computed tomography (XCT scan. High densification level (≥99% with a low average porosity content (~0.82% were obtained from the Archimedes method. The highest porosity content in the XCT-scanned sample was ~0.61. However, the pores in the SLM samples for both cases (optical microscopy and XCT were not uniformly distributed. The higher average microhardness values in the SLM samples compared to the wrought manufactured counterpart are attributed to the fine microstructures from the localised melting and rapid solidification rate of the SLM process.

  11. Total and methyl mercury, moisture, and porosity in Lake Michigan surficial sediment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Total and methyl mercury, moisture content (%), and porosity were measured in Lake Michigan sediment by the U.S. Environmental Protection Agency/Office of Research...

  12. Monte Carlo Study on Gas Pressure Response of He-3 Tube in Neutron Porosity Logging

    Directory of Open Access Journals (Sweden)

    TIAN Li-li;ZHANG Feng;WANG Xin-guang;LIU Jun-tao

    2016-10-01

    Full Text Available Thermal neutrons are detected by (n,p reaction of Helium-3 tube in the compensated neutron logging. The helium gas pressure in the counting area influences neutron detection efficiency greatly, and then it is an important parameter for neutron porosity measurement accuracy. The variation law of counting rates of a near detector and a far one with helium gas pressure under different formation condition was simulated by Monte Carlo method. The results showed that with the increasing of helium pressure the counting rate of these detectors increased firstly and then leveled off. In addition, the neutron counting rate ratio and porosity sensitivity increased slightly, the porosity measurement error decreased exponentially, which improved the measurement accuracy. These research results can provide technical support for selecting the type of Helium-3 detector in developing neutron porosity logging.

  13. Formation of peripheral porosity regions around urania in zirconia-urania mixed oxide powder compact sintering

    International Nuclear Information System (INIS)

    Das, P.; Choudhury, R.

    1992-01-01

    Sintering studies of zirconia-urania mixed oxide powder compacts (in stages of 5% urania up to a maximum of 20% addition) were carried out at temperatures between 1000-1400deg C for various soaking periods. The formation of a peripheral porosity region around comparatively coarser urania particle was a characteristic feature in this mixed oxide sintered compact. At even a higher sintering temperature (1800deg C), where extensive solid solution formation takes place, this porosity region demarcates the solutionized particles from the host zirconia apparently acting as a discontinuity in the system. Relative shrinkage difference between the dissimilar particles probably contributes to the porosity regions around the minor second phase at a lower temperature while at higher temperature generation of 'Kirkendall porosity' may be responsible for such an effect. (orig.)

  14. Fabrication of (U,Am)O2 pellet with controlled porosity from oxide microspheres

    Science.gov (United States)

    Ramond, Laure; Coste, Philippe; Picart, Sébastien; Gauthé, Aurélie; Bataillea, Marc

    2017-08-01

    U1-xAmxO2±δ mixed-oxides are considered as promising compounds for americium heterogeneous transmutation in Sodium Fast Neutron Reactor. Porous microstructure is envisaged in order to facilitate helium and fission gas release and to reduce pellet swelling during irradiation and under self-irradiation. In this study, the porosity is created by reducing (U,Am)3O8 microspheres into (U,Am)O2 during the sintering. This reduction is accompanied by a decrease of the lattice volume that leads to the creation of open porosity. Finally, an (U0.90Am0.10)O2 porous ceramic pellet (D∼89% of the theoretical density TD) with controlled porosity (≥8% open porosity) was obtained from mixed-oxide microspheres obtained by the Weak Acid Resin (WAR) process.

  15. Impedance Spectroscopic Characterisation of Porosity in 3D Cell Culture Scaffolds with Different Channel Networks

    DEFF Research Database (Denmark)

    Canali, Chiara; Mohanty, Soumyaranjan; Heiskanen, Arto

    2015-01-01

    We present the application of electrochemical impedance spectroscopy (EIS) as a method for discriminating between different polydimethylsiloxane (PDMS) scaffolds for three-dimensional (3D) cell cultures. The validity of EIS characterisation for scaffolds having different degree of porosity...

  16. A CFD-Model for prediction of unintended porosities in metal matrix composites

    DEFF Research Database (Denmark)

    Li, Shizhao; Spangenberg, Jon; Hattel, Jesper Henri

    2013-01-01

    This paper presents a numerical method that simulates the flow through the porous corridors of the preform, which in theory enables the prediction of unintended porosities at the end of the process....

  17. Tunable pulse-shaping with gated graphene nanoribbons

    DEFF Research Database (Denmark)

    Prokopeva, Ludmila; Emani, Naresh K.; Boltasseva, Alexandra

    2014-01-01

    We propose a pulse-shaper made of gated graphene nanoribbons. Simulations demonstrate tunable control over the shapes of transmitted and reflected pulses using the gating bias. Initial fabrication and characterization of graphene elements is also discussed.......We propose a pulse-shaper made of gated graphene nanoribbons. Simulations demonstrate tunable control over the shapes of transmitted and reflected pulses using the gating bias. Initial fabrication and characterization of graphene elements is also discussed....

  18. Tunability response in exponentially graded ferroelectrics: A TIM model approach

    Energy Technology Data Exchange (ETDEWEB)

    Vivas C, H., E-mail: hvivasc@unal.edu.co [Grupo de Propiedades Opticas de los Materiales, Departamento de Fisica, Bloque Y, Universidad Nacional de Colombia, Manizales A.A. 127 (Colombia); Jurado, J.F.; Vargas-Hernandez, C. [Grupo de Propiedades Opticas de los Materiales, Departamento de Fisica, Bloque Y, Universidad Nacional de Colombia, Manizales A.A. 127 (Colombia)

    2012-02-01

    Relative dielectric function response associate to a non-homogeneous layered ferroelectric system is calculated in the framework of the Mean Field Approximation (MFA) for the Transverse Ising Model (TIM). Analytical self-consistent expressions for the average polarization, dielectric susceptibility, and tunability percentage are outlined and solved for different configurations and sizes. It is found that exponentially graded ferroelectrics magnify the tunability response for stronger interlayer coupling and it reaches its saturation value for smaller intensities of the applied electric field.

  19. Adaptive IR Sensing Based on Advanced Nanostructures with Tunable Kinetics

    Science.gov (United States)

    2015-11-05

    AFRL-AFOSR-VA-TR-2015-0360 ADAPTIVE IR SENSING BASED ON ADVANCED NANOSTRUCTURES WITH TUNABLE KINETICS Vladimir Mitin RESEARCH FOUNDATION OF STATE...1 August 2010 - 31 July 2015 4. TITLE AND SUBTITLE Adaptive IR Sensing Based on Advanced Nanostructures with Tunable Kinetics 5a. CONTRACT NUMBER...engineering, and technological basis for further development of IR nanomaterials with nanoscale potential profile that can be effectively controlled by

  20. Optically controlled tunable dispersion compensators based on pumped fiber gratings.

    Science.gov (United States)

    Shu, Xuewen; Sugden, Kate; Bennion, Ian

    2011-08-01

    We demonstrate optically tunable dispersion compensators based on pumping fiber Bragg gratings made in Er/Yb codoped fiber. The tunable dispersion for a chirped grating and also a uniform-period grating was successfully demonstrated in the experiment. The dispersion of the chirped grating was tuned from 900 to 1990 ps/nm and also from -600 to -950 ps/nm in the experiment. © 2011 Optical Society of America

  1. Freely tunable broadband polarization rotator for terahertz waves.

    Science.gov (United States)

    Fan, Ren-Hao; Zhou, Yu; Ren, Xiao-Ping; Peng, Ru-Wen; Jiang, Shang-Chi; Xu, Di-Hu; Xiong, Xiang; Huang, Xian-Rong; Wang, Mu

    2015-02-18

    A freely tunable polarization rotator for broadband terahertz waves is demonstrated using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized terahertz wave to any desired direction with nearly perfect conversion efficiency. This low-cost, high-efficiency, and freely tunable device has potential applications as material analysis, wireless communication, and THz imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Magnetically tunable superconductor filters using yttrium iron garnet films

    International Nuclear Information System (INIS)

    Tsutsumi, Makoto; Fukusako, Takeshi; Shimasaki, Hitoshi

    1995-01-01

    Magnetically tunable superconducting single-resonator filters using YIG films have been demonstrated experimentally. Tunability of 400 MHz at a center frequency of 6 GHz was achieved for a half wavelength microstrip comprising a YIG-YBCO-MgO composite structure. The reason why the quality factor of the filter is relatively low is possibly due to an increase of the magnetic linewidth ΔH at liquid nitrogen temperature. The theory on dispersion relation of the filter is also presented

  3. Self-Assembling Sup-porosity: The Effect On Fluid Flow And Seismic Wave Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Pyrak-Nolte, Laura J. [Purdue University

    2013-04-27

    Fractures and joints in the field often contain debris within the void spaces. Debris originates from many different mechanisms: organic and/or inorganic chemical reactions/mineralization, sediment transport, formation of a fracture, mechanical weathering or combinations of these processes. In many cases, the presence of debris forms a sub-porosity within the fracture void space. This sub-porosity often is composed of material that differs from the fracture walls in mineralogy and morphology. The sub-porosity may partially fill voids that are on the order of hundreds of microns and thereby reduce the local porosity to lengths scales on the order of sub-microns to tens of microns. It is quite clear that a sub-porosity affects fracture porosity, permeability and storativity. What is not known is how the existence/formation of a sub-porosity affects seismic wave propagation and consequently our ability to probe changes in the subsurface caused by the formation or alteration of a sub-porosity. If seismic techniques are to be developed to monitor the injection and containment of phases in sequestration reservoirs or the propping of hydraulically induced fracture to enhance oil & gas production, it is important to understand how a sub-porosity within a fracture affects macroscopic seismic and hydraulic measurements. A sub-porosity will directly affect the interrelationship between the seismic and hydraulic properties of a fracture. This reports contains the results of the three main topics of research that were performed (1) to determine the effect of a sub-porosity composed of spherical grains on seismic wave propagation across fractures, (2) to determine the effect of biofilm growth in pores and between grains on seismic wave propagation in sediment, and (3) to determine the effect of the scale of observation (field-of-view) on monitoring alteration the pore space within a fracture caused by reactive flow. A brief summary of the results for each topic is contained in

  4. Gyroid Nanoporous Membranes with Tunable Permeability

    DEFF Research Database (Denmark)

    Li, Li; Schulte, Lars; Clausen, Lydia D.

    2011-01-01

    -linked 1,2-polybutadiene (1,2-PB) membranes with uniform pores that, if needed, can be rendered hydrophilic. The gyroid porosity has the advantage of isotropic percolation with no need for structure prealignment. Closed (skin) or opened (nonskin) outer surface can be simply realized by altering...... the interface energy in the process of membrane fabrication. The morphology of the membranes’ outer surface was investigated by scanning electron microscopy, contact angle, and X-ray photoelectron spectroscopy. The effective diffusion coefficient of glucose decreases from nonskin, to one-sided skin to two......-sided skin membranes, much faster than expected by a naive resistance-in-series model; the flux through the two-sided skin membranes even increases with the membrane thickness. We propose a model that captures the physics behind the observed phenomena, as confirmed by flow visualization experiments...

  5. Influence of armour porosity on the hydraulic stability of cube armour layers

    OpenAIRE

    Medina Folgado, Josep Ramón; Molines Llodra, Jorge; GÓMEZ MARTÍN, MARÍA ESTHER

    2014-01-01

    Armour placement and packing density directly affect construction costs and hydraulic performance of mound breakwaters. In this paper, the literature concerning the influence of armour porosity on the hydraulic stability of single- and double-layer armours is discussed. Qualitative and quantitative estimations for the influence of armour porosity and packing density on the hydraulic stability are given for the most common concrete armour units. The analysis focuses on specific 2D hydraulic st...

  6. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    International Nuclear Information System (INIS)

    B.M. Freifeild

    2001-01-01

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  7. Influence of refining process on the porosity of high pressure die casting alloy Al-Si

    Directory of Open Access Journals (Sweden)

    A.W. Orlowicz

    2009-04-01

    Full Text Available This study presents research results of the influence that refining and transfer of AlSi12S alloy on the porosity of high pressure diecastings.Tests were conducted under production conditions of Die-casting Foundry META-ZEL Sp z o.o. The operation of refining was conducted in a melting furnace, with the use of an FDU Mini Degasser. Decay of the refining effect was assessed by evaluating the porosity content and metallographic examination.

  8. Evolution of porosity in a Portland cement paste studied through positron annihilation lifetime spectroscopy

    International Nuclear Information System (INIS)

    Consolati, G.; Quasso, F.

    2003-01-01

    Positron annihilation lifetime spectroscopy experiments were carried out in an ordinary Portland cement paste characterized by a water-to-cement ratio w/c=0.8, in order to monitor the porosity of the paste. It was found that ortho-positronium intensity is a suitable quantity to this purpose, being sensitive to the amount of water contained in the pores. The experimental data show good agreement with the porosity calculated according to the Powers' thin filmsodel

  9. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    Energy Technology Data Exchange (ETDEWEB)

    B.M. Freifeild

    2001-10-18

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  10. Estimation of fracture porosity in an unsaturated fractured welded tuff using gas tracer testing

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, Barry Mark [Univ. of California, Berkeley, CA (United States)

    2001-12-01

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  11. Stochastic modelling of porosity using seismic impedances on a volume of chalk in the Dan Field

    Energy Technology Data Exchange (ETDEWEB)

    Vejbaek, O.V.

    1995-12-31

    Seismic impedances calculated from logs show very good correlation to log porosities in wells penetrating the chalk reservoir in the Dan Field, Danish North Sea. This is the basis for an attempt to use seismic impedances derived from inversion as soft data for geostatistical reservoir characterization. The study focusses on porosity description of the Maastrichtian chalk reservoir unit, laterally restricted to an area covered by a subset of a 3D seismic survey. This seismic volume was inverted using the ISIS software producing a volume of seismic impedances. Spatial porosity realizations are produced using a gaussian collocated co-simulation algorithm, where well log porosities constitute the hard data input and seismic impedances are the soft data input. The simulated volume measures 1400 m x 1525 m x 102 m and is oriented parallel to lines and cross lines in the seismic dataset. Simulated blocks measures 25 m x 25 m x 6 m equivalent to twice the line and trace spacing, and approximately equivalent to the seismic sample rate. The correlation coefficient between log porosities and impedances calculated from logs alone are shown to be misleading since they suggest unrealistic high coefficients. However, the actual data used, namely inversion derived impedances and log porosities, still show correlation coefficients in the order of -0,45, which is quite sufficient to make the inversion results very useful. It is remarkable that the calculated correlation coefficient is based on 15 wells, and the inversion is based on only one well. The negative correlation coefficient indicate that high impedances correspond to low porosities and vice-versa. The impedance data indicate the level of average porosities at locations between wells. The fine structure is produced by the geostatistic process, with averages constrained by seismic impedances. The seismic impedances derived from the inversion process are thus shown to constitute useful primary data to constrain reservoir

  12. Tunable defect mode realized by graphene-based photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiahui; Chen, Wan, E-mail: dhtyyobdc@126.com; Lv, Bo

    2016-04-29

    In this literature, we propose an active terahertz 1D photonic crystal, which consists of silicon layers and air layers. A graphene sheet is embedded at the interface between dielectric and air. Tunable photonic band gap is realized by changing the Fermi level of graphene. Transmission Matrix Method is utilized to explain the influence of the graphene layer. We also demonstrate that a dielectric slab attached with a thin sheet made of single-negative metamaterial acts like a pure dielectric slab with a thinner thickness. A tunable blue shift of the band gap can be realized by simply applying different chemical potentials on the graphene sheet. This feature can be utilized for the design of tunable high-gain antenna array and force generator in terahertz band. - Highlights: • A novel PhC embedded with grapheme sheets is presented, tunable defect is realized. • The mechanism of the tunable defect is explained using the change of equivalent thickness. • The electromagnetic force of a slab is calculated, which indicates the structure can serve as a tunable force generator.

  13. Optimization of the strength of SOFC anode supports

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Ramos, Tania; Faes, A.

    2012-01-01

    During operation solid oxide fuel cells are stressed by temperature gradients and various internal and external mechanical loads, which must be withstood. This work deals with the optimization of the strength of as-sintered anode supported half-cells by imposing changes to production parameters...... technology a mathematical frame to determine the optimal porosity of a SOFC system is presented....

  14. Topology optimization of flexible micro-fluidic devices

    DEFF Research Database (Denmark)

    Kreissl, Sebastian; Pingen, Georg; Evgrafov, Anton

    2010-01-01

    A multi-objective topology optimization formulation for the design of dynamically tunable fluidic devices is presented. The flow is manipulated via external and internal mechanical actuation, leading to elastic deformations of flow channels. The design objectives characterize the performance...... in the undeformed and deformed configurations. The layout of fluid channels is determined by material topology optimization. In addition, the thickness distribution, the distribution of active material for internal actuation, and the support conditions are optimized. The coupled fluid-structure response...

  15. Study of the effects of stress sensitivity on the permeability and porosity of fractal porous media

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiao-Hua, E-mail: xiaohua-tan@163.com; Li, Xiao-Ping; Liu, Jian-Yi; Zhang, Lie-Hui; Fan, Zhou

    2015-10-16

    Flow in porous media under stress is very important in various scientific and engineering fields. It has been shown that stress plays an important role in effect of permeability and porosity of porous media. In this work, novel predictive models for permeability and porosity of porous media considering stress sensitivity are developed based on the fractal theory and mechanics of materials. Every parameter in the proposed models has clear physical meaning. The proposed models are evaluated using previously published data for permeability and porosity measured in various natural materials. The predictions of permeability and porosity show good agreement with those obtained by the available experimental data and illustrate that the proposed models can be used to characterize the flow in porous media under stress accurately. - Highlights: • Predictive models for permeability and porosity of porous media considering stress sensitivity are developed. • The fractal theory and mechanics of materials are used in these models. • The predictions of permeability and porosity show good agreement with those obtained by the available experimental data. • The proposed models can be used to characterize the flow in porous media under stress accurately.

  16. Effect of increased strut porosity of calcium phosphate bone graft substitute biomaterials on osteoinduction.

    Science.gov (United States)

    Coathup, Melanie J; Hing, Karin A; Samizadeh, Sorousheh; Chan, Oliver; Fang, Yvette S; Campion, Charlie; Buckland, Thomas; Blunn, Gordon W

    2012-06-01

    The effect of increasing strut porosity on the osteoinductivity of porous calcium phosphate (CaP) and silicate-substituted calcium phosphate (SiCaP) bone substitute materials was investigated in an ovine ectopic model. One to two millimeter-sized granules or block implants with strut porosities of 10, 20, or 30% were inserted into the left and right paraspinalis muscle. At 12 weeks, histological sections were prepared through the center of each implant and bone contact, bone area and implant area quantified. Backscattered scanning electron microscopy (bSEM) was used to visualize bone within small pores in the struts of the scaffolds. Increased bone formation was measured in the SiCaP with 30% strut porosity (5.482% ± 1.546%) when compared with the nonsilicate CaP with the same morphology (1.160% ± 0.502%, p = 0.02), indicating that silicate substitution may increase osteoinduction. Greater bone formation was seen in scaffolds with increased strut porosity. No bone growth was found in any of the SiCaP scaffold with 10% porosity. There was no significant difference between block and granule specimens. Scanning electron microscopy and EDX in combination with histology demonstrated bone formation within pores <5 μm in size. The use of silicate-substituted CaP material with increased strut porosity may further augment repair and regeneration in bony sites. Copyright © 2012 Wiley Periodicals, Inc.

  17. Push-pull tests for estimating effective porosity: expanded analytical solution and in situ application

    Science.gov (United States)

    Paradis, Charles J.; McKay, Larry D.; Perfect, Edmund; Istok, Jonathan D.; Hazen, Terry C.

    2018-03-01

    The analytical solution describing the one-dimensional displacement of the center of mass of a tracer during an injection, drift, and extraction test (push-pull test) was expanded to account for displacement during the injection phase. The solution was expanded to improve the in situ estimation of effective porosity. The truncated equation assumed displacement during the injection phase was negligible, which may theoretically lead to an underestimation of the true value of effective porosity. To experimentally compare the expanded and truncated equations, single-well push-pull tests were conducted across six test wells located in a shallow, unconfined aquifer comprised of unconsolidated and heterogeneous silty and clayey fill materials. The push-pull tests were conducted by injection of bromide tracer, followed by a non-pumping period, and subsequent extraction of groundwater. The values of effective porosity from the expanded equation (0.6-5.0%) were substantially greater than from the truncated equation (0.1-1.3%). The expanded and truncated equations were compared to data from previous push-pull studies in the literature and demonstrated that displacement during the injection phase may or may not be negligible, depending on the aquifer properties and the push-pull test parameters. The results presented here also demonstrated the spatial variability of effective porosity within a relatively small study site can be substantial, and the error-propagated uncertainty of effective porosity can be mitigated to a reasonable level (effective porosity of fine-grained fill material.

  18. Porosity measurement of solid pharmaceutical dosage forms by gamma-ray transmission.

    Science.gov (United States)

    de Oliveira, José Martins; Andréo Filho, Newton; Chaud, Marco Vinícius; Angiolucci, Tatiana; Aranha, Norberto; Martins, Antonio César Germano

    2010-12-01

    The aim of the present work is the determination of porosity in tablets by using the gamma-ray transmission technique. Tablet dissolution depends on some inherent characteristics of the manufacturing process, such as compression force, tablet volume, density and porosity, nature of excipients, preparation methods and its physical-chemical properties. Porosity is a measure of empty spaces in a material and can be determined by various techniques. In this paper, we propose the use of a gamma-ray transmission technique to obtain the porosity of experimental formulation of tablets. The results of porosity were compared with those obtained by using conventional methodology (density and mercury intrusion). The experimental setup for gamma-ray transmission consists of a gamma-ray source of (241)Am (photons of 59.6 keV and an activity of 3.7 × 10(9)Bq), an NaI(Tl) scintillation detector, collimators and a standard gamma-ray spectrometry electronics. Our results suggest that the gamma-ray transmission technique is a powerful tool for non-destructive porosity quantification of solid pharmaceutical forms and presents smaller errors than those obtained with conventional methodologies. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Solutes transport in unsaturated double-porosity medium. Modelling by homogenization and applications

    International Nuclear Information System (INIS)

    Tran Ngoc, T.D.

    2008-07-01

    This Ph.D thesis presents the development of the solute transport models in unsaturated double-porosity medium, by using the asymptotic homogenization method. The obtained macroscopic models concern diffusion, diffusion-convection and dispersion-convection, according to the transport regime which is characterized by the non-dimensional numbers. The models consist of two coupled equations that show the local non-equilibrium of concentrations. The double-porosity transport models were numerically implemented using the code COMSOL Multiphysics (finite elements method), and compared with the solution of the same problem at the fine scale. The implementation allows solving the coupled equations in the macro- and micro-porosity domains (two-scale computations). The calculations of the dispersion tensor as a solution of the local boundary value problems, were also conducted. It was shown that the dispersivity depends on the saturation, the physical properties of the macro-porosity domain and the internal structure of the double-porosity medium. Finally, two series of experiments were performed on a physical model of double-porosity that is composed of a periodic assemblage of sintered clay spheres in Hostun sand HN38. The first experiment was a drainage experiment, which was conducted in order to validate the unsaturated flow model. The second series was a dispersion experiment in permanent unsaturated water flow condition (water content measured by gamma ray attenuation technique). A good agreement between the numerical simulations and the experimental observations allows the validation of the developed models. (author)

  20. Impact of surface porosity and topography on the mechanical behavior of high strength biomedical polymers.

    Science.gov (United States)

    Evans, Nathan T; Irvin, Cameron W; Safranski, David L; Gall, Ken

    2016-06-01

    The ability to control the surface topography of orthopedic implant materials is desired to improve osseointegration but is often at the expense of mechanical performance in load bearing environments. Here we investigate the effects of surface modifications, roughness and porosity, on the mechanical properties of a set of polymers with diverse chemistry and structure. Both roughness and surface porosity resulted in samples with lower strength, failure strain and fatigue life due to stress concentrations at the surface; however, the decrease in ductility and fatigue strength were greater than the decrease in monotonic strength. The fatigue properties of the injection molded polymers did not correlate with yield strength as would be traditionally observed in metals. Rather, the fatigue properties and the capacity to maintain properties with the introduction of surface porosity correlated with the fracture toughness of the polymers. Polymer structure impacted the materials relative capacity to maintain monotonic and cyclic properties in the face of surface texture and porosity. Generally, amorphous polymers with large ratios of upper to lower yield points demonstrated a more significant drop in ductility and fatigue strength with the introduction of porosity compared to crystalline polymers with smaller ratios in their upper to lower yield strength. The latter materials have more effective dissipation mechanisms to minimize the impact of surface porosity on both monotonic and cyclic damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates

    Science.gov (United States)

    Qing Wang, Yan; Zu, Jean W.

    2017-10-01

    This work investigates the porosity-dependent nonlinear forced vibrations of functionally graded piezoelectric material (FGPM) plates by using both analytical and numerical methods. The FGPM plates contain porosities owing to the technical issues during the preparation of FGPMs. Two types of porosity distribution, namely, even and uneven distribution, are considered. A modified power law model is adopted to describe the material properties of the porous FGPM plates. Using D’Alembert’s principle, the out-of-plane equation of motion is derived by taking into account the Kármán nonlinear geometrical relations. After that, the Galerkin method is used to discretize the equation of motion, resulting in a set of ordinary differential equations with respect to time. These ordinary differential equations are solved analytically by employing the harmonic balance method. The approximate analytical results are verified by using the adaptive step-size fourth-order Runge-Kutta method. By means of the perturbation technique, the stability of approximate analytical solutions is examined. An interesting nonlinear broadband vibration phenomenon is detected in the FGPM plates with porosities. Nonlinear frequency-response characteristics of the present smart structures are investigated for various system parameters including the porosity type, the porosity volume fraction, the electric potential, the external excitation, the damping and the constituent volume fraction. It is found that these parameters have significant effects on the nonlinear vibration characteristics of porous FGPM plates.

  2. Influence of porosity on the mechanical properties of lead zirconate--titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, D.R.

    1976-09-01

    Niobium doped lead zirconate-titanate (PNZT) was used to investigate the effect of porosity on the mechanical properties of a polycrystalline ceramic. Spherical and acicular pores (25 to 150 ..mu..m) were introduced by using organic materials and the grain size (2 to 5 ..mu..m) was constant throughout the study. The very fine pores (2 to 3 ..mu..m) were formed by varying the sintering conditions and the grain size was comparable to the pore size. The fracture strength of the ceramic was measured by simple 4-point bending. A sonic resonance technique was used to measure the elastic modulus and the double torsion method was used to measure the fracture toughness of the ceramic. The effect of porosity on the fracture strength was predicted quite well by Weibull's probabilistic approach. The elastic modulus showed a linear relationship with increase in porosity (110 to 150 ..mu..m) and showed a higher value for PNZT-fine pore (2 to 3 ..mu..m) ceramics at same volume percent porosity. A decrease in fracture toughness with increase in porosity (110 to 150 ..mu..m) was also observed. It has been found that the fine pores in PNZT polycrystalline ceramic gave higher strength, elastic modulus and fracture toughness compared to the PNZT-large pore ceramics at equivalent porosities. Fracture surface analysis by scanning electron microscopy showed that the fracture origin was at the tensile surface, at the edges of the specimen and just underneath the tensile surface.

  3. The porosity formation mechanism in the laser-MIG hybrid welded joint of Invar alloy

    Science.gov (United States)

    Zhan, Xiaohong; Gao, Qiyu; Gu, Cheng; Sun, Weihua; Chen, Jicheng; Wei, Yanhong

    2017-10-01

    The porosity formation mechanism in the laser-metal inter gas (MIG) multi-layer hybrid welded (HW) joint of 19.05 mm thick Invar alloy is investigated. The microstructure characteristics and energy dispersive spectroscopy (EDS) are analyzed. The phase identification was conducted by the X-ray diffractometer (XRD). Experimental results show that the generation of porosity is caused by the relatively low laser power in the root pass and low current in the cover pass. It is also indicated that the microstructures of the welded joints are mainly observed to be columnar crystal and equiaxial crystal, which are closely related to the porosity formation. The EDS results show that oxygen content is significantly high in the inner wall of the porosity. The XRD results indicate that the BM and the WB of laser-MIG HW all are composed of Fe0.64Ni0.36 and γ-(Fe,Ni). When the weld pool is cooled quickly, [NiO] [FeO] and [MnO] are formed that react on C to generate CO/CO2 gases. The porosity of laser-MIG HW for Invar alloy is oxygen pore. The root source of metallurgy porosity formation is that the dissolved gases are hard to escape sufficiently and thus exist in the weld pool. Furthermore, 99.99% pure Argon is recommended as protective gas in the laser-MIG HW of Invar alloy.

  4. A self-biased 3D tunable helical antenna in ferrite LTCC substrate

    KAUST Repository

    Ghaffar, Farhan A.

    2015-07-19

    A ferrite LTCC based helical antenna which also provides magneto-static bias for its frequency tuning is presented in this work. The 3D helical-cum-bias winding design avoids the use of large external electromagnets which are traditionally used with ferrite based tunable antennas. This reduces the overall size of the design while making it efficient by getting rid of demagnetization effect experienced at the air-to-ferrite interface. RF choke and DC blocking capacitor, required to isolate the RF and DC passing through a single structure, are integrated within the multi-layer Ferrite LTCC substrate. Magnetostatic and microwave simulations have been carried out for the design optimization. The prototype antenna demonstrates a tuning range of 10 % around 13 GHz. An optimized design with an air cavity is also presented which reduces the biasing power requirement by 40 %.

  5. Tailoring Zeolite ZSM-5 Crystal Morphology/Porosity through Flexible Utilization of Silicalite-1 Seeds as Templates: Unusual Crystallization Pathways in a Heterogeneous System.

    Science.gov (United States)

    Zhang, Hongbin; Zhao, Yang; Zhang, Hongxia; Wang, Peicheng; Shi, Zhangping; Mao, Jianjiang; Zhang, Yahong; Tang, Yi

    2016-05-17

    Diffusion limitation in micropores of zeolites leads to a demand for optimization of zeolite morphology and/or porosity. However, tailoring crystallization processes to realize targeted morphology/porosity is a major challenge in zeolite synthesis. On the basis of previous work on the salt-aided, seed-induced route, the template effect of seeds on the formation of micropores, mesopores and even macropores was further explored to selectively achieve desired hierarchical architectures. By carefully investigating the crystallization processes of two typical samples with distinct crystal morphologies, namely, 1) nanocrystallite-oriented self-assembled ZSM-5 zeolite and 2) enriched intracrystal mesoporous ZSM-5 zeolite, a detailed mechanism is proposed to clarify the role of silicalite-1 seeds in the formation of diverse morphologies in a salt-rich heterogeneous system, combined with the transformation of seed-embedded aluminosilicate gel. On the basis of these conclusions, the morphologies/porosities of products were precisely tailored by deliberately adjusting the synthesis parameters (KF/Si, tetrapropylammonium bromide/Si and H2 O/Si ratios and type of organic template) to regulate the kinetics of seed dissolution and seed-induced recrystallization. This work may not only provide a practical route to control zeolite crystallization for tailoring crystal morphology, but also expands the knowledge of crystal growth mechanisms in a heterogeneous system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Pressure Transient Analysis and Flux Distribution for Multistage Fractured Horizontal Wells in Triple-Porosity Reservoir Media with Consideration of Stress-Sensitivity Effect

    Directory of Open Access Journals (Sweden)

    Jingjing Guo

    2015-01-01

    Full Text Available Triple-porosity model is usually adopted to describe reservoirs with multiscaled pore spaces, including matrix pores, natural fractures, and vugs. Multiple fractures created by hydraulic fracturing can effectively improve the connectivity between existing natural fractures and thus increase well deliverability. However, little work has been done on pressure transient behavior of multistage fractured horizontal wells in triple-porosity reservoirs. Based on source/sink function method, this paper presents a triple-porosity model to investigate the transient pressure dynamics and flux distribution for multistage fractured horizontal wells in fractured-vuggy reservoirs with consideration of stress-dependent natural fracture permeability. The model is semianalytically solved by discretizing hydraulic fractures and Pedrosa’s transformation, perturbation theory, and integration transformation method. Type curves of transient pressure dynamics are generated, and flux distribution among hydraulic fractures for a fractured horizontal well with constant production rate is also discussed. Parametric study shows that major influential parameters on transient pressure responses are parameters pertinent to reservoir properties, interporosity mass transfer, and hydraulic fractures. Analysis of flux distribution indicates that flux density gradually increases from the horizontal wellbore to fracture tips, and the flux contribution of outermost fractures is higher than that of inner fractures. The model can also be extended to optimize hydraulic fracture parameters.

  7. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Eneh, C. T. M., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Töyräs, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Jurvelin, J. S., E-mail: jukka.jurvelin@uef.fi [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland and Diagnostic Imaging Center, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029 (Finland); Malo, M. K. H., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Liukkonen, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211 (Finland); Karjalainen, J. P., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi [Bone Index Finland Ltd., P.O. Box 1188, Kuopio FI-70211 (Finland)

    2016-05-15

    Purpose: The purpose of this study was to investigate the effect of simultaneous changes in cortical porosity, tissue mineral density, and elastic properties on radial speed of sound (SOS) in cortical bone. The authors applied quantitative pulse-echo (PE) ultrasound techniques that hold much potential especially for screening of osteoporosis at primary healthcare facilities. Currently, most PE measurements of cortical thickness, a well-known indicator of fracture risk, use a predefined estimate for SOS in bone to calculate thickness. Due to variation of cortical bone porosity, the use of a constant SOS value propagates to an unknown error in cortical thickness assessment by PE ultrasound. Methods: The authors conducted 2.25 and 5.00 MHz focused PE ultrasound time of flight measurements on femoral diaphyses of 18 cadavers in vitro. Cortical porosities of the samples were determined using microcomputed tomography and related to SOS in the samples. Additionally, the effect of cortical bone porosity and mechanical properties of the calcified matrix on SOS was investigated using numerical finite difference time domain simulations. Results: Both experimental measurements and simulations demonstrated significant negative correlation between radial SOS and cortical porosity (R{sup 2} ≥ 0.493, p < 0.01 and R{sup 2} ≥ 0.989, p < 0.01, respectively). When a constant SOS was assumed for cortical bone, the error due to variation of cortical bone porosity (4.9%–16.4%) was about 6% in the cortical thickness assessment in vitro. Conclusions: Use of a predefined, constant value for radial SOS in cortical bone, i.e., neglecting the effect of measured variation in cortical porosity, propagated to an error of 6% in cortical thickness. This error can be critical as characteristic cortical thinning of 1.10% ± 1.06% per yr decreases bending strength of the distal radius and results in increased fragility in postmenopausal women. Provided that the cortical porosity can be estimated

  8. Closeout of Advanced Boron and Metal Loaded High Porosity Carbons.

    Energy Technology Data Exchange (ETDEWEB)

    Peter C. Eklund (deceased); T. C. Mike Chung; Henry C. Foley; Vincent H. Crespi

    2011-05-01

    The Penn State effort explored the development of new high-surface-area materials for hydrogen storage, materials that could offer enhancement in the hydrogen binding energy through a direct chemical modification of the framework in high specific-surface-area platforms. The team chemically substituted boron into the hexagonal sp2 carbon framework, dispersed metal atoms bound to the boro-carbon structure, and generated the theory of novel nanoscale geometries that can enhance storage through chemical frustration, sheet curvature, electron deficiency, large local fields and mixed hybridization states. New boro-carbon materials were synthesized by high temperature plasma, pyrolysis of boron-carbon precursor molecules, and post-synthesis modification of carbons. Hydrogen uptake has been assessed, and several promising leads have been identified, with the requirement to simultaneously optimize total surface area while maintaining the enhanced hydrogen binding energies already demonstrated.

  9. Porosity variations in and around normal fault zones: implications for fault seal and geomechanics

    Science.gov (United States)

    Healy, David; Neilson, Joyce; Farrell, Natalie; Timms, Nick; Wilson, Moyra

    2015-04-01

    Porosity forms the building blocks for permeability, exerts a significant influence on the acoustic response of rocks to elastic waves, and fundamentally influences rock strength. And yet, published studies of porosity around fault zones or in faulted rock are relatively rare, and are hugely dominated by those of fault zone permeability. We present new data from detailed studies of porosity variations around normal faults in sandstone and limestone. We have developed an integrated approach to porosity characterisation in faulted rock exploiting different techniques to understand variations in the data. From systematic samples taken across exposed normal faults in limestone (Malta) and sandstone (Scotland), we combine digital image analysis on thin sections (optical and electron microscopy), core plug analysis (He porosimetry) and mercury injection capillary pressures (MICP). Our sampling includes representative material from undeformed protoliths and fault rocks from the footwall and hanging wall. Fault-related porosity can produce anisotropic permeability with a 'fast' direction parallel to the slip vector in a sandstone-hosted normal fault. Undeformed sandstones in the same unit exhibit maximum permeability in a sub-horizontal direction parallel to lamination in dune-bedded sandstones. Fault-related deformation produces anisotropic pores and pore networks with long axes aligned sub-vertically and this controls the permeability anisotropy, even under confining pressures up to 100 MPa. Fault-related porosity also has interesting consequences for the elastic properties and velocity structure of normal fault zones. Relationships between texture, pore type and acoustic velocity have been well documented in undeformed limestone. We have extended this work to include the effects of faulting on carbonate textures, pore types and P- and S-wave velocities (Vp, Vs) using a suite of normal fault zones in Malta, with displacements ranging from 0.5 to 90 m. Our results show a

  10. Graphene plasmonics for tunable terahertz metamaterials.

    Science.gov (United States)

    Ju, Long; Geng, Baisong; Horng, Jason; Girit, Caglar; Martin, Michael; Hao, Zhao; Bechtel, Hans A; Liang, Xiaogan; Zettl, Alex; Shen, Y Ron; Wang, Feng

    2011-09-04

    Plasmons describe collective oscillations of electrons. They have a fundamental role in the dynamic responses of electron systems and form the basis of research into optical metamaterials. Plasmons of two-dimensional massless electrons, as present in graphene, show unusual behaviour that enables new tunable plasmonic metamaterials and, potentially, optoelectronic applications in the terahertz frequency range. Here we explore plasmon excitations in engineered graphene micro-ribbon arrays. We demonstrate that graphene plasmon resonances can be tuned over a broad terahertz frequency range by changing micro-ribbon width and in situ electrostatic doping. The ribbon width and carrier doping dependences of graphene plasmon frequency demonstrate power-law behaviour characteristic of two-dimensional massless Dirac electrons. The plasmon resonances have remarkably large oscillator strengths, resulting in prominent room-temperature optical absorption peaks. In comparison, plasmon absorption in a conventional two-dimensional electron gas was observed only at 4.2 K (refs 13, 14). The results represent a first look at light-plasmon coupling in graphene and point to potential graphene-based terahertz metamaterials.

  11. Patchy polymer colloids with tunable anisotropy dimensions.

    Science.gov (United States)

    Kraft, Daniela J; Hilhorst, Jan; Heinen, Maria A P; Hoogenraad, Mathijs J; Luigjes, Bob; Kegel, Willem K

    2011-06-09

    We present the synthesis of polymer colloids with continuously tunable anisotropy dimensions: patchiness, roughness, and branching. Our method makes use of controlled fusion of multiple protrusions on highly cross-linked polymer particles produced by seeded emulsion polymerization. Carefully changing the synthesis conditions, we can tune the number of protrusions, or branching, of the obtained particles from spheres with one to three patches to raspberry-like particles with multiple protrusions. In addition to that, roughness is generated on the seed particles by adsorption of secondary nucleated particles during synthesis. The size of the roughness relative to the smooth patches can be continuously tuned by the initiator, surfactant, and styrene concentrations. Seed colloids chemically different from the protrusions induce patches of different chemical nature. The underlying generality of the synthesis procedure allows for application to a variety of seed particle sizes and materials. We demonstrate the use of differently sized polyNIPAM (poly-N-isopropylacrylamide), as well as polystyrene and magnetite filled polyNIPAM seed particles, the latter giving rise to magnetically anisotropic colloids. The high yield together with the uniform, anisotropic shape make them interesting candidates for use as smart building blocks in self-assembling systems.

  12. Controlling superconductivity by tunable quantum critical points.

    Science.gov (United States)

    Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson

    2015-03-04

    The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5.

  13. Plasmonic spectral tunability of conductive ternary nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Kassavetis, S.; Patsalas, P., E-mail: ppats@physics.auth.gr [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Bellas, D. V.; Lidorikis, E. [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Abadias, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, 86962 Chasseneuil-Futuroscope (France)

    2016-06-27

    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as Ti{sub x}Ta{sub 1−x}N, Ti{sub x}Zr{sub 1−x}N, Ti{sub x}Al{sub 1−x}N, and Zr{sub x}Ta{sub 1−x}N share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400–700 nm) and UVA (315–400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementioned broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.

  14. Hybrid nanostructured materials with tunable magnetic characteristics

    Science.gov (United States)

    Torres-Martínez, Nubia E.; Garza-Navarro, M. A.; García-Gutiérrez, Domingo; González-González, Virgilio A.; Torres-Castro, Alejandro; Ortiz-Méndez, U.

    2014-12-01

    We report on the development of hybrid nanostructured materials (HNM) based on spinel-metal-oxide nanoparticles (SMON) stabilized in carboxymethyl-cellulose (CMC)/cetyltrimethyl-ammonium-bromide (CTAB) templates, with tunable magnetic characteristics. These HNM were synthesized using a one-pot chemical approach to obtain CMC/CTAB templates with controllable size and morphology, where the SMON could be densely arranged. The synthesized HNM were characterized by transmission electron microscopy and its related techniques, such as bright field (BF) and Z-contrast (HAADF-STEM) imaging, and selected area electron diffraction, as well as static magnetic measuring. Experimental evidence suggests that the morphology and size of the CMC/CTAB templates are highly dependent on the weight ratio of CTAB:SMON, as well as the hydration days of the CMC that is used for the synthesis of the HNM. Controlling these parameters allows modifying the density of the SMON arrangement in the CMC/CTAB templates. Moreover, magnetic features such as remanence, coercivity, and blocking/de-blocking processes of the particles' magnetic moments are highly dependent on the interactions among the SMON assembled in the templates. Hence, the magnetic characteristics of HNM can be modulated or tuned by controlling the manner the SMON are arranged within the CMC/CTAB templates.

  15. Hybrid nanostructured materials with tunable magnetic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Martínez, Nubia E.; Garza-Navarro, M. A., E-mail: marco.garzanr@uanl.edu.mx; García-Gutiérrez, Domingo; González-González, Virgilio A.; Torres-Castro, Alejandro; Ortiz-Méndez, U. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica (Mexico)

    2014-12-15

    We report on the development of hybrid nanostructured materials (HNM) based on spinel-metal-oxide nanoparticles (SMON) stabilized in carboxymethyl-cellulose (CMC)/cetyltrimethyl-ammonium-bromide (CTAB) templates, with tunable magnetic characteristics. These HNM were synthesized using a one-pot chemical approach to obtain CMC/CTAB templates with controllable size and morphology, where the SMON could be densely arranged. The synthesized HNM were characterized by transmission electron microscopy and its related techniques, such as bright field (BF) and Z-contrast (HAADF-STEM) imaging, and selected area electron diffraction, as well as static magnetic measuring. Experimental evidence suggests that the morphology and size of the CMC/CTAB templates are highly dependent on the weight ratio of CTAB:SMON, as well as the hydration days of the CMC that is used for the synthesis of the HNM. Controlling these parameters allows modifying the density of the SMON arrangement in the CMC/CTAB templates. Moreover, magnetic features such as remanence, coercivity, and blocking/de-blocking processes of the particles’ magnetic moments are highly dependent on the interactions among the SMON assembled in the templates. Hence, the magnetic characteristics of HNM can be modulated or tuned by controlling the manner the SMON are arranged within the CMC/CTAB templates.

  16. Electronically Tunable Resistorless Mixed Mode Biquad Filters

    Directory of Open Access Journals (Sweden)

    A. Yesil

    2013-12-01

    Full Text Available This paper presents a new realization of elec¬tronically tunable mixed mode (including transadmittance- and voltage-modes biquad filter with single input, three outputs or three inputs, single output using voltage differ-encing transconductance amplifier (VDTA, a recently introduced active element. It can simultaneously realize standard filtering signals: low-pass, band-pass and high-pass or by selecting input terminals, it can realize all five different filtering signals: low-pass, band-pass, high-pass, band-stop and all-pass. The proposed filter circuit offers the following attractive feature: no requirement of invert-ing type input signal which is require no addition circuit, critical component matching conditions are not required in the design, the circuit parameters ω0 and Q can be set orthogonally or independently through adjusting the bias currents of the VDTAs, the proposed circuit employs two active and minimum numbers of passive components. Fur-thermore, this filter was investigated from the point of view of limited frequency range, stability conditions, effects of parasitic elements and effects of non-ideal and sensitivity. Thus, taking these effects and conditions into considera¬tion, working conditions and boundaries of this filter are determined. We also performed Monte Carlo, THD and noise analyses. Simulation results are given to confirm theoretical analyses.

  17. The effect of limestone aggregate porosity and saturation degree on the interfacial zone

    International Nuclear Information System (INIS)

    Nguyen, T.D.; Le Saout, G.; Devillers, P.; Garcia-Diaz, E.

    2015-01-01

    The recycling of concrete wastes concerns the nuclear industry as many nuclear facilities will have to be dismantled and the reduction and reuse of the decommissioning concrete wastes in order to minimize the total waste volume is a key issue. The recycled aggregates have the potential to replace natural resources however it is necessary to assess the effect of recycled aggregates on the final concrete. One important issue to be addressed to achieve the required mechanical properties is the water absorption of the recycled aggregates. As a first step, we have used in this study limestone aggregates with different porosities (total porosity from 2 to 20 %) and have investigated the influence of the porosity and the initial saturation degree of these aggregates on the porosity of the interfacial transition zone (ITZ) using scanning electron microscope. The equation of Feret for the strength-porosity relationship of our mortars was applied σ = K(100-p) 2 where σ is the compressive strength in MPa, p is the capillary pore volume in % and K a constant. Aggregates with lower porosity follow the same law characterized by a K value higher than the value for the more porous aggregate law. The K parameter is not dependent of the humidity degree of the aggregate: for a given aggregate, family mortars made with dry and wet aggregate follow the same law. But for porous aggregates as the meso-porosity of the ITZ for a given time of hydration is higher for mortars made with wet aggregates, the compressive strength of these mortars is less than those of mortars made with dry aggregates. Contrary to the low porous aggregate, it was not possible for porous limestone aggregates, and with a calculation based on the saturated surface dry state as reference state to obtain the same net water to cement ratio with wet and dry aggregates. This study reflects the difficulty to control the amount of efficient water in concrete when using porous aggregates and its influence on compressive

  18. Fully Distributed Tunable Bandpass Filter Based on Ba0.5Sr0.5TiO3 Thin-Film Slow-Wave Structure

    Directory of Open Access Journals (Sweden)

    Sébastien L. Delprat

    2011-01-01

    Full Text Available This paper presents simulation and measurement results of fully distributed tunable coplanar bandpass filters (BPFs with center frequencies around 6 GHz that make use of ferroelectric Barium Strontium Titanate (BaxSr1−xTiO3 or BST-x thin film as tunable material. The two experimental bandpass filters tested are based on a novel frequency-agile structure composed of cascaded half wavelength slow-wave resonators (2 poles and three coupled interdigital capacitors (IDCs optimized for bias voltage application. Devices with gap dimensions of 10 and 3 μm are designed and fabricated with a two-step process on polycrystalline Ba0.5Sr0.5TiO3 thin films deposited on alumina substrate. A frequency tunability of 9% is obtained for the 10 μm gap structure at ±30 V with 7 dB insertion loss (the BST dielectric tunability being 26% with 0.04 loss tangent for this gap size. When the structure gap is reduced to 3 μm the center frequency shifts with a constant 9 dB insertion loss from 6.95 GHz at 0 V to 9.05 GHz at ±30 V, thus yielding a filter tunability of 30% (the BST dielectric tunability being 60% with 0.04 loss tangent for this gap size, a performance comparable to some extent to localized or lumped element BPFs operating at microwave frequency (>2 GHz.

  19. Effect of Annealing on Properties of Carbonaceous Materials. Part II: Porosity and Pore Geometry

    Science.gov (United States)

    Xing, Xing; Zhang, Guangqing; Dell'Amico, Mark; Ciezki, George; Meng, Qingbo; Ostrovski, Oleg

    2013-08-01

    The pore structure of carbonaceous materials was studied using image analysis. The effect of annealing on the porosity and pore geometry of cokes, chars, and pyrolyzed coals (laboratory chars) was examined in the temperature range of 973 K to 1773 K (700 °C to 1500 °C). The porosity of chars and pyrolyzed coals significantly increased during annealing at temperatures below 1373 K (1100 °C) due to volatile matter release. Further increasing of the annealing temperature from 1373 K to 1773 K (1100 °C to 1500 °C) caused marginal porosity evolution. The porosity of cokes was not affected by annealing at temperatures below 1573 K (1300 °C) and slightly increased in the temperature range 1573 to 1773 K (1300 °C to 1500 °C). The increase in the porosity of chars and pyrolyzed coals during annealing at temperatures 1373 K to 1773 K (1100 °C to 1500 °C), and cokes at 1573 K to 1773 K (1300 °C to 1500 °C), was a result of reactions with oxides of their mineral phases. Annealing had a marginal effect on the pore shape (Feret ratio) of carbonaceous materials, but enlarged the pore size of chars and pyrolyzed coals and decreased their pore density.

  20. Effect of biphasic calcium phosphate scaffold porosities on odontogenic differentiation of human dental pulp cells.

    Science.gov (United States)

    AbdulQader, Sarah T; Rahman, Ismail A; Thirumulu, Kannan P; Ismail, Hanafi; Mahmood, Zuliani

    2016-04-01

    Calcium phosphates (CaP) of different porosities have been widely and successfully used as scaffolds with osteoblast cells for bone tissue regeneration. However, the effects of scaffold porosities on cell viability and differentiation of human dental pulp cells for dentin tissue regeneration are not well known. In this study, biphasic calcium phosphate (BCP) scaffolds of 20/80 hydroxyapatite to beta tricalcium phosphate ratio with a mean pore size of 300 μm were prepared into BCP1, BCP2, BCP3, and BCP4 of 25%, 50%, 65%, and 75% of total porosities, respectively. The extracts of these scaffolds were assessed with regard to cell viability, proliferation, and differentiation of human dental pulp cells. The high alkalinity, and more calcium and phosphate ions release that were exhibited by BCP3 and BCP4 decreased the viability and proliferation of human dental pulp cells as compared to BCP1 and BCP2. BCP2 significantly increased both cell viability and cell proliferation. However, the cells cultured with BCP3 extract revealed high alkaline phosphatase (ALP) activity and high expression of odontoblast related genes, collagen type I alpha 1, dentin matrix protein-1, and dentin sialophosphoprotein as compared to that cultured with BCP1, BCP2, and BCP4 extracts. The results highlight the effect of different scaffold porosities on the cell microenvironment and demonstrate that BCP3 scaffold of 65% porosity can support human dental pulp cells differentiation for dentin tissue regeneration. © The Author(s) 2016.

  1. Porosity and Salt Content Determine if Subduction Can Occur in Europa's Ice Shell

    Science.gov (United States)

    Johnson, Brandon C.; Sheppard, Rachel Y.; Pascuzzo, Alyssa C.; Fisher, Elizabeth A.; Wiggins, Sean E.

    2017-12-01

    Motivated by recent evidence for subduction in Europa's ice shell, we explore the geophysical feasibility of this process. Here we construct a simple model to track the evolution of porosity and temperature within a slab that is forced to subduct. We also vary the initial salt content in Europa's ice shell and determine the buoyancy of our simulated subducting slab. We find that porosity and salt content play a dominant role in determining whether the slab is nonbuoyant and subduction in Europa's ice shell is actually possible. Generally, we find that initially low porosities and high salt contents within the conductive lid are more conducive to subduction. If salt contents are laterally homogenous, and Europa has a reasonable surface porosity of ϕ0 = 0.1, the conductive portion of Europa's shell must have salt contents exceeding 22% for subduction to occur. However, if salt contents are laterally heterogeneous, with salt contents varying by a few percent, subduction may occur for a surface porosity of ϕ0 = 0.1 and overall salt contents of 5%. Thus, we argue that under plausible conditions, subduction in Europa's ice shell is possible. Moreover, assuming that subduction is actively occurring or has occurred in Europa's recent past provides important constraints on the structure and composition of the ice shell.

  2. Rational Design of Hyperbranched Nanowire Systems for Tunable Superomniphobic Surfaces Enabled by Atomic Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bielinski, Ashley R.; Boban, Mathew; He, Yang; Kazyak, Eric; Lee, Duck H.; Wang, Chongmin; Tuteja, Anish; Dasgupta, Neil P.

    2017-01-24

    A method for tunable control of geometry in hyperbranched ZnO nanowire (NW) systems is reported, which enables the rational design and fabrication of superomniphobic surfaces. Branched NWs with tunable density and orientation were grown via a sequential hydrothermal process, in which atomic layer deposition (ALD) was used for NW seeding, disruption of epitaxy, and selective blocking of NW nucleation. This approach allows for the rational design and optimization of three-level hierarchical structures, in which the geometric parameters of each level of hierarchy can be individually controlled. We demonstrate the coupled relationships between geometry and contact angle for a variety of liquids, which is supported by mathematical models of structural superomniphobicity. The highest performing superomniphobic surface was designed with three levels of hierarchy and achieved the following advancing/receding contact angles, water: 172°/170°, hexadecane: 166°/156°, octane: 162°/145°, and heptane: 160°/130°. Low surface tension liquids were shown to bounce off the surface from a height of 7 cm without breaking through and wetting. This approach demonstrates the power of ALD as an enabling technique for hierarchical materials by design, spanning the macro, micro, and nano length scales.

  3. Investigation on a mechanical vibration absorber with tunable piecewise-linear stiffness

    Science.gov (United States)

    Shui, Xin; Wang, Shimin

    2018-02-01

    The design and characterization of a mechanical vibration absorber are addressed. A distinctive feature of the absorber is its tunable piecewise-linear stiffness, which is realized by means of a slider with two stop-blocks installed constraining the bilateral deflections of the elastic support. A new analytical approach named as the equivalent stiffness technique (EST) is introduced and then employed to obtain the analytical relations of the frequency, amplitude and phase with a view to exhibit a more comprehensive characterization of the absorber. Experiments are conducted to demonstrate the feasibility of the design. The experimental data show good agreement with the analytical results. The final results indicate that the tunable stiffness absorber (TSA) possesses a typical nonlinear characteristic at each given position of the slider, and its stiffness can be tuned in real time over a wide range by adjusting the slider position. Hence the TSA has a large optimum vibration-absorption range together with a wide suppression band around each optimal position, which contributes to its excellent capacity of vibration absorption.

  4. Manganese Dioxide Nanowires of Tunable Dimensions Synthesized via a Facile Hydrothermal Route

    Directory of Open Access Journals (Sweden)

    Ying Ying Kong

    2015-01-01

    Full Text Available Manganese dioxide (MnO2 nanowires of tunable dimensions were successfully synthesized via the facile water-bathing hydrothermal route. Homogeneous solution mixtures of KMnO4 and MnSO4 of varying compositions were being aged in a thermostated water bath under controlled conditions. The dimensional aspect ratios of MnO2 nanowires formed were readily modulated by varying synthesis parameters such as the initial concentration of chemical precursors, reaction temperature, and aging duration. At fixed initial precursor concentrations, the mean diameter of MnO2 nanowires decreased slightly from 57 nm to 53 nm with increased reaction temperature from 60°C to 90°C. The mean diameter of MnO2 nanowires decreased linearly within the range of 104 nm and 35 nm as the initial concentration of both precursors was increased in turn within the range of 10 mmol and 40 mmol at fixed aging temperature and duration. Upon aging for 2 to 24 hours at 80°C, the mean diameter and length of MnO2 nanowires were observed to vary within the range of 33–55 nm and 0.69–2.68 μm, respectively, which corresponded to the dimensional aspect ratio range of 21 to 49. Henceforth, MnO2 nanowires of tunable dimensions could be synthesized through optimally controlled synthesis parameters.

  5. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System.

    Directory of Open Access Journals (Sweden)

    Yoichiro Ito

    Full Text Available Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering.

  6. Tunable sub-wavelength acoustic energy harvesting with a metamaterial plate

    Science.gov (United States)

    Oudich, Mourad; Li, Yong

    2017-08-01

    We report theoretically on sub-wavelength acoustic energy harvesting (AEH) using a thin acoustic metamaterial (AM) made of spring-mass resonators attached to the surface of a homogeneous elastic thin plate. Considering an incident acoustic wave hitting the AM plate, tunable and highly efficient AEH is achieved by introducing a sub-wavelength defect inside the AM structure to confine the elastic energy into a spot which is then electromechanically converted into electrical power using a ceramic PZT patch. Several types of sub-wavelength cavities capable of confining acoustic energy at the sonic regime are extensively investigated for the optimization of AEH. Three analytical approaches—band structure, sound transmission loss and electrical-to-mechanical energy conversion—are proposed to fully describe the system interaction with the acoustic wave and quantify the AEH performance. The computed results show that an average power of 18 μW can be harvested using a specific cavity design of only 3 × 3 cm2 size from an incident acoustic wave with a sound pressure level of 100 dB at 520 Hz. Such a system can open up a way through the design of effective tunable sub-wavelength acoustic energy harvesters based on AM applied to scavenge energy from sound.

  7. MnO2@colloid carbon spheres nanocomposites with tunable interior architecture for supercapacitors

    International Nuclear Information System (INIS)

    Zhang, Yuxin; Dong, Meng; Zhu, Shijin; Liu, Chuanpu; Wen, Zhongquan

    2014-01-01

    Graphical abstract: - Highlights: • MnO 2 @CSs nanocomposites have been successfully synthesized in room temperature. • The composites exhibited three structures: core–shell, yolk–shell and hollow structure. • The yolk–shell structure exhibited a high specific capacitance and cycling stability. - Abstract: MnO 2 @colloid carbon spheres nanocomposites with tunable interior architecture have been synthesized by a facile and cost-effective strategy at room temperature. The structure and morphology of as-prepared nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption, focused ion beam scanning electron microscopy (FIB/SEM) and high-resolution transmission electron microscopy (HRTEM). The as-obtained composites exhibited a three-dimensional architecture with core–shell, yolk–shell and hollow interior structure. Furthermore, the electrochemical properties of composites were evaluated by cycle voltammetric (CV) and galvanostatic charge–discharge measurements. The yolk–shell structure exhibited the optimized pseudocapacitance performance, revealing a specific capacitance (273 F g −1 ) with a good rate and cycling stability, owing to its unique structure and the poor crystallinity of MnO 2 nanofilms. Therefore, this facile synthetic strategy could be useful to design and synthesis of tunable nanostructures with enhanced supercapacitor behavior

  8. Frequency-domain optimization of fixed-structure controllers

    NARCIS (Netherlands)

    van Solingen, E.; van Wingerden, J.W.; Oomen, T

    2016-01-01

    This paper aims to introduce a new approach to optimize the tunable controller parameters of linear parameterizable controllers. The presented approach is frequency-domain based and can therefore directly be used to tune, among others, proportional integral derivative controllers, low/high-pass

  9. Tunable bandpass filter based on photonic crystal fiber filled with multiple liquid crystals

    DEFF Research Database (Denmark)

    Scolari, Lara; Tartarini, G.; Borelli, E.

    2007-01-01

    A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC.......A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC....

  10. Microwave photonic phase shifter based on tunable silicon-on-insulator microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Xue, Weiqi

    2010-01-01

    We demonstrate a microwave photonic phase shifter based on an electrically tunable silicon-on-insulator microring resonator. A continuously tunable phase shift of up to 315° at a microwave frequency of 15GHz is obtained.......We demonstrate a microwave photonic phase shifter based on an electrically tunable silicon-on-insulator microring resonator. A continuously tunable phase shift of up to 315° at a microwave frequency of 15GHz is obtained....

  11. Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2017-09-01

    In this article, the size-dependent and porosity-dependent vibrational behavior of magneto-electro-elastic functionally graded (MEE-FG) nanoscale beams on two-parameter elastic substrate is presented via a third-order shear deformation beam model. Porosity-dependent material coefficients of the nanobeam are compositionally graded throughout the thickness according to a modified power-law model. Incorporation of small size effect is carried out based on Eringen's nonlocal elasticity theory. Through Hamilton's principle, derivation of nonlocal governing equations is performed. After analytically solving these equations, the influences of porosity, elastic foundation, magnetic potential, applied voltage, scale coefficient, material gradation and slenderness ratio on the frequencies of the porous MEE-FG nanobeams are examined.

  12. Secondary carbonate porosity as related to early teritiary depositional facies, Zelten field, Libya

    Energy Technology Data Exchange (ETDEWEB)

    Bebout, D.G.; Pendexter, C.

    1975-04-01

    Production from the Zelten field, Libya, is from the highly porous shelf limestones of the Zelten Member (Main Pay) of the Paleocene and lower Eocene Ruaga Limestone. Fifteen facies are recognized, mapped, and predicted. Seven of the facies comprise the larger part of the Zelten Member. These include miliolid-foraminiferal micrite, argillaceous bryozoan/echinoid micrite, argillaceous-molluscan micrite, coralgal micrite. Discocyclina-foraminiferal calcarenite, foraminiferal calcarenite and micrite, and Discocyclina-foraminiferal micrite. In the Zelten field secondary porosity is recorded as much as 40%; this porosity is related to the original depositional fabric of the sediment and, therefore, is facies controlled. Porosity is highest in the coralgal micrite and Discocyclina-foraminiferal calcarenite, which together form a NW.-SE. trend across the N. part of the field, and in the formaniniferal calcarenite and micrite. (10 refs.)

  13. The influence of substrate transport limitation on porosity and methanogenic activity of anaerobic sludge granules

    Energy Technology Data Exchange (ETDEWEB)

    Alphenaar, P.A. (Agricultural Univ., Wageningen (Netherlands). Dept. of Environmental Technology); Perez, M.C. (Agricultural Univ., Wageningen (Netherlands). Dept. of Environmental Technology); Lettinga, G. (Agricultural Univ., Wageningen (Netherlands). Dept. of Environmental Technology)

    1993-05-01

    The relationship between porosity, diameter and methanogenic activity of anaerobic granules has been investigated. Experiments with different granular sludges revealed that substrate transport limitations increase with the diameter of the granules. As a consequence, autolysis can occur in the core of the granule, producing hollow granules. The porosity measurements revealed that the hollow centre is not available for substrate transport. Possibly as an effect of bacterial lysis, the porosity decreases in the more interior layers of the granules. This results in a inactive inner part of the large granules, which is not involved in the treatment process; the specific methanogenic activity decreases with granule size. No marked difference in substrate affinity is observed between granules of different sizes, which probably indicates that for large granules only the exterior is biological active. (orig.)

  14. Analyze of the Possible Causes of Porosity Type Deffects in Aluminium High Pressure Diecast Parts

    Directory of Open Access Journals (Sweden)

    Ferencz Peti

    2011-06-01

    Full Text Available Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mold cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly to an injection mold during the process. Most die castings are made from non-ferrous metals, specifically zinc, copper, aluminium, magnesium. Depending on the type of metal being cast, a hot- or cold-chamber machine is used.Die castings are characterized by a very good surface finish (by casting standards and dimensional consistency.The most common deffect that appear in castings is the porosity type of deffect, which can be gas porosity, shrinkage porosity or leaker.

  15. The Effect of Porosity on Fatigue of Die Cast AM60

    Science.gov (United States)

    Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.

    2016-07-01

    AM60 high-pressure die castings are known to contain significant porosity which can affect fatigue life. We have studied this using samples drawn from prototype AM60 shock towers by conducting strain-controlled fatigue tests accompanied by X-ray computed tomography analysis. The results show that the machined surface is the preferential location for fatigue crack development, with pores close to these surfaces serving as initiation sites. Fatigue life shows a strong inverse correlation with the size of the fatigue-crack-initiating pore. Pore shape and pore orientation also influence the response. A supplemental study on surface roughness shows that porosity is the dominant factor in fatigue. Tomography enables the link between porosity and fatigue crack initiation to be clearly identified. These data are complemented by SEM observations of the fracture surfaces which are generally flat and full of randomly oriented serration patterns but without long-range fatigue striations.

  16. Property-porosity relationships for polymer-impregnated superconducting ceramic composite

    International Nuclear Information System (INIS)

    Salib, S.; Vipulanandan, C.

    1990-01-01

    A thermoplastic polymer, poly(methyl methacrylate) (PMMA), was used to improve the flexural properties of the high-temperature superconducting ceramic (YBa 2 Cu 3 O 7-δ ). Ceramic specimens with different porosities were prepared by dry compacting 12.5-mm-diameter disk specimens at various uniaxial pressures. Density-pressure relationships have been developed for before- and after-sintering conditions. The PMMA polymer was impregnated into the porous ceramic at room temperature. The mechanical properties were evaluated by concentrically loading simply supported disk specimens. The load-displacement responses were analyzed using the finite-element method. Impregnation of PMMA polymer at room temperature increased the flexural strength and modulus of the superconducting ceramic without affecting its electrical properties. The flexural properties depended on the porosity of the ceramics, and, hence, linear and nonlinear property-porosity relationships have been used to characterize the behavior of superconducting ceramic with an without the polymer

  17. Residual Porosity as An Explanation for Ductile-Brittle Behaviour During Dome Extrusion: Experimental Constraints

    Science.gov (United States)

    Kennedy, L.; Russell, J. K.; Nelles, E.

    2009-12-01

    Decompression of rising magmas causes gas exsolution and a concomitant increase in magma porosity. Slow ascent commonly results in cooling and crystallization of the residual melt on the same time scale. Thus, slow ascending magmas commonly produce domes that are typically at or below their Tg, or have undergone degassing-induced crystallization. These magmas can be either highly porous or nonporous. For example, high residual porosity indicates that the system had low permeability and was quenched before the porosity could be removed. This quenching of primary porosity could be induced by cooling of the melt to below Tg, or by crystallization of the melt to produce a solid framework. Here, we demonstrate experimentally the effects of porosity on the strength and failure behaviour of dacite dome rocks. Our triaxial rock deformation experiments were run at confining pressures (Pc) of 0, 25, 50, and 75MPa, at room temperature and strain rates of ~1 x 10-4 s-1. Our starting material has both low (6-8%) and high (17-24%) porosities, a uniform bulk composition (65 wt% SiO2) and is either highly crystalline or has a glassy matrix. The low porosity dacite experiments show a progressive increase in peak strength (100-700 MPa) with increasing Pc and all cores show brittle behavior, characterized by a rapid stress drop. Run products contain macroscopic fractures with deformation extremely localized around the shear fractures. Experimentally deformed dacites show extreme grain size reduction and the production of gouge. We ran two sets of experiments on low porosity rocks: one for which the gear train was stopped just at failure and one for which, after failure and creation of the fracture surface, frictional sliding continued along the fracture. Grain size from the experimentally generated gouge was measured using a grain size laser particle analyzer. The vast majority of ultra-fine grained particles (Mount Saint Helen’s formed as a result of the microseismicity and that

  18. Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose

    Science.gov (United States)

    Sakai, Koh; Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira

    2016-02-01

    High porosity solids, such as plastic foams and aerogels, are thermally insulating. Their insulation performance strongly depends on their pore structure, which dictates the heat transfer process in the material. Understanding such a relationship is essential to realizing highly efficient thermal insulators. Herein, we compare the heat transfer properties of foams and aerogels that have very high porosities (97.3-99.7%) and an identical composition (nanocellulose). The foams feature rather closed, microscale pores formed with a thin film-like solid phase, whereas the aerogels feature nanoscale open pores formed with a nanofibrous network-like solid skeleton. Unlike the aerogel samples, the thermal diffusivity of the foam decreases considerably with a slight increase in the solid fraction. The results indicate that for suppressing the thermal diffusion of air within high porosity solids, creating microscale spaces with distinct partitions is more effective than directly blocking the free path of air molecules at the nanoscale.

  19. Ultra-thin and broadband tunable metamaterial graphene absorber.

    Science.gov (United States)

    Xiong, Han; Wu, Ying-Bo; Dong, Ji; Tang, Ming-Chun; Jiang, Yan-Nan; Zeng, Xiao-Ping

    2018-01-22

    A broadband tunable metamaterial graphene absorber is investigated in this paper. The unit cell of the proposed metamaterial graphene absorber is composed of four patch resonators. By tuning the chemical potential of graphene and the geometric size of each patch, the simulated total reflectivity is less than -10 dB from 22.02 to 36.61 THz and with the total thickness of 0.76 um (only 0.09λ at the lowest frequency). The analysis of the surface current, magnetic field and power flow distributions has been performed to better understand the absorption mechanism. Moreover, this proposed absorber achieves its bandwidth tunable characteristics through a voltage biasing of the graphene's Fremi level. This proposed metamaterial graphene absorber (MGA) could be used as smart absorbers, photovoltaic devices and tunable sensors.

  20. Tunable defect mode realized by graphene-based photonic crystal

    Science.gov (United States)

    Fu, Jiahui; Chen, Wan; Lv, Bo

    2016-04-01

    In this literature, we propose an active terahertz 1D photonic crystal, which consists of silicon layers and air layers. A graphene sheet is embedded at the interface between dielectric and air. Tunable photonic band gap is realized by changing the Fermi level of graphene. Transmission Matrix Method is utilized to explain the influence of the graphene layer. We also demonstrate that a dielectric slab attached with a thin sheet made of single-negative metamaterial acts like a pure dielectric slab with a thinner thickness. A tunable blue shift of the band gap can be realized by simply applying different chemical potentials on the graphene sheet. This feature can be utilized for the design of tunable high-gain antenna array and force generator in terahertz band.

  1. Reconfigurable and tunable flat graphene photonic crystal circuits.

    Science.gov (United States)

    Chen, Zan Hui; Tan, Qi Long; Lao, Jieer; Liang, Yao; Huang, Xu Guang

    2015-07-07

    Photonic crystal waveguides and circuits are one of the basic modules for integrated photonic devices. They mainly rely on photonic bandgaps to achieve light confinement and manipulation. Herein, we propose a novel general principle or method to achieve reconfigurable and tunable flat graphene photonic crystals (FG-PCs) by selectively electrostatic gating a layer of graphene with periodic gold electrodes. The tunable flat photonic bandgap structure of the FG-PCs as a function of the Fermi level is investigated. Reconfigurable FG-PC defect waveguides and cavities created by external patterned-gate-voltage control are also proposed and discussed. The features of reconfigurable/tunable FG-PCs will add more flexibility and capabilities for the single chip integration of graphene-based integrated photonic devices.

  2. Narrow bandpass tunable terahertz filter based on photonic crystal cavity.

    Science.gov (United States)

    He, Jinglong; Liu, Pingan; He, Yalan; Hong, Zhi

    2012-02-20

    We have fabricated a very narrow bandpass tunable terahertz (THz) filter based on a one-dimensional photonic crystal cavity. Since the filter consists of silicon wafers and air spacers, it has a very high quality factor of about 1500. The full width at half maximum (FWHM) of the passband is only about 200 MHz, and the peak transmission is higher than -4 dB. Besides, the central frequency can be tuned rapidly over the entire bandgap with the length of cavity adjusted by a motorized linear stage. Further analytical calculations indicate that a high-Q tunable filter with both high peak transmission and wide tunable range is possible if thinner silicon layers are used. © 2012 Optical Society of America

  3. Critical electric field for maximum tunability in nonlinear dielectrics

    Science.gov (United States)

    Akdogan, E. K.; Safari, A.

    2006-09-01

    The authors develop a self-consistent thermodynamic theory to compute the critical electric field at which maximum tunability is attained in a nonlinear dielectric. They then demonstrate that the stored electrostatic free energy functional has to be expanded at least up to the sixth order in electric field so as to define the critical field, and show that it depends solely on the fourth and sixth order permittivities. They discuss the deficiency of the engineering tunability metric in describing nonlinear dielectric phenomena, introduce a critical field renormalized tunability parameter, and substantiate the proposed formalism by computing the critical electric field for prototypical 0.9Pb(Mg1/3,Nb2/3)-0.1PbTiO3 and Ba(Ti0.85,Sn0.15)O3 paraelectrics.

  4. Compressive strength and porosity tests on bovine hydroxyapatite-gelatin-chitosan scaffolds

    Directory of Open Access Journals (Sweden)

    Nadia Kartikasari

    2016-09-01

    Full Text Available Background: Degenerative diseases, aggressive periodontitis, trauma, jaw resection, and congenital abnormalities can cause defects in jaw bone. The surgical procedure for bone reconstruction currently performed is bone regeneration graft (BRG. Unfortunately, this procedure still has many disadvantages. Thus, tissue engineering approach is necessary to be conducted. The main component used in this tissue engineering is scaffolds. Scaffolds used in bone regeneration is expected to have appropriate characteristics with bone, such as high porosity and swelling ratio, low degradation rates, and good mechanical properties. For those reasons, this research used scaffolds made from bovine hydroxyapatite (BHA, gelatin (GEL, and chitosan (K/BHA-GEL-K as one of biomaterial candidates for bone regeneration. Purpose: This study aimed to determine compressive strength value and porosity size of BHA-GEL-K scaffolds. Method: Compressive strength of BHA-GEL-K scaffolds was tested using autograph with speed 10 mm/ min with a load cell compress machine of 100 kN. Compressive strength was calculated by force divided to surface area. Porosity test was measured using SEM. Scaffold were coated with Pb and Au, then the porosity size is calculated with SEM at 100x magnification. Result: BHA-GEL-K scaffolds had a mean compressive strength value of 174.29 kPa and a porosity size of 31.62 + 147.06 lm. Conclusion: It can be concluded that BHA-GEL-K scaffolds has a good compressive strength, but not yet resemble real bone mass, while porosity of BHA-GEL-K scaffold is appropriate for bone tissue regeneration application.

  5. Push-pull tests for estimating effective porosity: expanded analytical solution and in situ application

    Science.gov (United States)

    Paradis, Charles J.; McKay, Larry D.; Perfect, Edmund; Istok, Jonathan D.; Hazen, Terry C.

    2017-10-01

    The analytical solution describing the one-dimensional displacement of the center of mass of a tracer during an injection, drift, and extraction test (push-pull test) was expanded to account for displacement during the injection phase. The solution was expanded to improve the in situ estimation of effective porosity. The truncated equation assumed displacement during the injection phase was negligible, which may theoretically lead to an underestimation of the true value of effective porosity. To experimentally compare the expanded and truncated equations, single-well push-pull tests were conducted across six test wells located in a shallow, unconfined aquifer comprised of unconsolidated and heterogeneous silty and clayey fill materials. The push-pull tests were conducted by injection of bromide tracer, followed by a non-pumping period, and subsequent extraction of groundwater. The values of effective porosity from the expanded equation (0.6-5.0%) were substantially greater than from the truncated equation (0.1-1.3%). The expanded and truncated equations were compared to data from previous push-pull studies in the literature and demonstrated that displacement during the injection phase may or may not be negligible, depending on the aquifer properties and the push-pull test parameters. The results presented here also demonstrated the spatial variability of effective porosity within a relatively small study site can be substantial, and the error-propagated uncertainty of effective porosity can be mitigated to a reasonable level (< ± 0.5%). The tests presented here are also the first that the authors are aware of that estimate, in situ, the effective porosity of fine-grained fill material.

  6. Influence of random shrinkage porosity on equivalent elastic modulus of casting: A statistical and numerical approach

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-03-01

    Full Text Available Shrinkage porosity is a type of random distribution defects and exists in most large castings. Different from the periodic symmetry defects or certain distribution defects, shrinkage porosity presents a random “cloud-like” configuration, which brings difficulties in quantifying the effective performance of defected casting. In this paper, the influences of random shrinkage porosity on the equivalent elastic modulus of QT400-18 casting were studied by a numerical statistics approach. An improved random algorithm was applied into the lattice model to simulate the “cloud-like” morphology of shrinkage porosity. Then, a large number of numerical samples containing random levels of shrinkage were generated by the proposed algorithm. The stress concentration factor and equivalent elastic modulus of these numerical samples were calculated. Based on a statistical approach, the effects of shrinkage porosity’s distribution characteristics, such as area fraction, shape, and relative location on the casting’s equivalent mechanical properties were discussed respectively. It is shown that the approach with randomly distributed defects has better predictive capabilities than traditional methods. The following conclusions can be drawn from the statistical simulations: (1 the effective modulus decreases remarkably if the shrinkage porosity percent is greater than 1.5%; (2 the average Stress Concentration Factor (SCF produced by shrinkage porosity is about 2.0; (3 the defect’s length across the loading direction plays a more important role in the effective modulus than the length along the loading direction; (4 the surface defect perpendicular to loading direction reduces the mean modulus about 1.5% more than a defect of other position.

  7. Trade-off between root porosity and mechanical strength in species with different types of aerenchyma.

    Science.gov (United States)

    Striker, G G; Insausti, P; Grimoldi, A A; Vega, A S

    2007-05-01

    The objective of this work was to study the existence of a trade-off between aerenchyma formation and root mechanical strength. To this end, relationships among root anatomical traits and mechanical properties were analysed in plant species with contrasting root structural types: Paspalidium geminatum (graminaceous type), Cyperus eragrostis (cyperaceous type), Rumex crispus (Rumex type) and Plantago lanceolata (Apium type). Variations in anatomical traits and mechanical strength were assessed as a function of root diameter by exposing plants to 0, 7, 15 and 30 d of control and flooded conditions. For each species, the proportion of root cortex was positively associated with the increment of root diameter, contributing to the increase in root porosity under both control and flooded conditions. Moreover, cell lysis produced an additional increase in root porosity in most species under flooded conditions (except R. crispus). Both structural types that presented a uniseriate layer (epidermis) to cope with compression (Rumex and Apium types) were progressively weakened as root porosity increased. This effect was significant even when the increment of root porosity was solely because of increased root diameter (R. crispus), as when both processes (root diameter and cell lysis) added porosity to the roots (P. lanceolata). Conversely, structural types that presented a multiseriate ring of cells in the outer cortex (graminaceous and cyperaceous types) maintained mechanical strength over the whole range of porosity, in spite of lysogenic processes registered in the inner cortex. In conclusion, our study demonstrates a strong trade-off between aerenchyma formation and mechanical strength in root structural types that lacked a multiseriate ring of tissue for mechanical protection in the outer cortex. The results suggest that this ring of tissue plays a significant role in maintaining the mechanical strength of roots when flooding induces the generation of additional aerenchyma

  8. Full-waveform inversion of Crosshole GPR data: Implications for porosity estimation in chalk

    Science.gov (United States)

    Keskinen, Johanna; Klotzsche, Anja; Looms, Majken C.; Moreau, Julien; van der Kruk, Jan; Holliger, Klaus; Stemmerik, Lars; Nielsen, Lars

    2017-05-01

    The Maastrichtian-Danian chalk is a widely distributed hydrocarbon and groundwater reservoir rock in north-western Europe. Knowledge of lateral and vertical heterogeneity and porosity variation in this type of rock is essential, since they critically determine the reservoir properties. We have collected a densely sampled crosshole ground-penetrating radar (GPR) dataset from a highly heterogeneous section of the chalk and inverted it with a full-waveform inversion (FWI) approach. To date, successful crosshole FWI has only been reported for a handful of GPR field data, none of which include strongly heterogeneous environments like the one considered in this study. Testing different starting models shows that all FWI results converge to very similar subsurface structures indicating that the results are robust with regard to local variations in the permittivity starting models and are not very sensitive to the conductivity starting models. Compared to their ray-based counterparts, the obtained FWI models show significantly higher resolution and improved localization of fine-scale heterogeneity. The final FWI permittivity tomogram was converted to a bulk porosity model using the Complex Refractive Index Model (CRIM) and comparisons with plug sample porosities and televiewer image logs verify that variations in the obtained permittivity are related to facies and lithology changes. The inferred porosity varies from 30 to 54%, which is consistent with values in the chalk cores from the investigated boreholes and in agreement with other studies conducted in similar rocks onshore. Moreover, porosities vary significantly over scales of less than a meter both laterally and vertically. The FWI constrains porosity variation with decimeter scale resolution in our 5 m (horizontally) by 10 m (vertically) model section bridging the gap between what is measured on the core sample scale and the scale typical of hydrogeophysical field experiments conducted to characterize fluid flow in

  9. Characterizing the turbulent porosity of stellar wind structure generated by the line-deshadowing instability

    Science.gov (United States)

    Owocki, Stanley P.; Sundqvist, Jon O.

    2018-03-01

    We analyse recent 2D simulations of the non-linear evolution of the line-deshadowing instability (LDI) in hot-star winds, to quantify how the associated highly clumped density structure can lead to a `turbulent porosity' reduction in continuum absorption and/or scattering. The basic method is to examine the statistical variations of mass column as a function of path length, and fit these to analytic forms that lead to simple statistical scalings for the associated mean extinction. A key result is that one can characterize porosity effects on continuum transport in terms of a single `turbulent porosity length', found here to scale as H ≈ (fcl - 1)a, where fcl ≡ 〈ρ2〉/〈ρ〉2 is the clumping factor in density ρ, and a is the density autocorrelation length. For continuum absorption or scattering in an optically thick layer, we find the associated effective reduction in opacity scales as ˜ 1/√{1+τ_H}, where τH ≡ κρH is the local optical thickness of this porosity length. For these LDI simulations, the inferred porosity lengths are small, only about a couple per cent of the stellar radius, H ≈ 0.02R*. For continuum processes like bound-free absorption of X-rays that are only marginally optically thick throughout the full stellar wind, this implies τH ≪ 1, and thus that LDI-generated porosity should have little effect on X-ray transport in such winds. The formalism developed here could however be important for understanding the porous regulation of continuum-driven, super-Eddington outflows from luminous blue variables.

  10. Fractal dimensions and porosities of Zoogloea ramigera and Saccharomyces cerevisae aggregates.

    Science.gov (United States)

    Logan, B E; Wilkinson, D B

    1991-08-05

    The fractal nature microbial aggregates is a function of the type of microorganism and mixing conditions used to develop aggregates. We determined fractal dimensions from length-projected area (D(2)) and length-number scaling (D(3)) relationships. Aggregates of Zoogloea ramigera developed in rotating test tubes were both surface and mass fractals, with fractal dimensions of D(2) = 1.69 +/- 0.11 and D(3)= 1.79 +/- 0.28 (+/-standard deviation), respectively. When we grew this bacteria in a bench-top fermentor, aggregates maintained their surface fractal characteristics (D(2) = 1.78 +/- 0.11) but lost their mass fractal characteristics (D(3) = 2.99 +/- 0.36). Yeast aggregates (Saccharomyces cerevisae) grown in rotating tests tubes had higher average fractal dimensions than bacterial aggregates grown under physically identical conditions, and were also considered fractal (D(2) = 1.92 +/- 0.08 and D(3) = 2.66 +/- 0.34). Aggregates porosity can be expressed in term of a fractal dimensions, but average porosities are higher than expected. The porosities of yeast aggregates (0.9250-0.9966) were similar to porosities of bacterial aggregates (0.9250-0.9966) cultured under the same physical conditions, although bacterial aggregates developed in the reactor had higher average porosities (0.9857-0.9980). These results suggest that that scaling relationships based on fractal geometry may be more useful than equations derived from Euclidean geometry for quantifying the effects of different fluid mechanical environments on aggregates morphology and characteristics such as density, porosity, and projected surface area.

  11. CALiPER Report 23: Photometric Testing of White Tunable LED Luminaires

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-01

    This report documents an initial investigation of photometric testing procedures for white-tunable LED luminaires and summarizes the key features of those products. Goals of the study include understanding the amount of testing required to characterize a white-tunable product, and documenting the performance of available color-tunable luminaires that are intended for architectural lighting.

  12. Tunable mode-locked semiconductor laser with Bragg mirror external cavity

    DEFF Research Database (Denmark)

    Yvind, Kresten; Jørgensen, T.; Birkedal, Dan

    2002-01-01

    We present a simplified design for a wavelength tunable external cavity mode-locked laser by employing a wedged GaAs/AlGaAs Bragg mirror. The device emits 4-6 ps pulses at 10 GHz and is tunable over 15 nm. Although, in the present configuration, tunability is limited to 15 nm, however, we have...

  13. Optimization and Optimal Control

    CERN Document Server

    Chinchuluun, Altannar; Enkhbat, Rentsen; Tseveendorj, Ider

    2010-01-01

    During the last four decades there has been a remarkable development in optimization and optimal control. Due to its wide variety of applications, many scientists and researchers have paid attention to fields of optimization and optimal control. A huge number of new theoretical, algorithmic, and computational results have been observed in the last few years. This book gives the latest advances, and due to the rapid development of these fields, there are no other recent publications on the same topics. Key features: Provides a collection of selected contributions giving a state-of-the-art accou

  14. Porosity and sonic velocity depth trends of Eocene chalk in Atlantic Ocean: Influence of effective stress and temperature

    DEFF Research Database (Denmark)

    Awedalkarim, Ahmed; Fabricius, Ida Lykke

    2014-01-01

    data were correlated to vertical effective stresses and to TTI.Our porosity data showed a broader porosity trend in the mechanical compaction zone, and the onset of the formation of limestone at a shallower burial depth than the porosity data of the Ontong Java Plateau chalk show. Our porosity data do...... of geological age on chalk compaction trends. For each depth, vertical effective stresses as defined by Terzaghi and by Biot were calculated. We used bottom-hole temperature data to calculate the time–temperature index of thermal maturity (TTI) as defined by Lopatin. Porosity and compressional wave velocity...... not show or at least it is difficult to define a clear pore-stiffening contact cementation trend as the Ontong Java Plateau chalk. Mechanical compaction is the principal cause of porosity reduction (at shallow depths) in the studied Eocene chalk, at least down to about 5MPa Terzaghi׳s effective stress...

  15. Tunable stochastic pulsing in the Escherichia coli multiple antibiotic resistance network from interlinked positive and negative feedback loops.

    Science.gov (United States)

    Garcia-Bernardo, Javier; Dunlop, Mary J

    2013-01-01

    Cells live in uncertain, dynamic environments and have many mechanisms for sensing and responding to changes in their surroundings. However, sudden fluctuations in the environment can be catastrophic to a population if it relies solely on sensory responses, which have a delay associated with them. Cells can reconcile these effects by using a tunable stochastic response, where in the absence of a stressor they create phenotypic diversity within an isogenic population, but use a deterministic response when stressors are sensed. Here, we develop a stochastic model of the multiple antibiotic resistance network of Escherichia coli and show that it can produce tunable stochastic pulses in the activator MarA. In particular, we show that a combination of interlinked positive and negative feedback loops plays an important role in setting the dynamics of the stochastic pulses. Negative feedback produces a pulsatile response that is tunable, while positive feedback serves to amplify the effect. Our simulations show that the uninduced native network is in a parameter regime that is of low cost to the cell (taxing resistance mechanisms are expressed infrequently) and also elevated noise strength (phenotypic variability is high). The stochastic pulsing can be tuned by MarA induction such that variability is decreased once stresses are sensed, avoiding the detrimental effects of noise when an optimal MarA concentration is needed. We further show that variability in the expression of MarA can act as a bet hedging mechanism, allowing for survival in time-varying stress environments, however this effect is tunable to allow for a fully induced, deterministic response in the presence of a stressor.

  16. Tunable stochastic pulsing in the Escherichia coli multiple antibiotic resistance network from interlinked positive and negative feedback loops.

    Directory of Open Access Journals (Sweden)

    Javier Garcia-Bernardo

    Full Text Available Cells live in uncertain, dynamic environments and have many mechanisms for sensing and responding to changes in their surroundings. However, sudden fluctuations in the environment can be catastrophic to a population if it relies solely on sensory responses, which have a delay associated with them. Cells can reconcile these effects by using a tunable stochastic response, where in the absence of a stressor they create phenotypic diversity within an isogenic population, but use a deterministic response when stressors are sensed. Here, we develop a stochastic model of the multiple antibiotic resistance network of Escherichia coli and show that it can produce tunable stochastic pulses in the activator MarA. In particular, we show that a combination of interlinked positive and negative feedback loops plays an important role in setting the dynamics of the stochastic pulses. Negative feedback produces a pulsatile response that is tunable, while positive feedback serves to amplify the effect. Our simulations show that the uninduced native network is in a parameter regime that is of low cost to the cell (taxing resistance mechanisms are expressed infrequently and also elevated noise strength (phenotypic variability is high. The stochastic pulsing can be tuned by MarA induction such that variability is decreased once stresses are sensed, avoiding the detrimental effects of noise when an optimal MarA concentration is needed. We further show that variability in the expression of MarA can act as a bet hedging mechanism, allowing for survival in time-varying stress environments, however this effect is tunable to allow for a fully induced, deterministic response in the presence of a stressor.

  17. Towards assessing cortical bone porosity using low-frequency quantitative acoustics: A phantom-based study.

    Directory of Open Access Journals (Sweden)

    Florian Vogl

    Full Text Available Cortical porosity is a key characteristic governing the structural properties and mechanical behaviour of bone, and its quantification is therefore critical for understanding and monitoring the development of various bone pathologies such as osteoporosis. Axial transmission quantitative acoustics has shown to be a promising technique for assessing bone health in a fast, non-invasive, and radiation-free manner. One major hurdle in bringing this approach to clinical application is the entanglement of the effects of individual characteristics (e.g. geometry, porosity, anisotropy etc. on the measured wave propagation. In order to address this entanglement problem, we therefore propose a systematic bottom-up approach, in which only one bone property is varied, before addressing interaction effects. This work therefore investigated the sensitivity of low-frequency quantitative acoustics to changes in porosity as well as individual pore characteristics using specifically designed cortical bone phantoms.14 bone phantoms were designed with varying pore size, axial-, and radial pore number, resulting in porosities (bone volume fraction between 0% and 15%, similar to porosity values found in human cortical bone. All phantoms were manufactured using laser sintering, measured using axial-transmission acoustics and analysed using a full-wave approach. Experimental results were compared to theoretical predictions based on a modified Timoshenko theory.A clear dependence of phase velocity on frequency and porosity produced by increasing pore size or radial pore number was demonstrated, with the velocity decreasing by between 2-5 m/s per percent of additional porosity, which corresponds to -0.5% to -1.0% of wave speed. While the change in phase velocity due to axial pore number was consistent with the results due to pore size and radial pore number, the relative uncertainties for the estimates were too high to draw any conclusions for this parameter.This work has

  18. The role of porosity in thermal inertia variations on basaltic lavas

    Science.gov (United States)

    Zimbelman, James R.

    1986-01-01

    Thermal inertia, defined as the square root of the product of thermal conductivity, density, and specific heat, has been noted to vary in inverse proportion to porosity in Hawaiian basalts. It is presently suggested that porosities of the order of more than 80 percent are required if the low thermal inertias observed in Martian shield volcanoes are the result of pristine lava flow surface properties. An aeolian origin is held to be most likely in view of thermal measurements on Mars; the volcanic surfaces in question are anticipated to have a short lifetime in their environment.

  19. Study of the influence of agricultural waste on the porosity of clay brick

    Directory of Open Access Journals (Sweden)

    Chelouah Nasser

    2015-02-01

    Full Text Available This paper deals with the influence of two organic residues on the porosity of clay bricks. The insulation capacity of the brick increases with increasing the porosity. Combustible organic additions are often used to form pores. The formation of the more homogenous porous structure is favourably impacted by using the crushed rough olive stones containing oil. Plasticity, bulk density and mechanical properties were studied. The additions of organic residues have proved successful to form pores while maintaining the mechanical properties in the limits of the Algerian norms.

  20. Porosity characterization of fiber-reinforced ceramic matrix composite using synchrotron X-ray computed tomography

    Science.gov (United States)

    Zou, C.; Marrow, T. J.; Reinhard, C.; Li, B.; Zhang, C.; Wang, S.

    2016-03-01

    The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a "node-bond" geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1~ 9.3% closed micropores.

  1. Increased cortical porosity is associated with daily, not weekly, administration of equivalent doses of teriparatide.

    Science.gov (United States)

    Zebaze, Roger; Takao-Kawabata, Ryoko; Peng, Yu; Zadeh, Ali Ghasem; Hirano, Kyoko; Yamane, Hiroshi; Takakura, Aya; Isogai, Yukihiro; Ishizuya, Toshinori; Seeman, Ego

    2017-06-01

    The pharmacokinetic profile of parathyroid hormone (PTH) determines its effects on bone resorption and formation. When administered intermittently, anabolic effects are favored in comparison with the continuous treatment. Among the intermittent treatment regimens, lower frequency of administration may have a lower effect on bone remodeling. We therefore hypothesized that weekly administration of teriparatide will produce less increase in intracortical remodeling and porosity than reported using daily treatment. We treated 17 female New Zealand white rabbits aged 6months for 1month with teriparatide [human PTH(1-34)] as follows. (i) Vehicle-treated Control (n=4); (ii) 20μg/kg daily (n=3); (iii) 40μg/kg daily (n=3); (iv) 140μg/kg weekly (n=3); (v) 280μg/kg weekly (n=4). Proximal femurs were imaged ex vivo using micro-CT (Scanco Viva CT-40) at 15μmvoxel size. Areas, pore size, and porosity were analyzed on the total, compact cortex (CC), and transitional zones in a 10mm length region of interest (ROI) starting at the midshaft using StrAx1.0. Compared to controls, the 20μg/kg daily was associated with 3.0% higher porosity in the transitional zone (p=0.09) while the 40μg/kg daily was associated with a higher porosity in the cortex (8.7%; p=0.04) and in the transitional zone (5.7%; p=0.007). The daily regimens were also associated with a greater proportion of porosity due to pores >15μm 2 ; particularly in the transitional zone where 20 and 40μg/kg daily increased porosity 2 fold (p=0.06) and 5 fold (p=0.04) relative controls respectively. The 140 and 280μg/kg weekly were not associated with an increase in porosity. There was no difference in total, compact or transitional zone cross sectional areas between the groups. Effects of intermittent teriparatide depend on the dose and frequency of administration. Daily dosing, particularly the higher dose, but not weekly dosing, increased cortical porosity. Work is needed to investigate the effects of the regimens on

  2. Effect of Etching Parameter on Pore Size and Porosity of Electrochemically Formed Nanoporous Silicon

    Directory of Open Access Journals (Sweden)

    Pushpendra Kumar

    2007-01-01

    Full Text Available The most common fabrication technique of porous silicon (PS is electrochemical etching of a crystalline silicon wafer in a hydrofluoric (HF acid-based solution. The electrochemical process allows for precise control of the properties of PS such as thickness of the porous layer, porosity, and average pore diameter. The control of these properties of PS was shown to depend on the HF concentration in the used electrolyte, the applied current density, and the thickness of PS. The change in pore diameter, porosity, and specific surface area of PS was investigated by measuring nitrogen sorption isotherms.

  3. Dual detector pulsed neutron logging for providing indication of formation porosity

    International Nuclear Information System (INIS)

    Hopkinson, E.C.

    1979-01-01

    A logging instrument contains a pulsed neutron source and a pair of radiation detectors spaced along the length of the instrument. The radiation detectors are gated differently from each other to provide an indication of formation porosity which is substantially independent of the formation salinity. In the preferred embodiment, the electrical signals indicative of radiation detected by the long-spaced detector are gated for almost the entire interval between neutron pulses and the short-spaced signals are gated for a significantly smaller time interval which commences soon after the termination of a given neutron burst. The signals from the two detectors are combined in a ratio circuit for determination of porosity

  4. Denosumab Reduces Cortical Porosity of the Proximal Femoral Shaft in Postmenopausal Women With Osteoporosis.

    Science.gov (United States)

    Zebaze, Roger; Libanati, Cesar; McClung, Michael R; Zanchetta, José R; Kendler, David L; Høiseth, Arne; Wang, Andrea; Ghasem-Zadeh, Ali; Seeman, Ego

    2016-10-01

    Hip fractures account for over one-half the morbidity, mortality, and cost associated with osteoporosis. Fragility of the proximal femur is the result of rapid and unbalanced bone remodeling events that excavate more bone than they deposit, producing a porous, thinned, and fragile cortex. We hypothesized that the slowing of remodeling during treatment with denosumab allows refilling of the many cavities excavated before treatment now opposed by excavation of fewer new resorption cavities. The resulting net effect is a reduction in cortical porosity and an increase in proximal femur strength. Images were acquired at baseline and 36 months using multidetector CT in 28 women receiving denosumab and 22 women receiving placebo in a substudy of FREEDOM, a randomized, double-blind, placebo-controlled trial involving women with postmenopausal osteoporosis. Porosity was quantified using StrAx1.0 software. Strength was estimated using finite element analysis. At baseline, the higher the serum resorption marker, CTx, the greater the porosity of the total cortex (r = 0.34, p = 0.02), and the higher the porosity, the lower the hip strength (r = -0.31, p = 0.03). By 36 months, denosumab treatment reduced porosity of the total cortex by 3.6% relative to baseline. Reductions in porosity relative to placebo at 36 months were 5.3% in total cortex, 7.9% in compact-appearing cortex, 5.6% in outer transitional zone, and 1.8% in inner transitional zone (all p < 0.01). The improvement in estimated hip integral strength of 7.9% from baseline (p < 0.0001) was associated with the reduction in total porosity (r = -0.41, p = 0.03). In summary, denosumab reduced cortical porosity of the proximal femoral shaft, resulting in increased mineralized matrix volume and improved strength, changes that may contribute to the reduction in hip and nonvertebral fractures reported with denosumab therapy. © 2016 The Authors. Journal of Bone and Mineral Research published by

  5. Computer Processing Of Tunable-Diode-Laser Spectra

    Science.gov (United States)

    May, Randy D.

    1991-01-01

    Tunable-diode-laser spectrometer measuring transmission spectrum of gas operates under control of computer, which also processes measurement data. Measurements in three channels processed into spectra. Computer controls current supplied to tunable diode laser, stepping it through small increments of wavelength while processing spectral measurements at each step. Program includes library of routines for general manipulation and plotting of spectra, least-squares fitting of direct-transmission and harmonic-absorption spectra, and deconvolution for determination of laser linewidth and for removal of instrumental broadening of spectral lines.

  6. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    International Nuclear Information System (INIS)

    Lani, Shane W.; Sabra, Karim G.; Wasequr Rashid, M.; Hasler, Jennifer; Levent Degertekin, F.

    2014-01-01

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range

  7. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Lani, Shane W., E-mail: shane.w.lani@gmail.com, E-mail: karim.sabra@me.gatech.edu, E-mail: levent.degertekin@me.gatech.edu; Sabra, Karim G. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405 (United States); Wasequr Rashid, M.; Hasler, Jennifer [School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250 (United States); Levent Degertekin, F. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405 (United States); School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250 (United States)

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  8. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    Science.gov (United States)

    Lani, Shane W.; Wasequr Rashid, M.; Hasler, Jennifer; Sabra, Karim G.; Levent Degertekin, F.

    2014-02-01

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  9. Electrically tunable electromagnetic switches based on zero-index metamaterials

    Science.gov (United States)

    Cao, Yanyang; Meng, Qingquan; Xu, Yadong

    2018-02-01

    In this work, we design a heterojunction in a two dimensional parallel-plate metallic waveguide by using zero-index metamaterials and anisotropic dielectrics which are electrically tunable. We show analytically and numerically that by only controlling the direct current voltage applied to the anisotropic dielectrics, the phenomena of perfect transmission and near perfect reflection can be tuned electrically. Such designed junctions can service as electrically tunable switches in waveguide systems, with good performances and high sensitivities. Our work provides another way to electrically control the propagation of electromagnetic waves in waveguide systems.

  10. Tunable graphene antennas for selective enhancement of THz-emission

    KAUST Repository

    Filter, Robert

    2013-01-01

    In this paper, we will introduce THz graphene antennas that strongly enhance the emission rate of quantum systems at specific frequencies. The tunability of these antennas can be used to selectively enhance individual spectral features. We will show as an example that any weak transition in the spectrum of coronene can become the dominant contribution. This selective and tunable enhancement establishes a new class of graphene-based THz devices, which will find applications in sensors, novel light sources, spectroscopy, and quantum communication devices. © 2013 Optical Society of America.

  11. High Q-factor tunable superconducting HF circuit

    CERN Document Server

    Vopilkin, E A; Pavlov, S A; Ponomarev, L I; Ganitsev, A Y; Zhukov, A S; Vladimirov, V V; Letyago, A G; Parshikov, V V

    2001-01-01

    Feasibility of constructing a high Q-factor (Q approx 10 sup 5) mechanically tunable in a wide range of frequencies (12-63 MHz) vibration circuit of HF range was considered. The tunable circuit integrates two single circuits made using YBaCuO films. The circuit frequency is tuned by changing distance X (capacity) between substrates. Potentiality of using substrates of lanthanum aluminate, neodymium gallate and strontium titanate for manufacture of single circuits was considered. Q-factor of the circuit amounted to 68000 at resonance frequency of 6.88 MHz

  12. Tunable plasmonic filter based on graphene-layered waveguide

    Science.gov (United States)

    Feng, Yuncai; Liu, Youwen; Shi, Yaoyao; Teng, Jinghua

    2018-03-01

    We propose a tunable band-stop plasmonic filter based on monolayer graphene with different thickness of structure, and the corresponding transmission characteristic is numerically investigated by using finite-difference time-domain (FDTD) method. The results show that the proposed filter can achieve a broad stopband that can be tuned by various physical parameters such as the chemical potential of graphene, the thickness of packing layers and so on. Our studies may be important for designing tunable optical filter, the fabrication of nano-integrated plasmonic circuits and the refractive index sensitive sensors.

  13. Tunable reflecting terahertz filter based on chirped metamaterial structure

    Science.gov (United States)

    Yang, Jing; Gong, Cheng; Sun, Lu; Chen, Ping; Lin, Lie; Liu, Weiwei

    2016-01-01

    Tunable reflecting terahertz bandstop filter based on chirped metamaterial structure is demonstrated by numerical simulation. In the metamaterial, the metal bars are concatenated to silicon bars with different lengths. By varying the conductivity of the silicon bars, the reflectivity, central frequency and bandwidth of the metamaterial could be tuned. Light illumination could be introduced to change the conductivity of the silicon bars. Numerical simulations also show that the chirped metamaterial structure is insensitive to the incident angle and polarization-dependent. The proposed chirped metamaterial structure can be operated as a tunable bandstop filter whose modulation depth, bandwidth, shape factor and center frequency can be controlled by light pumping. PMID:27941833

  14. Widely tunable femtosecond solitonic radiation in photonic crystal fiber cladding

    DEFF Research Database (Denmark)

    Peng, J. H.; Sokolov, A. V.; Benabid, F.

    2010-01-01

    We report on a means to generate tunable ultrashort optical pulses. We demonstrate that dispersive waves generated by solitons within the small-core features of a photonic crystal fiber cladding can be used to obtain femtosecond pulses tunable over an octave-wide spectral range. The generation...... process is highly efficient and occurs at the relatively low laser powers available from a simple Ti:sapphire laser oscillator. The described phenomenon is general and will play an important role in other systems where solitons are known to exist....

  15. Tunable Hybrid Qubit in a Triple Quantum Dot

    Science.gov (United States)

    Wang, Bao-Chuan; Cao, Gang; Li, Hai-Ou; Xiao, Ming; Guo, Guang-Can; Hu, Xuedong; Jiang, Hong-Wen; Guo, Guo-Ping

    2017-12-01

    We experimentally demonstrate quantum-coherent dynamics of a triple-dot-based multielectron hybrid qubit. Pulsed experiments show that this system can be conveniently initialized, controlled, measured electrically, and has a good ratio Q ˜29 between the coherence time and gate time. Furthermore, the current multielectron hybrid qubit has an operation frequency that is tunable in a wide range, from 2 to about 15 GHz. We also provide a qualitative understanding of the experimental observations by mapping them onto a three-electron system. The demonstration of the high tunability in a triple dot system could be potentially useful for future quantum control.

  16. Superconducting tunable flux qubit with direct readout scheme

    International Nuclear Information System (INIS)

    Chiarello, Fabio; Castellano, Maria Gabriella; Leoni, Roberto; Torrioli, Guido; Carelli, Pasquale; Cosmelli, Carlo; Gangemi, Lorenzo; Poletto, Stefano; Simeone, Daniela

    2005-01-01

    We describe a simple and efficient scheme for the readout of a tunable flux qubit, and present preliminary experimental tests for the preparation, manipulation and final readout of the qubit state, performed in the incoherent regime at liquid helium temperature. The tunable flux qubit is realized by a double SQUID with an extra Josephson junction inserted in the large superconducting loop, and the readout is performed by applying a current ramp to the junction and recording the value for which there is a voltage response, depending on the qubit state. This preliminary work indicates the feasibility and efficiency of the scheme

  17. Chip scale broadly tunable laser for laser spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin; Lu, Thomas; Davis, Scott R.; Anderson, Michael H.

    2016-04-01

    We are developing an innovative Tunable Laser Spectrometer (TLS) that is compact, broad tuning range (> 200 nm) enabled by an innovative chip-scale (a waveguide based architecture), non-mechanical (voltage- controlled tuning), Waveguide External-cavity Semiconductor Laser (WECSL). This WECSL based TLS, with broad tuning range, will enable the simultaneous measurement of multiple gases abundances in Martian and other planetary atmospheres, adsorbed to soil; and bound to rocks. This monolithic, robust, integrated-optic Tunable Laser Absorption Spectrometer (TLS) will operate in the near infrared and infrared spectral bands. The system architecture, principles of operation and applications of the TLS will be reported in this paper.

  18. Core-shell colloidal particles with dynamically tunable scattering properties.

    Science.gov (United States)

    Meng, Guangnan; Manoharan, Vinothan N; Perro, Adeline

    2017-09-27

    We design polystyrene-poly(N'-isopropylacrylamide-co-acrylic acid) core-shell particles that exhibit dynamically tunable scattering. We show that under normal solvent conditions the shell is nearly index-matched to pure water, and the particle scattering is dominated by Rayleigh scattering from the core. As the temperature or salt concentration increases, both the scattering cross-section and the forward scattering increase, characteristic of Mie scatterers. The magnitude of the change in the scattering cross-section and scattering anisotropy can be controlled through the solvent conditions and the size of the core. Such particles may find use as optical switches or optical filters with tunable opacity.

  19. Tunable cavity resonator including a plurality of MEMS beams

    Science.gov (United States)

    Peroulis, Dimitrios; Fruehling, Adam; Small, Joshua Azariah; Liu, Xiaoguang; Irshad, Wasim; Arif, Muhammad Shoaib

    2015-10-20

    A tunable cavity resonator includes a substrate, a cap structure, and a tuning assembly. The cap structure extends from the substrate, and at least one of the substrate and the cap structure defines a resonator cavity. The tuning assembly is positioned at least partially within the resonator cavity. The tuning assembly includes a plurality of fixed-fixed MEMS beams configured for controllable movement relative to the substrate between an activated position and a deactivated position in order to tune a resonant frequency of the tunable cavity resonator.

  20. Tunable waveguide bends with graphene-based anisotropic metamaterials

    KAUST Repository

    Chen, Zhao-xian

    2016-01-15

    We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.